
This chapter considers possible answers to the   basic questions of 
the
p-adicization program, which  are following.

Some of the  basic questions of the p-adicization program are 
following.

\begin{enumerate}

\item Is there some kind of  duality between real and p-adic 
physics? What is its
precise mathematic formulation?  In particular, what is the concrete 
map
of p-adic physics  in long scales (in real sense) to real physics in
short scales?  Can one find a rigorous mathematical formulation of 
the
canonical identification induced by the map $p\rightarrow 1/p$ in 
pinary
expansion of p-adic number such that it is both continuous and 
respects
symmetries or one must accept the finite measurement resolution.

Few years after writing this the answer to this question is in terms 
of
the notion of p-adic manifold. Canonical identification serving as 
its
building brick however allows many variants and it seems that 
quantum
arithmetics provides one further variant

\item What is the origin of the  p-adic length scale hypothesis
suggesting that primes near power of two are physically preferred?  
Why
Mersenne primes seem to be especially important (p-adic mass
calculations suggest this)?

This chapter studies some ideas but does not provide a clearcut 
answer
to these questions. The notion of quantum arithmetics obtained is
central  in this  approach.

\end{enumerate}

The starting point of quantum arithmetics  is the map $n\rightarrow 
n_q$
taking integers to quantum integers: $n_q=(q^n-q^{-n})/(q-q^{-1})$. 
Here
$q =exp(i\pi/n)$ is quantum phase defined as a root of unity.  From 
TGD
point of view prime roots $q =exp(i\pi/p)$ are of special interest. 
Also



prime prime power roots $q =exp(i\pi/p^n)$ of unity are of interest.
Quantum phase can be also generalized to complex number with modulus
different from unity.

One can consider several variants of quantum arithmetics.   One can
regard finite integers as either real or p-adic. In the intersection 
of
\blockquote{real and p-adic worlds} finite integers can be regarded 
both p-adic and
real.

\begin{enumerate}

\item If one regards  the integer $n$  real  one can  keep some
information about the prime decomposition of $n$ by  dividing $n$ to 
its
prime factors and performing the mapping $p\rightarrow p_q$. The map
takes prime first to finite field $G(p,1)$ and then maps it to 
quantum
integer. Powers of $p$ are mapped to zero unless one modifies the
quantum map so that $p$ is mapped to  $p$ or $1/p$ depending on 
whether
one interprets the outcome as analog of p-adic  number or real 
number.
This map can be seen as a modification of p-adic norm to a map, 
which
keeps some information about the prime factorization of the integer.
Information about both real and p-adic structure of integer is kept.

\item  For  p-adic integers the decomposition into prime factors 
does
not make sense. In this case it is natural to use pinary expansion 
of
integer in powers of $p$ and perform the quantum map for the
coefficients without decomposition to products of primes $p_1<p$.  
This
map can be seen as a modification of canonical identification.

\item If one wants to interpret finite integers as both real and p-
adic
then one can imagine the definition of quantum integer obtained by
de-compositing $n$ to a product of primes, using pinary expansion 
and
mapping coefficients to quantum integers looks natural.  This map 
would
keep information about both prime factorization and also a bout  
pinary
series of factors. One can also decompose the coefficients to prime
factors but it is not clear whether this really makes sense since in
finite field $G(p,1)$ there are no primes.

\end{enumerate}



One can distinguish between two basic options concerning the 
definition
of quantum integers.

\begin{enumerate}

\item For option I the prime number decomposition of integer is 
mapped
to its quantum counterpart by  mapping the primes $l$ to quantum 
primes
$l_q=(q^l-q^{-l})/(q-q^{-1})$, $q= exp(i\pi/p)$ so that image of 
product
is product of images.  Sums are {\it not} mapped to sums as is easy 
to
verify.  $p$ is mapped to zero for the standard definition of 
quantum
integer. Now $p$  is however  mapped to itself or $1/p$ depending on
whether one wants to interpret quantum integer as p-adic or real 
number.
Quantum integers generate an algebra with respect to sum and 
product.

\item Option II  one uses pinary expansion and maps the prime 
factors of
coefficients to quantum primes.  There seems to be no point in
decomposing the pinary coefficients to their prime factors so that 
they
are mapped to standard quantum integers smaller than $p$.

The quantum primes $l_q$  act as generators of Kac-Moody type 
algebra
defined by powers $p^n$ such that sum is completely analogous to 
that
for Kac-Moody algebra:  $a+b= \sum_n a_np^n+\sum b_np^n=\sum_n
(a_n+b_n)p^n$. For p-adic numbers this is not the case.

\item For both options it is natural to consider the variant for 
which
one has expansion $n= \sum_k n_kp^{kr}$, $n_k<p^r$,  $r=1,2...$. 
$p^k$
would serve as cutoff.

\end{enumerate}

The notion of quantum matrix group differing from ordinary quantum
groups in that matrix elements are commuting numbers makes sense. 
This
group forms a  discrete counterpart of ordinary quantum group and  



its
existence suggested by quantum classical correspondence. The 
existence
of this group for matrices with unit determinant is guaranteed by 
mere
ring property since the inverse matrix involves only arithmetic  
product
and sum.

\begin{enumerate} \item The quantum counterparts of special linear
groups $SL(n,F)$ exists always. For the covering group $SL(2,C)$ of
$SO(3,1)$  this is the case so that 4-dimensional Minkowski space is 
in
a very special position. For orthogonal, unitary, and orthogonal 
groups
the quantum counterpart exists only if   the number of powers of $p$ 
for
the generating elements of the quantum matrix group satisfies an 
upper
bound characterizing the matrix  group.

\item For the quantum counterparts of  $SO(3)$  ($SU(2)$/ $SU(3)$) 
the
orthogonality conditions state that  at least some multiples  of  
the
prime characterizing quantum arithmetics is sum of  three (four/six)
squares. For $SO(3)$ this condition is strongest and satisfied for 
all
integers,  which are not of form $n= 2^{2r}(8k+7))$.  The  number
$r_3(n)$  of representations as sum of squares is known  and $r_3(n)
$ is
invariant under the scalings $n\rightarrow 2^{2r}n$.  This means 
scaling
by $2$ for the integers appearing in the square sum representation.

\end{enumerate}

The findings about quantum $SO(3)$ suggest a possible explanation 
for
p-adic length scale hypothesis and preferred p-adic  primes.

\begin{enumerate}

\item The  idea  to be studied is that the quantum
matrix group which is discrete is in some sense very large for 
preferred
p-adic primes. If cognitive representations correspond to the
representations of quantum matrix group, the representational 
capacity
of cognitive representations is high and this kind of primes are
survivors in the algebraic evolution leading to algebraic extensions
with increasing dimension. The simple estimates of this chapter



restricting the consideration to finite fields ($O(p)=0$ 
approximation)
do not support  this idea in the case of Mersenne primes.

\item  An alternative idea  is that number theoretic evolution 
leading
to algebraic extensions of rationals with increasing dimension 
favors
p-adic primes which do not split in the extensions to primes of the
extension. There is also a nice argument that infinite primes which 
are
in one-one correspondence with prime polynomials code for algebraic
extensions. These primes code also for bound states of elementary
particles. Therefore  the  stable bound states would define  
preferred
p-adic primes as primes which  do not split in the algebraic  
extension
defined by infinite prime. This should  select Mersenne primes as
preferred ones.

\end{enumerate}


