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1 Introduction

The great dream of a physicist believing in reductionism and TGD would be a formalism general-
izing Feynman diagrams allowing any graduate student to compute the predictions of the theory.
TGD has forced myself to give up naive reductionism but I believe that TGD allows generalization
of Feynman diagram in such a way that one gets rid of the infinities plaguing practically all existing
theories. The purpose of this chapter is to develop general vision about how this might be achieved.
The vision is based on generalization of mathematical structures discovered in the construction of
topological quantum field theories (TQFT), conformal field theories (CQFT). In particular, the
notions of Hopf algebras and quantum groups, and categories are central. The following gives a
very concise summary of the basic ideas.

In introduced the original version of this chapter in extended form long time ago having also
remarkably long title. I ended up with diagrams which had category theoretical meaning and had
huge symmetries generalizing the duality symmetry of the hadronic string model and allowing
to reduce their number dramatically leaving only tree diagrams still having symmetries. These
diagrams were however not Feynman diagrams and this made me scared. After the emergence of
twistor Grassmann approach and twistor diagrams the situation changed completely and it might
be that I was on the correct track after all. This chapter is what was left from my adventure.

1. Feynman diagrams as generalized braid diagrams
The first key idea is that generalized Feynman diagrams with diagrams analogous to knot and

link diagrams in the sense that diagrams involving loops are equivalent with tree diagrams. This
would be a generalization of duality symmetry of string models.

TGD itself provides general arguments supporting same idea. The identification of preferred
extremal of Kähler action (perhaps absolute minimum in Eucdlian space-time regions) as a four-
dimensional Feynman diagram characterizing particle reaction means that there is only single
Feynman diagram instead of functional integral over 4-surfaces: this diagram is expected to be
minimal one. S-matrix element as a representation of a path defining continuation of configuration
space spinor field between different sectors of it corresponding different 3-topologies leads also to the
conclusion that all continuations and corresponding Feynman diagrams are equivalent. Universe
as a compute metaphor idea allowing quite concrete realization by generalization of what is meant
by space-time point leads to the view that generalized Feynman diagrams characterize equivalent
computations.

2. Coupling constant evolution from infinite number of critical values of Kähler coupling
strength

The basic objection that this vision does not allow to understand coupling constant evolution
involving loops in an essential way can be circumvented.

Quantum criticality requires that Kähler coupling constant αK is analogous to critical temper-
ature (so that the loops for configuration space integration vanish). The hypothesis motivated by
the enormous vacuum degeneracy of Kähler action is that gauge couplings have an infinite number
of possible values labelled by p-adic length scales and probably also by the fractal dimensions of
effective tensor factors defined hierarchy of II1 factors (so called Beraha numbers).

The dependence on p-adic length scale Lp corresponds to the usual renormalization group evo-
lution whereas the latter dependence would correspond to angular resolution and finite-dimensional
extensions of p-adic number fields Rp. Finite resolution and renormalization group evolution are
forced by the algebraic continuation of rational number based physics to real and p-adic number
fields since p-adic and real notions of distance between rational points differ dramatically.

TGD suggests discrete p-adic coupling constant evolution in which coupling constants are
renormalization group invariants for the evolution associated with given p-adic prime p. This
would mean vanishing of loops obtained also in N = 4 SUSY allowing twistorialization. Gauge
couplings could depend on prime p characterizing the p-adic length scale. The p-adic prime and
therefore also the length scale and coupling constants characterizing the dynamics for given CD
would vary wildly as function of integer characterizing CD size scale. This could mean that the
CDs whose size scales are related by multiplication of small integer are close to each other. They
would be near to each other in logarithmic sense and logarithms indeed appear in running coupling
constants. This “prediction” is of course subject to criticism.

The discrete p-adic coupling constant evolution should relate to the continuous RG evolution
of QFTs. This requires understanding of how this space-time corresponds to the many-sheeted
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space-time of TGD. GRT space-time as effective space-time obtained by replacing the many-sheeted
space-time with Minkowski space with effective metric determined as a sum of Minkowski metric
and sum over the deviations of the induced metrics of space-time sheets from Minkowski metric.
Also gauge potentials of standard model would correspond classically to superpositions of induced
gauge potentials over space-time sheets. Gravitational constant, cosmological constant, and various
gauge couplings emerge as predictions. Ordinary continuous coupling constant evolution would
follow only at GRT-QFT limit.

3. Equivalence of loop diagrams with tree diagrams from the axioms of generalized ribbon
category

A further was that Hopf algebra related structures and appropriately generalized ribbon cate-
gories could provide a concrete realization of this picture. Generalized Feynman diagrams which
are identified as braid diagrams with strands running in both directions of time and containing
besides braid operations also boxes representing algebra morphisms with more than one incoming
and outgoing strands describing particle reactions (3-particle vertex should be enough). In par-
ticular, fusion of 2-particles and decay of particle to two would correspond to generalizations of
algebra product µ and co-product ∆ to morphisms of the category defined by the super-symplectic
algebras associated with 3-surfaces with various topologies and conformal structures. The basic
axioms for this structure generalizing Hopf algebra axioms state that diagrams with self energy
loops, vertex corrections, and box diagrams are equivalent with tree diagrams.

To sum up, I could not develop this project further - mainly by the lack of needed mathemat-
ical knowhow, and this chapter is more like an Appendix. It might however be that twistorial
approach could allow to concretize the idea about equivalence of loop diagrams with tree diagrams
for generalization of Feynman diagrams. What is certain, that the notion of coupling constant
evolution aat the level of many-sheeted space-time, should be very simple in TGD- maybe trivial
for a given algebraic extension of given p-adic number field. Only at the QFT limit the lumping
of sheets to single one is expected to induce complexities.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 Hopf Algebras And Ribbon Categories As Basic Struc-
tures

In this section the basic notions related to Hopf algebras and categories are discussed from TGD
point of view. Examples are left to appendix. The new element is the graphical representation of
the axioms leading to the idea about the equivalent of loop diagrams and tree diagrams based on
general algebraic axioms.

2.1 Hopf Algebras And Ribbon Categories Very Briefly

An algebraic formulation generalizing braided Hopf algebras and related structures to what might
be called quantum category would involve the replacement of the co-product of Hopf algebras with
morphism of quantum category having as its objects the Clifford algebras associated with WCW
spinor structure for various 3-topologies. The corresponding Fock spaces would would define alge-
bra modules and the objects of the category would consists of pairs of algebras and corresponding
modules. The underlying primary structure would be second quantized free induced spinor fields
associated with 3-surfaces with various 3-topologies and generalized conformal structures.

1. Bi-algebras

Bi-algebras have two algebraic operations. Besides ordinary multiplication µ : H ⊗ H → H
there is also co-multiplication ∆ : H → H ⊗ H. Algebra satisfies the associativity axiom (Ass):
a(bc) = (ab)c, or more formally, µ(id⊗µ) = µ(µ⊗ id), and the unit axiom (Un) stating that there
is morphism η : k → A mapping the unit of A to the unit of field k. Commutativity axiom (Co)
ab = ba translates to µ⊗ τ ≡ µop = µ, where τ permutes factors in tensor product A⊗A.

∆ satisfies mirror images of these axioms. Co-associativity axiom (Coass) reads as (∆⊗ id)∆ =
(id ⊗∆)∆, co-unit axiom (Coun) states existence of morphism ε : k → C mapping the unit of A

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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to that of k, and co-commutativity (Coco) reads as τ ◦ ∆ ≡ ∆op = ∆. For a bi-algebra H also
additional axioms are satisfied: in particular, ∆ (µ) acts as algebra (bi-algebra) morphism. When
represented graphically, this constraint states that a box diagram is equivalent to a tree diagram
as will be found and served as the stimulus for the idea that loop diagrams might be equivalent
with tree diagrams.

Left and right algebra modules and algebra representations are defined in an obvious manner
and satisfy associativity and unit axioms. A left co-module corresponds a pair (V,∆V ) where the
co-action ∆N : V → A⊗V satisfies co-associativity and co-unit axioms. Right co-module is defined
in an analogous manner.

Particle fusion A ⊗ B → C corresponds to µ: A ⊗ B → C = AB. Co-multiplication ∆
corresponds time reversal C → A ⊗ B of this process, which is kind of a time-reversal for mul-
tiplication. The generalization would mean that µ and ∆ become morphisms µ : B ⊗ C → A
and ∆ : A → B ⊗ C, where A,B,C are objects of the quantum category. They could be either
representations of same algebra or even different algebras.

2. Drinfeld’s quantum double

Drinfeld’s quantum double [A3] is a braided Hopf algebra obtained by combining Hopf algebra
(H,µ,∆, η, ε, S,R) and its dual H? to a larger Hopf algebra known as quasi-triangular Hopf algebra
satisfying ∆ = R∆opR−1, where ∆op(a) is obtained by permuting the two tensor factors. Duality
means existence of a scalar product and the two algebras correspond to Hermitian conjugates of
each other.

In TGD framework the physical states associated with these algebras have opposite energies
since in TGD framework antimatter (or matter depending on the phase of matter) corresponds
to negative energy states. The states of the Universe would correspond to states with vanishing
conserved quantum numbers, and in concordance with crossing symmetry, particle reactions could
be interpreted as transitions generating zero energy states from vacuum.

The notion of duality [A3] is needed to define an inner product and S-matrix. Essentially
Dirac’s bra-ket formalism is in question. The so called evaluation map ev : V ⊗ V ? → k defined as
ev(vi ⊗ vj) = 〈vi, vj〉 = δij defines an inner product in any Hopf algebra module. The inverse of
this map is the linear map k → V defined by δv(1) = vi ⊗ vi. For a tensor category with unit I,
field k is replaced with unit I, and left duality these maps are replaced with maps bV : I → V ⊗V ?
and dV = V ⊗V ? → I. Right duality is defined in an analogous manner. The map dV assigns to a
given zero energy state S-matrix element. Algebra morphism property bV (ab) = bV (a)bV (b) would
mean that the outcome is essentially the counterpart of free field theory Feynman diagram. This
diagram is convoluted with the S-matrix element coded to the entanglement coefficients between
positive and negative energy particles of zero energy state.

3. Ribbon algebras and ribbon categories

The so called ribbon algebra [A3] is obtained by replacing one-dimensional strands with ribbons
and adding to the algebra the so called twist operation θ acting as a morphism in algebra and in
any algebra module. Twist allows to introduce the notion of trace, in particular quantum trace.

The thickening of one-dimensional strands to 2-dimensional ribbons is especially natural in
TGD framework, and corresponds to a replacement of points of time=constant section of 4-surface
with one-dimensional curves along which the S-matrix defined by R-matrix is constant. Ribbon
category is defined in an obvious manner. There is also a more general definition of ribbon category
with objects identified as representations of a given algebra and allowing morphisms with arbitrary
number of incoming and outgoing strands having interpretation as many-particle vertices in TGD
framework. The notion of quantum category defined as a generalization of a ribbon category
involving the generalization of algebra product and co-product as morphisms between different
objects of the category and allowing objects to correspond different algebras might catch the
essentials of the physics of TGD Universe.

2.2 Algebras, Co-Algebras, Bi-Algebras,And Related Structures

It is useful to formulate the notions of algebra, co-algebra, bi-algebra, and Hopf algebra in order
to understand how they might help in attempt to formulate more precisely the view about what
generalized Feynman diagrams could mean. Since I am a novice in the field of quantum groups,
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the definitions to be represented are more or less as such from the book “Quantum Groups” of
Christian Kassel [A3] with some material (such as the construction of Drinfeld double) taken
from [A6]. What is new is a graphical representation of algebra axioms and the proposal that
algebra and co-algebra operations have interpretation in terms of generalized Feynman diagrams.

In the following considerations the notation idk for the isomorphism k → k ⊗ k defined by
x→ x⊗ x and its inverse will be used.

2.2.1 Algebras

Algebra can be defined as a triple (A,µ, η), where A is a vector space over field k and µ : A⊗A→ A
and η : k → A are linear maps satisfying the following axioms (Ass) and (Un).

(Ass): The square

0[2](10, 30)[O1]

A⊗A ⊗ A (50, 30)[02]A ⊗ A (10, 15)[O3]A ⊗ A (50, 15)[O4]A (25, 30)(45, 30)µ ⊗ id (25, 15)(45,
15)µ (10, 30)(10, 15)id⊗ µ (50, 30)(50, 15)µ (2.1)

commutes.
(Un): The diagram

0[2](10, 30)[O1]

k⊗A (50, 30)[02]A⊗A (90, 30)[O3]A⊗k (50, 10)[O4]A (20, 30)(45, 30)η⊗ id (85, 30)(65, 30)id⊗η
(10, 27)(50, 10)∼= (50, 27)(50, 10)µ (90, 27)(50, 10)∼= (2.2)

commutes. Note that η imbeds field k to A.
(Comm) If algebra is commutative, the triangle

0[2](10, 30)[O1]

A⊗A (50, 30)[02]A⊗A (30, 10)[O3]A (20, 30)(45, 30)τA,A (10, 27)(30, 10)µ (50, 27)(30, 10)µ (2.3)

commutes. Here τA,A is the flip switching the factors: τA,A(a⊗ a′) = a′ ⊗ a.
A morphism of algebras f : (A,µ, η)→ (A′, µ′, η′) is a linear map A→ A′ such that

µ′ ◦ (f ⊗ f) = f ◦ µ, and f ◦ η = η′ .

A graphical representation of the algebra axioms is obtained by assigning to the field k a dashed
line to be referred as a vacuum line in the sequel and to A a full line, to η a vertex × at which
k-line changes to A-line. The product µ can be represented as 3-particle vertex in which algebra
lines fuse together. The three axioms (Ass), (Un) and (Comm) can are expressed graphically in
figure ??.
Note that associativity axiom implies that two tree diagrams not equivalent as Feynman diagrams
are equivalent in the algebraic sense.

2.2.2 Co-algebras

The definition of co-algebra is obtained by systematically reversing the directions of arrows in the
previous diagrams.

A co-algebra is a triple(C,∆, ε), where C is a vector space over field k and ∆ : C → C ⊗C and
ε : C → k are linear maps satisfying the following axioms (Coass) and (Coun).

(Coass): The square

0[2](10, 30)[O1]
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Figure 1: Graphical representation for the axioms of algebra. a) a(bc) = (ab)c, b) ab = ba, c)
ka = µ(η(k), a) and ak = µ(a, η(k)).

C(60, 30)[02]C⊗C (10, 15)[O3]C⊗C (60, 15)[O4]C⊗C⊗C (27, 30)(45, 30)∆ (27, 15)(45, 15)∆⊗id
(10, 30)(10, 15)∆ (60, 30)(60, 15)id⊗∆ (2.4)

commutes.

(Coun): The diagram
0[2](10, 30)[O1]

k⊗C (50, 30)[02]C⊗C (90, 30)[O3]C⊗k (50, 10)[O4]C (45, 30)(20, 30)ε⊗ id (65, 30)(85, 30)id⊗ ε
(50, 10)(10, 27)∼= (50, 10)(50, 27)∆ (50, 10)(90, 27)∼= (2.5)

commutes. The map ∆ is called co-product or co-multiplication whereas ε is called the counit.
The commutative diagram state that the co-product is co-associative and that co-unit commutes
with co-product.

(Cocomm) If co-algebra is commutative, the triangle

0[2](30, 30)[O1]

C(10, 10)[O2]C⊗C (50, 10)[03]C⊗C (30, 30)(10, 10)∆ (30, 30)(50, 10)∆ (20, 10)(45, 10)τC,C (2.6)

commutes. Here τC,C is the flip switching the factors: τC,C(c⊗ c′) = c′ ⊗ c.
A morphism of co-algebras f : (C,∆, ε)→ (C ′,∆′, ε′) is a linear map C → C ′ such that

(f ⊗ f) ◦∆ = ∆′ ◦ f , and ε = ε′ ◦ f .

It is straightforward to define notions like co-ideal and co-factor algebra by starting from the
notions of ideal and factor algebra. A very useful notation is Sweedler’s sigma notation for ∆(x),
x ∈ C as element of C ⊗ C :

∆(x) =
∑
i

x′i ⊗ x′′i ≡
∑
{x}

x′ ⊗ x′′ .



2.2 Algebras, Co-Algebras, Bi-Algebras,And Related Structures 8

Also co-algebra axioms allow graphical representation. One assigns to ε a vertex × at which
C-line changes to k-line: the interpretation is as an absorption of a particle by vacuum. The
co-product ∆ can be represented as 3-particle vertex in which C-line decays to two C-lines. The
graphical representation of the three axioms (Coass), (Coun), and (Cocomm) is related to the
representation of algebra axioms by “time reversal”, that is turning the diagrams for the algebra
axioms upside down (see figure ?? ).

Figure 2: Graphical representation for the axioms of co-algebra is obtained by turning the
representation for algebra axioms upside down. a) (id ⊗ ∆)∆ = (∆ ⊗ id)∆, b) ∆ = ∆op, c)
(ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id.

2.2.3 Bi-algebras

Consider next a vector space H equipped simultaneously with an algebra structure (H,µ, η) and a
co-algebra structure (H,∆, ε). There are some compatibility conditions between these two struc-
tures. H⊗H can be given the induced structures of a tensor product of algebras and of co-algebras.

The following two statements are equivalent.

1. The maps µ and η are morphisms of co-algebras. For µ this means that the diagrams

0[2](10, 40)[O1]

H⊗H (90, 40)[02]H (10, 15)[O3](H ⊗ H) ⊗ (H ⊗ H) (90, 15)[O4]H ⊗ H (40, 40)(60, 40)µ
(40, 15)(60, 15)µ⊗ µ (10, 40)(10, 15)(id⊗ τ ⊗ id)⊗ (∆⊗∆) (90, 40)(90, 15)∆ (2.7)

and

0[2](10, 40)[O1]

H⊗H (60, 40)[02]k ⊗ k (10, 15)[O3]H (60, 15)[O4]k (20, 40)(50, 40)ε ⊗ ε (20, 15)(50, 15)ε
(10, 40)(10, 15)µ (60, 40)(60, 15)id (2.8)

commute. For η this means that the diagrams

0[2](10, 40)[O1]
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k(60, 40)[02]H(10, 15)[O3]k⊗k (60, 15)[O4]H ⊗H (20, 40)(50, 40)η (20, 15)(50, 15)η⊗ η (10,
40)(10, 15)id (60, 40)(60, 15)∆ (80, 40)[O1]k (120, 40)[02]H (100, 15)[O4]k (80, 40)(120,
40)η (80, 40)(100, 15)id (120, 40)(100, 15)ε (2.9)

commute.

2. The maps ∆ and ε are morphisms of algebras.
For ∆ this means that diagrams

0[2](10, 40)[O1]

H⊗H (90, 40)[02](H⊗H)⊗(H⊗H) (10, 15)[O3]H (90, 15)[O4]H⊗H (40, 40)(60, 40)∆⊗∆
(40, 15)(60, 15)∆ (10, 40)(10, 15)µ (90, 40)(90, 15)(µ⊗ µ)(id⊗ τ ⊗ id) (2.10)

and

0[2](10, 40)[O1]

k(60, 40)[02]H(10, 15)[O3]k⊗k (60, 15)[O4]H ⊗H (20, 40)(50, 40)η (20, 15)(50, 15)η⊗ η (10,
40)(10, 15)id (60, 40)(60, 15)∆ (2.11)

commute.

For ε this means that the diagrams

0[2](10, 40)[O1]

H⊗H (60, 40)[02]k ⊗ k (10, 15)[O3]H (60, 15)[O4]k (20, 40)(50, 40)ε ⊗ ε (20, 15)(50, 15)ε (10,
40)(10, 15)µ (60, 40)(60, 15)id (80, 40)[O1]k (120, 40)[02]H (100, 15)[O4]k (80, 40)(120, 40)η (80,
40)(100, 15)id (120, 40)(100, 15)ε (2.12)

commute. The proof of the theorem involves the comparison of the commutative diagrams ex-
pressing both statements to see that they are equivalent.

The theorem inspires the following definition.
Definition: A bi-algebra is a quintuple (H,µ, η,∆, ε), where (H,µ, η) is an algebra and (H,∆, ε)

is co-algebra satisfying the mutually equivalent conditions of the previous theorem. A morphisms
of bi-algebras is a morphism for the underlying algebra and bi-algebra structures.

An element x ∈ H is known as primitive if one has ∆(x) = 1⊗x+x⊗1 and have ε(x) = 0. The
subspace of primitive elements is closed with respect to the commutator [x, y] = xy − yx. Note
that for primitive elements µ ◦∆ = 2idH holds true so that µ/2 acts as the left inverse of ∆.

Given a vector space V , there exists a unique bi-algebra structure on the tensor algebra T (V )
such that ∆(v) = 1⊗v+ v⊗1 and ε(v) = 0 for any element v of V . By the symmetry of ∆ this bi-
algebra structure is co-commutative and corresponds to the “classical limit”. Also the Grassmann
algebra associated with V allows bi-algebra structure defined in the same manner.

Figure ?? provides a representation for the axioms of bi-algebra stating that ∆ and ε act
as algebra morphisms of algebra and or equivalent that µ and η act as co-algebra morphisms.
The axiom stating that ∆ (µ) is algebra (co-algebra) morphism implies that scattering diagrams
differing by a box loop are equivalent. The statement that µ is co-algebra morphism reads (id⊗µ⊗
id)(∆⊗∆) = ∆◦µ whereas the mirror statement ∆(ab) = ∆(a)∆(b) for ∆ reads as ∆◦µ = µ(∆⊗∆)
and gives rise to the same graph.
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Figure 3: Graphical representation for the conditions guaranteeing that µ and η (∆ and ε) act
as homomorphisms of co-algebra (algebra). a)(id⊗ µ⊗ id)(∆⊗∆) = ∆ ◦ µ, b) ε ◦ µ = id ◦ (ε⊗ ε),
c) ∆ ◦ η = µ⊗ ◦idk, d) ε ◦ η = idk.

2.2.4 Hopf algebras

Given an algebra (A,µ, η) and co-algebra (C,∆, ε), one can define a bilinear map, the convolution
on the vector space Hom(C,A) of linear maps from C to A. By definition, if f and g are such
linear maps, then the convolution f ? g is the composition of the maps

0[2](10, 10)

C(40, 10)[02]C⊗C (70, 10)[O3]A ⊗ A (100, 10)[O4]A (25, 10)(20, 10)∆ (57, 10)(50, 10)f ⊗ g (85,
10)(80, 10)µ (2.13)

Using Sweedler’s sigma notion one has

f ? g(x) =
∑
{x}

f(x′)g(x′′) . (2.14)

It can be shown that the triple (Hom(C,A), ?,∆, η ◦ ε) is an algebra and that the map ΛC,A :
A⊗ C? → Hom(C,A) defined as

ΛC,A(a⊗ γ)(c) = γ(c)a

is a morphism of algebras, where C? is the dual of the finite-dimensional co-algebra C.
For A = C the result gives a mathematical justification for the crossing symmetry inspired re-

interpretation of the unitary S-matrix interpreted usually as an element of Hom(A,A) as a state
generated by element of A ⊗ A? from the vacuum |vac〉 = |vacA〉 ⊗ |vacA?〉. This corresponds to
the interpretation of the reaction ai|vacA〉 → af |vacA〉 as a transition creating state ai ⊗ a?f |vac〉
with vanishing conserved quantum numbers from vacuum.

With these prerequisites one can introduce the notion of Hopf algebra. Let (H,µ, η,∆, ε) be a
bi-algebra. An endomorphism S of H is called an antipode for the bi-algebra H if

S ? idH = idH ? S = η ◦ ε .

A Hopf algebra is a bi-algebra with an antipode. A morphism of a Hopf algebra is a morphism
between the underlying bi-algebras commuting with the antipodes.

The graphical representation of the antipode axiom is given in the figure below.
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Figure 4: Graphical representation of antipode axiom S ? idH = idH ? S = η ◦ ε.

The notion of scalar product central for physical applications boils down to the notion of duality.
Duality between Hopf algebras U and H means the existence of a morphism x→ Ψ(x): H → U?

defined by a bilinear form 〈u, x〉 = Ψ(x)(u) on U×H, which is a bi-algebra morphism. This means
that the conditions

〈uv, x〉 = 〈u⊗ v,∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u) ,

〈S(u), x〉 = 〈u, S(x)〉

(2.15)

are satisfied. The first condition on multiplication and co-multiplication, when expressed graphi-
cally, states that the decay x→ u⊗ v can be regarded as time reversal for the fusion of u⊗ v → x.
Second condition has analogous interpretation.

Figure 5: Graphical representation of the duality condition 〈uv, x〉 = 〈u⊗ v,∆(x)〉 .

2.2.5 Modules and comodules

Left and right algebra modules and algebra representations are defined in an obvious manner
and satisfy associativity and unit axioms having diagrammatic representation similar to that for
corresponding algebra axioms.

A left co-module corresponds a pair (V,∆V ), where the co-action ∆N : V → C ⊗ V satisfies
co-associativity axiom (idC ⊗∆N ) ◦∆N = (∆⊗ idN ) ◦∆N and co-unit axiom (ε⊗ id) ◦∆N = idN .
A right co-module is defined in an analogous manner. It is convenient to introduce Sweedlers’s
notation for ∆N as ∆N =

∑
{c} xC ⊗ xN .

One can define module and comodule morphisms and tensor product of modules and co-modules
in a rather obvious manner. The module N could be also algebra, call it A, in which case µA and
ηA are assumed to act as H-comodule morphisms.
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The standard example is quantum plane A = M(2)q is the free algebra generated variables x, y
subject to relations yx = qxy and having coefficients in k. The action of ∆A reads as

∆A

(
x
y

)
=

(
a b
c d

)
⊗
(
x
y

)
.

∆A defines algebra morphism from A to SLe(2)q ⊗A: ∆a(yx) = ∆A(y)∆A(x) = q∆A(x)∆A(y) =
∆(qxy).

2.2.6 Braided bi-algebras

∆op = τH,H ◦ ∆ defines the opposite co-algebra Hop of H. A braided bi-algebra (H,µ, η,∆, ε) is
called quasi-co-commutative (or quasi-triangular) if there exists an element R of algebra H ⊗ H
such that for all x ∈ H one has

∆op = R∆R−1 .

One can express R in the form

R =
∑
i

si ⊗ ti .

It is convenient to denote by Rij the R matrix acting in ith and jth tensor factors of nth tensor
power of H. More precisely, Rij can be defined as an operator acting in an n-fold tensor power of
H by the formula Rij = y(1) ⊗ y(2) ⊗ ...⊗ y(p), p ≤ n, y(ki) = si and y(kj) = tj , y

(k) = 1 otherwise.
For instance, one has R13 =

∑
i si ⊗ 1⊗ ti.

With these prerequisites one can define a braided bi-algebra as a quasi-commutative bi-algebra
(H,µ, η,∆, ε, S, S−1, R) as an algebra with a preferred element R ∈ H ⊗ H satisfying the two
relations

(∆⊗ idH)(R) = R13R23 ,

(idH ⊗∆)(R) = R13R12 .

(2.16)

Braided bi-algebras, known also as quasi-triangular bi-algebras, are central in the theory of quan-
tum groups, R-matrices, and braid groups. By a direct calculations one can verify the following
relations.

1. Yang-Baxter equations

R12R13R23 = R23R13R12 , (2.17)

and the relation

(ε⊗ idH)(R) = 1 (2.18)

hold true.

2. Since H has an invertible antipode S, one has

(S ⊗ idH)(R) = R−1 = (idH ⊗ S−1)(R) ,

(S ⊗ S)(R) = R . (2.19)

The graphical representation of the Yang-Baxter equation in terms of the relations of braid
group generators is given in the figure ??.
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Figure 6: Graphical representation of Yang-Baxter equation R12R13R23 = R23R13R12.

2.2.7 Ribbon algebras

Let H be a braided Hopf algebra with a universal matrix R =
∑
i si ⊗ ti and set u =

∑
i S(ti)si.

It can be shown that u is invertible with the inverse u−1 =
∑
siS

2(ti) and that uS(u) = S(u)u
is central element in H. Furthermore, one has ε(u) = 1 and ∆(u) = (R21R)−1(u ⊗ u), and the
antipode is given for any x ∈ H by S2(x) = uxu−1.

Ribbon algebra has besides R ∈ H ⊗ H also a second preferred element called θ. A braided
Hopf algebra is called ribbon algebra if there exists a central element θ of H satisfying the relations

∆(θ) = (R21R)−1(θ ⊗ θ) , ε(θ) = 1 , S(θ) = θ . (2.20)

It can be shown that θ2 acts like S(u)u on any finite-dimensional module [A3].

2.2.8 Drinfeld’s quantum double

Drinfeld’s quantum double construction allows to build a quasi-triangular Hopf algebra by starting
from any Hopf algebra H and its dual H?, which exists in a finite-dimensional case always, and
as a vector space is isomorphic with H. Besides duality normal ordering is second ingredient of
the construction. Physically the generators of the algebra and its dual correspond to creation and
annihilation operator type operators. Drinfeld’s quantum double construction is represented in
a very general manner in [A3]. A construction easier to understand by a physicist is discussed
in [A6]. For this reason this representation is summarized here although the style differs from the
representation of [A3] followed in the other parts of appendices.

Consider first what is known.

1. Duality means the existence of basis {ea} for H and {ea} for H? and inner product (or
evaluation as it is called in [A3] ) ev : H? ⊗H → k defined as ev(eaeb) ≡ 〈ea, eb〉 = δab and
its inverse δ : k → H? ⊗H defined by δ(1) = eaea. One can extend the inner product to an
inner product in the tensor product (H? ⊗H?)⊗ (H ⊗H) in an obvious manner.

2. The product (co-product) in H (H?) coincides with the co-product (product) in H? (H) in
the sense that one has

〈ec, eaeb〉 = mc
ab = 〈∆(ec), eb ⊗ ea〉 ,

〈eaeb, ec〉 = µabc = 〈ea ⊗ eb,∆(ec)〉 ,
(2.21)

These equations are quite general expressions for the duality expressed graphically in figure
??.
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3. The antipodes S for H and H? can be represented as matrices

SH(ea) = S b
a eb , SH?(ea) = (S−1)abe

b . (2.22)

The task is to construct algebra product µ and co-algebra product ∆, unit η and co-unit ε, antipode,
and R-matrix R for for H ⊗H?. The natural basis for H ⊗H? consists of ea ⊗ eb.

1. Co-product ∆ is simply the product of co-products

∆(eae
b) = ∆(ea)∆(eb) = mb

vuµ
cd
a ece

u ⊗ edev . (2.23)

2. Product µ involves normal ordering prescription allowing to transform products eaeb (ele-
ments of H?⊗H) to combinations of basis elements eae

b (elements of H⊗H?. This map must
be consistent with the requirement that co-product acts as an algebra morphism. Drinfeld’s
normal ordering prescription, or rather a map cH?,H : H? ⊗H → H ⊗H? is given by

cH?,H(eaeb) = Racbdece
d , Racbd = mx

kdm
a
xuµ

vy
b µ

ck
y (S−1)uvece

d . (2.24)

The details of the formula are far from being obvious: the axioms of tensor category with
duality to be discussed later might allow to relate RH?,H to RH,H and this might help to
understand the origin of the expression. Normal ordering map can be interpreted as braid
operation exchanging H and H? and the matrix defining the map could be regarded as
R-matrix RH⊗H? .

3. The universal R-matrix is given by

R = (ea ⊗ idH?)⊗ (idH ⊗ ea) , (2.25)

where the summation convention is applied. One can show that R∆ = ∆opR by a direct
calculation.

4. The antipode SH⊗H? follows from the product of antipodes for H and H? using the fact that
antipode is antihomomorphism using the normal ordering prescription

SH⊗H?(eae
b) = cH?,H(S(eb)S(ea)) . (2.26)

2.2.9 Quasi-Hopf algebras and Drinfeld associator

Braided Hopf algebras are quasi-commutative in the sense that one has ∆op = R∆R−1. Also the
strict co-associativity can be given up and this means that one has

(∆⊗ id)∆ = Φ(id⊗∆)Φ−1 , (2.27)

where Φ ∈ H ⊗ H ⊗ H is known as Drinfeld’s associator and appears in the of conformal fields
theories. If the resulting structure satisfies also the so called Pentagon Axiom (to be discussed
later, see Eq. 2.3.2 and figure ?? ), it is called quasi-Hopf algebra. Pentagon Axiom boils down to
the condition

(id⊗ id⊗∆)(Φ)(∆⊗ id⊗ id)(Φ) = (id⊗ Φ)(id⊗ id⊗∆)(Φ)(Φ⊗ id) . (2.28)

The Yang-Baxter equation for quasi-Hopf algebra reads as



2.2 Algebras, Co-Algebras, Bi-Algebras,And Related Structures 15

R12Φ312R13Φ−11322R23Φ123 = Φ321R23Φ−1231R13Φ213R12Φ123 . (2.29)

The left-hand side arises from a sequence of transformations

0[2]

(10, 30)(12)3 (33, 30)1(23) (56, 30)1(32) (79, 30)(31)2 (102, 30)3(12) (125, 30)3(12) (148,
30)3(21)

(12, 30)(32, 30)Φ123 (34, 30)(54, 30)R23 (58, 30)(77, 30)Φ−1132 (81, 30)(100, 30)R13 (104, 30)(123,
30)Φ312 (127, 30)(146, 30)R12 .

The right-hand side arises from the sequence

0[2]

(10, 30)(12)3 (33, 30)(21)3 (56, 30)2(13) (79, 30)2(31) (102, 30)(23)1 (125, 30)(32)1 (148,
30)3(21)

(12, 30)(32, 30)R12 (34, 30)(54, 30)Φ213 (58, 30)(77, 30)R13 (81, 30)(100, 30)Φ−1231 (104, 30)(123,
30)R23 (127, 30)(146, 30)Φ321 .

One can produce new quasi-Hopf algebras by gauge (or twist) transformations using invertible
element Ω ∈ H ⊗H called twist operator

∆(a) → Ω∆(a)Ω−1 ,

Φ → Ω23(id⊗∆)(Ω)Φ(∆⊗ id)(Ω−1)Ω−112 ,

R → ΩRΩ−1 . (2.32)

Quasi-Hopf algebras appear in conformal field theories and correspond quantum universal en-
veloping algebras divided by their centralizer. Consider as an example the R-matrix Rj1,j2 relating
j1⊗j2 and j2⊗j1 representations ∆j1,j2(a) and ∆j2,j1(a) of the co-product ∆ of U(sl(2))q. ∆j,j(a)
commutes with Rjj for all elements of the quantum group. The action of gi = qRjj acting in ith

and (i+ 1)th tensor factors extends to the representation (Vj)
×n in an obvious manner. From the

Yang-Baxter equation it follows that the operators gi define a representation of braid group Bn:

gigi+1gi = gi+1gigi+1 ,

gigj = gjgi , for |j − k| ≥ 2 . (2.33)

Under certain conditions the braid group generators generate the whole centralizer Cnq for the
representation of quantum group. For instance, this occurs for j = 1/2. In this case the additional
condition

g2i = (q2 − 1)gi + q2 × 1 , (2.34)

so that the centralizer is isomorphic with the Hecke algebra Hn(q), which can be regarded as a
q-deformation of permutation group Sn.

The result generalizes. In Wess-Zumino-Witten model based on group G the relevant alge-
braic structure is U(Gq)/C

n(q). This is quasi-Hopf algebra and the so called Drinfeld associator
characterizes the quasi-associativity.
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2.3 Tensor Categories

Hopf algebras and related structures do not seem to be quite enough in order to formulate elegantly
the construction of S-matrix in TGD framework. A more general structure known as a braided
tensor category with left duality and twist operation making the category to a ribbon category
is needed. The algebra product µ and co-product ∆ must be generalized so that they appear as
morphisms µA⊗B→C and ∆A→B⊗C : this gives hopes of describing 3-vertices algebraically. It is
not clear whether one can assume single underlying algebra so that objects would correspond to
different representations of this algebra or whether one allow even non-isomorphic algebras.

In the tensor category the tensor products of objects and corresponding morphisms belong to
the category. In a braided category the objects U⊗V and V ⊗U are related by a braiding morphism.
The notion of braided tensor category appears naturally in topological and conformal quantum field
theories and seems to be an appropriate tool also in TGD context. The basic category theoretical
notions are discussed in [A3] and I have already earlier considered category theory as a possible
tool in the construction of quantum TGD and TGD inspired theory of consciousness [K1].

In braided tensor categories one introduces the braiding morphism cV,W : V ⊗W → W ⊗ V ,
which is closely related to R-matrix. In categories allowing duality arrows with both directions
are allowed ad diagrams analogous to pair creation from vacuum are possible. In ribbon categories
one introduces also the twist operation θV as a morphism of object and the ΘW satisfies the
axiom: θV⊗W = (θV ⊗ θW )cW,V cV,W . One can also introduce morphisms with arbitrary number
of incoming lines and outgoing lines and visualize them as boxes, coupons. Isotopy principle,
originally related to link and knot diagrams provides a powerful tool allowing to interpret the
basic axioms of ribbon categories in terms of isotopy invariance of the diagrams and to invent
theorems by just isotoping.

2.3.1 Categories, functors, natural transformations

Categories [A3, A2, A7, A8] are roughly collections of objects A, B, C... and morphisms f(A→ B)
between objects A and B such that decomposition of two morphisms is always defined. Identity
morphisms map objects to objects. Examples of categories are open sets of some topological spaces
with continuous maps between them acting as morphisms, linear spaces with linear maps between
them acting as morphisms, groups with group homomorphisms taking the role of morphisms.
Practically any collection of mathematical structures can be regarded as a category. Morphisms
can be very general: for instance, partial ordering a ≤ b can define a morphism f(A→ B).

Functors between categories map objects to objects and morphisms to morphisms so that a
product of morphisms is mapped to the product of the images and identity morphism is mapped
to identity morphism. Functor F : C → D commutes also with the maps s and b assigning to a
morphism f : V →W its source s(f) = V and target b(f) = W .

A natural transformation between functors F and G from C → C′ is a family of morphisms
η(V ) : F (V )→ G(V ) in C′ indexed by objects V of C such that for any morphisms f : V →W in
C, the square

0[2](10, 30)[O1]

F(V)(50, 30)[02]G(V)(10, 15)[O3]F(W)(50, 15)[O4]G(W)(25, 30)(45, 30)η(V ) (25, 15)(45, 15)η(W )
(10, 30)(10, 15)F (f) (50, 30)(50, 15)G(f) (2.35)

commutes.
The functor F : C → D is said to be equivalence of categories if there exists a functor G : D → C

such and natural isomorphisms

η : idD → FG and θ : GF → idCFG .

The notion of adjoint functor is a more general notion than equivalence of categories. In this case
η and θ are natural transformations but not necessary natural isomorphisms in such a way that
the composite maps
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0[2](10, 30)

F(V)(60, 30)(FGF)(V)(110, 30)F(V)(10, 10)G(W)(60, 10)(GFG)(W)(110, 10)G(W)(20, 30)(40, 30)η(F (V ))
(80, 30)(100, 30)F (θ(V )) (20, 10)(40, 10)G(η(W )) (80, 10)(100, 10)θ(G(W ))) (2.36)

are identify morphisms for all objects V in C and W in D.
The product C = AB for objects of categories is defined by the requirement that there exist

projection morphisms πA and πB from C to A and B and that for any object D and pair of
morphisms f(D → A) and g(D → B) there exist morphism h(D → C) such that one has f = πAh
and g = πBh. Graphically this corresponds to a square diagram in which pairs A, B and C, D
correspond to the pairs formed by opposite vertices of the square and arrows DA and DB correspond
to morphisms f and g, arrows CA and CB to the morphisms πA and πB and the arrow h to the
diagonal DC. Examples of product categories are Cartesian products of topological spaces, linear
spaces, differentiable manifolds, groups, etc. The tensor products of linear spaces and algebras
provides an especially interesting example of product in the recent case. One can define also more
advanced concepts such as limits and inverse limits. Also the notions of sheafs, presheafs, and
topos are important.

2.3.2 Tensor categories

Let C be a category. Tensor product ⊗ is a functor from C × C to C if

1. there is an object V ⊗W associated with any pair (V,W ) of objects of C

2. there is an morphism f ⊗ g associated with any pair (f, g) of morphisms of C such that

s(f ⊗ g) = s(f)⊗ s(g) and b(f ⊗ g) = b(f)⊗ b(g),

3. if f ′ and g′ are morphisms such that s(f ′) = b(f) and s(g′) = b(g) then

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g) ,

4. idV⊗W = idW⊗V .

Any functor with these properties is called tensor product. The tensor product of vector
spaces provides the most familiar example of a tensor product functor.

In figure ?? the general rules for graphical representations of morphisms are given.

Figure 7: The graphical representation of morphisms. a) g ◦ f : V → W , b) f ⊗ g, c) f :
U1 ⊗ ...⊗ Um → V1 ⊗ ....⊗ Vn.

An associativity constraint for the tensor product is a natural isomorphism

a : ⊗(⊗× id)→ ⊗(id×⊗) .
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On basis of general definition of natural isomorphisms (see Eq. 2.3.1 ) one can conclude that for
any triple (U, V,W ) of objects of C there exists an isomorphism

0[2](10, 40)[O1]

(U⊗V )⊗W (80, 40)[02]U ⊗ (V ⊗W ) (10, 10)[O3](U ′⊗V ′)⊗W ′ (100, 10)[O4]U ′⊗ (V ′⊗W ′) (30,
40)(45, 40)aU,V,W (30, 10)(55, 10)aU ′,V prime,W ′ (10, 40)(10, 10)(f⊗g)⊗h (80, 40)(80, 10)f⊗(g⊗h)
(2.37)

Associativity constraints satisfies Pentagon Axiom [A3] if the following diagrams commutes.

0[2](10, 70)[O1]

U⊗(V ⊗W )⊗X (100, 70)[02]((U⊗V )⊗W ))⊗X (10, 10)[O3]U⊗ ((V ⊗W )⊗X) (100, 10)[O4]U⊗
(V ⊗(W⊗X)) (100, 40)(U⊗V )⊗(W⊗X) (70, 70)(50, 70)aU,V,W⊗idX (50, 10)(70, 10)idU⊗aV,W,X
(10, 70)(10, 10)aU,V⊗W,X (100, 70)(100, 40)aU⊗V,W,X (100, 40)(100, 10)aU,V,W⊗X (2.38)

Pentagon axiom has been already mentioned while discussing the definition of quasi-Hopf algebras.
In figure ?? are graphical illustrations of associativity morphism a(U, V,W ), Triangle Axiom, and
Pentagon Axiom are given.

Figure 8: Graphical representations of a) the associativity isomorphism aU,V,W , b) Triangle
Axiom, c) Pentagon Axiom.

Assume that an object I is fixed in the category. A left unit constraint with respect to I is a
natural isomorphism

l : ⊗(I × id)→ id

By Eq. 2.3.1 this means that for any object V of C there exists an isomorphism

lV : I ⊗ V → V (2.39)
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such that

0[2](10, 30)[O1]

I⊗V (50, 30)[02]V (10, 15)[O3]I ⊗ V ′ (50, 15)[O4]V ′ (25, 30)(45, 30)lV (25, 15)(45, 15)lV ′ (10,
30)(10, 15)idI ⊗ f (50, 30)(50, 15)f (2.40)

The right unit constraint r : ⊗(id× I)→ id can be defined in a completely analogous manner.
Given an associativity constraint a, and left and right unit constraints l, r with respect to an

object I, one can say that the Triangle Axiom is satisfies if the triangle

0[2](10, 30)[O1]

(V⊗I)⊗W (70, 30)[02]V ⊗ (I⊗W ) (40, 10)[O3]V ⊗W (30, 30)(50, 30)aV,I,W (10, 27)(40, 12)rV ⊗
idW (70, 27)(40, 12)idW ⊗ lW (2.41)

commutes (see figure ?? ).
These ingredients lead allow to define tensor category (C, I, a, l, r) as a category C which is

equipped with a tensor product ⊗ : C × C → C satisfying associativity constraint a, left unit
constraint l and right unit constraint r with respect to I, such that Pentagon Axiom and Triangle
Axiom are satisfied.

The definition of a tensor functor F : C → D involves also additional isomorphisms. φ0 : I →
F (I) satisfies commutative diagrams involving right and left unit constraints l and r. The family
of isomorphisms

φ2(U, V ) : F (U)⊗ F (V )→ F (U ⊗ V )

satisfies a commutative diagram stating that φ2 commutes with associativity constraints. The
interested reader can consult [A3] for details. One can also define the notions of natural tensor
transformation, natural tensor isomorphism, and tensor equivalence between tensor categories by
applying the general category theoretical tools.

Keeping track of associativity isomorphisms is obviously a rather heavy burden. Fortunately,
it can be shown that one can assign to a tensor category C a strictly associative (or briefly, strict)
tensor category which is tensor equivalent of C.

2.3.3 Braided tensor categories

Braided tensor categories satisfy also commutativity constraint c besides associativity constraint
a. Denote by τ : C × C → C × C the flip functor defined by τ(V,W ) = (W,V ). Commutativity
constraint is a natural isomorphism

c : ⊗ → ⊗τ .

This means that for any pair (V,W ) of objects there exists isomorphism

cV,W : V ⊗W →W ⊗ V

such that the square

0[2](10, 30)[O1]

V⊗W (60, 30)[02]W ⊗V (10, 15)[O3]V ′⊗W ′ (60, 15)[O4]W ′⊗V ′ (25, 30)(45, 30)cV,W (25, 15)(45,
15)cV ′,W ′ (10, 30)(10, 15)f ⊗ g (60, 30)(60, 15)g ⊗ f (2.42)

commutes.
The commutativity constraint satisfies Hexagon Axiom if the two hexagonal diagrams

(H1)
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0[2](10, 70)

U⊗(V ⊗W ) (100, 70)(V ⊗W )⊗U (10, 40)(U⊗V )⊗W (100, 40)V ⊗ (W ⊗U) (10, 10)(V ⊗U)⊗W
(100, 10)V ⊗ (U ⊗W ) (30, 70)(80, 70)cU,V⊗W (30, 10)(80, 10)aV,U,W (10, 40)(20, 70)aU,V,W (90,
70)(100, 40)aV,W,U (10, 40)(20, 10)cU,V ⊗ idW (90, 10)(100, 40)idV ⊗ cU,W (2.43)

and (H2)

0[2](10, 70)

(U⊗V )⊗W (100, 70)W ⊗ (U⊗V ) (10, 40)U⊗ (V ⊗W ) (100, 40)(W ⊗U)⊗V (10, 10)U⊗ (W ⊗V )
(100, 10)(U ⊗W ) ⊗ V (30, 70)(80, 70)cU⊗V,W (30, 10)(80, 10)a−1U,W,V (10, 40)(20, 70)a−1U,V,W (90,

70)(100, 40)a−1W,U,V (10, 40)(20, 10)idU ⊗ cV,W (90, 10)(100, 40)cU,W ⊗ idV (2.44)

commute.
The braiding operation cV,W and the association operation a(U, V,W ), and pentagon and

hexagon axioms are illustrated in the figure ?? below.

Figure 9: Graphical representations a) of the braiding morphism cV,W and its inverse c−1V,W , b)
of naturality of cV,W , c) of First Hexagon Axiom.

2.3.4 Duality and tensor categories

The notion of a dual of the finite-dimensional vector space as a space of linear maps from V to
field k can lifted to a concept applying for tensor category. A strict (strictly associative) tensor
category (C,⊗, I) with unit object I is said to possess left duality if for each object V of C there
exists an object V ? and morphisms

bV : I → V ⊗ V ? and dV : V ? ⊗ V → I

such that

(id⊗ dV )(bV ⊗ idV ) = idV and (dV ⊗ idV ?)(idV ? ⊗ bV ) = idV ? . (2.45)
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One can define the transpose of f in terms of bV and dV . The idea how this is achieved is obvious
from Fig. ??.

f? = (dV ⊗ idU?)(idV ? ⊗ f ⊗ idU?)(idV ? ⊗ bU ) . (2.46)

Also the braiding operation cV ?,W can be expressed in terms of c−1V,W , bV and dV by using the
isotopy of Fig. 10:

cV ?,W = (dV ⊗ idW⊗V ?)(idV ? ⊗ c−1V,W ⊗ idV ?)(idV ?⊗W ⊗ bV ) . (2.47)

Drinfeld quantum double can be regarded as a tensor product of Hopf algebra and its dual and
in this case one can introduce morphisms evH : H ⊗H? → k defined as ei⊗ ej → δij defining inner

product and its inverse δ : k → H ⊗H defined as 1→ eiei, where summation over i is understood.
For categories these morphisms are generalized to morphism dV from objects V of category to
unit object I and bV from I to object of category. The elements of H and H? are described as
strands with opposite directions, whereas dV and bV correspond to annihilation and creation of
strand–anti-strand pair as show in Fig. 10.

Figure 10: Graphical representations a) of the morphisms bV and dV , b) of the transpose f?, c)
of braiding operation cV ?,W expressed in terms of cV,W .

2.3.5 Ribbon categories

According to the definition of [A3] ribbon category is a strict braided tensor category (C,⊗, I)
with a left duality with a family of natural morphisms θV : V → V indexed by the objects V of C
satisfying the conditions

θV⊗W = θV ⊗ θW cW,V cV,W ,

θV ? = (θV )? (2.48)

for all objects V,W of C. The naturality of twist means for for any morphisms f : V →W one has
θW f = fθV . The graphical representation for the axioms and is in Fig. 11.
The existence of the twist operation provides C with right duality necessary in order to define trace
(see Fig. ?? ).

d′V = (idV ? ⊗ θV )cV,V ?bV ,

b′V = dV cV,V ?(θV ⊗ idV ?) . (2.49)

One can define quantum trace for any endomorphisms f of ribbon category:

trq(f) = d′V (f ⊗ idV ?)bV = dV cV,V ?(θV f ⊗ idV ?)bV . (2.50)

Again the graphical representation is the best manner to understand the definition, see Fig. ??.
Quantum trace has the basic properties of trace: trq(fg) = trq(gf), trq(f ⊗ g) = trq(f)trq(g),
trq(f) = trq(f

?). The proof of these properties is easiest using isotropy principle.
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Figure 11: Graphical representations a) of θV⊗W = θV ⊗ θW cW,V cV,W , b) of θV ? = (θV )?, c) of
θW f = fθV , d) of right duality for a ribbon category.

Figure 12: Graphical representations of a) trq(f), b) of trq(fg) = trq(gf), c) of tr(f ⊗ g) =
tr(f)tr(g).

The quantum dimension of an object V of ribbon category can be defined as the quantum trace
for the identity morphism of V : dimq(V ) = trq(idV ) = d′V bV . Quantum dimension is represented
as a vacuum bubble. Quantum dimension satisfies the conditions dimq(V⊗W ) = dimq(V )dimq(W )
and dimq(V ) = dimq(V

?).
A more general definition of ribbon category inspired by the considerations of [A6] is obtained

by allowing the generalization of morphisms µ and ∆ so that they become morphisms µA⊗B→C
and ∆C→A⊗B of ribbon category. Graphically the general morphism with arbitrary number of
incoming outgoing strands can be represented as a box or “coupon”. An important special case of
ribbon categories consists of modules over braided Hopf algebras allowing ribbon algebra structure.

3 Axiomatic Approach To S-Matrix Based On The Notion
Of Quantum Category

This section can be regarded as an attempt of a physicists with some good intuitions and intentions
but rather poor algebraic skills to formulate basic axioms about S-matrix in terms of what might be
called quantum category. The basic result is an interpretation for the equivalence of loop diagrams
with tree diagrams as a consequence of basic algebra and co-algebra axioms generalized to the
level of tensor category. The notion of quantum category emerges naturally as a generalization
of ribbon category, when algebra product and co-algebra product are interpreted as morphisms
between different objects of the ribbon category.

The general picture suggest that the operations ∆ and µ generalized to algebra homomorphisms
A → B ⊗ C and A ⊗ B → C in a tensor category whose objects are either representations of an
algebra or even algebras might provide an appropriate mathematical tool for saying something
interesting about S-matrix in TGD Universe. These algebras need not necessarily be bi-algebras.
In the following it is demonstrated that the equivalence of loop diagrams to tree diagrams follows
from suitably generalized bi-algebra axioms. Also the interpretation of various morphisms involved
with Hopf algebra structure is discussed.



3.1 ∆ And µ And The Axioms Eliminating Loops 23

3.1 ∆ And µ And The Axioms Eliminating Loops

The first task is to find a physical interpretation for the basic algebraic operations and how the
basic algebra axioms might allow to eliminate loops. The physical interpretation of morphisms
∆ and µ as algebra or category morphisms has been already discussed. As already found, the
condition that ∆ (µ) acts as an algebra (co-algebra) morphism leads to a condition stating that a
box graph for 2-particle scattering is equivalent with tree graph. It is interesting to identify the
corresponding conditions in the case of self energy loops and vertex corrections.

The condition

µB⊗C→A ◦∆A→B⊗C = K × idA , (3.1)

where K is a numerical factor, is a natural additional condition stating that a line with a self
energy loop is equivalent with a line without the loop. The condition is illustrate in figure ??. For
the co-commutative tensor algebra T (V ) of vector space with ∆(x) = 1⊗x+x⊗1 one would have
K = 2 for the generators of T (V ). For a product of n generators one has K = 2n.

Figure 13: Graphical representations for the conditions a) (id ⊗ µ ⊗ id)(∆ ⊗ ∆) = ∆ ◦ µ, b)
µB⊗C→A ◦∆A→B⊗C = K × idA, and c) (µ⊗ id) ◦ (∆⊗ id) ◦∆ = K ×∆.

The condition ∆A→B⊗C ◦ µB⊗C→A = K × idA cannot hold true since multiplication is not
an irreversible process. If this were the case one could reduce tree diagrams to collections of free
propagator lines.

In quantum field theories also vertex corrections are a source of divergences. The requirement
that the graph representing a vertex correction is equivalent with a simple tree graph representing
a decay gives an additional algebraic condition. For bi-algebras the condition would read

(µ⊗ id) ◦ (∆⊗ id) ◦∆ = K∆ , (3.2)

where K is a simple multiplicative factor. In fact, for the co-commutative tensor algebra T (V ) of
vector space the left hand side would be 3×∆(x) giving K = 3 for generators T (V ). The condition
is illustrated in figure ??.

Using the standard formulas of appendix for quantum groups one finds that in the case of
Uq(sl(2)) the condition µ ◦ ∆(X) = KXX, KX constant, is not true in general. Rather, one
has µ ◦ ∆(X) = XKX(qH/2 + q−H/2, q1/2, q−1/2). The action on the vacuum state is however
proportional to that of X, being given by KX(2, 1, 1)X. The function KX for a given X can be
deduced from µ ◦∆(X±) = qH/2X± + X±q

−H/2 = X±(q±1/2 + qH/2 + q−H/2). The eigen states
of Cartan algebra generators are expected to be eigen states of µ ◦∆ also in the case of a general
quantum group. µ ◦∆ is analogous to a single particle operator like kinetic energy and its action
on multi-particle state is a sum over all tensor factors with µ ◦ ∆ applied to each of them. For
eigen states of µ ◦∆ the projective equivalence of loop diagrams with tree diagrams would make
sense.

Since self energy loops, vertex corrections, and box diagrams represent the basic divergences
of renormalizable quantum field theories, these axioms raise the hope that the basic infinities of
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quantum field theories could be eliminated by the basic axioms for the morphisms of quantum
category.

There are also morphisms related to the topology changes in which the 3-surface remains
connected. For instance, processes in which the number of boundary components can change could
be of special relevance if the family replication phenomenon reduces to the boundary topology. Also
3-topology can change. The experience with topological quantum field theories [A5], stimulates
the hope that the braid group representations of the topological invariants of 3-topology might be
of help in the construction of S-matrix.

The equivalence of loop diagrams with tree diagrams must have algebraic formulation using
the language of standard quantum field theory. In the third section it was indeed found that
thanks to the presence of the emission of vacuons, the equivalence of loop diagrams with tree
diagrams corresponds to the vanishing of loop corrections in the standard quantum field theory
framework. Furthermore, the non-cocommutative Hopf algebra of Feynman diagrams discussed
in [A4] becomes co-commutative when the loop corrections vanish so that TGD program indeed
has an elegant algebraic formulation also in the standard framework.

3.2 The Physical Interpretation Of Non-Trivial Braiding And Quasi-
Associativity

The exchange of the tensor factors by braiding could also correspond to a physically non-trivial but
unitary operation as it indeed does in anyon physics [D2, D1]. What would differentiate between
elementary particles and anyons would be the non-triviality of the super-canonical and Super Kac-
Moody conformal central extensions which have the same origin (addition of a multiplication by a
multiple of the Hamiltonian of a canonical transformation to the action of isometry generator). The
proposed interpretation of braiding acting in the complex plane in which the conformal weights of
the elements of the super-canonical algebra represent punctures justifies the non-triviality. Hexagon
Axioms would state that two generalized Feynman diagrams involving exchanges, dissociations and
re-associations are equivalent.

An interesting question is whether the association (A,B) → (A ⊗ B) could be interpreted as
a formation of bound state entanglement between A and B. A possible space-time correlate for
association is topological condensation of A and B to the same space-time sheet. Association would
be trivial if all particles are at same space-time sheet X4 but non-trivial if some subset of particles
condense at an intermediate space-time sheet Y 4 condensing in turn at X4.

Be as it may, association isomorphisms aA,B,C would state that the state space obtained by
binding A with bound bound states (B ⊗ C) is unitarily related with the state space obtained by
binding (A⊗B) bound states with C. With this interpretation Pentagon axiom would state that
two generalized Feynman diagrams depicted in figure ?? leading from initial to final to final state
by dissociation and re-association are equivalent.

3.3 Generalizing The Notion Of Bi-Algebra Structures At The Level Of
WCW

WCW of 3-surfaces decomposes into sectors corresponding to different 3-topologies. Also other
signatures might be involved and I have proposed that the sectors are characterized by the collection
of p-adic primes labelling space-time sheets of the 3-surface and that a given space-time surface
could be characterized by an infinite prime or integer. The general problem is to continue various
geometric structures from a given sector A of WCW to other sector B.

An especially interesting special case corresponds to a continuation from 1-particle sector to two-
particle sector or vice versa and corresponds to TGD variant of 3-vertex. All these continuations
involve the embedding of a structure associated with the sector A to a structure associated with
sector B. For the continuation from 1-particle sector to 2-particle sector the map is analogous to
co-algebra homomorphism ∆. For the reverse continuation it is analogous to the algebra product
µ. Now however one does not have maps ∆ : A→ A⊗A and µ : A⊗A→ A but ∆ : A→ B ⊗ C
and µ : B⊗C → A unless the algebras are isomorphic. µ◦∆ = id should hold true as an additional
condition but ∆ ◦ µ = id cannot hold true since product maps many pairs to the same element.
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3.3.1 Continuation of the WCW spinor structure

The basic example of a structure to be continued is configuration space spinor structure. WCW
spinor fields in different sectors should be related to each other. The isometry generators and
gamma matrices of WCW span a super-canonical algebra. The continuation requires that the
super algebra basis of different sectors are related. Also vacua must be related. Isometry generators
correspond to bosonic generators of the super-canonical algebra. There is also a natural extension
of the super-canonical algebra defined by the Poisson structure of WCW .

This view suggests that in the first approximation one could see the construction of S-matrix
as following process.

1. Incoming/outgoing states correspond to positive/negative energy states localized to the sec-
tors of WCW with fixed 3-topologies.

2. In order to construct an S-matrix matrix element between two states localized in sectors A
and B, one must continue the state localized in A to B or vice versa and calculate overlap. The
continuation involves a sequence of morphisms mapping various structures between sectors.
In particular, topological transformations describing particle decay and fusion are possible
so that the analogs of product µ and co-product ∆ are involved. The construction of three-
manifold topological invariants [A5] in topological quantum field theories provides concrete
ideas about how to proceed.

3. The S-matrix element describing a particular transition can be expressed as any path leading
from the sector A to B or vice versa. There is a huge symmetry very much analogous to the
independence of the final result of the analytic continuation on the path chosen since gener-
alized Feynman graphs allow all moves changing intermediate topologies so that initial and
final 3-topologies are same. Generalized conformal invariance probably also poses restrictions
on possible paths of continuation. In the path integral approach one would have simply sum
over all these equivalent paths and thus encounter the fundamental difficulties related to the
infinite-dimensional integration.

4. Quantum classical correspondence suggests that the continuation operation has a space-time
correlate. That is, the preferred extremal of Kähler action going through the initial and final
3-sheets defines a sequence of transitions changing the topology of 3-sheet. The localization
to a particular sector of course selects particular preferred extremal. There are two possible
interpretations. Either the continuation from A is not possible to all possible sectors but
only to those with 3-topologies appearing in X4, or the preferred extremal represents some
kind of minimal continuation involving minimum amount of calculational labor.

5. Quantum classical correspondence and the possibility to represent the rows of S-matrix as zero
energy quantum states suggests that the paths for continuation can be also represented at the
space-time level, perhaps in terms of braided flux tubes connecting two light like 3-surfaces
representing the initial and final states of particle reaction. Since light like 3-surfaces are
metrically two-dimensional and allow conformal invariance, this suggests a connection with
braid diagrams in the sense that it should be possible to regard the paths connecting sectors
of WCW consisting of unions of disjoint 3-surfaces (corresponding interacting 4-surfaces are
connected) as generalized braids for which also decay and fusion for the strands of braid
are possible. Quantum algebra structure and effective metric 2-dimensionality of the light
like 3-surfaces suggests different braidings for flux tubes connecting boundaries of 3-surfaces
define non-equivalent 3-surfaces.

3.3.2 Co-multiplication and second quantized induced spinor fields

At the microscopic level the construction of S-matrix reduces to understanding what happens for
the classical spinor fields in a vertex, which corresponds to an incoming 3-surface A decaying to
two outgoing 3-surfaces B and C. At the classical level incoming spinor field A develops into a
spinor fields B and C expressible as linear combinations of appropriate spinor basis. At quantum
level one must understand how the Fock space defined by the incoming spinor fields of A is mapped
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to the tensor product of Fock spaces of B and C. The idea about the possible importance of co-
algebras came with the realization that this mapping is obviously is very much like a co-product.
Co-algebras and bi-algebras possessing both algebra and co-algebra structure indeed suggest a
general approach giving hopes of understanding how Feynman diagrammatics generalizes to TGD
framework.

The first guess is that fermionic oscillator operators are mapped by the embedding ∆ to a
superposition of operators a†Bn⊗IdC and IdB⊗a†Cn with obvious formulas for Hermitian conjugates.
∆ induces the mapping of higher Fock states and the construction of S-matrix should reduce to
the construction of this map.

∆ is analogous to the definition for co-product operation although there is also an obvious
difference due to the fact that ∆ imbeds algebra A to B ⊗ C rather than to A ⊗ A. Only in the
case that the algebras are isomorphic, the situation reduces to that for Hopf algebras. Category
theoretical approach however allows to consider a more general situation in which ∆ is a morphism
in the category of Fock algebras associated with 3-surfaces.

∆ preserves fermion number and should respect Fock algebra structure, in particular commute
with the anti-commutation relations of fermionic oscillator operators. The basis of fermionic oscil-
lator operators would naturally correspond to fermionic super-canonical generators in turn defining
WCW gamma matrices.

Since any leg can be regarded as incoming leg, strong consistency conditions result on the
coefficients in the expression

∆(a†An) = C(A,B) m
n a†Bm ⊗ IdC + C(A,C) m

n IdB ⊗ a†Cm (3.3)

by forming the cyclic permutations in A,B,C. This option corresponds to the co-commutative
situation and quantum group structure. If identity matrices are replaced with something more
general, co-product becomes non-cocommutative.

3.4 Ribbon Category As A Fundamental Structure?

There exists a generalization of the braided tensor category inspired by the axiomatic approach
to topological quantum field theories which seems to almost catch the proposed mathematical
requirements. This category is also called ribbon [A1] [A9] but in more general sense than it is
defined in [A3].

One adds to the tangle diagrams (braid diagrams with both directions of strands and possibility
of strand–anti-strand annihilation) also “coupons”, which are boxes representing morphisms with
arbitrary numbers of incoming and outgoing strands. As a special case 3-particle vertices are
obtained. The strands correspond to representations of a fixed Hopf algebra H.

In the recent case it would seem safest to postulate that strands correspond to algebras, which
can be different because of the potential dependence of the details of Fock algebra on 3-topology
and other properties of 3-surface. For instance, WCW metric defined by anti-commutators of
the gamma matrices is degenerate for vacuum extremals so that the infinite Clifford algebra is
definitely “smaller” than for surfaces with D ≥ 3-dimensional CP2 projection.

One might feel that the full ribbon algebra is an un-necessary luxury since only 3-particle
vertices are needed since higher vertices describing decays of 3-surfaces can be decomposed to
3-vertices in the generic case. On the other hand, many-sheeted space-time and p-adic fractality
suggest that coupons with arbitrary number of incoming and outgoing strands are needed in order
to obtain the p-adic hierarchy of length scale dependent theories.

The situation would be the same as in the effective quantum field theories involving arbitrarily
high vertices and would require what might be called universal algebra allowing n-ary multiplica-
tions and co-multiplications rather than only binary ones. Also strands within strands hierarchy
is strongly suggestive and would require a fractal generalization of the ribbon algebra. Note that
associativity and commutativity conditions for morphisms which more than three incoming and
outgoing lines would force to generalize the notion of R-matrix and would bring in conditions
stating that more complex loop diagrams are equivalent with tree diagrams.
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3.5 Minimal Models And TGD

Quaternion conformal invariance with non-vanishing c and k for anyons is highly attractive option
and minimal super-conformal field theories attractive candidate since they describe critical systems
and TGD Universe is indeed a quantum critical system.

3.5.1 Rational conformal field theories and TGD

The highest weight representations of Virasoro algebra are known as Verma modules containing
besides the ground state with conformal weight ∆ the states generated by Virasoro generators
Ln, n ≥ 0. For some values of ∆ Verma module contains states with conformal weight ∆ + l
annihilated by Virasoro generators Ln, n ≥ 1. In this case the number of primary fields is reduced
since Virasoro algebra acts as a gauge algebra. The conformal weights ∆ of the Verma modules
allowing null states are given by the Kac formula

∆mm′ = ∆0 +
1

4
(α+m+ α−m

′)2 , m,m′ ∈ {1, 2...} , (3.4)

∆0 =
1

24
(c− 1) ,

α± =

√
1− c±

√
25− c√

24
. (3.5)

The descendants
∏
n≥1 L

kn
n |∆〉 annihilated by Ln, n > 0, have conformal weights at level l =∑

n nkn = mm′.
In the general case the operator products of primary fields satisfying these conditions form an

algebra spanned by infinitely many primary fields. The situation changes if the central charge c
satisfies the condition

c = 1− 6(p′ − p)2

pp′
, (3.6)

where p and p′ are mutually prime positive integers satisfying p < p′. In this case the Kac weights
are rational

∆m,m′ =
(mp′ −m′p)2 − (p′ − p)2)

4pp′
, 0 < m < p , 0 < m′ < p′ .

(3.7)

Obviously, the number of primary fields is finite. This option does not seem to be realistic in TGD
framework were super-conformal invariance is realized.

For N = 1 super-conformal invariance the unitary representations have central extension and
conformal weights given by

c =
3

2
(1− 8

m(m+ 2)
) ,

∆p,q(NS) =
[(m+ 2)p)−mq)]2 − 4

8m(m+ 2)
, 0 ≤ p ≤ m , 1 ≤ q ≤ m+ 2 .

(3.8)

For Ramond representations the conformal weights are

∆p,q(R) = ∆(NS) +
1

16
. (3.9)

The states with vanishing conformal weights correspond to light elementary particles and the states
with p = q have vanishing conformal weight in NS sector. Also this option is non-realistic since in
TGD framework super-generators carry fermion number so that G cannot be a Hermitian operator.
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N = 2 super-conformal algebra is the most interesting one from TGD point of view since it
involves also a bosonic U(1) charge identifiable as fermion number and G±(z) indeed carry U(1)
charge1. Hence one has N = 2 super-conformal algebra is generated by the energy momentum
tensor T (z), U(1) current J(z), and super generators G±(z). U(1) current would correspond
to fermion number and super generators would involve contraction of covariantly constant neu-
trino spinor with second quantized induced spinor field. The further facts that N = 2 algebra
is associated naturally with Kähler geometry, that the partition functions associated with N = 2
super-conformal representations are modular invariant, and that N = 2 algebra defines so called
chiral ring defining a topological quantum field theory [A6], lend further support for the belief that
N = 2 super-conformal algebra acts in super-canonical degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (3.10)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k
Wess-Zumino model has the same value of c but different conformal weights. More information
about conformal algebras can be found from the appendix of [A6].

For Ramond representation L0 − c/24 or equivalently G0 must annihilate the massless states.
This occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be even and

that (k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the appearance
of a fractional vacuum fermion number qvac = ±c/12 = ±k/4(k+ 2). I have proposed that NS and
Ramond algebras could combine to a larger algebra containing also lepto-quark type generators.

Quaternion conformal invariance [K2] encourages to consider the possibility of super-symmetrizing
also spin and electro-weak spin of fermions. In this case the conformal algebra would extend to a
direct sum of Ramond and NS N = 8 algebras associated with quarks and leptons. This algebra
in turn extends to a larger algebra if lepto-quark generators acting as half odd-integer Virasoro
generators are allowed. The algebra would contain spin and electro-weak spin as fermionic indices.
Poincare and color Kac-Moody generators would act as symplectically extended isometry genera-
tors on WCW Hamiltonians expressible in terms of Hamiltonians of X3

l ×CP2. Electro-weak and
color Kac-Moody currents have conformal weight h = 1 whereas T and G have conformal weights
h = 2 and h = 3/2.

The experience with N = 4 super-conformal invariance suggests that the extended algebra
requires the inclusion of also second quantized induced spinor fields with h = 1/2 and their super-
partners with h = 0 and realized as fermion-anti-fermion bilinears. Since G and Ψ are labelled by
2×4 spinor indices, super-partners would correspond to 2×(3+1) = 8 massless electro-weak gauge
boson states with polarization included. Their inclusion would make the theory highly predictive
since induced spinor and electro-weak fields are the fundamental fields in TGD.

In TGD framework both quark and lepton numbers correspond to NS and Ramond type rep-
resentations, which in conformal field theories can be assigned to the topologies of complex plane
and cylinder. This would suggest that a given 3-surface allows either NS or Ramond representation
and is either leptonic or quark like but one must be very cautious with this kind of conclusion.
Interestingly, NS and Ramond type representations allow a symmetry acting as a spectral flow in
the indices of the generators and transforming NS and Ramond type representations continuously
to each other [A6]. The flow acts as

1I realized that TGD super-conformal algebra corresponds to N = 2 algebra while writing this and proposed it
earlier as a generalization of super-conformal algebra!
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Ln → Ln + αJn +
c

6
α2δn,0

Jn → Jn +
c

3
αδn,0 ,

G±n → G±n±α . (3.11)

The choice α = ±1/2 transforms NS representation to Ramond representation. The idea that
leptons could be transformed to quarks in a continuous manner does not sound attractive in TGD
framework. Note that the action of Super Kac-Moody Virasoro algebra in the space of super-
canonical conformal weights can be interpreted as a spectral flow.

3.5.2 Co-product for Super Kac-Moody and Super Virasoro algebras

By the previous considerations the quantized conformal weights z1, z2, z3 of super-canonical gener-
ators defining punctures of 2-surface should correspond to line punctures of 3-surface. One cannot
avoid the thought that these line punctures should meet at single point so that three-vertex would
have also quantum field theoretical interpretation.

Each point zk corresponds to its own Virasoro algebra Vk = {Lzk)n } and Kac-Moody algebra

Jk = {Jzk)n } defined by Laurent series of T (z) and J(z) at zk. Also super-generators are involved.

To minimize notational labor denote by X
zk)
n , k = 1, 2, 3 the generators in question.

The co-algebra product for Super-Virasoro and Super-Kac-Moody involves in the case of fusion

A1 ⊗ A2 → A3 a co-algebra product assigning to the generators X
z3)
n direct sum of generators

of X
z1)
k and X

z2)
l . The most straightforward approach is to express the generators X

z3)
n in terms

of generators X
z1)
k and X

z2)
l . This is achieved by using the expressions for generators as residy

integrals of energy momentum tensor and Kac Moody currents. For Virasoro generators this is
carried out explicitly in [A6]. The resulting co-product conserves the value of central extension
whereas for the näıve co-product this would not be the case. Obviously, the geometric co-product
does not conserve conformal weight.

4 Some Examples Of Bi-Algebras And Quantum Groups

The appendix summarizes briefly the simplest bi- and Hopf algebras and some basic constructions
related to quantum groups.

4.1 Hecke Algebra And Temperley-Lieb Algebra

Braid group is accompanied by several algebras. For Hecke algebra, which is particular case of
braid algebra, one has

en+1enen+1 = enen+1en ,

e2n = (t− 1)en + t . (4.1)

The algebra reduces to that for symmetric group for t = 1.
Hecke algebra can be regarded as a discrete analog of Kac Moody algebra or loop algebra with

G replaced by Sn. This suggests a connection with Kac-Moody algebras and embedding of Galois
groups to Kac-Moody group. t = pn corresponds to a finite field. Fractal dimension t = M : N
relates naturally to braid group representations: fractal dimension of quantum quaternions might
be appropriate interpretation. t=1 gives symmetric group. Infinite braid group could be seen as a
quantum variant of Galois group for algebraic closure of rationals.

Temperley-Lieb algebra assignable with Jones inclusions of hyper-finite factors of type II1 with
M : N < 4 is given by the relations
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en+1enen+ 1 = en+1

enen+1en = en ,

e2n = ten , , t = −
√
M : N = −2cos(π/n) , n = 3, 4, ... (4.2)

The conditions involving three generators differ from those for braid group algebra since en are
now proportional to projection operators. An alternative form of this algebra is given by

en+1enen+ 1 = ten+1

enen+1en = ten ,

e2n = en = e∗n , , t = −
√
M : N = −2cos(π/n) , n = 3, 4, ... (4.3)

This representation reduces to that for Temperley-Lieb algebra with obvious normalization
of projection operators. These algebras are somewhat analogous to function fields but the value
of coordinate is fixed to some particular values. An analogous discretization for function fields
corresponds to a formation of number theoretical braids.

4.2 Simplest Bi-Algebras

Let k(x1, .., xn) denote the free algebra of polynomials in variables xi with coefficients in field k. xi
can be regarded as points of a set. The algebra Hom(k(x1, ..., xn), A) of algebra homomorphisms
k(x1, ..., xn) → A can be identified as An since by the homomorphism property the images f(xi)
of the generators x1, ...xn determined the homomorphism completely. Any commutative algebra
A can be identified as the Hom(k[x], A) with a particular homomorphism corresponding to a line
in A determined uniquely by an element of A.

The matrix algebra M(2) can be defined as the polynomial algebra k(a, b, c, d). Matrix multi-
plication can be represented universally as an algebra morphism ∆ from from M2 = k(a, b, c, d) to
M⊗22 = k(a′, a′′, b′, b′′, c′, c′′, d′, d′′) to k(a, b, c, d) in matrix form as

∆

(
a b
c d

)
=

(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
.

This morphism induces algebra multiplication in the matrix algebra M2(A) for any commutative
algebra A.

M(2), GLe(2) and SLe(2) provide standard examples about bi-algebras. SLe(2) can be defined
as a commutative algebra by dividing free polynomial algebra k(a, b, c, d) spanned by the generators
a, b, c, d by the ideal det − 1 = ad − bc − 1 = 0 expressing that the determinant of the matrix is
one. In the matrix representation µ and η are defined in obvious manner and µ gives powers of
the matrix

A =

(
a b
c d

)
.

∆, counit ε, and antipode S can be written in case of SLe(2) as(
∆(a) ∆(b)
∆(c) ∆(d)

)
=

(
a b
c d

)
⊗
(
a b
c d

)
,

(
ε(a) ε(b)
ε(c) ε(d)

)
=

(
1 0
0 1

)
.

S

(
a b
c d

)
= (ad− bc)−1

(
d −b
−c a

)
.

Note that matrix representation is only an economical manner to summarize the action of ∆ on the
generators a, b, c, d of the algebra. For instance, one has ∆(a) = a→ a⊗ a+ b⊗ c. The resulting
algebra is both commutative and co-commutative.
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SLe(2)q can be defined as a Hopf algebra by dividing the free algebra generated by elements
a, b, c, d by the relations

ba = qab , db = qbd ,
ca = qac , dc = QCD ,
bc = cb , ad− da = (q−1 − 1)bc ,

and the relation
detq = ad− q−1bc = 1

stating that the quantum determinant of SLe(2)q matrix is one.
µ, η,∆, ε are defined as in the case of SLe(2). Antipode S is defined by

S

(
a b
c d

)
= det−1q

(
d −qb

−q−1c a

)
.

The relations above guarantee that it defines quantum inverse of A. For q an nth root of unity,
S2n = id holds true which signals that these parameter values are somehow exceptional. This
result is completely general.

Given an algebra, the R point of SLq(2) is defined as a four-tuple (A,B,C,D) in R4 satisfying
the relations defining the point of SLq(2). One can say that R-points provide representations of
the universal quantum algebra SLq(2).

4.3 Quantum Group UQ(Sl(2))

Quantum group Uq(sl(2)) or rather, quantum enveloping algebra of sl(2), can be constructed by
applying Drinfeld’s quantum double construction (to avoid confusion note that the quantum Hopf
algebra associated with SLe(2) is the quantum analog of a commutative algebra generated by
powers of a 2× 2 matrix of unit determinant).

The commutation relations of sl(2) read as

[X+, X−] = H , [H,X±] = ±2X± . (4.4)

Uq(sl(2)) allows co-algebra structure given by

∆(J) = J ⊗ 1 + 1⊗ J , S(J) = −J , ε(J) = 0 , J = X±, H ,

S(1) = 1 , ε(1) = 1 .
(4.5)

The enveloping algebras of Borel algebras U(B±) generated by {1, X+, H} {1, X−, hH} define the
Hopf algebra H and its dual H? in Drinfeld’s construction. h could be called Planck’s constant
vanishes at the classical limit. Note that H? reduces to {1, X−} at this limit. Quantum deformation
parameter q is given by exp(2h). The duality map ? : H → H? reads as

a→ a? , ab = (ab)? = b?a? ,
1→ 1 , H → H? = hH , X+ → (X+)? = hX− .

(4.6)

The commutation relations of Uq(sl(2) read as

[X+, X−] = qH−q−H

q−q−1 , [H,X±] = ±2X± . (4.7)

Co-product ∆, antipode S, and co-unit ε differ from those U(sl(2)) only in the case of X±:

∆(X±) = X± ⊗ qH/2 + q−H/2 ⊗X± ,

S(X±) = −q±1X± .
(4.8)
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When q is not a root of unity, the universal R-matrix is given by

R = q
H⊗H

2

∑∞
n=0

(1−q−2)n

[n]q !
q

n(1−n)
2 q

nH
2 Xn

+ ⊗ q−
nH
2 Xn

− . (4.9)

When q is m: th root of unity the q-factorial [n]q! vanishes for n ≥ m and the expansion does not
make sense.

For q not a root of unity the representation theory of quantum groups is essentially the same
as of ordinary groups. When q is mth root of unity, the situation changes. For l = m = 2n nth

powers of generators span together with the Casimir operator a sub-algebra commuting with the
whole algebra providing additional numbers characterizing the representations. For l = m = 2n+1
same happens for mth powers of Lie-algebra generators. The generic representations are not fully
reducible anymore. In the case of Uq(sl(2)) irreducibility occurs for spins n < l only. Under certain
conditions on q it is possible to decouple the higher representations from the theory. Physically
the reduction of the number of representations to a finite number means a symmetry analogous
to a gauge symmetry. The phenomenon resembles the occurrence of null vectors in the case of
Virasoro and Kac Moody representations and there indeed is a deep connection between quantum
groups and Kac-Moody algebras [A6].

One can wonder what is the precise relationship between Uq(sl(2) and SLq(2) which both are
quantum groups using loose terminology. The relationship is duality. This means the existence of
a morphism x → Ψ(x) Mq(2) → U?q defined by a bilinear form 〈u, x〉 = Ψ(x)(u) on Uq ×Mq(2),
which is bi-algebra morphism. This means that the conditions

〈uv, x〉 = 〈u⊗ v,∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u)

are satisfied. It is enough to find Ψ(x) for the generators x = A,B,C,D of Mq(2) and show that
the duality conditions are satisfied. The representation

ρ(E) =

(
0 1
0 0

)
, ρ(F ) =

(
0 0
1 0

)
, ρ(K = qH) =

(
q 0
0 q−1

)
,

extended to a representation

ρ(u) =

(
A(u) B(u)
C(u) D(u)

)
of arbitrary element u of Uq(sl(2) defines for elements in U?q . It is easy to guess thatA(u), B(u), C(u), D(u),
which can be regarded as elements of U?q , can be regarded also as R points that is images of the
generators a, b, c, d of SLq(2) under an algebra morphism SLq(2)→ U?q .

4.4 General Semisimple Quantum Group

The Drinfeld’s construction of quantum groups applies to arbitrary semi-simple Lie algebra and is
discussed in detail in [A6]. The construction relies on the use of Cartan matrix.

Quite generally, Cartan matrix A = {aij} is n× n matrix satisfying the following conditions:

1. A is indecomposable, that is does not reduce to a direct sum of matrices.

2. aij ≤ 0 holds true for i < j.

3. aij = 0 is equivalent with aij = 0.

A can be normalized so that the diagonal components satisfy aii = 2.
The generators ei, fi, ki satisfying the commutations relations

kikj = kjki , kiej = q
aij
i ejki ,

kifj = q
−aij
i ejki , eifj − fjei = δij

ki−k−1
i

qi−q−1
i

,
(4.10)
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and so called Serre relations

∑1−aij
l=0 (−1)l

[
1− aij

l

]
qi

e
1−aij−l
i eje

l
i = 0, i 6= j ,∑1−aij

l=0 (−1)l
[

1− aij
l

]
qi

f
1−aij−l
i fjf

l
i = 0 , i 6= j .

(4.11)

Here qi = qDi where one has Diaij = aijDi. Di = 1 is the simplest choice in this case.
Comultiplication is given by

∆(ki) = ki ⊗ ki , (4.12)

∆(ei) = ei ⊗ ki + 1⊗ ei , (4.13)

∆(fi) = fi ⊗ 1 + k−1i ⊗ 1 . (4.14)

(4.15)

The action of antipode S is defined as

S(ei) = −eik−1i , S(fi) = −kifi , S(ki) = −k−1i . (4.16)

4.5 Quantum Affine Algebras

The construction of Drinfeld and Jimbo generalizes also to the case of untwisted affine Lie algebras,
which are in one-one correspondence with semisimple Lie algebras. The representations of quan-
tum deformed affine algebras define corresponding deformations of Kac-Moody algebras. In the
following only the basic formulas are summarized and the reader not familiar with the formalism
can consult a more detailed treatment can be found in [A6].

1. Affine algebras

The Cartan matrix A is said to be of affine type if the conditions det(A) = 0 and aijaji ≥ 4 (no
summation) hold true. There always exists a diagonal matrix D such that B = DA is symmetric
and defines symmetric bilinear degenerate metric on the affine Lie algebra.

The Dynkin diagrams of affine algebra of rank l have l+ 1 vertices (so that Cartan matrix has
one null eigenvector). The diagrams of semisimple Lie-algebras are sub-diagrams of affine algebras.
From the (l+ 1)× (l+ 1) Cartan matrix of an untwisted affine algebra Â one can recover the l× l
Cartan matrix of A by dropping away 0: th row and column.

For instance, the algebra A1
1, which is affine counterpart of SLe(2), has Cartan matrix aij

A =

(
2 −2
−2 2

)
with a vanishing determinant.

Quite generally, in untwisted case quantum algebra Uq(Ĝl) as 3(l + 1) generators ei, fi, ki
(i = 0, 1, .., l) satisfying the relations of Eq. 4.11 for Cartan matrix of G(1). Affine quantum group
is obtained by adding to Uq(Ĝl) a derivation d satisfying the relations

[d, ei] = δi0ei , [d, fi] = δi0fi, [d, ki] = 0 . (4.17)

with comultiplication ∆(d) = d⊗ 1 + 1⊗ d.

2. Kac Moody algebras

The undeformed extension Ĝl associated with the affine Cartan matrix G(1)l is the Kac Moody
algebra associated with the group G obtained as the central extension of the corresponding loop
algebra. The loop algebra is defined as
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Le(G) = G ⊗ C
[
t, t−1

]
, (4.18)

where C
[
t, t−1

]
is the algebra of Laurent polynomials with complex coefficients. The Lie bracket

is

[x× P, y ⊗Q] = [x, y]⊗ PQ . (4.19)

The non-degenerate bilinear symmetric form (, ) in Gl induces corresponding form in Le(Gl) as
(x⊗ P, y ⊗Q) = (x, y)PQ.

A two-cocycle on Le(Gl) is defined as

Ψ(a, b) = Res(
da

dt
, b) , (4.20)

where the residue of a Laurent is defined as Res(
∑
n ant

n) = a−1. The two-cocycle satisfies the
conditions

Ψ(a, b) = −Ψ(b, a) ,

Ψ([a, b] , c) + Ψ([b, c] , a) + Ψ([c, a] , b) = 0 . (4.21)

The two-cocycle defines the central extension of loop algebra Le(Gl) to Kac Moody algebra Le(Gl)⊗
Cc, where c is a new central element commuting with the loop algebra. The new bracket is defined
as [, ]+Ψ(, )c. The algebra L̃(Gl) is defined by adding the derivation d which acts as td/dt measuring
the conformal weight.

The standard basis for Kac Moody algebra and corresponding commutation relations are given
by

Jxn = x⊗ tn ,

[Jxn , J
y
m] = J

[x,y]
n+m + nδm+n,0c . (4.22)

The finite dimensional irreducible representations of G defined representations of Kac Moody
algebra with a vanishing central extension c = 0. The highest weight representations are charac-
terized by highest weight vector |v〉 such that

Jxn |v〉 = 0, n > 0 ,

c|v〉 = k|v〉 . (4.23)

3. Quantum affine algebras

Drinfeld has constructed the quantum affine extension Uq(Gl) using quantum double construc-
tion. The construction of generators uses almost the same basic formulas as the construction of
semi-simple algebras. The construction involves the automorphism Dt : Uq(G̃l) ⊗ C

[
t, t−1

]
→

Uq(G̃l)⊗ C
[
t, t−1

]
given by

Dt(ei) = tδi0ei , Dt(fi) = tδi0fi ,
Dt(ki) = ki Dt(d) = d ,

(4.24)

and the co-product

∆t(a) = (Dt ⊗ 1)∆(a) , ∆op
t (a) = (Dt ⊗ 1)∆op(a) , (4.25)
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where the ∆(a) is the co-product defined by the same general formula as applying in the case of
semi-simple Lie algebras. The universal R-matrix is given by

R(t) = (Dt ⊗ 1)R , (4.26)

and satisfies the equations

R(t)∆t(a) = ∆op
t (a)R ,

(∆z ⊗ id)R(u) = R13(zu)R23(u) ,

(id⊗∆u)R(zu) = R13(z)R12(zu) ,

R12(t)R13(tw)R23(w) = R23(w)R13(tw)R12(t) .

(4.27)

The infinite-dimensional representations of affine algebra give representations of Kac-Moody alge-
bra when one restricts the consideration to generations ei, fi, ki, i > 0.
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