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Abstract

This chapter, which is second part of a summary about the recent view about many-sheeted
space-time, provides a summary of the developments in TGD that have occurred during last
few years (the year I am writing this is 2007). The view is out-of-date in some respects. The
most important steps of progress are following ones.

1. Parton level formulation of quantum TGD

The formulation of quantum TGD at partonic level identifying fundamental objects as
light-like 3-surfaces having also interpretation as random light-like orbits of 2-D partons having
arbitrarily large size. This picture reduces quantum TGD to an almost-topological quantum
field theory and leads to a dramatic understanding of S-matrix. A generalization of Feynman
diagrams emerges obtained by replacing lines of Feynman diagram with light-like 3-surfaces
meeting along their ends at vertices. This picture is different from that of string models and
means also a generalization of the view about space-time and 3-surface since these surfaces
cannot be assumed to be a smooth manifold anymore.

The condition that the formulation in terms of light-like 3-surfaces is equivalent with that
using pairs of space-like 3-surfaces at the ends of causal diamonds leads to strong from of
holography stating that partonic 2-surfaces and their tangent space-data code for physics. It
has turned out that fermionic string model in 4-D space-time emerges naturally from TGD.
This is not yet taken into account in there considerations of the chapter.

2. Zero energy ontology

In zero energy ontology physical states are creatable from vacuum and have vanishing net
quantum numbers, in particular energy. Zero energy states can be decomposed to positive
and negative energy parts with definite geometro-temporal separation, call it T , and having
interpretation in terms of initial and final states of particle reactions. Zero energy ontology
is consistent with ordinary positive energy ontology at the limit when the time scale of the
perception of observer is much shorter than T .

Zero energy ontology leads to the view about S-matrix as a characterizer of time-like entan-
glement associated with the zero energy state and a generalization of S-matrix to what might
be called M-matrix emerges. M-matrix is complex square root of density matrix expressible
as a product of real valued “modulus” and unitary matrix representing phase and can be seen
as a matrix valued generalization of Schrödinger amplitude. Also thermodynamics becomes
an inherent element of quantum theory in this approach. M-matrices in turn form orthogonal
rows of U-matrix which is defined between zero energy states whereas S and M-matrices are
defined by entanglement coefficients between positive and negative energy parts of zero energy
states.

3. Fusion of real and p-adic physics to single one

The fusion of p-adic physics and real physics to single coherent whole requires generalization
of the number concept obtained by gluing reals and various p-adic number fields along common
algebraic numbers. This leads to a new vision about how cognition and intentionality make
themselves visible in real physics via long range correlations realized via the effective p-adicity
of real physics. The success of the p-adic length scale hypothesis and p-adic mass calculations
suggest that cognition and intentionality are present already at elementary particle level. This
picture leads naturally to an effective discretization of the real physics at the level of S-matrix
and relying on the notion of number theoretic braid.

It has turned out that the notion of braid emerges naturally from the localization of spinor
modes to 2-D surfaces in the generic case. Braids correspond to the orbits of the strings ends
at given space-time sheet.

4. Dark matter hierarchy and hierarchy of Planck constants

Dark matter revolution with levels of the hierarchy labeled by values of Planck constant
suggests a further generalization of the notion of embedding space and thus of space-time
- at least as an effective mathematical tool. One can say that embedding space is a book
like structure obtained by gluing together infinite number of copies of the embedding space
like pages of a book: two copies characterized by singular discrete bundle structure are glued
together along 4-dimensional set of common points. These points have physical interpretation
in terms of quantum criticality. Particle states belonging to different sectors (pages of the
book) can interact via field bodies representing space-time sheets which have parts belonging
to two pages of this book.
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It has turned out that the hierarchy of effective Planck constants heff = n × h follows
from the quantum criticality implied by the non-determinism of Kähler action and that one
can relate it to an infinite hierarchy of breakings of conformal symmetries acting on the orbits
of light-like 3-surfaces leaving the space-like ends of space-time surface at boundaries of CD
invariant. Hierarchy of conformal algebras corresponds to sub-algebras of conformal algebras
with conformal weights coming as multiples of n.

5. Equivalence Principle and evolution of gravitational constant

The views about Equivalence Princple (EP) and GRT limit of TGD have changed quite
a lot since 2007 and here the updated view is summarized. Before saying anything about
evolution of gravitational constant one must understand whether it is a fundamental constant
or prediction of quantum TGD. Also one should understand whether Equivalence Principle
holds true and if so, in what sense. Also the identification of gravitational and inertial masses
seems to be necessary.

At classical level EP follows from the interpretation of GRT space-time as effective space-
time obtained by replacing many-sheeted space-time with Minkowski space with effective met-
ric determined as a sum of Minkowski metric and sum over the deviations of the induced
metrices of space-time sheets from Minkowski metric. Poincare invariance suggests strongly
classical EP for the GRT limit in long length scales at least. One can consider also other
kinds of limits such as the analog of GRT limit for Euclidian space-time regions assignable
to elementary particles. In this case deformations of CP2 metric define a natural starting
point and CP2 indeed defines a gravitational instanton with very large cosmological constant
in Einstein-Maxwell theory. Also gauge potentials of standard model correspond classically to
superpositions of induced gauge potentials over space-time sheets.

Gravitational constant, cosmological constant, and various gauge couplings emerge as pre-
dictions. Planck length should be related to CP2 size by a dimensionless numerical factor
predicted by the theory. These constants need not be universal constants: cosmological con-
stant is certainly very large for the Euclidian variant of GRT space-time. These constants
could also depend on p-adic length scale. p-Adic coupling constant evolution suggests itself as
a discretized variant of coupling constant evolution and p-adic scales would relate naturally to
the size scales of causal diamonds: perhaps the integer n characterizing the multiple of CP2

scale giving the distance between the tips of CD has p-adic prime p or its power as a divisor.
At the level of single space-time sheet and CD it is not possible to talk about coupling

constant evolution since Kähler action and Kähler-Dirac action contain no coupling constants.
This description however gives rise to p-adic coupling constant evolution since the process

of lumping together the sheets of the many-sheeted space-time gives a result which depends
on the size scale of CD. If the non-deterministic dynamics of Kähler action for the maxima
of Kähler function mimics p-adic non-determinism then one has hopes about p-adic coupling
constant evolution. The p-adic prime and therefore also the length scale and coupling con-
stants characterizing the dynamics for given CD would vary wildly as function of integer
characterizing CD size scale. This could mean that the CDs whose size scales are related by
multiplication of small integer are close to each other. They would be near to each other in log-
arithmic sense and logarithms indeed appear in running coupling constants. This “prediction”
is of course subject to criticism.

6. Renormalization group equations for gauge couplings at space-time level

In classical TGD only Kähler coupling constant appears explicitly but does not affect the
classical dynamics. Other gauge couplings do not appear at all in classical dynamics since
the the definition of classical fields absorbs them as normalization constants. This suggests
that the notion of continuous coupling constant evolution at space-time level is not needed in
quantum TGD proper and emerges only at the QFT limit when space-time is replaced with
general relativistic effective space-time.

For the known extremals of Kähler action gauge couplings are RG invariants inside single
space-time sheet, which supports the view that discrete p-adic coupling constant evolution
replacing the ordinary continuous coupling constant evolution emerges only when space-time
sheets are lumped together to define GRT space-time. This evolution would have as parameters
the p-adic length scale characterizing the causal diamond (CD) associated with particle and
the phase factors characterizing the algebraic extension of p-adic numbers involved.

The p-adic prime and therefore also the length scale and coupling constants characterizing
the dynamics for given CD would vary wildly as function of integer characterizing CD size
scale. This could mean that the CDs whose size scales are related by multiplication of small
integer are close to each other. They would be near to each other in logarithmic sense and
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logarithms indeed appear in running coupling constants. This “prediction” is of course subject
to criticism.

7. Quantitative g for the values of coupling constants

All quantitative statements about coupling constants are bound to be guesswork as long as
explicit formulas for M-matrix elements are lacking. p-Adic length scale hypothesis provides
one guideline for the guesses. Second guideline is provided by number theoretical universality.
Third guideline is general physical intuition. What is done can be however seen as exercises
perhaps giving some familiarity with the basic notions.

The latest progress in the understanding of p-adic coupling constant evolution comes from
a formula for Kähler coupling strength αK in terms of Dirac determinant of the Kähler-Dirac
operator associated with Kähler action.

The formula for αK fixes its number theoretic anatomy and also that of other coupling
strengths. The assumption that simple rationals (p-adicization) are involved can be combined
with the input from p-adic mass calculations and with an old conjecture for the formula of
gravitational constant allowing to express it in terms of CP2 length scale and Kähler action of
topologically condensed CP2 type vacuum extremal. The prediction is that αK is renormal-
ization group invariant and equals to the value of fine structure constant at electron length
scale characterized by M127. Although Newton’s constant is proportional to p-adic length
scale squared it can be RG invariant thanks to exponential reduction due to the presence of
the exponent of Kähler action associated with the two CP2 type vacuum extremals represent-
ing the wormhole contacts associated with graviton. The number theoretic anatomy of R2/G
allows to consider two options. For the first one only M127 gravitons are possible number
theoretically. For the second option gravitons corresponding to p ' 2k are possible.

A relationship between electromagnetic and color coupling constant evolutions based on
the formula 1/αem + 1/αs = 1/αK is suggested by the induced gauge field concept, and
would mean that the otherwise hard-to-calculate evolution of color coupling strength is fixed
completely. The predicted value of αs at intermediate boson length scale is correct.

In this chapter the above topics are discussed in detail. Also the possible role of so called
super-symplectic gauge bosons in the understanding of non-perturbative phase of QCD and
black-hole physics is discussed.

1 Introduction

In previous chapter “General View About Physics in Many-Sheeted Space-Time” the notion of
many-sheeted space-time concept and the understanding of coupling constant evolution at space-
time level were discussed without reference to the newest developments in quantum TGD. In this
chapter this picture is completed by a summary of the new rather dramatic developments in TGD
that have occurred during last few years (the year I am writing this is 2007). The most important
steps of progress are following ones.

1.1 Parton Level Formulation Of Quantum TGD

The formulation of quantum TGD at partonic level identifying fundamental objects as light-like
3-surfaces having also interpretation as random light-like orbits of 2-D partons having arbitrarily
large size. This picture reduces quantum TGD to an almost-topological quantum field theory and
leads to a dramatic understanding of S-matrix. A generalization of Feynman diagrams emerges
obtained by replacing lines of Feynman diagram with light-like 3-surfaces meeting along their ends
at vertices. This picture is different from that of string models and means also a generalization of
the view about space-time and 3-surface since these surfaces cannot be assumed to be a smooth
manifold anymore.

Extended super-conformal invariance involving the fusion of ordinary Super-Kac Moody sym-
metries and so called super-symplectic invariance generalizing the Kac-Moody algebra by replac-
ing the Lie algebra of finite-dimensional Lie group with that for symplectic transformations of
δM4
± × CP2 plays a key role in this framework. The help of professionals in this branch of math-

ematics would be badly needed in order to develop a detailed understanding about the predicted
particle spectrum.
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1.2 Zero Energy Ontology

The notion of zero energy ontology emerged implicitly in cosmological context from the observation
that the imbeddings of Robertson-Walker metrics are always vacuum extremals. In fact, practically
all solutions of Einstein’s equations have this property very naturally. The explicit formulation
emerged with the progress in the formulation of quantum TGD. In zero energy ontology physical
states are creatable from vacuum and have vanishing net quantum numbers, in particular energy.
Zero energy states can be decomposed to positive and negative energy parts with definite geometro-
temporal separation, call it T , and having interpretation in terms of initial and final states of
particle reactions. Zero energy ontology is consistent with ordinary positive energy ontology at
the limit when the time scale of the perception of observer is much shorter than T . One of the
implications is a new view about fermions and bosons allowing to understand Higgs mechanism
among other things.

Zero energy ontology leads to the view about S-matrix as a characterizer of time-like entangle-
ment associated with the zero energy state and a generalization of S-matrix to what might be called
M-matrix emerges. M-matrix is complex square root of density matrix expressible as a product of
real valued “modulus” and unitary matrix representing phase and can be seen as a matrix valued
generalization of Schrödinger amplitude. Also thermodynamics becomes an inherent element of
quantum theory in this approach.

1.3 Fusion Of Real And P-Adic Physics To Single One

The fusion of p-adic physics and real physics to single coherent whole requires generalization of the
number concept obtained by gluing reals and various p-adic number fields along common algebraic
numbers. This leads to a completely new vision about how cognition make themselves visible in
real physics via long range correlations realized via the effective p-adicity of real physics. The
success of p-adic length scale hypothesis and p-adic mass calculations suggest that cognition and
intentionality are present already at elementary particle level. This picture leads naturally to an
effective discretization of the real physics at the level of S-matrix and relying on the notion of
umber theoretic braid.

1.4 Dark Matter Hierarchy And Hierarchy Of Planck Constants

The idea about hierarchy of Planck constants relying on generalization of the embedding space was
inspired both by empirical input (Bohr quantization of planetary orbits and anomalies of biology)
and by the mathematics of hyper-finite factors of type II1 combined with the quantum classical
correspondence. Consider first the mathematical structure in question.

1. The Clifford algebra of World of Classical Worlds (WCW) creating many fermion states is
a standard example of an algebra expressible as a direct integral of copies of von Neumann
algebras known as hyper-finite factor of type II1 (HFFs). The inclusions of HFFs relate
very intimately to the notion of finite measurement resolution. There is a canonical hierar-
chy of Jones inclusions [A1] labeled by finite subgroups of SU(2) [A11]. Quantum classical
correspondence suggests that these inclusions have space-time correlates [K30, K14] and the
generalization of embedding space would provide these correlates.

2. The space CD × CP2, where CD ⊂ M4 is so called causal diamond identified as the inter-
section of future and past directed light-cones defines the basic geometric structure in zero
energy ontology. The positive (negative) energy part of the zero energy state is located to
the lower (upper) light-like boundaries of CD × CP2 and has interpretation as the initial
(final) state of the physical event in standard positive energy ontology. p-Adic length scale
hypothesis follows if one assumes that the temporal distance between the tips of CD comes
as an octave of fundamental time scale defined by the size of CP2. The “world of classical
worlds” (WCW ) is union of sub-WCWs associated with spaces CD × CP2 with different
locations in M4 × CP2.

3. One can say that causal diamond CD and the space CP2 appearing as factors in CD×CP2

forms the basic geometric structure in zero energy ontology, is replaced with a book like
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structure obtained by gluing together infinite number of singular coverings and factor spaces
of CD resp. CP2 together. The copies are glued together along a common “back” M2 ⊂M2

of the book in the case of CD. In the case of CP2 the most general option allows two
backs corresponding to the two non-isometric geodesic spheres S2

i , i = I, II, represented

as sub-manifolds ξ1 = ξ
2

and ξ1 = ξ2 in complex coordinates transforming linearly under
U(2) ⊂ SU(3). Color rotations in CP2 produce different choices of this pair.

4. The selection of geodesic spheres S2 and M2 is an imbedding space correlate for the fixing of
quantization axes and means symmetry breaking at the level of embedding space geometry.
WCW is union over all possible choices of CD and pairs of geodesic spheres so that at the level
no symmetry breaking takes place. The points of M2 and S2 have a physical interpretation
in terms of quantum criticality with respect to the phase transition changing Planck constant
(leakage to another page of the book through the back of the book).

5. The pages of the singular coverings are characterized by finite subgroups Ga and Gb of
SU(2) and these groups act in covering or leave the points of factor space invariant. The
pages are labeled by Planck constants ~(CD) = na~0 and ~(CP2) = nb~0, where na and
nb are integers characterizing the orders of maximal cyclic subgroups of Ga and Gb. For
singular factor spaces one has ~(CD) = ~0/na and ~(CP2) = ~0/nb. The observed Planck
constant corresponds to ~ = (~(CD)/~(CP2))× ~0. What is also important is that (~/~0)2

appears as a scaling factor of M4 covariant metric so that Kähler action via its dependence on
induced metric codes for radiative corrections coming in powers of ordinary Planck constant:
therefore quantum criticality and vanishing of radiative corrections to functional integral over
WCW does not mean vanishing of radiative corrections.

The interpretation in terms of dark matter comes as follows.

1. Large values of ~ make possible macroscopic quantum phase since all quantum scales are
scaled upwards by ~/~0. Anyonic and charge fractionization effects allow to “measure”
~(CD) and ~(CP2) rather than only their ratio. ~(CD) = ~(CP2) = ~0 corresponds to what
might be called standard physics without any anyonic effects and visible matter is identified
as this phase.

2. Particle states belonging to different pages of the book can interact via classical fields and by
exchanging particles, such as photons, which leak between the pages of the book. This leakage
means a scaling of frequency and wavelength in such a way that energy and momentum of
photon are conserved. Direct interactions in which particles from different pages appear in
the same vertex of generalized Feynman diagram are impossible. This seems to be enough
to explain what is known about dark matter. This picture differs in many respects from
more conventional models of dark matter making much stronger assumptions and has far
reaching implications for quantum biology, which also provides support for this view about
dark matter.

1.5 Equivalence Principle And Evolution Of Coupling Constants

The views about Equivalence Princple (EP) and GRT limit of TGD have changed quite a lot
since 2007 and here the updated view is summarized. Before saying anything about evolution of
gravitational constant one must understand whether it is a fundamental constant or prediction of
quantum TGD. Also one should understand whether Equivalence Principle holds true and if so, in
what sense. Also the identification of gravitational and inertial masses seems to be necessary.

At classical level EP follows from the interpretation of GRT space-time as effective space-
time obtained by replacing many-sheeted space-time with Minkowski space with effective metric
determined as a sum of Minkowski metric and sum over the deviations of the induced metrices of
space-time sheets from Minkowski metric. Poincare invariance suggests strongly classical EP for
the GRT limit in long length scales at least. One can consider also other kinds of limits such as the
analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case
deformations of CP2 metric define a natural starting point and CP2 indeed defines a gravitational
instanton with very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials
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of standard model correspond classically to superpositions of induced gauge potentials over space-
time sheets.

Gravitational constant, cosmological constant, and various gauge couplings emerge as predic-
tions. Planck length should be related to CP2 size by a dimensionless numerical factor predicted
by the theory. These constants need not be universal constants: cosmological constant is certainly
very large for the Euclidian variant of GRT space-time. These constants could also depend on
p-adic length scale. p-Adic coupling constant evolution suggests itself as a discretized variant of
coupling constant evolution and p-adic scales would relate naturally to the size scales of causal dia-
monds: perhaps the integer n characterizing the multiple of CP2 scale giving the distance between
the tips of CD has p-adic prime p or its power as a divisor.

At the level of single space-time sheet and CD it is not possible to talk about coupling constant
evolution since Kähler action and Kähler-Dirac action contain no coupling constants.

This description however gives rise to p-adic coupling constant evolution since the process of
lumping together the sheets of the many-sheeted space-time gives a result which depends on the size
scale of CD. If the non-deterministic dynamics of Kähler action for the maxima of Kähler function
mimics p-adic non-determinism then one has hopes about p-adic coupling constant evolution. The
p-adic prime and therefore also the length scale and coupling constants characterizing the dynamics
for given CD would vary wildly as function of integer characterizing CD size scale. This could mean
that the CDs whose size scales are related by multiplication of small integer are close to each other.
They would be near to each other in logarithmic sense and logarithms indeed appear in running
coupling constants. This “prediction” is of course subject to criticism.

All this is a work in progress and there are many uncertainties involved. Despite this it seems
that it is good to sum up the recent view in order to make easier to refer to the new developments
in the existing chapters.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L2].

2 The New Developments In Quantum TGD

This section summarizes the developments in quantum TGD which have taken place during last
few years.

2.1 Reduction Of Quantum TGD To Parton Level

It took surprisingly long time before the realization that quantum TGD can be reduced to par-
ton level in the sense that fundamental objects are light-like 3-surfaces (of arbitrary size). This
identification follows from 4-D general coordinate invariance. Light-likeness in turn implies effec-
tive 2-dimensionality of the fermionic dynamics. 4-D space-time sheets are identified as preferred
extrema of Kähler action. A stronger form of holography is that Kähler-Dirac action and Chern-
Simons action for light-like partonic 3-surfaces defined the Kähler action as a logarithm of the
fermionic determinant.

2.1.1 Magic properties of 3-D light-like surfaces and generalization of super-conformal
symmetries

The very special conformal properties of both boundary δM4
± of 4-D light-cone and of light-like

partonic 3-surfaces X3 imply a generalization and extension of the super-conformal symmetries of
super-string models to 3-D context [K11, K10]. Both the Virasoro algebras associated with the
light-like coordinate r and to the complex coordinate z transversal to it define super-conformal
algebras so that the structure of conformal symmetries is much richer than in string models.

1. The symplectic transformations of δM4
± × CP2 give rise to an infinite-dimensional symplec-

tic/symplectic algebra having naturally a structure of Kac-Moody type algebra with respect
to the light-like coordinate of δM4

± = S2 × R+ and with finite-dimensional Lie group G re-
placed with the symplectic group. The conformal transformations of S2 localized with respect
to the light like coordinate act as conformal symmetries analogous to those of string models.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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The super-symplectic algebra, call it SC, made local with respect to partonic 2-surface can
be regarded as a Kac-Moody algebra associated with an infinite-dimensional Lie algebra.

2. The light-likeness of partonic 3-surfaces is respected by conformal transformations of H
made local with respect to the partonic 3-surface and gives to a generalization of bosonic
Kac-Moody algebra, call it KM, Also now the longitudinal and transversal Virasoro algebras
emerge. The commutator [KM,SC] annihilates physical states.

3. Fermionic Kac-Moody algebras act as algebras of left and right handed spinor rotations in
M4 and CP2 degrees of freedom. Also the Kähler-Dirac operator allows super-conformal
symmetries as gauge symmetries of its generalized eigen modes.

2.1.2 Quantum TGD as almost topological quantum field theory at parton level

The original belief was that the light-like character of basic dynamical objects X3
l at which the

signature of the induced metric changes implies that Chern-Simons action for the induced Kähler
gauge potential of CP2 determines the classical dynamics of partonic 3-surfaces [K31]. This turned
out to be a wrong guess: Kähler action and corresponding Kähler-Dirac action is enough.

1. Number theoretical compactification and the properties of known extremals of Kähler action
suggests strongly the slicing of space-time surface by 3-D light-like surfaces Y 3

l parallel to X3
l .

The surfaces Y 3
l behave as independent dynamical units in the sense that conserved currents

flow along them so that quantum holography is realized. Number theoretic compactification
allows also dual slicings of X4(X3

l ) by string world sheets Y 2 and partonic 2-surfaces X2.

2. The Kähler-Dirac action obtained as the super-symmetric counterpart Kähler action fixes
the dynamics of the second quantized free fermionic fields in terms of which WCW gamma
matrices and WCW spinor s can be constructed. The essential difference to the ordinary
massless Dirac action is that induced gamma matrices are replaced by the contractions of
the symplectic momentum densities Kähler action with embedding space gamma matrices.
Therefore the effective metric defined by the Kähler-Dirac gamma matrices replaces ordinary
gamma matrices and the corresponding effective metric can be non-singular even when in-
duced metric is degenerate. Effective 3-dimensionality means that the modes of the induced
spinor field are constant with respect to the light-like coordinate labeling the slices Y 3

l .

3. Kähler-Dirac action is consistent with the symmetries of Kähler action provided its first
variation with respect to H coordinates vanishes - or equivalently- the second variation of
Kähler action varies. This would realize quantum criticality at space-time level. The second
variation vanishes only for those deformations which correspond to conserved currents.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal
equivalence classes of the deformations can be finite and n would naturally relate to the
hierarchy of Planck constants heff = n × h (see Fig. http://tgdtheory.fi/appfigures/

planckhierarchy.jpg or Fig. ?? in the appendix of this book).

4. Kähler-Dirac operator decomposes as DK = DK(Y 2) + DK(X2) and its zero modes for
effectively 3-D solutions can be chosen to be generalized eigenmodes of DK(X2). The product
of the generalized eigenvalues of DK(X2) defines the exponent of Kähler function conjectured
to reduce to Kähler action for the preferred extremal.

Fermionic statistics is geometrized in terms of spinor geometry of WCW since gamma matri-
ces are linear combinations of fermionic oscillator operators identifiable also as super-symplectic
generators [K31]. Only the light-likeness property involving the notion of induced metric breaks
the topological QFT property of the theory so that the theory is as close to a physically trivial
theory as it can be.

The resulting generalization of N = 4 super-conformal symmetry [A9] involves super-symplectic
algebra (SC)and super Kac-Moody algebra (SKM) [K10] There are considerable differences as
compared to string models. Super generators carry fermion number, no sparticles are predicted
(at least super Poincare invariance is not obtained), SKM algebra and corresponding Virasoro

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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algebra associated with light-like coordinates of X3 and δM4
± do not annihilate physical states

which justifies p-adic thermodynamics used in p-adic mass calculations, four-momentum does not
appear in Virasoro generators so that there are no problems with Lorentz invariance, and mass
squared is p-adic thermal expectation of conformal weight.

2.2 Quantum Measurement Theory With Finite Measurement Resolu-
tion

Infinite-dimensional Clifford algebra of CH can be regarded as a canonical example of a von
Neumann algebra known as a hyper-finite factor of type II1 [A7, A11] (shortly HFF) character-
ized by the defining condition that the trace of infinite-dimensional unit matrix equals to unity:
Tr(Id) = 1. In TGD framework the most obvious implication is the absence of fermionic normal
ordering infinities whereas the absence of bosonic divergences is guaranteed by the basic properties
of WCW Kähler geometry, in particular the non-locality of the Kähler function as a functional of
3-surface.

The special properties of this algebra, which are very closely related to braid and knot invariants
[A6, A5], quantum groups [A11], non-commutative geometry [A3], spin chains, integrable models
[B4], topological quantum field theories [A10], conformal field theories, and at the level of concrete
physics to anyons [D3], generate several new insights and ideas about the structure of quantum
TGD.

Jones inclusions N ⊂M [A1, A11] of these algebras lead to quantum measurement theory with
a finite measurement resolution characterized by N [K30, K14]. Quantum Clifford algebra M/N
interpreted as N -module creates physical states modulo measurement resolution. Complex rays of
the state space resulting in the ordinary state function reduction are replaced by N -rays and the
notions of unitarity, hermiticity, and eigenvalue generalize [K9, K14].

The notion of entanglement generalizes so that entanglement coefficients are N -valued. Gener-
alized eigenvalues are in turn N -valued hermitian operators. S- and U-matrices become N valued
and probabilities are obtained from N-valued probabilities as traces.

Non-commutative physics would be interpreted in terms of a finite measurement resolution
rather than something emerging below Planck length scale. An important implication is that a
finite measurement sequence can never completely reduce quantum entanglement so that entire
universe would necessarily be an organic whole. Topologically condensed space-time sheets could
be seen as correlates for sub-factors which correspond to degrees of freedom below measurement
resolution. Topological condensation in turn corresponds to the inclusion N ⊂M. This is however
not the only possible interpretation.

2.3 Hierarchy Of Planck Constants

The idea about hierarchy of Planck constants relying on generalization of the embedding space was
inspired both by empirical input (Bohr quantization of planetary orbits) and by the mathematics
of hyper-finite factors of type II1 combined with the quantum classical correspondence.

2.3.1 The generalization of embedding space concept and hierarchy of Planck con-
stants

Quantum classical correspondence suggests that Jones inclusions [A1] have space-time correlates
[K30, K14]. There is a canonical hierarchy of Jones inclusions labeled by finite subgroups of
SU(2) [A11] This leads to a generalization of the embedding space obtained by gluing an infinite
number of copies of H regarded as singular bundles over H/Ga×Gb, where Ga×Gb is a subgroup of
SU(2)×SU(2) ⊂ SL(2, C)×SU(3). Gluing occurs along a factor for which the group is same. The
generalized embedding space has clearly a book like structure with pages of books intersecting along
4-D sub-manifold M2 × S2, S2 a geodesic sphere of CP2 characterizing the choice of quantization
axes. Entire configuration space is union over “books” corresponding to various choices of this
sub-manifold.

The groups in question define in a natural manner the direction of quantization axes for for
various isometry charges and this hierarchy seems to be an essential element of quantum measure-
ment theory. Ordinary Planck constant, as opposed to Planck constants ~a = na~0 and ~b = nb~0
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appearing in the commutation relations of symmetry algebras assignable to M4 and CP2, is nat-
urally quantized as ~ = (na/nb)~0, where ni is the order of maximal cyclic subgroup of Gi. The
hierarchy of Planck constants is interpreted in terms of dark matter hierarchy [K14]. What is also
important is that (na/nb)

2 appear as a scaling factor of M4 metric so that Kähler action via its
dependence on induced metric codes for radiative corrections coming in powers of ordinary Planck
constant: therefore quantum criticality and vanishing of radiative corrections to functional integral
over WCW does not mean vanishing of radiative corrections.

Ga would correspond directly to the observed symmetries of visible matter induced by the
underlying dark matter [K14]. For instance, in living matter molecules with 5- and 6-cycles could
directly reflect the fact that free electron pairs associated with these cycles correspond to na = 5 and
na = 6 dark matter possibly responsible for anomalous conductivity of DNA [K14, K6] and recently
reported strange properties of graphene [D2]. Also the tetrahedral and icosahedral symmetries of
water molecule clusters could have similar interpretation [K13], [D4].

A further fascinating possibility is that the observed indications for Bohr orbit quantization of
planetary orbits [E1] could have interpretation in terms of gigantic Planck constant for underlying
dark matter [K24] so that macroscopic and -temporal quantum coherence would be possible in as-
trophysical length scales manifesting itself in many ways: say as preferred directions of quantization
axis (perhaps related to the CMB anomaly) or as anomalously low dissipation rates.

Since the gravitational Planck constant is proportional to the product of the gravitational
masses of interacting systems, it must be assigned to the field body of the two systems and charac-
terizes the interaction between systems rather than systems themselves. This observation applies
quite generally and each field body of the system (em, weak, color, gravitational) is characterized
by its own Planck constant.

In the gravitational case the order of Ga is gigantic and at least GM1m/v0, v0 = 2−11 the
favored value. The natural interpretation is as a discrete rotational symmetry of the gravitational
field body of the system having both gravimagnetic and gravi-electric parts. The subgroups of Ga
for which order is a divisor of the order of Ga define broken symmetries at the lower levels of dark
matter hierarchy, in particular symmetries of visible matter.

The number theoretically simple ruler-and-compass integers having as factors only first powers
of Fermat primes and power of 2 would define a physically preferred sub-hierarchy of quantum
criticality for which subsequent levels would correspond to powers of 2: a connection with p-adic
length scale hypothesis suggests itself. Ruler and compass hypothesis implies that besides p-adic
length scales also their 3- and 5- multiples should be important. Note that in the structure of
chromosomes p-adic length scale L(151) ' 10 characterizes beads-on-string structure of DNA
whereas the length scale 3L(151) appears in the coiling of this structure.

2.3.2 Implications of dark matter hierarchy

The basic implication of dark matter hierarchy is hierarchy of macroscopic quantum coherent
systems covering all length scales. The presence of this hierarchy is visible as exact discrete
symmetries of field bodies reflecting at the level of visible matter as broken symmetries. In case
of gravitational interaction these symmetries are highest and also the scale of quantum coherence
is astrophysical. Together with ruler-and-compass hypothesis and p-adic length scale hypothesis
this leads to very powerful predictions and p-adic length scale hypothesis might reduce to the
ruler-and-compass hypothesis.

At the level of condensed matter one application is nuclear string model explaining also the
selection rules of cold fusion and predicting that dark copy of weak physics with atomic scale
defining the range of weak interaction is involved. Note that cold fusion has recently gained
considerable support. High Tc super-conductivity is second application of dark matter hierarchy.

The 5- and 6-fold symmetries of the sugar backbone of DNA suggest that corresponding cyclic
groups or cyclic groups having these groups as factors are symmetries of dark matter part of
DNA presumably consisting of what is called as free electron pairs assignable to 5- and 6-cycles.
The model allows to understand the observed high conductivity of DNA not consistent with the
insulator property of DNA at the level of visible matter.
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2.3.3 Dark matter and bio-control

The hierarchy of dark matters provides rather concrete realization for the vision about living matter
as quantum critical system. This vision will be discussed in more detail later.

The large Planck constants characterize various field bodies of physical system. This gives
justification to the notion of (magnetic) field body which plays key role in TGD inspired model of
living matter serving as intentional agent controlling the behavior of field body. For instance, the
model of EEG relies and of bio-control relies on this notion. The large value of the Planck constant
is absolutely essential since for a given low frequency it allows to have gauge boson energy above
thermal threshold. Large value of Planck constant is essential for time mirror mechanism which is
behind the models of metabolism, long term memory, and intentional action.

The huge values of gravitational Planck constant supports the vision of Penrose [J2] about the
special role of quantum gravitation in living matter. In TGD framework the proposal of Penrose and
Hameroff for the emergence of consciousness known as Orch-Or (Orchestrated Objective Reduction
[J3] ) is however too restricted since it gives a very special role to micro-tubules.

A reasonable guess - based on the hypothesis that transition to dark matter phase occurs when
perturbation theory for standard value of Planck constant fails - is that GMm > 1 is the criterion
for the transition to dark phase for the gravitational field body characterizing the interaction
between the two masses so that Planck mass becomes the critical mass for this transition. For the
density of water this means size scale of.1 mm, the size of large neuron.

2.4 Zero Energy Ontology

Zero energy ontology has roots in TGD inspired cosmology [K25]. The problem has been that
the embeddings of Robertson-Walker cosmologies have vanishing densities of Poincare momenta
identified as inertial momenta whereas gravitational energy density is non-vanishing. This led
to the conclusion that one must allow space-time sheets with both time orientations such that
the signs of Poincare energies are different for them and total density of inertial energy vanishes.
Gravitational momenta can be identified as difference of the Poincare momenta and need not be
conserved.

2.4.1 Construction of S-matrix and zero energy ontology

The construction of S-matrix allows to formulate this picture more sharply. Zero energy states
have positive and negative energy parts located in geometric past and future and S-matrix can
be identified as time-like entanglement coefficients between these states. Positive energy ontology
is a good approximation in time scales shorter than the temporal distance between positive and
negative energy states. This picture leads also to a generalization of Feynman graphs obtained
by gluing light-like partonic 3-surfaces together along their ends at vertices. These Feynman
cobordisms become a basic element of quantum TGD having interpretation as almost topological
QFT and category theoretical formulation of quantum TGD emerges.

2.4.2 Elementary particles and zero energy ontology

At the level of elementary particles zero energy ontology means that fermionic quantum numbers
are located at the light-like throats of wormhole contacts connecting CP2 type extremals with
Euclidian signature of induced metric to space-time sheets with Minkowskian signature of induced
metric. Gauge bosons in turn correspond to pieces of CP2 type extremals connecting positive and
negative energy space-time sheets with fermion and anti-fermion quantum numbers at the throats
of the wormhole contact. Depending on the sign of net energy one has ordinary boson or its
phase conjugate. Gravitons correspond to pairs of fermion or gauge boson pair with particle and
antiparticle connected by flux tube. This string picture emerges automatically if one assumes that
the fermions of the conformal field theory associated with partonic 3-surface are free. It is also
possible to have gauge bosons corresponding to single wormhole throat: these particles correspond
to bosonic generators of super-symplectic algebra and excitations which correspond to genuine
WCW degrees of freedom so that description in terms of quantum field theory in fixed background
space-time need not work.
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2.5 U- And S-Matrices

In quite early stage physical arguments led to the conclusion that the universal U-matrix associated
with quantum jump must be distinguished from the S-matrix characterizing the rates of particle
reactions. The notion of zero energy ontology was however needed before it became possible to
characterize the difference between these matrices in a more precise manner.

2.5.1 Some distinctions between U- and S-matrices

The distinctions between U- and S-matrices discussed in more detail in [K19] have become rather
clear.

1. U-matrix is the universal unitary matrix assignable to quantum jump between zero energy
states whereas S-matrix can be identified assigned with the square root of density matrix
expressible as its hermitian square root multiplied with a unitary S-matrix, which is universal.
M-matrices from in ZEO an orthonormal basis of hermitian matrices so that the choice of
the density matrix is not arbitrary. M-matrix defines time-like entanglement coefficients
between positive and negative energy parts of the zero energy state. S-matrix characterizes
zero energy states and actually codes the physics unless one is interested in consciousness.

2. State function reduction for S-matrix elements reduces the entanglement between positive
and negative energy parts of a given zero energy state and is completely analogous to ordinary
quantum measurement reducing entanglement between systems having space-like separation.
It can take place at either boundary of CD and the sequence of repeated state function
reduction at passive boundary give rise to self as conscious entity which dies and re-incarnates
when the first reduction to the opposite boundary of CD takes place.

3. U-matrix is unitary as also S-matrix. For HFFs of type II1 M-matrix can be taken to be
S-matrix since the trace of the unit matrix equals to one. In the most general case S-matrix
can be regarded as a “square” root of the density matrix assignable to time like entanglement:
this hypothesis would unify the notions of S-matrix and density matrix and one could regard
quantum states as matrix analogs of Schrö;dinger amplitudes expressible as products of its
modulus (square root of probability density replaced with square root of density matrix)
and phase (possibly universal unitary S-matrix). Thermal S-matrices define an important
special case and thermodynamics becomes an integral part of quantum theory in zero energy
ontology.

2.5.2 What can one say about the general structure of U-, M-, and S-matrices?

In Zero Energy Ontology (ZEO) S-matrix must be replaced with the triplet U-matrix, M-matrix,
and S-matrix. U-matrix realizes unitary time evolution in the space for zero energy states realized
geometrically as dispersion in the moduli space of causal diamonds (CDs) leaving second boundary
(passive boundary) of CD and states at it fixed.

This process can be seen as the TGD counterpart of repeated state function reductions leaving
the states at passive boundary unaffected and affecting only the member of state pair at active
boundary (Zeno effect). In TGD inspired theory of consciousness self corresponds to the sequence
these state function reductions. M-matrix describes the entanglement between positive and nega-
tive energy parts of zero energy states and is expressible as a hermitian square root H of density
matrix multiplied by a unitary matrix S, which corresponds to ordinary S-matrix, which is uni-
versal and depends only the size scale n of CD through the formula S(n) = Sn. M-matrices
and H-matrices defined by hermitian square roots of density matrices form an orthonormal basis
at given CD and H-matrices would naturally correspond to the generators of super-symplectic
algebra.

The first state function reduction to the opposite boundary corresponds to what happens in
quantum physics experiments. The relationship between U- and S-matrices has remained poorly
understood. In [K19] this relationship is analyzed by starting from basic principles. One ends up
to formulas allowing to understand the architecture of U-matrix and to reduce its construction to
that for S-matrix having interpretation as exponential of the generator L−1 of the Virasoro algebra
associated with the super-symplectic algebra.
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The first state function reduction to the opposite boundary corresponds to what happens in
quantum physics experiments. The relationship between U- and S-matrices has remained poorly
understood.

The original view about the relationship was a purely formal guess: M -matrices would define
the orthonormal rows of U -matrix. This guess is not correct physically and one must consider in
detail what U-matrix really means.

1. First about the geometry of CD [K19]. The boundaries of CD will be called passive and active:
passive boundary correspond to the boundary at which repeated state function reductions
take place and give rise to a sequence of unitary time evolutions U followed by localization in
the moduli of CD each. Active boundary corresponds to the boundary for which U induces
delocalization and modifies the states at it.

The moduli space for the CDs consists of a discrete subgroup of scalings for the size of CD
characterized by the proper time distance between the tips and the sub-group of Lorentz
boosts leaving passive boundary and its tip invariant and acting on the active boundary
only. This group is assumed to be represented unitarily by matrices Λ forming the same
group for all values of n.

The proper time distance between the tips of CDs is quantized as integer multiples of the
minimal distance defined by CP2 time: T = nT0. Also in quantum jump in which the size
scale n of CD increases the increase corresponds to integer multiple of T0. Using the logarithm
of proper time, one can interpret this in terms of a scaling parametrized by an integer. The
possibility to interpret proper time translation as a scaling is essential for having a manifest
Lorentz invariance: the ordinary definition of S-matrix introduces preferred rest system.

2. The physical interpretation would be roughly as follows. M-matrix for a given CD codes
for the physics as we usually understand it. M-matrix is product of square root of density
matrix and S-matrix depending on the size scale of CD and is the analog of thermal S-matrix.
State function at the opposite boundary of CD corresponds to what happens in the state
function reduction in particle physics experiments. The repeated state function reductions
at same boundary of CD correspond to TGD version of Zeno effect crucial for understanding
consciousness. Unitary U-matrix describes the time evolution zero energy states due to the
increase of the size scale of CD (at least in statistical sense). This process is dispersion in
the moduli space of CDs: all possible scalings are allowed and localization in the space of
moduli of CD localizes the active boundary of CD after each unitary evolution.

From this picture one ends up to general formulas [K19] allowing to understand the architecture
of U-matrix and to reduce its construction to that for S-matrix having interpretation as exponential
of the generator L1 of the Virasoro algebra associated with the super-symplectic algebra.

2.5.3 Number theoretic universality and S-matrix

The fact that zero energy states are created by p-adic to-real transitions and must be number
theoretically universal suggests strongly that the data about partonic 2-surfaces contributing to
S-matrix elements come from the intersection of real partonic 2-surface and its p-adic counterpart
satisfying same algebraic equations. The intersection consists of algebraic points and contains as
subset number theoretic braids central for the proposed construction of S-matrix.

The question is whether also states for which S-matrix receives data from non-algebraic points
should be allowed or whether the data can come even from continuous string like structures at
partonic 2-surfaces as standard conformal field theory picture would suggest. If also S-matrix is
algebraic, one can wonder whether there is any difference between p-adic and real physics at all.
The latter option would mean that intentional action is followed by a unitarity process U analogous
to a dispersion of completely localized particle implied by Schröndinger equation.

The algebraic universality of S-matrix could mean that S-matrix is obtained as an algebraic
continuation of an S-matrix in algebraic extension of rationals by replacing incoming momenta
and other continuous quantum numbers with real ones. Similar continuation should make sense in
p-adic sector. S-matrix and U-matrix in a given algebraic extension of rationals or p-adics are not
in general diagonalizable. Thus number theory would allows to avoid the paradoxical conclusion
that S-matrix is always diagonal in a suitable basis.
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Later progress in understanding of quantum TGD allows to refine and simplify this view dra-
matically. In adelic vision real and p-adic numbers are aspects of existence in all length scales and
mean that cognition is present at all levels rather than emerging. Intentions have interpretation in
terms of state function reductions in ZEO and there is no need to identify p-adic space-time sheets
as their correlates.

2.6 Number Theoretic Ideas

p-Adic physics emerged roughly at the same time via p-adic mass calculations. The interpretation
of p-adic physics as physics of cognition emerged.

Cognition would be present already at elementary particle level and p-adic fractality would be
the experimental signature of it making itself visible in elementary particle mass spectrum among
other things. The success of p-adic mass calculations provides strong support for the hypothesis.

This led gradually to the vision about physics as generalized number theory. It involves three
separate aspects.

1. The p-adic approach led eventually to the program of fusing real physics and various p-
adic physics to a single coherent whole by generalizing the number concept by gluing reals
and various p-adics to a larger structure along common rationals and algebraics (see Fig.
http://tgdtheory.fi/appfigures/book.jpg or Fig. ?? in the appendix of this book).
This inspired the notion of algebraic universality stating that for instance S-matrix should
result by algebraic continuation from rational or at most algebraic valued S-matrix.

The notion of number theoretic braid belonging to the algebraic intersection of real and p-
adic partonic 2-surface obeying same algebraic equations emerged also and gives a further
connection with topological QFT: s. The perturbation theoretic definition of S-matrix is
definitely excluded in this approach and TGD indeed leads to the understanding of coupling
constant evolution at the level of “free” theory as a discrete p-adic coupling constant evolution
so that radiative corrections are not needed for this purpose.

2. Also the classical number fields relate closely to TGD and the vision is that embedding space
M4xCP2 emerges from the physics based on hyper-octonionic 8-space with associativity as
the fundamental dynamical principle both at classical and quantum level. Hyper-octonion
space M8 with space-time surface identified as hyper-quanternionic sub-manifolds or their
duals and M4xCP2 would provide in this framework dual ways to describe physics and this
duality would provide TGD counterpart for compactification.

3. The construction of infinite primes is analogous to repeated second quantization of super-
symmetric arithmetic quantum field theory. This notion implies a further generalization of
real and p-adic numbers allowing space-time points to have infinitely complex number theo-
retic structure not visible at the level of real physics. The idea is that space-time points define
the Platonia able to represent in its structure arbitrarily complex mathematical structures
and that space-time points could be seen as evolving structures becoming quantum jump
by quantum jump increasingly complex number theoretically. Even the world of classical
worlds (light-like 3-surfaces) and quantum states of Universe might be represented in terms
of the number theoretic anatomy of space-time points (number theoretic Brahman=Atman
and algebraic holography).

2.6.1 S-matrix as a functor and the groupoid structure formed by S-matrices

In zero energy ontology S-matrix can be seen as a functor from the category of Feynman cobordisms
to the category of operators. S-matrix can be identified as a “square root” of the positive energy

density matrix S = ρ
1/2
+ S0, where S0 is a unitary matrix and ρ+ is the density matrix for positive

energy part of the zero energy state. Obviously one has SS† = ρ+. S†S = ρ− gives the density
matrix for negative energy part of zero energy state. Clearly, S-matrix can be seen as matrix valued
generalization of Schrödinger amplitude. Note that the “indices” of the S-matrices correspond to
WCW spinor s (fermions and their bound states giving rise to gauge bosons and gravitons) and to
WCW degrees of freedom (world of classical worlds). For hyper-finite factor of II1 it is not strictly

http://tgdtheory.fi/appfigures/book.jpg


2.6 Number Theoretic Ideas 17

speaking possible to speak about indices since the matrix elements are traces of the S-matrix
multiplied by projection operators to infinite-dimensional subspaces from right and left.

The functor property of S-matrices implies that they form a multiplicative structure analogous
but not identical to groupoid [A2]. Recall that groupoid has associative product and there exist
always right and left inverses and identity in the sense that ff−1 and f−1f are always defined but
not identical and one has fgg−1 = f and f−1fg = g.

The reason for the groupoid like property is that S-matrix is a map between state spaces
associated with initial and final sets of partonic surfaces and these state spaces are different so
that inverse must be replaced with right and left inverse. The defining conditions for groupoid
are replaced with more general ones. Also now associativity holds but the role of inverse is taken
by hermitian conjugate. Thus one has the conditions fgg† = fρg,+ and f†fg = ρf,−g, and the
conditions ff† = ρ+ and f†f = ρ− are satisfied. Here ρ± is density matrix associated with
positive/negative energy parts of zero energy state. If the inverses of the density matrices exist,
groupoid axioms hold true since f−1L = f†ρ−1f,+ satisfies ff−1L = Id+ and f−1R = ρ−1f,−f

† satisfies

f−1R f = Id−.
There are good reasons to believe that also tensor product of its appropriate generalization to

the analog of co-product makes sense with non-triviality characterizing the interaction between
the systems of the tensor product. If so, the S-matrices would form very beautiful mathematical
structure bringing in mind the corresponding structures for 2-tangles and N-tangles. Knowing
how incredibly powerful the group like structures have been in physics, one has good reasons to
hope that groupoid like structure might help to deduce a lot of information about the quantum
dynamics of TGD.

A word about nomenclature is in order. S has strong associations to unitarity and it might be
appropriate to replace S with some other letter. The interpretation of S-matrix as a generalized
Schrödinger amplitude would suggest Ψ-matrix. Since the interaction with Kea’s M-theory blog
(with M denoting Monad or Motif in this context) was crucial for the realization of the the
connection with density matrix, alsoM -matrix might work. S-matrix as a functor from the category
of Feynman cobordisms in turn suggests C or F. Or could just Matrix denoted by M in formulas
be enough?

2.6.2 Number theoretic braids

The notion of number theoretic braid has gradually evolved to a fundamental notion in quantum
TGD and both number theoretical universality (p-adicization), TGD as almost-TQFT, and the
notion of finite measurement resolution lead to this notion. The decisive proof of the notion
came from the observation that the special properties of Kähler action imply this concept. In
the quantization of induced spinor fields the number of fermionic oscillators is finite so that anti-
commutation relations can hold true only for a finite point set defining the points of the number
theoretic braid. The natural identification of the number theoretic braid is as the intersection of
M4 (CP2) projection of X3

l with the back M2 of M4 book (back S2
i , i = I, II, of CP2 book) so

that the points of braid would be always quantum critical. Both homologically trivial (i = I) and
non-trivial geodesic sphere (i = II) can be considered in the case of CP2 so that there would be
three possibly equivalent braidings defining kind of holy trinity.

The notion of number theoretic braid is especially interesting from the point of view of quantum
biology. Generalized Feynman diagrams obtained by gluing light-like partonic 3-surfaces (whose
sizes can be arbitrarily large) along their ends and define what might be called Feynman cobordisms.
The first expectation was that number theoretic braids replicate in the vertices identifiable as
partonic 2-surfaces at which the incoming and outgoing lines of generalized Feynman diagram meet.
This would be nice but is not the case since by the lacking anti-commutatitivity of the incoming and
outgoing oscillator operators the lines need not meet in this manner. This suggested an attractive
information theoretic interpretation of generalized Feynman diagrams. Incoming and outgoing
“lines” would give rise to topological quantum computations characterized by corresponding M-
matrices, vertices would represent the replication of number theoretic braids analogous to DNA
replication, and internal lines would be analogous to quantum communications. One could of
generalize this simple view about computation by allowing creation of new strands instead of mere
replication.

Number theoretic braids are associated with light-like 3-surfaces and can be said to have both
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dynamical and static characteristics. Partonic 2-surfaces as sub-manifolds of space-like 3-surface
can also become linked and knotted and would naturally define space-like counterparts of tangles.
Number theoretic braids could define dynamical topological quantum computation like operations
whereas partonic 2-surfaces associated with say RNA could define as their space-like counterparts
tangles and in the special case braids analogous to printed quantum programs so that there is
duality between space-like and light-like braids [K1]. In terms of dance metaphor the dynamical
braiding defined by the light like braid points interpreted as dancers has as a dual space-like
braiding resulting as the threads connecting the feet of the dancers get tangled. An interesting
question is how light-like and space-like braidings are transformed to each other: could this process
correspond to a conscious reading like process and how closely DNA relates to language so that
reading and writing would be fundamental processes appearing in all scales.

It came as a pleasant surprise that the idea about duality of space-like and light-like braidings
inspired by DNA as topological quantum computer [J1] [K1] is realized at the level of basic quantum
TGD [K31]. The dual slicings of X4(X3

l ) to string world sheets Y 2 and partonic 2-surfaces X2

generalize the original picture in the sense that one can speak either about partons or string world
sheets as basic objects. The strings connecting points of braid strands in X3

l would define space-
like braidings whereas time like braidings are associated with X3

l . The light-like braiding at X3
l

induces the space-like braiding of strings connecting the points of the strands to the strands of
other braids.

2.6.3 Dark matter hierarchy and hierarchy of quantum critical systems in modular
degrees of freedom

Dark matter hierarchy corresponds to a hierarchy of conformal symmetries Zn of partonic 2-surfaces
with genus g ≥ 1 such that factors of n define subgroups of conformal symmetries of Zn. By the
decomposition Zn =

∏
p|n Zp, where p|n tells that p divides n, this hierarchy corresponds to an

hierarchy of increasingly quantum critical systems in modular degrees of freedom. For a given
prime p one has a sub-hierarchy Zp, Zp2 = Zp × Zp, etc... such that the moduli at n+1: th level
are contained by n: th level. In the similar manner the moduli of Zn are sub-moduli for each
prime factor of n. This mapping of integers to quantum critical systems conforms nicely with the
general vision that biological evolution corresponds to the increase of quantum criticality as Planck
constant increases. This hierarchy would also define a hierarchy of conscious entities and could
relate directly to mathematical cognition.

The group of conformal symmetries could be also non-commutative discrete group having Zn as
a subgroup. This inspires a very short-lived conjecture that only the discrete subgroups of SU(2)
allowed by Jones inclusions are possible as conformal symmetries of Riemann surfaces having g ≥ 1.
Besides Zn one could have tetrahedral and icosahedral groups plus cyclic group Z2n with reflection
added but not Z2n+1 nor the symmetry group of cube. The conjecture is wrong. Consider the
orbit of the subgroup of rotational group on standard sphere of E3, put a handle at one of the
orbits such that it is invariant under rotations around the axis going through the point, and apply
the elements of subgroup. You obtain a Riemann surface having the subgroup as its isometries.
Hence all discrete subgroups of SU(2) can act even as isometries for some value of g.

The number theoretically simple ruler-and-compass integers having as factors only first powers
of Fermat primes and power of 2 would define a physically preferred sub-hierarchy of quantum
criticality for which subsequent levels would correspond to powers of 2: a connection with p-adic
length scale hypothesis suggests itself.

Spherical topology is exceptional since in this case the space of conformal moduli is trivial
and conformal symmetries correspond to the entire SL(2, C). This would suggest that only the
fermions of lowest generation corresponding to the spherical topology are maximally quantum
critical. This brings in mind Jones inclusions for which the defining subgroup equals to SU(2) and
Jones index equals toM/N = 4. In this case all discrete subgroups of SU(2) label the inclusions.
These inclusions would correspond to fiber space CP2 → CP2/U(2) consisting of geodesic spheres
of CP2. In this case the discrete subgroup might correspond to a selection of a subgroup of
SU(2) ⊂ SU(3) acting non-trivially on the geodesic sphere. Cosmic strings X2 × Y 2 ⊂M4 ×CP2

having geodesic spheres of CP2 as their ends could correspond to this phase dominating the very
early cosmology.
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3 Identification Of Elementary Particles And The Role Of
Higgs In Particle Massivation

The development of the recent view about the identification of elementary particles and particle
massivation has taken fifteen years since the discovery of p-adic thermodynamics around 1993. p-
Adic thermodynamics worked excellently from the beginning for fermions. Only the understanding
of gauge boson masses turned out to be problematic and group theoretical arguments led to the
proposal that Higgs boson should be present and give the dominating contribution to the masses
of gauge bosons whereas the contribution to fermion masses should be small and even negligible.
The detailed understanding of quantum TGD at partonic level eventually led to the realization
that the coupling to Higgs is not needed after all. The deviation ∆h of the ground state conformal
weight from negative integer has interpretation as effective Higgs contribution since Higgs vacuum
expectation is naturally proportional to ∆h but the coupling to Higgs does not cause massivation.
In the following I summarize the basic identification of elementary particles and massivation. A
more detailed discussion can be found in [?].

3.1 Identification Of Elementary Particles

The developments in the formulation of quantum TGD which have taken place during the period
2005-2007 [K10, K9] suggest dramatic simplifications of the general picture discussed in the earlier
version of this chapter. p-Adic mass calculations [K16, K20, K18] leave a lot of freedom concerning
the detailed identification of elementary particles.

3.1.1 Elementary fermions and bosons

The basic open question is whether the theory is on some sense free at parton level as suggested by
the recent view about the construction of S-matrix (actually its generalization M-matrix) and by
the almost topological QFT property of quantum TGD at parton level [K9]. If partonic 2-surfaces
at elementary particle level carry only free many-fermion states, no bi-local composites of second
quantized induced spinor field would be needed in the construction of the quantum states and this
would simplify the theory enormously.

If this is the case, the basic conclusion would be that light-like 3-surfaces - in particular the
ones at which the signature of induced metric changes from Minkowskian to Euclidian - are carriers
of fermionic quantum numbers. These regions are associated naturally with CP2 type vacuum
extremals identifiable as correlates for elementary fermions if only fermion number ±1 is allowed
for the stable states. The question however arises about the identification of elementary bosons.

Wormhole contacts with two light-like wormhole throats carrying fermion and anti-fermion
quantum numbers are the first thing that comes in mind. The wormhole contact connects two
space-time sheets with induced metric having Minkowski signature. Wormhole contact itself has
an Euclidian metric signature so that there are two wormhole throats which are light-like 3-surfaces
and would carry fermion and anti-fermion number. In this case a delicate question is whether the
space-time sheets connected by wormhole contacts have opposite time orientations or not. If this
the case the two fermions would correspond to positive and negative energy particles.

I considered first the identification of only Higgs as a wormhole contact but there is no reason
why this identification should not apply also to gauge bosons (certainly not to graviton). This
identification would imply quite a dramatic simplification since the theory would be free at single
parton level and the only stable parton states would be fermions and anti-fermions.

This picture allows to understand the difference between fermions and gauge bosons and Higgs
particle. For fermions topological explanation of family replication predicts three fermionic gener-
ations [K8] corresponding to handle numbers g = 0, 1, 2 for the partonic 2-surface. In the case of
gauge bosons and Higgs this replication is not visible. This could be due to the fact that gauge
bosons form singlet and octet representation of the dynamical SU(3) group associated with the
handle number g = 0, 1, 2 since bosons correspond to pairs of handles. If octet representation is
heavy the experimental absence of family replication for bosons can be understood.
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3.1.2 Graviton and other stringy states

Fermion and anti-fermion can give rise to only single unit of spin since it is impossible to assign
angular momentum with the relative motion of wormhole throats. Hence the identification of
graviton as single wormhole contact is not possible. The only conclusion is that graviton must be
a superposition of fermion-anti-fermion pairs and boson-anti-boson pairs with coefficients deter-
mined by the coupling of the parton to graviton. Graviton-graviton pairs might emerge in higher
orders. Fermion and anti-fermion would reside at the same space-time sheet and would have a
non-vanishing relative angular momentum. Also bosons could have non-vanishing relative angular
momentum and Higgs bosons must indeed possess it.

Gravitons are stable if the throats of wormhole contacts carry non-vanishing gauge fluxes so
that the throats of wormhole contacts are connected by flux tubes carrying the gauge flux. The
mechanism producing gravitons would the splitting of partonic 2-surfaces via the basic vertex. A
connection with string picture emerges with the counterpart of string identified as the flux tube
connecting the wormhole throats. Gravitational constant would relate directly to the value of the
string tension.

The development of the understanding of gravitational coupling has had many twists and it is
perhaps to summarize the basic misunderstandings.

1. CP2 length scale R, which is roughly 103.5 times larger than Planck length lP =
√
~G,

defines a fundamental length scale in TGD. The challenge is to predict the value of Planck
length

√
~G. The outcome was an identification of a formula for R2/~G predicting that

the magnitude of Kähler coupling strength αK is near to fine structure constant in electron
length scale (for ordinary value of Planck constant should be added here).

2. The emergence of the parton level formulation of TGD finally demonstrated that G actually
appears in the fundamental parton level formulation of TGD as a fundamental constant
characterizing the M4 part of CP2 Kähler gauge potential [K31, K21]. This part is pure
gauge in the sense of standard gauge theory but necessary to guarantee that the theory does
not reduce to topological QFT. Quantum criticality requires that G remains invariant under
p-adic coupling constant evolution and is therefore predictable in principle at least.

3. The TGD view about coupling constant evolution [K27] predicts the proportionality G ∝ L2
p,

where Lp is p-adic length scale. Together with input from p-adic mass calculations one ends
up to two conclusions. The correct conclusion was that Kähler coupling strength is equal
to the fine structure constant in the p-adic length scale associated with Mersenne prime
p = M127 = 2127 − 1 assignable to electron [K27]. I have considered also the possibility that
αK would be equal to electro-weak U(1) coupling in this scale.

4. The additional - wrong- conclusion was that gravitons must always correspond to the p-adic
prime M127 since G would otherwise vary as function of p-adic length scale. As a matter
fact, the question was for years whether it is G or g2K which remains invariant under p-
adic coupling constant evolution. I found both options unsatisfactory until I realized that
RG invariance is possible for both g2K and G! The point is that the exponent of the Kähler
action associated with the piece of CP2 type vacuum extremal assignable with the elementary
particle is exponentially sensitive to the volume of this piece and logarithmic dependence on
the volume fraction is enough to compensate the L2

p ∝ p proportionality of G and thus
guarantee the constancy of G.

The explanation for the small value of the gravitational coupling strength serves as a test for
the proposed picture. The exchange of ordinary gauge boson involves the exchange of single CP2

type extremal giving the exponent of Kähler action compensated by state normalization. In the
case of graviton exchange two wormhole contacts are exchanged and this gives second power for
the exponent of Kähler action which is not compensated. It would be this additional exponent that
would give rise to the huge reduction of gravitational coupling strength from the näıve estimate
G ∼ L2

p.
Gravitons are obviously not the only stringy states. For instance, one obtains spin 1 states

when the ends of string correspond to gauge boson and Higgs. Also non-vanishing electro-weak
and color quantum numbers are possible and stringy states couple to elementary partons via
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standard couplings in this case. TGD based model for nuclei as nuclear strings having length of
order L(127) [K26] suggests that the strings with light M127 quark and anti-quark at their ends
identifiable as companions of the ordinary graviton are responsible for the strong nuclear force
instead of exchanges of ordinary mesons or color van der Waals forces.

Also the TGD based model of high Tc super-conductivity involves stringy states connecting the
space-time sheets associated with the electrons of the exotic Cooper pair [K6, K7]. Thus stringy
states would play a key role in nuclear and condensed matter physics, which means a profound
departure from stringy wisdom, and breakdown of the standard reductionistic picture.

3.1.3 Spectrum of non-stringy states

The 1-throat character of fermions is consistent with the generation-genus correspondence. The
2-throat character of bosons predicts that bosons are characterized by the genera (g1, g2) of the
wormhole throats. Note that the interpretation of fundamental fermions as wormhole contacts
with second throat identified as a Fock vacuum is excluded.

The general bosonic wave-function would be expressible as a matrix Mg1,g2 and ordinary gauge
bosons would correspond to a diagonal matrix Mg1,g2 = δg1,g2 as required by the absence of neutral
flavor changing currents (say gluons transforming quark genera to each other). 8 new gauge bosons
are predicted if one allows all 3 × 3 matrices with complex entries orthonormalized with respect
to trace meaning additional dynamical SU(3) symmetry. Ordinary gauge bosons would be SU(3)
singlets in this sense. The existing bounds on flavor changing neutral currents give bounds on
the masses of the boson octet. The 2-throat character of bosons should relate to the low value
T = 1/n� 1 for the p-adic temperature of gauge bosons as contrasted to T = 1 for fermions.

If one forgets the complications due to the stringy states (including graviton), the spectrum
of elementary fermions and bosons is amazingly simple and almost reduces to the spectrum of
standard model. In the fermionic sector one would have fermions of standard model. By simple
counting leptonic wormhole throat could carry 23 = 8 states corresponding to 2 polarization states,
2 charge states, and sign of lepton number giving 8+8=16 states altogether. Taking into account
phase conjugates gives 16+16=32 states.

In the non-stringy boson sector one would have bound states of fermions and phase conjugate
fermions. Since only two polarization states are allowed for massless states, one obtains (2 + 1)×
(3 + 1) = 12 states plus phase conjugates giving 12+12=24 states. The addition of color singlet
states for quarks gives 48 gauge bosons with vanishing fermion number and color quantum numbers.
Besides 12 electro-weak bosons and their 12 phase conjugates there are 12 exotic bosons and their
12 phase conjugates. For the exotic bosons the couplings to quarks and leptons are determined by
the orthogonality of the coupling matrices of ordinary and boson states. For exotic counterparts
of W bosons and Higgs the sign of the coupling to quarks is opposite. For photon and Z0 also the
relative magnitudes of the couplings to quarks must change. Altogether this makes 48+16+16=80
states. Gluons would result as color octet states. Family replication would extend each elementary
boson state into SU(3) octet and singlet and elementary fermion states into SU(3) triplets.

3.1.4 What about light-like boundaries and macroscopic wormhole contacts?

Light-like boundaries of the space-time sheet as also wormhole throats can have macroscopic size
and can carry free many-fermion states but not elementary bosons. Number theoretic braids and
anyons might be assignable to these structures. Deformations of cosmic strings to magnetic flux
tubes with a light-like outer boundary are especially interesting in this respect.

If the ends of a string like object move with light velocity as implied by the usual stringy
boundary conditions they indeed define light-like 3-surfaces. Many-fermion states could be assigned
at the ends of string. One could also connect in pairwise manner the ends of two time-like strings
having opposite time orientation using two space-like strings so that the analog of boson state
consisting of two wormhole contacts and analogous to graviton would result. “Wormhole throats”
could have arbitrarily long distance in M4.

Wormhole contacts can be regarded as slightly deformed CP2 type extremals only if the size
of M4 projection is not larger than CP2 size. The natural question is whether one can construct
macroscopic wormhole contacts at all.
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1. The throats of wormhole contacts cannot belong to vacuum extremals. One might how-
ever hope that small deformations of macrosopic vacuum extremals could yield non-vacuum
wormhole contacts of macroscopic size.

2. A large class of macroscopic wormhole contacts which are vacuum extremals consists of
surfaces of form X2

1 × X2
2 ⊂ (M1 × Y 2) × E3, where Y 2 is Lagrangian manifold of CP2

(induced Kähler form vanishes) and M4 = M1 × E3 represents decomposition of M1 to
time-like and space-like sub-spaces. X2

2 is a stationary surface of E3. Both X2
1 ⊂M1 ×CP2

and X2
2 have an Euclidian signature of metric except at light-like boundaries X1

a ×X2
2 and

X1
b ×X2

2 defined by ends of X2
1 defining the throats of the wormhole contact.

3. This kind of vacuum extremals could define an extremely general class of macroscopic worm-
hole contacts as their deformations. These wormhole contacts describe an interaction of
wormhole throats regarded as closed strings as is clear from the fact that X2 can be visual-
ized as an analog of closed string world sheet X2

1 in M1 × Y 2 describing a reaction leading
from a state with a given number of incoming closed strings to a state with a given number of
outgoing closed strings which correspond to wormhole throats at the two space-time sheets
involved.

If one accepts the hierarchy of Planck constants [K14] leading to the generalization of the notion
of embedding space, the identification of anyonic phases in terms of macroscopic light-like surfaces
emerges naturally. In this kind of states large fermion numbers are possible. Dark matter would
correspond to this kind of phases and “partonic” 2-surfaces could have even astrophysical size.
Also black holes can be identified as dark matter at light-like 3-surfaces analogous to black hole
horizons and possessing gigantic value of Planck constant [K21].

3.2 New View About The Role Of Higgs Boson In Massivation

The proposed identifications challenge the standard model view about particle massivation.

1. The standard model inspired interpretation would be that Higgs vacuum expectation associ-
ated with the coherent state of neutral Higgs wormhole contacts generates gauge boson mass.
The TGD counterpart of Higgs would be however not H-scalar but complex CP2 tangent
vector. There are no covariantly constant vector fields in CP2 so that the idea about Higgs
vacuum expectation is not mathematically feasible. This led to the original exaggerated con-
clusion that TGD does not allow Higgs: it is however only Higgs vacuum expectation which
does not look plausible. Fermionic mass would be solely due to p-adic thermodynamics. Also
in the case gauge boson masses one encounters a problem: the natural guess for the p-adic
prime as M89 represents too small gauge boson masses, and it is very difficult to understand
Weinberg angle, which is essentially group theoretical notion.

2. The Kähler-Dirac equation plus well-definedness of em charge requires that the spinor modes
are restricted to stringy curves connecting the throats of two wormhole contacts associated
with the elementary particles and carrying monopole fluxes. One can say that the wormhole
throats are connected by flux tube behaving like string. The obvious idea is that the flux tube
gives additional contribution to the mass squared, which can be interpreted as a contribution
to the conformal weight of the ground state. If the string tension is proportional to gauge
coupling strength for W and Z and to the counterpart of Higgs self coupling λ for Higgs one
can explain the mass ratios of gauge bosons.

3. Besides the thermodynamical contribution to the particle mass there would be a small con-
tribution from the ground state conformal weight unless this weight is not negative integer.
Gauge boson mass would correspond to the ground state conformal weight present in both
fermionic and bosonic states and in the case of gauge bosons this contribution would domi-
nate due to the small value of p-adic temperature. For fermions p-adic thermodynamics for
super Virasoro algebra would give the dominating contribution to the mass.

4. The remaining problem is to understand how the negative value of the ground state conformal
weight emerges. This negative conformal weight compensated by the action of Super Virasoro
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generators is necessary for the success of p-adic mass calculations. The intuitive expectation
is that the solution of this problem must relate to the Euclidian signature of the regions
representing lines of generalized Feynman diagrams.

(a) Kähler-Dirac action gives for the solutions of Dirac action a boundary term which
is essentially contraction of the normal component of the vector defined by Kähler-
Dirac gamma matrices. In absence of measurement interaction terms the boundary
condition for K-D equation states ΓnΨ = 0 at the stringy curves at the space-like
ends of space-time surface. Γn must be lightlike and the assumption is that the spinor
modes are generalized eigenmodes of Γn: ΓnΨ = pkγkΨ = 0 where pk is constant light-
like four-momentum. This conforms with the idea that all fermions are massless and
massive states of super-conformal representations emerges as bound states of fermions
at wormhole throats. Elementary particles would correspond to pair of wormholes
with magnetic flux flowing between the throats at the two space-time sheets involved.
Massivation would be many-sheeted phenomenon. The string like objects would have
string tension explaining the masses of weak bosons at microscopic level.

Very näıvely, ΓnΨ = 0 is possible only in the regions of space-like 3-surface which
belong to Minkowskian space-time regions. Since Kähler-Dirac gamma matrices are in
question it can however happen that the effective metric of string world sheet defined by
Γα is degenerate. If CP2 projection is 4-D as it is for CP2 type extremals, one however
ecpects that Γα is not degenerate inside wormhole contacts, and one can even question
the localization of the spinor modes to 2-D string world sheets in these regions. The
TGD based variant of stringy diagrammatics would indeed involve massless fermionic
propagators only in the Minkowskian regions. The interaction of fermions at opposite
throats of wormhole contacts would be described by stringy propagator 1/L0 or its
non-local generalization to the product (1/G)(1)× (1/G)†(2) with supergenerators G(i)
assigned with the opposite wormhole throats.

(b) One can add to the Kähler action measurement interaction term fixing the space-time
surfaces to have conserved classical identical to their quantum counterparts belonging
to Cartan algebra of symmetries. This can be achieved by adding Lagrange multiplier
terms. These terms contribute to the Kähler-Dirac action a term at space-like ends of
3-surface and this term modifies the TGD counterpart of massless Dirac equation. The
original generalized massless generalized eigenvalue spectrum associated with pkγkΨ = 0
of Γn is modified to massive spectrum given by the condition

ΓnΨ = −
∑
i

λiΓ
α
QiDαΨ = pkγkΨ ,

where Qi refers to i: th conserved charge. Fermions are not massless anymore. This
description is certainly over-simplified since several wormhole throats are involved. It
is also only a formal description for the values of quantum numbers Qi. One might say
that (Γn)2 serves as the analog of Higgs field vacuum expectation defined at the string
curve.

(c) It is not clear whether the tachyonic value of mass squared for ground state of supercon-
formal representations can emerge from this kind of description. This might be possible
inside wormhole contacts which have Euclidian signature of induced metric and define
the lines of generalized Feynman diagrams.

3.3 General Mass Formulas

In the following general view about p-adic mass formulas and related problems is discussed.

3.3.1 Mass squared as a thermal expectation of super Kac-Moody conformal weight

The general view about particle massivation is based on the generalized coset construction allowing
to understand the p-adic thermal contribution to mass squared as a thermal expectation value of the
conformal weight for super Kac-Moody Virasoro algebra (SKMV ) or equivalently super-symplectic



3.3 General Mass Formulas 24

Virasoro algebra (SSV ). Conformal invariance holds true only for the generators of the differences
of SKMV and SSV generators. In the case of SSV and SKMV only the generators Ln, n > 0,
annihilate the physical states. Obviously the actions of super-symplectic Virasoro (SSV) generators
and Super Kac-Moody Virasoro generators on physical states are identical. The interpretation is in
terms of Equivalence Principle. p-Adic mass expectation value is same irrespective of whether it is
calculated for the excitations created by SSV or KKMV generators and p-adic mass calculations
are consisted with super-conformal invariance.

1. Super-Kac Moody conformal weights must be negative for elementary fermions and this
can be understood if the ground state conformal weight corresponds to the square of the
imaginary eigenvalue of the modified Dirac operator having dimensions of mass. If the value
of ground state conformal weight is not negative integer, a contribution to mass squared
analogous to Higgs expectation is obtained.

2. Massless state is thermalized with respect to SKMV (or SSV ) with thermal excitations
created by generators Ln, n > 0.

3.3.2 Under what conditions conformal weight is additive

The question whether four- momentum or conformal weight is additive in p-adic mass calculations
becomes acute in hadronic mass calculations. Only the detailed understanding of quantum TGD
at partonic level allowed to understand the situation. One can consider three options.

1. Conformal weight and thus mass squared is additive only inside the regions of X3
l , which

correspond to non-vanishing of induced Kähler magnetic field since these behave effectively
as separate 3-surfaces as far as eigenmodes of the Kähler-Dirac operator are considered. The
spectrum of the ground state conformal weights is indeed different for these regions in the
general case. The four-momenta associated with different regions would be additive. This
makes sense since the tangent space of X4(X3

l ) contains at each point of X3
l a subspace

M2(x)) ⊂M4 defining the plane of non-physical polarizations and the natural interpretation
is that four-momentum is in this plane. Hence the problem of original mass calculations
forcing to assign all partonic four-momenta to a fixed plane M2 is avoided.

2. If assigns independent translational degrees of freedom only to disjoint partonic 2-surfaces,
a separate mass formula for each X2

i would result and four-momenta would be additive:

M2
i =

∑
i

L0i(SKM) . (3.1)

Here L0i(SKM) contains a CP2 cm term giving the CP2 contribution to the mass squared
known once the spinorial partial waves associated with super generators used to construct
the state are known. Also vacuum conformal weight is included.

3. At the other extreme one has the option is based on the assignment of the mass squared with
the total cm. This option looked the only reasonable one for 15 years ago. This would give

M2 = (
∑
i

pi)
2 =

∑
i

M2
i + 2

∑
i6=j

pi · pj = −
∑
i

L0i(SKM) .

(3.2)

The additivity of mass squared is strong condition and p-adic mass calculations for hadrons
suggest that it holds true for quarks of low lying hadrons. For this option the decomposition
of the net four momentum to a sum of individual momenta can be regarded as subjective
unless there is a way to measure the individual masses.
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3.3.3 Mass formula for bound states of partons

The coefficient of proportionality between mass squared and conformal weight can be deduced
from the observation that the mass squared values for CP2 Dirac operator correspond to definite
values of conformal weight in p-adic mass calculations. It is indeed possible to assign to partonic
2-surface X2 CP2 partial waves correlating strongly with the net electro-weak quantum numbers
of the parton so that the assignment of ground state conformal weight to CP2 partial waves makes
sense. In the case of M4 degrees of freedom it is not possible to talk about momentum eigen states
since translations take parton out of δH+ so that momentum must be assigned with the tip of the
light-cone containing the particle.

The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (3.3)

The assumption p2i = m2
i makes sense only for massless partons moving collinearly. In the QCD

based model of hadrons only longitudinal momenta and transverse momentum squared are used
as labels of parton states, which would suggest that one has

p2i,|| = m2
i ,

−
∑
i

p2i,⊥ + 2
∑
i,j

pi · pj = 0 . (3.4)

The masses would be reduced in bound states: m2
i → m2

i − (p2T )i. This could explain why massive
quarks can behave as nearly massless quarks inside hadrons.

4 Super-Symplectic Degrees Of Freedom

4.1 What Could Happen In The Transition To Non-Perturbative QCD?

What happens mathematically in the transition to non-perturbative QCD has remained more or
less a mystery. The number theoretical considerations of [K2] inspired the idea that Planck constant
is dynamical and has a spectrum given as ~(n) = n~0, where n characterizes the quantum phase
q = exp(i2π/n) associated with Jones inclusion. The strange finding that the orbits of planets seem
to obey Bohr quantization rules with a gigantic value of Planck constant inspired the hypothesis
that the increase of Planck constant provides a unique mechanism allowing strongly interacting
system to stay in perturbative phase [K24, K14]. The resulting model allows to understand dark
matter as a macroscopic quantum phase in astrophysical length and time scales, and strongly
suggest a connection with dark matter and biology.

The phase transition increasing Planck constant could provide a model for the transition to
confining phase in QCD. When combined with the recent ideas about value spectrum of Kähler
coupling strength one ends up with a rather explicit model about non-perturbative aspects of
hadron physics already successfully applied in hadron mass calculations [K20]. Mersenne primes
seem to define the p-adic length scales of gauge bosons and of hadronic space-time sheets. The
quantization of Planck constant provides additional insight to p-adic length scales hypothesis and
to the preferred role of Mersenne primes.

4.1.1 Super-symplectic gluons and non-perturbative aspects of hadron physics

According to the model of hadron masses [K20], in the case of light pseudo-scalar mesons the
contribution of quark masses to the mass squared of meson dominates whereas spin 1 mesons
contain a large contribution identified as color interaction conformal weight (color magnetic spin-
spin interaction conformal weight and color Coulombic conformal weight). This conformal weight
cannot however correspond to the ordinary color interactions alone and is negative for pseudo-
scalars and compensated by some unknown contribution in the case of pion in order to avoid
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tachyonic mass. Quite generally this realizes the idea about light pseudo-scalar mesons as Goldstone
bosons. Analogous mass formulas hold for baryons but in this case the additional contribution
which dominates.

The unknown contribution can be assigned to the k = 107 hadronic space-time sheet and must
correspond to the non-perturbative aspects of QCD and the failure of the quantum field theory
approach at low energies. In TGD the failure of QFT picture corresponds to the presence of WCW
degrees of freedom (“world of classical worlds” ) in which super-symplectic algebra acts. The
failure of the approximation assuming single fixed background space-time is in question.

The purely bosonic generators carry color and spin quantum numbers: spin has however
the character of orbital angular momentum. The only electro-weak quantum numbers of super-
generators are those of right-handed neutrino. If the super-generators degrees carry the quark spin
at high energies, a solution of proton spin puzzle emerges.

The presence of these degrees of freedom means that there are two contributions to color inter-
action energies corresponding to the ordinary gluon exchanges and exchanges of super-symplectic
gluons. It turns out the model assuming same topological mixing of super-symplectic bosons iden-
tical to that experienced by U type quarks leads to excellent understanding of hadron masses
assuming that hadron spin correlates with the super-symplectic particle content of the hadronic
space-time sheet.

According to the argument already discussed, at the hadronic k = 107 space electro-weak
interactions would be absent and classical U(1) action should vanish. This is guaranteed if αU(1)

diverges. This would give

αs = αK =
1

4
.

This would give also a quantitative articulation for the statement that strong interactions are
charge independent.

This αs would correspond to the interaction via super-symplectic colored gluons and would
lead to the failure of perturbation theory. By the general criterion stating that the failure of
perturbation theory leads to a phase transition increasing the value of Planck constant one expects
that the value of ~ increases [K14]. The value leaving the value of αK invariant would be ~→ 26~
and would mean that p-adic length scale L107 is replaced with length scale 26L107 = 46 fm, the
size of large nucleus so that also the basic length scale nuclear physics would be implicitly coded
into the structure of hadrons.

4.1.2 Why Mersenne primes should label a fractal hierarchy of physics?

There are motivations for the working hypothesis stating that there is fractal hierarchy of copies of
standard model physics, and that Mersenne primes label both hadronic space-time sheets and gauge
bosons. The reason for this is not yet well understood and I have considered several speculative
explanations.

1. First picture

The first thing to come in mind is that Mersenne primes correspond to fixed points of the
discrete p-adic coupling constant evolution, most naturally to the maxima of the color coupling
constant strength. This would mean that gluons are emitted with higher probability than in other
p-adic length scales.

There is however an objection against this idea. If one accepts the new vision about non-
perturbative aspects of QCD, it would seem that super-symplectic bosons or the interaction be-
tween super-symplectic bosons and quarks for some reason favors Mersenne primes. However, if
color coupling strength corresponds to αK = αs = 1/4 scaled down by the increase of the Planck
constant, the evolution of super-symplectic color coupling strength does not seem to play any role.
What becomes large should be a geometric “form factor”, when the boson in the vertex corresponds
to Mersenne prime rather than “bare” coupling.

The resolution of the problem could be that boson emission vertices g(p1, p2, p3) are functions
of p-adic primes labeling the particles of the vertices so that actually three p-adic length scales
are involved instead of single length scale as in the ordinary coupling constant evolution. Hence
one can imagine that the interaction between particles corresponding to primes near powers of 2
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and Mersenne primes is especially strong and analogous to a resonant interaction. The geometric
resonance due to the fact that the length scales involved are related by a fractal scaling by a power
of 2 would make the form factors F (p1 ' 2k1 , p2 ' 2k2 ,Mn) large. The selection of primes near
powers of two and Mersenne bosons would be analogous to evolutionary selection of a population
consisting of species able to interact strongly.

Since k = 113 quarks are possible for k = 107 hadron physics, it seems that quarks can have
flux tubes directed to Mn space-times with n < k. This suggests that neighboring Mersenne primes
compete for flux tubes of quarks. For instance, when the p-adic length scale characterizing quark
of M107 hadron physics begins to approach M89 quarks tend to feed their gauge flux to M89 space-
time sheet and M89 hadron physics takes over and color coupling strength begins to increase. This
would be the space-time correlate for the loss of asymptotic freedom.

2. Second picture

Preferred values of Planck constants could play a key role in the selection of Mersenne primes.
Ruler-and-compass hypothesis predicts that Planck constants, which correspond to ratios of ruler
and compass integers proportional to a product of distinct Fermat primes (four of them are known)
and any power of two are favored. As a special case one obtains ruler and compass integers. As
a consequence, p-adic length scales have satellites obtained by multiplying them with ruler-and-
compass integers, and entire fractal hierarchy of power-of-two multiples of a given p-adic length
scale results.

Mersenne length scales would be special since their satellites would form a subset of satellites
of shorter Mersenne length scales. The copies of standard model physics associated with Mersenne
primes would define a kind of resonating subset of physics since corresponding wavelengths and
frequencies would coincide. This would also explain why fermions labeled by primes near power of
two couple strongly with Mersenne primes.

4.2 Super-Symplectic Bosons As A Particular Kind Of Dark Matter

4.2.1 Super-symplectic bosons

TGD predicts also exotic bosons which are analogous to fermion in the sense that they correspond
to single wormhole throat associated with CP2 type vacuum extremal whereas ordinary gauge
bosons corresponds to a pair of wormhole contacts assignable to wormhole contact connecting
positive and negative energy space-time sheets. These bosons have super-conformal partners with
quantum numbers of right handed neutrino and thus having no electro-weak couplings. The bosons
are created by the purely bosonic part of super-symplectic algebra [K11, K31], whose generators
belong to the representations of the color group and 3-D rotation group but have vanishing electro-
weak quantum numbers. Their spin is analogous to orbital angular momentum whereas the spin
of ordinary gauge bosons reduces to fermionic spin. Recall that super-symplectic algebra is crucial
for the construction of WCW Kähler geometry. If one assumes that super-symplectic gluons suffer
topological mixing identical with that suffered by say U type quarks, the conformal weights would
be (5, 6, 58) for the three lowest generations. The application of super-symplectic bosons in TGD
based model of hadron masses is discussed in [K20] and here only a brief summary is given.

As explained in [K20], the assignment of these bosons to hadronic space-time sheet is an
attractive idea.

1. Quarks explain only a small fraction of the baryon mass and that there is an additional
contribution which in a good approximation does not depend on baryon. This contribution
should correspond to the non-perturbative aspects of QCD. A possible identification of this
contribution is in terms of super-symplectic gluons. Baryonic space-time sheet with k = 107
would contain a many-particle state of super-symplectic gluons with net conformal weight
of 16 units. This leads to a model of baryons masses in which masses are predicted with an
accuracy better than 1 per cent.

2. Hadronic string model provides a phenomenological description of non-perturbative aspects
of QCD and a connection with the hadronic string model indeed emerges. Hadronic string
tension is predicted correctly from the additivity of mass squared for J = 2 bound states
of super-symplectic quanta. If the topological mixing for super-symplectic bosons is equal
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to that for U type quarks then a 3-particle state formed by 2 super-symplectic quanta from
the first generation and 1 quantum from the second generation would define baryonic ground
state with 16 units of conformal weight. A very precise prediction for hadron masses results
by assuming that the spin of hadron correlates with its super-symplectic particle content.

3. Also the baryonic spin puzzle caused by the fact that quarks give only a small contribution
to the spin of baryons, could find a natural solution since these bosons could give to the spin
of baryon an angular momentum like contribution having nothing to do with the angular
momentum of quarks.

4. Super-symplectic bosons suggest a solution to several other anomalies related to hadron
physics. The events observed for a couple of years ago in RHIC [C1] suggest a creation of
a black-hole like state in the collision of heavy nuclei and inspire the notion of color glass
condensate of gluons, whose natural identification in TGD framework would be in terms of
a fusion of hadronic space-time sheets containing super-symplectic matter materialized also
from the collision energy. In the collision, valence quarks connected together by color bonds
to form separate units would evaporate from their hadronic space-time sheets in the collision,
and would define TGD counterpart of Pomeron, which experienced a reincarnation for few
years ago [C3]. The strange features of the events related to the collisions of high energy
cosmic rays with hadrons of atmosphere (the particles in question are hadron like but the
penetration length is anomalously long and the rate for the production of hadrons increases
as one approaches surface of Earth) could be also understood in terms of the same general
mechanism.

4.2.2 Topological evaporation, quark gluon plasma and Pomeron

Topological evaporation of elementary particles means nothing if CP2 type vacuum extremal evap-
orates so that one must assume that it is quark space-time sheet or join along boundaries block
of quark space-time sheets which evaporates. Second new element is the identification of valence
quarks as dark matter in the sense of having large ~: ~s ' (n/v0)~, v0 ' 2−11, n = 1 so that
Compton length is scaled by the same factor. Quark gluon plasma would correspond to a phase
with ordinary value ~ and possibly also sea partons can be regarded as this kind of phase. Color
bonds between partons are possible also in this phase.

Concerning the evaporation there are two options.

1. The space-time sheets of sea partons are condensed at much larger space-time sheets defined
by the space-time sheets of valence quarks connected by color bonds. Topological evaporation
of the parton sea would correspond to the splitting of # contacts connecting sea partons
space-time sheets to valence quark space-time sheets.

2. Sea partons condensed at a larger space-time sheet which in turn condenses at the space-time
sheet of valence quarks. In this case topological evaporation occurs for the entire sea parton
space-time sheet.

One can consider two possible scenarios for topological evaporation of quarks and gluons.

1. Color gauge charge is not identified as gauge flux and single secondarily condensed quark
space-time sheet can suffer topological evaporation. In this case quark gluon plasma could
be identified as vapor phase state for quarks and gluons.

2. Color gauge charge is identified as gauge flux and only join along boundaries blocks formed
from quarks can evaporate. Join along boundaries contacts are naturally identified as color
flux tubes between quarks. These tubes need not be static. Quark gluon plasma corresponds
to condensed state in which the flux tubes between quark like 3-surfaces are broken. The
evaporation of single quark is possible but as a consequence a compensating color charge
develops on the interior of the outer boundary of the evaporated quark and the process
probably can be interpreted as an emission of meson from hadron. The production of hadrons
in hadron collision could be interpreted as a topological evaporation process for sea and
valence quarks.



4.2 Super-Symplectic Bosons As A Particular Kind Of Dark Matter 29

The problematic feature of scenario 1) is the understanding of color confinement In scenario 2)
color confinement of the vapor phase particles is an automatic consequence of the assumption that
color charge corresponds to gauge flux classically (gauge field is HAJαβ , HA being the Hamiltonian
of the color isometry. This does not however exclude the possibility that hadron might feed part of
its color isospin or hypercharge gauge flux to surrounding condensate. The concept of anomalous
hypercharge introduced in earlier work as proportional to electromagnetic charge indeed suggests
this kind of possibility. It should be noticed that for the vacuum extremals of Kähler action induced
Kähler field and thus also color fields vanish identically.

The alternatives a) and b) have an additional nice feature that they lead to elegant descrip-
tion for the mysterious concept of Pomeron originally introduced to describe hadronic diffractive
scattering as the exchange of Pomeron Regge trajectory [C5]. No hadrons belonging to Pomeron
trajectory were however found and via the advent of QCD Pomeron was almost forgotten. Pomeron
has recently experienced reincarnation [C3, C2, C4]. In Hera [C3] e− p collisions, in which proton
scatters essentially elastically whereas jets in the direction of incoming virtual photon emitted by
electron are observed. These events can be understood by assuming that proton emits color singlet
particle carrying a small fraction of proton’s momentum. This particle in turn collides with the
virtual photon (antiproton) whereas proton scatters essentially elastically.

The identification of the color singlet particle as Pomeron looks natural since Pomeron emission
describes nicely the diffractive scattering of hadrons. Analogous hard diffractive scattering events
in pX diffractive scattering with X = p̄ [C2] or X = p [C4] have also been observed. What happens
is that proton scatters essentially elastically and the emitted Pomeron collides with X and suffers
hard scattering so that large rapidity gap jets in the direction of X are observed. These results
suggest that Pomeron is real and consists of ordinary partons.

The TGD identification of Pomeron is as sea partons in vapor phase. In TGD inspired phe-
nomenology events involving Pomeron correspond to pX collisions, where incoming X collides with
proton, when sea quarks have suffered coherent simultaneous (by color confinement) evaporation
into vapor phase. System X sees only the sea left behind in the evaporation and scatters from
it whereas dark valence quarks continue without noticing X and condense later to form quasi-
elastically scattered proton. If X suffers hard scattering from the sea, the peculiar hard diffractive
scattering events are observed. The fraction of these events is equal to the fraction f of time spent
by sea quarks in vapor phase.

Dimensional arguments suggest a rough order of magnitude estimate for f ∼ αK ∼ 1/137 ∼
10−2 for f . The fraction of the peculiar deep inelastic scattering events at Hera is about 5 percent,
which suggest that f is about 6.8 times larger and of same order of magnitude as QCD αs The time
spent in condensate is by dimensional arguments of the order of the p-adic length scale L(M107),
not far from proton Compton length. Time dilation effects at high collision energies guarantee
that valence quarks indeed stay in vapor phase during the collision. The identification of Pomeron
as sea explains also why Pomeron Regge trajectory does not correspond to actual on mass shell
particles.

The existing detailed knowledge about the properties of sea structure functions provides a
stringent test for the TGD based scenario. According to [C2] Pomeron structure function seems to
consist of soft ((1−x)5), hard ((1−x)) and super-hard component (delta function like component
at x = 1). The peculiar super hard component finds explanation in TGD based picture. The
structure function qP (x, z) of parton in Pomeron contains the longitudinal momentum fraction z
of the Pomeron as a parameter and qP (x, z) is obtained by scaling from the sea structure function
q(x) for proton qP (x, z) = q(zx). The value of structure function at x = 1 is non-vanishing: qP (x =
1, z) = q(z) and this explains the necessity to introduce super hard delta function component in
the fit of [C2].

4.2.3 Simulating big bang in laboratory

An important steps in the development of ideas were stimulated by the findings made during period
2002-2005 in Relativist Heavy Ion Collider (RHIC) in Brookhaven compared with the finding of
America and for full reason.

1. The first was finding of longitudinal Lorentz invariance at single particle level suggesting a
collective behavior. This was around 2002.
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2. The collective behavior which was later interpreted in terms of color glass condensate meaning
the presence of a blob of liquid like phase decaying later to quark gluon plasma since it was
found that the density of what was expected to be quark gluon plasma was about ten times
higher than expected.

3. The last finding is that this object seems to absorb partons like black hole and behaves like
evaporating black hole.

In my personal Theory Universe the history went as follows.

1. I proposed 2002 a model for Gold-Gold collision as a mini big bang identified as a scaled
down variant of TGD inspired cosmology. This makes sense because in TGD based critical
cosmology the initial state has vanishing mass per comoving volume instead of being infinite
as in radiation dominated cosmology. Any phase transition involving a generation of a new
space-time sheet might proceed in this universal manner.

2. Cosmic string soup in the primordial stage is replaced by a tangle of color flux tubes contain-
ing the color glass condensate. Flux tubes correspond to flow lines of incompressible liquid
flow and non-perturbative macroscopic quantum phase with a very large ~ is in question.
Gravitational constant is replaced by strong gravitational constant defined by the relevant
p-adic length scale squared since color flux tubes are analogs of hadronic strings. Presumably
Lp, p = M107 = 2107 − 1, is the p-adic length scale since Mersenne prime M107 labels the
space-time sheet at which partons feed their color gauge fluxes. Temperature during this
phase could correspond to Hagedorn temperature for strings and is determined by string
tension. Density would be maximal.

3. Next phase is critical phase in which the notion of space-time in ordinary sense makes sense
and 3-space is flat since there is no length scale in critical system (so that curvature vanishes).
During this critical phase phase a transition to quark gluon plasma occurs. The duration of
this phase fixes all relevant parameters such as temperature (which is the analog of Hagedorn
temperature corresponding since critical density is maximal density of gravitational mass in
TGD Universe).

4. The next phase is radiation dominated quark gluon plasma phase and then follows hadroniza-
tion to matter dominated phase provided cosmological picture still applies.

Since black hole formation and evaporation is very much like formation big crunch followed by
big bang, the picture is more or less equivalent with the picture in which black hole like object
consisting of string like objects (mass is determined by string length just as it is determined by
the radius for black holes) is formed and then evaporates. Black hole temperature corresponds to
Hagedorn temperature and to the duration of critical period of the mini cosmology.

4.2.4 Are ordinary black-holes replaced with super-symplectic black-holes in TGD
Universe?

Some variants of super string model predict the production of small black-holes at LHC. I have
never taken this idea seriously but in a well-defined sense TGD predicts black-holes associated
with super-symplectic gravitons with strong gravitational constant defined by the hadronic string
tension. The proposal is that super-symplectic black-holes have been already seen in Hera, RHIC,
and the strange cosmic ray events.

Baryonic super-symplectic black-holes of the ordinary M107 hadron physics would have mass
934.2 MeV, very near to proton mass. The mass of their M89 counterparts would be 512 times
higher, about 478 GeV if quark massses scale also by this factor. This need not be the case: if one
has k = 113 → 103 instead of 105 one has 434 GeV mass. “Ionization energy” for Pomeron, the
structure formed by valence quarks connected by color bonds separating from the space-time sheet
of super-symplectic black-hole in the production process, corresponds to the total quark mass and
is about 170 MeV for ordinary proton and 87 GeV for M89 proton. This kind of picture about
black-hole formation expected to occur in LHC differs from the stringy picture since a fusion of
the hadronic mini black-holes to a larger black-hole is in question.
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An interesting question is whether the ultrahigh energy cosmic rays having energies larger than
the GZK cut-off of 5 × 1010 GeV are baryons, which have lost their valence quarks in a collision
with hadron and therefore have no interactions with the microwave background so that they are
able to propagate through long distances.

In neutron stars the hadronic space-time sheets could form a gigantic super-symplectic black-
hole and ordinary black-holes would be naturally replaced with super-symplectic black-holes in
TGD framework (only a small part of black-hole interior metric is representable as an induced
metric). This obviously means a profound difference between TGD and string models.

1. Hawking-Bekenstein black-hole entropy would be replaced with its p-adic counterpart given
by

Sp = (
M

m(CP2)
)2 × log(p) , (4.1)

where m(CP2) is CP2 mass, which is roughly 10−4 times Planck mass. M is the contribution
of p-adic thermodynamics to the mass. This contribution is extremely small for gauge bosons
but for fermions and super-symplectic particles it gives the entire mass.

2. If p-adic length scale hypothesis p ' 2k holds true, one obtains

Sp = klog(2)× (
M

m(CP2)
)2, (4.2)

m(CP2) = ~/R, R the “radius” of CP2, corresponds to the standard value of ~0 for all values
of ~.

3. Hawking-Bekenstein area law gives in the case of Schwartschild black-hole

S =
A

4G
× ~ = πGM2 × ~ . (4.3)

For the p-adic variant of the law Planck mass is replaced with CP2 mass and klog(2) ' log(p)
appears as an additional factor. Area law is obtained in the case of elementary particles if k
is prime and wormhole throats have M4 radius given by p-adic length scale Lk =

√
kR which

is exponentially smaller than Lp. For macroscopic super-symplectic black-holes modified
area law results if the radius of the large wormhole throat equals to Schwartschild radius.
Schwartschild radius is indeed natural: in [K29] I have shown that a simple deformation of the
Schwartschild exterior metric to a metric representing rotating star transforms Schwartschild
horizon to a light-like 3-surface at which the signature of the induced metric is transformed
from Minkowskian to Euclidian.

4. The formula for the gravitational Planck constant appearing in the Bohr quantization of
planetary orbits and characterizing the gravitational field body mediating gravitational in-
teraction between masses M and m [K24] reads as

~gr =
GMm

v0
~0 .

v0 = 2−11 is the preferred value of v0. One could argue that the value of gravitational Planck
constant is such that the Compton length ~gr/M of the black-hole equals to its Schwartshild
radius. This would give

~gr =
GM2

v0
~0 , v0 = 1/2 . (4.4)
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The requirement that ~gr is a ratio of ruler-and-compass integers expressible as a product
of distinct Fermat primes (only four of them are known) and power of 2 would quantize the
mass spectrum of black hole [K24]. Even without this constraint M2 is integer valued using
p-adic mass squared unit and if p-adic length scale hypothesis holds true this unit is in an
excellent approximation power of two.

5. The gravitational collapse of a star would correspond to a process in which the initial value
of v0 , say v0 = 2−11, increases in a stepwise manner to some value v0 ≤ 1/2. For a supernova
with solar mass with radius of 9 km the final value of v0 would be v0 = 1/6. The star could
have an onion like structure with largest values of v0 at the core as suggested by the model
of planetary system. Powers of two would be favored values of v0. If the formula holds true
also for Sun one obtains 1/v0 = 3× 17× 213 with 10 per cent error.

6. Black-hole evaporation could be seen as means for the super-symplectic black-hole to get rid
of its electro-weak charges and fermion numbers (except right handed neutrino number) as
the antiparticles of the emitted particles annihilate with the particles inside super-symplectic
black-hole. This kind of minimally interacting state is a natural final state of star. Ideal
super-symplectic black-hole would have only angular momentum and right handed neutrino
number.

7. In TGD light-like partonic 3-surfaces are the fundamental objects and space-time interior
defines only the classical correlates of quantum physics. The space-time sheet containing the
highly entangled cosmic string might be separated from environment by a wormhole contact
with size of black-hole horizon.

This looks the most plausible option but one can of course ask whether the large partonic 3-
surface defining the horizon of the black-hole actually contains all super-symplectic particles
so that super-symplectic black-hole would be single gigantic super-symplectic parton. The
interior of super-symplectic black-hole would be a space-like region of space-time, perhaps
resulting as a large deformation of CP2 type vacuum extremal. Black-hole sized wormhole
contact would define a gauge boson like variant of the black-hole connecting two space-time
sheets and getting its mass through Higgs mechanism. A good guess is that these states are
extremely light.

5 Number Theoretic Compactification And M 8−H Duality

This section summarizes the basic vision about number theoretic compactification reducing the
classical dynamics to associativity or co-associativity. Originally M8 −H duality was introduced
as a number theoretic explanation for H = M4×CP2. Much later it turned out that the completely
exceptional twistorial properties of M4 and CP2 are enough to justify X4 ⊂ H hypothesis. Skeptic
could therefore criticize the introduction of M8 (actually its complexification) as an un-necessary
mathematical complication producing only unproven conjectures and bundle of new statements to
be formulated precisely. However, if quaternionicity can be realized in terms of M8

c using Oc-real
analytic functions and if quaternionicity is equivalent with preferred extremal property, a huge
simplification results and one can say that field equations are exactly solvable.

One can question the feasibility of M8 −H duality if the dynamics is purely number theoretic
at the level of M8 and determined by Kähler action at the level of H. Situation becomes more
democratic if Kähler action defines the dynamics in both M8 and H: this might mean that
associativity could imply field equations for preferred extremals or vice versa or there might be
equivalence between two. This means the introduction Kähler structure at the level of M8, and
motivates also the coupling of Kähler gauge potential to M8 spinors characterized by Kähler charge
or em charge. One could call this form of duality strong form of M8 −H duality.

The strong form M8 − H duality boils down to the assumption that space-time surfaces can
be regarded either as 4-surfaces of H or as surfaces of M8 or even M8

c composed of associative
and co-associative regions identifiable as regions of space-time possessing Minkowskian resp. Eu-
clidian signature of the induced metric. They have the same induced metric and Kähler form and
WCW associated with H should be essentially the same as that associated with M8. Associativity
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corresponds to hyper-quaterniocity at the level of tangent space and co-associativity to co-hyper-
quaternionicity - that is associativity/hyper-quaternionicity of the normal space. Both are needed
to cope with known extremals. Since in Minkowskian context precise language would force to in-
troduce clumsy terms like hyper-quaternionicity and co-hyper-quaternionicity, it is better to speak
just about associativity or co-associativity.

Remark: The original assumption was that space-times could be regarded as surfaces in M8

rather than in its complexification M8
c identifiable as complexified octonions. This assumption is

un-necessarily strong and if one assumes that octonion-real analytic functions characterize these
surfaces M8

c must be assumed.
For the octonionic spinor fields the octonionic analogs of electroweak couplings reduce to mere

Kḧler or electromagnetic coupling and the solutions reduce to those for spinor d’Alembertian in
4-D harmonic potential breaking SO(4) symmetry. Due to the enhanced symmetry of harmonic
oscillator, one expects that partial waves are classified by SU(4) and by reduction to SU(3)×U(1)
by em charge and color quantum numbers just as for CP2 - at least formally.

Harmonic oscillator potential defined by self-dual em field splits M8 to M4 × E4 and implies
Gaussian localization of the spinor modes near origin so that E4 effectively compactifies. The The
resulting physics brings strongly in mind low energy physics, where only electromagnetic interaction
is visible directly, and one cannot avoid associations with low energy hadron physics. These are
some of the reasons for considering M8−H duality as something more than a mere mathematical
curiosity.

Remark: The Minkowskian signatures of M8 and M4 produce technical nuisance. One could
overcome them by Wick rotation, which is however somewhat questionable trick. M8

c = Oc provides
the proper formulation.

1. The proper formulation is in terms of complexified octonions and quaternions involving the
introduction of commuting imaginary unit j.

2. Hyper-quaternions/octonions define as subspace of complexified quaternions/octonions spanned
by real unit and jIk, where Ik are quaternionic units. These spaces are obviously not closed
under multiplication. One can however however define the notion of associativity for the sub-
space of M8 by requiring that the products and sums of the tangent space vectors generate
complexified quaternions.

3. Ordinary quaternions Q are expressible as q = q0 + qkIk. Hyper-quaternions are expressible
as q = q0 + jqkIk and form a subspace of complexified quaternions Qc = Q ⊕ jQ. Similar
formula applies to octonions and their hyper counterparts which can be regarded as subspaces
of complexified octonions O⊕ jO. Tangent space vectors of H correspond hyper-quaternions
qH = q0 + jqkIk + jiq2 defining a subspace of doubly complexified quaternions: note the
appearance of two imaginary units.

The recent definitions of associativity and M8 duality has evolved slowly from in-accurate
characterizations and there are still open questions.

1. Kähler form forM8 non-trivial only in E4 ⊂M8 implies unique decompositionM8 = M4×E4

needed to define M8−H duality uniquely. This applies also to M8
c . This forces to introduce

also Kähler action, induced metric and induced Kähler form. Could strong form of duality
meant that the space-time surfaces in M8 and H have same induced metric and induced
Kähler form? Could the WCW s associated with M8 and H be identical with this assumption
so that duality would provide different interpretations for the same physics?

2. One can formulate associativity in M8 (or M8
c ) by introducing octonionic structure in tangent

spaces or in terms of the octonionic representation for the induced gamma matrices. Does
the notion have counterpart at the level of H as one might expect if Kähler action is involved
in both cases? The analog of this formulation in H might be as quaternionic “reality”
since tangent space of H corresponds to complexified quaternions: I have however found no
acceptable definition for this notion.

The earlier formulation is in terms of octonionic flat space gamma matrices replacing the
ordinary gamma matrices so that the formulation reduces to that in M8 tangent space.
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This formulation is enough to define what associativity means although one can protest.
Somehow H is already complex quaternionic and thus associative. Perhaps this just what is
needed since dynamics has two levels: embedding space level and space-time level. One must
have embedding space spinor harmonics assignable to the ground states of super-conformal
representations and quaternionicity and octonionicity of H tangent space would make sense
at the level of space-time surfaces.

3. Whether the associativity using induced gamma matrices works is not clear for massless
extremals (MEs) and vacuum extremals with the dimension of CP2 projection not larger
than 2.

4. What makes this notion of associativity so fascinating is that it would allow to iterate duality
as a sequence M8 → H → H... by mapping the space-time surface to M4×CP2 by the same
recipe as in case of M8. This brings in mind the functional composition of Oc-real analytic
functions (Oc denotes complexified octonions: complexification is forced by Minkowskian
signature) suggested to produced associative or co-associative surfaces. The associative (co-
associative) surfaces in M8 would correspond to loci for vanishing of imaginary (real) part
of octonion-real-analytic function.

It might be possible to define associativity in H also in terms of Kähler-Dirac gamma matrices
defined by Kähler action (certainly not M8).

1. All known extremals are associative or co-associative in H in this sense. This would also
give direct correlation with the variational principle. For the known preferred extremals this
variant is successful partially because the Kähler-Dirac gamma matrices need not span the
entire tangent space. The space spanned by the Kähler-Dirac gammas is not necessarily tan-
gent space. For instance for CP2 type vacuum extremals the Kähler-Dirac gamma matrices
are CP2 gamma matrices plus an additional light-like component from M4 gamma matrices.

If the space spanned by Kähler-Dirac gammas has dimensionD smaller than 3 co-associativity
is automatic. If the dimension of this space is D = 3 it can happen that the triplet of gammas
spans by multiplication entire octonionic algebra. For D = 4 the situation is of course non-
trivial.

2. For Kähler-Dirac gamma matrices the notion of co-associativity can produce problems since
Kähler-Dirac gamma matrices do not in general span the tangent space. What does co-
associativity mean now? Should one replace normal space with orthogonal complement
of the space spanned by Kähler-Dirac gamma matrices? Co-associativity option must be
considered for D = 4 only. CP2 type vacuum extremals provide a good example. In this
case the Kähler-Dirac gamma matrices reduce to sums of ordinary CP2 gamma matrices and
ligt-like M4 contribution. The orthogonal complement for the Kähler-Dirac gamma matrices
consists of dual light-like gamma matrix and two gammas orthogonal to it: this space is
subspace of M4 and trivially associative.

5.1 Basic Idea Behind M8 −M4 × CP2 Duality

If four-surfaces X4 ⊂ M8 under some conditions define 4-surfaces in M4 × CP2 indirectly, the
spontaneous compactification of super string models would correspond in TGD to two different
ways to interpret the space-time surface. This correspondence could be called number theoretical
compactification or M8 −H duality.

The hard mathematical facts behind the notion of number theoretical compactification are
following.

1. One must assume that M8 has unique decomposition M8 = M4 × E4. This decomposition
generalizes also to the case of M8

c . This would be most naturally due to Kähler structure
in E4 defined by a self-dual Kähler form defining parallel constant electric and magnetic
fields in Euclidian sense. Besides Kähler form there is vector field coupling to sigma matrix
representing the analog of strong isospin: the corresponding octonionic sigma matrix however
is imaginary unit times gamma matrix - say ie1 in M4 - defining a preferred plane M2 in



5.1 Basic Idea Behind M8 −M4 × CP2 Duality 35

M4. Here it is essential that the gamma matrices of E4 defined in terms of octonion units
commute to gamma matrices in M4. What is involved becomes clear from the Fano triangle
illustrating octonionic multiplication table.

2. The space of hyper-complex structures of the hyper-octonion space - they correspond to the
choices of plane M2 ⊂ M8 - is parameterized by 6-sphere S6 = G2/SU(3). The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure
and thus leaves invariant one octonionic imaginary unit, call it e1. Fixed complex structure
therefore corresponds to a point of S6.

3. Quaternionic sub-algebras of M8 (and M8
c ) are parametrized by G2/U(2). The quaternionic

sub-algebras of octonions with fixed complex structure (that is complex sub-space defined
by real and preferred imaginary unit and parametrized by a point of S6) are parameterized
by SU(3)/U(2) = CP2 just as the complex planes of quaternion space are parameterized by
CP1 = S2. Same applies to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would
thus have an interpretation as the isometry group of CP2, as the automorphism sub-group of
octonions, and as color group. Thus the space of quaternionic structures can be parametrized
by the 10-dimensional space G2/U(2) decomposing as S6 × CP2 locally.

4. The basic result behind number theoretic compactification and M8 − H duality is that
associative sub-spaces M4 ⊂ M8 containing a fixed commutative sub-space M2 ⊂ M8 are
parameterized by CP2. The choices of a fixed hyper-quaternionic basis 1, e1, e2, e3 with a
fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice of e2 and e3
amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup of SU(3).

U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2) induces
rotations of the spinor having e2 and e3 components. Hence all possible completions of 1, e1
by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

Consider now the formulation of M8 −H duality.

1. The idea of the standard formulation is that associative manifold X4 ⊂ M8 has at its each
point associative tangent plane. That is X4 corresponds to an integrable distribution of
M2(x) ⊂M8 parametrized 4-D coordinate x that is map x→ S6 such that the 4-D tangent
plane is hyper-quaternionic for each x.

2. Since the Kähler structure of M8 implies unique decomposition M8 = M4×E4, this surface
in turn defines a surface in M4 × CP2 obtained by assigning to the point of 4-surface point
(m, s) ∈ H = M4 × CP2: m ∈M4 is obtained as projection M8 →M4 (this is modification
to the earlier definition) and s ∈ CP2 parametrizes the quaternionic tangent plane as point of
CP2. Here the local decomposition G2/U(2) = S6×CP2 is essential for achieving uniqueness.

3. One could also map the associative surface in M8 to surface in 10-dimensional S6×CP2. In
this case the metric of the image surface cannot have Minkowskian signature and one cannot
assume that the induced metrics are identical. It is not known whether S6 allows genuine
complex structure and Kähler structure which is essential for TGD formulation.

4. Does duality imply the analog of associativity for X4 ⊂ H? The tangent space of H can be
seen as a sub-space of doubly complexified quaternions. Could one think that quaternionic
sub-space is replaced with sub-space analogous to that spanned by real parts of complexi-
fied quaternions? The attempts to define this notion do not however look promising. One
can however define associativity and co-associativity for the tangent space M8 of H using
octonionization and can formulate it also terms of induced gamma matrices.

5. The associativity defined in terms of induced gamma matrices in both in M8 and H has
the interesting feature that one can assign to the associative surface in H a new associative
surface in H by assigning to each point of the space-time surface its M4 projection and point
of CP2 characterizing its associative tangent space or co-associative normal space. It seems
that one continue this series ad infinitum and generate new solutions of field equations! This
brings in mind iteration which is standard manner to generate fractals as limiting sets. This
certainly makes the heart of mathematician beat.
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6. Kähler structure in E4 ⊂M8 guarantees natural M4×E4 decomposition. Does associativity
imply preferred extremal property or vice versa, or are the two notions equivalent or only
consistent with each other for preferred extremals?

A couple of comments are in order.

1. This definition generalizes to the case of M8
c : all that matters is that tangent space-is is

complexified quaternionic and there is a unique identification M4 ⊂ M8
c : this allows to

assign the point of 4-surfaces a point of M4 × CP2. The generalization is needed if one
wants to formulate the hypothesis about Oc real-analyticity as a way to build quaternionic
space-time surfaces properly.

2. This definition differs from the first proposal for years ago stating that each point of X4

contains a fixed M2 ⊂ M4 rather than M2(x) ⊂ M8 and also from the proposal assuming
integrable distribution of M2(x) ⊂ M4. The older proposals are not consistent with the
properties of massless extremals and string like objects for which the counterpart of M2

depends on space-time point and is not restricted to M4. The earlier definition M2(x) ⊂M4

was problematic in the co-associative case since for the Euclidian signature is is not clear
what the counterpart of M2(x) could be.

3. The new definition is consistent with the existence of Hamilton-Jacobi structure meaning
slicing of space-time surface by string world sheets and partonic 2-surfaces with points of
partonic 2-surfaces labeling the string world sheets [K4]. This structure has been proposed
to characterize preferred extremals in Minkowskian space-time regions at least.

4. Co-associative Euclidian 4-surfaces, say CP2 type vacuum extremal do not contain integrable
distribution of M2(x). It is normal space which containsM2(x). Does this have some physical
meaning? Or does the surface defined by M2(x) have Euclidian analog?

A possible identification of the analog would be as string world sheet at which W boson
field is pure gauge so that the modes of the modified Dirac operator [K31] restricted to the
string world sheet have well-defined em charge. This condition appears in the construction
of solutions of Kähler-Dirac operator.

For octonionic spinor structure the W coupling is however absent so that the condition
does not make sense in M8. The number theoretic condition would be as commutative or
co-commutative surface for which imaginary units in tangent space transform to real and
imaginary unit by a multiplication with a fixed imaginary unit! One can also formulate co-
associativity as a condition that tangent space becomes associative by a multiplication with
a fixed imaginary unit.

There is also another justification for the distribution of Euclidian tangent planes. The idea
about associativity as a fundamental dynamical principle can be strengthened to the state-
ment that space-time surface allows slicing by hyper-complex or complex 2-surfaces, which
are commutative or co-commutative inside space-time surface. The physical interpretation
would be as Minkowskian or Euclidian string world sheets carrying spinor modes. This would
give a connection with string model and also with the conjecture about the general structure
of preferred extremals.

5. Minimalist could argue that the minimal definition requires octonionic structure and asso-
ciativity only in M8. There is no need to introduce the counterpart of Kähler action in M8

since the dynamics would be based on associativity or co-associativity alone. The objection
is that one must assumes the decomposition M8 = M4 × E4 without any justification.

The map of space-time surfaces to those of H = M4 × CP2 implies that the space-time
surfaces in H are in well-defined sense quaternionic. As a matter of fact, the standard spinor
structure of H can be regarded as quaternionic in the sense that gamma matrices are essen-
tially tensor products of quaternionic gamma matrices and reduce in matrix representation
for quaternions to ordinary gamma matrices. Therefore the idea that one should introduce
octonionic gamma matrices in H is questionable. If all goes as in dreams, the mere associa-
tivity or co-associativity would code for the preferred extremal property of Kähler action in
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H. One could at least hope that associativity/co-associativity in H is consistent with the
preferred extremal property.

6. One can also consider a variant of associativity based on modified gamma matrices - but only
in H. This notion does not make sense in M8 since the very existence of quaternionic tangent
plane makes it possible to define M8−H duality map. The associativity for modified gamma
matrices is however consistent with what is known about extremals of Kähler action. The
associativity based on induced gamma matrices would correspond to the use of the space-time
volume as action. Note however that gamma matrices are not necessary in the definition.

5.2 Hyper-Octonionic Pauli “Matrices” And The Definition Of Associa-
tivity

Octonionic Pauli matrices suggest an interesting possibility to define precisely what associativity
means at the level of M8 using gamma matrices (for background see [K28, K3] ).

1. According to the standard definition space-time surface X4 ⊂M8 is associative if the tangent
space at each point of X4 in X4 ⊂ M8 picture is associative. The definition can be given
also in terms of octonionic gamma matrices whose definition is completely straightforward.

2. Could/should one define the analog of associativity at the level of H? One can identify the
tangent space of H as M8 and can define octonionic structure in the tangent space and this
allows to define associativity locally. One can replace gamma matrices with their octonionic
variants and formulate associativity in terms of them locally and this should be enough.

Skeptic however remindsM4 allows hyper-quaternionic structure and CP2 quaternionic struc-
ture so that complexified quaternionic structure would look more natural for H. The tangent
space would decompose as M8 = HQ+ ijQ, weher j is commuting imaginary unit and HQ
is spanned by real unit and by units iIk, where i second commutating imaginary unit and Ik
denotes quaternionic imaginary units. There is no need to make anything associative.

There is however far from obvious that octonionic spinor structure can be (or need to be!) de-
fined globally. The lift of the CP2 spinor connection to its octonionic variant has questionable
features: in particular vanishing of the charged part and reduction of neutral part to photon.
Therefore is is unclear whether associativity condition makes sense for X4 ⊂M4×CP2. What
makes it so fascinating is that it would allow to iterate duality as a sequencesM8 → H → H....
This brings in mind the functional composition of octonion real-analytic functions suggested
to produced associative or co-associative surfaces.

I have not been able to settle the situation. What seems the working option is associativity
in both M8 and H and Kähler-Dirac gamma matrices defined by appropriate Kähler action and
correlation between associativity and preferred extremal property.

5.3 Are Kähler And Spinor Structures Necessary In M8?

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of M8

Kähler action with same value of Kähler action defining Kähler function. As found, this leads to
the conclusion that the M8−H duality is Kähler isometry. Coupling of spinors to Kähler potential
is the next step and this in turn leads to the introduction of spinor structure so that quantum
TGD in H should have full M8 dual.

5.3.1 Are also the 4-surfaces in M8 preferred extremals of Kähler action?

It would be a mathematical miracle if associative and co-associative surfaces in M8 would be in 1-1
correspondence with preferred extremals of Kähler action. This motivates the question whether
Kähler action make sense also in M8. This does not exclude the possibility that associativity
implies or is equivalent with the preferred extremal property.

One expects a close correspondence between preferred extremals: also now vacuum degeneracy
is obtained, one obtains massless extremals, string like objects, and counterparts of CP2 type
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vacuum extremals. All known extremals would be associative or co-associative if modified gamma
matrices define the notion (possible only in the case of H).

The strongest form of duality would be that the space-time surfaces in M8 and H have same
induced metric same induced Kähler form. The basic difference would be that the spinor connection
for surfaces in M8 would be however neutral and have no left handed components and only em
gauge potential. A possible interpretation is that M8 picture defines a theory in the phase in which
electroweak symmetry breaking has happened and only photon belongs to the spectrum.

The question is whether one can define WCW also for M8. Certainly it should be equivalent
with WCW for H: otherwise an inflation of poorly defined notions follows. Certainly the general
formulation of the WCW geometry generalizes from H to M8. Since the matrix elements of
symplectic super-Hamiltonians defining WCW gamma matrices are well defined as matrix elements
involve spinor modes with Gaussian harmonic oscillator behavior, the non-compactness of E4 does
not pose any technical problems.

5.3.2 Spinor connection of M8

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2

of covariantly constant Kähler forms so that one can accommodate free independent Abelian
gauge fields assuming that the independent gauge fields are orthogonal to each other when
interpreted as realizations of quaternionic imaginary units. This is possible but perhaps a
more natural option is the introduction of just single Kähler form as in the case of CP2.

2. One should be able to distinguish between quarks and leptons also in M8, which suggests
that one introduce spinor structure and Kähler structure in E4. The Kähler structure of
E4 is unique apart form SO(3) rotation since all three quaternionic imaginary units and the
unit vectors formed from them allow a representation as an antisymmetric tensor. Hence one
must select one preferred Kähler structure, that is fix a point of S2 representing the selected
imaginary unit. It is natural to assume different couplings of the Kähler gauge potential
to spinor chiralities representing quarks and leptons: these couplings can be assumed to be
same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving
coupling to Kähler form and Z0 contains both axial and vector parts. The näıve replacement
of sigma matrices appearing in the coupling of electroweak gauge fields takes the left handed
parts of these fields to zero so that only neutral part remains. Further, gauge fields correspond
to curvature of CP2 which vanishes for E4 so that only Kähler form form remains. Kähler
form couples to 3L and q so that the basic asymmetry between leptons and quarks remains.
The resulting field could be seen as analog of photon.

4. The absence of weak parts of classical electro-weak gauge fields would conform with the
standard thinking that classical weak fields are not important in long scales. A further
prediction is that this distinction becomes visible only in situations, where H picture is
necessary. This is the case at high energies, where the description of quarks in terms of SU(3)
color is convenient whereas SO(4) QCD would require large number of E4 partial waves.
At low energies large number of SU(3) color partial waves are needed and the convenient
description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

5.3.3 Dirac equation for leptons and quarks in M8

Kähler gauge potential would also couple to octonionic spinors and explain the distinction between
quarks and leptons.

1. The complexified octonions representing H spinors decompose to 1 + 1 + 3 + 3 under SU(3)
representing color automorphisms but the interpretation in terms of QCD color does not
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make sense. Rather, the triplet and single combine to two weak isospin doublets and quarks
and leptons corresponds to “spin” states of octonion valued 2-spinor. The conservation of
quark and lepton numbers follows from the absence of coupling between these states.

2. One could modify the coupling so that coupling is on electric charge by coupling it to elec-
tromagnetic charge which as a combination of unit matrix and sigma matrix is proportional
to 1 + kI1, where I1 is octonionic imaginary unit in M2 ⊂M4. The complexified octonionic
units can be chosen to be eigenstates of Qem so that Laplace equation reduces to ordinary
scalar Laplacian with coupling to self-dual em field.

3. One expects harmonic oscillator like behavior for the modes of the Dirac operator of M8

since the gauge potential is linear in E4 coordinates. One possibility is Cartesian coordinates
is A(Ax, Ay, Az, At) = k(−y, x, t,−z). Thhe coupling would make E4 effectively a compact
space.

4. The square of Dirac operator gives potential term proportional to r2 = x2 + y2 + z2 + t2 so
that the spectrum of 4-D harmonic oscillator operator and SO(4) harmonics localized near
origin are expected. For harmonic oscillator the symmetry enhances to SU(4).

If one replaces Kähler coupling with em charge symmetry breaking of SO(4) to vectorial
SO(3) is expected since the coupling is proportional to 1 + ike1 defining electromagnetic
charge. Since the basis of complexified quaternions can be chosen to be eigenstates of e1
under multiplication, octonionic spinors are eigenstates of em charge and one obtains two
color singles 1 ± e1 and color triplet and antitriplet. The color triplets cannot be however
interpreted in terms of quark color.

Harmonic oscillator potential is expected to enhance SO(3) to SU(3). This suggests the
reduction of the symmetry to SU(3)×U(1) corresponding to color symmetry and em charge
so that one would have same basic quantum numbers as tof CP2 harmonics. An interesting
question is how the spectrum and mass squared eigenvalues of harmonics differ from those
for CP2.

5. In the square of Dirac equation JklΣkl term distinguishes between different em charges (Σkl
reduces by self duality and by special properties of octonionic sigma matrices to a term
proportional to iI1 and complexified octonionic units can be chosen to be its eigenstates with
eigen value ±1. The vacuum mass squared analogous to the vacuum energy of harmonic
oscillator is also present and this contribution are expected to cancel themselves for neutrinos
so that they are massless whereas charged leptons and quarks are massive. It remains to be
checked that quarks and leptons can be classified to triality T = ±1 and t = 0 representations
of dynamical SU(3) respectively.

5.3.4 What about the analog of Kähler Dirac equation

Only the octonionic structure in T (M8) is needed to formulate quaternionicity of space-time sur-
faces: the reduction to Oc-real-analyticity would be extremely nice but not necessary (Oc denotes
complexified octonions needed to cope with Minkowskian signature). Most importantly, there
might be no need to introduce Kähler action (and Kähler form) in M8. Even the octonionic
representation of gamma matrices is un-necessary. Neither there is any absolute need to define oc-
tonionic Dirac equation and octonionic Kähler Dirac equation nor octonionic analog of its solutions
nor the octonionic variants of embedding space harmonics.

It would be of course nice if the general formulas for solutions of the Kähler Dirac equation
in H could have counterparts for octonionic spinors satisfying quaternionicity condition. One can
indeed wonder whether the restriction of the modes of induced spinor field to string world sheets
defined by integrable distributions of hyper-complex spaces M2(x) could be interpretated in terms
of commutativity of fermionic physics in M8. M8 −H correspondence could map the octonionic
spinor fields at string world sheets to their quaternionic counterparts in H. The fact that only
holomorphy is involved with the definition of modes could make this map possible.
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5.4 How Could One Solve Associativity/Co-Associativity Conditions?

The natural question is whether and how one could solve the associativity/-co-associativity con-
ditions explicitly. One can imagine two approaches besides M8 → H → H... iteration generating
new solutions from existing ones.

5.4.1 Could octonion-real analyticity be equivalent with associativity/co-associativity?

Analytic functions provide solutions to 2-D Laplace equations and one might hope that also the
field equations could be solved in terms of octonion-real-analyticity at the level of M8 perhaps also
at the level of H. Signature however causes problems - at least technical. Also the compactness of
CP2 causes technical difficulties but they need not be insurmountable.

For E8 the tangent space would be genuinely octonionic and one can define the notion octonion-
real analytic map as a generalization of real-analytic function of complex variables (the coefficients
of Laurent series are real to guarantee associativity of the series). The argument is complexified
octonion in O⊕iO forming an algebra but not a field. The norm square is Minkowskian as difference
of two Euclidian octonionic norms: N(o1 + io2) = N(o1)−N(o2) and vanishes at 15-D light cone
boundary. Obviously, differential calculus is possible outside the light-cone boundary. Rational
analytic functions have however poles at the light-cone boundary. One can wonder whether the
poles at M4 light-cone boundary, which is subset of 15-D light-cone boundary could have physical
significance and relevant for the role of causal diamonds in ZEO.

The candidates for associative surfaces defined by Oc-real-analytic functions (I use Oc for
complexified octonions) have Minkowskian signature of metric and are 4-surfaces at which the
projection of f(o1 + io2) to Im(O1), iIm(O2), and iRe(Q2) ⊕ Im(Q1) vanish so that only the
projection to hyper-quaternionic Minkowskian sub-space M4 = Re(Q1) + iIm(Q2) with signature
(1,−1,−, 1−, 1) is non-vanishing. The inverse image need not belong to M8 and in general it
belongs to M8

c but this is not a problem: all that is needed that the tangent space of inverse
image is complexified quaternionic. If this is the case then M8 − H duality maps the tangent
space of the inverse image to CP2 point and image itself defines the point of M4 so that a point
of H is obtained. Co-associative surfaces would be surfaces for which the projections of image to
Re(O1), iRe(O2), and to Im(O1) vanish so that only the projection to iIm(O2) with signature
(−1,−1,−1,−1) is non-vanishing.

The inverse images as 4-D sub-manifolds of M8
c (not M8!) are excellent candidates for associa-

tive and co-associative 4-surfaces since M8 −H duality assignes to them a 4-surface in M4 ×CP2

if the tangent space at given point is complexified quaternionic. This is true if one believes on the
analytic continuation of the intuition from complex analysis (the image of real axes under the map
defined by Oc-real-analytic function is real axes in the new coordinates defined by the map: the
intuition results by replacing “real” by “complexified quaternionic” ). The possibility to solve field
equations in this manner would be of enormous significance since besides basic arithmetic oper-
ations also the functional decomposition of Oc-real-analytic functions produces similar functions.
One could speak of the algebra of space-time surfaces.

What is remarkable that the complexified octonion real analytic functions are obtained by
analytic continuation from single real valued function of real argument. The real functions form
naturally a hierarchy of polynomials (maybe also rational functions) and number theoretic vision
suggests that there coefficients are rationals or algebraic numbers. Already for rational coefficients
hierarchy of algebraic extensions of rationals results as one solves the vanishing conditions. There
is a temptation to regard this hierarchy coding for space-time sheets as an analog of DNA.

Note that in the recent formulation there is no need to pose separately the condition about
integrable distribution of M2(x) ⊂M4.

5.4.2 Quaternionicity condition for space-time surfaces

Quaternionicity actually has a surprisingly simple formulation at the level of space-time surfaces.
The following discussion applies to both M8 and H with minor modifications if one accepts that
also H can allow octonionic tangent space structure, which does not require gamma matrices.

1. Quaternionicity is equivalent with associativity guaranteed by the vanishing of the associator
A(a, b, c) = a(bc)− (ab)c for any triplet of imaginary tangent vectors in the tangent space of
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the space-time surface. The condition must hold true for purely imaginary combinations of
tangent vectors.

2. If one is able to choose the coordinates in such a way that one of the tangent vectors cor-
responds to real unit (in the embedding map embedding space M4 coordinate depends only
on the time coordinate of space-time surface), the condition reduces to the vanishing of the
octonionic product of remaining three induced gamma matrices interpreted as octonionic
gamma matrices. This condition looks very simple - perhaps too simple!- since it involves
only first derivatives of the embedding space vectors.

One can of course whether quaternionicity conditions replace field equations or only select
preferred extremals. In the latter case, one should be able to prove that quaternionicity
conditions are consistent with the field equations.

3. Field equations would reduce to tri-linear equations in in the gradients of embedding space co-
ordinates (rather than involving embedding space coordinates quadratically). Sum of analogs
of 3× 3 determinants deriving from a× (b× b) for different octonion units is involved.

4. Written explicitly field equations give in terms of vielbein projections eAα , vielbein vectors eAk ,
coordinate gradients ∂αh

k and octonionic structure constants fABC the following conditions
stating that the projections of the octonionic associator tensor to the space-time surface
vanishes:

eAαe
B
β e

C
γ A

E
ABC = 0 ,

AEABC = f E
AD f D

BC − f D
AB f E

DC ,

eAα = ∂αh
keAk ,

Γk = eAk γA .

(5.1)

The very näıve idea would be that the field equations are indeed integrable in the sense that
they reduce to these tri-linear equations. Tri-linearity in derivatives is highly non-trivial
outcome simplifying the situation further. These equations can be formulated as the as
purely algebraic equations written above plus integrability conditions

FAαβ = Dαe
A
β −Dβe

A
α = 0 . (5.2)

One could say that vielbein projections define an analog of a trivial gauge potential. Note
however that the covariant derivative is defined by spinor connection rather than this effective
gauge potential which reduces to that in SU(2). Similar formulation holds true for field
equations and one should be able to see whether the field equations formulated in terms of
derivatives of vielbein projections commute with the associatitivity conditions.

5. The quaternionicity conditions can be formulated as vanishing of generalization of Cayley’s
hyperdeterminant for “hypermatrix” aijk with 2-valued indiced
(see http://tinyurl.com/ya7h3n9z ). Now one has 8 hyper-matrices with 3 8-valued in-
dices associated with the vanishing AEBCDx

ByCzD = 0 of trilinear forms defined by the
associators. The conditions say somethig only about the octonioni structure constants and
since octonionic space allow quaternionic sub-spaces these conditions must be satisfied.

The inspection of the Fano triangle [A8] (see Fig. 1 ) expressing the multiplication table for
octonionic imaginary units reveals that give any two imaginary octonion units e1 and e2 their
product e1e2 (or equivalently commutator) is imaginary octonion unit (2 times octonion unit) and
the three units span together with real unit quaternionic sub-algebra. There it seems that one can
generate local quaternionic sub-space from two imaginary units plus real unit. This generalizes to
the vielbein components of tangent vectors of space-time surface and one can build the solutions

http://tinyurl.com/ya7h3n9z


5.5 Quaternionicity At The Level Of Embedding Space Quantum Numbers 42

to the quaternionicity conditions from vielbein projections e1, e2, their product e3 = k(x)e1e2 and
real fourth “time-like” vielbein component which must be expressible as a combination of real unit
and imaginary units:

e0 = a× 1 + biei

For static solutions this condition is trivial. Here summation over i is understood in the latter
term. Besides these conditions one has integrability conditions and field equations for Kähler
action. This formulation suggests that quaternionicity is additional - perhaps defining - property
of preferred extremals.

Figure 1: Octonionic triangle: the six lines and one circle containing three vertices define the
seven associative triplets for which the multiplication rules of the ordinary quaternion imaginary
units hold true. The arrow defines the orientation for each associative triplet. Note that the
product for the units of each associative triplets equals to real unit apart from sign factor.

5.5 Quaternionicity At The Level Of Embedding Space Quantum Num-
bers

From the multiplication table of octonions as illustrated by Fano triangle [A8] one finds that all
edges of the triangle, the middle circle and the three the lines connecting vertices to the midpoints
of opposite side define triplets of quaternionic units. This means that by taking real unit and any
imaginary unit in quaternionic M4 algebra spanning M2 ⊂ M4 and two imaginary units in the
complement representing CP2 tangent space one obtains quaternionic algebra. This suggests an
explanation for the preferred M2 contained in tangent space of space-time surface (the M2: s could
form an integrable distribution). Four-momentum restricted to M2 and I3 and Y interpreted as
tangent vectors in CP2 tangent space defined quaterionic sub-algebra. This could give content for
the idea that quantum numbers are quaternionic.

I have indeed proposed that the four-momentum belongs to M2. If M2(x) form a distribution as
the proposal for the preferred extremals suggests this could reflect momentum exchanges between
different points of the space-time surface such that total momentum is conserved or momentum
exchange between two sheets connected by wormhole contacts.

5.6 Questions

In following some questions related to M8 −H duality are represented.

5.6.1 Could associativity condition be formulated using modified gamma matrices?

Skeptic can criticize the minimal form of M8 − H duality involving no Kähler action in M8 is
unrealistic. Why just Kähler action? What makes it so special? The only defense that I can



5.6 Questions 43

imagine is that Kähler action is in many respects unique choice.
An alternative approach would replace induced gamma matrices with the modified ones to get

the correlation In the case of M8 this option cannot work. One cannot exclude it for H.

1. For Kähler action the Kähler-Dirac gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, assign to a

given point of X4 a 4-D space which need not be tangent space anymore or even its sub-space.

The reason is that canonical momentum current contains besides the gravitational contri-
bution coming from the induced metric also the “Maxwell contribution” from the induced
Kähler form not parallel to space-time surface. In the case of M8 the duality map to H is
therefore lost.

2. The space spanned by the Kähler-Dirac gamma matrices need not be 4-dimensional. For
vacuum extremals with at most 2-D CP2 projection Kähler-Dirac gamma matrices vanish
identically. For massless extremals they span 1- D light-like subspace. For CP2 vacuum
extremals the modified gamma matrices reduces to ordinary gamma matrices for CP2 and the
situation reduces to the quaternionicity of CP2. Also for string like objects the conditions are
satisfied since the gamma matrices define associative sub-space as tangent space of M2×S2 ⊂
M4×CP2. It seems that associativity is satisfied by all known extremals. Hence Kähler-Dirac
gamma matrices are flexible enough to realize associativity in H.

3. Kähler-Dirac gamma matrices in Dirac equation are required by super conformal symmetry
for the extremals of action and they also guarantee that vacuum extremals defined by surfaces
in M4 × Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces.
The modified definition of associativity in H does not affect in any manner M8 −H duality
necessarily based on induced gamma matrices in M8 allowing purely number theoretic in-
terpretation of standard model symmetries. One can however argue that the most natural
definition of associativity is in terms of induced gamma matrices in both M8 and H.

Remark: A side comment not strictly related to associativity is in order. The anti-commutators
of the Kähler-Dirac gamma matrices define an effective Riemann metric and one can assign to it
the counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would
have two different metrics associated with the space-time surface. Only if the action defining
space-time surface is identified as the volume in the ordinary metric, these metrics are equivalent.
The index raising for the effective metric could be defined also by the induced metric and it is not
clear whether one can define Riemann connection also in this case. Could this effective metric have
concrete physical significance and play a deeper role in quantum TGD? For instance, AdS-CFT
duality leads to ask whether interactions be coded in terms of the gravitation associated with the
effective metric.

Now skeptic can ask why should one demand M8 − H correspondence if one in any case
is forced to introduced Kähler also at the level of M8? Does M8 − H correspondence help to
construct preferred extremals or does it only bring in a long list of conjectures? I can repeat the
questions of the skeptic.

5.6.2 Minkowskian-Euclidian ↔ associative–co-associative?

The 8-dimensionality of M8 allows to consider both associativity of the tangent space and as-
sociativity of the normal space- let us call this co-associativity of tangent space- as alternative
options. Both options are needed as has been already found. Since space-time surface decomposes
into regions whose induced metric possesses either Minkowskian or Euclidian signature, there is a
strong temptation to propose that Minkowskian regions correspond to associative and Euclidian
regions to co-associative regions so that space-time itself would provide both the description and
its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an in-
teresting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer
as preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size

of the space-time sheet at which elementary particle represented as CP2 type extremal is topolog-
ically condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of

the wormhole contacts associated with the CP2 type extremal and CP2 size is the natural length
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unit now. Obviously the quantitative formulation for associative-co-associative duality would be
in terms p→ k duality.

5.6.3 Can M8 −H duality be useful?

Skeptic could of course argue that M8−H duality generates only an inflation of unproven conjec-
tures. This might be the case. In the following I will however try to defend the conjecture. One
can however find good motivations for M8 −H duality: both theoretical and physical.

1. If M8 −H duality makes sense for induced gamma matrices also in H, one obtains infinite
sequence if dualities allowing to construct preferred extremals iteratively. This might relate
to octonionic real-analyticity and composition of octonion-real-analytic functions.

2. M8 − H duality could provide much simpler description of preferred extremals of Kähler
action as hyper-quaternionic surfaces. Unfortunately, it is not clear whether one should
introduce the counterpart of Kähler action in M8 and the coupling of M8 spinors to Kähler
form. Note that the Kähler form in E4 would be self dual and have constant components:
essentially parallel electric and magnetic field of same constant magnitude.

3. M8 − H duality provides insights to low energy physics, in particular low energy hadron
physics. M8 description might work when H-description fails. For instance, perturbative
QCD which corresponds to H-description fails at low energies whereas M8 description might
become perturbative description at this limit. Strong SO(4) = SU(2)L × SU(2)R invariance
is the basic symmetry of the phenomenological low energy hadron models based on conserved
vector current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC).
Strong SO(4) = SU(2)L×SU(2)R relates closely also to electro-weak gauge group SU(2)L×
U(1) and this connection is not well understood in QCD description. M8 −H duality could
provide this connection. Strong SO(4) symmetry would emerge as a low energy dual of
the color symmetry. Orbital SO(4) would correspond to strong SU(2)L × SU(2)R and by
flatness of E4 spin like SO(4) would correspond to electro-weak group SU(2)L × U(1)R ⊂
SO(4). Note that the inclusion of coupling to Kähler gauge potential is necessary to achieve
respectable spinor structure in CP2. One could say that the orbital angular momentum in
SO(4) corresponds to strong isospin and spin part of angular momentum to the weak isospin.

This argument does not seem to be consistent with SU(3)×U(1) ⊂ SU(4) symmetry for Mx
Dirac equation. One can however argue that SU(4) symmetry combines SO(4) multiplets
together. Furthermore, SO(4) represents the isometries leaving Kähler form invariant.

5.6.4 M8 −H duality in low energy physics and low energy hadron physics

M8−H can be applied to gain a view about color confinement. The basic idea would be that SO(4)
and SU(3) provide provide dual descriptions of quarks using E4 and CP2 partial waves and low
energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies.

A possible interpretation is that the space-time surfaces vary so slowly in CP2 degrees of
freedom that can approximate CP2 with a small region of its tangent space E4. One could also
say that color interactions mask completely electroweak interactions so that the spinor connection
of CP2 can be neglected and one has effectively E4. The basic prediction is that SO(4) should
appear as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks
and gluons are expected to appear at the confinement limit. Since WCW degrees of freedom
begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly
relate to the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong
SO(4) quantum numbers can be identified as orbital counterparts of right and left handed
electro-weak isospin coinciding with strong isospin for lowest quarks. In sigma model pion
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and sigma boson form the components of E4 valued vector field or equivalently collection
of four E4 Hamiltonians corresponding to spherical E4 coordinates. Pion corresponds to S3

valued unit vector field with charge states of pion identifiable as three Hamiltonians defined
by the coordinate components. Sigma is mapped to the Hamiltonian defined by the E4 radial
coordinate. Excited mesons corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) par-
tial waves. At the low energy limit only lowest representations would be important whereas
at higher energies higher partial waves would be excited and the description based on CP2

partial waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left
resp. right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin
statistics problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both
cases so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-
adic mass calculations allowing fractally scaled up versions of various quarks allow to replace
Gell-Mann mass formula with highly successful predictions for hadron masses [K20].

To my opinion these observations are intriguing enough to motivate a concrete attempt to
construct low energy hadron physics in terms of SO(4) gauge theory.

5.7 Summary

The overall conclusion is that the most convincing scenario relies on the associativity/co-associativity
of space-time surfaces define by induced gamma matrices and applying both for M8 and H. The
fact that the duality can be continued to an iterated sequence of duality maps M8 → H → H... is
what makes the proposal so fascinating and suggests connection with fractality.

The introduction of Kähler action and coupling of spinors to Kähler gauge potentials is highly
natural. One can also consider the idea that the space-time surfaces in M8 and H have same
induced metric and Kähler form: for iterated duality map this would mean that the steps in the
map produce space-time surfaces which identical metric and Kähler form so that the sequence might
stop. M8

H duality might provide two descriptions of same underlying dynamics: M8 description
would apply in long length scales and H description in short length scales.

6 Weak Form Electric-Magnetic Duality And Its Implica-
tions

The notion of electric-magnetic duality [B2] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric
monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kähler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K11] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
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an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kähler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kähler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field
associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability
conditions boil down to two scalar functions: the first one satisfies massless d’Alembert
equation in the induced metric and the gradients of the scalar functions are orthogonal. The
interpretation in terms of momentum and polarization directions is natural.

6.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the embedding space coordinates
in the space-time regions with Minkowskian resp. Euclidian signature of the induced metric.
This is a condition on modified gamma matrices and hyper-quaternionicity states that they span
a hyper-quaternionic sub-space.

6.1.1 Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
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which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kähler form assignable to the complement of the tangent
space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of CP2 type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kähler electric fluxes are apart from constant
proportional to Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (6.1)

A more general form of this duality is suggested by the considerations of [K15] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (6.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (6.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on
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Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X2 depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.

6.1.2 Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L1] , [L1]
read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (6.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (6.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3V
2
−Qem , p = sin2(θW ) . (6.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L+sin2(θW )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2Z
4π~0

=
αem

p(1− p)
. (6.7)



6.1 Could A Weak Form Of Electric-Magnetic Duality Hold True? 49

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the Kähler-Dirac operator to conserved charges implies cor-
relation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Qem and QZ would
be also seen as the identification of the fine structure constants αem and αZ . This however
requires weak isospin invariance.

6.1.3 The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric
field equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has αK = g2K/4π~0 = αem ' 1/137, where
αem is finite structure constant in electron length scale and ~0 is the standard value of Planck
constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP2. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the “Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Qem
and QZ allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K21] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/αK and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2K/4π becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling α → α/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g2K/~ implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

K = n× g2K
~
, n ∈ Z . (6.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (6.9)
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In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for CP2 type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP2 radius and αK the effective replacement g2K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kähler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP2 is such that in CP2 coordinates for the Euclidian region the tensor (gαβgµν − gανgµβ)/

√
g

remains invariant. This is certainly the case for CP2 type vacuum extremals since by the light-
likeness of M4 projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.

6.1.4 Reduction of the quantization of Kähler electric charge to that of electromag-
netic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z0 field

γ = 3J − sin2θWR12 ,

Z0 = 2R03 . (6.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are effec-
tively absent. Only in phases with a large value of Planck constant classical Z0 field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K22]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and
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CP2 are allowed as simplest possible solutions of field equations [K29]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with CP2 metric multiplied with the 3-volume
fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.

6.2 Magnetic Confinement, The Short Range Of Weak Forces, And
Color Confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

6.2.1 How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3V cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!
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6.2.2 Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced W boson
fields are vanishing. The vanishing of classical Z0 field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

6.2.3 Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state q±1/2 − X∓1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum
of color hyper charges coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kähler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP2

and believed on M4 × S2.
p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark

variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most

general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of M89 physics takes place in some shorter
scale and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons
would be by a factor 2(89−61)/2 = 214 higher and about 1.6 × 104 TeV. M89 quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.
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In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths Le(k) =

√
5L(k): they are associated with Gaussian

Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D1] .

6.2.4 Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [?] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies ZEO. A
highly attractive assumption is that the particles appearing at wormhole throats are on mass
shell particles. For incoming and outgoing elementary bosons and their super partners they
would be positive it resp. negative energy states with parallel on mass shell momenta. For
virtual bosons they the wormhole throats would have opposite sign of energy and the sum
of on mass shell states would give virtual net momenta. This would make possible twistor
description of virtual particles allowing only massless particles (in 4-D sense usually and in
8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.



6.3 Could Quantum TGD Reduce To Almost Topological QFT? 54

In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K17] . If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K18] .

6.3 Could Quantum TGD Reduce To Almost Topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
also for the Kähler-Dirac action action. I gave up this proposal but the following argument shows
that Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα
plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the

quantity J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement h→ n× h would effectively describe this. Boundary conditions would however
give 1/n factor so that ~ would disappear from the Kähler function! It is somewhat surprising
that Kähler action gives Chern-Simons action in the vacuum sector defined as sector for which
Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute “almost” would come from the fact that one has non-
vanishing classical Noether charges defined by Kähler action and non-trivial quantum dynamics in
M4 degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (“massless extremals” for which
weak self-duality condition does not make sense [K4] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kähler action. This implies that the M4 part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original näıve conclusion was that since Chern-Simons action depends on CP2 coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M4 degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kähler function must respect the weak electro-magnetic duality which relates
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Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic
field. Therefore the dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβ gamma)

√
g4d

3x . (6.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that for
rM = constant sphere - call it J1. The generalization of the weak form of self-duality
would be Jnβ = εnβγδK(Jγδ + εJ1

γδ). This form implies that the boundary term gives a

non-trivial contribution to the M4 part of the WCW metric even without the constraint
from electric-magnetic duality. Kähler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (6.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kähler current: dt = φjK . This condition in turn
implies d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more
concretely,

εαβγδjKβ ∂γj
K
delta = 0 . (6.13)

jK is a four-dimensional counterpart of Beltrami field [B3] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K4] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton current:
jK = φjI , where jI = ∗(J ∧A) is the instanton current, which is not conserved for 4-D CP2

projection. The conservation of jK implies the condition jαI ∂αφ = ∂αj
αφ and from this φ can

be integrated if the integrability condition jI∧djI = 0 holds true implying the same condition
for jK . By introducing at least 3 or CP2 coordinates as space-time coordinates, one finds that
the contravariant form of jI is purely topological so that the integrability condition fixes the
dependence on M4 coordinates and this selection is coded into the scalar function φ. These
functions define families of conserved currents jαKφ and jαI φ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A→ A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence
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a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (6.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the Kähler-Dirac in-
teraction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not affecting Kähler action. The gauge transformed Kähler gauge potential
couples to the Kähler-Dirac equation and its effect could be visible in the value of Kähler
function and therefore also in the properties of the preferred extremal. The effect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD × CP2 generating the gauge transfor-
mation represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and
corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits
and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to Kähler-Dirac action as
boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M4 Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce effectively to massless on-shell states but have
non-physical helicity.

7 How To Define Generalized Feynman Diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge
of TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or
actually M-matrix which generalizes this notion in ZEO (ZEO) [K23] . This work has led to the
notion of generalized Feynman diagram and the challenge is to give a precise mathematical meaning
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for this object. The attempt to understand the counterpart of twistors in TGD framework [K28]
has inspired several key ideas in this respect but it turned out that twistors themselves need not
be absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman
diagram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats
carrying quantum numbers) and vertices identified as their 2-D ends - I call them partonic
2-surfaces is central. Speaking somewhat loosely, generalized Feynman diagrams (plus back-
ground space-time sheets) define the “world of classical worlds” (WCW). These diagrams
involve the analogs of stringy diagrams but the interpretation is different: the analogs of
stringy loop diagrams have interpretation in terms of particle propagating via two different
routes simultaneously (as in the classical double slit experiment) rather than as a decay of
particle to two particles. For stringy diagrams the counterparts of vertices are singular as
manifolds whereas the entire diagrams are smooth. For generalized Feynman diagrams ver-
tices are smooth but entire diagrams represent singular manifolds just like ordinary Feynman
diagrams do. String like objects however emerge in TGD and even ordinary elementary par-
ticles are predicted to be magnetic flux tubes of length of order weak gauge boson Compton
length with monopoles at their ends as shown in accompanying article. This stringy character
should become visible at LHC energies.

2. ZEO (ZEO) and causal diamonds (intersections of future and past directed light-cones) define
second key ingredient. The crucial observation is that in ZEO it is possible to identify off
mass shell particles as pairs of on mass shell fermions at throats of wormhole contact since
both positive and negative signs of energy are possible and one obtains also space-like total
momenta for wormhole contact behaving as a boson. The localization of fermions to string
world sheets and the fact that super-conformal generator G carries fermion number combined
with twistorial consideration support the view that the propagators at fermionic lines are of
form (1/G)ipkγk(1/G† + h.c. and thus hermitian. In strong models 1/G would serve as a
propagator and this requires Majorana condition fixing the dimension of the target space to
10 or 11.

3. A powerful constraint is number theoretic universality requiring the existence of Feynman
amplitudes in all number fields when one allows suitable algebraic extensions: roots of unity
are certainly required in order to realize p-adic counterparts of plane waves. Also embedding
space, partonic 2-surfaces and WCW must exist in all number fields and their extensions.
These constraints are enormously powerful and the attempts to realize this vision have dom-
inated quantum TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices
is a further important element as far as twistors are considered [K28] . Kähler-Dirac gamma
matrices at space-time surfaces are quaternionic/associative and allow a genuine matrix rep-
resentation. As a matter fact, TGD and WCW could be formulated as study of associative
local sub-algebras of the local Clifford algebra of 8-D embedding space parameterized by
quaternionic space-time surfaces.

5. A central conjecture has been that associative (co-associative) 4-surfaces correspond to pre-
ferred extremals of Kähler action [K31]. It took long time to realize that in ZEO the notion
of preferred extremal might be un-necessary! The reason is that 3-surfaces are now pairs of
3-surfaces at boundaries of causal diamonds and for deterministic dynamics the space-time
surface connecting them is expected to be more or less unique. Now the action principle is
non-deterministic but the non-determinism would give rise to additional discrete dynamical
degrees of freedom naturally assignable to the hierarchy of Planck constants heff = n× h, n
the number of space-time surface with same fixed ends at boundaries of CD and with same
values of Kähler action and of conserved quantities. One must be however cautions: this
leaves the possibility that there is a gauge symmetry present so that the n sheets correspond
to gauge equivalence classes of sheets. Conformal invariance is associated with criticality and
is expected to be present also now.

One can of course also ask whether one can assume that the pairs of 3-surfaces at the ends of
CD are totally un-correlated. If this assumption is not made then preferred extremal property
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would make sense also in ZEO and imply additional correlation between the members of these
pairs. This kind of correlations would correspond to the Bohr orbit property, which is very
attractive space-time correlate for quantum states. This kind of correlates are also expected
as space-time counterpart for the correlations between initial and final state in quantum
dynamics.

6. A further conjecture has been that preferred extremals are in some sense critical (second
variation of Kähler action could vanish for infinite number of deformations defining a super-
conformal algebra). The non-determinism of Kähler action implies this property for n > 0
in heff = nh. If the criticality is present, it could correspond to conformal gauge invariance
defined by sub-algebras of conformal algebra with conformal weights coming as multiples of
n and isomorphic to the conformal algebra itself.

7. As far as twistors are considered, the first key element is the reduction of the octonionic
twistor structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor
and twistor structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [K31, K28] .

1. The progress was stimulated by the simple observation that on mass shell property puts
enormously strong kinematic restrictions on the loop integrations. With mild restrictions on
the number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case
of massless particles and due to IR cutoff due to the presence largest CD- the number of
diagrams is finite. Unitarity reduces to Cutkosky rules [B5] automatically satisfied as in the
case of ordinary Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely
necessary in this approach although they are of course possible. Situation changes if one
does not assume small p-adically thermal mass due to the presence of massless particles and
one must sum infinite number of diagrams. Here a potential problem is whether the infinite
sum respects the algebraic extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about
the functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic
challenges are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral
or summation over loop momenta. Note that the order is important since the space-time
surface assigned to the line carries information about the quantum numbers associated with
the line by quantum classical correspondence realized in terms of Kähler-Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis
relying on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly
that the loop momenta are discretized and ZEO predicts this kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general level
both in real and p-adic context. This is due to the symmetric space property (maximal number
of isometries) of WCW required by the mere mathematical existence of Kähler geometry [K15] in
infinite-dimensional context already in the case of much simpler loop spaces [A4] .

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible
looking technical challenge of p-adic physics- for symmetric spaces for functions allowing the
analog of discrete Fourier decomposition. Symmetric space property is indeed essential also
for the existence of Kähler geometry for infinite-D spaces as was learned already from the
case of loop spaces. Plane waves and exponential functions expressible as roots of unity and
powers of p multiplied by the direct analogs of corresponding exponent functions are the basic
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building bricks and key functions in harmonic analysis in symmetric spaces. The physically
unavoidable finite measurement resolution corresponds to algebraically unavoidable finite
algebraic dimension of algebraic extension of p-adics (at least some roots of unity are needed).
The cutoff in roots of unity is very reminiscent to that occurring for the representations of
quantum groups and is certainly very closely related to these as also to the inclusions of
hyper-finite factors of type II1 defining the finite measurement resolution.

2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram
defining the basic building brick for WCW. Kähler function decomposes to a sum of “ki-
netic” terms associated with its ends and interaction term associated with the line itself.
p-Adicization boils down to the condition that Kähler function, matrix elements of Kähler
form, WCW Hamiltonians and their super counterparts, are rational functions of complex
WCW coordinates just as they are for those symmetric spaces that I know of. This would
allow a continuation to p-adic context.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

7.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to this goal is by making questions.

7.1.1 What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement res-
olution in which case one obtains only finite sums of what one might hope to be algebraic
functions. The finiteness of the algebraic extension would be in fact equivalent with the finite
measurement resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids.
p-Adicization condition suggests that one must allow only the number theoretic braids. For
these the ends of braid at boundary of CD are algebraic points of the embedding space. This
would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use
momentum eigenstates to achieve quantum classical correspondence in the Kähler-Dirac ac-
tion [K31] suggests however a de-localization of braid points, that is wave function in space
of braid points. In real context one could allow all possible choices for braid points but in
p-adic context only algebraic points are possible if one wants to replace integrals with sums.
This implies finite measurement resolution analogous to that in lattice. This is also the only
possibility in the intersection of real and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and anti-fermions
is bounded above by the number nalg of algebraic points for a given partonic 2-surface:
nF +nF ≤ nalg. Outside the intersection of real and p-adic worlds the problematic aspect of
this definition is that small deformations of the partonic 2-surface can radically change the
number of algebraic points unless one assumes that the finite measurement resolution means
restriction of WCW to a sub-space of algebraic partonic surfaces.

4. Braids defining propagator lines for fundamental fermions (to be distinguished from observer
particles) emerges naturally. Braid strands correspond to the boundaries of string world
sheets at which the modes of induced spinor fields are localized from the condition that em
charge is well-defined: induced W field and above weak scale also Z0 field vanish at them.

In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
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the boundaries are light-like geodesics and fermion has light-like 8-momentum. This sug-
gests strongly a connection with quantum field theory and an 8-D generalization of twistor
Grassmannian approach. By field equations the bosonic part of this action does not con-
tribute to the Kähler action. The light-like 8-momenta pk have same M4 and CP2 mass
squared and latter correspond to the the eigenvalues of the CP2 spinor d’Alembertian by
quantum-classical correspondence.

5. One has also discretization of the relative position of the second tip of CD at the hyperboloid
isometric with mass shell. Only the number of braid points and their momenta would matter,
not their positions.

6. The quantum numbers characterizing positive and negative energy parts of zero energy states
couple directly to space-time geometry via the measurement interaction terms in Kähler
action expressing the equality of classical conserved charges in Cartan algebra with their
quantal counterparts for space-time surfaces in quantum superposition. This makes sense if
classical charges parametrize zero modes. The localization in zero modes in state function
reduction would be the WCW counterpart of state function collapse.

7.1.2 How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler func-
tion. Gaussian and metric determinants cancel each other and only algebraic expressions
remain. Finiteness is not a problem since the Kähler function is non-local functional of 3-
surface so that no local interaction vertices are present. One should however assume the
vanishing of loops required also by algebraic universality and this assumption look unreal-
istic when one considers more general functional integrals than that of vacuum functional
since free field theory is not in question. The construction of the inverse of the WCW metric
defining the propagator is also a very difficult challenge. Duistermaat-Hecke theorem states
that something like this known as localization might be possible and one can also argue that
something analogous to localization results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there
would be no need for perturbation theory in the proposed sense. In finite measurement reso-
lution the symmetric spaces involved would be finite-dimensional. Symmetric space structure
of WCW could also allow to define p-adic integration in terms of p-adic Fourier analysis for
symmetric spaces. Essentially algebraic continuation of the integration from the real case
would be in question with additional constraints coming from the fact that only phase fac-
tors corresponding to finite algebraic extensions of rationals are used. Cutoff would emerge
automatically from the cutoff for the dimension of the algebraic extension.

7.1.3 How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.

1. WCW integration must be carried out separately for all values of the momenta associated
with the internal lines. The reason is that the spectrum of eigenvalues λi of the Kähler-
Dirac operator D depends on the momentum of line and momentum conservation in vertices
translates to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible
in terms of harmonics of symmetric space , there should be no problems.
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3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficul-
ties are encountered if the spectrum of the momenta is continuous. The integration over on
mass shell loop momenta is analogous to the integration over sub-CDs, which suggests that
internal line corresponds to a sub − CD in which it is at rest. There are excellent reasons
to believe that the moduli space for the positions of the upper tip is a discrete subset of
hyperboloid of future light-cone. If this is the case, the loop integration indeed reduces to a
sum over discrete positions of the tip. p-Adizication would thus give a further good reason
why for ZEO.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a
sum over these for each propagator line. At vertices one has products of WCW harmonics
assignable to the incoming lines. The product must have vanishing quantum numbers asso-
ciated with the phase angle variables of WCW. Non-trivial quantum numbers of the WCW
harmonic correspond to WCW quantum numbers assignable to excitations of ordinary el-
ementary particles. WCW harmonics are products of functions depending on the “radial”
coordinates and phase factors and the integral over the angles leaves the product of the first
ones analogous to Legendre polynomials Pl,m, These functions are expected to be rational
functions or at least algebraic functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent
case this would mean that incoming stringy lines at the ends of CD correspond to fermions
satisfying the stringy mass formula serving as a generalization of masslessness condition.

7.2 Generalized Feynman Diagrams At Fermionic And Momentum SpaceLevel

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynman diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in
the topological sense.

One must be however ready for the possibility that something unexpectedly simple might
emerge. For instance, the vision about algebraic physics allows naturally only finite sums for
diagrams and does not favor infinite perturbative expansions. Hence the true believer on algebraic
physics might dream about finite number of diagrams for a given reaction type. For simplicity
generalized Feynman diagrams without the complications brought by the magnetic confinement
since by the previous arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram
representing particles are only re-arranged in the vertices. This however does not allow to get rid
of off mass shell momenta. ZEO encourages to consider a stronger form of this principle in the
sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the
interaction region the idea about reducing the construction of Feynman diagrams to some kind of
lego rules might work.

7.2.1 Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts
join at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
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throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and
outgoing ones to −− type lines. The first two line pairs allow only time like net momenta
whereas +− line pairs allow also space-like virtual momenta. The sign assigned to a given
throat is dictated by the sign of the on mass shell momentum on the line. The condition
that Cutkosky rules generalize as such requires ++ and −− type virtual lines since the cut
of the diagram in Cutkosky rules corresponds to on mass shell outgoing or incoming states
and must therefore correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop inte-
grals are integrals over mass shell momenta and that all throats carry on mass shell momenta.
In each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a com-
mon kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3

are possible. The virtual states N2 include all all states in the intersection of kinematically
allow regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible
diagrams is not fulfilled if one allows massless particles. If all particles are massive then the
particle number N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in
mind twistor diagrams) since the conservation laws at vertices imply that the momenta are
parallel. In the massive case and allowing mass spectrum the situation is not so simple. As a
first example one can consider a loop with three vertices and thus three internal lines. Three
on mass shell conditions are present so that the four-momentum can vary in 1-D subspace
only. For a loop involving four vertices there are four internal lines and four mass shell
conditions so that loop integrals would reduce to discrete sums. Loops involving more than
four vertices are expected to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary
fermions and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle
wave functions in the momentum degrees of freedom of fermion and X± might allow more
flexibility and allow more loops. Note however that there are excellent hopes about the
finiteness of the theory also in this case.

7.2.2 Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something
is missing. Magnetic monopoles are an essential element of also these theories as also mas-
sivation and symmetry breaking and this encourages to think that the formation of massive
states as fermion X± pairs is needed. Of course, in TGD framework one has also high mass
excitations of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the
case since the propagator is defined as the inverse of the 3-D dimensional reduction of the
Kähler-Dirac operator D containing also coupling to four-momentum (this is required by
quantum classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (7.1)
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The propagator does not diverge for on mass shell massless momenta and the propagator
lines are well-defined. This is of course of essential importance also in general case. Only for
the incoming lines one can consider the possibility that 3-D Dirac operator annihilates the
induced spinor fields. All lines correspond to generalized eigenstates of the propagator in the
sense that one has D3Ψ = λγΨ, where γ is Kähler-Dirac gamma matrix in the direction of the
stringy coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional
reduction of the 4-D Kähler-Dirac operator. The eigenvalue λ is analogous to energy. Note
that the eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related
to poles since the loop integrands for given massless wormhole contact are proportional to
dx/x3 for large values of x.

4. Irrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [?] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond
to a product of N fermion propagators with same four-momentum so that for fermions and
ordinary bosons one has the standard behavior but for N > 2 non-standard so that these
excitations are not seen as ordinary particles. Higher vertices are finite only if the total
number NF of fermions propagating in the loop satisfies NF > 3N − 4. For instance, a
4-vertex from which N = 2 states emanate is finite.

7.2.3 Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B2]
leads to the picture about elementary particles as pairs of magnetic monopoles inspiring the no-
tions of weak confinement based on magnetic monopole force. Also color confinement would have
magnetic counterpart. This means that elementary particles would behave like string like objects
in weak boson length scale. Therefore one must also consider the stringy case with wormhole
throats replaced with fermion-X± pairs (X± is electromagnetically neutral and ± refers to the
sign of the weak isospin opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent
objects, that is scatter elastically. In more general case only their higher excitations identifi-
able in terms of stringy degrees of freedom would be created in vertices. The massivation of
these states makes possible non-collinear vertices. An open question is how the massivation
fermion-X± pairs relates to the existing TGD based description of massivation in terms of
Higgs mechanism and Kähler-Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also
vertex normalization. By very general arguments supersymmetry implies the cancellation of
the self energy loops but would allow non-trivial vertex renormalization [?] .

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-anti-fermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and
p-adic length scale hypothesis favors the inverse of the size scale of CD coming in powers of
two. This parameter would define the momentum resolution as a discrete parameter of the
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p-adic coupling constant evolution. This scale does not have any counterpart in standard
physics. For electron, d quark, and u quark the proper time distance between the tips of
CD corresponds to frequency of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define
fundamental bio-rhythms [K12] .

These considerations have left completely untouched one important aspect of generalized Feyn-
man diagrams: the necessity to perform a functional integral over the deformations of the partonic
2-surfaces at the ends of the lines- that is integration over WCW. Number theoretical universal-
ity requires that WCW and these integrals make sense also p-adically and in the following these
aspects of generalized Feynman diagrams are discussed.

7.3 Harmonic Analysis In WCW As a way To Calculate WCWFunc-
tional Integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and
the use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and
corresponding “radial” coordinates are essential for WCW integration and p-adicization. Kähler
function, the components of the metric, and therefore also metric determinant and Kähler function
depend on the “radial” coordinates only and the possible generalization involves the identification
the counterparts of the “radial” coordinates in the case of WCW.

7.3.1 Conditions guaranteeing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional
integral over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of “kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line indepen-
dently. This means an enormous simplification. Each line contributes besides propagator
a piece to the exponent of Kähler action identifiable as interaction term in action and de-
pending on the propagator momentum. This contribution should be expressible in terms of
generalized spherical harmonics. Essentially a sum over the products of pairs of harmonics
associated with the ends of the line multiplied by coefficients analogous to 1/(p2−m2) in the
case of the ordinary propagator would be in question. The optimal situation is that the pairs
are harmonics and their conjugates appear so that one has invariance under G analogous to
momentum conservation for the lines of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the Kähler-Dirac operator D at
propagator lines [K31] . G-invariance at vertex dictates the vertex as the singlet part of the
product of WCW harmonics associated with the vertex and one sums over the harmonics for
each internal line. p-Adicization means only the algebraic continuation to real formulas to
p-adic context.

4. The exponent of Kähler function depends on both ends of the line and this means that
the geometries at the ends are correlated in the sense that Kähler form contains interaction
terms between the line ends. It is however not quite clear whether it contains separate
“kinetic” or self interaction terms assignable to the line ends. For Kähler function the kinetic
and interaction terms should have the following general expressions as functions of complex
WCW coordinates:
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Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (7.2)

Here Kkin,i define “kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field the-
ories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (7.3)

such that the products are invariant under the group H appearing in G/H and therefore
have opposite H quantum numbers. The exponent of Kähler function does not factorize
although the terms in its Taylor expansion factorize to products whose factors are products
of holomorphic and antiholomorphic functions.

5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of
the Kähler-Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(7.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

7.3.2 Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since
also the interaction term between the ends of the line is present not taken into account in the
previous approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [K11, K31]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (7.5)

works for the kinetic terms only since J cannot be the same at the ends of the line. The
formula defining K assumes weak form of self-duality (03 refers to the coordinates in the
complement of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic
invariant and constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining
the counterpart of Kähler electric field equals to the Kähler charge gK gives the condition
K = g2K/~, where gK is Kähler coupling constant. Within experimental uncertainties one

has αK = g
/
K4π~0 = αem ' 1/137, where αem is finite structure constant in electron length

scale and ~0 is the standard value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of em-
bedding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One
starts from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as
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JA,B ≡ Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associ-
ated with the exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible
as JA,B = ∂tA/∂HB . From these formulas one can deduce by using chain rule that the
bracket {Q(HA), Q(HB} = ∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the
flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the inter-
action term. The symplectic conjugation associated with the interaction term permutes the
WCW coordinates assignable to the ends of the line. One should reduce this apparently non-
local symplectic conjugation (if one thinks the ends of line as separate objects) to a non-local
symplectic conjugation for δCD × CP2 by identifying the points of lower and upper end of
CD related by time reflection and assuming that conjugation corresponds to time reflection.
Formally this gives a well defined generalization of the local Poisson brackets between time
reflected points at the boundaries of CD. The connection of Hermitian conjugation and time
reflection in quantum field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is
defined as by the geodesic line orthogonal to S2 and going through the point of X2. The
hierarchy of Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a
unique sphere S2 as a sphere for which the radial coordinate rM or the light-cone boundary
defined uniquely is constant: this radial coordinate corresponds to spherical coordinate in
the rest system defined by the time-like vector connecting the tips of CD. Either spheres or
possibly both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [K9] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only
that the S2 coordinates of the projection are algebraic and that these coordinates correspond
to the discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1±, x
2
±)
d2x± . (7.6)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of
H[A,B] over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (7.7)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of
Kähler form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same
should hold true now. In the recent case JA,B would contain an interaction term defined
in terms of flux Hamiltonians and the previous argument should go through also now by
identifying Hamiltonians as sums of two contributions and by introducing the doubling of
the coordinates tA.
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5. The quantization of the Kähler-Dirac operator must be reconsidered. It would seem that
one must add to the super-Hamiltonian completely analogous term obtained by replacing
(1+K)J with X∂(s1, s2)/∂(x1±, x

2
±). Besides the anti-commutation relations defining correct

anti-commutators to flux Hamiltonians, one should pose anti-commutation relations consis-
tent with the anti-commutation relations of super Hamiltonians. In these anti-commutation
relations (1 + K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that
the oscillator operators at the ends of the line are not independent and that the resulting
Hamiltonian reduces to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).

7.3.3 Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear
whether the expansion in powers of K actually converges.

1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in
powers of K and therefore in negative powers of αK . In principle an infinite number of terms
can be present. This is analogous to the perturbative expansion based on using magnetic
monopoles as basic objects whereas the expansion using the contravariant Kähler metric as
a propagator would be in positive powers of αK and analogous to the expansion in terms of
magnetically bound states of wormhole throats with vanishing net value of magnetic charge.
At this moment one can only suggest various approaches to how one could understand the
situation.

2. Weak form of self-duality and magnetic confinement could change the situation. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to
α0
K and αK . This would leave to the scattering amplitudes the exponents of Kähler function

at the maximum of Kähler function so that the non-analytic dependence on αK would not
disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs
of states with arbitrarily high but opposite values of quantum numbers. In the functional
integral these quantum numbers would compensate each other. The functional integral would
leave only an expansion containing powers of αK starting from some finite possibly negative
(unless one assumes the weak form of self-duality) power. Various gauge coupling strengths
are expected to be proportional to αK and these expansions should reduce to those in powers
of αK .

2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorphic factorization the expansion in powers ofK means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
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particles with opposite and arbitrarily high values of quantum numbers could be generated
at the vertex and magnetic confinement might be necessary to guarantee the convergence.
Also super-symmetry could imply cancellations in loops.

7.3.4 Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as inter-
action terms inspires the question whether the Kähler function could contain only the interaction
terms so that Kähler form and Kähler metric would have components only between the ends of
the lines.

1. The basic objection is that flux Hamiltonians too beautiful objects to be left without any
role in the theory. One could also argue that the WCW metric would not be positive definite
if only the non-diagonal interaction term is present. The simplest example is Hermitian
2× 2-matrix with vanishing diagonal for which eigenvalues are real but of opposite sign.

2. One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local
interaction vertices. These terms do not produce divergences now but the possibility that
the exponential series of this kind of terms could diverge cannot be excluded. The absence
of the kinetic terms would allow to get rid of these terms and might be argued to be the
symmetric space counterpart for the vanishing of loops in WCW integral.

3. In ZEO this idea does not look completely non-sensical since physical states are pairs of
positive and negative energy states. Note also that in quantum theory only creation operators
are used to create positive energy states. The manifest non-locality of the interaction terms
and absence of the counterparts of kinetic terms would provide a trivial manner to get rid of
infinities due to the presence of local interactions. The safest option is however to keep both
terms.

7.3.5 Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the Kähler-Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of
decisive importance is that the entire Feynman diagrammatics at WCW level would reduce to the
construction of WCW geometry for a single propagator line as a function of quantum numbers
propagating on the line.
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