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Abstract
Topological field quantization is applied to a unified description of three macroscopic quan-

tum phases: super conductors, super fluids and quantum Hall phase. The basic observation
is that the formation of connections identified as join along boundaries bonds makes possible
the formation of macroscopic quantum system from topological field quanta having size of the
order of the coherence length ξ for ordinary phase. The presence of the connections makes
possible supra flow and the presence of two levels of the topological condensate explains the
two-fluid picture of super fluids. In standard physics, the order parameter is constant in the
ground state. In TGD context, the non-simply connected topology of the 3-surface makes pos-
sible ground states with a covariantly constant order parameter characterized by the integers
telling the change of the order parameter along closed homotopically nontrivial loops. Later
an alternative identification of connections as Kähler magnetic flux tubes carrying magnetic
monopole flux has emerged but does not change the general vision.

The role of the ordinary magnetic field in super conductivity is proposed to be taken by the
Z0 magnetic field in super fluidity and the mathematical descriptions of super conductors and
super fluids become practically identical. The generalization of the quantization condition for
the magnetic flux to a condition involving also a velocity circulation, plays a central role in the
description of both phases and suggests a new description of the rotating super fluid and some
new effects. A classical explanation for the fractional Quantum Hall effect in terms of the
topological field quanta is proposed. Quantum Hall phase is very similar to the supra phases:
an essential role is played by the generalized quantization condition and the hydrodynamic
description of the Hall electrons. The role of Z0 magnetic field is suggested by large parity
breaking effects in biology.

The results obtained support the view that in condensed matter systems topological field
quanta with size of the order of ξ ' 10−8 − 10−7 meters are of special importance. This new
length scale is expected to have also applications to less exotic phenomena of the condensed
matter physics (the description of the conductors and di-electrics and ferromagnetism) and
in hydrodynamics (the failure of the hydrodynamic approximation takes place at this length
scale). These field quanta of course, correspond to only one condensate level and many length
scales are expected to be present.

1 Introduction

Super conductivity, super fluidity and quantum Hall effect are examples of macroscopic quantum
phenomena and it is instructive to apply the TGD inspired topological ideas about the formation
of the macroscopic quantum systems to these phenomena. This chapter is is written for about 15
years ago and I hope that the reader does not forget that much has occurred in TGD since then.

For instance, Z0 magnetic fields are suggested to be important for understanding super fluidity
without precise characterization of there origin. About 15 years after writing the first version of
this chapter, it became clear that the source of the long ranged Z0 fields, as well as other weak
fields and color gauge fields predicted by the classical theory could be dark matter at various
space-time sheets. Also a precise number theoretic characterization of dark matter, or actually
infinite hierarchy of dark matters, emerged. Already earlier it had become clear that the theory
predicts a fractal hierarchy of scaled down copies of electro-weak and color physics. I have not
added any discussion of the origin of Z0 classical gauge fields here. This kind of discussion can be
found in [?, K4, K2].

Around 2012 it became clear that the condition that the em charge of the modes of the induced
spinor field is well-defined forces in the generic case the localization of the nodes to 2-D surfaces
carrying vanishing W fields and above weak scale also vanishing Z0 fields. This resolves the
problems caused by the strong breaking of parity symmetry.

In the first section the general ideas of the TGD inspired description of supra phases are
described. The aim is to make clear the close similarity between super conductivity and super
fluidity by treating these phenomena in parallel. What makes possible the unified description is
the hypothesis that the role of the ordinary magnetic field in the super conductivity is taken by
the Z0 magnetic field in the super fluid phase.

In the second, more technical section, certain simple imbeddings of Kähler electric and magnetic
fields created by matter and relevant to the applications of the theory, are studied.

In the third section a TGD inspired phenomenological description of Quantum Hall effect is
proposed. A more refined view about Quantum Hall effect developed about 15 years later can be
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found in [K1] . In the last section the TGD inspired description of less exotic condensed matter
phenomena (conductors, di-electrics and magnetism) using TGD based concepts will be discussed
briefly.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 General Theory

RGE invariance predicts that 3-space should have fractal like structure consisting of topological
field quanta of all possible sizes glued on each other by the topological sum operation. The join
along boundaries bond provides a tool for constructing larger quantum systems from the smaller
ones. Since dissipation corresponds to a loss of the quantum coherence, flux tube should provide
a key to a topological description of the dissipation. The generation of the long range classical
Z0 fields is a phenomenon characteristic for TGD, and is expected to be important in the small
vacuum quantum number limit of TGD at the condensate levels n ≥ nZ L(n) ≥ ξ ∼ 10−6 m. For
supra phases the correlation lengths are such that classical Z0 force should not have any role in
their description.

The mathematical similarities between super conductors and super liquids however suggest
that Z0 magnetic field might play same role in the description of dissipation of super fluids as
ordinary magnetic field in the description of the super conductors. The many sheeted structure
of the topological condensate and length scale hierarchy remains rather implicit in the following
considerations and the most relevant condensation levels are “atomic condensation level” at which
electrons and nuclei are condensed and the level nZ at which nuclei feed their Z0 charges.

2.1 Identification Of The Topological Field Quanta

Both super conductors and Super fluids are characterized by the coherence length ξ. This length
tells the size of the largest possible coherent quantum subsystem in the ordinary phase and becomes
infinite, when the transition to the supra phase takes place. Below the critical point the value of
ξ is finite, but there is macroscopic quantum coherence since the order parameter develops vac-
uum expectation value. Since topological field quanta correspond in TGD framework to coherent
quantum systems a natural assumption is that the relevant topological field quanta have size of
the order of ξ. ξ is typically of the order of ξ ' 10−8−10−7 meters for super conductors, for super
fluid He4 ξ is of the order of atomic length scale and for He3 ξ is of the order of 10−8 meters. This
suggests that also ordinary matter behaves like supra phase in the length scales shorter than ξ. Of
course, the corresponding time scale is rather short for the typical velocities of the supra flows.

In accordance with RGE hypothesis, it is assumed that topological field quanta of size ξ have
suffered topological condensation in the background 3-space and topological field quanta in turn
contain matter as topologically condensed 3-surfaces having size of atomic length scale

The size of the topological field quantum is determined by the vacuum quantum numbers
associated with it. Since the size of the topological field quantum is rather small, the values of
the vacuum quantum ω1, ω2 must be small. A first principle explanation for the finite size of
the topological field quantum is the maximization of Kähler function. The contribution of the
Kähler electric field to the Kähler action is smaller in magnitude if topological field quantization
takes place: the reason is that Kähler electric field necessarily vanishes at some point(s) inside the
topological field quantum.

In the simplest model for a topological field quantum matter serves as a source of Kähler field,
which in present case is purely electromagnetic field and possible due to the incomplete screening of
the nuclear electromagnetic charge by electrons. The critical radius associated with the embedding
of the Kähler electric field gives the size of the topological field quantum, which should be of the
order of ξ. The simplest model for the field quantum is as a spherical region. The join along
boundaries/flux tube condensate of the topological field quanta serves as a model for the ordinary
phase.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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The sizes of the field quanta are exponentially sensitive to the value of the fractal quantum
number m, which is small in present case. The order of magnitude for ω1 is not much larger than
proton mass: the estimates give ω1 = (102.5 − 103)mp (mp is proton mass).

In the astrophysical length scales and possibly also in the background 3-space surrounding
topological field quanta in question the value of ω1 is of the order of m0 ∼ 1/R ∼ 10−4mPl, where
R is CP2 radius.

Inside each topological field quantum one must perform a choice of the quantization axis and
in the ordinary phase these choices are not correlated in accordance with the idea that quantum
coherence is lost. In supra phase the presence of the flux tubes implies that same choice of the
quantization axis must be performed in the whole phase and the global choice of the quantization
axis is analogous to that taking place in the quantum measurement.

2.2 Formation Of The Supra Phase

Supra phase corresponds to lattice like structure of the topological field quanta of size ξ joined
together by the join along boundaries bonds/flux tubes. In the lowest order approximation one can
regard this lattice as a network formed by straight cylinders glued together by bonds. In supraphase
the quantum numbers n1 associated with the composite field quanta must vanish identically since
otherwise the coordinate Φ is discontinuous somewhere on the bond joining the neighbouring field
quanta and the field quantum in question separates from the supra phase. Exception is formed by
the direction of the quantization axis, where bonds survive.

2.2.1 Two-fluid picture topologically

Supra flow is made possible by the bonds between the neighbouring topological field quanta and
there is no essential difference between super conductors and super fluids in this respect. In case
of the super conductors the topological field quanta form a rigid lattice but in case of super fluids
topological field quanta are able to move. This freedom implies the two-fluid picture of the super
fluidity as the following argument shows.

1. Normal liquid corresponds to the topological field quanta (of size ξ), which flow in the back-
ground 3-space. Since the bonds are absent in the ordinary phase, the matter condensed on
the topological field quanta follows the flow of the topological field quanta so that topological
field quanta can be regarded as effective fluid particles and their mass density is that of the
liquid: ρn = ρ.

2. In supra phase the presence of the bonds make possible the flow of the topologically condensed
matter and if the bonds are stable the condensed matter flows completely freely: ρs = ρ. This
means that topological field quanta itself lose totally their inertia so that ρn = 0. Although
the flow of the topological field quanta is possible it does not correspond to the flow of an
inertial mass. This is certainly the situation at sufficiently low temperatures.

3. For temperatures slightly below Tc the situation is known to be intermediate between these
two situations and two-fluid hydrodynamics [D5] is a good phenomenological description of
the situation. One can consider two alternative explanations for this state of affairs. The
first explanation is that the fluid is a mixture of the normal and super fluid components not
only in critical temperature but also little below it so that one can speak about two fluids
with average densities satisfying the condition ρn + ρs = ρ. The second alternative is that
for the temperatures close to Tc the bonds are not completely stable and condensed matter
doesn’t flow completely freely so that topological field quanta do not lose their inertia totally.

4. One can understand also the frictionless supra flow in this picture. For example, in the
frictionless supra flow in a channel, the topological field quanta are at rest with respect to
the walls of the channel and only the matter condensed on the field quanta flows.

It should be emphasized that in TGD framework it is not possible to apply two-fluid picture
to the description of the electrons in Super conductors since the particles of the “normal fluid”
correspond to topological field quanta rather than electrons or atoms.
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2.2.2 Ground states for the supra phases

In the ground state of the super conductor, the order parameter is covariantly constant with respect
to the covariant derivative defined by the electromagnetic gauge potential. Covariant constancy
indeed makes sense since, in the absence of the magnetic fields, the gauge potential is pure gauge
in the spatial degrees of freedom. In the standard physics context the first homotopy group of
the 3-space is trivial and gauge potential can always be gauge transformed away so that the order
parameter is just constant in the ground state. In TGD context, the first homotopy of 3-surface is
nontrivial and very complicated for a join along boundaries/flux tube condensate formed from the
topological field quanta glued by the flux tubes. This implies that there is rich structure of different
covariantly constant ground states, which look macroscopically identical since the splitting of single
flux tube is not expected to affect the macroscopic properties of the system.

The induced gauge potential is in the case of the super conductors just the electromagnetic
gauge potential. Assuming that Z0 gauge fields are absent, one obtains the proportionality of the
electromagnetic and Kähler gauge potentials:

Aem = 3AK = 3P kdQk . (2.1)

Here Pk and Qk are canonical coordinates for CP2. An especially natural choice for the canonical
coordinates is the one for which Qk, k = 1, 2 correspond to the phase angles Ψ and Φ associated
with the complex CP2 coordinates for which the action of U(2) rotations is linear.

In case of the supra fluids Z0 gauge potential if electromagnetic neutrality holds true and again
the gauge potential is proportional to Kähler potential

AZ =
6

p
AK =

6

p
P kdQk ,

p ≡ sin2(θW ) . (2.2)

If the ground state has vanishing gauge field the induced Kähler field must vanish and one has
vacuum extremal of the Kähler action satisfying

Pk = ∂kf(Qi) , (2.3)

where f is arbitrary function of the coordinates Qi. In case that Qi correspond to the angle
coordinates Ψ and Φ of CP2 one can write f(Qi) as a sum of a zero mode part and Fourier
expansion

f = mΨ + nΦ +
∑
kl

cklexp(ikΨ + ilΦ) . (2.4)

The covariant constancy condition for an order parameter possessing em (Z0) charge Qem (QZ)
reads as

(∂µ + ia∂µf)ψ = 0 ,

aem = 3Qem ,

aZ =
6QZ
p

. (2.5)

The solution of the condition is

ψ = exp(iS)ψ0 ,

Sem = −3Qemf ,

SZ = −6QZ
p

f . (2.6)
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in the two cases respectively.

The phase increments around the closed homotopically nontrivial loops clearly characterize the
ground state of the supra phase. In the electromagnetic case the change of the phase of ψ around
a closed loop equals to

∆Sem = 3Qem(m∆Ψ + n∆Ψ) , (2.7)

and is clearly a multiple of 2π (also for quarks!) since m and n appearing in the expansion of f
are in general integers. For supra fluids one has

∆SZ =
6QZ
p

(m∆Ψ + n∆Φ) , (2.8)

The values of QZ for proton and neutron are QZ(neutron) = −1/4 and QZ(proton) = 1/4− p so
that one has for an order parameter describing the supra flow of nuclei (A,Z)

∆SZ = 6(
((2Z −A)

4p
− Z))(m∆Ψ + n∆Φ) , (2.9)

The increment is not integer multiple of 2π without additional conditions on the value of the
Weinberg angle. If p is rational number of form p = r/s, s must divide m and n. For instance, for
sin2(θW ) = 1/4 the vectorial couplings of the electron and proton to Z0 field vanish and the average
Z0 charge of neutron is QZ(n) = −1/4 = p so that one has in general QZ(nucleus) = −(A−Z)/4
and the increment of SZ is automatically multiple of 2π for all choices of m and n:

∆SZ = −6(A− Z)(m∆Ψ + n∆Φ) . (2.10)

Also for p = 3/8 the condition is identically satisfied.

For more complicated supra phases (Super liquid He3) the order parameter possesses several
components but also now a similar situation results. It is tempting to assume that for more general
states the phase factor of ψ is power of S. If this is the case then supra phases are exceptional in
the sense that CP2 angle coordinates appear as physical observables rather than only the gauge
fields (proportional to the gradients of CP2 coordinates) as in the ordinary ordinary phase. What
is clear is that the information about the homotopy of the state is coded into the phase of the order
parameter. This state of affairs is especially interesting as far the applications to the BE condensate
of the charged # throats possibly having an important role in bio-systems, are considered.

2.2.3 Binding energies and critical temperatures

What makes the supra flow possible are the bonds. Cooper pair also stabilize the bonds in case of
the super conductors and 3He super fluid. This becomes clear from the fact that the electrons of
the Cooper pair have an average distance, which is considerably larger than ξ (about 10−6 meters in
super conductors [D5] ) so that the splitting of the bonds destroys Cooper pairs. Energy is however
needed to destroy Cooper pairs and this implies stability. If the energy associated with the bonds
were negligible with the binding energy associated with the Cooper pairs the phase transition
leading to super conducting phase would be a first order transition involving non-vanishing latent
heat. This is however not the case [D5]. This means that the binding energy of the Cooper
pairs doesn’t leave super conductor and probably goes to the energy associated with the bonds.
Therefore the stabilization mechanism relies on the difficulty of transferring the bond energy to
the Cooper pairs.

A rough estimate for the binding energy for the Cooper pair provides a test for the proposed
ideas. In the ordinary phase conduction electrons tend to be confined inside the topological field
quanta so that by Uncertainty Principle they possess kinetic energy of the order of
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T ' 1

2meξ2
. (2.11)

In the super conducting phase conduction electrons are not localized inside single field quantum
so that the average kinetic energy is smaller and the order of magnitude estimate

∆E ' 1

4meξ2
, (2.12)

for the binding energy of the Cooper pair is obtained. For ξ ' 10−7 meters one obtains ∆E '
10−4eV , which corresponds to the temperature of Tc ' 0.25 K. The order of magnitude is correct.

For a high temperature super conductors with Tc ' 100 K, the estimate gives ξ ' 10−9 meters.
High temperature super conductors have layered structure. In case of Y Ba2CU2O7 the coherence
length is ξc = 1.5 − 3 Angströms in the direction orthogonal to the layers and ξab = 14 ± 2
Angströms in the direction of the layers [D2]. The supra current is known to be confined inside the
layers so that ξab should determine the critical temperature: the orders of magnitude are consistent
with the formula correlating ∆ and ξ in the example considered and also more generally, since the
transversal coherence lengths are known to be by an order of magnitude smaller than for the
ordinary super conductors.

For the binding energy of the super fluid particles one obtains a completely analogous estimate
(me is replaced with the mass of He3 or He4 nucleus) and correct order of magnitude estimates
are obtained for both He3 and He4 having widely different values of ξ (ξ is about 10−8 meters
and few Angströms for 4He and 3He respectively). From the binding energies one can estimate
the critical temperatures (Tc ' ∆E) and correct order of magnitude estimates are obtained.

The presence of super fluid phase in neutron stars has been suggested [D5]: Cooper pairs
correspond to paired neutrons. The size of the field quantum is of the order of ξ = 10−15 − 10−14

meters (this estimate is derived in the second section). For the critical temperature one obtains:
Tc ' 1/4mnξ

2 = 1011 − 1013 K.

In BCS theory ∆E is expressed in the following form [D5]

∆ = 2ωDexp(−
2

N(0)V
) ,

ωD =
cs6

1/3π

N1/3
. (2.13)

Here ωD is Debye frequency, N(0) is the density of states on the surface of the Fermi sphere and
V (0) characterizes the strength of the attractive force between the electrons of the Cooper pair.
N is the number density of atoms and cs is the velocity sound. The proportionality to ωD implies
isotope effect: ∆ ∝ 1/Aα, where α is typically of the order of α ' 1/2, which has been verified
experimentally [D5]. Assuming that both formulas are correct one gets a relationship between the
vacuum quantum numbers ω1 and ω2 since ξ corresponds to the radius of the topological field
quantum and is expressible in terms of the vacuum quantum numbers.

2.3 Generalized Quantization Conditions

In the standard formulation of the quantum description of Super conductivity one starts from
Schrödinger amplitude ψs for supra phase. The expression for the matrix element of the electric
current is given by

j̄e = −i e
2m

(ψ̄sD̄ψs − c.c.) ,

D̄ = ∇+ iqeĀ . (2.14)
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Here q denotes the charge of the superconducting charge carrier in units of e. q = −2 for the super
conductors encountered in laboratory. One can write ψs in the form ψs =

√
nSexp(iS).

Since ns is in a good approximation constant in supra phase the expressions for the electric
current and velocity operator can be written as

j̄e = − e

m
ns(∇+ qeĀ) ,

v̄s =
1

m
(∇S + qeĀ) . (2.15)

Since S is single valued, one obtains by integrating over a closed curve a formula relating the
magnetic flux and velocity circulation for the carriers of the super current to each other.

∮
v̄ · dl̄ − qe

m

∮
Ā · dl̄ =

n2π

m
. (2.16)

If the velocity field vanishes in the curve in question, one obtains the standard quantization of the
magnetic flux.

By taking a curl of the formula for v̄s and using Maxwell’s equations one gets the standard
formula

∇2B̄ =
B̄

λ2
,

λ2 =
2m

nsq2e2
. (2.17)

Here λ is the peneration length for the magnetic field in the super conductor.

TGD predicts that vacuum Z0 field can become long ranged at small vacuum quantum number
limit of TGD and super fluidity might correspond to this kind of situation. If this is indeed the
case then the previous formulas for the super conductors generalize in an obvious manner to the
case of Super fluids

∮
v̄ · dl̄ − QZgZ

M

∮
ĀZ · dl̄ =

n2π

M
. (2.18)

Here M is the mass of the super fluid particle (He4 or the Cooper pair formed by two He3 atoms),
gZ is the gauge coupling of the Z0 gauge interaction (g2Z = e2/sinθW cosθW ) and QZ is Z0 charge
of the super fluid particle. QZ is defined as the expectation value over the spin degrees of freedom

QZ = 〈I3L − pQem〉 ,
p = sin2(θW ) . (2.19)

The values of QZ for quarks and electron at rest are

QZ(u) =
1

4
− 2p

3
, QZ(d) = −1

4
+
p

3
, QZ(e) = −1

4
+ p .

(2.20)

From these one obtains the values of QZ for proton and neutron: QZ(p) = 1/4− p and QZ(n) =
−1/4 respectively. The values of QZ for He4 and He3 are

QZ(4He) = −1

2
, QZ(3He) = −1

4
. (2.21)



2.4 Dissipation In Super Fluids: Critical Velocities 10

If the magnetic flux associated with Z0 magnetic field vanishes one obtains the standard formula
for the quantization of the velocity circulation of the super fluid. The expression for the penetration
depth of the Z0 magnetic field reads as

λ2 =
2M

NsQ2
Zg

2
Z

. (2.22)

The order of magnitude of λ is of the order of 10−5 − 10−6 meters in accordance with the basic
assumption ξ ∼ 10−6 meters for the scale at which classical Z0 force becomes important. In this
formula Ns is the entire super fluid density (essentially Z0 charge density) and the formula makes
sense at the condensation level at which the nuclei feed their Z0 charges. At the higher condensate
levels n, one must replace the density with the actual density of Z0 charge Ns → Ns/

√
εZ(n) (due

to the neutrino screeningεZ(n) is rather large number).
It will found that this generalization implies considerable differences between TGD based and

standard descriptions of the super fluidity. For example, the counterpart of the magnetic flux
quantum is predicted and is a good candidate for the elementary excitation leading to the dissipa-
tive super fluid flow at critical velocity considerably smaller than that associated with the known
elementary excitations.

2.4 Dissipation In Super Fluids: Critical Velocities

Dissipation, or equivalently the loss of the quantum coherence results, when the lifetimes of the
bonds connecting neighbouring field quanta are short and the joining and the splitting of the bonds
provides the needed dissipation mechanism. One mechanism leading to a loss of the quantum
coherence is thermal noise: the critical temperature has been already evaluated. In case of super
conductors (super fluids) also external magnetic (Z0 magnetic) fields lead to a loss of the quantum
coherence: the values of the critical magnetic fields can be evaluated for the super conductors
of type II and super fluids from the quantization condition. At a high enough flow velocity, the
generation of the elementary excitations of the supra phase leads to dissipation. The estimates for
the orders of magnitude for the critical velocities for the setup of the dissipation will be derived
and are correct in both cases.

2.4.1 Critical velocity for super fluids

The so called Principle of Super Fluidity provides an explanation for the critical velocity of the
Super fluid [D5]. The application of the energy and momentum conservation to the emission of
elementary excitation of energy ε and momentum p by flow implies the condition v ≥ ε/p and
therefore the critical velocity is given by the formula

vL = Min{ ε
p
} . (2.23)

In case of the super conductors the formula gives vL = ∆(T )/kF (∆ is the energy gap associated
with the Cooper pair and kF is Fermi momentum): the order of magnitude is correct. In case of
Super fluids the critical velocities deduced from the roton and phonon spectrum (239 m/s and 58
m/s respectively) are several orders of magnitude larger than the velocities vcr ' 6 · 10−3 meters),
where the dissipation is known to set up. Velocity vortex predicts a critical velocity, which is too
large by an order of magnitude. The hitherto unsolved problem is to identify the excitations giving
rise to the dissipation in the supra flow.

The TGD based candidate for the excitation is Z0 magnetic flux quantum. Z0 magnetic flux
quantum can appear at the condensate level with L(n) ≥ 10−6 meters to which nuclei feed their Z0

charges so that the super fluid flow (typically rotating vessel) must have size scale much larger than
this length scale. Both hydrodynamic and magnetic excitations are vortex like structures and in
order to estimate orders of magnitude they can be idealized as straight vortices with a cylindrical
symmetry, possessing Z0 magnetic field in the direction of the vortex and rotational velocity field
(to be studied in detail in the next section).
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A general order of magnitude estimate for the critical velocity is obtained by assuming that at
velocities higher than the critical velocity the kinetic energy of the supra phase goes to the energy
of the excitation in question. The criticality criterion states that dEK(R)/dl, the kinetic energy
of the supra flow per unit length of the vortex of radius R and dEex(R)/dl, the energy of the
excitation per unit length of the vortex, are identical:

dEK(R)

dl
=
dEex(R)

dl
.

This implies for the critical velocity the expression

vcr =

√
2

NMπR2

√
dEex(R)

dl
. (2.24)

Let us consider now in more detail the magnetic and hydrodynamic vortices.

a) Z0 magnetic flux quantum

For the Z0 magnetic flux quantum it is natural to assume that the core of the vortex corresponds
to n1 6= 0 excitation since the requirement that no magnetic field is present implies n2/n1 = ω2/ω1

so that both n2 and n1 must be non-vanishing. A reasonable idealization for the vortex core is as
a cylinder of radius ξ. Inside the vortex core the order parameter of the supra phase is constant
so that the condition

∮
v̄ · dl̄ − QZgZ

M4

∮
ĀZ · dl̄ = 0 , (2.25)

holding true for the ground states described by covariantly constant order parameter, is appropri-
ate. The general quantization condition allows n 6= 0 but this implies singular velocity in the core
of the vortex so that it will be dropped from consideration.

Since BZ = B0
Z is constant, one can solve v̄

v =
gZQZB

0
Z

2M4
ρ . (2.26)

The core rotates like a rigid body and the rotation frequency is just the rotation frequency of Z0

charged particle in Z0 magnetic field. ∇2BZ = 0 6= BZ/λ
2 so that the matter inside the vortex

core is not in supra phase.

Outside the vortex core the conditions

∮
v̄ · dl̄ − QZgZ

M4

∫
BZda =

n2π

M4
,

∇2BZ =
BZ
λ2

. (2.27)

are satisfied.

Both Z0 magnetic and velocity fields decay exponentially. At large distances one obtains flux
quantization and the constant value of BZ inside the vortex core is fixed by the flux quantization
condition:

B0
Z = [−2

∫ ∞
ξ

BZρdρ+
2n

gZQZ
]

1

ξ2
. (2.28)

For order of magnitude purposes one can use the approximation
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B0
Z ' 2n

qZQZλ2
. (2.29)

Since the magnitude of B0
Z is quantized in integer multiples, all values of n are possible.

There are two contributions to the energy density of the flux quantum. The energy EB of
the Z0 magnetic field and the kinetic energy Trot of the rotating super fluid particles. The latter
contribution is negligible (Trot/EB ' (ξ/λ)2 ) so that it is enough to consider the magnetic energy
density. Since BZ is largest in the core of the vortex the most conservative form for the criterion
is obtained by requiring that the kinetic energy density TK = NsM4v

2/2 of the super fluid flow
equals to the Z0 magnetic energy density EB = B2

Z/2 inside the core. This condition gives the
following expression for the critical velocity

vcr(magn) =
B0
Z√

NM4

' gzQZ

√
Ns
M3

4

. (2.30)

Substituting the typical value of Ns: Ns ' 1028.5/m3 one finds vcr ' 10−3 m/s. The value of the
critical velocity is indeed known to be few millimeters in second [B1], [D5] !

b) Hydrodynamic vortices

The velocity field of the vortex behaves as k/ρ, where k = n2π/M is the quantized vorticity.
The kinetic energy of the vortex is of the order of M4k

2ln(λ/ξ)/2 so that one obtains for the
critical velocity the expression

vcr(hydro) '
√

2ln(λ/ξ)vcr(magn) . (2.31)

Substituting the numerical values of the parameters, one finds that the numerical factor is of the
order of ten so that hydrodynamic critical velocity is too large by an order of magnitude [B1], [D5].

2.4.2 Critical velocities for the super conductors

To derive the critical velocities for the super conductors of type II one can apply considerations
formally identical with the previous ones. The structure of the magnetized vortices is similar to
that of Z0 magnetized vortices and at the critical velocity the kinetic energy density of the super
conducting phase must be identical to the magnetic energy density of n1 = 1 excitation:

nsmeβ
2
c

2
=

B2
c

2
. (2.32)

Using the expression for the number density of the super conducting electrons ns = me

e2λ2 one gets

βc =
Bcλe

me
. (2.33)

Using the estimate for Bc one obtains βc '
√
4π

meλ
for the super conductors of type II. The order of

magnitude obtained, typically 102 m/s, is correct [D5]. For super conducting elements of type I
βc is considerably smaller since both the critical field and λ are smaller: the order of magnitude
is few meters per second and considerably smaller than the critical velocity vL obtained from the
Landau criterion.

2.5 Meissner Effect

Meissner effect is one of the basic effects of super conductivity and it is of interest to find the TGD
based description of the effect and how Meissner effect generalizes to the super fluid phase.
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2.5.1 Meissner effect in superconductors

Meissner effect differs for the super conductors of type I and II. For super conductors of type I,
the external field penetrates the whole super conductor if it has strength larger than the critical
strength Bc. For super conductors of type II the external magnetic field begins to penetrate after
having reached certain critical value Bc1 and total penetration takes place at considerably larger
value of Bc2 . The penetration takes place as flux quanta

∫
B · da =

mπ

e
, (2.34)

where m is integer. This condition follows from the general quantization conditions provided the
velocity of the super conducting charge carriers vanishes for large distances from the core of the
magnetic flux quantum.

The TGD inspired model for the Meissner effect is based on the following observations.

1. The study of the simple models for the topological field quanta to be carried out later shows
that in the supra phase topological field quanta have vanishing magnetic vacuum quantum
numbers (n1, n2) and that there is a nontrivial magnetic field associated with (n1, n2) 6=
(0, 0) excitations of the topological field quanta. Magnetic field is in the direction of the
quantization axis and is approximately constant for a cylindrically symmetric field quantum.
The flux of this magnetic field is also quantized by purely topological reasons.

For (n1 = 0, n2 6= 0) magnetic field is also non-vanishing and this field doesn’t cut the bonds
between the field quanta so that one could in principle construct a magnetic field in super
conductor using these excitations. If, however, the condition

k ≡ ω2

ω1
� 1 , (2.35)

holds true, then the flux associated with (n1 6= 0, n2 = 0) is much smaller than for n1 =
0 excitations and it is energetically more favorable to excite n1 6= 0 excitations so that
super conductivity is lost. The study of the simple models for field quanta shows that the
assumption that ω1 has same value for all supra phases, implies this condition.

2. The flux of the critical magnetic field is typically of the order of 10−2 Tesla and the flux of
Bc2 over the field quantum of radius ξ ' 10−7 m is considerably smaller than the quantized
value of the magnetic flux for the super conducting elements (mostly of type I).

3. Since λ is much smaller than ξ for super conductors of type I, the magnetic flux associated
with the magnetic vortex is smaller than the quantized magnetic flux, which together with the
quantization condition implies that the velocity associated with the vortex cannot approach
zero in large distances so that the kinetic energy of the vortex is large and this kind of
excitation is not energetically favorable in case of the super conductors of type I. Rather, the
magnetic field penetrates as n1 6= 0 excitation into each topological field quantum separately
and as a result the bonds between field quanta are destroyed in the directions transversal to
the magnetic field and supra phase is destroyed. For the super conductors of type II λ is
large as compared to the radius of the vortex core and magnetic field can penetrate in the
form of the flux quanta.

These observations suggest the following description of the Meissner effect.

a) Meissner effect for the super conductor of type I

Magnetic field penetrates into super conductors of type I as topologically nontrivial (n1 = 1 6= 0)
excitations of the individual field quanta (see Fig. ?? ). The critical magnetic field is just that
associated with n1 = 1 excitation and the penetration of the magnetic field tends to destroy the
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bonds between the neighbouring field quanta since Φ becomes necessarily discontinuous on the
bond. The bonds in the direction of B̄ form an exception and might well survive. A structure
consisting of topologically condensed cylinder like structures (see Fig. ?? ) results. That super
conductivity disappears totally is suggested by the observation that Λ = 0 inside these structures
and by the fact electrons rotate in the magnetic field.

The quantization of the magnetic flux takes place in case of Super conductors of type I, too,
but the unit is now defined by Bc and smaller than the standard unit. The requirement that
the magnetic field associated with the n1 = 1 field quantum equals to Bc gives condition on the
vacuum parameters of type I super conductor.

It would be nice if one could estimate the value of the critical magnetic field or equivalently, the
value of the magnetic field associated with the n1 = 1 excitation. The prediction is possible pro-
vided one can estimate the values of the vacuum quantum numbers associated with the embedding
of Kähler electric field of matter: in the next section this kind of estimate is carried out.

b) Meissner effect for the super conductor of type II

Magnetic field penetrates into super conductors of type II as approximately cylindrical field
quanta. The core of the cylinder corresponds to a topological field quantum of radius of order
ξ, which has suffered topologically nontrivial (n1 6= 0) excitation. Since the flux associated with
n = 1 quantum is considerably maller than that required by the quantization of magnetic flux,
an exponentially damped magnetic field is created in the surrounding field quanta. This field
corresponds to a topologically trivial deformation (n1 = 0!) in the dependence of Φ on the M4

coordinates and therefore the bonds connecting nearby neighbours are not destroyed and this
region corresponds to a supra phase. The quantized magnetic flux is essentially given by the
region surrounding the core.

The value of the critical magnetic field Bc1 can be estimated by noticing that the external
magnetic field decomposes into field quanta with the property that the total flux of field quanta is
same as that associated with the external field. This gives

B = nv
π

e
, (2.36)

where nv is the number of flux quanta per unit area. As an estimate for nv one can take nv ' 1/πλ2,
so that one obtains the estimate

Bc1 ' 1

eλ2
. (2.37)

The order of magnitude is about 10−1 Tesla for λ ' 10−7 m: for Nb, which is the only supercon-
ducting element of type II the order of magnitude for critical magnetic field is indeed this [D5].
The value of the magnetic field associated with n = 1 excitation cannot be very much larger than
this field. It is natural to identify Bc2 as the magnetic field associated with n1 = 1 excitation and
so that the previous estimate combined with the estimate for B1 gives Bc2 ' 2Bc1 .

Notice that the proposed model explains why ferromagnetic materials cannot be super con-
ducting provided one can assume that the condition k � 1 holds true generally (ω1 depends only
weakly on material).

2.5.2 Meissner effect for super fluids

TGD predicts that Meissner effect is possible for super fluids, too and that super fluids are com-
pletely analogous to super conductors of type II. The magnetic vortices in the super fluid correspond
to the quanta of the Z0 magnetic flux.

The critical value of BZ cannot be obtained directly from the experiment. The critical value
of BZ can be estimated by generalizing the formula of Bc for super conductors of type II and the
formula for the penetration length λ
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BZc ' 1

QZgZλ2
,

λ2 =
2M

Q2
Zg

2
ZNs

, (2.38)

where M is the mass of the super fluid particle and gZ is Z0 coupling constant and Ns the number
density of the super fluid particles.

Superfluid should prohibit the penetration of Z0 magnetic field created by some external source
by creating surface flow. The obvious question is whether one can imagine any experimental tests
for the prediction. To get grasp of the situation one can consider the following simple experimental
arrangement.

A cylinder containing super fluid is surrounded by a rotating cylinder (see Fig. ?? ). The rota-
tion of the outer cylinder creates Kähler magnetic and therefore also Z0 magnetic field. Meissner
effect implies that a surface flow is generated on the boundary of the super fluid vessel possessing
direction opposite to that of rotation. A related effect would be the penetration of the Z0 magnetic
field in the form of vortices creating visible hydrodynamic vortices in the liquid. Unfortunately,
the Z0 field in question is extremely weak (for ordinary vacuum quantum numbers) so that the
surface flow needed to cancel the Z0 magnetic field is very small and might imply that the effect
is not observable. Also the penetration of the field in the form of vortices is very improbable since
penetration takes place only above some critical field strength, which is quite large.

Consider next a simple quantitive model for the situation. The constant axial Kähler magnetic
field created by the rotating outer cylinder is given by the expression

BKout = ε1(out)NoutΩoutSout ,

Sout = π(R2
1 −R2

0) , (2.39)

where Sout denotes the cross-sectional area of the outer cylinder with the inner radius R0 and outer
radius R1 and rotating with the angular velocity Ωout.

The constant axial magnetic field created by a surface current of thickness λ rotating around
the superfluid cylinder of radius R is given by

BKin = ε1(in)NsΩinSin ,

Sin = π(R2 − (R− λ)2) , (2.40)

where Ns denotes the density of the super fluid particles and Ωin is the rotation velocity of the
super fluid flow.

These fields must cancel each other inside the super fluid so that a condition for the ratio of
rotation frequencies results

Ωin
Ωout

=
ε1(out)

ε1(in)

Nout
Ns

Sout
Sin

' ε1(out)

ε1(in)

Nout
Ns

R2
1

2Rλ
, (2.41)

where the assumption R1 � R0 is made. An order of magnitude estimate for Ωin is obtained using
magnitudes R1 = 1 m, R = 10−3 m, λ ' 10−5 m and Ωout ' 103/s. The Z0 current fed from the
“previous” condensate level serves as source of Z0 magnetic field at level n since neutrinos do not
participate in the flow. The estimate for the ratio of parameters ε1(nZ) is obtained as follows: at
nuclear condensate level one has ε1 ∼ 1019gZ (no screening) and at the condensate level nZ one
has

√
εZ(nZ) ∼ 1010 − 1011 from the estimate to be carried out in next subsection, which gives

ε1(out) ∈ 108gZ − 109gZ . This gives
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Ωin ∼ 10−10
N0

Ns
Ωout ≥

1

200 minutes
, (2.42)

for εZ = 1011. Whether the existence or non-existence of this kind of effect could be determined
experimentally remains an open question.

2.5.3 Rotating super fluid

In the two fluid theory the condition that super fluid flow is irrotational ( ∇ × v̄ = 0) seems to
exclude the rigid body rotation of the super fluid. On the average super fluid phase is however
known to rotate like rigid body [B1] , [D5] and the problem is to explain this result.

a) Hydrodynamic vortices

The generally accepted resolution of the difficulty [D5] is that super fluid flow decomposes into
hydrodynamic vortices, with the property that the flow is irrotational inside the vortices except in
the core of the vortex where super fluid density vanishes: this is achieved if the velocity is given by
v = k/ρ. The requirement that super fluid wave function is single valued, implies the quantization
of the circulation for the vortex ∮

v̄ · dr̄ =
n2π

M
,

implying the condition k = n/M . Vortices in turn form a regular array, which rotates like a rigid
body. The average vorticity per surface area is given by nvk, where k must be same as the vorticity
of the rigid body rotation: this gives for the density of vortices the expression

nv(hydro) =
2Ω

2πk
=

ΩM4

π
. (2.43)

The vortex core, where super fluid density vanishes according to the conventional theory, should
have radius ρ0 ' 10−10 m. Although the vortices as such are not visible there is indirect exper-
imental evidence for the existence of the vortex like structures, in particular for the existence of
vortex cores [B1] , [D5] possessing inner core radius of order 10−10 m.

The generation of the vortices should begin at some critical angular velocity Ω (the circulation
of the rigid body flow being of the order of the quantum of circulation at this value of Ω: this
kind of effect has indeed been observed: the critical velocity is however smaller than the predicted
one [D5].

One can wonder what happens at the rotation velocities smaller than the critical one. Does
super fluid flow like a rigid body or does it rotate at all? There is some experimental evidence
supporting the view that super fluid does not rotate for sufficiently low rotation velocities so that
the behavior is analogous to Meissner effect with Ω playing the role of the magnetic field.

b) Z0 magnetic vortices

Consider now an alternative TGD inspired description of the situation. The problem is clearly
created by the velocity circulation condition, which implies that supra flow is irrotational almost
everywhere. In TGD approach the quantization condition however contains also the contribution
of the Z0 magnetic flux besides the velocity circulation so that there is no reason to require that
velocity field has vanishing curl anymore! Assuming that super fluid flows as rigid body one can
adjust BZ so that the quantization condition is satisfied.

BZ =
2ΩM4

gZQZ
. (2.44)

The resulting field is rather weak as compared to the critical BZ . Ω must be of the order of 107/s
(ten orders of magnitude larger than the critical rotation velocity for the formation of vortices!)
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to guarantee that BZ is equal to the critical BZ . This suggests that BZ vortices cannot appear at
rotation velocities studied and that the generation of the velocity vortices is the correct solution
of the problem.

There are also other counter arguments. First, since the required field is much smaller than the
critical field it seems impossible to imbed this magnetic field into super phase (one should excite
some topological field quanta to n1 6= 0 state). Secondly, the generation of the subcritical magnetic
field is excluded by the Meissner effect. Thirdly, ∇2BZ = 0 6= BZ/λ

2 so that super phase would
be destroyed if constant BZ is generated. On the other hand, the solution has the nice feature
that the rigid body rotation of the super fluid could be regarded as a direct experimental evidence
for the existence of macroscopic Z0 field.

One manner to escape these problems is to argue that BZ is constant in average sense only
and that the actual field is consists of a network of Z0 magnetic flux quanta in rigid body motion.
The requirement that the total flux over the cross section of the container is same as the flux of
constant field gives for the density of magnetic flux quanta per unit area the expression

nv(magn) =
ΩM4

π
. (2.45)

The density is identical with that obtained for hydrodynamical vortices! This observation suggests
the solution to the discrepancy and a more detailed mechanism for the destruction of superfluidity.
Super fluidity is destroyed, when Z0 magnetic field (created by rotating Z0 charge density) at
condensation level n1 > nZ (L(nZ) ∼ 10−6 m) penetrates to the level nZ in form of flux quanta
with strength BZc . The conservation of magnetic flux explains why the average field strength at
the level nZ is identical with the penetrating field strength at the level n1. Since Z0 charge current
of the previous level serves as source of Z0 magnetic at level n one obtains as a byproduct an
estimate for the value of εZ(nZ) from the formula 2.38 for the critical Z0 magnetic field strength
giving

√
εZ(nZ) ∼ 1010 and ε1 ∼ 109gZ so that neutrino screening of Z0 charge at level nZ is

rather effective.
Which of the mechanisms is correct or are both mechanisms at work? In order to answer this

question one should verify experimentally whether the vortices observed in a rotating super fluid
are really velocity vortices or Z0 magnetic vortices or both. Since the critical velocity for the Z0

magnetic vortices is smaller than for the hydrodynamical vortices, one might argue that at critical
angular velocity Z0 magnetic vortices appear and hydrodynamic vortices appear for larger angular
velocities. Some indirect support for the TGD based scenario indeed exists. The study of the
rotating 3He has demonstrated that the angular velocity Ω and ordinary magnetic field B play
very similar physical role in the texture of the rotating 3He and that the texture of 3He is rather
sensitive to both these parameters. In TGD picture one can replace Ω and B by BZ and B and a
rich structure of the quantized excitations is predicted.

2.6 Phase Slippage

The so called phase slippage [D4] provides a mechanism for the dissipation in the case o super-
fluids. Also this phenomenon has natural interpretation in terms of the flux quantization. The
conventional description of the phase slippage is in terms of angle like order parameter χ. For
linear flow the order parameter behaves linearly as a function of the coordinate x in the direction
of the flow

χ(x) = kx , (2.46)

where k can be interpreted as the momentum of the super fluid particle.
In the phase slippage the graph of χ(x) as a function of x is deformed so that χ jumps by an

integer multiple of 2π at some point x0 and stays linear for x ≤ x0 and for x ≥ x0. The value
of k must however decrease for x ≥ x0 and this means that the momentum of the super fluid
particle decreases and dissipation occurs. Since the discontinuity is multiple of 2π the graph can
be replaced with a new one without any discontinuity and smoothed out so that the graph of χ is
linear with new value of the momentum k. The change in the momentum k is quantized:
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∆k = n
2π

L
, (2.47)

where L is the length of the channel. The process corresponds physically to the propagation of
the vortex generated at the wall of the channel across the channel under the action of Magnus
and friction forces and the integer n associated with the vortex (χ = nφ) equals to the integer
associated with the ∆k.

The process has obvious geometric interpretation in TGD approach. The angles Ψ and Φ
are the counterparts of the angle like order parameter χ and phase slippage corresponds to the
propagation of a vortex (r = 0 at the axis of the vortex and r = ∞ at the surface of the vortex)
through the channel. In general the vortex is characterized by two integers n1 and n2. It has been
already shown that the ordinary hydrodynamical dissipation and generation of turbulence might
be understood in terms of the phase slippage process: the only difference with respect to the super
fluidity is that the integers ni and frequencies ωi are much larger now: ordinary hydrodynamical
system is obtained from the super fluid in the limit of the large quantum numbers.

3 Models For The Topological Field Quanta

In the sequel simple models for the electromagnetic and Z0 gauge fields created by condensed
matter are studied. The aim is to get some grasp on the physically reasonable values of the
vacuum parameters appearing in the embedding by using as experimental input the values of
coherence length ξ and critical magnetic fields. Two kinds of embeddings are studied.

1. Spherically symmetric, electrovac embedding of Z0 condensate levels n ≥ nZ ) or ordinary
electric field (condensate levels n < nZ) created by matter serves as a simple model for the
topological field quanta in the ordinary condensed phase.

2. Cylindrically symmetric field quantum serves as an idealization for the linear structures ob-
tained by glueing spherically symmetric topological field quanta together using joing along
boundaries operation and is interesting as a model for the core of various vortex like struc-
tures. Several embeddings of this kind are constructed.
i) An embedding of cylindrically symmetric em/Z0 electric field for matter at rest is con-
structed assuming that matter density serves as the source of em/Z0 electric field.
ii) By applying a boost in the direction of cylinder axis an embedding of the em/Z0 magnetic
field associated with say super fluid flow is obtained.
iii) Allowing non-vanishing quantum numbers ni an embedding of a constant Z0/m magnetic
magnetic field in the direction of the cylinder axis is obtained. The requirement that the
magnetic flux of this field is quantized in the standard manner, poses and additional condi-
tion on the vacuum parameters. One can construct ordinary magnetic fields in the length
scales n ≥ nZ as deformations of Z0 electric field configuration. As a consequence of the
construction procedure, the critical radius of all these embeddings depends on the properties
of the matter only.

The dependence of the critical radii on the vacuum quantum numbers is studied and estimates
for the vacuum numbers of topological field quanta are deduced Ordinary phase with ω1 ∼ m0 ∼
10−4mPl is shown to correspond to the large quantum number limit in the sense that the critical
radii are macroscopic and therefore also magnetic flux m as well as the quantum numbers ωi and
ni are very large. The embedding of the magnetic field is obtained non-perturbatively in the sense
that the change ∆ni needed to generate the magnetic field satisfies the condition ∆ni/ni � 1.

Supra phases correspond to the small quantum number limit and to Z0 neutral space-times:
using ξ and Bc as inputs, it is found that the parameter ω1 is of the order of 102.5 − 103 proton
masses. The assumption that ω1 is same for all super conductors implies ω2/ω1 � 1, which
condition in turn is necessary condition for Meissner effect to take place. The value of the fractal
quantum number m is assumed to be zero for 4He and −2 for the other supra phases. the
non-vanishing value of m affects radically the value of ε1 so that estimates have considerable
uncertainties.
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3.1 The Kähler Field Created By A Constant Mass Density

In the following the em/Z0 electric field created by an Z0/em neutral, constant mass distribution
assuming that mass distribution serves as a source of pure em/Z0 field proportional to Kähler
field, are studied. Although the mass distribution itself is homogeneous, Kähler electric field
necessarily breaks translational symmetry. Concerning the applications in mind, the breaking of
the translational symmetry to the spherical or cylindrical symmetry is the most natural one and will
therefore be considered in the sequel. Also the embedding of a spherically (cylindrically) symmetric
Kähler electric field can break spherical (cylindrical symmetry) since several gauge potentials are
possible by gauge invariance and different gauges are related by the canonical transformations of
CP2 and correspond to different four-surfaces: it is assumed however that embedding is spherically
(cylindrically) symmetric, too. What makes the cylindrically symmetric field configuration so
interesting is that one can construct several physically interesting field configurations from it by
modifying the values of the vacuum quantum numbers so that electrovac conditions cease to hold
true.

To begin with, recall the conditions guaranteeing the vanishing of either Z0 or electromagnetic
gauge fields

r = tan(X) , Ψ = kΦ ,

X =
ln(|(u+ k)/C|)ε

2
.

(3.1)

One must chose the branch of arcus tangent in the expression of X in terms of r and this implies
the condition mπ ≤ X ≤ (2m+ 1)π/2, where m is an integer fixing the branch of the arcustangent
and will be referred to as euantum number. The following remarks are useful for what follows:

1. The vanishing of the Z0 field is achieved for

ε = ε(em) =
1

2
,

and the vanishing of the electromagnetic field is achieved for

ε = ε(Z) =
(3 + p)

(3 + 2p)
,

(p = sin2(θW ) ' 0.234).

2. The CP2 projection of the embedding is two-dimensional, which implies the orthogonality of
the magnetic and electric fields belonging to same condensate level. Z0/em field is propor-
tional to induced Kähler form for the embeddings in question

γ = kemJ = aemsin
2Xdu ∧ dΦ ,

kem = 3 , aem = −3

4
,

Z0 = kZJ = aZsin
2Xdu ∧ dΦ ,

kZ =
6

p
, aZ = − 3

3 + p
. (3.2)

One consequence of Fem = 3J is that the # throats feeding magnetic flux to/from a purely
electromagnetic condensate level behave on given space-time sheet as magnetic monopoles
with magnetic charge quantized in multiples of the magnetic charge associated with the
ordinary Dirac monopole: what is peculiar is that the magnetic charge is divisible by 3. As
quantum effects are considered the # throats behave as extremely tiny magnetic dipoles.
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3. Electromagnetic/Z0 charge density of matter is assumed to serve as source of em/Z0 fields
and in the idealization that matter consists of identical nuclei (A,Z) one can write the charge
density as

ρem =
e2
√
εem

Z

A
N = KemN ,

ρZ = − g2Z
4
√
εZ

A− Z
A

N = KZN ,

(3.3)

where N is the density of the nucleons. It has been assumed that only neutrons contribute
to the nuclear Z0 charge.

The formulas associated with the spherically and cylindrically symmetric embeddings differ
from each other by numerical factors only and the cylindrically symmetric case will be considered
first. Assuming cylindrical symmetry em/Z0 electric field is radial and its magnitude is given by

|Eemρ | = δKem
Nρ

2
,

|EZρ | = δKZ
Nρ

2
,

δ = 1 ,

(3.4)

The numerical factor δ is introduced in order to generalize the results to spherically symmetric
case easily.

Cylindrically symmetric embedding of the em/Z0 electric field is obtained through the ansatz

Φ = ω1t , Ψ = ω2t , u = u(ρ) ,

k =
ω2

ω1
.

(3.5)

One can define ω1 = mp

√
(εi)x, where x is numerical factor not very far from unity in astrophysical

scales. The dependence of u on ρ is fixed from the imbeddability condition for the appropriate
electric field

ai
ki
sin2X∂ρuω1 = δKiN

ρ

2
,

i = em,Z0 . (3.6)

From this expression one can integrate u as a function of ρ

∫ u

u0

sin2(X(u))du = δ
Kiki
aiω1

Nρ2 . (3.7)

This equation determines the value of the critical radius of the embedding as a function of u0, the
value of u at r =∞ surface provided u = 0 at r = 0 surface. Performing the integral, one obtains
the condition

ρcr =

√
2aiω1

δKikiN

√
2(u0 + k)exp(−mπ/ε(i))X(ε(i)) ,

X(ε) =

√
(2 + ε2)exp(π/ε) + ε2)

(1 + ε2)
,

i = em,Z0 . (3.8)
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Here u0 is the value of u = cos(Θ) at the axis of the vortex (k = ω2/ω1) and various parameters
with index i are defined in the previous formulas.

The general orders of magnitude become clear, when one writes the formula in a numerical
form by using the density N0 = 1030/m3 is a reference density of atomic nuclei.

1. In electromagnetic case one obtains

ρcr ' X · 3.7 · 10−6 meters ,

X =
√

(u0 + k)
√
εemx

√
A

Z

N0

N

1√
δ

10−2.7288m ,

ω1 =
√
εemxm(proton) . (3.9)

The critical radius for spherically symmetric embedding is obtained by replacing δ = 1 with
δ = 2/3.

2. In Z0 case one obtains

ρcr ' X · 7.75 · 10−7 meters ,

X =
√

(u0 + k)
√
εZx

√
A

(A− Z)

N0

N

1√
δ

10−1.46m ,

ω1 =
√
εemxm(proton) . (3.10)

for p = sin2(θW ) = 1/4.

The previous formulas contain still unknown parameters (u0 + k, x) but order of magnitude
estimates are possible for the critical radius since the value of u0 ≤ 1 is not expected to be
anomalously small.

For the em neutral space-time there are two especially interesting special cases.

1. For
√
εZ ∼ 1018 (so that Z0 force is of the same order of magnitude as gravitational force)

and for m = 0 critical radius is about 1011 m, which is roughly the size of the solar system.

2. For
√
εZ ∼ 1010 (level nZ) and for m = 0 one has ρcr ∼ 103 m in typical condensed matter

densities.
For Z0 neutral space-time expected to be important in sub-cellular length scales m = 0, x = 1
and εem = 1 (no charge screening by electrons) the critical radius is about 10−6 meters. If
one assumes ω1 = εemmex (replacing m(proton) by me) with x ∼ 1 one obtains critical
radius of order 10−8 − 10−7 meters, which is of same order of magnitude as characteristic
length parameters for super conductors. Same is achieved by assuming m = −1 instead of
m = 0.

Critical radius depends exponentially on the value of the integer m and the embeddings with
different values of m are related by a discrete scale transformation ρcr → exp(−mπ/ε)ρcr: the
“fundamental” change of scale is given exp(π/ε) ' 28.9 in the electromagnetically neutral case
(note the dependence on sin2(θW )) and by 535.5 in the Z0 neutral case. Of course, it is not at all
obvious whether the scaled up surfaces are structurally stable.

Using the BCS expression and TGD based estimate for the binding energy of the Cooper pairs,
one obtains the formula

ρcr ' 1√
me∆

exp(
1

N(0)V
) , (3.11)

which gives relationship between vacuum parameters and parameters of BCS model [D5].
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3.2 The Embedding Of A Constant Magnetic Field

The embedding of constant em/Z0 magnetic field is obtained from the corresponding electric field
associated with the constant mass density assuming that Ψ and Φ depend also on the angle φ

Φ = ω1t+ n1φ , Ψ = ω2t+ n2φ , u = u(ρ) ,

k =
ω2

ω1
=
n2
n1

. (3.12)

The condition n2/n1 = k guarantees electromagnetic neutrality. Magnetic fields are in the direction
of the z-axis and their magnitudes are given by the expression

|Bi| = |n1
ω1

Ei
ρ
| = n1N

ω1
δ
Ki

2
,

i = em,Z0 . (3.13)

and are indeed constant.
The magnetic flux associated with the topological field quantum is in the electromagnetic case

given by

Φ =

∫
Bemda = −n1

3

4
(u0 + k)exp(−4mπ)

(9exp(2π) + 1)

5
π .

(3.14)

The quantitization of the magnetic flux gives a condition for the parameters u0 and k. The
requirement that the flux is quantized in multiples of the elementary flux quantum irrespective of
the value of n1 implies the condition

3

4
(u0 + k)exp(−4mπ)

(9exp(2π) + 1)

5
=

1

n
,

n = 1 . (3.15)

The more general condition n > 1 corresponds to the assumption that n1 is multiple of of n.
Applying this condition to the expression for the critical radius, one has

ρcr =

√
A

Z

√
εemx

√
2

e2
m(proton)

N

1√
n

∼
√
A

Z

√
εemx

1√
n
· 1.6 · 10−7 meters ,

Bem =
2n1
ρ2cr

= 2n1n
Z

A

e2

2εemx

N

m(proton)
.

(3.16)

The requirement that the radius of the flux quantum is of order 10−8 − 10−7 meters (magnetic
penetration length for the super conductor) gives in n = 1 case the estimate

√
εemx ∼ 1 at

the condensation level in question. Since εem ≥ 1 holds true this means that x < 1 must hold
true. An alternative possibility is that n > 1 holds true instead of n = 1. The third possibility
is that the imbeddability condition gives only an upper bound for the critical radius and that
stability conditions give additional constraints. An additional restriction for the values of the free
parameters comes from the requirement that the critical magnetic field ought to be of the order of
Bcr ' 10−2 Tesla for the super conductors of type I and larger for the super conductors of type
II. The critical magnetic field obviously corresponds to the smallest possible magnetic field allowed
by the flux quantization and this estimate does not give anything new at order of magnitude level.

The quantization of the Z0 magnetic flux gives
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aZ(u0 + k)exp(−2mπ/ε(Z))C(ε(Z)) =
1

n
,

n = 1 , (3.17)

and reduces the expression for the critical radius and magnetic field to the form

ρcr =

√
A

(A− Z)

√
εZx

√
8

g2Z

m(proton)

N
,

BZ =
2n1
ρ2cr

= n1n
(A− Z)

A

g2Z
4εZx

N

m(proton)
, (3.18)

completely analogous to the expressions deduced in the electromagnetic case.
In n > nZ case Z0 magnetic fields are expected to dominate over the Z0 electric fields: the

reason is that the screening neutrinos probably do not contribute to the Z0 gauge current density
acting as the source of Z0 magnetic field but contribute to Z0 charge density causing a very effective
screening. This means that the the source of Z0 magnetic field at level n corresponds to the Z0

charge density (and εZ) associated with level n− 1. In particular, at level nZ there is no screening
for Z0 magnetic field. For n > nZ one can generate approximately constant ordinary magnetic
fields by giving up the condition n2/n1 = ω2/ω1. The expression for the magnetic field strength is
given by

|Bem| =
(3 + p)(3 + 2p)

6
BZ

= 2n1
(3 + p)(3 + 2p)

6

(A− Z)

A

g2Z
8εZx

N

m(proton)
,

p = sin2(θW ) , (3.19)

where the quantization condition for Z0 flux is used (the least one can hope is that one might fix
the orders of magnitudes correctly for free parameters). At the level n = nZ one can generate
fields of order one Tesla (Tesla corresponds roughly to N/m(proton)) at small quantum number
limit (εZ(nZ − 1) = 1). At the next level the field of one Tesla requires n1 ∼ 1020 for εZx ∼ 1020

so that large quantum number limit is in question.

3.3 Magnetic Fields Associated With Constant Velocity Flows

One can construct a simple candidate for the Kähler magnetic field associated with a fluid flow with
a constant velocity by boosting the cylindrically symmetric Kähler electric field in the direction of
the cylinder axis:

Φ = ω1t+ k1z , Ψ = ω2t+ k2z , u = u(ρ) ,

ki = ωiβ . (3.20)

The field lines are circles around the z-axis and the strength of the Kähler magnetic and Z0

magnetic fields are given by

|BK | = | k1
ω1
EK | ,

BZ =
3

sin2(θW )
BK . (3.21)



4. Quantum Hall Effect From Topological Field Quantization 24

Super fluid flow is a natural application for this mechanism for generating magnetic field. In this
case the cylindrical symmetry of the Kähler electric field is indeed very natural. Note that the
although the flux tubes are in the direction of the flow the critical radius doesn’t depend on the
flow velocity.

In order to obtain non-vanishing magnetic field (associated, say, with super conducting current)
one must give up the condition that the field is obtained by a boost. For example, one can assume
that k1 6= ω1β. An interesting possibility is that the magnetic field associated with the super
conducting current is obtained in this manner. It should be noticed that one can obtain also
helical magnetic fields by performing boost to a configuration with non-vanishing magnetic field.

4 Quantum Hall Effect From Topological Field Quantiza-
tion

The concept of the topological field quantum and the ideas about the formation of macroscopic
quantum systems and about the topological description of the dissipation provide a classical TGD
based description of Quantum Hall effect very similar to that found for supra phases. This approach
was proposed for long time ago and later I have proposed an approach based on the hierarchy of
Planck constants assumed to represent phases of dark matter [K3].

4.1 The Effect

Consider first briefly the effect. The effect is observed two-dimensional systems consisting of a
conducting slab in a strong magnetic field perpendicular to the slab. When potential difference
V is applied in the y-direction of the slab (see Fig. 1 ), the Lorentz force induces a transversal
current. The current is proportional to the electric field associated with the potential:

jx = σxyEy , (4.1)

where σxy is the transversal conductivity.
Two kinds of effects have been observed at low temperatures (T ' 1 K) and using strong

magnetic fields B ' 10 T .

1. In integer quantum Hall effect σxy is quantized in units of the fine structure constant

σxy = n× 2α , (4.2)

where n is integer (see Fig. ?? ).

2. In the fractional quantum Hall effect σxy is quantized in fractional units

σxy =
n

m
× 2α , (4.3)

where the integer m is fixed. Several values of m have been found to be possible.

4.2 The Model

One can understand Quantum Hall effect in TGD framework using the following arguments.

4.2.1 Conduction electrons as a mesoscopic quantum system

Assume that in the Quantum Hall phase conduction electrons form a mesoscopic quantum system,
which means that topological field quanta with size of the order of ξ ' 10−8−10−7 meters are glued
together by flux tube to form a lattice like structure. The bonds must be stable since otherwise their
splitting and rejoining causes an additional dissipation contributing to the transversal conductivity
and Quantum Hall effect is lost. The estimate for the critical temperature Tc ' 1/2meξ

2 used for
the supra phases applies also now and correctly gives Tc ' 1 K.
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Figure 1: Quantum Hall effect

4.2.2 How to avoid the splitting of the joing along boundaries bonds in a strong
magnetic field

Since a strong magnetic field (of the order of few Tesla) is present, individual topological field
quanta are excited to (n1, n2) 6= 0 states. There are two possible ways to avoid the breaking of the
bonds between the neighbouring topological field quanta:

1. The condition n1 = 0 is satisfied for all topological field quanta. n1 = 0 field quanta are
favored if the condition

k ≡ ω2/ω1 � 1 , (4.4)

is satisfied so that n2 = 0 quanta have much larger magnetic flux than n1 = 0 field quanta.
If k � 1 condition is satisfied, the magnetic field inside the flux quantum can change in
discrete, but sufficiently small, steps, when external magnetic field is varied. For the values
of the vacuum quantum numbers encountered for the supra phases, the value of n2 ought to
be rather large, of the order of 10− 100 in Quantum Hall phase. A possible problem of this
scenario is that the flux associated with the n1 = 1 quantum is of same order as the flux of
the external magnetic field: why this excitation is not generated?

The k � 1 condition encountered in the case of supra phases leads to difficulties. The
magnetic field associated with n1 = 0 excitations is large and of the order of the external
magnetic field if same values for vacuum quantum numbers are assumed as for the supra
phases so that external could excite these excitations. The problem is that the magnetic field
associated with n1 6= 0 excitations is much smaller and its is difficult to understand why the
variation of the external magnetic field does not not excite them (with the consequence that
Quantum Hall phase disappears).

2. The condition u = cos(Θ) = ±1 is satisfied on the r = ∞ boundaries of the field quanta.
In this case both n1 and n2 can vary freely. For the magnetic fields used and for the values
of parameters found for supra phases n1 should be of the order of n1 = 1 and n2 can have
much larger values. This makes possible the variation of the magnetic flux inside the field
quantum in discrete steps, the step being however reasonably small. Thus it seems that this
alternative is the physical one.

4.2.3 Quantization conditions

Assume that the quantization conditions

∫
B̄em · dā−m

∮
v̄ · dl̄ =

m× 2π

qe
, (4.5)

encountered in the case of the supra phases are satisfied in Quantum Hall phase, too. Since the
magnetic flux inside the topological field quanta is quantized in multiples of certain basic unit
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associated with n1, which is much smaller than the standard flux quantum, the velocity field
must adjust itself inside each flux quantum so that the quantization condition is satisfied. This is
achieved if the velocity field is a super position of two terms

v̄ = v̄0 + v̄rot , (4.6)

where v̄0 is essentially constant velocity field associated to the Hall current and v̄rot is a local
velocity field inside the topological field quantum, whose function is to cancel the failure of the
magnetic field to satisfy the standard flux quantization condition

me

∮
v̄rot · dl̄ = −m2π

qe
+

∫
B̄em · dā ≡ −

∫
∆B̄ · dā .

(4.7)

Here v̄rot corresponds to a rigid body rotation in the constant magnetic field ∆B̄, which is the
difference between the actual field and the field for which magnetic flux is quantized in standard
units. Obviously, the external magnetic field must be so strong that the flux through a topological
field quantum is of the order of the field quantum: otherwise unrealistically large local velocities
are needed to guarantee quantization condition (or m would be equal to zero).

4.2.4 Carriers of the Hall current as an incompressible 2-dimensional liquid

Assume that the carriers of the Hall current behave like an incompressible, two-dimensional liquid
(this assumption is made in the competing models, too [D1] ). Assume also that the Euler equations
are satisfied and write them into the following form

neme
∂v̄

∂t
= −∇p− neme∇(

v2

2
) + nemev̄ × (∇× v̄) + neqe(Ē + v̄ × B̄) .

(4.8)

Here ne is the number of Hall current carriers per unit area orthogonal to the direction of magnetic
field and me is the mass of the current carrier (electron).

4.2.5 Stationary state

The stationary situation for which the velocity can be decomposed in the manner already described
is characterized by the conditions

v̄ = v̄0 + v̄rot ,

∂v̄

∂t
= 0 ,

∇[p+ neme(
v2

2
− v2rot

2
)] +X = 0 ,

X ≡ neqev̄rot × B̄ .

(4.9)

The remaining equation leads to the formula for transversal conductivity

nemev̄0 × (∇× v̄rot) + qeneĒ + qenev̄0 × B̄ = 0 .

(4.10)

Before deriving the expression for the transversal conductivity it is useful to verify that the solution
ansatz works. One can subsitute to the quantity X ≡ v̄rot× B̄ the expression of v̄rot obtained from
quantization condition (rigid body rotation) and one finds that this term is also expressible as a
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gradient: X = a∇(B2ρ2), where a is some numerical constant. This implies that second condition
reduces to a condition of form

p+ neme(
v2

2
− v2rot

2
) + neqeaB

2ρ2 = p0 = constant .

(4.11)

This condition is a local condition referring to the properties of the flow inside the topological field
quanta and is not essential for Quantum Hall effect.

4.2.6 Hall current

In order to obtain expression for the Hall current one can integrate the third condition involv-
ing Lorentz force over a transversal (orthogonal to B) surface area associated with one or more
topological field quanta. One obtains the following expression for the Hall current j̄H = qenev̄0

jH = σxyE ,

σxy = −e
∫
neda

(
∫
B̄ · dā−me

∮
v̄ · dl̄)

. (4.12)

Same expression can be obtained also directly form the Euler equations under much milder as-
sumptions by integrating the x- component of the equations over the surface area. All the terms
in Euler equation and not appearing in the formula for the Hall current (∇v2, ∇v2rot, ∇p, v̄rot× B̄)
give vanishing contribution to the integral over the field quantum provided they correspond to the
variations of the physical quantities, whose average vanishes in length scales larger than the size
of the topological field quantum.

One can write this formula in a form exhibiting fractional Quantum Hall effect by noticing that
the integral

∮
neda is just nfree, the number of the carriers of Hall current inside the topological

field quantum (or the several of them) and is quantized! The general quantization condition in
turn implies that the denominator is integer multiple of 2π/qe. What one obtains is the following
formula for the transversal conductivity

σxy = −nfreee
2

m2π
. (4.13)

One obtains integer quantum Hall effect for m = 1 and fractional quantum Hall effect for m ≥ 1.

4.2.7 Comments

Some comments concerning the proposed scenario are in order.

1. For a macroscopic quantum system consisting of a very large number of the topological field
quanta nfree and m are so large that the value of the conductivity is practically continuous
without any further assumptions. If one however assumes that the values of m and the
number of the free charge carriers are same for all topological field quanta then it is possible
to realize the situation, where nfree/m can be written as a ratio of small integers.

2. All integer values for m (in accordance with the experimental facts!) are possible (not
only odd integers as in case of the anyon super conductivity in its simplest version [D3] ).
m corresponds to the angular momentum of an electron rotating around the flux tube in
accordance with the Laughlin’s proposal for the state functions of charge carriers [D3]. Since
m = 1 angular momentum is expected to be most probable in low temperatures and for low
magnetic fields, fractional quantum Hall effect is expected to be more rare phenomenon than
integer Hall effect.
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3. When magnetic field is kept as constant and potential V is varied the number of the free
charge carriers inside the flux quantum changes in discrete steps at some critical values of the
potential so that plateaus of σxy result. When magnetic field is varied compensating, velocity
fields inside the field quanta are generated in order to preserve the quantization condition.
When magnetic field is suitable, a change in the vacuum quantum number n2 and possibly n1
takes place and the rotational velocity field v̄rot goes to zero. This doesn’t lead to a change of
the transversal conductivity in general. When total magnetic flux becomes sufficiently near
to its quantized value also the integer m characterizing the flux quantum can change so that
the fractional number characterizing quantum Hall effect changes. This kind of a transition
can be regarded as a phase transition taking place in the whole specimen.

4. The proposed explanation differs from the more standard explanations in some respects.

(a) The concept of fractional filling fractions follows from the quantization conditions and
from the concept of the topological field quantum.

(b) No reference is made to fractional statistics or to fractional electric charges.

(c) The situation m = 0 is particularly interesting physically. In this case the transversal
Hall conductivity is formally infinite. The only reasonable solution of the Euler equation
in this case seems to be that for which the velocity in the transversal direction vanishes
so that Hall effect and magnetic field is effectively absent (!) and classically (probably
not quantum mechanically) there is a continuous acceleration in the direction of the
electric field. Clearly the slab behaves as a super conductor apart from the presence of
v̄rot term in velocity.

(d) The standard models for the fractional Quantum Hall effect predict also super con-
ductivity together with the breaking of CP invariance. In present case the presence
of the classical Z0 electric vacuum fields suggests small parity breaking. This effect
takes however place in ordinary supra phases, too and possibly in all condensed matter
systems.

5 TGD And Condensed Matter

In previous sections we have applied TGD to a rather exotic condensed matter phenomena. Quite
contrary to the original expectations it has turned out that TGD might have applications to
less exotic condensed matter phenomena, too. In fact, it seems that TGD might be applied to
reformulate the description of conductors, di-electrics, and magnetism using topological concepts.

5.1 Electronic Conductivity And Topological Field Quantization

The standard Drude model for conductors [B2] starts from the equilibrium condition dv/dt =
v/τ − eE/me = 0 to derive the expression for the conductivity of a metal as σ = Ne2τ/me.
τ is interpreted as the average time between two collisions and is obtained from the estimate
τ ' a/vth, where a is the distance between atoms and vth is thermal velocity. The estimate is
by a factor 102 − 103 too small at low temperatures and approaches the observed conductivity at
high temperatures only. A correct order of magnitude estimate is obtained if a is replaced with
the size ξ ' 10−8 − 10−7 meters of topological field quantum in accordance with the idea that
ordinary metal behaves as a super conductor at length scales smaller than ξ. The decrease of the
conductivity at higher temperatures can be understood, too: the joing along boundaries bonds
between atoms become more and more unstable as the temperature is increased.

5.2 Dielectrics And Topological Field Quantization

Why do electrons then move freely in length scales smaller than ξ? This can be understood by
introducing a TGD based description of a dielectric to be discussed in more detail later. The point
is that there are two condensation levels present. This means that the electric flux D (electric
displacement) associated with a test charge divides into two parts. First part P (polarization)
flows at the first level of the condensate (in particular along the bonds joining topological field
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quanta of atomic size). Second part E (electric field flows at the background space-time, which
corresponds to a larger space-time sheet. Since total electric flux is conserved, the fractions of
electric flux sum up to one: 1/ε1 + 1/ε2 = 1 (D = E + P ), where the fractions are defined in
terms of the dielectric constants ε1 and ε2 associated with the two levels of condensation. For an
ideal conductor all electric flux runs to the larger space-time sheet and there are no electric fields
at the first level of the condensate: electrons move freely! For and ideal di-electric all electric flux
flows at the first level of condensation and strong electric fields are associated with the join along
boundaries bonds/flux tubes.

5.3 Magnetism And Topological Field Quantization

Same kind of argumentation should work in case of magnetism, too. The magnetic flux H created
by a test current can be decomposed to two parts. The first part M (magnetization) flows through
the first level of the condensate and second part B (magnetic field) flows through the larger space-
time sheet. Again one can associate susceptibilities µ1 and µ2 (µ1 + µ2 = 1 ) to both levels of the
condensate to describe the properties of a simple magnetic substance.

The mechanism underlying spontaneous magnetization is not very well understood [B1, B2],
[D6] and an interesting question is whether the magnetic domains in the spontaneous magnetization
could be understood using TGD based concepts. The quantization of the field strength for a flux
quantum implies that macroscopic magnetization results if the magnetic fields of n1 ≥ 0 excitations
associated with these flux quanta are oriented in parallel. From the known values of the magnetic
fields in ferromagnets and from the sizes of the magnetized domains it is possible to estimate the
values of ω1andthe fractal quantum number m. The typical values of the magnetic fields are of the
order of 10−2 Tesla and stable domains of magnetization are known to have size of the order of
10−8 meters. The fact that the orders of magnitude are same as for super conductors suggests that
the sizes of the topological field quanta do not depend strongly on the properties of the condensed
matter system.

In the phenomenological theory of the ferromagnetism the so called Weiss molecular field ap-
pears [B2]. If this field is present then the magnetic moments of individual electrons are ori-
ented parallel and magnetization is essentially the density of the magnetic moments per volume:
M ∝ Neµe. The problem is that this field is very large, having magnitude of the order of 103

Tesla, which is about 105 times large than the actual magnetic field!
Standard explanation is that this field is only an effective field giving a short hand description

of essentially quantum level phenomena (so called exchange interaction between electrons, which
favors parallel spins for the electrons of the neighboring atoms). A possible TGD based classical
explanation is that there is indeed magnetic field of this strength present. This field is present
at the “zeroth” level of condensation that is inside the field quanta having atomic size (which are
glued together by the flux tubes). Again the field strength is quantized and flux quantum is related
by the scaling factor (ξ1/ξ0)2 ' 104 − 106 to the magnetic field quantum at the first condensation
level. The order of magnitude is indeed correct!
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