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Abstract

The field equations of TGD reduce to conservation laws for isometry charges so that TGD
is analogous to hydrodynamics. Beltrami flows are indeed a basic aspect of TGD and it is in-
teresting to relate them to the new visions of TGD, in particular the holography = holomorphy
principle. The outcome of these considerations is that integrable flows, having interpretation
as irrotational and incompressible Beltrami flows, have in TGD an interpretation as general-
ized complex flows reducing to gradient flows except at singularities. These flows definable for
the generalized complex structure of H = M* x CP, and X* C H have a natural identification
as hydrodynamical flows in the induced Ké&hler field.

These flows have as singularities are 2-D partonic surfaces and string world sheets. In the
view of scattering amplitudes, vertices correspond to partonic 2-surfaces at which the lines of
the analogs of Feynman diagrams meet each other whereas string world sheets as intersections
of two 4-surfaces with common Hamilton-Jacobi structure characterize interactions as contact
interactions.
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1 Introduction

Beltrami flows [B1], [B5] B3, B4, [B2] (see {this) appear in several contexts. Google Al informs that
Beltrami flow is a force-free flow field at 3-sphere. The simplest Hopf fibration (see {this) is from
3-sphere to 2-sphere and fibers correspond to circles and there are numerous generations of Hopf
fibration: the fibration S® — C'P; is of special interest in TGD.

1.1 Some background

Some background about Beltrami flows is in order.

1. For the Beltrami flow (see this) velocity field satisfies curl(v) = Av so that curl(v) is parallel
to v. In fluid dynamics Beltrami flow corresponds to a flow for which vorticity w =V x v
and velocity v are parallel. wx v = 0 gives w = V x v = a(z, t)v. Beltrami flows in S? satisfy
this condition and are exact solutions to Euler equations.

2. In magnetohydrodynamics one can replace velocity field with magnetic field B and of the
current j satisfies j = V x B = aB implying the vanishing of the Lorentz force j x B. The
current flows along field lines and in TGD the flow of particles along monopole flux tubes
is the counterpart for this flow. These Beltrami flows involve the linking and knotting of
magnetic field lines. Similar situation prevails in hydrodynamics.

Jenny Lorraine Nielsen has proposed that the Hopf fibration S' — S — CP, could provide
a theory of everything (see this) and that Beltrami flows (see [this) associated with this kind of
fibrations play a key role in physics. The scalar A, which depends on position, appearing in the
definition of Beltrami flow has dimensions of 1/length. Mass has dimension of ii/length so that 1/A
should be identified as an analog of Compton length. These flows are topologically very interesting
and involve linking and knotting of the flow lines.

The claim of Jenny Nielsen is that it is possible to understand particle massivation in terms of
Beltrami flows. Higgs expectation defining the mass spectrum in the standard model is identified
as hbarA for the eigenvalue A of the lowest eigenmode of Beltrami flow. It would seem that A is
assumed to be constant: this is not necessary. It must be possible to relate A to the radius of 53
and one chooses it suitably to get Higgs vacuum expectation. To get masses of fermions one must
put them in by hand as couplings of fermions to Higgs so that one does not really predict fermion
masses: to my best understanding, the situation remains the same as in the standard model. TGD
leads to a predictive model for the masses of elementary fermion [K4| [K3] [L2] allowing also to
predict hadron masses [L9].

1.2 Motivations for considering Beltrami flows and integrable flows from
the TGD point of view

The field equations of TGD reduce to conservation laws for isometry charges so that TGD is
analogous to hydrodynamics. Beltrami flows, generalized to 4-D situation, are indeed a basic
aspect of TGD [K2| [K1] and it is interesting to try to relate them to the new vision of TGD, in
particular the holography = holomorphy principle [L4] L8| [L11L 7] [L5].

Only irrotational Beltrami flows are possible in the plane. The simplest integrable planar flows,
having interpretation as irrotational and incompressible Beltrami flows, reduce to gradient flows
except at singularities.

These flows do not correspond to the flows defined by complex analytic maps or symplectic
maps of plane, whose generalizations to higher dimensions play a key role in TGD. These flows,
definable for the generalized complex structure of H = M* x CP, and X* C H accompanied by
Kahler structure and symplectic structure, allow global coordinates along their time and have a
natural interpretation as hydrodynamical flows in the induced Kéahler field.

The complex flows give rise to maps, which have as singularities are 2-D partonic surfaces and
string world sheets. In the view of scattering amplitudes, vertices correspond to partonic 2-surfaces
at which the lines of the analogs of Feynman diagrams meet each other [L12] whereas string world
sheets as intersections of two 4-surfaces with common Hamilton-Jacobi structure [L7] characterize
interactions as contact interactions.


https://en.wikipedia.org/wiki/Beltrami_flow
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https://en.wikipedia.org/wiki/Beltrami_flow
https://philpapers.org/rec/NIETTU
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2 Beltrami flows and integrable flows in TGD

The generalization of Beltrami flows to 4-D context is one of the key ideas of TGD [K2| [K1] but
I have not discussed them explicitly in the recent framework based on holography = holomorphy
vision (H-H) ) [L4, [Lg].

1. The motivation is that TGD is formally hydrodynamics in the sense that field equations
express local conservation of isometry charges of M* x CP,. There is actually infinite-
dimensional algebra of conserved charges. The proposal is that in TGD, the Beltrami flows
generalize genuinely 4-dimensional flows and correspond to classical field configuration for
which the 4-D Lorentz force involving electric components vanishes.

2. The definition of the Beltrami flow is however different since one cannot regard the magnetic
field as a vector field in 4 dimensions. For field equations Kéahler current typically vanishes
but can be also light-like. The counterpart of Beltrami flow states that Kahler current is
proportional to the corresponding axial current:

=D, J" =ax e PA,l.ps

The divergence of j# vanishes and this must be true also for the instanton current.

This is the case if the C'P, projection of the space-time surface is at most 3-dimensional. If it
is 4-D the parameter o must vanish since the divergence of the axial current gives instanton
density erves JuvJap, which is non-vanishing for CP, and by self-duality proportional to
J" J . Hence the only option is oo = 0 for D = 4.

3. If these Beltrami flows are integrable, they can give a physical realization of some, perhaps
all, space-time coordinates as coordinated varying along the flow lines of some isometry
current. The time component of 4-force has interpretation as dissipation power and also
vanishes. These non-dissipative configurations play a key role in TGD and are natural when
space-time surfaces are identified as quantum coherence regions.

4. The key idea sharpening dramatically the notion of Beltrami flow supported by H-H vision
is that complex analytic maps f : z — f(z) allow us to construct integrable flows. What
matters physically would be singularities: poles and zeros. Without them these maps would
be just general coordinate transformations.

In TGD, this generalizes to 4 dimensions by the introduction of generalized complex structure
in H = M* x CP,. The presence of hypercomplex coordinates in M* motivates the term
”generalized”. In 4-D context, poles and zeros as singularities of a flow correspond to string
world sheets and partonic 2-surfaces. The second key idea is that fermions at the flow lines
serve as markers and provide information about the flow. In the cognitive sector they realize
Boolean logic.

Complex structure is often accompanied by Kahler structure. Its generalization to the
Hamilton-Jacobi structure [L7] of H and M* involves hypercomplex structure. Kihler struc-
ture involves symplectic structure and the symplectic symmetries of H induce isometries of
the "world of classical worlds” (WCW) [L3] as also the generalized holomorphic transforma-
tions of H.

Symplectic resp. holomorphic transformations preserve areas resp. angles, which in 2-D
case are canonically conjugate variables so that these transformations should be very closely
related. Symplectic flows are not gradient flows but one can assign to their flow lines a global
coordinate the Hamilton canonically conjugate to the Hamilton of the flow. Also complex
analytic flows allow this.

2.1 Flows in the complex plane

Flows in the plane are not usually regarded as interesting Beltrami flows since in this case the
condition V X v = av cannot be satisfied for integrable flows as gradient flows unless the vortic-
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ity and a position dependent eigenvalue « vanish. There are however other ways to satisfy the
integrability. Complex analytic maps define define integrable flows in more general sense.
One can start from flows in plane, in particular integrable flows.

1. Integrability means that the flow lines of the flow give rise to globally defined coordinate lines
which fill the space smoothly. Intuition suggests that without integrability and the existence
of a global coordinate along flow lines, the flow would be more like a random motion analogous
to the motion of gas particles. Integrability would bring in smoothness and the flow looks
like a fluid flow.

2. Integrability in strongest form requires that the velocity v for the flow line is a gradient
v = grad(¢) of the global coordinate in question. This implies V x v = 0 and « = 0. This
condition is very strong and implies irrotationality so that a rotational flow is only possible
in a global sense. There are however milder ways to guarantee the integrability.

3. Note that exotic smooth structures [A2] [A3, [A1] possible in TGD [L6, L1l [IL10] would cor-
respond to flows for which smoothness fails at singularities to make possible fermionic inter-
actions, although fermions are free in TGD. But this is possible only for 4-D space-time.

2.1.1 Flows of plane defined by complex analytic maps
The flows defined by complex analytic maps define integrable flows.

1. In the case of complex plane, analyticity conditions for a map f : z —= (u,v) give Cauchy-
Riemann conditions 0,v* = 9,v¥ and 9,v* = —0,vY expressing complex analyticity. Neither
V X v nor V - v vanishes. One has neither gradient flow or incompressible flow.

2. One can also consider velocity fields j = (j*, j¥) satisfying the Cauchy-Riemann conditions.
The exponentiation of v defines a flow as the analytic map z — f(z) = u+iv of the complex
plane which in the case of the plane is of the same form as the generator of the flow. The flow
lines can be identified as coordinate lines of the new coordinates u and v and defined by the
conditions Im(f) = v = constant and Re(f) = u = constant so that the flow is integrable.

3. In the case of a complex plane, both the holomorphic vector fields j and maps f can however
have poles and zeros as singularities and it is important to make a clear distinction between
these two interpretations. Zeros of the map f = (u,v) correspond to point-like vortex cores
and poles to point-like sources and sinks at which the analyticity fails. If f is interpreted as
an electric or magnetic field, poles correspond to charges as sources of the electric field and
vortices to point currents as sources of the magnetic field.

4. One can also allow cuts. They appear if a complex analytic map is many-valued, such as
fractional power and it is made discontinuous by taking only a single branch. Second option
is to allow a covering in which case the complex plane becomes many-sheeted. In TGD, this
picture is generalized to a 4-D situation.

2.1.2 Symplectic flows in plane

One can consider also symplectic flows in plane E? endowed with Kéhler form J,, = —J,, = 1,
which is negative of the tensor squared of the metric g;; = d;; of E?. Symplectic flows preserve the
signed area defined by the symplectic form which in complex coordinates corresponds to the Kahler
form which in complex coordinates defines a geometric representation of the imaginary unit.

The flows defining infinitesimal generators of the symplectic transformations are in the general
case of the form j* = J* H;, where index raising is by the metric. In the case of plane E? the
explicit expression is (j7,j¥) = (0,H,—0,H), where H is the Hamiltonian of the flow, which
defines conserved ”energy” constant along flow lines. The vanishing of the divergence Dy j* means
the preservation of the area.

Symplectic flow is not a gradient flow but it allows a global coordinate varying along the flow
lines. This follows from the existence of the canonical conjugate H¢ of H, whose Poisson bracket
with H equals to on: {H®, H} = 0y H°J* 9;H = 1. The equation for H¢ along the flow lines of H
is dH¢/dt = {H¢,H} = 1 and is solve by H¢ = t so that H. defines the gradient flow giving rise
to a global coordinate. The plane decomposes to a union of flow lines as H = E surfaces.
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2.2 The 2-dimensional flows related to the simplest Hopf fibration 5% —
52

Consider first the Hopf fibration S® — S2. The simplest visualization of the fibration is in terms of
inverse images of the circles S of S? in S3 under bundle projection. The fibers associated with the
points S? correspond to linked, non-intersecting circles in S2. The twist or linkage is characterized
by an integer known as Chern number. That the inverse images are smooth 2-surfaces, is highly
non-trivial and is due to the fact that the flow in S? is integrable. Any integrable flow allows
similar smooth lift.

For visualization purposes, one can represent S2 as E? and S2 as E>. For instance, the inverse
images of the circles S* C S? with a constant latitude 6, identified as flow lines, define a slicing of
E3\ Z, where Z is z-axis, by tori S' C S' the origin of E2 and projecting to a circle with center
point at the origin of E2. Poles of S? correspond to tori which degenerate to a single point, the
origin E3. The inverse images of closed flow lines in S® are tori for any integrable flow.

The flows of S® consistent with the Hopf fibration are unions of toric flows at the tori S x S*
characterized by 2 winding numbers (n;,n2) project to circles S C S2. Note that the flow in S?
is not geodesic flow. The flows of charged particles along closed cosmic strings with homologically
trivial S? C C'Py as cross section and define analogs of these flows.

Besides Betrami flows V x v = awv in S? also other flows S? loosely related to Hopf fibrations
and its generalization are interesting in the TGD framework. Since 52 has complex and Kéhler
structures, the integrable flows of S? should be reducible to analytic maps f : z — f(2) of 52 to
itself. From the TGD point of view, especially interesting flows flow are magnetohydrodynamics
geodesic flows of CP; (and C'P») coupled to its Kihler form as U(1) field for which S (S°) define
the fiber of U! bundle.

1. At the fermionic the presence of the S! as fiber of S brings in a coupling of S? spinors to a
covariantly constant Kihler form of S2, which corresponds to a U(1) symmetry assignable to
S1. In the case of S2, the coupling is not necessary but in the case of C P, the Hopf fibration
S% — C'P; allows Spin,. structure and leads to the standard model couplings and symmetries
in TGD.

2. S§? with Kéhler structure can be visualized for the standard embedding S2 — E3 as a
covariantly constant magnetic field B orthogonal to S?. Another way to describe B is as a
covariantly constant antisymmetric 2-tensor in S2.

3. At the hydrodynamical level, one can consider hydrodynamics in which geodesic free motion
couples to the magnetic field defined by the K&ahler form via Lorentz force. The magnetic
force causes a twisting so that the motion is not anymore along a big circle. The flow lines
tend to turn towards the North Pole or South Pole and approach/or leave the poles from
South or North. Chiral symmetry is clearly violated.

For the lift of this flow to S3 flow lines define a union of non-intersecting linked circles
S as fibers of S% — 52 giving rise to tori in the case of closed flow lines. If the S? flow
is integrable, it is possible to label the fiber circles by a time coordinate, so that they are
expected to combine to form a smooth 2-D manifold. Vortex singularities must correspond
to single fiber S!, possibly contracted to a point.

4. The basic question is whether a given flow is integrable rather than like a random motion of
gas molecules for which flow lines can intersect and do not form a smooth filling of the space.
Complex and Kéhler structures make sense also for S2. The conclusion is that analytic maps
z — f(2) of a complex coordinate of S? define an integrable flow. The real and imaginary
parts of f(z) define the velocity field v. Also symplectic flows define flows global coordinate
along the flow lines so that the flow lines allow a lift to tori in S®.

5. There are two kinds of singularities at which the analyticity fails: zeros correspond to vor-
tices and poles to sources and sinks. Everywhere else the flow is locally incompressible and
irrotational so that both the divergence and rotor of the velocity field vanish. If the flow has
no singularities it can be regarded as a mere coordinate change. Singularities contain the
physics. It would seem that only integrable flows allow a lift to flows in S3.
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2.3 Hopf fibration S° — CP,

In TGD, the projection S® — CP, is the crucial Hopf fibration since it makes it possible to
provide C'P, with a respectable spinor structure. The Kéahler coupling gives rise to the standard
model couplings and symmetries and H = M* x CP, is physically unique: weak interactions are
color interactions in C'P, spin degrees of freedom (charge and weak isospin). What is essential is
the coupling of the Kéhler gauge potential to spinors. This in turn leads to a Dirac equation in
H = M* x CP; and the induced Dirac equation at the space-time surface X*.

1. At the hydrodynamical level one has a geodesic flow coupled to the self-dual Kéahler form
of CP, . One has Euclidian analogs of constant electric and magnetic fields, which are of
the same magnitude. They would be orthogonal in E4 but in C'P» their inner product gives
constant instanton density. In this case the inverse images of the flow lines not linked.

2. Also now complex analytic maps f : CP, — CP, define integrable flows with singularities
guaranteeing that the inverse images of flow lines in S° are 2-D smooth manifolds. There
are two complex coordinates and one can have poles with respect to both of them. Both
poles and zeros are replaced with 2-D surfaces and also the analogs of cuts appearing if
many-valued maps f are allowed.

3. Also symplectic maps define flows global coordinate along the flow lines so that the flow lines
allow a lift to tori in S5.

2.4 (P, type extremals

At the next level one can consider C'Ps type extremals, which are deformations of the canonical
embedding of CP, as an Euclidean 4-surface of H = M* x CP, for which M* coordinates are
constant. They can be said to define basic building bricks of particles in TGD. The CP; type
extremal has locally the same induced metric and Kahler structure as C P, but its M* projection
is a light-like curve, light-like geodesic in the simplest situation. It also ends, that is holes realized
as 3-surfaces.

1. The above situation for which time is time parameter as 5:th coordinate is replaced with M4
time coordinate u varying along the light-like curve. Also now the complex analytic functions
f: CPy — CPs define integrable flows. Time coordinate labels 3-D sections of the flow.

2. Now these flows would carry real physics. Induced Dirac equation effectively reduces to 1-D
Dirac equation for fermion lines identified and holomorphy solves it, very much like in string
models.

The physical interpretation is very concrete. The addition of fermions to fermion lines serves
as an addition of a marker making the flow visible. Fermions as markers allow to get infor-
mation about the underlying geometric flow making itself visible via the time evolution of
the many-fermion state.

In TGD, fermions also realize Boolean logic at quantum level and the time evolutions between
fermionic states can be seen as logical implication A — B. Spinor structure as square root
of metric structure fuses logic and geometry to a larger structure.

2.5 Flows at space-time surfaces X* C H

In holography = holomorphy vision space-time surfaces are roots for a pair f = (fi, f2) : H — C?
of two generalized analytic functions f; of one real hypercomplex coordinate u of M*, and the
remaining 3 complex coordinates of H. Let us denote one of the complex coordinates by w, which
can be either an M* or C'P, coordinate.

1. The roots give space-time surfaces as minimal surfaces solving the field equations for any
classical action as long as it is general coordinate invariant and constructible in terms of in-
duced geometry. The extremely nonlinear field equations reduce to local algebraic conditions
and Riemannian geometry to algebraic geometry.
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2. X* shares one hypercomplex coordinate and one complex coordinate with H and both X*
and H have generalized complex structure. X4 has hypercomplex coordinate u (u =t — z of
M? in the simplest situation) and complex coordinate w (coordinate of complex plane E? in
the simplest situation). This defines the Hamilton-Jacobi structure of X*.

3. Complex analytic maps of X? are of the form by (u — f(u),w — g(u,w)). Integrable
flows are induced by these maps. If there are no singularities they correspond to general
coordinate transformations. The map by f having singularities generates a new Hamilton-
Jacobi structure.

4. Poles and zeros in the w-plane correspond to 2-D string world sheets. The counterparts
of zeros and poles for hypercomplex plane, parameterized by a discrete set of values of the
real hypercomplex coordinate u correspond to singular partonic 2-surfaces with complex
coordinate w at the light-like orbit of a partonic 2-surface.

These singular partonic 2-surfaces can be identified as TGD counterparts analogs of vertices
at which fermionic lines can change their direction. At these surfaces the trace H of the second
fundamental form vanishing everywhere else by minimal surface property has a delta function
like singular. Its C'P, part has an interpretation as analog of Higgs vacuum expectation value.
The claim of Jenny Nielsen is analogous to this result. In TGD also the M* part of H is
non-vanishing and corresponds to a local acceleration concentrated at the singularity. An
analog of Brownian motion is in question.

One could very loosely say that the parameter « for Beltrami flow vanishes everywhere except
at singularities where it has interpretation as value of the analog of Higgs expectation as the
trace of the second fundamental form.

String world sheets in turn mediate interactions since they connect to each other the light-like
orbits of partonic 2-surfaces. This view conforms with the basic physical picture of TGD.

A summary of the situation would look like follows.

1. It would seem that in TGD the flows in C'P; and CP, are more important than flows in S
and S° but that the integrable flows allow a lift of the flow lines to smooth manifolds of the
total space. The spheres provide the needed Kéhler form guaranteeing the twisting of the
flow and making in the case of S? possible arbitrarily complex flow topologies as knotting,
braiding, and linking. Also 2-knots are possible in 4-D context.

2. The flows with a coupling to the induced K&hler form have a clear physical interpretation and
the fermion lines central in the TGD based view of scattering amplitudes could correspond
to the flow lines. The flows without singularities define general coordinate transformations.
What about the Kéahler flows expected to have singularities? Could they have some physical
interpretation?

String world sheets are identifiable as intersections of two space-time surfaces with the same
H-J structure, this applies also to self-intersections. Partonic 2-surfaces in turn are coun-
terparts of vertices at which the TGD counterparts of Feynman lines meet |[L12]. These
singularities play a key role in the construction of scattering amplitudes in the TGD frame-
work. Also the singularities of the complex flows in the presence of K&hler force have this kind
of singularities as counterparts vortices and sinks and sources. Could the flow singularities
correspond to self intersections and partonic 2-surfaces?

3. Could the analytic maps with singularities defined by Kéhler flow allow to define Hamilton-
Jacobi structure in geometric terms using the information about its singularities as self-
intersections.

4. The realization that fermion lines very concretely serve as markers of a hydrodynamic flow.
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