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Abstract

The recent progress in the understanding of preferred extremals of Kähler action leads to the
conclusion that they satisfy Einstein-Maxwell equations with cosmological term with Newton’s
constant and cosmological constant predicted to have a spectrum. One particular implication
is that preferred extremals have a constant value of Ricci scalar. The implications of this are
expected to be very powerful since it is known that D > 2-dimensional manifolds allow a constant
curvature metric with volume and other geometric invariants serving as topological invariants.
Also the the possibly discrete generalization of Ricci flow playing key role in manifold topology
to Maxwell flow is very natural, and the connections with the geometric description of dissipa-
tion, self-organization, transition to chaos and also with coupling constant evolution are highly
suggestive. A further fascinating possibility inspired by quantum classical correspondence is quan-
tum ergodicity (QE): the statistical geometric properties of preferred extremals code for various
correlations functions of zero energy states defined as their superpositions so that any preferred
extremal in the superposition would serve as a repesentative of the zero energy state. QE would
make possible to deduce correlation functions and S-matrix from the properties of single preferred
extremal.
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1 Introduction

The recent progress in the understanding of preferred extremals [K2, K5] led to a reduction of the
field equations to conditions stating for Euclidian signature the existence of Kähler metric. The
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resulting conditions are a direct generalization of corresponding conditions emerging for the string
world sheet and stating that the 2-metric has only non-diagonal components in complex/hypercomplex
coordinates. Also energy momentum of Kähler action and has this characteristic (1,1) tensor structure.
In Minkowskian signature one obtains the analog of 4-D complex structure combining hyper-complex
structure and 2-D complex structure.

The construction lead also to the understanding of how Einstein’s equations with cosmological
term follow as a consistency condition guaranteeing that the covariant divergence of the Maxwell’s
energy momentum tensor assignable to Kähler action vanishes. This gives T = kG + Λg. By taking
trace a further condition follows from the vanishing trace of T :

R =
4Λ

k
. (1.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmological constant
is very strong prediction. Note that the accelerating expansion of the Universe would support positive
value of Λ. Note however that both Λ and k ∝ 1/G are both parameters characterizing one particular
preferred extremal. One could of course argue that the dynamics allowing only constant curvature
space-times is too simple. The point is however that particle can topologically condense on several
space-time sheets meaning effective superposition of various classical fields defined by induced metric
and spinor connection.

The following considerations demonstrate that preferred extremals might be seen as canonical
representatives for the constant curvature manifolds playing central role in Thurston’s geometrization
theorem [A5] known also as hyperbolization theorem implying that geometric invariants of space-time
surfaces transform to topological invariants. The generalization of the notion of Ricci flow to Maxwell
flow in the space of metrics and further to Kähler flow for preferred extremals in turn gives a rather
detailed vision about how preferred extremals organize to one-parameter orbits. It is quite possible
that Kähler flow is actually discrete. The natural interpretation is in terms of dissipation and self
organization.

Quantum classical correspondence suggests that this line of thought could be continued even
further: could the geometric invariants of the preferred extremals could code not only for space-time
topology but also for quantum physics? How to calculate the correlation functions and coupling
constant evolution has remained a basic unresolved challenge of quantum TGD. Could the correlation
functions be reduced to statistical geometric invariants of preferred extemals? The latest (means
the end of 2012) and perhaps the most powerful idea hitherto about coupling constant evolution
is quantum classical correspondence in statistical sense stating that the statistical properties of a
preferred extremal in quantum superposition of them are same as those of the zero energy state in
question. This principle would be quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This principle would
allow to deduce correlation functions and S-matrix from the statistical properties of single preferred
extremal alone using classical intuition. Also coupling constant evolution would be coded by the
statistical properties of the representative preferred extremal.

2 Preferred extremals of Kähler action as manifolds with con-
stant Ricci scalar whose geometric invariants are topological
invariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants of
space-time surface serve as topological invariants. The reduction of Kähler action to 3-D Chern-
Simons terms [K2] gives support for this conjecture as a classical counterpart for the view about TGD
as almost topological QFT. The following arguments give a more precise content to this conjecture in
terms of existing mathematics.

1. It is not possible to represent the scaling of the induced metric as a deformation of the space-time
surface preserving the preferred extremal property since the scale of CP2 breaks scale invariance.
Therefore the curvature scalar cannot be chosen to be equal to one numerically. Therefore also

http://en.wikipedia.org/wiki/Hyperbolization_theorem
http://en.wikipedia.org/wiki/Hyperbolization_theorem
http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
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the parameter R = 4Λ/k and also Λ and k separately characterize the equivalence class of
preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond CD remains constant
along the orbits of the flow and thus characterizes the space-time surface. Λ and even k ∝ 1/G
can indeed depend on space-time sheet and p-adic length scale hypothesis suggests a discrete
spectrum for Λ/k expressible in terms of p-adic length scales: Λ/k ∝ 1/L2

p with p ' 2k favored
by p-adic length scale hypothesis. During cosmic evolution the p-adic length scale would increase
gradually. This would resolve the problem posed by cosmological constant in GRT based theories.

2. One could also see the preferred extremals as 4-D counterparts of constant curvature 3-manifolds
in the topology of 3-manifolds. An interesting possibility raised by the observed negative value
of Λ is that most 4-surfaces are constant negative curvature 4-manifolds. By a general theorem
coset spaces H4/Γ, where H4 = SO(1, 4)/SO(4) is hyperboloid of M5 and Γ a torsion free
discrete subgroup of SO(1, 4) [A2]. It is not clear to me, whether the constant value of Ricci
scalar implies constant sectional curvatures and therefore hyperbolic space property. It could
happen that the space of spaces with constant Ricci curvature contain a hyperbolic manifold
as an especially symmetric representative. In any case, the geometric invariants of hyperbolic
metric are topological invariants.

By Mostow rigidity theorem [A3] finite-volume hyperbolic manifold is unique for D > 2 and
determined by the fundamental group of the manifold. Since the orbits under the Kähler flow
preserve the curvature scalar the manifolds at the orbit must represent different imbeddings of
one and hyperbolic 4-manifold. In 2-D case the moduli space for hyperbolic metric for a given
genus g > 0 is defined by Teichmueller parameters and has dimension 6(g − 1). Obviously the
exceptional character of D = 2 case relates to conformal invariance. Note that the moduli space
in question plays a key role in p-adic mass calculations [K3].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions and maybe
generalize also to Minkowskian regions. If so then both ”topological” and ”geometro” in ”Topo-
logical GeometroDynamics” would be fully justified. The fact that geometric invariants become
topological invariants also conforms with ”TGD as almost topological QFT” and allows the
notion of scale to find its place in topology. Also the dream about exact solvability of the theory
would be realized in rather convincing manner.

These conjectures are the main result independent of whether the generalization of the Ricci flow
discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates in the
space of preferred extremals of Kähler action. My sincere hope is that the reader could grasp how far
reaching these result really are.

3 Is there a connection between preferred extremals and AdS4/CFT
correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and have
negative scalar curvature for negative value of Λ. 4-D space-times with hyperbolic metric provide
canonical representation for a large class of four-manifolds and an interesting question is whether
these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS4. This suggests at
connection with AdS4/CFT correspondence of M-theory. The boundary of AdS would be now replaced
with 3-D light-like orbit of partonic 2-surface at which the signature of the induced metric changes.
The metric 2-dimensionality of the light-like surface makes possible generalization of 2-D conformal
invariance with the light-like coordinate taking the role of complex coordinate at light-like boundary.
AdS could represent a special case of a more general family of space-time surfaces with constant Ricci
scalar satistying Einstein-Maxwell equations and generalizing the AdS4/CFT correspondence. There
is however a strong objection from cosmology: the accelerated expansion of the Universe requires
positive value of Λ and favors De Sitter Space dS4 instead of AdS4.

These observations provide motivations for finding whether AdS4 and/or dS4 allows an imbedding
as a vacuum extremal to M4 × S2 ⊂ M4 × CP2, where S2 is a homologically trivial geodesic sphere
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of CP2. It is easy to guess the general form of the imbedding by writing the line elements of, M4, S2,
and AdS4.

1. The line element of M4 in spherical Minkowski coordinates (m, rM , θ, φ) reads as

ds2 = dm2 − dr2M − r2MdΩ2 . (3.1)

2. Also the line element of S2 is familiar:

ds2 = −R2(dΘ2 + sin2(θ)dΦ2) . (3.2)

3. By visiting in Wikipedia one learns that in spherical coordinate the line element of AdS4/dS4

is given by

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dΩ2 ,

A(r) = 1 + εy2 , y =
r

r0
,

ε = 1 for AdS4 , ε = −1 for dS4 . (3.3)

4. From these formulas it is easy to see that the ansatz is of the same general form as for the
imbedding of Schwartschild-Nordstöm metric:

m = Λt+ h(y) , rM = r ,
Θ = s(y) , Φ = ω(t+ f(y)) .

(3.4)

The non-trivial conditions on the components of the induced metric are given by

gtt = Λ2 − x2sin2(Θ) = A(r) ,

gtr =
1

r0

[
Λ
dh

dy
− x2sin2(θ)

df

dr

]
= 0 ,

grr =
1

r20

[
(
dh

dy
)2 − 1− x2sin2(θ)(

df

dy
)2 −R2(

dΘ

dy
)2
]

= − 1

A(r)
,

x = Rω . (3.5)

By some simple algebraic manipulations one can derive expressions for sin(Θ), df/dr and dh/dr.

1. For Θ(r) the equation for gtt gives the expression

sin(Θ) = ±P
1/2

x
,

P = Λ2 −A = Λ2 − 1− εy2 . (3.6)

The condition 0 ≤ sin2(Θ) ≤ 1 gives the conditions

(Λ2 − x2 − 1)1/2 ≤ y ≤ (Λ2 − 1)1/2 for ε = 1 (AdS4) ,
(−Λ2 + 1)1/2 ≤ y ≤ (x2 + 1− Λ2)1/2 for ε = −1 (dS4) .

(3.7)

Only a spherical shell is possible in both cases. The model for the final state of star considered
in [K4] predicted similar layer layer like structure and inspired the proposal that stars quite
generally have an onionlike structure with radii of various shells characterize by p-adic length
scale hypothesis and thus coming in some powers of

√
2. This brings in mind also Titius-Bode

law.
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4. Generalizing Ricci flow to Maxwell flow for 4-geometries and Kähler flow for
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2. From the vanishing of gtr one obtains

dh

dy
=

P

Λ

df

dy
.

(3.8)

3. The condition for grr gives

(
df

dy
)2 =

r20
AP

[A−1 −R2(
dΘ

dy
)2] . (3.9)

Clearly, the right-hand side is positive if P ≥ 0 holds true and RdΘ/dy is small. One can express
dΘ/dy using chain rule as

(
dΘ

dy
)2 = x2y2

P (P−x2) . (3.10)

One obtains

(
df

dy
)2 = Λr20

y2

AP

[
1

1 + y2
− x2(

R

r0
)2

1

P (P − x2)

]
.

(3.11)

The right hand side of this equation is non-negative for certain range of parameters and variable
y. Note that for r0 � R the second term on the right hand side can be neglected. In this case
it is easy to integrate f(y).

The conclusion is that both AdS4 and dS4 allow a local imbedding as a vacuum extremal. Whether
also an imbedding as a non-vacuum preferred extremal to M4 × S2, S2 a homologically non-trivial
geodesic sphere is possible, is an interesting question.

4 Generalizing Ricci flow to Maxwell flow for 4-geometries
and Kähler flow for space-time surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants of
Riemann manifolds. I certainly did not have this in mind when I choose to call my unification attempt
”Topological Geometrodynamics” but this title strongly suggests that a suitable generalization of Ricci
flow could play a key role in the understanding of also TGD.

4.1 Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a general-
ization of the well-known volume preserving Ricci flow [A4] introduced by Richard Hamilton. Ricci
flow is defined in the space of Riemann metrics as

dgαβ
dt

= −2Rαβ + 2
Ravg
D

gαβ . (4.1)

HereRavg denotes the average of the scalar curvature, andD is the dimension of the Riemann manifold.
The flow is volume preserving in average sense as one easily checks (〈gαβdgαβ/dt〉 = 0). The volume
preserving property of this flow allows to intuitively understand that the volume of a 3-manifold in the
asymptotic metric defined by the Ricci flow is topological invariant. The fixed points of the flow serve

http://en.wikipedia.org/wiki/Ricci_flow


4.1 Ricci flow and Maxwell flow for 4-geometries 6

as canonical representatives for the topological equivalence classes of 3-manifolds. These 3-manifolds
(for instance hyperbolic 3-manifolds with constant sectional curvatures) are highly symmetric. This
is easy to understand since the flow is dissipative and destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called Maxwell
flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

1. First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes for the
volume preserving character of the flow defined as

dgαβ
dt

= Tαβ . (4.2)

Taking covariant divergence on both sides and assuming that d/dt and Dα commute, one obtains
that Tαβ is divergenceless.

This is true if one assumes Einstein’s equations with cosmological term. This gives

dgαβ
dt

= kGαβ + Λgαβ = kRαβ + (−kR
2

+ Λ)gαβ . (4.3)

The trace of this equation gives that the curvature scalar is constant. Note that the value of
the Kähler coupling strength plays a highly non-trivial role in these equations and it is quite
possible that solutions exist only for some critical values of αK . Quantum criticality should fix
the allow value triplets (G,Λ, αK) apart from overall scaling

(G,Λ, αK)→ (xG,Λ/x, xαK .

Fixing the value of G fixes the values remaining parameters at critical points. The rescaling of
the parameter t induces a scaling by x.

2. By taking trace one obtains the already mentioned condition fixing the curvature to be constant,
and one can write

dgαβ
dt

= kRαβ − Λgαβ . (4.4)

Note that in the recent case Ravg = R holds true since curvature scalar is constant. The fixed
points of the flow would be Einstein manifolds [A1, A6] satisfying

Rαβ =
Λ

k
gαβ (4.5)

.

3. It is by no means obvious that continuous flow is possible. The condition that Einstein-Maxwell
equations are satisfied might pick up from a completely general Maxwell flow a discrete subset
as solutions of Einstein-Maxwell equations with a cosmological term. If so, one could assign to
this subset a sequence of values tn of the flow parameter t.

4. I do not know whether 3-dimensionality is somehow absolutely essential for getting the topolog-
ical classification of closed 3-manifolds using Ricci flow. This ignorance allows me to pose some
innocent questions. Could one have a canonical representation of 4-geometries as spaces with
constant Ricci scalar? Could one select one particular Einstein space in the class four-metrics
and could the ratio Λ/k represent topological invariant if one normalizes metric or curvature
scalar suitably. In the 3-dimensional case curvature scalar is normalized to unity. In the recent
case this normalization would give k = 4Λ in turn giving Rαβ = gαβ/4. Does this mean that
there is only single fixed point in local sense, analogous to black hole toward which all geometries
are driven by the Maxwell flow? Does this imply that only the 4-volume of the original space
would serve as a topological invariant?

http://en.wikipedia.org/wiki/Einstein_manifold
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4.2 Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow would be the
appropriate term and provides families of preferred extremals. Since space-time surfaces inside CD
are the basic physical objects are in TGD framework, a possible interpretation of these families would
be as flows describing physical dissipation as a four-dimensional phenomenon polishing details from
the space-time surface interpreted as an analog of Bohr orbit.

1. The flow is now induced by a vector field jk(x, t) of the space-time surface having values in
the tangent bundle of imbedding space M4 × CP2. In the most general case one has Kähler
flow without the Einstein equations. This flow would be defined in the space of all space-time
surfaces or possibly in the space of all extremals. The flow equations reduce to

hklDαj
k(x, t)∂βh

l =
1

2
Tαβ ,

Tαβ =
1

16παK

[
Jαν J

νβ − 1

4
JαβJαβ

]
. (4.6)

The left hand side is the projection of the covariant gradient Dalphaj
k(x, t) of the flow vector

field jk(x, t) to the tangent space of the space-time surface. Dα is covariant derivative taking
into account that jk is imbedding space vector field. For a fixed point space-time surface
this projection must vanish assuming that this space-time surface reachable. A good guess for
the asymptotia is that the divergence of Maxwell energy momentum tensor vanishes and that
Einstein’s equations with cosmological constant are well-defined.

Asymptotes corresponds to vacuum extremals. In Euclidian regions CP2 type vacuum extremals
and in Minkowskian regions to any space-time surface in any 6-D sub-manifold M4×Y 2, where
Y 2 is Lagrangian sub-manifold of CP2 having therefore vanishing induced Kähler form. Sym-
plectic transformations of CP2 combined with diffeomorphisms of M4 give new Lagrangian
manifolds. One would expect that vacuum extremals are approached but never reached at
second extreme for the flow.

If one assumes Einstein’s equations with a cosmological term, allowed vacuum extremals must
be Einstein manifolds. For CP2 type vacuum extremals this is the case. It is quite possible that
these fixed points do not actually exist in Minkowskian sector, and could be replaced with more
complex asymptotic behavior such as limit, chaos, or strange attractor.

2. The flow could be also restricted to the space of preferred extremals. Assuming that Einstein
Maxwell equations indeed hold true, the flow equations reduce to

hklDαj
k(x, t)∂βh

l =
1

2
(kRαβ − Λgαβ) . (4.7)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the space
of all 4-surfaces.

3. One can also consider a situation in which jk(x, t) is replaced with jk(h, t) defining a flow in the
entire imbedding space. This assumption is probably too restrictive. In this case the equations
reduce to

(Drjl(x, t) +Dljr)∂αh
r∂βh

l = kRαβ − Λgαβ . (4.8)

Here Dr denotes covariant derivative. Asymptotia is achieved if the tensor Dkjl+Dkjl becomes
orthogonal to the space-time surface. Note for that Killing vector fields of H the left hand side
vanishes identically. Killing vector fields are indeed symmetries of also asymptotic states.
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It must be made clear that the existence of a continuous flow in the space of preferred extremals
might be too strong a condition. Already the restriction of the general Maxwell flow in the space of
metrics to solutions of Einstein-Maxwell equations with cosmological term might lead to discretization,
and the assumption about reprentability as 4-surface in M4 × CP2 would give a further condition
reducing the number of solutions. On the other hand, one might consiser a possibility of a continuous
flow in the space of constant Ricci scalar metrics with a fixed 4-volume and having hyperbolic spaces
as the most symmetric representative.

4.3 Dissipation, self organization, transition to chaos, and coupling con-
stant evolution

A beautiful connection with concepts like dissipation, self-organization, transition to chaos, and cou-
pling constant evolution suggests itself.

1. It is not at all clear whether the vacuum extremal limits of the preferred extremals can correspond
to Einstein spaces except in special cases such as CP2 type vacuum extremals isometric with
CP2. The imbeddability condition however defines a constraint force which might well force
asymptotically more complex situations such as limit cycles and strange attractors. In ordinary
dissipative dynamics an external energy feed is essential prerequisite for this kind of non-trivial
self-organization patterns.

In the recent case the external energy feed could be replaced by the constraint forces due to
the imbeddability condition. It is not too difficult to imagine that the flow (if it exists!) could
define something analogous to a transition to chaos taking place in a stepwise manner for critical
values of the parameter t. Alternatively, these discrete values could correspond to those values
of t for which the preferred extremal property holds true for a general Maxwell flow in the space
of 4-metrics. Therefore the preferred extremals of Kähler action could emerge as one-parameter
(possibly discrete) families describing dissipation and self-organization at the level of space-time
dynamics.

2. For instance, one can consider the possibility that in some situations Einstein’s equations split
into two mutually consistent equations of which only the first one is independent

xJανJ
νβ = Rαβ ,

LK = xJανJ
νβ = 4Λ ,

x =
1

16παK
. (4.9)

Note that the first equation indeed gives the second one by tracing. This happens for CP2 type
vacuum extremals.

Kähler action density would reduce to cosmological constant which should have a continuous
spectrum if this happens always. A more plausible alternative is that this holds true only
asymptotically. In this case the flow equation could not lead arbitrary near to vacuum extremal,
and one can think of situation in which LK = 4Λ defines an analog of limiting cycle or perhaps
even strange attractor. In any case, the assumption would allow to deduce the asymptotic value
of the action density which is of utmost importance from calculational point of view: action
would be simply SK = 4ΛV4 and one could also say that one has minimal surface with Λ taking
the role of string tension.

3. One of the key ideas of TGD is quantum criticality implying that Kähler coupling strength is
analogous to critical temperature. Second key idea is that p-adic coupling constant evolution
represents discretized version of continuous coupling constant evolution so that each p-adic
prime would correspond a fixed point of ordinary coupling constant evolution in the sense that
the 4-volume characterized by the p-adic length scale remains constant. The invariance of the
geometric and thus geometric parameters of hyperbolic 4-manifold under the Kähler flow would
conform with the interpretation as a flow preserving scale assignable to a given p-adic prime.
The continuous evolution in question (if possible at all!) might correspond to a fixed p-adic
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prime. Also the hierarchy of Planck constants relates to this picture naturally. Planck constant
~eff = n~ corresponds to a multi-furcation generating n-sheeted structure and certainly affecting
the fundamental group.

4. One can of course question the assumption that a continuous flow exists. The property of being a
solution of Einstein-Maxwell equations, imbeddability property, and preferred extremal property
might allow allow only discrete sequences of space-time surfaces perhaps interpretable as orbit
of an iterated map leading gradually to a fractal limit. This kind of discrete sequence might
be also be selected as preferred extremals from the orbit of Maxwell flow without assuming
Einstein-Maxwell equations. Perhaps the discrete p-adic coupling constant evolution could be
seen in this manner and be regarded as an iteration so that the connection with fractality would
become obvious too.

4.4 Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and almost constancy
of LK suggest an interpretation in terms of 4-D variant of thermodynamics natural in zero energy
ontology (ZEO), where physical states are analogs for pairs of initial and final states of quantum event
are quantum superpositions of classical time evolutions. Quantum theory becomes a ”square root” of
thermodynamics so that 4-D analog of thermodynamics might even replace ordinary thermodynamics
as a fundamental description. If so this 4-D thermodynamics should be qualitatively consistent with
the ordinary 3-D thermodynamics.

1. The first naive guess would be the interpretation of the action density LK as an analog of energy
density e = E/V3 and that of R as the analog to entropy density s = S/V3. The asymptotic
states would be analogs of thermodynamical equilibria having constant values of LK and R.

2. Apart from an overall sign factor ε to be discussed, the analog of the first law de = Tds−pdV/V
would be

dLK = kdR+ Λ
dV4
V4

.

One would have the correspondences S → εRV4, e → εLK and k → T , p → −Λ. k ∝ 1/G
indeed appears formally in the role of temperature in Einstein’s action defining a formal partition
function via its exponent. The analog of second law would state the increase of the magnitude
of εRV4 during the Kähler flow.

3. One must be very careful with the signs and discuss Euclidian and Minkowskian regions sepa-
rately. Concerning purely thermodynamic aspects at the level of vacuum functional Euclidian
regions are those which matter.

(a) For CP2 type vacuum extremals LK ∝ E2 + B2 , R = Λ/k, and Λ are positive. In
thermodynamical analogy for ε = 1 this would mean that pressure is negative.

(b) In Minkowskian regions the value of R = Λ/k is negative for Λ < 0 suggested by the large
abundance of 4-manifolds allowing hyperbolic metric and also by cosmological considera-
tions. The asymptotic formula LK = 4Λ considered above suggests that also Kähler action
is negative in Minkowskian regions for magnetic flux tubes dominating in TGD inspired
cosmology: the reason is that the magnetic contribution to the action density LK ∝ E2−B2

dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian
regions assuming that the the evolution by quantum jumps has Kähler flow as a space-time correlate.

1. In Euclidian regions the choice ε = 1 seems to be more reasonable one. In Euclidian regions −Λ
as the analog of pressure would be negative, and asymptotically (that is for CP2 type vacuum
extremals) its value would be proportional to Λ ∝ 1/GR2, where R denotes CP2 radius defined
by the length of its geodesic circle.
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A possible interpretation for negative pressure is in terms of string tension effectively inducing
negative pressure (note that the solutions of the modified Dirac equation indeed assign a string
to the wormhole contact). The analog of the second law would require the increase of RV4 in
quantum jumps. The magnitudes of LK , R, V4 and Λ would be reduced and approach their
asymptotic values. In particular, V4 would approach asymptotically the volume of CP2.

2. In Minkowskian regions Kähler action contributes to the vacuum functional a phase factor anal-
ogous to an imaginary exponent of action serving in the role of Morse function so that thermo-
dynamics interpretation can be questioned. Despite this one can check whether thermodynamic
interpretation can be considered. The choice ε = −1 seems to be the correct choice now. −Λ
would be analogous to a negative pressure whose gradually decreases. In 3-D thermodynamics it
is natural to assign negative pressure to the magnetic flux tube like structures as their effective
string tension defined by the density of magnetic energy per unit length. −R ≥ 0 would entropy
and −LK ≥ 0 would be the analog of energy density.

R = Λ/k and the reduction of Λ during cosmic evolution by quantum jumps suggests that the
larger the volume of CD and thus of (at least) Minkowskian space-time sheet the smaller the
negative value of Λ.

Assume the recent view about state function reduction explaining how the arrow of geometric
time is induced by the quantum jump sequence defining experienced time [K1]. According to
this view zero energy states are quantum superpositions over CDs of various size scales but
with common tip, which can correspond to either the upper or lower light-like boundary of
CD. The sequence of quantum jumps the gradual increase of the average size of CD in the
quantum superposition and therefore that of average value of V4. On the other hand, a gradual
decrease of both −LK and −R looks physically very natural. If Kähler flow describes the effect
of dissipation by quantum jumps in ZEO then the space-time surfaces would gradually approach
nearly vacuum extremals with constant value of entropy density −R but gradually increasing
4-volume so that the analog of second law stating the increase of −RV4 would hold true.

3. The interpretation of −R > 0 as negentropy density assignable to entanglement is also possible
and is consistent with the interpretation in terms of second law. This interpretation would only
change the sign factor ε in the proposed formula. Otherwise the above arguments would remain
as such.

5 Could correlation functions, S-matrix, and coupling con-
stant evolution be coded the statistical properties of pre-
ferred extremals?

Quantum classical correspondence states that all aspects of quantum states should have correlates in
the geometry of preferred extremals. In particular, various elementary particle propagators should
have a representation as properties of preferred extremals. This would allow to realize the old dream
about being able to say something interesting about coupling constant evolution although it is not
yet possible to calculate the M-matrices and U-matrix. Hitherto everything that has been said about
coupling constant evolution has been rather speculative arguments except for the general vision that
it reduces to a discrete evolution defined by p-adic length scales. General first principle definitions
are however much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum state
should code for its properties. By quantum classical correspondence these correlation functions should
have counterparts in the geometry of preferred extremals. Even more: these classical counterparts
for a given preferred extremal ought to be identical with the quantum correlation functions for the
superposition of preferred extremals. This correspondence could be called quantum ergodicity by
its analogy with ordinary ergodicity stating that the member of ensemble becomes representative of
ensemble.

1. The marvelous implication of quantum ergodicity would be that one could calculate everything
solely classically using the classical intuition - the only intuition that we have. Quantum ergodic-
ity would also solve the paradox raised by the quantum classical correspondence for momentum
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eigenstates. Any preferred extremal in their superposition defining momentum eigenstate should
code for the momentum characterizing the superposition itself. This is indeed possible if every
extremal in the superposition codes the momentum to the properties of classical correlation
functions which are identical for all of them.

2. The only manner to possibly achieve quantum ergodicity is in terms of the statistical properties
of the preferred extremals. It should be possible to generalize the ergodic theorem stating
that the properties of statistical ensemble are represented by single space-time evolution in the
ensemble of time evolutions. Quantum superposition of classical worlds would effectively reduce
to single classical world as far as classical correlation functions are considered. The notion of
finite measurement resolution suggests that one must state this more precisely by adding that
classical correlation functions are calculated in a given UV and IR resolutions meaning UV cutoff
defined by the smallest CD and IR cutoff defined by the largest CD present.

3. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that this
quantum ergodic theorem must be broken. In the case of the ordinary spin classes one has
not only statistical average for a fixed Hamiltonian but a statistical average over Hamiltonians.
There is a probability distribution over the coupling parameters appearing in the Hamiltonian.
Maybe the quantum counterpart of this is needed to predict the physically measurable correlation
functions.

Could this average be an ordinary classical statistical average over quantum states with different
classical correlation functions? This kind of average is indeed taken in density matrix formalism.
Or could it be that the square root of thermodynamics defined by ZEO actually gives automati-
cally rise to this average? The eigenvalues of the ”hermitian square root ” of the density matrix
would code for components of the state characterized by different classical correlation functions.
One could assign these contributions to different ”phases”.

4. Quantum classical correspondence in statistical sense would be very much like holography (now
individual classical state represents the entire quantum state). Quantum ergodicity would pose
a rather strong constraint on quantum states. This symmetry principle could actually fix the
spectrum of zero energy states to a high degree and fix therefore the M-matrices given by the
product of hermitian square root of density matrix and unitary S-matrix and unitary U-matrix
having M-matrices as its orthonormal rows.

5. In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the postulate
that the space-time geometry provides a symbolic representation for the quantum states and
also for the contents of consciousness assignable to quantum jumps between quantum states.
Quantum ergodicity would realize this strongly self-referential looking condition. The positive
and negative energy parts of zero energy state would be analogous to the initial and final
states of quantum jump and the classical correlation functions would code for the contents of
consciousness like written formulas code for the thoughts of mathematician and provide a sensory
feedback.

How classical correlation functions should be defined?

1. General Coordinate Invariance and Lorentz invariance are the basic constraints on the definition.
These are achieved for the space-time regions with Minkowskian signature and 4-DM4 projection
if linear Minkowski coordinates are used. This is equivalent with the contraction of the indices of
tensor fields with the space-time projections of M4 Killing vector fields representing translations.
Accepting ths generalization, there is no need to restrict oneself to 4-D M4 projection and one
can also consider also Euclidian regions identifiable as lines of generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2 Killing
vector fields can be projected to space-time surface and give a representation for classical gluon
fields. These in turn can be contracted with M4 Killing vectors giving rise to gluon fields as
analogs of graviton fields but with second polarization index replaced with color index.

2. The standard definition for the correlation functions associated with classical time evolution is
the appropriate starting point. The correlation function GXY (τ) for two dynamical variables
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X(t) and Y (t) is defined as the average GXY (τ) =
∫
T
X(t)Y (t+τ)dt/T over an interval of length

T , and one can also consider the limit T →∞. In the recent case one would replace τ with the
difference m1−m2 = m of M4 coordinates of two points at the preferred extremal and integrate
over the points of the extremal to get the average. The finite time interval T is replaced with
the volume of causal diamond in a given length scale. Zero energy state with given quantum
numbers for positive and negative energy parts of the state defines the initial and final states
between which the fields appearing in the correlation functions are defined.

3. What correlation functions should be considered? Certainly one could calculate correlation func-
tions for the induced spinor connection given electro-weak propagators and correlation functions
for CP2 Killing vector fields giving correlation functions for gluon fields using the description in
terms of Killing vector fields. If one can uniquely separate from the Fourier transform uniquely
a term of form Z/(p2 −m2) by its momentum dependence, the coefficient Z can be identified
as coupling constant squared for the corresponding gauge potential component and one can in
principle deduce coupling constant evolution purely classically. One can imagine of calculating
spinorial propagators for string world sheets in the same manner. Note that also the depen-
dence on color quantum numbers would be present so that in principle all that is needed could
be calculated for a single preferred extremal without the need to construct QFT limit and to
introduce color quantum numbers of fermions as spin like quantum numbers (color quantum
numbers corresponds to CP2 partial wave for the tip of the CD assigned with the particle).

4. What about Higgs field? TGD in principle allows scalar and pseudo-scalars which could be called
Higgs like states. These states are however not necessary for particle massivation although they
can represent particle massivation and must do so if one assumes that QFT limit exist. p-Adic
thermodynamics however describes particle massivation microscopically.

The problem is that Higgs like field does not seem to have any obvious space-time correlate.
The trace of the second fundamental form is the obvious candidate but vanishes for preferred
extremals which are both minimal surfaces and solutions of Einstein Maxwell equations with
cosmological constant. If the string world sheets at which all spinor components except right
handed neutrino are localized for the general solution ansatz of the modified Dirac equation, the
corresponding second fundamental form at the level of imbedding space defines a candidate for
classical Higgs field. A natural expectation is that string world sheets are minimal surfaces of
space-time surface. In general they are however not minimal surfaces of the imbedding space so
that one might achieve a microscopic definition of classical Higgs field and its vacuum expectation
value as an average of one point correlation function over the string world sheet.

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion of
quantum ergodicity could however be one of the really deep ideas about coupling constant evolution
comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity (briefly QE)
would also state something extremely non-trivial also about the construction of correlation functions
and S-matrix. Because this principle is so new, the rest of the chapter does not yet contain any
applications of QE. This should not lead the reader to under-estimate the potential power of QE.
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