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Abstract

Langlands’ program seeks to relate Galois groups in algebraic number theory to automor-
phic forms and representation theory of algebraic groups over local fields and adeles. Langlands
program is described by Edward Frenkel as a kind of grand unified theory of mathematics.

In the TGD framework, M8 −M4 ×CP2 duality assigns to a rational polynomial a set of
mass shells H3 in M4 ⊂M8 and by associativity condition a 4-D surface in M8, and its it to
H = M4×CP2. M8−M4×CP2 means that number theoretic vision and geometric vision of
physics are dual or at least complementary. This vision could extend to a trinity of number
theoretic, geometric and topological views since geometric invariants defined by the space-time
surfaces as Bohr orbit-like preferred extremals could serve as topological invariants.

Concerning the concretization of the basic ideas of Langlands program in TGD, the basic
principle would be quantum classical correspondence (QCC), which is formulated as a corre-
spondence between the quantum states in the ”world of classical worlds” (WCW) characterized
by analogs of partition functions as modular forms and classical representations realized as
space-time surfaces. L-function as a counter part of the partition function would define as
its roots space-time surfaces and these in turn would define via Galois group representation
partition function. QCC would define a kind of closed loop giving rise to a hierarchy.

If Riemann hypothesis (RH) is true and the roots of L-functions are algebraic numbers,
L-functions are in many aspects like rational polynomials and motivate the idea that, besides
rationals polynomials, also L-functions could define space-time surfaces as kinds of higher level
classical representations of physics.

One concretization of Langlands program would be the extension of the representations of
the Galois group to the polynomials P to the representations of reductive groups appearing
naturally in the TGD framework. Elementary particle vacuum functionals are defined as
modular invariant forms of Teichmüller parameters. Multiple residue integral is proposed as
a way to obtain L-functions defining space-time surfaces.

One challenge is to construct Riemann zeta and the associated ξ function and the Hadamard
product leads to a proposal for the Taylor coefficients ck of ξ(s) as a function of s(s− 1). One

would have ck =
∑
i,j ck,ije

i/ke
√
−12πj/n, ck,ij ∈ {0,±1}. e1/k is the hyperbolic analogy for a

root of unity and defines a finite-D transcendental extension of p-adic numbers and together
with n :th roots of unity powers of e1/k define a discrete tessellation of the hyperbolic space
H2.

This construction leads to the question whether also finite fields could play a fundamental
role in the number theoretic vision. Prime polynomial with prime order n = p and integer
coefficients smaller than n = p can be regarded as a polynomial in a finite field. If it is
irreducible, it defines an infinite prime. The proposal is that all physically allowed polynomials
are constructible as functional composites of these.
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1 Introduction

Langlands’ program seeks to relate Galois groups in algebraic number theory to automorphic forms
and representation theory of algebraic groups over local fields and adeles. Langlands program is
described by Edward Frenkel as a kind of grand unified theory of mathematics (https://cutt.
ly/1BgbfsL). I have a strong feeling that Langlands program is essential for TGD but every
time I encounter the Langlands program, I feel myself an extremely stupid physicist, who tries to
understand something, which simply goes over his head. But still I try once again.

1.1 About Langlands program

I am not mathematician enough to really describe Langlands program (https://cutt.ly/ABj2G7D)
and its results. I have only a dim idea about the implications of Langlands correspondence and
the following is my humble attempt to get some grasp the basic ideas of this immense topic.

1.1.1 Basic ideas

Wikipedia article (https://cutt.ly/ABj2G7D) and the references therein gives a more detailed
view of Langlands program [A4, A3], discussed from the TGD perspective in [?, K4]. The following
is a brief summary of this article.

1. The slogan ”philosophy of cusp forms” was introduced by Harish-Chandra, expressing his
idea of a kind of reverse engineering of automorphic form theory, from the point of view of
representation theory. Also Israel Gelfand proposed a similar philosophy.

The discrete completely discontinuous group Γ of SL(2, R) acting in hyperbolic space H2,
fundamental to the classical theory of modular forms, loses its central role. What remains is
the basic idea that representations in general are to be constructed by parabolic induction
of so-called cuspidal representations.

Cuspidal representations assignable to hyperbolic 2-manifolds and their higher-D general-
izations, of which Teichmueller spaces as moduli spaces of conformal equivalence classes of
Riemann surfaces represent an example, become the fundamental class of objects, from which
other representations may be constructed by procedures of induction. Note that in TGD, hy-
perbolic 3-manifolds could replace hyperbolic 2-manifolds and one challenge is to understand
how hyperbolic 2-manifolds relate to hyperbolic 3-manifolds.

Remark: Cusps correspond geometrically to peak-like singularities of say SL(2, R)/Γ. Parabolic
group (https://cutt.ly/HBj4t4e) is a subgroup of a linear algebraic group G in field k such
that G/P is a projective algebraic variety and contains some Borel subgroup of G as a sub-
group (upper diagonal matrices with units at diagonal is the standard example).

2. Functoriality as a category theoretic notion is the second key notion. Roughly, functoriality
means that what holds true for a representative of a given type group, should hold generally.
This makes the statements extremely general. The statements can be formulated in adelic
framework so that they hold simultaneously for both rationals, extensions of rationals and
extensions of p-adic number fields induced by them.

1.1.2 Contents of Langlands conjectures

1. Langlands correspondence is between L-functions associated with irreps of finite Galois group
analogous to zeta functions and automorphic cuspidal representations of Gl(n,C) and of
even more general reductive groups representable as matrix groups which are analogous to
partition functions. Both partition functions and L-functions code for the numbers of objects
of particular kind, typically for the degeneracies of quantum states with given quantum
numbers.

https://cutt.ly/1BgbfsL
https://cutt.ly/1BgbfsL
https://cutt.ly/ABj2G7D
https://cutt.ly/ABj2G7D
https://cutt.ly/HBj4t4e
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SL(2, C) as a covering of Lorentz group is of special interest in TGD but TGD involves many
other reductive groups and partition function type objects could define analogies of automor-
phic forms, which Langlands correspondence maps to L-functions, which are conjectured to
satisfy Riemann hypothesis and functional equations analogous to that satisfied by Riemann
ζ.

2. In the case of Artin function L-function is a characteristic determinant for an special element
of Galois group, which is Frobenius element mapping elements of the ring of integers of L/K
to their p:th power: x→ xp. For finite fields, xp = x holds true.

The Artin conjecture states that automorphic forms (https://cutt.ly/qBgb6Fw) as repre-
sentations of reductive groups correspond to Artin L-functions (https://cutt.ly/NBgnozT)
assigned to Galois groups and having a product representation analogous to the Euler prod-
uct for ζ. Artin zeta function is a product of powers of Artin L-functions for all finite-D
irreducible representations of the Galois group (see Appendix).

Langlands pointed out that the Artin conjecture follows from strong enough results implied
by the Langlands philosophy, relating to the L-functions associated to automorphic repre-
sentations for GL(n) for all n ≥ 1.

3. More precisely, the Langlands correspondence associates an automorphic representation of
the adelic version of an algebraic group GLn(AQ) to every n-dimensional irreducible repre-
sentation of the Galois group. The automorphic representation is a cuspidal representation
(the representation functions vanish at the tips of cusps) if the Galois representation is irre-
ducible. The Artin L-function of the Galois representation is the same as the automorphic
L-function of the automorphic representation. Therefore finite-D representations of Galois
group and cuspidal representations of Gl(n,AQ) correspond to each other.

The Artin conjecture follows immediately from the known fact that the L-functions of cuspidal
automorphic representations are holomorphic. This was one of the major motivations for
Langlands’ work.

4. Dedekind conjecture states that if L/K is an extension of number fields, then the quotient
s 7→ ζL(s)/ζK(s) of their Dedekind zeta functions is entire function. The Aramata-Brauer
theorem states that the conjecture holds if L/K is Galois.

5. There are a number of related Langlands conjectures. There are many different groups over
many different fields for which they can be stated, and for each field there are several different
versions of the conjectures.

There are different types of objects for which the Langlands conjectures can be formulated.

1. Representations of reductive groups over local fields, that is archimedean local fields, p-adic
local fields, and completions of function fields over complex numbers). In the case of algebraic
groups over local fields, adeles allow to combine the representations in all these fields to a
single adelic representation, which implies huge generality.

2. Automorphic forms on reductive groups over global fields, which are extensions of rationals
or to a function field over finite field defined by rational functions.

3. Representations of reductive groups over finite fields.

1.2 Why Langlands program could be relevant for TGD?

It is increasingly clear that the conjectures of the Langlands program have physical analogies in
the quantum TGD proposed to be a grand unification of physics.

1. In the view of TGD based on fusion number theoretical and geometric views of physics,
rational polynomials determine space-time regions at the fundamental level [L5, L6]. The
observations of [L15, L12] inspired the question whether L-functions as generalizations of
polynomials be used to define space-time surfaces.

https://cutt.ly/qBgb6Fw
https://cutt.ly/NBgnozT
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Conformal confinement would favor this [L12]. The hypothesis that roots are algebraic num-
bers becomes an interesting possibility strongly favored by Galois confinement implying that
the 4-momenta of physical states have integer components whereas virtual states have mo-
menta with algebraic integer valued components. Momentum components would be algebraic
integers in an infinite-D extension of rationals.

What could be the interpretation of these surfaces? Could they represent a higher level of
intelligence and define infinite cognitive representations as algebraic integer valued virtual
momenta at the mass shells of M4 ⊂M8?

2. Artin’s L-functions are associated with n-D representations of Galois groups on one hand
and with infinite-D unitary representations (Gl(n,C) and more general Lie groups. The
extensions of the representations of Galois groups would be very relevant in TGD since
Galois groups become symmetry groups in the number theoretic vision of TGD.

Quantum TGD provides several candidates for these kinds of groups [L15]. There are groups
assignable to the representations of supersymplectic algebras, isometry algebras of the light-
cone boundary δM4

+, and the Kac-Moody type algebras assignable to light-like 3-surfaces
defining either boundaries of Minkowskian regions or orbits of partonic 2-surfaces as bound-
aries between Minkowskian and Euclidean space-time regions [L14]. There are also extended
conformal symmetries due to the fact that the light-cone boundary and light-like 3-surfaces
are metrically 2-D.

3. The mass shells H3 of causal diamond (CD) defined by the roots of polynomials allow a
realization of SO(1, 3) and SL(2, C) allow tessellations and hyperbolic manifolds as analogs of
unit cells of lattice. They could make possible the realization of holographic continuations of
modular forms associated with hyperbolic 2-manifolds defining boundaries of 3-D hyperbolic
manifolds, which could be mapped to L-functions, possibly defining space-time surfaces as
analogies of polynomials [L9].

4. Elementary particle vacuum functionals are analogous to partition functions and are deter-
mined as modular invariant modular forms in the Teichmueller space parameterizing the
conformal equivalence classes of partonic 2-surfaces [K2]. These functions should define L-
functions with several variables and they could give rise to L-functions of a single variable
by multiple residue integral. For multiple-zetas this procedure gives a product expressible in
terms of zetas having the desired physical properties (allowing conformal confinement and
possibly even Galois confinement).

1.3 Quantum classical correspondence as a feedback loop between the
classical space-time level and the quantal WCW level?

Quantum classical correspondence (QCC) has been one of the guidelines in the development of TGD
but its precise formulation has been missing. A more precise view of QCC could be that there
exists a feedback loop between classical space-time level and quantal ”world of classical worlds”
(WCW) level. This idea is new and akin to Jack Sarfatti’s idea about feedback loop, which he
assigned with the conscious experience. The difference between consciousness and cognition at the
human resp. elementary particle level could correspond to the difference between L-functions and
polynomials.

This vision inspires the question whether the generalization of the number theoretic view of
TGD so that besides rational polynomials (subject to some restrictions) also L-functions, which
have a nice physical interpretation if RH holds true for them, can be defined via their roots 4-
surfaces in M8

c and by M8−H duality 4-surfaces in H. Both conformal confinement (in weak and
strong form) and Galois confinement (having also weak and strong form) support the view that
L-functions are Langlands duals of the partition functions defining quantum states.

If L functions indeed appear as a generalization of polynomials and define space-time surfaces,
there must be a very deep reason for this.

1. The key idea of computationalism is that computers can emulate/mimic each other. Universe
should be able to emulate itself. Could WCW level and space-time level mimic each other?
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If this were the case, it could take place via QCC. If so, it should be possible to assign to a
quantum state a space-time surface as its classical space-time correlate and vice versa.

2. There are several space-time surfaces with a given Galois group but fixing the polynomial P
fixes the space-time surface. An interesting possibility is that the observed classical space-
time corresponds to superposition of space-time surfaces with the same discretization defined
by the extension defined by the polynomial P . If so, the superposition of space-time surfaces
would be effectively absent in the measurement resolution used and the quantum world would
look classical.

3. A given polynomial P fixes the mass shells H3 ⊂M4 ⊂M8 but does not fix the space-time
surface X4 completely since the polynomial hypothesis says nothing about the intersections
of X4 with H3 defining 3-surfaces. The associativity hypothesis for the normal space of
X4 ⊂ M8 [L5, L6] implies holography, which fixes X4 to a high degree for a given X3.
Holography is not expected to be completely deterministic: this non-determinism is proposed
to serve as a correlate for intentionality.

If space-time has boundaries, the boundaries X2 of X3 ⊂ H3 could be ends of light-like
3-surfaces X3

L [L14]. An attractive idea is that they are hyperbolic manifolds or pieces of a
tessellation defined by a hyperbolic manifold as the analog of a unit cell [L9]. The ends X2

of these 3-surfaces at the boundaries of CD would define partonic 2-surfaces.

By quantum criticality of the light-like 3-surfaces satisfying det(−g4) = 0 [L14], their time
evolution is not expected to be completely unique. If the extended conformal invariance of
3-D light-like surfaces is broken to a subgroup with conformal weights, which are multiples
of integer n the conformal algebra defines a non-compact group serving as a reductive group
allowing extensions of irreps of Galois group to its representations.

One can also consider space-time surfaces without boundaries. They would define coverings
of M4 and there would be several overlapping projections to H3, which would meet along
2-D surfaces as analogies of boundaries of 3-space. Also in this case, the idea that the X3 is
a hyperbolic 3-manifold is attractive.

4. Quantum TGD involves a general mechanism reducing the infinite-D symmetry groups to
finite-D groups, which has an interpretation in terms of finite measurement resolution [L15]
describable both in terms of inclusions of hyperfinite factors of type II1 and inclusions of
extensions of rationals inducing inclusions of cognitive representations. One can also consider
an interpretation in terms of symmetry breaking.

This reduction means that the conformal weights of the generators of the Lie-algebras of these
groups have a cutoff so that radial conformal weight associated with the light-like coordinate
of δM4

+ is below a maximal value nmax. The generators with conformal weight n > nmax
and their commutators with the entire algebra would act like a gauge algebra, whereas for
n ≤ nmax they generate genuine symmetries. The alternative interpretation is that the gauge
symmetry breaks from nmax = 0 to nmax > 0 by transforming to dynamical symmetry.

Note that the gauge conditions for the Virasoro algebra and Kac-Moody algebra are assumed
to have nmax = 0 so that a breaking of conformal invariance would be in question for
nmax > 0.

5. The natural expectation is that the representation of the Galois group for these space-time
surfaces defines representations in various degrees of freedom in terms of the semi-direct
products of the Langlands duals LG0 with the Galois group (here LG0 denotes the connected
component of Langlands dual of G). Semi-direct product means that the Galois group acts
on the algebraic group G assignable to algebraic extension by affecting the matrix elements
of the group element.

There are several candidates for the group G [L15]. G could correspond to a conformal cutoff
An of algebra A, which could be the super symplectic algebra SSA of δM4×CP2, the infinite-
D algebra I of isometries of δM4

+, or the algebra Conf extended conformal symmetries of
δM4+. Also the extended conformal algebra and extended Kac-Moody type algebras of H
isometries associated with the light-like partonic orbits can be considered.
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6. One could assign to these representations modular forms interpreted as generalized partition
functions, kind of complex square roots of thermodynamic partition functions. Quantum
TGD can be indeed formally regarded as a complex square root of thermodynamics. This
partition function could define a ground state for a space of zero energy state defined in
WCW as a superposition over different light-like 3-surfaces.

These considerations boil down to the following questions.

1. Could the quantum states at WCW level have classical space-time correlates as space-time
surfaces, which would be defined by the L-functions associated with the modular forms
assignable to finite-D representations of Galois group having a physical interpretation as
partition functions?

2. Could this give rise to a kind of feedback loop representing increasingly higher abstractions
as space-time surfaces. This sequence could continue endlessly. This picture brings in mind
the hierarchy of infinite primes [L15].

Many-sheeted space-time would represent a hierarchy of abstractions. The longer the scale
of the space-time sheet the higher the level in the hierarchy.

1.4 TGD analogy of Langlands correspondence

Concerning the concretization of the basic ideas of Langlands program in TGD, the basic principle
would be quantum classical correspondence (QCC).

1. QCC is formulated as a correspondence between the quantum states in WCW characterized
by analogs of partition functions as modular forms and classical representations realized as
space-time surfaces. L-function as a counter part of the partition function would define as its
roots space-time surfaces and these in turn would define via finite-dimensional representations
of Galois groups partition functions. Finite-dimensionality in the case of L-functions would
have an interpretation as a finite cognitive and measurement resolution. QCC would define
a kind of closed loop giving rise to a hierarchy.

2. If Riemann hypothesis (RH) is true and the roots of L-functions are algebraic numbers, L-
functions are in many aspects like rational polynomials and motivate the idea that, besides
rationals polynomials, also L-functions could define space-time surfaces as kinds of higher
level classical representations of physics.

3. One should construct Riemann zeta and the associated ξ function as the simplest instances of
L-functions assignable to SL(2, R) . The Hadamard product leads to a proposal for the Taylor

coefficients ck of ξ(s) as a function of s(s− 1). One would have ck =
∑
i,j ck,ije

i/ke
√
−12πj/n,

ck,ij ∈ {0,±1}. e1/k is the hyperbolic analogy for a root of unity and defines a finite-D
transcendental extension of p-adic numbers and together with n :th roots of unity powers of
e1/k define a discrete tessellation of the hyperbolic space H2 (upper complex plane). Thus
the proposal that mass squared values correspond algebraic numbers generalizes: also roots
of e can appear as roots.

4. One concretization of Langlands program would be the extension of the representations of
the Galois group to the polynomials P to the representations of reductive groups appearing
naturally in the TGD framework [L15].

5. In particular, elementary particle vacuum functionals are defined as modular invariant forms
of Teichmüller parameters [K2]. Multiple residue integral is proposed as a way to obtain
L-functions defining space-time surfaces.

6. A highly interesting feedback to the number theoretic vision emerges. The rational polyno-
mials P defining space-time surfaces are characterized by ramified primes. Without further
conditions, they do not correlate at all with the degree n of P as the physical intuition
suggests.
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In [L15] it was proposed that P can be identified as the polynomial Q defining an infinite
prime [K6]: this implies that P is irreducible.

An additional condition is that the coefficients of P are smaller than the degree n of P . For
n = p, P could as such be regarded as a polynomial in a finite field. This proposal is too
strong to be true generally but could hold true for so-called prime polynomials of prime order
having no functional decomposition to polynomials of lower degree [A2, A8]. The proposal
is that all physically allowed polynomials are constructible as functional composites of these.
Also finite fields would become fundamental in the TGD framework.

2 Langlands conjectures in the TGD framework?

M8 − H duality is a central element of TGD and states the duality of number theoretic and
geometric views of physics. This duality is very analogous to Langlands duality.

2.1 How Langlands duality could be realized in TGD

It has become gradually more and more clear that the conjectures of the Langlands program could
be an essential part of quantum TGD [L8, L15, L14, L12, L9] proposed as a candidate for a grand
unification of physics.

1. Could L-functions as generalizations of polynomials be used to define space-time surfaces?
The generalization of Riemann hypothesis (RH) states that the non-trivial zeros of L-functions
are at critical line and trivial ones at negative real axis. This makes possible conformal con-
finement in both weak form (conformal weight is integer) and strong form (the sum positive
and negative (tachyonic) conformal weights vanishes [L16]). The hypothesis that the roots of
L-function are algebraic numbers in an infinite-D extension of rationals is the simplest con-
jecture and allows the realization of Galois confinement so that the 4-momenta have integer
valued momenta using the unit defined by the scale of CD. The transcendental extensions by
roots of e define finite-D extensions of p-adic numbers and could also be involved.

What could be the interpretation of these surfaces? Could they represent higher level of
intelligence, could they define infinite cognitive representations.

2. Artin’s L-functions are associated with n-D representations of Galois groups on one hand
and with infinite-D unitary representations (Gl(n,C) and more general Lie groups. GL(n,C)
generalizes to n-dimensional reductive group of which SL(n), SO(k, n − k), and Sp(2n) are
examples

The general proposal [L15] is that the super-symplectic algebra assignable to δM4
+ × CP2

defining the boundary of causal diamond (CD) in zero energy ontology (ZEO) acts as isome-
tries of WCW.

The dimension 3 of the light-cone boundary makes possible conformal transformations of
S2 ⊂ δM4

+ made local with respect to the light-like radial coordinate of δM4
+ and CP2 as

candidates for symmetries. As a special case, one has isometries of δM4
+ × CP2 for which

the local conformal scaling from conformal transformation of S2 is compensated by a scaling
for the radial light-like coordinate depending also on S2 × CP2 coordinates are possible
symmetries.

The light-like partonic orbits as boundaries between Minkowskian and Euclidean regions
and more general light-like boundaries of space-time surfaces are metrically 2-D and allow
generalization of conformal symmetries and possibly also Kac-Moody symmetries assignable
to isometries as candidates for symmetries.

All these algebras, denote them by A, allow infinite-D Lie-algebra labelled by radial conformal
weights containing as sub-algebras a hierarchy of sub-algebras An for which the conformal
weights come as n-multiples of the conformal weights of the entire algebra.

The states spaces annihilated algebra An and the commutator [An, A] define a hierarchy of
state spaces generalizing the state space for which entire algebra annihilates the states. The
associated groups would allow a realization of Langlands groups.
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3. n = 2-D representations could be assigned with complex 2-D representations SL(2, C) at the
mass shells H3 defined by the roots of L-function. The tessellations defined by the discrete
completely discontinuous subgroups of SL(2, C) would give rise to hyperbolic manifolds as
analogs of unit cells for lattices [L9]. One can also associated with them modular forms which
would be mapped to L-functions. Fermionic spin could provide these representations.

The represention of Galois group sould be somehow extended to a representation of SL(2, C).
Could this give a connection between the number theoretical physics of TGD involving the
irreps of Galois groups and spinor representations of Lorentz group at mass shells H3?

4. Elementary particular vacuum functionals as analogs of partition functions in modular de-
grees of freedom of partonic 2-surface are central for TGD view of family replication phe-
nomenon and can be regarded as modular invariants. They could be mapped to the analogs of
L-functions of m arguments. Symmetrized multiple-zetas decompose to a sum over products
of ordinary zetas. m − 1-fold residue integral would give something proportional to ordi-
nary ζ satisfying RH and could define space-time surface as a correlate of the corresponding
quantum states.

2.2 Could quantum classical correspondence define an infinite hierarchy
of abstractions?

The realization of QCC between WCW and classical levels, proposed in the introduction, gives
rise to a hierarchy of space-time sheets with increasing algebraic complexity possibly related also
to the hierarchy of infinite primes. Schematically one has the following hierarchy.

Polynomial P rightarrow space-time surface with Galois group → partition function Z → L-
function → space-time surface with Galois group GalL → ... There are however strong bounds to
the complexity which is representable at quantum level.

It is not easy to imagine the complexity at the higher levels of the hierarchy.

1. If one can speak of a Galois group GalL of L-function, it is infinite but profinite and has an
ultrametric topology, presumably consisting of p-adic sectors p (there is an analogy with the
energy landscape of spin glasses in the TGD view of them [L7]).

It is not enough that the space-time surface defined by L-function contains information
of quantum state, this information must be also represented as quantum state and this
requires a new partition function assigned with GalL. This suggests a connection with
the hierarchy of infinite primes [K6] analogous to a hierarchy of second quantizations of a
supersymmetric arithmetic QFT [L15]. The assumption that the representations of GalL are
finite-dimensional would pose a strong constraint to the complexity.

2. For composite polynomials Pn ◦ .... ◦ P1, the Galois group Gal has a decomposition to a
hierarchy of normal subgroups such that a normal subgroupH is Galois group for an extension
rationals. The group representation reduced to that for H if Gal/H is represented trivially.
If also GalL has finite normal subgroup H, one obtains finite-D representations by requiring
that Gal/H is represented trivially. This would mean a huge loss of information.

Can GalL have finite normal subgroups? If the L-function is determined by a partition
function associated with a representation of Gal, Gal itself is a good guess for H so that
GalL would reduce to Gal in this particular case! This would conform with the idea that the
higher levels of the hierarchy contain all the lower levels.

What one can say about the Galois group GalL having variants for rationals and various p-adic
number fields.

1. The Absolute Galois group (https://cutt.ly/nBgndkY) assignable to algebraic numbers
acts as automorphisms of algebraic numbers leaving rationals invariant. This definition could
apply also in the case of L-function even in the case that the extension of rationals assigned
to L-function involves transcendentals.

For rationals Absolute Galois group is infinite but profinite, which says that it is in some
sense composed of finite groups. Profinite topology is totally discontinuous as also p-adic

https://cutt.ly/nBgndkY
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topology (hthttps://cutt.ly/MBxdFg8). A system of finite groups and homomorphisms
between them is needed and implies that finite approximations are excellent. Profiniteness
is analogous to hyperfiniteness for the factors of von Neumann algebras, which are central
in quantum TGD [L15], and are indeed assumed to be closely related to the hierarchies of
extensions of rationals.

2. The absolute Galois groups for finite-D extensions K of p-adic number field Qp have a finite
number of elements given by N = K/Qp + 3 so that in p-adic sectors the situation simplifies
dramatically, and this reduction would naturally be behind the profiniteness. This must be
essential also in the case of the absolute Galois group of rationals and its extensions.

3. Galois groups of infinite-D extensions, say those possibly associated with L-functions, are
also profinite.

Suppose that one can speak of the Galois group GalL of an L-function associated with a finite
Galois group Gal. Suppose GalL has finite subgroups, such as Gal.

1. Could this kind of finite-D representation for GalL be assigned with, not a necessary rational
polynomial, of finite degree? Galois group can indeed permute also the roots of a polynomial,
which is not rational. Now one does not however obtain a finite-D extension of rationals.

2. For instance, the cutoff of the product representation of ξ function (https://cutt.ly/
5BjcCcv) associated with ζ as a product ξ(s) =

∏
k(1− s/sk)(1− s/sk), assuming that the

imaginary parts of the roots are below some upper bound, defines a polynomial P , which
is not a rational polynomial and has coefficients, which belong to an extension of rationals,
which need not be finite-D or even algebraic. The roots of the polynomial define an extension
of this extension. It is implausible that the extension defined by a finite number of roots of
ζ can be a finite-D extension of rationals.

This leads to an interesting, possibly testable, conjecture concerning ξ(s) ≡ ξ̃(u = s(s−1)) =∑
k cku

k and its generalization for the extensions of rationals. Complete p-adic democracy
requires that the coefficients have the same meaning irrespective of the number field. This is
true if the Taylor coefficients ck of ξ̃(u) satisfy ck =

∑
i,j ck,ije

i/ke
√
−12πj/n, ck,ij ∈ {0,±1}.

e1/k defines the hyperbolic analogy for a root of unity and gives rise to a finite-D transcen-
dental extension of p-adic numbers. Together with n :th roots of unity powers of e1/k define
a discrete tessellation of the hyperbolic space H2.

3. The hierarchy of L-functions associated with QCC is restricted by the finite-dimensionality
of the Galois representation. Although in principle the classical space-time surface contains
an infinite amount of potentially representable algebraic information, only a small part of it
is represented in terms of quantum states.

2.3 About the p-adic variants of L-functions in the TGD framework

In the TGD framework, the existence of p-adic variants of L-functions and modular forms would
be highly desirable. The conjecture that the roots of L-functions are algebraic numbers raises the
hope that one could define these functions for p-adic integers s satisfying s = O(p).

A stronger hypothesis is that L-functions are analogous to rational polynomials. The strongest
meaning of this statement is that their values for rationals are rational. In particular the values of
ζ(n) and ξ(n) should be rational numbers. They are not. A weaker statement would be that the
roots of L-functions are algebraic numbers.

The Hadamard product for ξ could make sense p-adically if the sums over the monomials
defined by the products of the terms (sksk)−1) = 1/(1/4 + y2

k), define algebraic numbers in the
extension of rationals.

2.3.1 Kubota-Leopoldt variant of Dirichlet L-function

There exists proposals for the definitions of p-adic L-functions Lp (https://cutt.ly/wBgafkz).
Both their domain and target are p-adic. The Kubota-Leopoldt variant Lp(s, χ) of Dirichlet L-
function Lp(s, χ) serves as an example.

hthttps://cutt.ly/MBxdFg8
https://cutt.ly/5BjcCcv
https://cutt.ly/5BjcCcv
https://cutt.ly/wBgafkz
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One starts from Dirichet L-function

L(s, χm) =
∑
n

χm(n)

n−s
=
∏
p

1

1− χm(p)p−s
, (2.1)

where one has product over primes. χm(n) is Dirichlet character mod integer m (https://cutt.
ly/WBKCpZZ), which satisfies χm(ab) = χm(a)χm(b) and vanishes if n is divisible by m. One
restricts the consideration to negative integers s = 1− n. The factor p−s = pn−1 approaches zero
in the p-adic sense for n→∞. Unexpectedly, just this Euler factor must be dropped from ζ.

One can express Dirichlet L-function in terms of generalized Bernoulli numbers (https://
cutt.ly/DBgajxq) as

L(1− n, χm) = −Bn,χm

n
, (2.2)

where Bn,χ is a generalized Bernoulli number defined by

∞∑
n=0

Bn,χm

tn

n!
=

f∑
a=1

χm(a)teat

eft − 1
(2.3)

for χm a Dirichlet character (https://cutt.ly/gBgnhoh) with conductor f defined as the smallest
power of prime for which χm is periodic.

The idea of the continuation is that Bernoulli numbers Bn = −nζ(1 − n), as also generalized
Bernoulli numbers, are rational numbers and therefore make sense p-adically.

The Kubota-Leopoldt p-adic L-function Lp(s, χ) interpolates the Dirichlet L-function with the
Euler factor associated with p removed. For positive integers n divisible by p− 1, one has

Lp(1− n, χm) = (1− χm(p)pn−1)L(1− n, χm) . (2.4)

When n is not divisible by p− 1, this does not usually hold but one has

Lp(1− n, χm) = (1− χmωp(−n)pn−1)L(1− n, χm(n)ωp(n)) . (2.5)

Here ω is so called Teichmüller character ω(n), which is the p:th root of p-adic numbers n (https:
//cutt.ly/WBgabxC).

To my layman understanding, this definition depends on the interpretation of 1 − n as an
ordinary integer. For a p-adic integer, the sign does not have a real meaning so that this definition
should make sense also for positive real integers interpreted as p-adic integers so that one can write
1−n = (1−(p−1)/(1−p)n = (1+(p−1)

∑∞
k=0 p

k)n = (p+
∑∞
k>0 p

k). Note that 1−n is p-adically
of order O(p), which suggests that quite generally this must be the case for the argument of ζp.

2.3.2 What could the p-adic variant of a function f(x) mean?

It is not obvious what p-adicization of function f(x) could mean. One can start from a Taylor
expansion f(x) =

∑
fnx

n. A natural condition is that both the real and p-adic variant converge
with an appropriate conditions on the norm of the argument used.

1. The naive approach requires that the coefficients fn are identical. If algebraic numbers appear
in coefficients fn, an extension of rationals inducing that of p-adic numbers is needed.

One could replace x with pinary expansion x =
∑
n xnp

n , say identical rational numbers.
For instance, for exponent function this would mean that the p-adic variant of exp(x) exists
only for xp < 1. Typically, the p-adic expansion in powers p gives an infinite result in the
real sense. One could argue that the correspondence must be more physical.

https://cutt.ly/WBKCpZZ
https://cutt.ly/WBKCpZZ
https://cutt.ly/DBgajxq
https://cutt.ly/DBgajxq
https://cutt.ly/gBgnhoh
https://cutt.ly/WBgabxC
https://cutt.ly/WBgabxC
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2. A physical correspondence is achieved in p-adic mass calculations [K5] by canonical identifi-
cation, whose simplest variant is

I : x =
∑
xnp

n → I(x) =
∑
xnp

−n (2.6)

mapping p-adic numbers to real numbers. I is continuous and 2-1 for rationals since rationals
in real sense have to equivalent expansions as real numbers since one has 1 = (p− 1)/p)(1 +
1/p + 1/p2 + ...) implying that the in inverse of I is 2-valued: 1R → 1 and 1R = (p −
1)/p)(1 + 1/p + 1/p2 + ...) → (p − 1)p(1 + p + p2 + ...)) (for decimal expansions one has
1.000... = 0.99999...).

3. For rational coefficients fn, the simplest correspondence means reinterpretation as a p-adic
number rn/sn. This would mean that small real values proportional to 1/p−n are mapped
to values with a large p-adic norm. A way avoid this is canonical identification. One can
separate from rational valued fn power pk of p and map it to p−k and treate the remaining
factor as a p-adic number.

4. One can hope that this generalizes to the case when the coefficients fn are in an extension
of rationals defining extension of p-adic numbers and even in a possibly existing infinite-D
extension fo rationals associated with f .

2.3.3 p-Adic Riemann zeta from Hadamard product

p-Adic Riemann zeta function could be obtained from Hadamard product if the roots of zeta are
algebraic numbers.

1. The Hadamard product representation of ζ(s) (see https://cutt.ly/ABgaQwE and https:

//cutt.ly/BBgaTf6) is given by

ζ(s) =
e[(ln(2π)−1−γ/2)s]

2(s− 1)Γ(1 + s/2)

∏
ρ

(1− s

ρ
)es/ρ . (2.7)

Here γ is the Euler-Mascheroni constant and Γ(s) is the Gamma function.

2. The roots s = −2m, m > 0 represent the first problem. The roots with m = O(p) can
have an arbitrarily small p-adic norm so that the product of the factors 1 − s/ρ from the
negative real axis does not converge. Therefore one must drop these roots. This corresponds
to the dropping of the Euler factor 1/(1− p−s) from the product form of ζ necessary in the
definition of p-adic zeta by Kubota and Leopoldt. Note that this problem is not involved
with the ξ function for which the expression of ξ reduces to ξ(s) = (1− s/ρk)(1− s/ρk).

3. Suppose that s = O(p) holds true and the roots ρ of the ζ function are algebraic numbers.
RH implies that they have modulus 1. Therefore one can expand es/ρ in Taylor series and
the factors (1 − s

ρ )es/ρ) as ratios of the Taylor series to the first Taylor polynomial are of

form 1 +O(p2) so that the product converges.

The factors 1/(Γ(1 + s/2) and (1/(s − 1) can be expanded around s = 1 to a convergent
Taylor series.

4. The problematic term is the factor e[(ln(2π)−1−γ/2]s]. If the coefficient ln(2π) − 1 − γ/2 is
an algebraic number in the extension defined by the roots of zeta then also this exponent
converges for p-adic integers s = O(p), which belong to the extension of p-adic numbers
conjectured to induced by the extension of rational defined by ζ. The existence of the
Kubota-Leopoldt variant of the p-adic zeta indeed suggests that this is the case. If this is not
the case, only ξ(s) remains under consideration unless one allows transcendental extensions.

https://cutt.ly/ABgaQwE
https://cutt.ly/BBgaTf6
https://cutt.ly/BBgaTf6
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2.3.4 p-Adic ξ function from Hadamard product

ξ function (https://cutt.ly/5BjcCcv) is closely related to ζ and is much simpler. In particular,
it lacks the trivial zeros forcing to drop from ζ the Euler factor to get ζp. ξ has a very simple
representation completely analogous to that for polynomials (https://cutt.ly/BBgaTf6):

ξ(s) =
1

2

∏
k

(1− s

sk
)(1− s

sk
) . (2.8)

Only the non-trivial zeros appear in the product.

1. For s = O(p), this product is finite but need not converge to a well-defined p-adic number in
the infinite extension of p-adic numbers. Also the values of ξ(s) at integer points are known to
be transcendental so that the interpretation as a generalization of a rational polynomial fails.
Note that the presence of an infinite number terms in the product can cause transcendentality
of the coefficients of ξ(s). Algebraic numbers are required. ξ(2n) is proportional to π2 and
ξ(2n+ 1) to ζ(2n+ 1)/π2. The presence of an infinite number of terms in the expansion of
ξ(s) can however cause this.

2. The Hadamard product can be written in the form

ξ(s) = 1
2

∏
k(1 + s(s−1)

Xk
) , Xk = sksk , (2.9)

in which the s ↔ 1 − s symmetry is manifest. The power series of ξ(s) = ξ̃(u) =
∑
anu

n,
u = s(s− 1), should converge for all primes p.

If regards s(s− 1) as p-adic number and apply the inverse of I s(s− 1) to get real number.

If the coefficients an of the powers series
∑
n anu

n are numbers in an extension of rationals
(not necessarily algebraic), the power series in s converges for s = O(p) under rather mild
conditioons. For instance, the coefficient of the zeroth order term is 1/2. The coefficient of
the first order term in u is −(1/2)

∑
k 1(sks

−1
k = −2

∑
k(1 + 4y2

k)−1.

One can deduce formal expressions for the Taylor coefficiens of ξ(s).

1. Taking u = s(s− 1) to be the variable, the coefficients of un in ξ(s) = ξ̃(u) are given by

∑
Un

∏
k∈Un

1
Xk

,

Xk = sksk .
(2.10)

2. The calculation of the coefficients cn is simple. In particular, c1 and c2 can written as

c1 = 1
2

∑
i

1
Xi

,

c2 = 1
2

∑
i 6=j

1
XiXj

= 1
2

∑
i,j

1
Xi

1
Xj
− 1

2

∑
i

1
X2

i

= 1
2c

2
1 − 1

2

∑
i

1
X2

i
.

(2.11)

The calculation reduces to the calculation of sums
∑

1 /Xik, k = 1, 2.

3. Also the higher coefficients cn can be calculated in a similar way recursively by subtracting
from the sum

∑
i1...in

∏
ik
X−1
i1

= cn1 without the constraint pi 6= pj 6= ... the sums for which
2, 3, ..., n primes are identical. One obtains a sum over all partitions of Un. A given partition
{i1, ..., ik} contributes to the sum the term

di1,...,ik
∏k
l=1 cil ,

∑k
i=1 ni = n . (2.12)

https://cutt.ly/BBgaTf6
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The coefficient di1,...,ik tells the number of different partitions with same numbers i1, ..., ik of
elements, such that the ni elements of the subset correspond to the same prime so that this
subset gives cni . Note that the same value of i can appear several times in {i1, ..., ik}.
The outcome is that the expressions of cn reduce to the calculation of the numbers Ak =∑
i 1/Xk

i .

2.3.5 Could one deduce conditions on the coefficients of ξ from number theoretical
democracy?

Can one pose additional conditions in the case of ζ or ξ? I have difficulties in avoiding a tendency
to bring in some number theoretic mysticism in hope say something interesting of the values of the
coefficient Xn in the power series ξ = cnun, u = s(s−1), which can calculated from the Hadamard
product representation. Number theoretical democracy between p-adic number fields defines one
form of mysticism.

There is however also a real problem involved. There is a highly non-trivial problem involved.
One can estimate the real coefficients Xk only as a rational approximation since infinite sums
of powers of 1/Xk are involved. The p-adic norm of the approximation is very sensitive to the
approximation.

Therefore it seems that one must pose additional conditions and the conditions should be such
that the coefficients are mapped to numbers in extension of p-adic numbers by the inverse of I as
such so that they should be algebraic numbers or even transcendentals in a finite-D transcendental
extension of rationals, if such exists.

1. One could argue that the coefficients cn must obey a number theoretical democracy, which
would mean that they can distinguish p-adically only between the set of primes pk appearing
as divisors of n and the remaining primes. One could require that cn is a number in a finite-D
extension of rationals involving only rational primes dividing n.

2. One could pose an even stronger condition: the coefficients cn must belong to an n-D algebraic
extension of rationals and thus be determined by a polynomial of degree n. Polynomials P
of rational coefficients pn bring in failure of the number theoretic democracy unless one has
pn ∈ {0,±1}. For p = 2 one does not obtain algebraic numbers. For p = 3 this would bring
in
√

5.

3. These conditions would guarantee that for a given prime p the coefficients of the expansion
would be unaffected by the canonical identification I and at the limit p → ∞ the Taylor
coefficients of p-adic ξp would be identical with those of ξ.

4. One could allow finite-D transcendental extensions of p-adic numbers. These exist. Since ep

is an ordinary p-adic number, there is an infinite number of extensions with a basis given by
the powers roots ek/n, k = 1, ..., np− 1 define a finite-D transcendental extension of p-adics
for every prime p.

The strongest hypothesis is that the coefficients ck are expressible solely as polynomials of this
kind of extensions with coefficients, which are algebraic numbers of integers in an extension
of rationals by a k:th order polynomial Pk, whose coefficients belong to {0,±1}.

This picture suggests a connection with the hyperbolic geometry H2 of the upper half-plane,
which is associated with ζ and ξ via Langlands correspondence.

1. The simplest option is that the roots of Pk correspond to the k:th roots xi of unity satisfying
xki = 1 so that cos(n2π/k) and sin(n2π/k) would appear as coefficients in the expression of
ck. The numbers ek/n would be hyperbolic counterparts for the roots of unity.

2. The coefficients ck would be of form

ck =
∑
i,j ck,ije

i/kexp(
√
−12π(j/n)) , ck,rs ∈ {0,±1} . (2.13)
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The coefficients could be seen as Mellin-Fourier transforms of functions defined in a discretized
hyperbolic spaceH2 defined by 2-D mass shell such with coordinates (cosh(η), sinh(η)cos(phi), sinh(η)sin(φ)),
η) = i/k, φ = 2πj/n. η is the hyperbolic angle defining the Lorentz boost to get the momen-
tum from rest momentum and φ defines the direction of space-like part of the momentum.
Upper complex plane defines another representation of H2. The values of functions are in
the set {0,±1}.

3. The points of H2 associated with a particular ck would correspond to the orbit of a discrete
subgroup of SO(1, 1)×SO(2) ⊂ SO(1, 2) ⊂ SL(2, R) ( SL(2, R) is the covering of SO(1, 2)).

A good guess is that this discretization could be regarded as a tessellation of H2 and whether
other tessellations (there exists an infinite number of them corresponding to discrete sub-
groups of SL(2, R) could be associated with other L-functions. Mellin transform relates
Jacobi theta function (https://cutt.ly/1B96SSE), which is a modular form, to 2ξ/s(s−1).
Therefore SL(2, C), having SL(2, R) as subgroup acting as isometries of H2, is the appro-
priate group.

Note that the modular forms associated with the representations of algebraic subgroups of
SL(2, C) defined by finite algebraic extensions of rationals correspond to L-functions anal-
ogous to ζ. Now one would have a hyperbolic extension of rationals inducing a finite-D
extension of p-adic numbers.

Just for curiosity and to see how the proposal could fail, one can look at what happens for the
first coefficient c1 in ξ(s) = ξ̃(s(s− 1)) =

∑
cns

n.

1. c1 would be exceptional since it cannot depend on any prime. c2 could involve only p = 2,
and so on.

2. The only way out of the problem is to allow finite-D transcendental extensions of p-adic
numbers. These exist. Since ep is an ordinary p-adic number, there is an infinite number
of extensions with a basis given by the powers roots ek/n, k = 1, ..., np− 1 define a finite-D
transcendental extension of p-adics for every prime p. For ξ the extension by roots of unity
could be infinite-dimensional.

The roots ek/n, k ∈ 1, ...n belong to this extension for all primes p and are in this sense
universal. One can construct from the powers of ek/n expressions for c1 as c1 =

∑
k ake

−k/n,
ak ∈ {± = 0,±1}.

3. This would allow to get estimates for n using x1 = dξ/ds(0) ' .011547854 = 2c1 as an input:

c1 =
∑

ake
−k/n =

x1

2
.

For instance, the approximation cn = e− e(n−1)/n would give a rough starting point approx-
imation n ∼ 117. It is of course far from clear whether a reasonably finite value of n can
reproduce the approximate value of c1.

2.4 What about the p-adic variants of modular forms?

What about modular forms as analogs of partition functions? Also they should exist for the same
value range for integer conformal weights.

1. Very roughly, L-function is obtained from the Fourier expansion of modular forms

Z(s) =
∑
cnq

n , q(s) = ei2πns (2.14)

by the replacement

qn → n−s . (2.15)

https://cutt.ly/1B96SSE
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2. A natural condition is that the p-adic variants of Z(s) and L(s) converge for the same range
of values of s. The appearance of i2π in the exponential is problematic from the point of
view of p-adicization.

3. In the p-adic thermodynamics modular form corresponds to a partition function and the
natural identification of q is as

q = pn/Tp , (2.16)

where n is conformal weight as eigenvalue h = n of the scaling generator L0 representing
mass squared value and Tp = 1/k is the p-adic temperature. n is interpreted as a p-adic
integer so that the partition function converges extremely rapidly in p-adic mass calculations
for which p is very large for elementary particles (= M127 = 2127 − 1 for electron).

Note that ordinary Boltzmann weights exp(−n/Tp) would make sense if 1/Tp = O(p) holds
true. The sum over Boltzmann weights would not however converge since exp(−n/Tp) would
have p-adic norm equal to 1. Therefore one must replace e by p: in the real context this
would mean only a redefinition of temperature.

4. Naively, the correspondence between modular forms and L-functions should be q = pn/Tp” =
”enln(p)/T → ns, s = O(p), by using the definition ζ =

∑
n−s. This would suggest the

correspondence 1/Tp = k → s. This would conform with the interpretation as p-adic integers
but why should one have k = O(p) as required by the definition based on the Hadamard
formula? Should one simply assume that Tp = k → s/p?

Can one make sense of the summand n−s?

1. If n is of form n = 1 +O(p), p-adic logarithm logp(n) = log(1 +O(p)) exists as Taylor series
and is of order O(p) and the exponent exp(log(n)s) exists even for s = O(1).

2. p-Adic logarithm can be defined for p ≥ k ≥ 0 by using the finite field property of p-adic
integers 0 < x < p. In this case log(n) contains also an O(1) term so that n−s would make
sense only for s = O(p). Therefore there would be a consistency between two definitions for
integers n not divisible by p. For n ∝ pn one must have an extension allowing log(p). Should
the extension of rationals possibly assignable to zeta contain also logarithms of primes, which
are not algebraic numbers?

3. An alternative way is to drop integers n proportional to powers of p from from the definition
of ζ. This corresponds to the dropping of the Euler factor 1/(2 − p−s) associated with p in
the product form of zeta used to define zeta for negative integers.

4. One could also restrict the consideration to ξ and use the Hadamard product.

2.5 p-Adic thermodynamics and thermal zeta function

The Dirichlet series defines an L-function. The definition of Dirichlet series is following. Consider
entities a with integral weight w(a), say quantum states characterized by conformal weight n.
Suppose that there are g(n) states with conformal weight n. The sum

∑
w(a)−s =

∑
g(n)n−s

defines the Dirichlet series with nice properties.
This kind of system also has a description in terms of a partition function, which assigns to the

partition function an analog of modular form. In the assignment of an L-function to a modular
form, the

∑
g(n)exp(−n/T ) is replaced with

∑
g(n)n−s in the real case.

In the p-adic case
∑
g(n)pn/Tp) is replaced with a similar sum. The p-adic temperature Tp is

quantized to Tp = 1/n for the p-adic partition function. In the p-adic case, the number theoretical
existence allows only integer values of 1/Tp as a counterpart of s. One can also consider finite-D
extensions of rationals for which p-adic extension allows some p-adic roots of integers.

If the p-adic partition function Z for the scaling generator L0 appearing in the p-adic mass
calculations [K5, K2], allows an analog of the zeta function and if it satisfies RH hypothesis,
one obtains conformal confinement in weak and strong form and if the roots of the L-function
are algebraic numbers, also Galois confinement. This could define a 4-D space-time surface as a
classical correlate of the thermal state or its complex square root.
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2.6 Could elementary particle vacuum functionals define analogs of L-
functions?

Elementary particle vacuum functionals (EPVFs) [K2] are defined in the space of conformal equiv-
alences of partonic 2-surfaces and therefore correspond to wave functions in WCW. A partonic
2-surface with a given topology allows a complex structure and moduli space for them. The in-
duced metric defines the conformal equivalence class. Teichmueller space parameterizes this moduli
space and is part of WCW. Explanation of the family replication phenomenon is based on hyper-
ellipticity.

EPVFs are identified as modular invariant modular forms and are constructed from Jacobi
theta functions, which for a given genus g depends on D = 3g−3 Teichmueller parameters forming
a complex symmetric matrix with positive imaginary part for g ≥ 2 and on D = 0 resp. D = 1
parameters for g0 resp. g = 1. This space can be regarded as a generalization of the upper half of
the complex plane (hyperbolic space H2). For g = 1 EPVFs depend on a single theta parameter
and the corresponding L-function would satisfy RH.

One can assign to these modular forms L-functions by developing them to Fourier series as∑
n cnq

n, q = exp(i2πs). To this series one can assign an L-function by the replacement qn → s−n.
I am not quite sure how closely this corresponds to Mellin transform (https://cutt.ly/NBgnluF
and https://cutt.ly/dBgncAR).

The general philosophy described above suggests that it should be possible to assign to EPVF
an L-function of a single variable, whose roots would define a space-time surface providing classical
representation of the quantum state considered. One should define a multivariable L-function as
an analog of poly-zeta and assign to it an L-function of a single variable.

1. One can define multivariable analogs of L-functions. One can imagine a straight forward
generalization of the definition of L-function by starting from a multiple Fourier series of
Riemann theta function with respect to its arguments, which are Teichmüller parameters
Ωij parameterizing conformal equivalence classes of partonic 2-surfaces. One has Ωij = Ωji,
Im(Ωij) > 0 (one has a higher-D analog of the upper half-plane). The variables sk are in 1-1
correspondence with the variables Ωij , j ≥ i.
The analogs of L-functions depending on several complex variables s1, ..., sn cannot be as
such used as a generalization of polynomials. One should identify an L-function of a single
variable. One should get rid of the variables s2, ..., sn.

2. Could one mimic the construction of twistor amplitudes? Could one solve first a residue of
a pole of generalized L-function with respect to sn as a function of s1, s2, ..., sn−1, after that
the residue of the pole with respect sn−1 and so on .... At the final step one would get a
polynomial of a single variable s1. Could it be analogous to an L-function of a single variable
and have zeros with half-integer valued real part?

The interpretation would be as a residue integral over variables s2, ..., sn: similar integrals
appear in the construction of twistor amplitudes. There is evidence that his idea might
work for ξ functions (https://cutt.ly/jBgnmOJ). On the theory of normalized Shintani
L-function and its application to Hecke L-function see (https://cutt.ly/SBgnTUN).

The following argument provides support for this idea in the case of multiple zeta functions
(polyzetas) (see https://cutt.ly/oBgnO54, https://cutt.ly/cBgnXDn and https://cutt.ly/

ZBgnV6Y).

1. Poly-zetas have {s1, s2, ..., sn} as arguments. One has ζ(s1, ..., sn) =
∑
n1>n2>...>nk>0

∏k
i=1 s

−ni
i .

Otherwise one would have a product of ordinary zeta functions.

2. In the Wikipedia article, a variant of polyzeta denoted by S(s1, ..., sn) is introduced as

S(s1, ..., sn) =
∑
n1≥n2≥...≥nk>0

∏k
i=1 s

−ni
i : ”>” is replaced with ”≥” in the summation.

By separating from the sum various cases in which 2 or more integers ni are identical,
one can decompose S(s1, ..., sn) to a sum over products of the ordinary zeta functions with
arguments, which are sums si+si+1+si+r of subsequent arguments associated with partitions
of {s1, ..., sn} to l subsets {s1, s2, ..., sk1−1}, {sk1 , ..., sk2−1}, ..., {skl , ..., sn} respecting the

https://cutt.ly/NBgnluF
https://cutt.ly/dBgncAR
https://cutt.ly/jBgnmOJ
https://cutt.ly/SBgnTUN
https://cutt.ly/oBgnO54
https://cutt.ly/cBgnXDn
https://cutt.ly/ZBgnV6Y
https://cutt.ly/ZBgnV6Y
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ordering. One can think that the arguments si are along a line, and divide the line in all
possible ways to segments.

3. One can also form a symmetrized sum
∑

Π ζ(sΠ(1), ..., sΠ(k)) of ζ(s1, ..., sk) over permutations
of {s1, s2, ..., sk} to l subsets. The theorem of Hoffmann, mentioned in the Wikipedia article,
states that the symmetrized polyzeta reduces to a sum over products of ordinary zetas as-
signed over all partitions such that the argument associated with a given subset of partition
is the sum si1 + ...+ sir .

4. If the multiple L-function corresponds to the symmetrized variant of ζ(s1, ..., sn), its k − 1-
fold residue integral decomposes to a sum of residue integrals, which give a vanishing result
except in the case of ζ(s1)× ...× ζ(sk) of k zetas assignable to the maximal partition.

If one assumes s1 + s2 + ...+ sk = s, for the multiple residue integration contour, the integral
is proportional ζ(s−k). The non-trivial zeros are at the critical line Re(s) = k+1/2 and the
trivial zeros are at the points s = k−2m, m ≥ 0. The permutation symmetry of the multiple
residue integral suggests that the symmetrization can be performed by using symmetry of
the integration measure so that also in this case the outcome is proportional to ζ(s− k).

2.7 Could the tessellations of H3 be obtained from those of H2 by holog-
raphy?

A rather attractive idea is that the 2-D modular forms in 2-D hyperbolic manifolds of H2 allow a
holographic continuation to 3-D modular forms in 3-D hyperbolic manifolds of the mass shell H3.

1. Compactification of a modular curve is determined by the infinite subgroup Γ of SL(2, R)
in the hyperbolic plane H2 is obtained by adding cusp points located at real axis. The
hyperbolic unit cell as hyperbolic 2-manifold has cusps as sharp tips.

2. Does the 2-D hyperbolic manifold extend to a hyperbolic manifold in H3 having SL(2, C)
as a covering group of isometry group SO(1, 3)? Modular function in H3. The modular
curve as 2-D hyperbolic manifold would be extended to a hyperbolic 3-manifold (https:
//cutt.ly/NBgbAYC) and would have a 2-D hyperbolic manifold as its boundary just like
H2 has real line as a boundary.

Hyperbolic 3-manifold could be identified as a 3-surface at H3 defining the unit cell of
tessellation. Compactication would add points to the counterparts of cusps as singular points,
which would naturally correspond to the boundary of the coset space forming a 2-D hyperbolic
manifold.

The continuation from H2 to H3 would correspond to the extension of γ as a subgroup
of SL(2, R) to its complexification as a subgroup of SL(2, C). The extension would be
analogous to the continuation of real analytic function to complex analytic function as a
form of holography.

3. The physical analogy with the boundary of Fermi torus [L9] is rather obvious. This would
conform with the strong form of holography stating that the boundary of 3-surface determines
the 3-surface proposed to apply at the light-like boundary of CD. The holography would be
however restricted to the mass shells H3 determined as root of a polynomial and possibly
even L-function. An interesting question is whether X2 fixes also its 3-D light-like orbit by
holography. Quantum criticality suggests a failure of a strict determinism.

2.8 About the identification of L-group

How could one understand in the TGD framework, the L-group, or LG, as a Langlands dual? The
standard approach is described in https://cutt.ly/iBgnMIF. Langlands dual LG and L-group
are more or less the same. L-group is a semidirect product of LG0 and Galois group such that the
Galois group has natural action in the matrix representation of the algebraic group G with matrix
elements. This is the case if G is defined over a field containing the extension of rationals to which
the Galois group is associated. Algebraic groups over global fields (extensions of rationals) can be

https://cutt.ly/NBgbAYC
https://cutt.ly/NBgbAYC
https://cutt.ly/iBgnMIF
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regarded as analogs of Lie groups and the Dynkin diagrams assignable to Lie algebras appear in
their classification.

The guess based on TGD vision was following. One assumes global field that is a finite extension
of rationals. Lorentz group, SL(2, C), etc. are discretized.

1. In TGD picture, Galois group permutes mass shells. The isotropy group acts on momentum
components but keeps them on mass shell. Lorentz group mixes momentum components.
Can one form a larger group from these groups by forming the products of group elements.

2. A free group from from G1 and G2 with amalgamation is obtained by adding some relations
by using a third group U inbedded to both groups by homomorphism (https://cutt.ly/
DBgn9Q2). G1 and G2 are glued together along U .

In the recent case, G1 could corresponds to Galois group and G2 to Lorentz group SO(1, 3)
or its covering for a global field extension. U corresponds to a subgroup of Galois group and
of Lorentz group. G2 can correspond to the non-compact groups defined by the truncated
Virasoro algebra or symplectic algebra of δM4×CP2. U must be a subgroup of Galois group
leaving the root fo P defining mass squared invariant.

3. What about Galois singletness in this case? The group obtained in this way permutes mass
shells. The automorphic forms in the extended group be invariant under Galois group or its
amalgamated product with a discrete infinite subgroup of SL(2, C).

4. The free product and amalgamated free product construction is extremely general. It could
work even for an extension of finite field or extension of corresponding p-adic number field
and SL(2, C). Here unramified and ramified primes pop up. The induced Galois group looks
more natural here.

What about quaternionic automorphisms, which is analog of Galois group? The amalgamated
free product of (discrete subgroups of) quaternionic automorphisms with Galois group could be
important. Free product with amalgamation would naturally apply to Galois group, quaternionic
automorphisms, SL(2, C) and subgroups of conformal transformations.

2.8.1 The identification of candidates for the reductive groups

Extension of irreducible representations of Galois group to representations of reductive groups
extended by Galois group, so called L-group, are suggested by the Langlands program and in the
TGD framework they would be very natural. These extensions could define WCW spinor fields.
What candidates does TGD offer for the reductive groups in question?

1. In TGD, the infinite-D (super-)symplectic group assignable to δM4
+×CP2 defines a candidate

for the isometries of WCW. The Lie algebra A of this group corresponds to Hamiltonians as
functions defined in δM4

+ ×CP2. The basis of Hamiltonians can be assumed to be products
of functions defined in δM4

+ and CP2. For δM4
+ one has irreps of SO(3) acting in δM4

+ and
proportional to a power of rn of the light-like radial coordinates, where n is conformal weight.
For CP2 one has functions defining irreps of SU(3).

2. The Lie-algebra A allows infinite fractal hierarchies formed by sub-algebras An with radial
conformal weights coming as n-multiples of the conformal weights of the full algebra. The
gauge conditions state that An and the commutator [An, A] annihilate the physical states.
These conditions generalize to other symmetry groups assignable to the light-like 3-surfaces
defining partonic orbits and to the extended conformal transformations of the metrically 2-D
light-cone δM4

+.

The first naive guess is that the gauge conditions effectively reduce the symplectic group to
finite-D symplectic group Sp(2m) or its reductive subgroup acting linearly. In this case one
might have infinite-D representations

3. One can also consider the possibility that the gauge conditions for the radial conformal
transformations are weakened to similar conditions as in the case of A. Similar conditions
could apply to the algebras associated with the light-like 3-surfaces.

https://cutt.ly/DBgn9Q2
https://cutt.ly/DBgn9Q2
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2.9 A comment on M8 − H duality in fermion degrees of freedom in
relation to Langlands duality

Gary Ehlenberg sent an URL of a very interesting Quanta Magazine article, which discusses a
work related to Langlands program and provides some rather concrete insights how M8 − H
duality [L5, L6], relating the number theoretic and geometric views of TGD, could relate to the
Langlands duality.

Langlands duality relates number theory and geometry. At the number theory side one has
representations of Galois groups. On the geometry side one has automorphic forms associated with
the representations of Lie groups. For instance, in coset spaces of hyperbolic 3-space H3 in the
case of the Lorentz group.

The work could be highly interesting from the TGD perspective. In TGD, the M8−H duality
generalizes momentum-position duality so that it applies to particles represented as 3-surfaces
instead of points. M8 −H duality also relates physics as number theory and physics as geometry.
Much like Langlands duality. The problem is to understand M8 − H duality as an analog of
Langlands duality.

1. H = M4 ×CP2 is the counterpart of position space and particle corresponds to 3-surface in
H. Physics as (differential) geometry applies at this side.

The orbit of 3-surface is a 4-D space-time surface in H and holography, forced by 4-D general
coordinate invariance, implies that space-time surfaces are minimal surfaces irrespective of
the action (general coordinate invariant and determined by induced geometry) . They would
obey 4-D generalization of holomorphy and this would imply universality.

These minimal surfaces are also solutions of a nonlinear geometrized version of massless field
equations. Field-particle duality has a geometrized variant: minimal surface represents in its
interior massless field propagation and as an orbit of 3-D particles the generalization of a light-
like geodesic. Hence a connection with electromagnetism mentioned in the popular article,
actually metric and all gauge fields of the standard model are geometrized by induction
procedure for geometry.

2. M8, or rather its complexification M8
c (complexification is only with respect to Minkowski

time) corresponds to momentum space and here the orbit of point-like particle in momentum
space is replaced with a 4-surface in M8, oractuallyitscomplexificationM8

c .

The 3-D initial data for a given extension of rationals could correspond to a union of hy-
perbolic 3-manifolds as a union of fundamental regions for a tessellation of H3 consistent
with the extensions, a kind of hyperbolic crystal. These spaces relate closely to automorphic
functions and L-functions.

At the M8 side polynomials with rational coefficients determine partially the 3-D data associ-
ated with number theoretical holography at M8−side.Thenumbertheoreticaldynamicalprinciplestatesthatthenormalspaceofthespace−
timesurfaceintheoctonionicM8

c is associative and initial data correspond to 3-surfaces at
mass shells H3

c ⊂M4
c ⊂M8

c determined by the roots of the polynomial.

3. M8 −H duality maps the 4-surfaces in M8
c to space-time surfaces in H. At the M8 side one

has polynomials. At the geometric H-side one has naturally the generalizations of periodic
functions since Fourier analysis or its generalization is natural for massless fields which space-
time surfaces geometrize. L-functions represent a typical example of generalized periodic
functions. Are the space-time surfaces at H-side expressible in terms of modular function in
H3?

Here one must stop and take a breath. There are reasons to be very cautious! The proposed
general exact solution of space-time surfaces as preferred extremals realizing almost exact hologra-
phy as analogs of Bohr orbits of 3-D surfaces representing particles relies on a generalization of 2-D
holomorphy to its 4-D analog. The 4-D generalization of holomorphic functions [L19] assignable
to 4-surfaces in H do not correspond to modular forms in 3-D hyperbolic manifolds assignable to
the fundamental regions of tessellations of hyperbolic 3-space H3 (analogs of lattice cells in E3).

Fermionic holography reduces the description of fermion states as wave functions at the mass
shells of H3 and their images in H under M8 −H duality, which are also hyperbolic 3-spaces.

https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/
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1. This brings the modular forms of H3 naturally into the picture. Single fermion states corre-
spond to wave functions in H3 instead of E3 as in the standard framework replacing infinite-D
representations of the Poincare group with those of SL(2, C). The modular forms defining
the wave functions inside the fundamental region of tessellation of H3 are analogs of wave
functions of a particle in a box satisfying periodic boundary conditions making the box effec-
tively a torus. Now it is replaced with a hyperbolic 3-manifold. The periodicity conditions
code invariance under a discrete subgroup Γ ⊂ SL(2, C) and mean that H3 = SL(2, C)/U(2)
is replaced with the double coset space Γ\SL(2, C)/U(2).

Number theoretical vision makes this picture more precise and suggests ideas about the
implications of the TGD counterpart of the Langlands duality.

2. Number theoretical approach restricts complex numbers to an extension of rationals. The
complex numbers defining the elements SL(2, C) and U(2, C) matrices are replaced with ma-
trices in discrete subgroups SL(2, F ) and U(2, F ), where F is the extension of rationals associ-
ated with the polynomial P defining the number theoretical holography inM8 inducing holog-
raphy inH byM8−H duality. The group ΓdefiningtheperiodicboundaryconditionsmustconsistofmatricesinSL(2,F).

3. The modular forms in H3 as wave functions are labelled by parameters analogous to momenta in
the case of E3: in the case of E3 they characterize infinite-D irreducible representations of SL(2, C)
as covering group of SO(1, 3) with partial waves labelled by angular momentum quantum numbers
and spin and by the analog of angular momentum associated with the hyperbolic angle (known as
rapidity in particle physics): infinitesimal Lorentz boost in the direction of spin axis.

The irreps are characterized by the values of a complex valued Casimir element of SL(2, C)
quadratic in 3 generators of SL(2, C) or equivalently by two real Casimir elements of SO(1, 3).
Physical intuition encourages the shy question whether the second Casimir operator could corre-
spond to the complex mass squared value defining the mass shell in M8. It belongs to the extension
of rationals considered as a root of P .

The construction of the unitary irreps of SL(2, C) is discussed in Wikipedia article. The repre-
sentations are characterized by pairs of half-integer j0 = n/2 and imaginary number j1 = iν. Since
the representations in question are H3 analogs of the irreducible representations of Poincare group
in M4 with E3 replacing H3 the natural interpretation of j0 would be as spin. The states of the
representation would represent partial waves with definite value of j. In TGD, j0 = 1/2 would be
in a special role.

The values of j0 and j1 must be restricted to the extension of rationals associated with the poly-
nomial P defining the number theoretic holography.

4. The Galois group of the extension acts on these quantum numbers. Angular momentum quantum
numbers are quantized already without number theory and are integers but the action on the
hyperbolic momentum is of special interest. The spectrum of hyperbolic angular momentum must
consist of a union of orbits of the Galois group and one obtains Galois multiplets. The Galois
group generates from an irrep with a given value of j1 a multiplet of irreps.

A good guess is that the Galois action is central for M8 − H duality as a TGD analog of Lang-
lands correspondence. The Galois group would act on the parameter space of modular forms in
Γ(2, F )/U(2, F ), F and extension of complex rationals and give rise to multiplets formed by the
irreps of SL(2, F ).

To sum up, M8 −H duality [L5, L6] is a rather precisely defined notion (I am of course using
the standards of physicist).

1. At the M8 side one has polynomials and roots and at the H-side one has automorphic
functions in H3 and ”periods” are interpreted as quantum numbers. What came first in
my mind was that understanding of M8 duality boils down to the question about how the
4-surfaces given by number theoretical holography as associativity of normal space relate to
those given by holography (that is generalized holomorphy) in H.

2. However, it seems that the problem should be posed in the fermionic sector. Indeed, above
I have interpreted the problem as a challenge to understand what constraints the Galois

https://en.wikipedia.org/wiki/Representation_theory_of_the_Lorentz_group
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symmetry on M8 side poses on the quantum numbers of fermionic wave functions in hyper-
bolic manifolds associated with H3 and defined b the extension of rationals in question. I
do not know how closely this problem relates to the problem that Ben-Zvi, Sakellaridis and
Venkatesh, whose work is discussed in the popular article mentioned in the beginning, have
been working with.

3 More about Langlands correspondence in the TGD frame-
work

I listened to an extremely interesting interview with Edward Frenkel. Thanks to Marko Manninen
for providing the link (see this). Frenkel explained more than two hours aspects of the number
theoretic Langlands correspondence [A11, K3, A4, A3] in order to provide the background making
it possible to get to the geometric Langland correspondence in the next interview! The fact of
course is that one must learn the basic notions first.

If one should summarize the Langlands correspondence (LC) very briefly, one might say that
LC can be seen as a kind of grand unification of mathematics. LC relates typically two totally
different fields of mathematics. Modular forms is one aspect of the LC. Galois groups permuting
the roots of polynomials are a second aspect, also mentioned in the interview.

3.1 Summary of Frenkel’s interview

3.1.1 Polynomials defining elliptic surfaces in finite fields and modular forms in hy-
perbolic plane

The example related to the number theoretic LC discussed in the interview relates number theory
and so-called modular forms defined in the hyperbolic plane H2 (see ). The graphics of Escher
gives a good idea of what a hyperbolic plane looks like.

1. The modular forms known as elliptic functions are doubly periodic functions in complex
plane and serve analogs of plane waves appearing as solutions of field equations of free field
theories.

2. Lorentz group SL(2, C) acts as global conformal symmetries of the complex plane compact-
ified to the Riemann sphere CP1. SL(2, C) consists of 2× 2 matrices with unit determinant
and acts linearly on 2-spinors and as Möbius transformations on the points of the complex
plane CP1, whose points correspond to the ratios z1/z2 of the complex spinor components.
2-D hyperbolic space H2 can be represented as upper half-plane of the complex plane or as
an interior of a unit disk and has the real Lorentz group SL(2, R) as conformal symmetries
mapping the real axis or the boundary of the disk to itself.

For H2, the modular group can be identified as some subgroup SL(2, Z), having integer val-
ued matrix elements satisfying some additional conditions. Modular forms have the modular
group as their symmetries. The modular subgroup can correspond also to a group SL(2, Z2)
where Z2 consist of Gaussian integers n1 + in2. Modular transformations act as translations
in the complex plane. There is an infinite number of analogs of modular groups since the
elements could also be algebraic integers ZE in some extension E of rationals.

The example discussed in the interview was very inspiring also from the TGD point of view.

1. The example was about the number of solutions to certain kinds of Diophantine equations
defining roots of polynomials involving 2 variables x, y with integer coefficients in finite
field defined by integers modulo prime p. Modulo p corresponds to a generalization of the
clock arithmetics in which 13=1, 14=2, etc.: now there would be p hours per day. The
polynomials considered are cubic polynomials, which third order polynomials of x and second
order polynomials y satisfying some additional conditions, which guarantee that they allow
a modular symmetry analogous to a 2-D translation symmetry.

The independent variables x, y can be numbers in finite fields, integers, reals, complex num-
bers. In other words, the equations are number-theoretically universal. This is what makes
algebraic geometry so beautiful.

https://youtu.be/RX1tZv_Nv4Y?si=RXGm5LnAgowbKlo-
https://en.wikipedia.org/wiki/Hyperbolic_geometry
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2. If the variables x, y are complex numbers, the solutions are 2-D surfaces in 2-D complex
space C2 having complex coordinates x and y. With some additional assumptions about the
integer coefficients they are elliptic curves, which have the topology of the torus. Elliptic
curve, or a general cubic curve, can be written in rather general case in the canonical form
(see this):

y3 = x2 + ax+ b . (3.1)

3. Elliptic curve intersects line (in complex case complex line, that is plane) in 3 points except
in the situations, when the equation allows degenerate roots. This reflects the fact that the
equation has 3 roots. A similar equation appears in the cusp catastrophe. The coefficients
are however real numbers rather than integers in this case. The 4-D generalization of cusp
catastrophe is very interesting also in the TGD framework,

4. The elliptic curve can be parameterized in terms of elliptic functions, which can be regarded
as doubly periodic functions in the complex plane. They are non-linear analogs of plane
waves. The rational points of an elliptic curve form a group which is finitely generated.
Elliptic curves are modular, which means that it can be constructed as a quotient of a
complex plane under modular grou, which is a subgroup of the group SL(2, Z) analogous to
a discrete subgroup of translational group but acting on H2 rather than Euclidean space E2.

5. With this background one can consider a general equation defining elliptic curve and restrict
the solutions to integers and consider solutions x,y as integers modulo p.

What is the number of solutions for a given prime p. This is the problem. Langland’s
discovery implies that one can find a modular form in the hyperbolic plane H2, whose Taylor
expansion contains terms with coefficients, which code for the numbers of the solutions for
any prime p: the problem of finding the number of solutions is solved for almost all primes at
the same time! There exists a finite number of exceptions but still this is quite an impressive
achievement.

Anyone can write a computer code listing the numbers of solutions for primes p = 2, 3, 5, 7, ...,
This is a gigantic leap in understanding and LC generalizes this. There is also a geometric
variant of this correspondence.

3.1.2 Galois group, dual group and number theoretic LC

Galois groups define number theoretic symmetries. Consider a polynomial P (x) of single variable
x with coefficients, which are algebraic integers in some extension E of rationals. The standard
definition for the Galois group is as a group acting in the extension of E as permutations of the
roots acting trivially in E.

Let G be a reductive Lie group G represented in an extension K of field k, which has Galois
group Gal(K/k). LC relates the ”good” irreducible representations G to the representations of
Langlands dual LG, which has the same root datum as G and is therefore infinitesimally equivalent
with G. LG can be regarded as the semidirect product LGonGal(K/k), where LGo is the connected
component of LG. The number of connected components of LG corresponds to the order of the
Galois group, which implies that LG depends on K via its Galois group.

LC states roughly that there is one-one correspondence between ”good” representations of G
and homomorphisms of the Galois group Gal(K, k) to the Langlands dual LG. One could say that
the extension by the Galois group gives rise to a kind of number theoretic degree of freedom and
that the irreducible representations of the Galois group become additional degrees of freedom.

3.1.3 LC and TGD

It must be emphasized that LC is extremely general and the forms of LC discussed in this article
from the TGD perspective are not expected to be the only ones realized in TGD.

https://mathworld.wolfram.com/EllipticCurve.html
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1. In the electric-magnetic duality (Montonen-Olive duality) of gauge theories [B1], electric and
magnetic couplings are combined to a complex number z = z1/z2 representing a point of CP1.
Electric-magnetic duality corresponds to S-duality as the Möbius transformation z → −1/z.

More generally, SL(2, Z) transformations act as Möbius transformations induced by the
linear action on (z1, z2) in C2 and could correspond to physical symmetries giving rise to
different actions. SL(2, Z) has 3 matrix generators S = [0, 1;−1, 0],T = [1, 1; 0, 1] and
T−1 = [1,−1; 0, 1] acting linearly on (z1, z2). The product U = ST is called U = ST duality.
S corresponds to inversion z → z and to electric magnetic duality. In M-theory there are 3
analogous dualities S, T, and U. One might guess that SL(2,Z) appears because it generates
global conformal transformations of the conformal algebras.

2. In the TGD framework, the self-duality of CP2 Kähler form implies that the electric and
magnetic fluxes over a given 2-surface of CP2 are indeed identical. This inspires the proposal
that TGD is self-dual with respect to S [K1] a stronger condition would be that the entire
SL(2, Z) defines equivalent actions. In fact, in the TGD framework space-time surfaces are
minimal surfaces apart from singularities irrespective of the action principle and the action
makes itself manifest only through the singularities at which the minimal surface property
fails [L23, L24, L25, L18].

A weak form of this duality is proposed to be realized at the light-like interactions between
Euclidean CP2 type extremals and Minkowskian regions of the space-time surface. The
corresponding parts in the action correspond to Kähler action and the associated topological
instanton term.

3. In TGD, the geometry of the ”world of classical worlds” (WCW) allows two kinds of sym-
metries.

(a) The generalized super-conformal symmetries defined as a 4-D generalization of Kac-
Moody symmetries appear since holography = holomorphy vision implies that space-
time surfaces are holomorphic minimal surfaces of H = M4 × CP2 irrespective of the
action as long it is general coordinate invariant and constructed in terms of the induced
geometry. One can assign the charges of these symmetries to the light-like boundaries
of the causal diamond CD = cd×CP2 and also to the light-cone proper time constant
surfaces of the light-cone.

(b) Super-symplectic symmetries in turn have a natural action at the boundaries at the
light-like orbits of the partonic 2-surfaces between the Euclidean interior of the CP2

type extremals and the Minkowskian exterior. Could a strong form of holography,
which would state that it is enough to define the theory using only the charges of either
kind, make sense. Also this kind of duality might be seen as a kind of LC .

In the following I will discuss number theoretic and geometric LC in the way as I see them in the
TGD framework. My view is not of a professional mathematician but of physicist and TGD dictates
my views to a high degree. I have discussed LC several times already earlier [K3, K4] [L13, L23].

3.2 Number theoretic LC and TGD

In TGD both number theoretic and geometric LC are expected to play a role. Number theoretic LC
is naturally associated with the adelic physics [L1, L2] involving number theoretic discretizations
of the space-time surface in some extension of rationals. All p-adic number fields are involved.

This requires theoretical universality, which is guaranteed if the definition of space-time surfaces
is such that it makes sense in all number fields. In holography = holomorphy vision, the definition
of the space-time sheet as a root for a pair of polynomials, with coefficients in some extension E
of rationals, guarantees this. In number theoretic vision one must have discretization by assuming
that the roots are in rationals or even integers of E. One obtains a hierarchy of adeles labelled by
E, forming an evolutionary hierarchy.

In the TGD framework, also a modification of the notion of adele can be considered [L20, L23].
p-Adic number fields and their extensions can be glued together along integers, which can be
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regarded as simultaneously belonging to several p-adic number fields since the p-adic integers n
in the intersection of the p-adic number fields can be expressed as a power series of an integer m
divisible by the primes considered. Systems characterized by different p-adic primes, identifiable
as ramified primes for a polynomial, must interact, and the modified view of adeles allows us to
describe this interaction at the level of discretization.

3.2.1 How could the number theoretic LC relate to TGD?

Some background is required in order to understand how the number theoretic Langlands involving
finite fields and modular forms in Langlands group relate to TGD.

1. Number theoretical universality and holography = holomorphy principle

Number theoretical universality and holography = holomorphy principle [L23, L22] are central
in TGD.

1. In TGD number theoretical universality becomes a basic physical principle [L23]. The number
theoretical view and geometric view of physics are proposed to be equivalent. This M8 −H
correspondence can be seen as a generalization of momentum-position duality of quantum
mechanics required by the replacement of point-like particle with 3-surface and is analogous
to the LC .

An intuitive motivation for this proposal is that in free field theories, the field equations at
the level of momentum space reduce to algebraic equations, typically mass shell conditions.
At the level of space-time, one has partial differential equations describing the propagation
of fields.

2. This view is realized in terms of holography = holomorphy correspondence implying that
space-time surfaces are analogs of Bohr orbits [L23, L22]. The field equations characterizing
the space-time surfaces reduce to equations, which are a non-linear generalization of massless
field equations.

There is a completely general solution ansatz for which the field equations reduce to minimal
surface equations for any general coordinate invariant action principle constructed in terms
of the induced geometry. At the level of H, the field equations reduce to purely algebraic
equations involving a contraction of two tensor quantities, which are of different types as
complex tensors and therefore vanish identically [L23]. Minimal surface equations fail only
at the singularities, which have a dimension lower than 4 [L25, L18]. At the level of M8,
identifiable as octonions with number theoretical inner product Re(o1o2), associative holog-
raphy allows to construct the 4-surfaces in terms of 3-D holographic data [L21]. M8 − H
duality allows an alternative manner to construct these 4-surfaces.

3. M4 metric has Minkowskian signature and for the space-time surface the regions outside
elementary particles (partonic orbits) are Minkowskian. For Minkowski signature one must
generalize the notion of complex structure to Hamilton-Jacobi structure, as I call it [L19].
Hamilton-Jacobi structure is a fusion of ordinary complex structure and hypercomplex struc-
ture. Hypercomplex numbers are very much like complex numbers but do not form a number
field since the norm vanishes for light-like hypercomplex numbers. Hypercomplex coordinate
u as counterpart of complex coordinate z corresponds to a coordinate for which coordinate
lines are light-like. Its conjugate v corresponds to a dual light-like coordinate.

4. In the general case, the space-time surfaces can be identified as roots of 2 analytic functions
f1 and f2 of the 4 generalized complex coordinates of H = M4 × CP2. One of them is a
hypercomplex coordinate of M4 and the remaining 3 are ordinary complex coordinates. The
coefficients of the analytic functions can be also assumed to belong to an algebraic extension
E of rationals and this gives rise to a hierarchy consisting of discrete subspaces of the ”world
of classical worlds” (WCW).

5. One can also consider a hierarchy of polynomial pairs (P1, P2) with coefficients in E. In the
simplest case the coefficients are ordinary rationals or equivalently integers. One obtains a
hierarchy of solutions of field equations labelled by the extension and by the degrees of the
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polynomials and by the extensions of rationals that they define. This hierarchy is identified
as an evolutionary hierarchy [L1, L2]. The higher the complexity of the space-time surfaces,
the higher the evolutionary level of the system.

2. Number theoretic discretization gives cognitive representations

In the number theoretic vision [L23], the number theoretic discretization is a second aspect of
TGD. It applies to space-time surfaces and, at a more abstract level, to the WCW coordinates
defining moduli characterizing the space-time surfaces.

1. One can say that the most concrete cognitive representations correspond to number theoretic
discretizations of the space-time surface. The first question concerns the number of roots
(P1, P2) = (0, 0) for a given prime p characterizing a p-adic number field, in particular the
ramified prime of a related polynomial. Can one estimate the number of roots for any finite
field in turn defining the number of solutions in corresponding p-adic number field? This is
the key question.

2. From the example discussed in Frenkel’s interview, I learned how one can get a rough idea
of this number at least in some cases. This argument generalizes the well-known counting
argument for the number of roots of two polynomials of two real variables. In this case
the number of solutions is the number of variables minus the number of conditions. For
polynomials defined in a finite field, the number of points (x, y) in a finite field is p2. The
Diophantine equation gives p conditions. Therefore the rough guess for the number of solu-
tions is p2/p = p (in the discrete situation, subtraction is replaced by division). Already this
is a fantastic piece of information.

3. Could it be possible to get the exact number # of integer solutions modulo p for any p-
adic prime? LC in the case of the Diophantine equations considered in the interview comes
to rescue. The modular function assignable to the equations codes in terms of its Taylor
coefficients the deviations of the #− p from the rough guess for all primes p except a finite
number of exceptional ones! Note however that the Diophantine equation possesses a modular
symmetry.

3. Could the number theoretical LC generalize from dimension 2 to dimension 4?

Could the number theoretical LC for polynomials of two arguments generalize from dimension
2 to dimension 4. Holography = holomorphy vision suggests a very concrete formulation of this
generalization.

Consider first the statement of the problem in the TGD context.

1. Cognitive representation as a discretization of the space-time surface would consist of the
points of the space-time with coordinates in the extension E of rationals defining the coef-
ficient field of P1 and P2. These points would be rational numbers as ratios of E integers.
One should be able to count the numbers of the solutions to the equations (P1, P2) = (0, 0)
for which the H = M4 ×CP2 coordinates have values in E. A weaker condition is that only
M4 coordinates belong to E. Could a generalization of LC make this possible?

2. The 2-dimensional elliptic surfaces (analogs of string world sheets) reside in C2, which has
2-complex dimensions. Space-time surfaces have 1 hypercomplex dimension and 1 complex
dimension and have a generalized complex structure, Hamilton-Jacobi structure [L19]. Space-
time surface has 2 generalized complex coordinates (u,w). u is a hypercomplex coordinate
with light-like coordinate curves and w is a complex coordinate.

The 2-complex dimensional space C2 with complex coordinates (x, y) is replaced with the
embedding space H = M4 × CP2 having 4 generalized complex coordinates (one of them is
hypercomplex) so that the polynomials P1 and P2 depend on 4 generalized complex coordi-
nates (u, z1, z2, z3).

3. An elliptic surface is a root of a single polynomial of degree 3 depending on (say) 2 complex
variables (z1, z2) in 2-complex dimensional space C2. In TGD, space-time surfaces are defined
as roots of two polynomial equations (P1, P2) = (0, 0).
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4. The natural generalization of the 2-dimensional (in real sense) hyperbolic space H2 (remem-
ber Escher) is the hyperbolic 3-space H3. This corresponds to the mass shell as momentum
space or light-cone proper time a = constant surface in Minkowski space M4 (actually in-
side a causal diamond cd). What is remarkable is that the Lorentz group SL(2, C) and its
modular subgroups act in H3 and have the same interpretation as in special relativity.

Could one find a modular form in the product H3 × CP2, where H3 us hyperbolic 3-space
coding for the numbers of the solutions to the number theoretical discretization conditions for
the space-time surface for any pair (P1, P2)of polynomials? If this were possible, it would have
enormous practical value. This might be possible except under very special conditions probably
related to the ramified primes of the polynomials involved.

1. The counterparts of the holographic boundary conditions at selected hyperboloids a = ak
should satisfy modular symmetries. Is this implied by the Bohr orbit property for the space-
time surface [L23]? This would mean that the space-time surfaces are analogous to H3

counterparts of discrete plane waves.

2. The rough estimate for the number of solutions of the cubic equation with modular invariance
generalizes. In number theoretic discretization, the extension of rationals corresponds to a
finite field G(p, k) for some k. The number of elements in the finite field G(p, k) is pk.
One has a p-adic discretization of the space-time surface using points for which the preferred
coordinates are algebraic integers in an extension of p-adic numbers induced by the extension
of rationals. These points are approximated with points of finite fieldG(p, k). The generalized
complex dimension of H is D = 4. Therefore one has p4k points in the discretization. The
two vanishing conditions (P1, P2) = (0, 0) give p2k conditions so that the rough guess for the
number of the solutions is p2k. Already this is a fantastic result, which was new to me.

3. One might hope that if modular invariance is realized at the hyperboloids H3(k) defining the
boundary data, then a modular form assignable to the pair (P1, P2) could give the number of
roots in G(p, k) by coding the correction #−p2k by some coefficients in its Taylor expansion.
This would in turn give the numbers of the p-adic roots since they can be generated once
the solution in finite field G(p, k) is known.

3.2.2 How to identify the Galois group in the number theoretic picture?

The physical interpretation would be that the Galois group extends the group algebra of LG, where
G is SL(2, C) acting at H3. The Galois group brings in additional degrees of freedom: a kind of
Galois spin. There are two interpretations of the Galois group.

1. The simplest option is that K corresponds to an extension E of rationals appearing as the
coefficient field of the polynomials or even as the field for the Taylor coefficients of analytic
functions considered so that the number theoretic Galois group is naturally associated with
it.

In this case one cannot however identify the ramified primes since they require a definition of
the extension in terms of the roots of a polynomial. The Galois group would not characterize
the polynomial P1 or P2 but the field extension E. In this case, one would consider the
discretization allowing only E-rational points.

The group G could be the Lorentz group SL(2, C) represented in the space of modular forms
defined in H3. The complex dual group LG would have the same Lie-algebra as SL(2, C)
and would be a semidirect product of LG0 nGal(E/Q).

2. In the TGD framework, one can also consider the identification of the Galois group as that for
the extension of E defined by the space-time surface itself, if in the case that it is well-defined.
If holography = holomorphy vision is accepted, H has 4 generalized complex coordinates.
Suppose that 2 of the complex coordinates are E rationals. One can solve the 2 remaining
generalized complex coordinates from the conditions (P1, P2) = (0, 0).

The hypercomplex coordinate of M4, which has light-like coordinate curves and is real and
therefore does not allow complex values, is not a good candidate to be one of these 2 co-
ordinates. This leaves only two options under consideration. The two complex coordinates
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ξ1, ξ2 of CP2 would make sense when the space-time surface has 4-D CP2 projection and the
induced metric is Euclidean.

The second option corresponds to the complex coordinate ξ1 or ξ2 of CP2 and to the complex
coordinate w of M4 assignable to its Hamilton-Jacobi structure [L19]. The values of, say, ξ1

and w are obtained by solving P1 = 0 and P2 = 0. One could require that w is E rational
and ξ1 in the extension of E or vice versa. One can assign to both options a Galois group
and an extension of E.

3. This picture would conform with the fact that in TGD two kinds of effective Planck constants
appear naturally. The first kind of effective Planck constant, identified tentatively as the
dimension of extension of E, can be assigned with the space-time surface as a covering of
M4 and would be relatively small since one does not expect that the space-time has very
many sheets with the same M4 projection. The other effective Plank constant corresponds
to the space-time surface as covering CP2 and could be the counterpart for say periodic field
pattern having as a TGD counterpart a bundle of monopole flux tubes in H. The number
of the flux tubes would correspond to the degree of the polynomials considered and could be
very large [L3, L10, L11, L17].

3.2.3 Objections

The best way to sharpen a hypothesis is to invent objections against it.

1. According to Frenkel, there are exceptional primes for which the coding fails. A good guess
is that they correspond to the ramified primes for a cubic polynomial in the case considered.
Indeed if the other coordinate of the cubic polynomials is integer, the polynomial reduces
to a cubic polynomial with integer coefficients and one can assign to it roots and ramified
primes.

In TGD, the p-adic primes characterizing space-time surfaces are identified as the ramified
primes assignable to the polynomials defining the space-time surface. If the problematic
primes are ramified primes, the coding would fail for the physically interesting primes! The
blessing in disguise is that the number of ramified primes is finite.

2. Modular invariance characterizes the example considered by Frenkel. Modular group acting
as symmetries is analogous to lattice translations: torus topology indeed reflects this. Modu-
lar invariance implies that the numbers of solutions to a given cubic equation are coded by a
particular modular invariant function. Could the TGD analog of this condition, stating that
the solutions are analogous to plane waves, be too strong? One might of course hope that by
the notion of holography meaning that space-time surfaces are analogs of Bohr orbits requires
this condition or that it corresponds to ”good” representations of SL(2, C) at quantum level.

Suppose that a modular form for, say 3-D hyperbolic space H3 (mass shell a = ak), invariant
under a modular group identified as discrete subgroup of SL(2, Z) (or SL(2, ZE)), codes for the
numbers of say solutions to (P1, P2) = (0, 0) belonging to an extension E of rationals appearing as
coefficients of Pi. This would mean that all 4 generalized complex coordinates belong to E.

1. One might expect that the modular group acts as symmetries of the space-time surface in the
same way as the modular group for elliptic surfaces. This could mean periodicity analogous
to that for planewave solutions to field equations. Could the TGD counterparts of plane
wave solutions of free field theories correspond to generalized elliptic functions of H3 for
which 4-D translational invariance is replaced with 3-D modular invariance at H3. Inside
the space-time surface translational (or scaling-) invariance with respect to a is probably
too much to require but holography = holomorphy principle allows the continuation of the
boundary data to the space-time interior so that it is not needed. The modular invariance
would reduce to the modular invariance of the holographic data at some surfaces H3 with
constant value of the light-cone proper time.

One would obtain the H3 analogs of 3-D plane waves in E3. In free field theory in M4, E3

plane waves can be continued to 4-D plane waves. In TGD, holography allows to continue
the counterparts of the E3 plane waves in H3 to the interior of the space-time surface.
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Could it be that modular invariance is a physically sensical restriction.

1. One cannot have a linear superposition of the H3 plane waves since TGD is not a free field
theory. This restriction holds true for the so-called massless extremals [K1] for which the
linear superposition holds only for modes propagating in the same direction: one has an
analog of a laser beam. The pulse shape is preserved in the propagation since there is no
dispersion.

2. Linear superposition would correspond in TGD to a union of space-time surfaces having
the same M4 projection: a test particle touching the space-time surfaces in the union would
experience the sum of the induced gauge fields and gravitational field associated with different
space-time sheets.

3. How strong conditions does the modular symmetry pose on the polynomials (P1, P2)? Does
modularity mean that only a very restricted number of polynomials allows this coding? Or
could all solutions of field equations reduce to H3 analogs of plane waves for some set of
a = constant hyperboloids H3?

This form of holography I have indeed proposed. This would mean a nonlinear generalization
of Fourier analysis from E3 ⊂ M4 to the level of the space-time surface with E3 replaced
with the intersections of these special subset of hyperboloids. The intersections of the space-
time sheet with H3(ak) would represent the Fourier mode and their superposition would
correspond to a set theoretic union.

4. I have proposed that the tessellations of H3 are fundamental in TGD and characterize the
solutions of the field equations as symmetries of the boundary data at a finite set of hyperbolic
3-surfaces identifiable as light-cone proper time a = ak surface. The equations for the minimal
surfaces are not completely deterministic and non-determinism would be localized at these
hyperboloids. At these hyperboloids the data would satisfy the modular symmetry so that
the intersection with H3(ak) would reduce to a union of fundamental domains of the modular
subgroup, which are analogous to lattice cells in E3.

Are space-time surfaces without modular symmetry for any H3(a) impossible or are they
such that the representations of SL(2, C) are not ”good”? In the case of H2 this poses
extremely powerful conditions on the polynomials considedere and the same is expected in
the case of H3.

3.3 Geometric LC and TGD

Also geometric LC would emerge with the holography = holomorphy vision [L23, L24, L22]. In this
case, number fields are replaced with function fields defined by generalized holomorphic functions
in H = M4 × CP2. The pairs (P1, P2) of polynomials with coefficient field E as extension of
rationals define space-time surfaces as their roots. These polynomial pairs form a function field so
that space-time surfaces as roots (P1, P2) = (0, 0) behave like numbers and form an analog of a
number field. Note that here also rational functions can be allowed since their poles do not appear
as points of the space-time surface.

Now the notion of the Galois group must be generalized. The generalized Galois group must
permute different regions of the space-time surface as roots for the pair P1, P2) of polynomials
and generalize holomorphic maps of H to itself should define the transformations performing these
permutations.

3.3.1 Space-time surfaces as numbers

One can endow the polynomial pairs defining the space-time surfaces with a structure of a function
field, which is inherited by the roots so that also space-time surfaces can be regarded as numbers.

1. One can define basic arithmetic operations (multiplication, division, sum and subtraction) for
the space-time surfaces defined by the conditions (P1, P2) = (0, 0) and (Q1, Q2) = (0, 0). The
product of space-time surfaces would be defined by the conditions (P1Q1, P2Q2) = (0, 0). The
generalization to the other arithmetic operations is obvious. For the componentwise product
of two polynomial pairs, one obtains all four root pairs as roots.
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2. One can multiply the defining polynomials by functions which do not vanish in the region
defined by the space-time surface. This region corresponds naturally to the causal diamond
cd of M4. In this case the space-time surface as a root is not affected. This is analogous to the
multiplication of a polynomial with a polynomial (or even rational function), which vanishes
nowhere in the range considered. This multiplication corresponds to a multiplication of an
ordinary polynomial with a rational number.

3. One can also construct functional composites of (Q1, Q2) and (P1, P2) as (Q1◦P1, Q2◦Q2). If
one has Qi(0) = 0, the roots (P1, P2) = (0, 0) are not affected but one obtains additional roots
as non-vanishing roots of (Q1, Q2). If Qi have no non-zero roots in the region considered,
the process acts as a symmetry transformation. The action on function pairs (P1, P2) having
no roots in the region considered would be trivial.

How does this picture relate to the notion of infinite-primes [K6]? Infinite primes can be said
to correspond to a hierarchy of second quantizations of a supersymmetric arithmetic theory in
which single boson- and fermion states at a given level correspond to infinite primes as many-
particle states of the previous level. At the lowest level they correspond to ordinary primes having
a possible interpretation as momenta.

1. At a given level Dirac vacuum X corresponds to the product of all primes, which is infinite
as a real number but finite as a p-adic number for any prime p.

2. The construction of infinite primes as analogs of free particles is analogous to the construction
of many particle states in second quantization. The simplest states are of the form P =
mX + n, where m and n are integers chosen in such a way that P is indivisible by any finite
prime.

3. Also infinite primes, analogous to bound states, are possible and are realized as irreducible
polynomials P (X) (no decomposition to a product of monomials with integer coefficients)
with coefficients, which are (possibly infinite) primes of the previous level. At level n, these
polynomials can be regarded as polynomials of n formal variables X1, ....Xn.

4. At the lowest non-trivial level the roots of P correspond to integers and possibly complex
algebraic numbers. At the next level, one has polynomials of two variables and roots cor-
respond to 1-D curves. Next level gives 2-D surfaces, third level gives 3-D surfaces and the
fourth level 4-D surfaces as roots. This construction generalizes from the case of rational
integers to integers in extensions of rationals.

5. The proposal has been that this hierarchy corresponds to the scale hierarchy of space-time
sheets with sheets having particle interpretation. The challenge is to see whether this hier-
archy could somehow relate to the hierarchy defined by the pairs (P1, P2) of polynomials.

P1 = 0 and P2 = 0 surfaces define the analogs of 6-D twistor spaces of M4 and CP2 having the
same space-time surface X4 as a base space and twistor sphere as a fiber [L23, L24, L22]. The
intersection of these two twistor spaces gives X4. H has 4 generalized complex coordinates
so that a 4-level hierarchy for which X can be complex is suggestive. Why would the higher
levels of the hierarchy be absent?

6. The geometric interpretation of the infinite hierarchy of infinite primes encourages the ques-
tion whether one could obtain also the higher levels of the hierarchy in the holography=
holomorphy vision in some way?

It seems that one must consider Hn instead of H at the nth level of the hierarchy. At the level
of the spinor structure this means nth tensor power of the spinor space of H. This conforms
with the idea of repeated second quantization and with the ideat the infinite primes define an
abstraction hierarchy of statements about statements about.... Note also that in condensed
matter physics, the n-particle system is defined in terms of particles in (E3)n. This could
be replaced by Hn, where n is analogous to the number of particles and to the level of the
hierarchy.

Could 4-D space-time surface inHn correspond to the roots of polynomial-tuples (P1, P2, .....Pk)
of k = 4n− 4 polynomials depending on the 4n generalized complex coordinates of Hn? The
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roots satisfy k = 4n − 4 conditions eliminating this number of degrees of freedom so that
the conditions define a 2-complex-dimensional surface of Hn identifiable as the space-time
surface. Its projections to the n Cartesian factors of Hn would define 4-D surfaces, which
could represent the geometric view of a particular particle-like entity about the entire state.

Could this description give a purely geometric description for the interactions of the particles?
Or could it give a description for the hierarchy of space-time sheets topologically condensed
at larger space-time sheets. The mathematical description of this hierarchy is still far from
quantitative. This requires ordering. In the case of infinite primes there is a natural ordering
involved. Does this generalize? At nth level one has polynomials of n:th variable having as its
coefficient polynomials of (n − 1)th level. The ordering is partially determined by requiring
that a given level has the highest possible polynomial degree. At each level this selects a
finite number of alternatives for the coordinate in question.

3.4 How to define the geometric counterpart for rationals and their
extensions geometrically?

How do the notions of rationals and extension of rationals generalize? Does the generalized Galois
group leave the generalized rationals invariant? A natural approach is provided by zero energy
ontology (ZEO) in which the causal diamonds CD = cd × CP2 play a key role as analogs of
perceptive fields of a conscious entity, the observer.

Polynomial pairs (Q1, Q2), which are non-vanishing inside CD would define the counterpart for
rationals since the element-wise multiplication of (P1, P2) to give (Q1P1, Q2P2) does not give rise
to new roots inside CD. Note that also rational functions can be considered. These counterparts
of rationals have no roots so that the generalized Galois group permuting the space-time regions
representing various roots acts on them trivially.

Extensions of these generalized rationals correspond to the space-time surfaces defined by poly-
nomial pairs (P1, P2) having roots inside CD. Different roots correspond to space-time regions and
they define the extension. Galois groups realized as generalized homomorphisms of H must map
these regions to each other.

This proposal raises interesting questions. What are the counterparts of the roots of polynomials
as space-time surfaces? What is the counterpart of discriminant, which allows to assign to a
polynomial a seet of ramified primes as rational primes. What is the space-time counterpart of
rational prime and its

1. What are the counterparts of the roots of polynomials as space-time surfaces? For polyno-
mials that the polynomial factorizes to a product of monomials x− rn with roots which are
the roots of polynomials. In the recent case the corresponding decomposition in the case of
P1 = 0 given by a polynomial having as its only root the space-region correspond to a given
root of P1 having its coefficients in the base field but with the root as algebraic number with
the solution of some of the 4 complex variables appearing in P1 and solved in terms of others
as an algebraic function with coefficients depending on the point of the region defined. One
would have zk − rk({zl, l 6= k}, where the algebraic function rk gives zk locally as a solution
of P1 = 0.

Root as an algebraic number is replaced with algebraic function and defines the root as a
space-time region. One can say that the surface decomposes to a union of regions defined by
the roots of monomials, which join along their boundaries at which two roots co-incide.

2. There are preferred choices for the choice of zk. The natural condition is that the degree of
P1 as a polynomial of zk is maximal. The cusp catastrophe dV (x)/dx = x3 + 2ax + b = 0
illustrates the situation: behavior variable x is preferred choice for the counterpart of zk: the
roots for the parameters (a, b) are rational functions because a and b appear linearly.

Now one has a pair of polynomials and the decomposition can be carried out for both P1 and
P2. The roots for the pair are intersections of the roots of P1 and P2. One can substitute to
P2 zk1 = rk({zl, l 6= k} and solve some coordinate zk2 , k1 6= k2 as an algebraic function of
the other remaining parameter like coordinates.

Do the notions of discriminant and ramified prime as rational prime generalize?
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1. Consider also now P1 = 0 as a simpler example. One can decompose P1 to monomials
which are algebraic functions zk = rk. Since these functions are elements in an extensions
of the function field of rational polynomials, one can also form the differences zi − zj and
define the discriminant as the local product

∏
i6=j(zi− zj). For the ordinary polynomials the

discriminant decomposes to primes of the coefficient field, say rationals.

In this case the discriminant should decompose to analogs of primes as rational polynomials.
Irreducible rational polynomials of prime degree p are primes in the sense that theyt cannot
be decomposed into polynomials of lower degree without leaving the coefficient field. There
the ramified primes could correspond to the factors of the discriminant with prime degree.

2. An interesting question is how the prime degrees appearing of the polynomial prime factors
of P1 relate to the ramified primes assignable to the roots of P1 when restricted to physical
special 2-surfaces X2 fixed to some degree by the condition that P1|X2 has coefficients in
some base field E as extension of rational for a suitable chosen complex coordinate for X2

most naturally one of the generalized complex coordinates used. P1 = 0 and P2 = 0 give 2
conditions giving the space-time surface X4.

3. An interesting question relates to general coordinate invariance. In particular, to the possi-
bility to perform holomorphic coordinate changes. Physically the roots of polynomials whose
arguments are replaced with functions of new coordinates, does not affect the roots geomet-
rically so that this is not a problem. In some preferred coordinates one obtains polynomials
and the physical intuition serves as a guideline in the identification of these preferred complex
coordinates. The light-like hypercomplex coordinate and complex coordinate w associated
with the Hamilton-Jacobi structure of M4 and complex Eguchi-Hanson coordinates of CP2

are natural candidates for the preferred coordinates.

Ordinary rational primes are of special physical interest in TGD. How could these rational
primes, or more generally, E-rational primes emerge?

1. Is the polynomial pair (P1, P2) enough or are two additional polynomials (P3, P4) needed so
that the one would obtain a hierarchy consisting of 6-surfaces as roots of Pi having interpre-
tation as analogs of twistor space of the space-time surface X4 as their interaction, 2-surface
X2 and a discrete set of points. Since one coordinate is a light-like hypercomplex coordinate.
Can one select (P3, P4) freely or are they determined by the pair (P1, P2)? This would be the
case if the surfaces X2 and the roots of a polynomial at it are determined by some geometric
and physical conditions.

2. The 2-surfaces X2 might actually correspond to their metrically 2-D light-like orbits X3.
Could the partonic orbit correspond to intersection of two roots of (P1, P2). as regions X2

( or X3). In the case of partonic orbits X3, these roots could correspond to Euclidean and
Minkowskian space-time regions and at their interface the induced metric would be degenerate
and effectively 2-D. Therefore the partonic orbits are represented as roots (P1, P2, P3) =
(0, 0, 0). Note that the coefficients of P3 depend on the root of (P1, P2) = (0, 0) so that each
root corresponds to a different P3.

3. The fact that partonic orbits are determined by the condition (P1, P2) = 0 alone, suggests
that P 3 cannot be chosen freely in this case. On the other hand, the light-likeness of the
partonic orbits might mean non-determinism (for CP2 type extremals as vacuum extremals
of Kähler action, M4 projection is an arbitrary light-like curve).

The conditions P1 = 0 and P2 = 0 give zk1 and zk2 as algebraic functions of 2 generalized
complex coordinates (w, ξ) at the space-time surface. When one substitutes zk1 and zk2 as to
the third polynomial P3(zk1 , zk2 , w, ξ) as a function of (w, ξ), one should obtain a polynomial
of (w, ξ) with coefficients in E. This is a highly non-trivial condition. The roots of P3 should
define partonic orbits X3.

One wants to assign p-adic primes as ramified primes to the ordinary roots of P4 restricted to
a given X3 and having form depending on it so that each partonic orbit could correspond to its
own p-adic prime as some ramified prime. Algebraic approach is the first option to be considered.
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1. The roots should correspond to the roots of a polynomial P4 of 4 generalized complex coor-
dinates subject to the condition (P1, P2, P3) = (0, 0, 0) defining X2 or X3 so that one would
have (P1, P2, P3, P4) = (0, 0, 0, 0).

The roots could correspond geometrically to light-like curves at metrically 2-D partonic
orbits, that is, fermion lines to which one wants to assign ramified primes as p-adic primes.
Also now one can ask whether it is possible to P4 freely as polynomials having coefficients
in E does (P1, P2) pair fix P4 completely? Can one identify a physical condition fixing the
light-like partonic orbits of fermions? Fermion lines should correspond to the intersections of
string world sheets as 2-D singularities of X4 with X3. Could this condition fix P4 so that
it is determined by the pair (P1, P2).

2. If P4 is a polynomial of 4 generalized complex coordinates with coefficients in E, it should
remain such at the partonic orbit. If 3 generalized complex coordinates are E-rational con-
stants at the partonic orbit, then P4(z) has coefficients in E and and its roots are in an
extension of E and one can assign ramified primes to the roots of P4. E-rational constancy
conditions are very powerful. Note that analogous conditions are encountered for the elliptic
curves: in this case the rational points form a lattice due to the underlying symmetry of
the elliptic curves. This looks like a rather complex approach. Something more elegant is
needed.

The purely algebraic approach looks clumsy. Could a geometric approach based on the physical
picture be more elegant?

1. The conditions defining light-like partonic orbits (
√
g4 = 0) and the conditions defining light-

like fermion lines as intersections of string world sheets as singularities with partonic orbits
could be the geometric conditions. This suggests that one should find a manifestly gen-
eral coordinate invariant formulation, where the polynomial form emerges only in preferred
coordinates and ramified primes emerge naturally.

2. Concerning the identification of ramified primes, one could also start from the situation in
which the n roots at X2 are assumed to correspond to the intersections of string world
sheets and partonic orbits. One can introduce a complex coordinate z. The points should be
algebraic points for this choice of coordinate and therefore expressible as roots of a polynomial
P of degree n with coefficients in E. This condition gives very powerful conditions on the
coordinate z. If some choice of z is found, one can write the polynomial as a product of
monomials defined by the roots and can calculate the discriminant and the ramified primes
associated with it.

How unique is this complex coordinate? The root differences are only scaled under linear
modular transformations so that the spectrum of ramified primes is preserved. If these linear
transformations define the allowed global holomorphies, the preferred complex coordinate at
X2 is rather unique.

3.4.1 The counterpart of the Galois group in the geometric LC

Recently I considered a view of the Galois group, which conforms with the geometric Langlands in
which the roots of a polynomial are replaced with space-time regions as roots of the pair (P1, P2).

1. The ordinary Galois group is assigned with the roots of P defining an extension of E. The
Galois group acts as a permutation group of the roots of a polynomial of a polynomial P
with integer coefficients. Besides this it acts trivially in k if K is an extension of k.

2. For a pair (P1, P2) the roots (P1, P2) = (0, 0) correspond to regions of a connected 4-
surface. One should generalize the notion of Galois group so that it permutes various roots
of (P1, P2) = (0, 0) as regions of the 4-D surface.

Could generalized holomorphic transformation represent the action of the generalized Galois
group on the space-time surface as flows permuting the regions representing the roots [L23].
This transformation would not only map the roots as space-time regions to each other but
also respect the local root property. This might pose restrictions to the Galois group in the
sense that the full permutation group would not be allowed.
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3. If this flow reduces to isometries, then the action must reduced to that of a discrete subgroup
of SO(3) or SL(2, C) and one obtains that the allowed Galois groups correspond to the
hierarchy of discrete subgroups of SO(3) associated with inclusions of hyper-finite factors
[L23] and with McKay correspondence [A10, A9, A7, A6, A5] [L4].

4. What about the analogy for the condition that the Galois group leaves the field E invariant?
The natural identification is that the counterparts of the field E are pairs of polynomials
(or rational functions, or even analytic functions), which are non-vanishing inside CD. The
notion of root indeed generalizes also to analytic functions so that the notion of the geometric
Galois group is number-theoretically universal.

3.4.2 The identification of the geometric Langlands group

Just as in the case of the number theoretical LC, the geometric Langlands group would correspond
to the semidirect product of LSL(2, C)o with a Galois group, which would be now the geometric
variant of the Galois group. SL(2, C) and its subgroup SL(2, ZE) would act on the selected discrete
set hyperboloids H3(ak).

An additional hypothesis, giving hopes for obtaining the numbers of the numbers of p-adic
roots (P1, P2) = (0, 0), is that the Bohr orbitology forces a modular invariance in the sense that the
boundary data of holography are analogous to plane waves with a definite discretized 3-momentum
in the sense that a discrete subgroup of SL(2, ZE) defines a periodic tessellations of the H3 projec-
tion of the space-time surface defining boundary data of the holography. The plane waves would
correspond to modular forms in the hyperboloid H3 covariant under SL(2, ZE).

Also in the CP2 degrees of freedom analog of modular invariance might hold true for a discrete
subgroup of CP2 so that the 3-surface in CP2 degrees of freedom would be an analog of Platonic
solid. This would conform with the quantum classical correspondence suggested by the Bohr
orbitology and suggest that space-time surfaces reflect the quantum numbers of the fermionic
quantum states associated with them.

4 Appendix

In the following some notions of algebraic geometry, group theory, and number theory are briefly
explained.

4.1 Some notions of algebraic geometry and group theory

4.1.1 Notions related to modular forms and automorphic forms

Fuschian and modular groups are discrete subgroups of SL(2, R) acting as invariance groups of
modular functions.

1. Fuschian groups (https://cutt.ly/hBn0YJU) is a discrete subgroup of PSL(2, R). The
group PSL(2, R) can be regarded equivalently as a group of isometries of the hyperbolic
plane, or conformal transformations of the unit disc, or conformal transformations of the
upper half plane, so a Fuchsian group can be regarded as a group acting on any of these
spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed
to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2, R) (so that it
contains orientation-reversing elements), and sometimes it is allowed to be a Kleinian group
(a discrete subgroup of PSL(2, C)), which is conjugate to a subgroup of PSL(2, R).

Fuchsian groups are used to create Fuchsian models of Riemann surfaces. In this case, the
group may be called the Fuchsian group of the surface. In some sense, Fuchsian groups do
for non-Euclidean geometry what crystallographic groups do for Euclidean geometry. Some
Escher graphics are based on them (for the disc model of hyperbolic geometry).

2. Modular group (https://cutt.ly/hBgbH9S) is the projective special linear group PSL(2, Z)
of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and A are
identified. The modular group acts on the upper-half of the complex plane by fractional

https://cutt.ly/hBn0YJU
https://cutt.ly/hBgbH9S
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linear transformations, and the name ”modular group” comes from the relation to moduli
spaces, such as the moduli space of conformal structures of torus.

Second presentation is transformations of the complex plane as Möbius transformations z →
(az+b)/(cz+d) mapping upper plane and real axis to itself. SL(2, R)/SL(2, Z) gives rise to a
hyperbolic geometry identifiable as a fundamental domain of the tessellation of H2 analogous
to the lattice cell of the Euclidean planar lattice.

Modular group is generated by relations generators z → −1/z and T : z → z + 1. Modular
group has a presentation S2 = I, ST 3 = I. By posing the additional relation Tn = 1 one
obtains a congruence subgroup denoted by D(2, 3, n).

These groups have generalization to discrete groups of SL(n,C) and Sl(n,R).

Modular forms and theta functions are closely related entities as also L-functions and generalize
zeta functions.

1. A modular form (https://cutt.ly/3BgbLsr) is a (complex) analytic function on the upper
half-plane satisfying a certain kind of functional equation with respect to the group action
of the modular group, and also satisfying a growth condition. The theory of modular forms
therefore belongs to complex analysis but the main importance of the theory has traditionally
been in its connections with number theory. Modular forms appear in other areas, such as
algebraic topology, sphere packing, and string theory.

A modular function is a function that is invariant with respect to the modular group, but
without the condition that f(z) be holomorphic in the upper half-plane (among other re-
quirements). Instead, modular functions are meromorphic (that is, they are holomorphic on
the complement of a set of isolated points, which are poles of the function).

Modular form theory is a special case of the more general theory of automorphic forms which
are functions defined on Lie groups which transform nicely with respect to the action of
certain discrete subgroups, generalizing the example of the modular group SL2(Z) ⊂ SL2(R).

For instance, modular forms can be defined in a generalized upper half plane, which consists
of symmetric Gl(n,C) matrices such that the imaginary parts of the matrix elements are
positive. For certain. values of n these spaces serve as moduli spaces for the conformal
equivalence classes of Riemann surfaces and in the TGD framework elementary particle
vacuum functionals as ”wave functions” in WCW are identified as modular invariant modular
forms in Teichmüller spaces [K2].

2. Theta functions (https://cutt.ly/bBEFAe5) are special functions of several complex vari-
ables. They are involved with Abelian varieties, moduli spaces, quadratic forms, and solitons.
As Grassmann algebras, they appear in quantum field theory.

For instance, the formula for Jacobi’s theta function θ1(z, q) reads as

θ1(z, q) = 2q
1
4

∞∑
n=0

(−1)nqn(n+1) sin((2n+ 1)z)

=

∞∑
n=−∞

(−1)n−
1
2 q(n+ 1

2 )
2

e(2n+1)iz .

(4.1)

The most common form of theta function is that occurring in the theory of elliptic functions.
With respect to one of the complex variables (conventionally called z), a theta function has
a property expressing its behavior with respect to the addition of a period of the associated
elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperi-
odicity comes from the cohomology class of a line bundle on a complex torus, a condition of
descent.

One interpretation of theta functions when dealing with the heat equation is that ”a theta
function is a special function that describes the evolution of temperature on a segment domain
subject to certain boundary conditions”.

https://cutt.ly/3BgbLsr
https://cutt.ly/bBEFAe5


4.1 Some notions of algebraic geometry and group theory 36

3. Dirichlet series correspond to L-functions and zeta functions. A Dirichlet series https:

//cutt.ly/rBgbNKZ is any series of the form

∞∑
n=1

an
ns
, where s is complex, and an is a complex

sequence. It is a special case of the general Dirichlet series.

Dirichlet series play a variety of important roles in analytic number theory. The most usually
seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-
functions.

Modular forms and L-functions correspond to each other.

1. Mapping of modular forms to L-functions assigns to the Fourier sum
∑
anq

n, q = exp(i2πz)
of a modular form, also known as theta function (https://cutt.ly/QBEYRfW), an L-function
defined as

∑
ann

−s.

Jacobi theta function θ(z) =
∑∞
n=1 q

n2

,q = exp(iπz) has ζ(2s) as associated L-function.

2. Mellin transform of function f is defined as M(f)(s) =
∫∞

0
dxxs−1f(x) (https://cutt.ly/

gBEbWW4). ζ(s) can be written as (1/Γ(s))M(f(x)), f(x) = 1/(e−x/(1 − e−x)) identifiable
as a partition function of harmonic oscillator with a energy spectrum consisting of positive
integers.

4.1.2 Some group theoretic notions

Group theoretical notions.

1. Reductive groups

According to the Wikipedia article (https://cutt.ly/9Bgbv9o), a reductive group is a linear
algebraic group over a field. One definition is that a connected linear algebraic group G over a
perfect field (https://cutt.ly/IBxHw9S) is reductive if it has a representation with a finite kernel,
which is a direct sum of irreducible representations.

Note that for any polynomial over a perfect field K all roots are in K, whereas for algebraically
closed field they always have a root in K, as a matter of fact the number of roots equals to the
degree of the polynomial in this case.

This does not say much to a layman. The fact that the every finite normal subgroup of a
reductive group is central, is more informative. For instance, the Galois groups for extensions
of extensions fail to satisfy this condition in general so that only simple Galois groups of Galois
groups for which normal subgroups are central, are reductive.

Reductive groups include general linear group GL(n) of invertible matrices, special linear group
SL(n) (in particular SL(2, k)), the special orthogonal group SO(n), and the symplectic group
Sp(2n). Simple algebraic groups (in particular SU(n)) and (more generally) semisimple algebraic
groups are reductive.

Claude Chevalley showed that the classification of reductive groups is the same over any alge-
braically closed field. In particular, the simple algebraic groups are classified by Dynkin diagrams,
as in the theory of compact Lie groups or complex semisimple Lie algebras. Reductive groups over
an arbitrary field are harder to classify, but for many fields such as the real numbers R or a number
field, the classification is well understood. The classification of finite simple groups says that most
finite simple groups arise as the group G(k) of k-rational points of a simple algebraic group G over
a finite field k, or as minor variants of that construction.

2. Borel subgroups, parabolic subgroups and parabolic induction

1. In the theory of algebraic groups, a Borel subgroup (https://cutt.ly/jBgbmRX) of an al-
gebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup. In
Zariski topology the closed sets are algebraic surfaces, whereas in ordinary topology the set
of closed sets is much larger. Zariski topology is therefore rougher than standard topology.

For example, in the general linear group GLn, the subgroup of invertible upper triangular
matrices is a Borel subgroup. For groups realized over algebraically closed fields, all Borel
subgroups are conjugate to this group.

https://cutt.ly/rBgbNKZ
https://cutt.ly/rBgbNKZ
https://cutt.ly/QBEYRfW
https://cutt.ly/gBEbWW4
https://cutt.ly/gBEbWW4
https://cutt.ly/9Bgbv9o
https://cutt.ly/IBxHw9S
https://cutt.ly/jBgbmRX


4.1 Some notions of algebraic geometry and group theory 37

2. Subgroups between a Borel subgroup B and the ambient group G are called parabolic sub-
groups. Parabolic subgroups P are characterized by the condition that G/P is a complete
projective variety defined as by a vanishing conditions for a set homogeneous polynomials so
that the solutions possess scale invariance. For algebraically closed fields, the Borel subgroups
turn out to be the minimal parabolic subgroups in this sense. Thus B is a Borel subgroup
when the homogeneous space G/B is a complete variety, which is ”as large as possible”.

3. According to the Wikipedia article (https://cutt.ly/SBxTqTU), parabolic induction is a
method of constructing representations of a reductive group from representations of its
parabolic subgroups.

If G is a reductive algebraic group and P = MAN is the Langlands decomposition of a
parabolic subgroup P ⊂ G, then parabolic induction consists of taking a representation of
MA, extending it to P by letting N act trivially, and inducing the result from P to G.
Induction means extension of the represention of P to G. For instance, the representations
of Poincare group can be induced from the representations of SO(3) × T 4. That G/P is a
complete projective variety must play an important role in this process.

3. Definition of L-group

According to Wikipedia, in representation theory the Langlands dual LG (https://cutt.ly/
cBgbTGs) of a reductive algebraic group G (also called the L-group of G) is a group that controls
the representation theory of G. If G is defined over a field k, then LG is an extension of the absolute
Galois group of k by a complex Lie group. There is also a variation called the Weil form of the
L-group, where the Galois group is replaced by a Weil group. The letter ”L” in the name also
indicates the connection with the theory of L-functions, particularly the automorphic L-functions.
The Langlands dual was introduced by Langlands in a letter to A. Weil.

According to this definition LG would be a Lie group and contain the semidirect product of
Galois group and of algebraic group over the extension of rationals. Note that amalgamated free
product involves a third group U having embeddings to both Gal and G(k) and G(k) and Gal are
”glued” along U .

4.1.3 Automorphic representations and automorphic functions

I am not a number theory professional, and in the following I can only try to demonstrate that I
have at least done my best in trying to understand the essentials of the description of [A4] for the
route from automorphic adelic representations of GLe(2, R) to automorphic functions defined in
upper half-plane. A brief summary of the automorphic representations in Wikipedia involves the
following key points.

1. One has an adelic analogy of group algebra, that is the space of functions in the adelic group
G satisfying some additional conditions. Representation functions are left invariant with
respect to the algebraic diagonal subgroup Gdiag. Central character is interpreted as a map
ω: Z(K) \ Z(A)× → C.

2. Representation functions are finite sums of the left translates of function f by elements of
adelic G. G acts from right on these functions. One speaks of a space of cusp forms with a
central character ω.

3. A decomposition of the cuspidal representation into a direct sum of Hilbert spaces with finite
multiplicities takes place.

The following describes the construction for GL(2, Q), which is very relevant for TGD since
SL(2, C) acts as a covering of the Lorentz group.

1. Characterization of the representation

The representations of GLe(2, Q) are constructed in the space of smooth bounded functions
GLe(2, Q)\GLe(2, A) → C or equivalently in the space of GLe(2, Q) left-invariant functions in
GLe(2, A). A denotes adeles and GLe(2, A) acts as right translations in this space. The argument
generalizes to arbitrary number field F and its algebraic closure F .

https://cutt.ly/SBxTqTU
https://cutt.ly/cBgbTGs
https://cutt.ly/cBgbTGs
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1. Automorphic representations are characterized by a choice of a compact subgroup K of
GLe(2, A). The motivating idea is the central role of double coset decompositions G =
K1AK2, where Ki are compact subgroups and A denotes the space of double cosets K1gK2

in the general representation theory. In the recent case the compact group K2 ≡ K is
expressible as a product K =

∏
pKp ×O2.

To my best non-professional understanding, N =
∏
pekk in the cuspidality condition gives rise

to ramified primes implying that for these primes one cannot find GL2(Zp) invariant vectors
unlike for others. In this case one must replace this kind of vectors with those invariant
under a subgroup of GL2(Zp) consisting of matrices for which the component c satisfies
c mod pnp = 0. Hence for each unramified prime p one has Kp = GLe(2, Zp). For ramified
primes Kp consists of SLe(2, Zp) matrices with c ∈ pnpZp. Here pnp is the divisor of the
conductor N corresponding to p. K-finiteness condition states that the right action of K on
f generates a finite-dimensional vector space.

2. The representation functions are eigen functions of the Casimir operator C of gl(2, R) with
eigenvalue ρ so that irreducible representations of gl(2, R) are obtained. An explicit repre-
sentation of the Casimir operator is given by

C =
X2

0

4
+X+X −+X−X+ , (4.2)

where one has

X0

(
0 i
−i 0

)
,

(
1 ∓i
∓i −1

)
. (4.3)

3. The center A× of GLe(2, A) consists of A× multiples of identity matrix and it is assumed
f(gz) = χ(z)f(g), where χ : A× → C is a character providing a multiplicative representation
of A×.

item The so-called cuspidality condition is associated with the cusps. Planar cusp (https:
//cutt.ly/sBxd9sH) corresponds geometrically to a sharp tip. Derivatives of x(t) and y(t)
with respect to parameter t become zero at cusp. The direction of the curve changes at the
cusp. x ≥ 0. Cusp catastrophe x3 − y2 = 0 provides a simple example. The tip of the cusp
is added in the compactification of the hyperbolic 2-manifold defined by the space Γ\H2.

The cuspidality condition

∫
Q\NA

f(

(
1 u
0 1

)
g)du = 0 (4.4)

is satisfied [A4]. Note that the integration measure is adelic. Note also that the transfor-
mations appearing in integrand are an adelic generalization of the 1-parameter subgroup of
Lorentz transformations leaving invariant light-like vector. The condition implies that the
modular functions defined by the representation vanish at cusps at the boundaries of funda-
mental domains representing copies Hu/Γ0(N), where N is so called conductor. The “basic”
cusp corresponds to τ = i∞ for the “basic” copy of the fundamental domain.

The groups gl(2, R), O(2) and GLe(2, Qp) act non-trivially in these representations and it can
be shown that a direct sum of irreps of GLe(2, AF )×gl(2, R) results with each irrep occurring
only once. These representations are known as cuspidal automorphic representations.

The representation space for an irreducible cuspidal automorphic representation π is tensor
product of representation spaces associated with the factors of the adele. To each factor one can
assign ground state which is for un-ramified prime invariant under Gl2(Zp) and in ramified case
under Γ0(N). This ground states is somewhat analogous to the ground state of infinite-dimensional
Fock space.

https://cutt.ly/sBxd9sH
https://cutt.ly/sBxd9sH
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2. From adeles to Γ0(N)\SLe(2, R)

The path from adeles to the modular forms in upper half plane involves many twists.

1. By so called central approximation theorem the group GLe(2, Q)\GLe(2, A)/K is isomorphic
to the group Γ0(N)\GL+(2, R), where N is so called conductor, which is an integer measuring
the ramification of the extension [A4] (https://cutt.ly/DBcgOA2). This means enormous
simplification since one gets rid of the adelic factors altogether. Intuitively the reduction
corresponds to the possibility to interpret rational number as collection of infinite number of
p-adic rationals coming as powers of primes so that the element of Γ0(N) has interpretation
also as Cartesian product of corresponding p-adic elements.

2. The group Γ0(N) ⊂ SLe(2, Z) consists of matrices

(
a b
c d

)
, c mod N = 0. (4.5)

+ refers to positive determinant. Note that Γ0(N) contains as a subgroup congruence sub-
group Γ(N) consisting of matrices, which are unit matrices modulo N . Congruence subgroup
is a normal subgroup of SLe(2, Z) so that also SLe(2, Z)/Γ0(N) is group. Physically modular
group Γ(N) would be rather interesting alternative for Γ0(N) as a compact subgroup and
the replacement Kp = Γ0(pkp) → Γ(pkp) of p-adic groups adelic decomposition is expected
to guarantee this.

3. Central character condition together with assumptions about the action of K implies that the
smooth functions in the original space (smoothness means local constancy in p-adic sectors:
does this mean p-adic pseudo constancy?) are completely determined by their restrictions to
Γ0(N)\SLe(2, R) so that one gets rid of the adeles.

3. From Γ0(N)\SLe(2, R) to upper half-plane Hu = SLe(2, R)/SO(2)

The representations of (gl(2, C), O(2)) come in four categories corresponding to principal series,
discrete series, the limits of discrete series, and finite-dimensional representations [A4]. For the
discrete series representation π giving square integrable representation in SLe(2, R) one has ρ =
k(k− 1)/4, where k > 1 is integer. As sl2 module, π∞ is direct sum of irreducible Verma modules
with highest weight −k and lowest weight k. The former module is generated by a unique, up to
a scalar, highest weight vector v∞ such that

X0v∞ = −kv∞ , X+v∞ = 0 . (4.6)

The latter module is in turn generated by the lowest weight vector

(
1 0
0 −1

)
v∞ . (4.7)

This means that entire module is generated from the ground state v∞, and one can focus to the
function φπ on Γ0(N)\SLe(2, R) corresponding to this vector. The goal is to assign to this function
SO(2) invariant function defined in the upper half-plane Hu = SLe(2, R)/SO(2), whose points can
be parameterized by the numbers τ = (a + bi)/(c + di) determined by SLe(2, R) elements. The
function fπ(g) = φπ(g)(ci + d)k indeed is SO(2) invariant since the phase exp(ikφ) resulting in
SO(2) rotation by φ is compensated by the phase resulting from (ci + d) factor. This function is
not anymore Γ0(N) invariant but transforms as

fπ((aτ + b)/(cτ + d)) = (cτ + d)kfπ(τ) (4.8)

under the action of Γ0(N) The highest weight condition X+v∞ implies that f is holomorphic
function of τ . Such functions are known as modular forms of weight k and level N . It would seem

https://cutt.ly/DBcgOA2
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that the replacement of Γ0(N) suggested by physical arguments would only replace Hu/Γ0(N)
with Hu/Γ(N).

fπ can be expanded as power series in the variable q = exp(2πτ) to give

fπ(q) =

∞∑
n=0

anq
n . (4.9)

Cuspidality condition means that fπ vanishes at the cusps of the fundamental domain of the action
of Γ0(N) on Hu. In particular, it vanishes at q = 0, which corresponds to τ = −∞. This implies
a0 = 0. This function contains all information about automorphic representation.

4.1.4 Hecke operators

Wikipedia provides a brief description of Hecke operators (https://cutt.ly/hBxd5Yb).

1. Spherical Hecke algebra (, which must be distinguished from non-commutative Hecke algebra
associated with braids) can be defined as algebra of GLe(2, Zp) bi-invariant functions on
GLe(2, Qp) with respect to convolution product. Sub-algebra of group algebra is in question.

2. This algebra is isomorphic to the polynomial algebra in two generators H1,p and H2,p and
the ground states vp of automorphic representations are eigenstates of these operators.

3. The normalizations can be chosen so that the second eigenvalue equals unity. Second eigen-
value must be an algebraic number. The eigenvalues of Hecke operators Hp,1 correspond to
the coefficients ap of the q-expansion of automorphic function fπ so that fπ is completely
determined once these coefficients carrying number theoretic information are known [A4].

4. The action of Hecke operators induces an action on the modular function in the upper half-
plane so that Hecke operators also have a representation as what is known as classical Hecke
operators. The existence of this representation suggests that adelic representations might
not be absolutely necessary for the realization of Langlands program.

From the TGD point of view a possible interpretation of this picture is in terms of modular
invariance. Teichmüller parameters of the algebraic Riemann surface are affected by the absolute
Galois group. This induces Sl(2g, Z) transformation if the action does not change the conformal
equivalence class and a more general transformation when it does. In the Gl2 case discussed above
one has g = 1 (torus). This change would correspond to non-trivial cuspidality conditions implying
that ground state is invariant only under subgroups of Gl2(Zp) for some primes. These primes
would correspond to ramified primes in maximal Abelian extension of rationals.

An interesting possibility is that these representations can be continued from the hyperbolic 2-
manifolds to hyperbolic 3-manifolds assignable to the mass shells H3 defined by tessellations. The
discrete subgroup Γ of SL(2, R) would be continued to a discrete complex subgroup of SL(2, C).
There would be left invariance with respect to diagonal SL(2, C). Finite sums over right trans-
lates by discrete elements of adelic SL(2, C). Central character associated with Z2. One could
have a holography in the sense that the modular forms associated with the hyperbolic 2-manifold
as boundary of hyperbolic manifold would be continued to their counterparts if 3-D hyperbolic
manifold.

4.2 Some number theoretic notions

4.2.1 Frobenius automorphism

Frobenius automorphism https://cutt.ly/NBkIudF maps the element of a finite field F (p, n),
or more generally, of a commutative ring with characteristic p, to its p:th power and can there
be regarded as an element of Galois group for an extension of finite field. F maps products to
products and sums to sums.

For a finite field one has xp = x by Fermat’s little theorem. The elements of Fp determined
the roots of the equation Xp = X. There are no more roots in any extension. Therefore, if L is
an algebraic extension of Fp, Fp is the fixed field of the Frobenius automorphism of L. The Galois
group of an extension of a finite field is generated by the iterates of Frobenius automorphism.

https://cutt.ly/hBxd5Yb
https://cutt.ly/NBkIudF
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4.2.2 The notion of discriminant

The discriminant of the polynomial is the most concrete definition (https://cutt.ly/GBxfyIm).

1. For a polynomial P (x) = anx
n + ... the discriminant can be defined by the formula

Discx(A) = a2n−2
n

∏
i<j

(ri − rj)2 = (−1)n(n−1)/2a2n−2
n

∏
i 6=j

(ri − rj) , (4.10)

This notion applies to extensions of rationals defined by polynomials. For a second order
polynomial ax2 + bx+ x, one has the familiar formula Disc = b2 − 4ac .

2. In the recent case the coefficients are rational. D vanishes when the polynomial has two
or more identical roots which occurs for suitable values of parameters. The geometric in-
terpretation is that two sheets (roots) of the graph of a root as a many-valued function
of parameters ai coincide so that the tangent space of the graph is parallel to x. Cusp
catastrophe associated with a polynomial of order 3 is the simplests non-trivial example.

3. For a rational polynomials D is a rational number and for the ramified primes dividing D,
it vanishes for the finite field variants of the polynomial with coefficients taken modulo p so
that there are multiple roots for ramified primes. One can say that p-adically a catastrophe
occurs in order O(p) = 0. This defines a p-adic variant of quantum criticality and gives an
idea about the special physical role of the ramified primes in TGD.

A more abstract definition of the discriminant, which does not depend on the polynomial
(https://cutt.ly/6BxfoQo). One distinguishes between the absolute discriminant of a number
field and the relative discriminant of an extension of a number field. In the TGD framework, both
situations are the same since number fields are extensions of rationals or induced by them.

1. One starts directly from the extension of rationals and imbeds the roots as complex numbers
to plane. There is a large number of different embeddings. This corresponds to the fact that
many polynomials P define the same extension. The counterpart for this non-uniqueness is
that any basis elements for the basis for the ring of integers of the extension can define the
unit to which the real axis is assigned.

2. There are n choices corresponding to n basic vectors of the integer basis consisting of algebraic
integers, which are roots of a monic polynomial. One can choose the monic polynomial so
that it is of degree n and the powers of a root define integer basis. Each choice si defines a
map of the basis vectors ej to the complex plane. The image vectors si(ej) define a matrix,
whose determinant defines the discriminant D of the extension, which is the same as given
by the less abstract definition based on the roots of a polynomial.

4.2.3 The notions of valuation and ramification

The notions of valuation and ramification (https://cutt.ly/bBgb47p) are easiest to understand
in terms of a concrete polynomial representation of extension.

The extension with a given Galois group is obtained in very many ways. For instance, all
irreducible polynomials of degree 2 have the same Galois group. Further information comes from
the concrete polynomial representation. Ramified primes appear in the discrimant D of P as
factors. For ramified primes, the splitting to a product of powers peii of prime ideals pi of extension
is such that at least ei > 1 appears. The discriminant is product for the squares of the differences
of roots and depends on polynomial. This provides a more precice characterization of the situation
than mere Galois group.

Ramified primes are special in the sense that for them the extension of p-adic number field
induced by the extension of rationals is has lower dimension than for unramified primes. This
is intuitively understandable since the discrimant vanishes in order O(p) at least for the ramified
prime. The prime ideals of K can split in to prime ideals of L. Also powers of primes of extension
can appear in the splitting and this correspond to ramification. Ramified primes appear as factors
in the discriminant.

https://cutt.ly/GBxfyIm
https://cutt.ly/6BxfoQo
https://cutt.ly/bBgb47p
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The extension defined by a polynomials define a basis of algebraic integers and one can define
norm by the determinant of the linear transformation defined by multiplication with an integer of
the extension. This norm depends on the polynomial P and defines p-adic norm. The logarithm
of the norm defines the valuation. When ramification occurs the dimension of p-adic extension l/k
restricted to the finite field parts of p-adic numbers is lower than the dimension of extension L/K
of rationals. The dimension of the corresponding finite field is lower than that for rationals.

In the abstract approach one does not mention polynomials at all and considers only valuations
as norms assigned to an abstract extension of rationals. The equivalence class of valuations replaces
the equivalence class of polynomials with the same Galois group and same discriminant if valuation
is determined by the powers of ramified primes appearing in the discrimant.

Intuitively, the valuation should correspond to a prime ideal p of L and to a norm. For exten-
sions of rationals these prime ideals correspond to the primes defining extensions of p-adic number
fields and these primes are special. Ramified primes are those appearing in the discriminant. The
catastrophe theoretic picture based on the discriminant of the polynomial defining the catastro-
phe gives an idea of what is involved. This intuitive helps to make sense of the rather abstract
statements below.

1. If there are several prime ideals, there are several valuations, which need not be equiva-
lent (transform to each other by the action of Galois group). This would suggest that Gw
transforms to each other prime ideals p defining the same evaluation. Valuation ring Rw
corresponds to the ring, whose elements have a non-negative norm or equivalenty, a given
element x of O or its inverse belongs Rw. Is the valuation ring same as the ring formed by
non-negative powers of this prime ideal? Valuation ring has maximal ideal mw. The maximal
ideal mw of Rw representing the equivalence class of valuation inside the evaluation ring Rw
is a key concept.

2. The ramification is characterized using decomposition group Gw and the hierarchy of ram-
ification subgroups, which are normal subgroups of Gw. The decomposition group Gw of a
valuation, which is determined by element w, is the subgroup of Galois group acting as the
stabilizer group leaving the evaluation invariant.

Gw must leave invariant the determinant defining the norm. How does Gw relate to the
isotropy group of a given root of P? If Gw and the isotropy group are identical and the
isotropy group depends on the root, a given polynomial P could allow several evaluations.
If the maximal (prime) ideal p of O(L) defines the extension, Gw would transform it to a
prime defining an equivalent norm. By Hensel’s lemma, the ring of O(L) of L-integsds can
be written as O(L) = OK(α) for some α in O(L).

3. The inertia group Iw of w consists of the elements of Galois group, which leave the elements of
Rw invariant modulo mw. These elements are analogous to p-adic integers numbers smaller
than p and the intuitive picture is that ramification means that the generating element of
the ring Rw is power of w which is larger than 1.

Also the functional decomposition of polynomial P defines a hierarchey of normal subgroups
as Galois subgroups and factor groups. Hierarchy of ramification groups must correspond to
polynomials in a composition of P to polynomials.

The inertia group of a given equivalence class of valuations is a subgroup of Gw and the
stabilizer group of the valuation. It could correspond to the Galois group of the extension
En associated with P = Pn◦...◦P1 regarded as an extension of the extension En−1 associated
with Pn−1 ◦ ...P1.

4. There are also higher normal subgroups in a series associated with Gal. They give additional
information about the valuation.

Also the notion of the conductor is involved. The conductor of an extension is an integer
serving as measure for the ramification. Qualitatively, the extension is unramified if, and only if,
the conductor is zero, and it is tamely ramified if, and only if, the conductor is 1. More precisely, the
conductor computes the non-triviality of higher ramification groups. The description of conductor
given in the Wikipedia article (https://cutt.ly/DBcgOA2) is extremely general and therefore too
technical to be understood by a non-specialist.

https://cutt.ly/DBcgOA2
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4.2.4 Artin L-function

Given representation ρ of the Galois group G of the finite extension L/K on a finite-dimensional
complex vector space V , the Artin L-function: L(ρ, s) is defined by an Euler product. For each
prime ideal p in K’s ring of integers, there is an Euler factor, which is easiest to define in the case
where p is unramified in L (true for almost all p).

In that case, the Frobenius element Frob(p) mapping elements of the ring of integers of the
extension L/K to its p:th power is identified as a conjugacy class in G. Therefore, the characteristic
polynomial of ρ(Frob(p)) is well-defined. The Euler factor for p is a slight modification of the
characteristic polynomial, equally well-defined,

charpoly(ρ(Frob(p)))−1 = det [I − tρ(Frob(p))]
−1

, (4.11)

as rational function in t, evaluated at

t = N(p)−s , (4.12)

with s a complex variable in the usual Riemann zeta function notation. (Here N is the field norm
of an ideal.)

When p is ramified, and I is the inertia group which is a subgroup of G, a similar construction
is applied, but to the subspace of V fixed (pointwise) by I.
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