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Abstract

In TGD, point-like particles are replaced with 3-surfaces and these in turn with the analogs
of Bohr orbits. M® — H duality is the generalization of momentum-position duality and is now
rather well understood. It however remains a mere academic mathematical construct unless
it can be used to achieve some practical goal. The construction of scattering amplitudes is
the basic dream of TGD and M® — H duality gives hope of achieving this goal in terms of the
TGD counterparts for the momentum space Feynman diagrams.

The notion of exotic smooth structure, having interpretation as an ordinary smooth struc-
ture with 3-D defects and possible only in 4-D space-time, is crucial. Fermions in H are free
but fermion pair creation is possible at the defects at which fermion lines can turn backwards
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in time. Also a more general change of direction is possible. This makes the counterpart of
fermionic Feynman diagrammatic extremely simple at the level of H. Only fermionic 2-vertices
associated with 3-D geometric defects are needed. Fermionic interactions reduce to an 8-D
Brownian motion in the induced classical fields and the singularities of the space-time surfaces
at which minimal surface property fails define the location of the vertices.

The interactions of two space-time surfaces, identified in holography = holomorphy vision
as 4-D generalized Bohr orbits, correspond geometrically to contact interactions at their in-
tersections. If the Hamilton-Jacobi structures are the same, the intersections are 2-D strings
world sheets. The edges of these string world sheets would contain the vertices.

In this article an attempt to formulate this picture at M level by using a precise formu-
lation of M®-H duality is made.

Introduction

M?® — H duality is the generalization of momentum-position duality to TGD, where point-like
particles are replaced with 3-surfaces and these in turn with the analogs of Bohr orbits. M® — H
duality is now rather well understood [L17]. It however remains a mere academic mathematical
construct unless it can be used to achieve some practical goal. The construction of scattering
amplitudes is the basic dream of TGD and during years a lot of progress has occurred and M® — H
duality gives hopes of achieving this goal.

1. In standard QFTs the construction of scattering amplitudes reduces to Feynman rules formu-

lated in momentum space. The divergences of the scattering amplitudes are the key problem
and the needed regulation makes the application of the theory extremely difficult technically.

In the TGD framework, holography = holomorphy principle [L6} .10, [L7, .16, 3] allows to
get rid of the mathematically ill-defined path integral but there is a weak failure of deter-
minism associated with space-time surfaces as 4-D analogs of Bohr orbits. The counterparts
of Feynman diagrams with lines identified as Bohr orbits appear at the level of H.

. The geometric interactions are identified as contact interactions. The intersection of two

space-time surfaces having a common Hamilton-Jacobi structure |[L3] consists of 2-D string
world sheets rather than being a discrete set of points. These string world sheets should
provide the description of the scattering and also of self-interactions at the level of H.

. The fermions are free at the level of H and X* but exotic smooth structures, possible only

in space-time dimension D = 4 [A3], [A4] [A], are conjectured to make possible fermion
pair creation as turning of fermion backwards in time and also more general fermionic 2-
vertices [L9, [L2 [L14] in the induced classical gauge fields.

The minimal view is that there are only fermionic 2-vertices as defects of the standard
smooth structure and fermionic scattering correspond to 8-D Brownian motion in H. The
smoothness would fail at the edges of the fermion lines associated with 3-D edges of the
space-time surfaces at which the minimal surface property and standard smoothness fails.

. By M®— H duality, space-time surfaces X* C H have counterparts Y* C M?® having interpre-

tation in terms of dispersion relations in 4-D momentum space. By translational invariance,
all translates of a given space-time surface X* C H are mapped to the same 4-surface
Y4 C M?® so that a huge simplification takes place in the construction fermionic part of the
scattering amplitude.

At fermionic 2-vertices the correspondence H — M? is two-valued. In particular, the string
world sheets are mapped to their counterparts in Y* and serve as a natural seat for the
virtual momenta. In fact, the edges of string world sheets at which standard smoothness
fails correspond, in accordance with the Uncertainty Principle, to the seat vertices in H and
for virtual momenta in M?®.

In the following the challenge is to understand the detailed construction of the fermionic scat-

tering amplitudes at the level of M3.



2. What could be the role of M® — H duality? 3

2  What could be the role of M?® — H duality?

M3 is identifiable as an 8-D momentum space and if M¥ duality is useful it should make possible
the description of the scattering amplitudes at the level of momentum space. The quaternionic
and thus associative 4-surfaces Y4 C M? satisfying the additional condition that they contain a
complex and thus commutative 2-surface, are analogous to a representation of dispersion relation
for both on- and off-mass-shell fermions. If so, it should be possible to realize the TGD analogies
of Feynman graphs in terms of M® — H duality.

2.1 The role of M8?

How should one proceed?
1. The most ambitious goal involves two tasks.

(a) Construct M® counterpart both for the representation of the initial and final states by
means of the second quantized spinor fields of M®. The 8-dimensional masslessness
would be realized at both sides and the spectrum of M?® Dirac operator should be the
same as that for H Dirac opeartor.

(b) Counstruct the scattering amplitudes associated with analog of the quark-gluon phase
associated with Y4,

The basic problem is that in M3 it is not possible to realize differential geometry and the
couplings to induced gauge fields. Only completely free spinor fields in M® are possible and
correspond to octonionic spinors. Could the free Dirac equation in M® be enough for the
description of scattering amplitudes?

2. This suggests a more modest goal based on a division of labor between M?® and H levels.

(a) The M? level could be an elegant way to construct scattering amplitudes in the quark-
gluon phase that is at the level of Y4? The reduction of the X* level description to
Y* would conform with the basic idea of holography. At the level of Y the geometry
would reduce to algebra.

(b) The H level could provide an elegant description for the description of initial and final
states and also for classical dynamics for the spacetime surfaces necessary for the physical
interpretation.

2.2 H — M? correspondence is very-many-to-one and 1-to-2 at vertices

The original expectation that M3H correspondence is 1-1 has turned out to be too simple.

1. The correspondence H — M? is very-many-to-one. All causal diamonds cd x C' P, (CDs) [L4]
obtained as translates of each other in H are mapped to the same in M?® analog of CD con-
sisting of opposite light-cones with opposite sign of energy and energies below some maximum
energy. This is consistent with the Uncertainty Principle and means a huge simplification in
calculating scattering amplitudes if Y4 can be interpreted as momentum space.

2. This also makes it possible to understand the C'P, extremals [K1] [L5] as equivalents of M8
singularities for which the quaternionic or Minkowskian normal space is not unique. It would
be a singularity analogous to a vertex of an algebraic surface. Every CD would go to the
same CD equivalent in M?® and should correspond to f(0).

3. On the H side, the analogs of plane waves occur in the moduli space of CDs [L4]. The plane
waves have as argument the M* position of the CD containing X*. This guarantees the
translational invariance so that the amplitudes of M?® at the limit of an infinitely large CD
are Poincare invariant and the various Poincare charges are preserved.
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4. Tt is important to notice that even in the direction H — M3 the M® — H duality can fail
to be a one-to-one correspondence. In the creation of a fermion pair as defect of a standard
smooth structure, the same point in H corresponds to two different momenta in M8. This is
true also for the 8-D Brownian motion giving rise to the fermion line with edges which are
holomorphic singularities.

This failure of one-to-one correspondence is essential for the understanding of what the
vertices of ordinary Feynman diagrams mean in TGD. The vertex would correspond to the
point H to which 2 M?® points are assigned. The 1-to-2 vertex is the simplest one and
analogous to the vertices giving rise to the massivation of fermion in the Higgs field.

5. Are n-vertices with n > 2 needed? For fermions these vertices do not make sense in QFTs
since for instance a four-fermion vertex leads to a non-renormalizable theory. This suggests
that only Brownian motion allowing pair creation as turning back in time direction is enough
for fermions. Higher vertices emerge in a finite measurement resolution and would do so at
the QFT limit of TGD. Note however that at the geometric side the situation is different:
the splitting of a 3-surface into two can be considered and would be involved with the geo-
metric description of the particle reactions which conforms with the classical view of particle
reactions expressed in terms of Feynman diagrams.

2.3 About the identification of the surfaces Y? and Y*

A generalization of momentum space dispersion relation would be a natural interpretation for the
surface Y4 C M8. 8 options for the realization of associativity can be considered and the challenge
is to identify the correct option or options.

1. There are two basic interpretations for what associativity means. For option T the tangent
space T of Y* is associative. For option N the normal space N is associative. The number
theoretic metric signature of Y is Minkowskian for 7" and Euclidian for N.

For the N option the integrability conditions are satisfied for any distribution of normal
spaces N. This is somewhat worrying since the dynamics induced in H by M® — H duality
might be quite too non-deterministic. The identification of this option as the correct one
initiated an Odysseia that lasted for years.

The option N has also other potential problems: the four-momenta identified as points of E4
would be co-quaternionic, non-associative, and tachyonic. Can they be allowed as off-mass-
shell momenta that appear in ordinary Feynman graphs or could the tachyonicity emerge
from dispersion relations for option 7'?

2. There are two alternative conditions on the octonion analytic function f(o) possibly defining
Y3 as a representation of holographic data.

Option A: For octonion real-analytic functions the condition Re(f(0)) = 0 (Re(f) and
Im(f) are understood in octonionic sense) is invariant under local G2, which as octonionic
automorphisms commute with f and do not affect Re(f).

Option B: If one assumes Im(f) = 0, local Gy is expected to reduce to a subgroup
leaving Im(f) = 0 condition invariant. This condition however defines a 6-sphere S% and
since G is a subgroup of SO(7), the local G5 is also now a dynamical symmetry.

3. One can also consider two alternative identifications of Y4.

Option I: Y* is obtained by holography by using 3-D holographic data Y satisfying the
condition Im(f) = 0. The simplest surfaces Y* would be regions of M* or E* consistent
with the holography using Y2 defining the boundary of the surfaces. More complex surfaces
Y* would be generated by the action of the local G transformations commuting with the
condition I'm(f) = 0.

Option II: Y* is a union of 3-D surfaces Y2 satisfying f = ¢, where ¢ is a real octonion. Also
this identification is invariant under local G and would give Y4 as a union Y*=U.Y3(c).
The additional condition I'm(f) = 0 gives rise to 3-D union of spheres U.S%(c). A possible
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interpretation is as a 3-D holographic data. This would correspond to a slicing of Y* by 3-
surfaces identifiable as orbits of partonic 2-surfaces. The slicing by partonic 2-surfaces would
correspond to the H — J structure [L3].

The basic questions are the following.

. Which combinations of the above options, if any, are physically plausible?

How to interpret the surfaces Y3 and the surface Y.

Are both quaternionic tangent space (Y is Minkowskian) and normal space (Y* is Euclidean)
physically possible or can we limit ourselves to the tangent space option for which Y* is
Minkowskian?

2.4 General observations about the dispersion relation defined by Y?

For both options mentioned above, the surface Y3 is defined by the condition Re(f) = 0 or Im(f) =
0 and it is useful to first make some general observations related to the physical interpretation.

1.

For the general points of Y3, the dispersion relation E? — p? = m? is modified but would
remain rotation invariant so we can talk about mass, energy and momentum. Could this
2-sphere S? (or its local G5 deformation) for a given energy be the counterpart of the Fermi
sphere? Would the violation of the dispersion relation physically correspond to the counter-
part of the effect of gauge couplings in the induced Dirac equation for X* € H, which would
modify the dispersion relation to be non-local.

8-D masslessness would hold true as additional condition for on-mass-shell states and select a
set of momenta for which the energy F would be quantized and the Lorentz invariant disper-
sion relation E? — p? = m? would hold tue. The energy would vary along the orbit of S?(E)
and correspond to a definite 3-momentum squared. Could these Lorentz invariant points
correspond to free on-mass-shell states and incoming and outgoing particles, most naturally
fermions? The M?* mass spectrum of the on-mass-shell states should be the spectrum of
these states as given by the Dirac equation in H [L13] [L12].

For a given f(0), the mass spectrum is determined. In particular, the spectrum of incom-
ing states and outgoing on-mass-shell states, corresponds in H to a set of 2-D subsets of
hyperbolic 3-space H? as hyperboloid with a fixed light-cone proper coordinate a, which is
determined by the inverse of the mass and defines the analog of cosmic time. The inter-
pretation of these 2-surfaces as partonic 2-surfaces representing counterparts of vertices for
incoming particles is suggestive.

The mass spectrum of the incoming states would therefore have a direct representation in
the geometry of the spacetime surface. The a = constant surface brings in mind the 3-D
equivalent of the celestial sphere, whose points correspond to the directions of the allowed
wave vectors, appearing in crystallography.

Do the other Y3 points correspond to momenta for which interactions have changed the
dispersion relation? Could one say that at the H level the interaction of the particle with
classical fields causes this and also leads to the breaking of Lorentz invariance into rotational
invariance?

It is noteworthy that when the local G5 transformation is non-trivial, the situation remains
the same by the commutativity of G2 with the conditions posed on f(0).

2.5 Surfaces Y* with quaternionic tangent space (option 7))

For the option T, surfaces Y4 have an associative tangent space T. Note that besides integrable
distribution of tangent spaces also an integrable distribution of complex sub-spaces is necessary in
order to have M®-H duality. These conditions are non-trivial and here local G5 invariance would
come to rescue. Integrability conditions are true for the local G transforms and are suggested to
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generate Hamilton-Jacobi structures from the simplest H-J structure defined by the decomposition
M* = M? x E?.

Let’s first forget the local G5 transformations and limit ourselves to the data that determines
the simplest holography corresponding to a region of M*. The questions depend on the option
considered.

The key questions concern the interpretation of Y3 for various options.

Option A: The dispersion relation for the points of Y2 is not Lorentz invariant E? — p? =
m? = 72 but is more general but still rotationally invariant. Could one interpret Y3 as a generalized
mass-shell? Could Y3 be regarded as an analog of the Fermi ball and E = constant 2-spheres as
Fermi surfaces? What about the 4-momenta in the interior of Y4: do they represent off-mass
shell states? Could the failure of Lorentz invariance be interpreted as reflecting the effects of the
interactions with classical fields?

Option B: In this case the on-mass-hell states would naturally correspond to a Lorentz invari-
ant dispersion relation E? —m? = 0, m? = r2 (r; is the radius of S°), which is natural for the
incoming and outgoing states. The points of Y3(c) satisfying it define a 2-sphere S?(c).

Option I: For Re(f) = 0 option the values of masses for on-mass-shell states depend on ¢ so
that the spheres S%(c) belong to different mass shells. Could these 2-spheres correspond in H to
partonic 2-surfaces identified as generalized vertices in which incoming particles appear.

Option II: For I'm(f) = 0, the masses do not depend on ¢ and the union U.S?(c) defines
a subset of the mass shell, that is hyperbolic 3-space H3. The remaining points of Y* could be
regarded as off-mass-shell states satisfying a dispersion relation which is only rotationally invariant.
Note that tachyonic 4-momenta are possible also now and would be due to the modification of the
dispersion relation.

At the level of H, the second hypercomplex coordinate is dynamically passive: could this
tranlate to the condition Im(f) = 0 implying passivity at the level of M3?

The parameter ¢ would make itself physically visible only at the points f = 0 if they are
identified as vertices. The virtual momenta assignable to the vertices would depend on ¢ and the
unions of vertices defined in this way could define Y* C M?® images of the fermion lines of X* C H.
In H they define boundaries of string worlds sheets and the interpretation of vertices as edges of
fermion lines would suggest that these lines define edges of string world sheets.

The options TBI and TBII seem to be physically the most promising ones. T'BI allows richer
mass spectrum but allows only a spheres as subset of H? for a given mass. A couple of remarks
are in order:

1. The governing equations for Y® have several roots corresponding to different radii 7 for S°.
This gives nested spheres S% and S2. Could tachyonic propagator lines connect the M* ¢ H
images of such such spheres?

2. Local G5 does not change the roots for f(o) nor the dispersion relation for Y3.
Consider now the interpretation of the interior of Y4 for option TBL

1. The interior of Y4 correspond to both on-mass-shell states and off-mass-shell states and for
a given mass only the energy shell S? C H? of on-mass shell states is realized.

2. Two interacting space-time surfaces X7 and X3 in H with the same H-J structure intersect
along string world sheets X? defining a contact interaction for Bohr orbits. This applies also
to self-interactions. The M?® images Y;* and Y5' should meet along the 2-D surface Y2. For
the option TBI, the condition F; = E5 and p; = py are satisfied in the intersection Y14 N Y247
so that interaction region consists of 2-dimensional string world sheets and virtual momenta
would naturally belong to them. Therefore the option TBI is consistent with H picture.

Remark: A number-theoretic vision would suggest that the coefficients of f(0) belong to an
algebraic extension of rationals. If f(o) is a polynomial then the momentum components are
in the algebraic extension of this extension. This gives a discretization of also string world
sheets.
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2.6 Octonionic Dirac equation in M?®

How to generalize the induced Dirac equation in X* C H [L13] to Y* ¢ M®?

1. Partial differential equations must be replaced by algebraic equations. This is what happens
in free field theory for plane-wave solutions of the Dirac equation. M?® indeed corresponds to
8-D momentum space and Y? to 4-D momentum space.

2. The Dirac equation in H contains partial derivatives that must be replaced by momentum
components at the level of M8. In addition, there is a coupling to the spinor connection. How
to describe this coupling at the level of M?® where differential geometry is now allowed? Do
Y3 and Y* give this description in terms of the dispersion relation for the virtual 4-momenta?
For the states that are not incoming states, the Lorentz invariant dispersion relation reduces
to rotationally invariant one and is invariant with respect to the local G.

3. The ordinary M?® Dirac operator v*0}, is replaced by p*v;, where p* as 8-momentum corre-
sponds is restricted to be a point in Y* ¢ M8, which is quaternionic for option 7. If Y* is
Minkowskian, the condition p? —m? = 0, m? = r? is satisfied on-mass shell. Since only the
rotationally invariant dispersion relation is satisfied, the ordinary M* propagator does not
vanish except for incoming and outgoing states. In the Euclidean case, there is no solution
to the mass shell conditions so that these momenta can appear only as virtual momenta.

How to identify octonionic gamma matrices 7, and octonionic spinors W7 Here the crucial ob-
servation is that the octonionic units define analogies of Pauli spin matrices: by non-associativity
ordinary matrix representation is however not possible except for quaterninic subspaces since
quaternionic units allow matrix representation as ordinary Pauli spin matrices.

1. The representation of 8-momentum as octonion p*I; is reduced to a quaternion for the 7'
option. It is analogous to p*oj. By forming the tensor product of the real unit I, with
say 0, and the tensor products of imaginary units Iy , £k > 0 with o,, n anticommuting
octonionic gamma matrices are obtained! This brings in spin degrees of freedom but by
separate conservation of lepton and quark numbers the two spin components do not probably
relate to quarks and leptons. A more plausible interpretation is as a counterpart of complexity
of the ordinary gamma matrices.

2. Another octonionic miracle is that gamma matrices define an octonic spinor. This corre-
sponds to the 8-D triality stating that for SO(1,7) both the vector representation, spinor
representation, and its conjugate are 8-dimensional [A2]! Note that octonionic spinors can
have ordinary complex numbers as a coefficient field.

3. The square of M8 Dirac operator would give the algebraic condition p? — m? = 0, where
m = rq is the radius of S2. The effects of gauge couplings in H should correspond in M3
to a reduction of the Lorentz invariance of the dispersion relation to a rotation invariance
and f(o) would characterize these effects. The Dirac operator and its inverse can also be
defined at the interior points of Y4 and for virtual momenta the Dirac equation is not true.

3 How to construct the scattering amplitudes using M® — H
duality?

In this section the picture about M® — H duality developed in the previous section is applied to the
construction of scattering amplitudes, which in the TGD framework can be interpreted as WCW
wavefunctions for a set of Bohr orbits defining the state.

3.1 The overall view of particle interactions at the level of H

Consider first the general description of particle reactions in H.
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1. TGD leads to a generalization of the basic picture about hadronic reactions [L14]. Initial
and final states of any particle reaction are analogous to many hadron states obeying color
confonamen and correspond to many-fermion states associated with the spinor basis of H
and possibly of the causal diamond (CD). Fermions are massless in the 8-D sense but apart
from the covariantly constant right-handed neutrino, ther 4-D mass has C'P, mass scale.
Therefore the problem is how to obtain many-fermion states which are in 4-D sense light and
in the first approximation massless.

The proposal is that in many fermion states also the solutions of the Dirac equation in H,
or at least in CD, can have tachyonic mass squared values [L12] [L14]. This would allow
to have massless many-fermion states although the fermions have C'P; mass scale. p-Adic
thermodynamics [L11] would give them a small mass. For the CD variant of the Dirac
operator the mass squared spectrum is stringy, that is integer valued.

2. Interacting phase in X* can be seen as a generalization of the quark-gluon plasma phase of
QCD. Spinors are restrictions of H spinors to X* and the induced Dirac equation or the more
general modified Dirac equation, determined by supersymmetry from the classical variational
principle, allows explicit solutions by holomorphy = holography principle. Fermions are
massless in the 4-D sense. The failure of the precise classical determinism for the Bohr
orbits [?, [L10l [L15] plus exotic smooth structures [?]ive a non-trivial quantum dynamics
in X%. Originally, classical non-determinism, identifiable as p-adic non-determinism, was
thought to be involved only with cognition [L.19].

3. The transition from hadronic phase to quark-gluon phase and vice versa are essential in the
QCD framework and correspond to the fragmentation of quarks and gluons to hadrons and
hadronization of quarks and gluons to hadrons. These concepts are generalized in the TGD
framework. These processes reduce to the overlap for the states belonging to the analogs
of hadron phase and quark-gluon plasma phase. This applies also to the leptons which also
move in color partial waves [L14) [L11].

3.1.1 Geometrically interactions as contact interactions

Geometrically the interactions would be contact interactions.

1. Consider two spacetime surfaces in H and their interaction. The H-H principle implies
that if the H-J structures are the same, the intersection consists of 2-D string world sheets
X?2. This also applies to self-interactions. The interaction would be a contact interaction
[L14] L1l L18].

2. The intersections X2 = X{ N X3 of the spacetime surfaces should be mapped by M8 —
H duality to the intersection Y2 of the corresponding intersections Y2 = Y N Y, and also
at M8 side, 2-D string world sheets would be obtained. They would intersect the fermion
lines Y'! along Y3 as images of light-like partonic orbits in H.

3.1.2 Analogs of Feynman diagrams in H

Consider first the analogs of Feynman diagrams in H.

1. The simplest proposal is that in X* C H the vertices of Feynman diagrams correspond to
points at which the edges of fermion lines in H meet. The vertices would be located at the
3-D defects of the standard smooth structure giving rise to exotic smooth structure making
possible fermion pair creation and more generally, change of the direction of the fermion line.

This is certainly the most elegant option and would mean that there are only 2-vertices.
The extremely complex topology and combinatorics of the ordinary Feyman graphs would
trivialize. This would certainly be true for fermions but for particles identified as 3-surfaces
also vertices in which more than 2-surfaces meet are possible. At level of M8 the pair of
fermion lines would correspond to a pair of momenta.
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2. The geometric 3-D analogs of vertices and fermion vertices would involve infinite acceleration
and at the H side the failure of the minimal surface property. The 3-vertex and 4-vertex of
gauge theories would, if looked at more closely, split into two 2-vertices. The pair creation
at one point and the edge of the fermion line at another point.

Fermionic Feynman graphs in H would consist of lines connected by a set of edges: the
dynamics would reduce to 8-D Brownian motion. The pair creation would correspond to a
V-shaped line that would turn backwards in time. Higher vertices are not needed and it can
be argued that divergences can be avoided in this way.

One can also think of a closed fermion polygons as an analogy of vacuum loops. These bring
to mind twistor diagrams. However, at the H-level, the incoming particles at the vertices
would correspond to classical fields and singularities of the otherwise vanishing trace T'r(H)
of the second fundamental form.

3.2 The analogs of Feynman graphs in M®

What would be the TGD analogs of Feynman graphs in M®? It was found that one can consider
8 options but TBI and TBII look the most plausible ones and only these will be considered. The
basic questions concern the identification of the virtual momenta assignable to the fermion lines
and the M?® counterpart for their ordering to fermion lines in H.

For both TBI and TBII, one can ask whether the points for which Re(f) = 0 and Im(f) =0
could define allowed virtual momenta. One could speak of singularity at which the octonion
analyticity, which actually reduces to ordinary analyticity, breaks down. These points would be
analogs of zeros of Riemann Zeta. The surfaces would correspond to partonic 2-surfaces identifiable
as spheres S2.

3.2.1 Some confusions to be avoided

In the framework considered, one can consider the construction of scattering amplitudes by calcu-
lating them on the M?® side by using an analog of the usual Feynman diagrammatics.

1. To avoid confusion, it is worth noting that a ordinary Feynman graphs are generalized to a
spacetime surface in H describing geometrically contact interactions of 4-D Bohr orbits. In
the classical picture, a four-momentum corresponds to a geodesic line in M* C H. In M3,
there are momenta, which in H are associated with vertices but there are no vertices.

2. The octonionic fermion propagators of M?® are well-defined. For the incoming and outgoing
states, E? — p> = m? holds. f(0) can be constructed so that it contains the given squares
of the masses of the desired states as their zeros. A polynomial is sufficient if there are a
finite number of states. The masses involved would determine the roots of f(0), which in
turn define the vertices and scattering amplitudes.

3.2.2 What are the allowed virtual momenta?

What are the allowed virtual momenta occurring in the interaction and what guarantees momentum
conservation?

1. For both TBI and TBII, the conditions Re(f) = 0 and Im(f) = 0 could pose constraints on
the allowed virtual momenta. One would have a singularity at which octonion analyticity,
which actually reduces to ordinary analyticity, breaks down. These points would be analogs
for the zeros of Riemann Zeta. The surfaces would correspond to partonic 2-surfaces
identifiable as spheres S2.

2. If the interactions are contact interactions, the virtual momenta belong to Y2, the space
of virtual momenta is reduced from Y* to 2-dimensional Y2. The QFT picture suggests
that this is crucial in terms of finiteness.

3. If the points of Y2 satisfying the condition f = 0 correspond to virtual momenta, there
would be a finite number of them for a given Y3(c) and vertices would correspond to strings
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identifiable as edges of string world sheets Y2. If f is a polynomial with coefficients in an
extension of rationals, the components of the momenta would be algebraic numbers. For ¢
in an extension of rationals, the string is discretized.

4. The momentum conservation would not hold true for 2-vertices but would be forced for the
entire particle reaction by the translational invariance at the level of H involving integrations
over all translates of the H images of E* under M® — H duality.

5. An interesting question is what Y2 and Y'! could correspond to in condensed matter physics.
Same question can be asked about partonic 2-surfaces.

3.2.3 Identification of the vertex factors

What determines the vertex factors?

1. On the H side, the condition Tr(H) = 0 stating the vanishing of the second fundamental form
having interpretation as a generalization acceleration, gives a minimal surface [L7} [L1]. In 3-
D geometric vertices apart from singularities at which Tr(H) has a delta function singularity.
However, more general field equations are valid: the volume term and Kahler contributions
cancel each other and the conservation laws hold. Acceleration in a generalized sense diverges.

At the level of H, the vertex could be assigned to the divergence of fermion current [L14]
stating the fact that different M* chiralities of the fermion are not conserved in the vertex
although the total fermion number is conserved. This is what the violation of conformal
invariance and effective massivation means. The non-vanishing of T'r(H) as an analog of the
Higgs field states the same fact.

2. There are no gauge potentials available on the M?® side. The equivalent of the diverging
acceleration would be the difference of 8-momentum Ap at a V-type vertex. The difference
of B4 part momentum can also come into play and would correspond to the Higgs singularity.
The contraction Ap*~, would have the same dimension as the contraction of the gauge boson
at the vertex. Ap could be seen as a counterpart for the discontinuity of the derivative part
of the covariant derivative: the discontinuity of the gauge potential would be finite. The
product of vertex factor and propagator would be scaling invariant and dimensionless.

The vertex involves dimensionless coupling constant, which might relate to the Kéahler cou-
pling constant gx, whose value is proposed to depend on the algebraic extension for the
Taylor coefficients of f and to obey a discrete coupling constant evolution. Note that a g is
analogous to a critical temperature.

Besides this there are integrals over the edges of the string world sheets parameterized by a
hypercomplex coordinate v, whose coordinate curves have a light-like tangent vector. The
sum of x = u+ v could define a space-like coordinate coordinate as analog of the real coordi-
nate of the complex plane and dz/x could define a dimensionless scale invariant integration
measure.

3. There would be no dimensionless coupling constants in the vertex and C'P» radius would be
the only dimensional coupling constant! As a matter of fact, the situation is the same on the
H side since the gauge couplings appear as scaling factors of the induced gauge potentials.

3.2.4 How to organize the propagators and vertex factors to sequences corresponding
to fermion lines in X* C H?

In standard Feynman diagrammatics one assigns to each vertex a subset of momenta and mo-
mentum conservation holds true in each vertex. If only 2-vertices are possible, the translational
invariance applies only at the level of M8 only to the entire set of momenta?

The scattering amplitude however depends on how one orders the propagators. Can one order
them in a unique way? It should be possible to order the virtual momenta so that the scattering
amplitude reflects the structure due to the decomposition to Brownian orbits at the level of H.

The H picture involving fermion lines indeed suggests that this could be the case.
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. There is a time ordering in H with respect to the proper time a for the vertices in X* C

CD C H. This induces time ordering for the fermion-antifermion pairs associated with the
vertices in X* and one can assign to each vertex a pair of propagators with a vertex factor
between them. The situation in which the value of a is same for two vertices is problematic.
Similar time ordering with respect to the linear Minkowski time induced by M®— H duality
could solve this problem partially for a given fermion line with edges.

M?® — H duality transforms the time ordering in H to energy defined by the real part
of octonion to at the level of M8. The choice of the octonion structure meaning the iden-
tification of the octonionic real axis as a time axis in M® reduces Lorentz group SO(1,7)
to G5 so that there is no problem with momenta for which the difference is space-like. If
one uses ordering with respect to the value of a, there can be a momenta whose difference is
space-like.

The time ordering is not enough. At the level H there are several fermion lines. The
ordering of the propagators to sequences at the level of M® must be induced by the fermion
lines in X* C H. Each such sequence of fermion propagators has at its ends a contraction by
octonionic spinors so that it is mappable to ordinary complex numbers commuting with the
amplitudes associated with other fermion lines. Only linear structures connecting on mass
shell states and giving rise to a complex number would be obtained in this way.

What happens when one allows strings as edges of 2-D string world sheets as seats of the
virtual momenta. As proposed, the set of possible virtual momenta would be organized to a
sequence of strings appearing as edges of the string world sheets. If so the above organization
would involve only integrals over the time-ordered strings. At the H level strings world
sheets are very simple since by hypercomplex analyticity, the embedding to H depends on
the second hypercomplex coordinate only. The same simplicity should be inherited at the
M? side and mildly favors option IIB. Note that the hypercomplex coordinates of M* have
light-like tangent vectors.

3.2.5 Scattering as conformal dissipation

The quantal view fermionic of the time evolution as analog of Brownian motion can be made more
detailed and this makes it clear that something very different from the quantum field theoretic
description of scattering is in question. The interpretation as analog of dissipative time evolution
is suggestive. The dissipation could be related to the scaling generator h of conformal algebra,
which defines an additive conformal quantum number and is proportional to the mass squared
operator m?2. Dissipation indeed gives rise to the arrow of time making sense both at the level of
both space-time and momentum space.

1. At the single particle level, energy dissipation corresponds to a gradual reduction of energy

and approach to thermal equilibrium. Analogously, the dissipation for the conformal weight
identified as mass squared dissipation would lead from high mass states as unstable on-mass-
shell states via unstable virtual states to low mass on-mass-shell states stable in the time
scale considered. Asymptotically the evolution would preserve mass squared in M?® and the
corresponding value of a in M* C H. This conformal analog of elastic scattering would
preserve mass squared and the conformal dissipation would transform to energy dissipation
for stable particles.

M8 — H duality is an inversion M* C H — M* C M?® so that the time evolution as the
increase of the values of the light-cone proper time a for CD would correspond to decrease of
the mass scales. The largest values of a in time evolution would correspond to the smallest
values of mass m? in dissipative evolution for A and at the last steps the masses for stable
particles would not change anymore.

p-Adic cooling proposed to be behind the production of solar wind and solar energy would
be a basic example of this kind of dissipation. Mgg hadron physics would be realized at the
magnetic monopole flux tubes at the surface layers of the Sun [L§]. p-Adic cooling would be
a cascade leading from Mgy hadron physics to the ordinary Mjg; hadron physics via virtual
hadron physics labelled by p-adic primes p ~ 2* near power 2 with k in the range [89, 107].
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4. This means a unification of quantum theory and thermodynamics. Zero energy ontology,

3.3

replacing 3-surfaces with their slightly non-deterministic time evolutions, implies that ther-
modynamic description and kinetic equations need not be added as additional elements to
the quantum description provided by the scattering amplitudes.

The following detail is worth noticing. In fermion pair creation, the two-valuedness of the
map H — M?® means that the members of the fermion pair have identical masses. Also the
Brownian scattering conserves the value of mass squared but not energy.

Summary about the construction of the scattering amplitude in /3

The proposed picture gives a rather concrete view of the construction of the scattering amplitudes.

1.

The simplest option suggested by the notion of smooth exotic structure is that the graph con-
tains only 2-vertices: Brownian motion in M?® including the creation of fermion-antifermion
pairs as a special case.

Vertices could correspond to the points of H for which the map H — M? is 2-valued: a point
in H is mapped to as pair of momenta associated with the meeting fermion lines and there
are no vertices in M?®.

. The vertex factors would correspond to momentum difference. When the edge becomes trivial

the vertex factor vanishes.

The organization of propagators and vertices and their time ordering would be inherited from
the fermion lines in H.

There would be an integral over the positions of various propagator momenta belonging to the
1-D edges of the 2-D string world sheets Y2 = Y*N YL, If the condition f = 0 expressing the
failure of octonion analyticity, selects the vertices, the lines parameterized by the parameter
¢ in the condition Re(f) — ¢ = 0 would give rise to 1-D lines for vertices for the Option
ITA. The parameter ¢ would correspond to a dynamically passive coordinate not appearing
in the embedding X* C H. Does this mean that one only the Option IIB with Im(f) = 0
is acceptable? The translational invariance at H side would take care of the conservation

of total momentum. There would be no local conservation at vertices (which are absent in
M?).

Bosonic propagators should emerge at the QFT limit. On the H side, the counterparts of
the bosonic propagators would be obtained as correlations of classical induced boson fields
by functionally integrating over WCW. On the M?® side, the result should be similar if this
guess is correct.

The octonionic fermion propagators of M8 are well-defined. For the incoming and outgoing
states, E? — p?> = m? holds and the mass spectrum should correspond to that for H spinors.
f(o0) can be constructed so that it contains the given squares of the masses of the desired
states as their zeros. A polynomial is sufficient if there are a finite number of states.
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