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Abstract

The idea of M8 − H duality has progressed through frustratingly many twists and turns
and I have discussed several variants of M8 − H duality. There are 2 options, call them T
and N: either the local tangent space T or normal space N of Y4 ⊂ M8 is quaternionic and
contains a complex subspace C. This makes it possible to map Y4 ⊂ M8 to the space-time
surface X4 ⊂ H = M4 ×CP2. Which of them or possibly both? Any integrable distribution of
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quaternionic normal spaces N is allowed whereas for tangent spaces this is not the case. This
led to a too hasty rejection of the T option.

The second problem relates to the lack of the concrete realization of the M8 − H duality.
Is the M8−H duality between 4-D surfaces in M8 and space-time surfaces in H or is it enough
that only the 3-D holographic data in H are fixed by M8 −H duality.

A modification of the original form of the M8 − H duality formulated in terms of a real
octonion analytic functions f(o) : O−O leads to a possible solution of these problems. All the
conditions f(o) = 0 , f(o) = 1 and Imf)(o) = 0, and Ref)(o) = 0 are invariant under local G2

and the local G2 acts as a dynamical spectrum generating symmetry group since f ◦g2 = g2 ◦f
holds true. The task reduces to that of finding 4-surfaces with constant quaternionic normal
space N or tangent space T. Y4 = E4 ⊂ M8 and Y4 = M4 ⊂ M8 provide the simplest examples
of them. Local G2 transformations give more general surfaces Y4.

The roots of Im(f)(o) = 0 resp. Re(f)(o) = 0 are unions ∪o0S6(o0) of 6-spheres, where o0 is
octonionic real coordinate o0. The 3-surface Y3 = S6(o0)∩E4(o0) = S3(o0) defines holographic
data for Y4 ⊂ E4(o0) as its boundary. The union Y3 = ∪o0S6(o0) ∩M4(o0) = ∪o0S2(o0) in
turm defines holographic data for Y4 ⊂ M4(o0) as its boundary. Therefore both the N - and
T option can be realized.

One can choose the function f(o) to be an analytic function of a hypercomplex coordinate
of M4 and 3 complex coordinates of M8. The natural conjecture is that the image X4 of Y4

has the same property and satisfies holography = holomorphy principle.
The simultaneous roots of Im(f)(o) = 0 resp. Re(f)(o) = 0 are 6-spheres with fixed value

of o0 and the radius r7 of S6(o0). Two 4-surfaces Y4
1 and Y4

2, both of type N or T, and
satisfying Im(f)(o) = 0 resp. Re(f)(o) = 0 along S3(o0) or S2(o0). This makes it possible to
build Feynman diagram-like structures with lines which have Minkowskian or perhaps even
Euclidean number theoretic metric signatures. At the vertices smoothness is violated and this
supports the view that they give rise to exotic smooth structures as defects of the standard
smooth structure.

1 Introduction

The idea of M8 − H duality (H = M4 × CP2) has progressed through frustratingly many several
twists and turns.

1.1 The evolution of the ideas

Consider first the development of the key ideas and the related problems.

1. The first key idea [L1, L2, L3] was that one can interpret octonions O as Minkowski space
M8 [A4] by using the number theoretic inner product defined by the real part Re(o1o2) of the
octonion product. Later I gave up this assumption and considered complexified octonions,
which do not form a number field, but finally found that the original option is the only
sensible option.

2. The second key idea was that if either the tangent spaces T or normal spaces N of Y4 ⊂M8

are quaternionic and therefore associative, and also contain a commutative subspace C, they
can be parameterized by points of CP2 and mapped to H = M4 × CP2. This would be the
first half or M8 −H duality.

3. How to map the M4 ⊂ M8 projection to M4 × CP2? This question did not have an obvious
answer. The simplest map is direct identification whereas the inversion with respect to the
cm or tip of causal diamond cd ⊂M4 ⊂ H is strongly suggested by Uncertainty Principle and
the interpretation of M8 coordinates as components of 8-momentum [L15]. Note that one
can considerably generalize the simplest view by replacing the fixed commutative subspace
of quaternion space M4 with an integrable distribution of them in M8.

4. I considered first the T option in which T was assumed to be associative. The cold shower was
that there might be very few integrable distributions of associative tangent spaces [L6, L7].
As a matter of fact, M4 and E4 were the only examples of associative 4-surfaces that I knew
of. On the other hand, any distribution of quaternionic normal spaces is integrable and
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defines an associative surface Y4. This led to a too hasty conclusion that only the N option
might work.

5. If M8 is not complexified, the surfaces Y4 in M8 are necessarily Euclidean with respect to
the number theoretic metric [L15]. This is in sharp conflict with the original intuitive idea
that Y4 has a number theoretic Minkowski signature. Is it really the normal space N , which
must have a Minkowskian signature? Is also T possible.

6. The minimal option in which M8−H duality determines only the 3-D holographic data as 3-
surfaces Y3 ⊂M8 mapped by M8−H duality to H. The images of Y3 could define holographic
data consistent with the holography = holomorphy (H-H) vision [L14, L19, L15, L24, L18].
Both M8 and H sides of the duality would be necessary.

1.2 Interpretational problems

There are also interpretational problems.

1. The proposed physical interpretation for the 4-surface Y4 ⊂M8 was as the analog of momen-
tum space for a particle identified as a 3-D surface. In this interpretation the Y4 would be
an analog of time evolution with time replaced with energy. A more concrete interpretation
of the 3-D holographic data would be as a dispersion relation and Y4 could also represent
off-mass shell states. Momentum space description indeed relies on dispersion relations and
space-time description to the solutions of classical field equations.

2. For N option Y4 must be Euclidean in the number theoretic metric. Therefore the momenta
defined in terms of the tangent space metric are space-like. What does this mean physically?
Momenta are also co-quaternionic: does this exclude the Euclidean option?

Could the problem be solved if the momentum assignable to a given point of Y4 is identified
as a point of its quaternionic normal space as proposed in [L15].

Or should one accept both T and N options and interpret the Euclidean Y4 as as a counterpart
of a virtual particle with space-like momenta and of CP2 type extremals at the level of H. At
vertices belonging to Y4

1 ∩ Y4
2 me, quaternionic N(Y4

1) would contain points of quaternionic
T(Y4

2) so that the earlier proposal would not be completely wrong.

3. A further criticism against the M8−H duality is that its explicit realization has been missing.
For N option, the distributions of the quaternionic normal spaces N are always integrable
but their explicit identification has been the problem. For T option even the existence of
integrable distributions of T has remained open.

1.3 A possible solution of the problems of the earlier view

Consider now how the view to be described could solve the listed problems.

1. There are two options, which could be called T and N: either the local tangent space T or
normal space N is quaternionic. Which one is correct or are both correct?

Any integrable distribution of quaternionic normal spaces is allowed whereas for tangent
spaces this is not the case. This does not mean that non-trivial solutions would not exist.
Perhaps the rejection of the T option was too hasty.

Furthermore, for X4 ⊂ H both Minkowskian and Euclidean signatures of the induced metric
are possible: could T and N option be their M8 counterparts?

2. Holography= holomorphy vision (H-H) allows an explicit construction of the space-time
surfaces X4 ⊂ H. For Y4 ⊂ mathbbM8 the situation has been different. The very nature of
duality concept suggests that the explicit construction must be possible also at the level of
H.

3. Is M8 − H duality between 4-D surfaces Y4 ⊂ M8 and space-time surfaces X4 ⊂ H or only
between the 3-D holographic data Y3 ⊂ H and X3 ⊂ mathbbM8 −H?
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It turns out that a modification of the original form of the M8−H duality, formulated in terms
of a real octonion analytic functions f(o) : O→ O, leads to a possible solution of these problems.

1. All the conditions f(o) = 0, f(o) = 1 and Imf)(o) = 0, and Ref)(o) = 0 are invariant under
local G2 acting as as a dynamical spectrum generating symmetry group since f ◦ g2 = g2 ◦ f
holds true. The task reduces to that of finding the 4-surfaces with a constant quaternionic
T or N.

2. In particular, M4 ⊂ M8 has been hitherto the only known Y4 of type T and the action of
local G2 generates a huge number of Y4 of type T. Both T and N option are possible after
all! G2 symmetry applies also to the N option for which E4 is the simplest representative!

3. The roots of Im(f)(o) = 0 resp. Re(f)(o) = 0 are unions ∪o0S6(o0) of 6-spheres, where o0
is octonionic real coordinate o0. The 3-D union Y4 = ∪o0S6(o0) ∩M4 = S2(o0) ⊂ M4 has
quaternionic tangent space T = H = M4. The interpretation as holographic data and the M8

counterpart of a partonic orbit is suggestive.

4. The Euclidean 3-surface Y3 = S6(o0) ∩ E4(o0) = S3(o0) could serve as a holographic data
for Y4 with quaternionic normal spaces and with an Euclidean number theoretic signature of
the metric. Obviously, the option Y4 = ∪o0Y3(o0) fails to satisfy this condition. The inter-
pretation would be as the M8 counterpart of CP2 type extremal with a Euclidean signature
of the induced metric. The identification as the M8 counterpart of a virtual particle with
space-like momentum is suggestive.

If T resp. N contains a commutative hyper-complex subspace, it corresponds to a point of
CP2. Hence Y4 can be mapped to X4 ⊂ H = M4 × CP2 as M8 −H duality requires.

5. What could be the counterpart of H-H vision in M8? One can choose the function f(o) to be
an analytic function of a hypercomplex coordinate u or v of M4 and 3 complex coordinates
of M8. The natural conjecture is that the image X4 of Y4 has the same property and satisfies
H-H.

This view solves the interpretational problems.

1. The proposed physical interpretation for the 4-surface Y4 ⊂M8 was as the analog of momen-
tum space for a particle identified as a 3-D surface. The interpretation the Y4 as the analog
of time evolution with time replaced with energy looks range. A more concrete interpretation
of the 3-D holographic would be as a dispersion relation emerges and Y4 could also represent
off-mass shell states. Momentum space description indeed relies on dispersion relations and
space-time description to the solutions of classical field equations.

Number theoretic discretization as a selection of points as elements of the extensions of ra-
tionals defining the coefficient field for f(o) and the replacement of fermions to the ”active”
points of discretization would realize many fermion states at the level of H. Galois confine-
ment [L16, L17, L8] stating that the total momenta are rational numbers would provide a
universal mechanism for the formation of bound states.

2. For N option Y4 must be Euclidean in the number theoretic metric. Therefore the momenta
defined in terms of the tangent space metric are space-like. What does this mean physically?

Could the problem be solved if the momentum assignable to a given point of Y4 is identified
as a point of its quaternionic normal space as proposed in [L15].

Or should one accept both T and N options and interpret the Euclidean Y4 as as a counterpart
of a virtual particle with space-like momenta and of CP2 type extremals at the level of H.

At 2-D vertices belonging to the intersection Y4
1 ∩ Y4

2, quaternionic N(Y4
1) would contain

points of quaternionic T(Y4
2) so that the first proposal would not be completely wrong.

3. Could the TGD analogs of Feynman diagrams be built by gluing together T and N type
surfaces Y4 along 3-surfaces Y3 defining analogs of vertices. In the role of consciousness
theorist, I have called them ”very special moments in the life of self” [L5] at which the non-
determinism of the classical field equations in H-H vision is localized. At these 3-surfaces the
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smoothness of Y4 fails and could give a connection to the notion of exotic smooth manifold
[A5, A6, A3], conjectured to make possible particle vertices and fermion pair creation in
TGD despite the fact that fermions in H are free [L17, L9, L22].

In the following a formulation of M8 − H duality possibly solving these problems in terms of
local G2 invariance is discussed in detail.

2 Understanding associativity in terms of local G2 invari-
ance

The motivation for reconsidering the M8 −H duality came from the fact that the H-H hypothesis
[L14, L19, L15, L24, L18] works extremely nicely for the space-time surfaces X4 ⊂ H. The roots of
two generalized analytic functions f1, f2 of hypercomplex coordinate and 3 complex coordinates of
H give as their roots space-time surfaces as minimal surfaces and the ansatz works for any action,
which is general coordinate invariant and expressible in terms of the induced geometry. One would
expect that H-H hypothesis appears also at the level of M8: How?

One can also argue that there might be problems with the 3-D holographic data. How to fix
them in such a way that they are consistent with functions f1 and f2 as analytic functions of H
coordinates involving hypercomplex coordinate and 3 complex coordinates?

2.1 About the basic notions of TGD

It is instructive to start with an explanation of the physical content of the basic notions related to
M8 −H duality.

2.1.1 What is the interpretation of 4-surfaces of M8 interpreted as a momentum
space?

The basic objection against the momentum space interpretation of M8 can be formulated as a
simple question. What does time - or rather, energy evolution mean? At Y4, the time evolution
would mean change of momenta as points of S3 as the radius of S3 changes. Momentum has
momentum. Could this be seen as an ”acceleration” of an off-mass-shell 8-momentum with energy
appearing in the role of time?

A more natural interpretation than evolution is in terms of dispersion relation between mo-
mentum and energy. Indeed, the conditions Re(f) = 0 or Im(f) = 0 give rise to 3-D surfaces
defining dispersion relation. The 4-surface Y4 in turn could be interpreted as a kind of off-mass
shell dispersion relation.

What could be the identification of free on-mass shell states? M8 masslessness means M4

massivation and off mass shell property! This gives a set of 3-surfaces with fixed M8 mass squared
and also M4 mass squared. For f = o2 −m2 the condition Re(f) = 0 reduces to a mass shell for
the T option.

In this framework M8 − H duality relates two views of physics: the description in terms of
classical fields and geometry and the description of quantum physics in terms of energy, momentum
and dispersion relations. Dispersion relations are algebraic equations so that this description rather
naturally extends to a number theoretic vision of physics [L4].

2.1.2 Moduli space for the octonion structures

The identification of the 8-D momentum space M8 as octonions raises non-trivial conceptual chal-
lenges.

1. Causal diamond in H is cd×CP2. Consider first the moduli space for cd:s in M4 ⊂ H [L10].
The interpretation of cd as a particle-like entity in H, as a kind of perceptive field is natural.
Poincare group and scalings generate new cd:s. ”Mass shells” are mapped to ”mass shells”
also in scalings and conformal transformations. Whether conformal invariance can be allowed
or needed is not obvious.
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2. In M8, cd8 is the natural candidate for the counterpart of CD ⊂ H. The problem with M8

regarded as octonions is that it selects a preferred time direction. This does not conform
with Lorentz invariance. If linearity and homogeneity are required, only SO(1, 7) makes
sense. Also scalings and even inversions with respect to origin could be allowed.

At the M8 side the position of CD8 and its translations do not make physical sense.

3. M4 inversion mk → pk = heffm
k/mlml favoured by Uncertainty Principle in the M8 − H

duality. The origin of M4 coordinates could correspond to the cm or tip of cd ⊂ M4, which
can be seen as a sub-CD of a larger CD. The size of CD8 and cd would correlate. In this
case, the map H→M8 would be a special conformal transformation as a scaling with respect
to an arbitrary point of M4.

2.1.3 Is M8 −H duality bijective map or something more general?

The original intuitive view was that M8 − H duality is 1-valued map M8 → H. This works for
space-time surfaces X4 with Minkowskian signature, that is for option T. It fails for CP2 type
extremals with Euclidean signature of the induced metric and naturally corresponding to option
N. The proposal was that these surfaces can be seen as singularities at which the quaternionic
normal space N is not-unique.

A more elegant view is that for CP2 extremals the map M8−H duality defines a 1-valued map
H→M8 for option N and a-valued map M8 → H for option T.

2.2 Could the roots of real analytic octonion function give rise to M8−H
duality after all?

The issues mentioned above led back to the original idea that the associative 4-surfaces Y4 ⊂
M8 might be definable in terms of real analytic functions f(o) of octonions as an octonionic
generalization of the notion of holomorphy. The conditions f(o) = 0, f(o) = 1, Re(f)(o) = 0 and
Im(f)(o) = 0 are are invariant under local octonionic automorphism group G2. The argument goes
as follows.

1. Since G2 acts as automorphisms, one has f(g2(o)) = g2(f(o)), where g2 is any local G2

automorphism. If f(o) = x x ∈ {0, 1} is true then also f(g2(o)) = x is true for any g2 ⊂ G2.
This is true also for the roots of Re(f(o)) = 0 resp. Im(f(o)) = 0, where ”Re” resp. ”Im”
refers to the octonionic real resp. imaginary part. Since G2 maps the decomposition of
octonion to quaternion and to a part orthogonal to it, also the conditions RE(f(o) = 0 and
IM(f) = 0, where RE(f) and IM(f) refer to the quaternionic co-quaternionic parts of the
octonion, preserve their character under local G2.

One has a huge dynamical spectrum generating symmetry analogous to the holomorphic
symmetries of H-H vision. It maps the quaternionic normal spaces to quaternionic normal
spaces and complex subspaces to complex subpaces.

2. Consider first the condition f(o) = x, x ∈ {0, 1}. The Taylor (or even Laurent -) expansion
in powers of O gives only two terms. The first term is proportional to the octonionic real
unit 1 of O and the second term to the octonionic imaginary part of Im(o) = o7 of O.

For o2 one obtains o2 = o20 − o7 · o7 + 2o0o7. The coefficients of these parts depend on the
real part o0 of O and the length r7 of the imaginary Im(o). The higher powers of o involve
products of two octonions of form o1 = α1 + β1o7 and o2 = α2 + β207 and the product is of
form o1o2 = (α1α2−β1β2)+(α1β2+α3β1)o7. By induction, one finds that the coefficients for
any power depend only on o0 and the radius r7 of 6-sphere only. In particular, the function
f(o) is expressible has the general form

f(o) = f1(o0, r7) + f2(o0, r7) . (2.1)

The detailed forms of these functions have been discussed in the earlier articles [L6, L7, L13]
and will be described also below.
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3. The condition Im(f(o)) = 0 resp. Re(f(o)) = 0 fixes the relationship between o0 and r7
and gives a ”time evolution” of the radius r7 of a 6-sphere as function of the real coordinate
o0 having identification as energy. The condition RE(f(o)) = 0 requiring the vanishing of
the quaternionic part implies the vanishing of both RE(f) and IM(f) and reduces to the
condition f(o) = 0. The condition IM(f(o)) = 0 implies the vanishing of Im(f(o)).

2.3 Various G2 invariant options

Consider now various G2 invariant options.

2.3.1 The conditions Re(f) = 0, Im(f) = 0, and f(o) = 0

The conditions Re(f) = 0 and Im(f) = 0 has the roots o0 = h1(r7) and o0 = h2(r7). These roots
define a union of 6-spheres S6 with radius r7 = r7(o0).

It deserves to be noticed that S6 can be represented as a coset space G2/SU(3). S6 has an
almost complex structure induced by the octonionic cross product, which makes it nearly Kähler
manifold.

Can one assign an associative 4-surface Y4 ⊂M8 of type N or T to the set of roots of Re(f) = 0
or Im(f) = 0 or to a given S6?

Since E4(o0) and M3(o0) are the simplest examples of quaternionic 4-surfaces Y4 of type N
resp. T, it is natural to look what the intersections of S6(o0) with these spaces are.

1. Since both surfaces in the intersection E4(o0)∩S6(o0) are contained in the hyper-plane E7(o0),
the dimension of E4(o0)∩S6(o0) is from the basic rule 6 + 6−7 = 3. Clearly, the intersection
is identifiable as 3-sphere S3(o0) and holography is needed to construct Y4 of type N. E4(o0)
solves the holography.

2. The set ∪o0S6(o0) is contained in the hyper-plane E7(o0) and the dimension of M4(o0) ∩
∪o0S6(o0) = ∪o0S2(o0) is from the basic rule 6 + 6− 7 = 3. The intersection, identifiable as
a 3-D orbit of 2-sphere S2, defines the holographic data giving Y4 of type T. M4 solves the
holography.

3. In both cases, G2 dynamical symmetry allows to construct more general solutions.

The conditions f(o) = 0 give the roots of f1 and f2 as o0 = h1(r7) and o0 = h2(r7). These
roots define a discrete set of 6-spheres S6 with o0 constant and r7 = constant as ”very special
moment in the life of self” [L5]. At these surfaces, the solutions of Im(f) = 0 and Re(f) = 0 can
meet and the interpretation as the analog of a vertex of Feynman graph is suggestive. If both N
and T type solutions are allowed, the maximal number of meeting 4-surfaces is 4, which bring in
mind Yang-Mills theory.

It should be noted that the condition IM(f(o)) = 0 is equivalent with the condition Im(f(o)) =
0. The condition RE(f(o)) = 0 gives a discrete set of 3-spheres as roots is equivalent with the
condition f(o) = 0.

2.3.2 Explicit treatment of the conditions Re(f(o)) = 0 and Im(f(o)) = 0

It is straightforward to find an explicit general solution for the condition f(o) = 0 in the general
case. The expression o2 = o20 − r27 + 2r7oe where e satisfying e2 = −1 is the octonionic imaginary
unit defined by the imaginary part of o = 00 + r7e allows to write

o2n = (o20 − r27 + 2r7o0e)
n = an + bne ,

o2n+1 = (an + bne(o0 + r7e) = ano0 − bnr7 + (anr7 + bno0)e .
(2.2)

The coefficients an = an(o20, r
2
n) and bn = bn(o20, r

2
n) can be deduced from binomial coefficients. If

the condition o20 − r2n giving o0 = εrn is satisfied, this gives

o2n = (2r27)nεnen ,
o2n+1 = (2r27)nr7(ε+ e)en .

(2.3)
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One can decompose f as f = feven + foddo, where one has feven =
∑

n f2no
2n and fodd =∑

n f2n+1o
2n. One has

f = f1o0 + f2r7e ,
f1 = feven + foddo0 =

∑
n f2n(a2n + b2ne) +

∑
n f2n+1(a2n + b2ne)o0

f2 = foddr7 =
∑

n f2n+1(a2n + b2ne)r7 .
(2.4)

This gives

f = Re(f) + Im(f)e ,
Re(f) =

∑
n f2na2n + f2n+1a2no0 −

∑
n f2n+1b2nr7 ,

Im(f) =
∑

n f2nb2n + f2n+1b2no0 −
∑

n f2n+1a2nr7 .
(2.5)

The octonion analytic function reduces by its symmetries to a sum of real part and imaginary
part such that the imaginary part is proportional to the imaginary part of o. Both real and
imaginary parts depend only on 00 and r7 which are analogous to energy and magnitude of 8-
momentum.

2.3.3 Illustrative examples

The following illustrative examples help to understand the physical picture.

1. The case f(o) = o2 with Re(f) = 0 serves as an illustrative example. The condition o20 = r27
gives an expanding 6-sphere with radius r7 = ±o0. The restriction of E4 coordinates to
(e4, e5, e6, e7) = 0 for T option gives r3 = ±o0. One obtains union of sub-mass-shells E =
o0 = p = r3 of a massless particle with a fixed length of 3-momentum p.

For N option, this represents 3-D mass shells of a massless particle analogous to the mass
shell of a massive particle. Now however momentum can have an additional component
orthogonal M4 so that a virtual particle is in question in this case.

2. For f(o) = o2 − m2 Ref) = 0 as a restriction guaranteeing tangent space quaternionicity
gives o2o− r27 = m2 giving 3-D positive and negative energy mass shells of a massive particle.
Also now there is an analogy with partonic orbits for T option Note that the images of these
mass shells in H under M8 −H duality are mass shells.

3. For more general functions f(o), the dispersion relation given by Re(f) = 0 the dispersion
relation given by r2 = h(o0) is rotationally invariant but is more general that that for a
massless particle.

2.4 How to realize Lorentz invariance for on mass shell states?

If the tangent spaces of Y4 are quaternionic, the condition Re(f) = 0 or Im(f) = 0 has as a
solution the union of ∪o0S6(o0) of 6-spheres with radius r7(o0). The intersection Y 3 = E3(o0) ∩
∪o0S6(o0) ∪o0 S2(o0) defines the holographic data. For the 2-spheres S2(o0), the 3-momentum
squared is constant but depends on the energy o0 via a dispersion relation that is in general not
Lorentz invariant. M8 −H duality suggests how to obtain Lorentz invariant mass shell conditions
E2 − p2 = m2.

1. The modes of the Dirac equation in H [L21, L20] are massless in the 8-D sense. This is a
natural additional condition also in M8 and could define on mass shell states consistent with
Lorentz invariance and distinguish them from the other points of Y4 having an interpretation
as off-mass-shell momenta allowed by Y4 as a representation of a dispersion relation.

2. 8-D masslessness corresponds in M8 to the condition o20− r27 = 0, where r27 is the counterpart
of the CP2 mass squared as the eigenvalue of the CP2 spinor Laplacian. The additional
condition o20 − r27 = 0 picks up a discrete set of values (o0(r7), r7). The 4-D mass squared
would be m2

4 = r27 and a discrete mass spectrum is predicted for a given f(o) and a given
selection a Re(f) = 0 or Im(f) = 0.

3. An interesting question is whether the eigenvalue spectrum of CP2 spinor Laplacian is realized
at the level of M8 as on mass-shell states.
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4. A natural guess would be that the eigenvalue spectrum of CP2 spinor Laplacian is realized
at the level of M8 as on-mass-shell states.

The TGD based proposal [L21, L20] for color confinement producing light states involves
tachyonic states. These states would naturally correspond to 4-surfaces Y 4 with Euclidean
signature and bound states would be formed by gluing together the tachyonic and non-
tachyonics states to Feynman graph-like structures. Note that the on-mass-shell 2-spheres
are in general different from those satisfying the conditions (Re(f), Im(f)) = (0, 0) proposed
to define vertices for the generalized Feynman graphs.

Note that the on mass shell 2-spheres are in general different from those satisfying the condi-
tions (Re(f), Im(f)) = (0, 0) proposed to define vertices for the generalized Feynman graphs.

3 About the realization of M8 −H duality

The realization of M8 − H duality as map Y4 ⊂ M8 → H = M4 × CP2 involves some non-trivial
aspects.

3.1 M8 −H duality in CP2 coordinates

The M8 −H duality in CP2 coordinates would look like follows.

1. M8 − H duality requires that M4 contains M2 ⊂ M4 defining a commutative sub-space.
Since U(2) ⊂ SU(3) respects this choice, the normal spaces satisfying this condition are
parameterized by CP2 = SU(3)/U(2) and M8 − H duality allows to assign to a given point
of Y4 a point of CP2.

2. An integrable distribution of these subspaces is possible. The local elements of G2 map these
distributions to each other. The subgroup leaving the distribution invariant corresponds to
local SU(3), which at the H side has interpretation as color group whereas U(2) leaving the
normal space invariant corresponds to the electroweak gauge group.

The integrable distribution of these choices together with generalized complex coordinates
for M8 defines the analog of Hamilton-Jacobi structure (H-J) [L18] in M4 ⊂ M8 mapped to
its counterpart in H and playing a key role in H-H vision [L15].

3. Rather remarkably, the local G2/U(2) can therefore be identified as the moduli space of H-J
structures [L18]. The division by U(2) is because the quaternionic normal space with complex
subspace is invariant under U(2) ⊂ G2. Note that G2/U(2) is 10-D.

4. The integrable division of the quaternionic normal space M4 to complex sub-space M2 and
its complement E2 allows also to identify a number theoretic analog of Kähler structure
in terms of the quaternionic cross product for E2 projections of the vectors of M4 in the
simplest situation when M4 is constant. This Kähler structure is trivial in the longitudinal
hypercomplex degrees of freedom assigned M2. This conforms with the physical intuition
provided by gauge theories, string models and TGD: the longitudinal polarizations have zero
Hilbert space norm. This decomposition induces a similar decomposition of M4 ⊂ H and of
the tangent space of the space-time surface X4 ∈ H essential for the H-J structure.

3.2 M8 −H duality for M4 coordinates

What about M8 −H duality for M4 coordinates?

1. Could the M4 ⊂ H point correspond to the projection of the Y4 = E4×S6 point to M4 ⊂M8

as such or is an inversion suggested by Uncertainty Principle and the interpretation of M8

as 8-D momentum space? This question remains open.

2. What can one say about the elements g2 of the local G2? The action of G2 on octonions
allows a matrix representation but the matrix elements are octonions [A1] so that the rules of
multiplication are not standard and the product is non-associative. Associativity is obtained
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if one considers only elements of G2 belonging to a local SU(3) subgroup having physical
interpretation as a color group.

3. Holomorphy= holography vision [L14, L19, L23] inspires the question whether g2(o) can be
regarded as a real part of an analytic function of the generalized complex coordinates of M8

(hypercomplex coordinate and 3 complex coordinates) for the Hamilton-Jacobi structure in
question. Could this guarantee that the image of Y4 in H is consistent with the holomorphy
in H?

4. The real analytic functions f(o) and g(o) can be multiplied and summed so that the analog
of a function field is in question. 4-surface in M8 become analogs of numbers as they do
also in H [L23]. Also iterations of f(o) are possible. The roots Im(g) = 0 of g = f ◦ f... ◦ f
contain the roots of f plus roots of higher iterates. A complexity hierarchy analogous to
that appearing for function pairs (f1, f2) at H sides emerges and the interpretation in terms
of cognitive hierarchies is suggestive. An interesting question is whether there is a simple
relationship between functions f(o) and function pairs (f1, f2) defined in H.

3.3 Is the local G2 invariance a symmetry of action and is the action
exponential a number theoretic invariant?

The ramified primes of a polynomial f(o) = P (o) having rational or algebraic coefficients are
expected to play an important role in the number theoretic view of TGD.

1. If f assigned to M8 − H duality is a polynomial P with rational coefficients, the ramified
primes would be assigned with the discriminant of P . The conjecture has been that the
classical action defining the space-time surface is expressible as a power of discriminant of
some polynomial P defined by the differences of ramified primes [L11]. This would be a
central aspect of the 4-D version of Langlands duality [L14, L19]. The notion of discriminant
makes sense also for real analytic functions f .

2. This would imply a huge degeneracy since all space-time surfaces related by local G2 trans-
formations as analogs of conformal transformations would have the same classical action
defining the Kähler metric of WCW and give excellent hopes that also the functional integral
over the 4-D ”Bohr orbits” predicts by the holography = holomorphy principle reduces to a
discrete sum (there is a slight failure of non-determinism as also for 2-D minimal surfaces)
is calculable [L11]. Local G2 would define zero modes for the WCW metric and symplectic
degrees of freedom would correspond to non-zero modes as also conjectured [L12].

3. Besides space-time surfaces X4 representable as graphs of maps M4 → CP2 also surfaces for
which M4 projection has dimension smaller than 4, are possible. These could correspond to
the singularities of the map G2 such that the quaternionic normal space M4 labelled by a
CP2 point depends on the direction in which one approaches a lower-dimensional surface X
of M8. This would give rise to CP2 type extremals with 1-D X and cosmic strings with 2-D
X.

The above mentioned conjecture that the classical action equals some kind of discriminant and
is thus a number theoretic invariant, can be sharpened in the recent picture.

1. The condition Im(f) = 0 (Re(f) = 0) has a discrete set of roots Y4(n) ⊂ M8 as time
evolutions r7 = hn(o0) of S6, in turn giving rise to 4-surfaces Y4(n) as time evolutions
S3(o0) = E4(o0) ∩ S6(o0) with respect to time coordinate o0 mapped. Different roots Y4(i)
as 4-surfaces can be interpreted as free particles, mapped to space-time surfaces X4(i) in H
by M8 −H duality.

2. For each orbit Y4(i) of S3, the condition f(o) = 0 defines a discrete set of ”very special
moments of time” o0(n, i) as its roots. The roots can be also complex but for real polyno-
mials appear as complex conjugate pairs. One can define discriminant D as the product of
differences of squares of roots in the usual manner [L14, L19]. This is true also when f is
analytic function rather than only polynomial.
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One can assign a discriminant D(i) to each Y4(i). The product
∏

i∈U D(i) is well defined for
the system of all Y4(i) or a subset U of them. These discriminants would define exponents
of ”free” actions for each Y4(i).

Interactions are not taken into account yet.

1. At the level of H interactions reduce to a generalization of contact interactions for the Bohr
orbits X4. In the generic case the intersection X4 ∩ Y4 consists of a discrete set of points. If
X4 and Y4 have the same H-J structure they have a common hypercomplex coordinate and
the intersection consists of 2-D string world sheets so that string model type description for
the interactions emerges.

2. How to assign ”interaction action” to this system as a discriminant? The proposal is that
the interactions between particles at the level of H are contact interactions made possible by
the intersection of space-time surfaces. For identical H-J structures the intersection X4

1 ∩X4
2

consists of 2-D string world sheets rather than a discrete set of points. Identical H-J structures
would mean that they correspond to the same element of local G2/U(2) since U(2) leaves the
quaternionic normal space containing a preferred commutative plane invariant.

3. As found, the H-J structures of M8 and H naturally correspond to each other. If so, then
also the intersection Y4

1 ∩ Y4
2 consists of string world sheets. One should be able to assign

to the intersection an ”interaction action”. The conditions o0(1) = o0(2) and r7(1) = r7(2)
(radii of S6) must be satisfied. This gives a set {o0(n)} of roots. These 6-spheres now define
”very special moments” for the interaction. The 3-spheres S3(o0, i) = E4(o0, i) ∩ S6(o0),
i = 1, 2 must intersect in Y4

1 ∩ Y4
2. The intersection of two 3-spheres should consist of 2-D

string world sheets for the same H-J structures. This looks sensical since the hypercomplex
M4 coordinates appearing in the functions f1 and f2 are the same and one condition is
eliminated. Also self-intersections for Y4 are possible and would contribute to the action
terms having an interpretation in terms of self-interactions of Y4.

One can assign discriminant D12 to the intersection Y4
1 ∩ Y4

2 as a product of squares of root
differences in {o0(n)}. This would define an additional multiplicative contribution to the
action exponential.

3.4 A possible connection with exotic smooth structures

A connection with the work of Michel Planat [A2] (see https://www.mdpi.com/2073-8994/10/12/773)
is suggestive. The proposal of Michel Planat is that local exotic smooth structures could provide a
representation for qubits reducing to bits and magic qubits for which the reduction does not occur.
The Pauli group consisting of generalized spin matrices in the case of qdit generates both bits and
magic qubits.

3.4.1 Planat’s view of exotic smooth structures

Consider first a summary of the ideas of Planat’s article.

1. The construction of 3-manifolds from S3 relies on the handle body decomposition based on
knots K of S3. Consider removal of B3 × S1, where S1 gives rise to a knot, and replacement
by B2 × S2. The gluing is along the boundary S2 × S1 of the knot. The homotopy group
G = π(S3 \K) of the knot complement having two generators and serves as a knot invariant.
Michel Planat demonstrates that if it has subgroup H with index d = |G|/|H|, it is possible
to construct magic qudits by using G.

Rather remarkably, the 3-manifolds S3 \K can be mapped to double coset spaces H3/G =
SO3) \ SO(1, 3)/G, where the homotopy group G is an infinite subgroup of SL(2, C).

2. A surgery by replacing 2- handle B2 × S2 with B3 × S1 along a suitably defined knot yields
so-called Brieskorn manifolds with exotic smooth structures. Consider a four-manifold with
boundary S3. The construction of the exotic manifold homeomorphic with the original man-
ifold involves gluing a pair of S3 \K with handles removed giving 3-manifolds. The smooth
structure is standard in the interior but cannot be continued to the boundary S3 of Y4.
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Akbulut cork is a simple example of a fake R4 and corresponds to the simplest Brieskorn
manifold. Connection with hyperbolic 3-space S3 \ K corresponds to a coset space H3/G,
G = π1(S3 \K).

3.4.2 How could the Planat’s view of exotic smooth structures relate to TGD?

Some background in TGD needed to understand the possible connection of Planat’s description of
exostic smooth structures with the TGD view of exotic smooth structures [A5, A6, A3], conjectured
to make possible particle vertices and fermion pair creation in TGD despite the fact that fermions
in H are free [L17, L9, L22].

1. As describedl, the interactions are contact interactions between space-time surfaces identified
as slightly non-deterministic Bohr orbits. If H-J structure exists, self intersections are 2-D
string world sheets. This holds true also for self interactions generating string world sheets
as counterparts of 2-knots. This makes sense at both M8 - and H sides.

2. In TGD, quantization takes place only for the free spinor fields of H. The creation of
fermion pairs would be made possible by the smooth defects of the standard spinor structure
at which the fermion line can change its direction and thus violate standard smoothness.
Fermion would turn backwards in time. Exotic smooth structures are indeed characterized
as defects of the standard smooth structure and can be assigned to 3-spheres S3.

Consider now the connection with H8 −HS duality.

1. In TGD, S3 represents a ”very special moment in the life of self” as a root of f = 0 at
which the Euclidean and Minkowskian 4-surfaces associated with Im(f) = 0 and Re(f) = 0
can meet. Meeting occurs along S3 if both surfaces are of type N and along S2 ⊂ S3 is
either of them is of type T . The surfaces S3 would relate to the classical non-determinism
of holography and would be 4-D analogs for the non-deterministic frames of ordinary soap
films at which several branches can meet.

2. In TGD, the interpretation S3 would be as generalized vertices. Pairs of fermion lines asso-
ciated with the different branches can emerge meaning the creation of virtual fermion pairs
in the classical fields defined by the induced spinor connection and the trace of the second
fundamental form as analog of Higgs field becoming singular at the vertex but vanishing
elsewhere by the minimal surface property. Fermion lines would correspond to boundaries of
2-D string world sheets associated with the intersection of the 4-surfaces Y 4

i involved.

3. In the TGD view of cognition based on zero energy ontology (ZEO), the localization for
the superposition of the slightly non-deterministic Bohr orbits would result in a sequence
of ”small” state function reductions (SSFRs) involving a measurement in cognitive degrees
of freedom due to the slight classical non-determinism of the space-time surface as a ”Bohr
orbit”. This would lead to particle decay when the state of the system is measured in ”big”
SFRs (BSFRs) involving interaction with the space-time surface representing the observer.

4. From the point of view of consciousness, this state function reduction means the death of self
represented by the particle as it decays at vertex and produces particles as decay products.
In this BSFR the self in question would reincarnate with the opposite arrow of geometric
time. It could naturally correspond to the S3 appearing as an on-mass shell state. If 8-
D masslessness condition o20 = r27 is satisfied at S3 (f = o2), it implies for Y4 of type T,
Minkowskian massless at S2 meaning on mass shell property in M4 sense. For f = o2 −m2

one has a massive mass shell in point-point correspondence with S3 ⊂ H3. The T surface Y4

defines region of hyperbolic 3-space H3 realized in H proper time = constant surface of M4.

This allows to interpret the vision of Michel Planat in the TGD framework.

1. For Y4 and X4 2-knots as string world sheets would correspond to self-intersections of the
space-time surfaces. At the fundamental level, the 2-knot would correspond to a local dou-
bling of the space-time sheet. These 2-knots could relate to defects of the standard smooth
structure as 2-knots. At the string world sheet Y4 or X4 branches and transversal derivatives
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are discontinuous. These self intersections would occur at generalized vertices identified as
roots of f = 0. The ordinary 1-knot K corresponds to the intersection of the string world
sheet with S3 or S2 ⊂ S3.

2. This suggests that the connection between knots K in S3 and hyperbolic coset space space
H3 could come from M8 −H duality. Both S3(o0) for f = 0 and the union ∪00S2(o0) define
subsets of H3. H−M8 can be injective in either direction: from H to M8 or vice versa. The
not K ⊂ S3 considered by Planat could correspond to knots K at S3(o0) or at at the orbit
∪o0S2(o0). In both cases, they correspond to a region of H3.

What is interesting is that time-like and space-like knots and braids appear in the TGD based
model of quantum computation [K2, K1] based on flux tubes and the motion of their ends.
The model involves ance metaphor: the dance defines a time-like braid and if the dancers
are connected by space-like strings to a wall, also a space-like braid is generated.

3. This would allow us to understand why the manifolds S3 \ K correspond to double coset
spaces G \ H3, where G is the homotopy group π1(K). The ends of the open knot at H3

are identified in the definition coset space and it would be mapped to a closed knot K at S3
subset M8? At the level of H, this would be a relative homotopy. The natural assumption is
that the ends of K correspond to the same point of CP2 in the relative homotopy.
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