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Abstract

The idea of M® — H duality has progressed through frustratingly many twists and turns
and I have discussed several variants of M® — H duality. There are 2 options, call them T
and N: either the local tangent space T or normal space N of Y* ¢ M® is quaternionic and
contains a complex subspace C. This makes it possible to map Y* C M® to the space-time
surface X* € H = M* x CP,. Which of them or possibly both? Any integrable distribution of
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quaternionic normal spaces N is allowed whereas for tangent spaces this is not the case. This
led to a too hasty rejection of the T option.

The second problem relates to the lack of the concrete realization of the M® — H duality.
Is the M® — H duality between 4-D surfaces in M® and space-time surfaces in H or is it enough
that only the 3-D holographic data in H are fixed by M® — H duality.

A modification of the original form of the M® — H duality formulated in terms of a real
octonion analytic functions f(o) : O — O leads to a possible solution of these problems. All the
conditions f(0) =0, f(o) =1and Imf)(o) = 0, and Ref)(o) = 0 are invariant under local G
and the local G2 acts as a dynamical spectrum generating symmetry group since fogs = gao f
holds true. The task reduces to that of finding 4-surfaces with constant quaternionic normal
space N or tangent space T. Y* = E* ¢ M® and Y* = M* ¢ M® provide the simplest examples
of them. Local G» transformations give more general surfaces Y?.

The roots of Im(f)(0) = 0 resp. Re(f)(0) = 0 are unions U,,S®(00) of 6-spheres, where og is
octonionic real coordinate og. The 3-surface Y* = S%(09) NE*(00) = S*(00) defines holographic
data for Y* C E*(0o) as its boundary. The union Y* = Ue,S®(00) N M*(00) = Us,S*(00) in
turm defines holographic data for Y* € M*(0o) as its boundary. Therefore both the N - and
T option can be realized.

One can choose the function f(0) to be an analytic function of a hypercomplex coordinate
of M* and 3 complex coordinates of M®. The natural conjecture is that the image X* of Y*
has the same property and satisfies holography = holomorphy principle.

The simultaneous roots of Im(f)(0) = 0 resp. Re(f)(0) = 0 are 6-spheres with fixed value
of op and the radius 77 of SG(OQ). Two 4-surfaces Y% and Y; both of type N or T, and
satisfying Im(f)(0) = 0 resp. Re(f)(0) = 0 along S3(0p) or S*(00). This makes it possible to
build Feynman diagram-like structures with lines which have Minkowskian or perhaps even
Euclidean number theoretic metric signatures. At the vertices smoothness is violated and this
supports the view that they give rise to exotic smooth structures as defects of the standard
smooth structure.

Introduction

The idea of M® — H duality (H = M* x CPy) has progressed through frustratingly many several
twists and turns.

1.1 The evolution of the ideas

Consider first the development of the key ideas and the related problems.

1. The first key idea [L1l [L2] [L3] was that one can interpret octonions @ as Minkowski space

M?® [A4] by using the number theoretic inner product defined by the real part Re(o102) of the
octonion product. Later I gave up this assumption and considered complexified octonions,
which do not form a number field, but finally found that the original option is the only
sensible option.

. The second key idea was that if either the tangent spaces T or normal spaces N of Y* c M?®

are quaternionic and therefore associative, and also contain a commutative subspace C, they
can be parameterized by points of CP; and mapped to H = M* x CP;,. This would be the
first half or M® — H duality.

. How to map the M* C M?® projection to M* x CPy? This question did not have an obvious

answer. The simplest map is direct identification whereas the inversion with respect to the
cm or tip of causal diamond cd ¢ M* C H is strongly suggested by Uncertainty Principle and
the interpretation of M® coordinates as components of 8-momentum [LI5]. Note that one
can considerably generalize the simplest view by replacing the fixed commutative subspace
of quaternion space M* with an integrable distribution of them in M?.

. I considered first the T option in which T was assumed to be associative. The cold shower was

that there might be very few integrable distributions of associative tangent spaces [L6l [L7].
As a matter of fact, M* and E* were the only examples of associative 4-surfaces that I knew
of. On the other hand, any distribution of quaternionic normal spaces is integrable and
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defines an associative surface Y%. This led to a too hasty conclusion that only the N option
might work.

5. If M® is not complexified, the surfaces Y* in M® are necessarily Euclidean with respect to
the number theoretic metric [L15]. This is in sharp conflict with the original intuitive idea
that Y# has a number theoretic Minkowski signature. Is it really the normal space N , which
must have a Minkowskian signature? Is also T possible.

6. The minimal option in which M® — H duality determines only the 3-D holographic data as 3-
surfaces Y2 € M® mapped by M® —H duality to H. The images of Y? could define holographic
data consistent with the holography = holomorphy (H-H) vision [L14} [L19] [L15] [L.24] [L18].
Both M® and H sides of the duality would be necessary.

1.2 Interpretational problems

There are also interpretational problems.

1. The proposed physical interpretation for the 4-surface Y* € M® was as the analog of momen-
tum space for a particle identified as a 3-D surface. In this interpretation the Y* would be
an analog of time evolution with time replaced with energy. A more concrete interpretation
of the 3-D holographic data would be as a dispersion relation and Y# could also represent
off-mass shell states. Momentum space description indeed relies on dispersion relations and
space-time description to the solutions of classical field equations.

2. For N option Y* must be Euclidean in the number theoretic metric. Therefore the momenta
defined in terms of the tangent space metric are space-like. What does this mean physically?
Momenta are also co-quaternionic: does this exclude the Euclidean option?

Could the problem be solved if the momentum assignable to a given point of Y* is identified
as a point of its quaternionic normal space as proposed in [L15].

Or should one accept both T and N options and interpret the Euclidean Y* as as a counterpart
of a virtual particle with space-like momenta and of CPP; type extremals at the level of H. At
vertices belonging to Y] N'Y3 me, quaternionic N(Y7) would contain points of quaternionic
T(Y3) so that the earlier proposal would not be completely wrong.

3. A further criticism against the M® —H duality is that its explicit realization has been missing.
For N option, the distributions of the quaternionic normal spaces N are always integrable
but their explicit identification has been the problem. For T option even the existence of
integrable distributions of T has remained open.

1.3 A possible solution of the problems of the earlier view

Consider now how the view to be described could solve the listed problems.

1. There are two options, which could be called T and N: either the local tangent space T or
normal space N is quaternionic. Which one is correct or are both correct?

Any integrable distribution of quaternionic normal spaces is allowed whereas for tangent
spaces this is not the case. This does not mean that non-trivial solutions would not exist.
Perhaps the rejection of the T option was too hasty.

Furthermore, for X* ¢ H both Minkowskian and Euclidean signatures of the induced metric
are possible: could T and N option be their M® counterparts?

2. Holography= holomorphy vision (H-H) allows an explicit construction of the space-time
surfaces X* ¢ H. For Y* C mathbbM?® the situation has been different. The very nature of
duality concept suggests that the explicit construction must be possible also at the level of
H.

3. Is M® — H duality between 4-D surfaces Y4 € M® and space-time surfaces X* C H or only
between the 3-D holographic data Y2 ¢ H and X* C mathbbM® — H?
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It turns out that a modification of the original form of the M® — H duality, formulated in terms
of a real octonion analytic functions f(o) : @ — O, leads to a possible solution of these problems.

1.

All the conditions f(0) =0, f(0) =1 and Imf)(0) = 0, and Ref)(0) = 0 are invariant under
local G acting as as a dynamical spectrum generating symmetry group since fogs = g o f
holds true. The task reduces to that of finding the 4-surfaces with a constant quaternionic
T or N.

In particular, M* C M® has been hitherto the only known Y# of type T and the action of
local Gy generates a huge number of Y# of type T. Both T and N option are possible after
alll Gy symmetry applies also to the N option for which E* is the simplest representative!

The roots of Im(f)(0) = 0 resp. Re(f)(0) = 0 are unions U,,S%(0g) of 6-spheres, where og
is octonionic real coordinate oy. The 3-D union Y* = U,,S%(0g) N M* = S%(0p) C M* has
quaternionic tangent space T = H = M*. The interpretation as holographic data and the M®
counterpart of a partonic orbit is suggestive.

. The Euclidean 3-surface Y? = S%(09) N E*(0g) = S3(0g) could serve as a holographic data

for Y* with quaternionic normal spaces and with an Euclidean number theoretic signature of
the metric. Obviously, the option Y* = U,,Y3(0p) fails to satisfy this condition. The inter-
pretation would be as the M® counterpart of CP, type extremal with a Euclidean signature
of the induced metric. The identification as the M® counterpart of a virtual particle with
space-like momentum is suggestive.

If T resp. N contains a commutative hyper-complex subspace, it corresponds to a point of
CPy. Hence Y* can be mapped to X* C H = M* x CP, as M® — H duality requires.

What could be the counterpart of H-H vision in M®? One can choose the function f(o) to be
an analytic function of a hypercomplex coordinate u or v of M* and 3 complex coordinates
of M®. The natural conjecture is that the image X* of Y has the same property and satisfies
H-H.

This view solves the interpretational problems.

1.

The proposed physical interpretation for the 4-surface Y* ¢ M® was as the analog of momen-
tum space for a particle identified as a 3-D surface. The interpretation the Y* as the analog
of time evolution with time replaced with energy looks range. A more concrete interpretation
of the 3-D holographic would be as a dispersion relation emerges and Y* could also represent
off-mass shell states. Momentum space description indeed relies on dispersion relations and
space-time description to the solutions of classical field equations.

Number theoretic discretization as a selection of points as elements of the extensions of ra-
tionals defining the coefficient field for f(o0) and the replacement of fermions to the ”active”
points of discretization would realize many fermion states at the level of H. Galois confine-
ment [L16, [L17, L8] stating that the total momenta are rational numbers would provide a
universal mechanism for the formation of bound states.

For N option Y# must be Euclidean in the number theoretic metric. Therefore the momenta
defined in terms of the tangent space metric are space-like. What does this mean physically?

Could the problem be solved if the momentum assignable to a given point of Y* is identified
as a point of its quaternionic normal space as proposed in [L15].

Or should one accept both T and N options and interpret the Euclidean Y* as as a counterpart
of a virtual particle with space-like momenta and of CPP; type extremals at the level of H.

At 2-D vertices belonging to the intersection Y} N Y3, quaternionic N(Y}) would contain
points of quaternionic T(Y3) so that the first proposal would not be completely wrong.

Could the TGD analogs of Feynman diagrams be built by gluing together T and N type
surfaces Y* along 3-surfaces Y? defining analogs of vertices. In the role of consciousness
theorist, I have called them ”very special moments in the life of self” [L5] at which the non-
determinism of the classical field equations in H-H vision is localized. At these 3-surfaces the
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smoothness of Y* fails and could give a connection to the notion of exotic smooth manifold
[A5] [AG, [A3], conjectured to make possible particle vertices and fermion pair creation in
TGD despite the fact that fermions in H are free [L17, L9 [L22].

In the following a formulation of M® — H duality possibly solving these problems in terms of
local Go invariance is discussed in detail.

2 Understanding associativity in terms of local G, invari-
ance

The motivation for reconsidering the M® — H duality came from the fact that the H-H hypothesis
[L14) 19, IL15] [L24) [L18] works extremely nicely for the space-time surfaces X* C H. The roots of
two generalized analytic functions f1, fo of hypercomplex coordinate and 3 complex coordinates of
H give as their roots space-time surfaces as minimal surfaces and the ansatz works for any action,
which is general coordinate invariant and expressible in terms of the induced geometry. One would
expect that H-H hypothesis appears also at the level of M®: How?

One can also argue that there might be problems with the 3-D holographic data. How to fix
them in such a way that they are consistent with functions f; and fs as analytic functions of H
coordinates involving hypercomplex coordinate and 3 complex coordinates?

2.1 About the basic notions of TGD

It is instructive to start with an explanation of the physical content of the basic notions related to
M?® — H duality.

2.1.1 What is the interpretation of 4-surfaces of M® interpreted as a momentum
space?

The basic objection against the momentum space interpretation of M® can be formulated as a
simple question. What does time - or rather, energy evolution mean? At Y, the time evolution
would mean change of momenta as points of S? as the radius of S? changes. Momentum has
momentum. Could this be seen as an ”acceleration” of an off-mass-shell 8-momentum with energy
appearing in the role of time?

A more natural interpretation than evolution is in terms of dispersion relation between mo-
mentum and energy. Indeed, the conditions Re(f) = 0 or Im(f) = 0 give rise to 3-D surfaces
defining dispersion relation. The 4-surface Y4 in turn could be interpreted as a kind of off-mass
shell dispersion relation.

What could be the identification of free on-mass shell states? M® masslessness means M*
massivation and off mass shell property! This gives a set of 3-surfaces with fixed M® mass squared
and also M* mass squared. For f = 0> — m? the condition Re(f) = 0 reduces to a mass shell for
the T option.

In this framework M® — H duality relates two views of physics: the description in terms of
classical fields and geometry and the description of quantum physics in terms of energy, momentum
and dispersion relations. Dispersion relations are algebraic equations so that this description rather
naturally extends to a number theoretic vision of physics [L4].

2.1.2 Moduli space for the octonion structures

The identification of the 8-D momentum space M® as octonions raises non-trivial conceptual chal-
lenges.

1. Causal diamond in H is ed x C'P,. Consider first the moduli space for cd:s in M* ¢ H [L10].
The interpretation of cd as a particle-like entity in H, as a kind of perceptive field is natural.
Poincare group and scalings generate new cd:s. ”Mass shells” are mapped to ”"mass shells”
also in scalings and conformal transformations. Whether conformal invariance can be allowed
or needed is not obvious.
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2. In M®, cdg is the natural candidate for the counterpart of CD C H. The problem with M®
regarded as octonions is that it selects a preferred time direction. This does not conform
with Lorentz invariance. If linearity and homogeneity are required, only SO(1,7) makes
sense. Also scalings and even inversions with respect to origin could be allowed.

At the M® side the position of C'Dg and its translations do not make physical sense.

3. M* inversion mF — p* = heffmk/mlml favoured by Uncertainty Principle in the M® — H
duality. The origin of M* coordinates could correspond to the cm or tip of cd C M*, which
can be seen as a sub-CD of a larger CD. The size of CDg and cd would correlate. In this
case, the map H — M?® would be a special conformal transformation as a scaling with respect
to an arbitrary point of M*.

2.1.3 Is M® — H duality bijective map or something more general?

The original intuitive view was that M® — H duality is 1-valued map M® — H. This works for
space-time surfaces X* with Minkowskian signature, that is for option T. It fails for C P, type
extremals with Euclidean signature of the induced metric and naturally corresponding to option
N. The proposal was that these surfaces can be seen as singularities at which the quaternionic
normal space N is not-unique.

A more elegant view is that for C P, extremals the map M® — H duality defines a 1-valued map
H — M? for option N and a-valued map M® — H for option T.

2.2 Could the roots of real analytic octonion function give rise to M® —H
duality after all?

The issues mentioned above led back to the original idea that the associative 4-surfaces Y* C
M?® might be definable in terms of real analytic functions f(o0) of octonions as an octonionic
generalization of the notion of holomorphy. The conditions f(0) =0, f(0o) = 1, Re(f)(0) = 0 and
Im(f)(o) = 0 are are invariant under local octonionic automorphism group G,. The argument goes
as follows.

1. Since Gy acts as automorphisms, one has f(g2(0)) = g2(f(0)), where g5 is any local Go
automorphism. If f(o) =z « € {0,1} is true then also f(g2(0)) = z is true for any go C Go.
This is true also for the roots of Re(f(0)) = 0 resp. Im(f(0)) = 0, where ” Re” resp. ”Im”
refers to the octonionic real resp. imaginary part. Since G maps the decomposition of
octonion to quaternion and to a part orthogonal to it, also the conditions RE(f(0) = 0 and
IM(f) = 0, where RE(f) and IM(f) refer to the quaternionic co-quaternionic parts of the
octonion, preserve their character under local Gs.

One has a huge dynamical spectrum generating symmetry analogous to the holomorphic
symmetries of H-H vision. It maps the quaternionic normal spaces to quaternionic normal
spaces and complex subspaces to complex subpaces.

2. Consider first the condition f(o) =z, € {0,1}. The Taylor (or even Laurent -) expansion
in powers of O gives only two terms. The first term is proportional to the octonionic real
unit 1 of @ and the second term to the octonionic imaginary part of Im(o) = o7 of O.

For 0% one obtains 0? = 0% — 07 - 07 + 20907. The coefficients of these parts depend on the

real part oy of @ and the length r7 of the imaginary Im(o). The higher powers of o involve
products of two octonions of form o1 = ay + 107 and 02 = ag + (G207 and the product is of
form 0109 = (e — f182) + (a1 B2+ s B1)o7. By induction, one finds that the coefficients for
any power depend only on oy and the radius 77 of 6-sphere only. In particular, the function
f (o) is expressible has the general form

f(o) = fi(oo,77) + f2(00,77) - (2.1)

The detailed forms of these functions have been discussed in the earlier articles [L6} L7, [L13]
and will be described also below.
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3. The condition Im(f(0)) = 0 resp. Re(f(0)) = 0 fixes the relationship between oy and 77
and gives a ”time evolution” of the radius r; of a 6-sphere as function of the real coordinate
0o having identification as energy. The condition RE(f(0)) = 0 requiring the vanishing of
the quaternionic part implies the vanishing of both RE(f) and IM(f) and reduces to the
condition f(o) = 0. The condition IM(f(0)) = 0 implies the vanishing of Im(f(0)).

2.3 Various G, invariant options

Consider now various Go invariant options.

2.3.1 The conditions Re(f) =0, Im(f) =0, and f(o) =0

The conditions Re(f) = 0 and Im(f) = 0 has the roots op = hi(r7) and o9 = ha(r7). These roots
define a union of 6-spheres S with radius r7; = r7(0g).

It deserves to be noticed that S® can be represented as a coset space G2/SU(3). S° has an
almost complex structure induced by the octonionic cross product, which makes it nearly Kahler
manifold.

Can one assign an associative 4-surface Y4 C M® of type N or T to the set of roots of Re(f) = 0
or Im(f) = 0 or to a given S°?

Since E*(0g) and M3(0p) are the simplest examples of quaternionic 4-surfaces Y* of type N
resp. T, it is natural to look what the intersections of S®(0g) with these spaces are.

1. Since both surfaces in the intersection E4(0g)NS®(0y) are contained in the hyper-plane E7 (o),
the dimension of E4(0g) NS%(0p) is from the basic rule 6 +6 — 7 = 3. Clearly, the intersection
is identifiable as 3-sphere S?(0g) and holography is needed to construct Y* of type N. E*(0g)
solves the holography.

2. The set U,,S%(0g) is contained in the hyper-plane E”(0g) and the dimension of M*(0p) N
UoeS8(00) = Uy, S?(0p) is from the basic rule 6 + 6 — 7 = 3. The intersection, identifiable as
a 3-D orbit of 2-sphere S2, defines the holographic data giving Y* of type T. M* solves the
holography.

3. In both cases, Go dynamical symmetry allows to construct more general solutions.

The conditions f(0) = 0 give the roots of f; and fo as op = hi(r7) and o9 = ha(r7). These
roots define a discrete set of 6-spheres S® with oy constant and r; = constant as ”"very special
moment in the life of self” [L5]. At these surfaces, the solutions of Im(f) = 0 and Re(f) = 0 can
meet and the interpretation as the analog of a vertex of Feynman graph is suggestive. If both N
and T type solutions are allowed, the maximal number of meeting 4-surfaces is 4, which bring in
mind Yang-Mills theory.

It should be noted that the condition IM(f(0)) = 0 is equivalent with the condition Im(f(0)) =
0. The condition RE(f(0)) = 0 gives a discrete set of 3-spheres as roots is equivalent with the
condition f(o) = 0.

2.3.2 Explicit treatment of the conditions Re(f(0)) =0 and Im(f(0)) =0

It is straightforward to find an explicit general solution for the condition f(0) = 0 in the general
case. The expression 0 = 03 — rZ + 2r;oe where e satisfying e? = —1 is the octonionic imaginary
unit defined by the imaginary part of o = 0y + r7e allows to write

0?" = (08 — 12 4 2r700€)"™ = a,, + bpe (2.2)
0*" 1 = (a, + bye(og + r7e) = ano9 — byry + (anrs + bpoo)e . ’
The coefficients a,, = a,,(03,72) and b,, = b, (0%,72) can be deduced from binomial coefficients. If

the condition 03 — 72 giving oy = er,, is satisfied, this gives

o*" = (2r3)nene™ |

02n+1 — (27’%)"T7(6+ 6)6” . (23)
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One can decompose f as f = feyen + foda0, where one has fepen = Y, fon0®™ and foqq =
>, fant10?™. One has

[ = fioo + farze ,
fl = feven + foddOO = En an(GQn + bZne) + Zn f2n+1(a2n + ane)OO (24)
fo = foaar? = Y, fant1(azn + bane)ry .

This gives

f=Re(f) +Im(fle ,
Re(f) =>_,, fant2n + font102000 — ), foni1banrr (2.5)
Im(f) =23, fonbon + font1b2n00 — >, font1G2n77 .

The octonion analytic function reduces by its symmetries to a sum of real part and imaginary
part such that the imaginary part is proportional to the imaginary part of o. Both real and
imaginary parts depend only on 0y and r7 which are analogous to energy and magnitude of 8-
momentum.

2.3.3 Illustrative examples

The following illustrative examples help to understand the physical picture.

1. The case f(0) = o* with Re(f) = 0 serves as an illustrative example. The condition of = r2

gives an expanding 6-sphere with radius 77 = 40y. The restriction of E* coordinates to
(e4,€5,€e6,e7) = 0 for T option gives r3 = +0y. One obtains union of sub-mass-shells F =
09 = p = r3 of a massless particle with a fixed length of 3-momentum p.

For N option, this represents 3-D mass shells of a massless particle analogous to the mass
shell of a massive particle. Now however momentum can have an additional component
orthogonal M so that a virtual particle is in question in this case.

2. For f(0) = 0> — m? Ref) = 0 as a restriction guaranteeing tangent space quaternionicity
gives 02 — r2 = m? giving 3-D positive and negative energy mass shells of a massive particle.
Also now there is an analogy with partonic orbits for T option Note that the images of these
mass shells in H under M® — H duality are mass shells.

3. For more general functions f(o0), the dispersion relation given by Re(f) = 0 the dispersion
relation given by ro = h(op) is rotationally invariant but is more general that that for a
massless particle.

2.4 How to realize Lorentz invariance for on mass shell states?

If the tangent spaces of Y* are quaternionic, the condition Re(f) = 0 or Im(f) = 0 has as a
solution the union of U,,S%(0y) of 6-spheres with radius r7(0p). The intersection Y? = E3(0p) N
Uy S%(00) Up, S?(0p) defines the holographic data. For the 2-spheres S?(op), the 3-momentum
squared is constant but depends on the energy oy via a dispersion relation that is in general not
Lorentz invariant. M® — H duality suggests how to obtain Lorentz invariant mass shell conditions
E? —p?2 =m?2.

1. The modes of the Dirac equation in H [L21] [L20] are massless in the 8-D sense. This is a
natural additional condition also in M® and could define on mass shell states consistent with
Lorentz invariance and distinguish them from the other points of Y4 having an interpretation
as off-mass-shell momenta allowed by Y* as a representation of a dispersion relation.

2. 8D masslessness corresponds in M® to the condition 03 —r2 = 0, where rZ is the counterpart
of the CP; mass squared as the eigenvalue of the CPy spinor Laplacian. The additional
condition of — r2 = 0 picks up a discrete set of values (0¢(r7),r7). The 4-D mass squared
would be m3 = 72 and a discrete mass spectrum is predicted for a given f(o) and a given

selection a Re(f) = 0 or Im(f) = 0.

3. An interesting question is whether the eigenvalue spectrum of CPy spinor Laplacian is realized
at the level of M® as on mass-shell states.
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4. A natural guess would be that the eigenvalue spectrum of CPy spinor Laplacian is realized

3

at the level of M® as on-mass-shell states.

The TGD based proposal [L21] [L20] for color confinement producing light states involves
tachyonic states. These states would naturally correspond to 4-surfaces Y* with Euclidean
signature and bound states would be formed by gluing together the tachyonic and non-
tachyonics states to Feynman graph-like structures. Note that the on-mass-shell 2-spheres
are in general different from those satisfying the conditions (Re(f),Im(f)) = (0,0) proposed
to define vertices for the generalized Feynman graphs.

Note that the on mass shell 2-spheres are in general different from those satisfying the condi-
tions (Re(f),Im(f)) = (0,0) proposed to define vertices for the generalized Feynman graphs.

About the realization of M® — H duality

The realization of M® — H duality as map Y* C M® — H = M* x C'P, involves some non-trivial
aspects.

3.1

M?® — H duality in CP, coordinates

The M® — H duality in CPP; coordinates would look like follows.

1.

M?® — H duality requires that M* contains M? C M* defining a commutative sub-space.
Since U(2) C SU(3) respects this choice, the normal spaces satisfying this condition are
parameterized by CPy = SU(3)/U(2) and M® — H duality allows to assign to a given point
of Y# a point of CPs.

. An integrable distribution of these subspaces is possible. The local elements of G, map these

distributions to each other. The subgroup leaving the distribution invariant corresponds to
local SU(3), which at the H side has interpretation as color group whereas U(2) leaving the
normal space invariant corresponds to the electroweak gauge group.

The integrable distribution of these choices together with generalized complex coordinates
for M® defines the analog of Hamilton-Jacobi structure (H-J) [LI8] in M* ¢ M® mapped to
its counterpart in H and playing a key role in H-H vision [LI5].

Rather remarkably, the local G2/U(2) can therefore be identified as the moduli space of H-J
structures [L18]. The division by U(2) is because the quaternionic normal space with complex
subspace is invariant under U(2) C G3. Note that G/U(2) is 10-D.

The integrable division of the quaternionic normal space M* to complex sub-space M? and
its complement E? allows also to identify a number theoretic analog of Kihler structure
in terms of the quaternionic cross product for E? projections of the vectors of M* in the
simplest situation when M* is constant. This Kéhler structure is trivial in the longitudinal
hypercomplex degrees of freedom assigned M?. This conforms with the physical intuition
provided by gauge theories, string models and TGD: the longitudinal polarizations have zero
Hilbert space norm. This decomposition induces a similar decomposition of M* C H and of
the tangent space of the space-time surface X* € H essential for the H-J structure.

3.2 M?® — H duality for M* coordinates
What about M® — H duality for M* coordinates?

1.

Could the M* C H point correspond to the projection of the Y* = E* x S point to M* ¢ M®
as such or is an inversion suggested by Uncertainty Principle and the interpretation of M®
as 8-D momentum space? This question remains open.

What can one say about the elements go of the local Go? The action of G on octonions
allows a matrix representation but the matrix elements are octonions [AI] so that the rules of
multiplication are not standard and the product is non-associative. Associativity is obtained
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if one considers only elements of Go belonging to a local SU(3) subgroup having physical
interpretation as a color group.

3. Holomorphy= holography vision [L14l [L19, [L23] inspires the question whether gs(0) can be
regarded as a real part of an analytic function of the generalized complex coordinates of M?®
(hypercomplex coordinate and 3 complex coordinates) for the Hamilton-Jacobi structure in
question. Could this guarantee that the image of Y* in H is consistent with the holomorphy
in H?

4. The real analytic functions f(0) and g(o0) can be multiplied and summed so that the analog
of a function field is in question. 4-surface in M® become analogs of numbers as they do
also in H [[.23]. Also iterations of f(o0) are possible. The roots Im(g) =0of g= fo f...of
contain the roots of f plus roots of higher iterates. A complexity hierarchy analogous to
that appearing for function pairs (f1, f2) at H sides emerges and the interpretation in terms
of cognitive hierarchies is suggestive. An interesting question is whether there is a simple
relationship between functions f(o) and function pairs (f1, f2) defined in H.

3.3 Is the local G, invariance a symmetry of action and is the action
exponential a number theoretic invariant?

The ramified primes of a polynomial f(0o) = P(o) having rational or algebraic coefficients are
expected to play an important role in the number theoretic view of TGD.

1. If f assigned to M® — H duality is a polynomial P with rational coefficients, the ramified
primes would be assigned with the discriminant of P. The conjecture has been that the
classical action defining the space-time surface is expressible as a power of discriminant of
some polynomial P defined by the differences of ramified primes [L11]. This would be a
central aspect of the 4-D version of Langlands duality |[L14)[L19]. The notion of discriminant
makes sense also for real analytic functions f.

2. This would imply a huge degeneracy since all space-time surfaces related by local Go trans-
formations as analogs of conformal transformations would have the same classical action
defining the Kéhler metric of WCW and give excellent hopes that also the functional integral
over the 4-D ”Bohr orbits” predicts by the holography = holomorphy principle reduces to a
discrete sum (there is a slight failure of non-determinism as also for 2-D minimal surfaces)
is calculable [L11]. Local Gy would define zero modes for the WCW metric and symplectic
degrees of freedom would correspond to non-zero modes as also conjectured [L12].

3. Besides space-time surfaces X* representable as graphs of maps M* — CP, also surfaces for
which M* projection has dimension smaller than 4, are possible. These could correspond to
the singularities of the map Go such that the quaternionic normal space M* labelled by a
CP5 point depends on the direction in which one approaches a lower-dimensional surface X
of M®. This would give rise to CP» type extremals with 1-D X and cosmic strings with 2-D
X.

The above mentioned conjecture that the classical action equals some kind of discriminant and
is thus a number theoretic invariant, can be sharpened in the recent picture.

1. The condition Im(f) = 0 (Re(f) = 0) has a discrete set of roots Y4(n) C M® as time
evolutions 77 = hy,(0g) of S°, in turn giving rise to 4-surfaces Y4(n) as time evolutions
S3(0g) = E*(09) N'S®(0p) with respect to time coordinate oy mapped. Different roots Y*(4)
as 4-surfaces can be interpreted as free particles, mapped to space-time surfaces X*(i) in H
by M® — H duality.

2. For each orbit Y*(i) of S, the condition f(0o) = 0 defines a discrete set of "very special
moments of time” og(n, i) as its roots. The roots can be also complex but for real polyno-
mials appear as complex conjugate pairs. One can define discriminant D as the product of
differences of squares of roots in the usual manner [L14, [L19]. This is true also when f is
analytic function rather than only polynomial.
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One can assign a discriminant D(i) to each Y*(i). The product [;.; D(4) is well defined for
the system of all Y#(i) or a subset U of them. These discriminants would define exponents
of ”free” actions for each Y*(i).

Interactions are not taken into account yet.

1. At the level of H interactions reduce to a generalization of contact interactions for the Bohr
orbits X*. In the generic case the intersection X* N Y*# consists of a discrete set of points. If
X4 and Y* have the same H-J structure they have a common hypercomplex coordinate and
the intersection consists of 2-D string world sheets so that string model type description for
the interactions emerges.

2. How to assign ”interaction action” to this system as a discriminant? The proposal is that
the interactions between particles at the level of H are contact interactions made possible by
the intersection of space-time surfaces. For identical H-J structures the intersection X} N X3
consists of 2-D string world sheets rather than a discrete set of points. Identical H-J structures
would mean that they correspond to the same element of local Go/U(2) since U(2) leaves the
quaternionic normal space containing a preferred commutative plane invariant.

3. As found, the H-J structures of M® and H naturally correspond to each other. If so, then
also the intersection Y N Y3 consists of string world sheets. One should be able to assign
to the intersection an ”interaction action”. The conditions og(1) = 09(2) and r7(1) = r7(2)
(radii of S%) must be satisfied. This gives a set {0g(n)} of roots. These 6-spheres now define
"very special moments” for the interaction. The 3-spheres S?(0g,i) = E*(0g,i) N S%(0p),
i = 1,2 must intersect in Y} NY3. The intersection of two 3-spheres should consist of 2-D
string world sheets for the same H-J structures. This looks sensical since the hypercomplex
M* coordinates appearing in the functions f; and f, are the same and one condition is
eliminated. Also self-intersections for Y* are possible and would contribute to the action
terms having an interpretation in terms of self-interactions of Y*.

One can assign discriminant Dy, to the intersection Y} N Y3 as a product of squares of root
differences in {og(n)}. This would define an additional multiplicative contribution to the
action exponential.

3.4 A possible connection with exotic smooth structures

A connection with the work of Michel Planat [A2] (see|https://www.mdpi.com/2073-8994/10/12/773))
is suggestive. The proposal of Michel Planat is that local exotic smooth structures could provide a
representation for qubits reducing to bits and magic qubits for which the reduction does not occur.
The Pauli group consisting of generalized spin matrices in the case of qdit generates both bits and
magic qubits.

3.4.1 Planat’s view of exotic smooth structures

Consider first a summary of the ideas of Planat’s article.

1. The construction of 3-manifolds from S? relies on the handle body decomposition based on
knots K of S3. Consider removal of B x S, where S! gives rise to a knot, and replacement
by B? x S2. The gluing is along the boundary S? x S! of the knot. The homotopy group
G = (5% \ K) of the knot complement having two generators and serves as a knot invariant.
Michel Planat demonstrates that if it has subgroup H with index d = |G|/|H], it is possible
to construct magic qudits by using G.

Rather remarkably, the 3-manifolds S \ K can be mapped to double coset spaces H?/G =
S03)\ SO(1,3)/G, where the homotopy group G is an infinite subgroup of SL(2, C).

2. A surgery by replacing 2- handle B? x S? with B2 x S! along a suitably defined knot yields
so-called Brieskorn manifolds with exotic smooth structures. Consider a four-manifold with
boundary S3. The construction of the exotic manifold homeomorphic with the original man-
ifold involves gluing a pair of S? \ K with handles removed giving 3-manifolds. The smooth
structure is standard in the interior but cannot be continued to the boundary S® of Y%.
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Akbulut cork is a simple example of a fake R* and corresponds to the simplest Brieskorn
manifold. Connection with hyperbolic 3-space S? \ K corresponds to a coset space H?/G,
G = 7T1(53 \ K)

3.4.2 How could the Planat’s view of exotic smooth structures relate to TGD?

Some background in TGD needed to understand the possible connection of Planat’s description of
exostic smooth structures with the TGD view of exotic smooth structures [A5] (A6l [A3], conjectured
to make possible particle vertices and fermion pair creation in TGD despite the fact that fermions
in H are free [L17, L9 [L22].

1.

As describedl, the interactions are contact interactions between space-time surfaces identified
as slightly non-deterministic Bohr orbits. If H-J structure exists, self intersections are 2-D
string world sheets. This holds true also for self interactions generating string world sheets
as counterparts of 2-knots. This makes sense at both M® - and H sides.

In TGD, quantization takes place only for the free spinor fields of H. The creation of
fermion pairs would be made possible by the smooth defects of the standard spinor structure
at which the fermion line can change its direction and thus violate standard smoothness.
Fermion would turn backwards in time. Exotic smooth structures are indeed characterized
as defects of the standard smooth structure and can be assigned to 3-spheres S3.

Consider now the connection with H® — HS duality.

1.

In TGD, S? represents a "very special moment in the life of self” as a root of f = 0 at
which the Euclidean and Minkowskian 4-surfaces associated with Im(f) = 0 and Re(f) =0
can meet. Meeting occurs along S? if both surfaces are of type N and along S? C S? is
either of them is of type T. The surfaces S® would relate to the classical non-determinism
of holography and would be 4-D analogs for the non-deterministic frames of ordinary soap
films at which several branches can meet.

In TGD, the interpretation S? would be as generalized vertices. Pairs of fermion lines asso-
ciated with the different branches can emerge meaning the creation of virtual fermion pairs
in the classical fields defined by the induced spinor connection and the trace of the second
fundamental form as analog of Higgs field becoming singular at the vertex but vanishing
elsewhere by the minimal surface property. Fermion lines would correspond to boundaries of
2-D string world sheets associated with the intersection of the 4-surfaces Y;* involved.

In the TGD view of cognition based on zero energy ontology (ZEQ), the localization for
the superposition of the slightly non-deterministic Bohr orbits would result in a sequence
of ”small” state function reductions (SSFRs) involving a measurement in cognitive degrees
of freedom due to the slight classical non-determinism of the space-time surface as a ”Bohr
orbit”. This would lead to particle decay when the state of the system is measured in ”big”
SFRs (BSFRs) involving interaction with the space-time surface representing the observer.

. From the point of view of consciousness, this state function reduction means the death of self

represented by the particle as it decays at vertex and produces particles as decay products.
In this BSFR the self in question would reincarnate with the opposite arrow of geometric
time. It could naturally correspond to the S® appearing as an on-mass shell state. If 8-
D masslessness condition 02 = r? is satisfied at S* (f = 0?), it implies for Y* of type T,
Minkowskian massless at S> meaning on mass shell property in M* sense. For f = 0?> — m?
one has a massive mass shell in point-point correspondence with S* ¢ H3. The T surface Y*

defines region of hyperbolic 3-space H? realized in H proper time = constant surface of M*.

This allows to interpret the vision of Michel Planat in the TGD framework.

1.

For Y* and X* 2-knots as string world sheets would correspond to self-intersections of the
space-time surfaces. At the fundamental level, the 2-knot would correspond to a local dou-
bling of the space-time sheet. These 2-knots could relate to defects of the standard smooth
structure as 2-knots. At the string world sheet Y* or X* branches and transversal derivatives
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are discontinuous. These self intersections would occur at generalized vertices identified as
roots of f = 0. The ordinary 1-knot K corresponds to the intersection of the string world
sheet with S? or S§? C S°.

2. This suggests that the connection between knots K in S? and hyperbolic coset space space
H? could come from M® — H duality. Both S?(0g) for f = 0 and the union Ug,S?(0p) define
subsets of H2. H — M® can be injective in either direction: from H to M® or vice versa. The
not K C S? considered by Planat could correspond to knots K at S3(og) or at at the orbit
UooS?(00)- In both cases, they correspond to a region of H?.

What is interesting is that time-like and space-like knots and braids appear in the TGD based
model of quantum computation [K2] [K1] based on flux tubes and the motion of their ends.
The model involves ance metaphor: the dance defines a time-like braid and if the dancers
are connected by space-like strings to a wall, also a space-like braid is generated.

3. This would allow us to understand why the manifolds S® \ K correspond to double coset
spaces G \ H3, where G is the homotopy group 71 (K). The ends of the open knot at H?
are identified in the definition coset space and it would be mapped to a closed knot K at S*
subset M®? At the level of H, this would be a relative homotopy. The natural assumption is
that the ends of K correspond to the same point of CPs in the relative homotopy.
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