

How does the twistorialization at imbedding space level emerge?

M. Pitkänen

Email: matpitka6@gmail.com.
<http://tgdtheory.com/>.

June 20, 2019

Abstract

One objection against twistorialization at imbedding space level is that M^4 -twistorialization requires 4-D conformal invariance and massless fields. In TGD one has towers of particle with massless particles as the lightest states. The intuitive expectation is that the resolution of the problem is that particles are massless in 8-D sense as also the modes of the imbedding space spinor fields are. $M^8 - H$ duality indeed provides a solution of the problem. Massless quaternionic momentum in M^8 can be for a suitable choice of decomposition $M^8 = M^4 \times E^4$ be reduced to massless M^4 momentum and one can describe the information about 8-momentum using M^4 twistor and CP_2 twistor.

Second objection is that twistor Grassmann approach uses as twistor space the space $T_1(M^4) = SU(2, 2)/SU(2, 1) \times U(1)$ whereas the twistor lift of classical TGD uses $T(M^4) = M^4 \times S^2$. The formulation of the twistor amplitudes in terms of strong form of holography (SH) using the data assignable to the 2-D surfaces - string world sheets and partonic 2-surfaces perhaps - identified as surfaces in $T(M^4) \times T(CP_2)$ requires the mapping of these twistor spaces to each other - the incidence relations of Penrose indeed realize this map.

1 Introduction

An objection against twistorialization at imbedding space level [K5, K4, K3] is that M^4 -twistorialization requires 4-D conformal invariance and massless fields. In TGD one has towers of particle with massless particles as the lightest states. The intuitive expectation is that the resolution of the problem is that particles are massless in 8-D sense as also the modes of the imbedding space spinor fields are.

To explain the idea, let us select a fixed decomposition $M^8 = M_0^4 \times E_0^4$ and assume that the momenta are complex - for motivations see below.

1. With inspiration coming from $M^8 - H$ duality [K1] suppose that for the allowed compositions $M^8 = M^4 \times E^4$ one has $M^4 = M_0^2 \times E^2$ with M_0^2 fixed, and corresponding to real octonionic unit and preferred imaginary unit. Obviously 8-D light-likeness for $M^8 = M_0^4 \times E_0^4$ reduces to 4-D light-likeness for a preferred choice of $M^8 = M^4 \times CP_2$ decomposition.
2. This suggests that in the case of massive M_0^4 momenta one can apply twistorialization to the light-like M^4 -momentum and code the information about preferred M^4 by a point of CP_2 and about 8-momentum in $M^8 = M_0^4 \times E_0^4$ by an $SU(3)$ transformation taking M_0^4 to M^4 . Pairs of twistors and $SU(3)$ transformations would characterize arbitrary quaternionic 8-momenta. 8-D masslessness gives however 2 additional conditions for the complex 8-momenta probably reducing $SU(3)$ to $SU(3)/U(1) \times U(1)$ - the twistor space of CP_2 ! This would also solve the basic problem of twistor approach created by the existence of massive particles.

The assumption of complex momenta in previous considerations might raise some worries. The space-time action of TGD is however complex if Kähler coupling strength is complex, and there are reasons to believe that this is the case [K2, K3]. Both four-momenta and color quantum numbers - all Noether charges in fact - could be complex. A possible physical interpretation for complex

momenta could be in terms of the natural width of states induced by the finite size of CD. Also in twistor Grassmannian approach one encounters complex but light-like four-momenta. Note that complex light-like space-time momenta correspond in general to massive real momenta. It is not clear whether it makes sense to speak about width of color quantum numbers: their reality would give additional constraint. The emergence of M^4 mass in this manner could be involved with the classical description for the emergence of the third helicity.

The observation that octonionic twistors make sense and their restriction to quaternionic twistors produce ordinary M^4 twistors provides an alternative view point to the problem. Also $M^8 - H$ duality proposed to map quaternionic 4-D surfaces in octonionic M^8 to (possibly quaternionic) 4-D surfaces in $M^4 \times CP_2$ is expected to be relevant. The twistor lift of $M^8 - H$ duality would give $T(M^8) - T(H)$ duality.

Twistor Grassmann approach [B4, B3, B2, B5, B6, B1] uses as twistor space the space $T_1(M^4) = SU(2, 2)/SU(2, 1) \times U(1)$ whereas the twistor lift of classical TGD uses $M^4 \times S^2$. The formulation of the twistor amplitudes in terms of SH using the data assignable to the 2-D surfaces - string world sheets and partonic 2-surfaces perhaps - identified as surfaces in $T(M^4) \times T(CP_2)$ requires the mapping of these twistor spaces to each other - the incidence relations of Penrose indeed realize this map.

2 M^8 -duality and the emergence of the twistor space $T(M^4) \times T(CP_2)$

$M^8 - H$ duality is one of the visions about quantum TGD inspired number-theoretical vision and is proposed to yield very general solutions of field equation by mapping quaternionic space-time surfaces in octonionic M^8 to $H = M^4 \times CP_2$. The image surfaces in H need not be quaternionic but could be so. $M^8 - H$ seems to be central also for twistorialization of TGD.

2.1 $M^8 - H$ duality at space-time level

Twistors emerge as a description of massless particles with spin [B7] but are not needed for spin zero particles. Therefore one can consider first mere momenta.

1. Consider first space-time surfaces of M^8 with Minkowskian signature of the induced metric so that the tangent space is M^4 . $M^8 - H$ duality [K1] implies that CP_2 points parameterize quaternionic sub-spaces M^4 of octonions containing fixed $M_0^2 \subset M^4$. Using the decomposition $1 + 1 + 3 + \bar{3}$ of complexified octonions to representations of $SU(3)$, it is easy to see that this space is indeed CP_2 . M^4 correspond to the sub-space $1 + 1 + 2$ where 2 is $SU(2) \subset SU(3)$ doublet.

CP_2 spinor mode would be spinor mode in the space of quaternionic sub-spaces $M^4 \subset M^8$ with $M_0^2 \subset M^4$ with real octonionic unit defining preferred time like direction and imaginary unit defining preferred spin quantization axis. $M^8 - H$ duality allows to map quaternionic 4-surfaces of $M^4 \supset M_0^2$ to 4-surfaces in H . The latter could be quaternionic but need not to.

2. For Euclidian signature of the induced metric tangent space is E^4 . In this case co-associative surfaces are needed since the above correspondence make sense only if the tangent space corresponds to M^4 . For instance, for CP_2 type extremals tangent space corresponds to E^4 . M^4 and E^4 change roles. Also now the space of co-associative tangent spaces is CP_2 since co-associative tangent space is the octonionic orthogonal complement of the associative tangent space. One would have Euclidian variant of the associative case.

$M^8 - H$ correspondence raises the question whether the octonionic M^8 or $M^4 \times CP_2$ represents the level, which deserves to be called fundamental. Or are they just alternative descriptions made possible by the quaternionicity of space-time surface in M^8 and quaternionic momentum space necessitating quaternionicity of the tangent space of X^4 ? In any case, one should demonstrate that the spectrum of states with $M^4 \times E^4$ with quaternionic light-like 8-momenta is equivalent with the spectrum of states for $M^4 \times CP_2$.

2.2 Parametrization of light-like quaternionic 8-momenta in terms of $T(CP_2)$

The following argument shows that the twistor space $T(CP_2)$ emerges naturally from $M^8 - H$ correspondence for quaternionic light-like M^8 momenta.

1. Continue to assume a fixed decomposition $M^8 = M_0^4 \times E_0^4$, and that for the allowed compositions $M^8 = M^4 \times E^4$ one has $M^4 = M_0^2 \times E^2$ with M_0^2 fixed. Light-like quaternionic 8-momentum in $M^8 = M_0^4 \times E_0^4$ can be reduced to light-like M^4 momentum and vanishing E^4 momentum for some preferred $M^8 = M^4 \times E^4$ decomposition.

One can therefore describe the situation in terms of light-like M^4 -momentum and $U(2)$ transformation (as it turns out) mapping this momentum to 8-D momentum in given frame and giving the M_0^4 and E_0^4 momenta. The alternative description is in terms M_0^4 massive momentum and the E_0^4 momentum. The space of light-like complex M^4 momenta with fixed M_0^2 part and non-vanishing E^2 part is given by CP_2 as also the space of quaternionic planes. Given quaternionic plane is in turn characterized by massless M^4 -momentum.

2. The description of M^4 -massive momentum should be based on twistor associated with the light-like M^4 momentum plus something describing the $SU(3)$ transformation leaving the preferred imaginary unit of M_0^2 un-affected. The transformations leaving unaffected the M^4 part of M^8 -momentum coded by the $SU(2)$ doublet 2 of color triplet 3 in the color decomposition of complex 8-momentum $1+1+3+\bar{3}$ but acting on E^4 part $1+\bar{3}$ non-trivially correspond to $U(2)$ subgroup. $U(2)$ element thus codes for the E^4 part of the light-like momentum and $SU(3)$ code for quaternionic 8-momenta, which can be also massive. Massless and complex M^4 momenta are coded by $SU(3)/U(2) = CP_2$ as also the tangent spaces of Minkowskian space-time regions (by $M^8 - H$ duality).
3. General complex quaternionic momenta with fixed M^4 part are parameterized by $SU(3)$. Complex light-like 8-momenta satisfy two additional constraints from light-likeness condition, and one expects the reduction of $SU(3)$ to $SU(3)/U(1) \times U(1)$ - the twistor space of CP_2 . Therefore the light-like 8-momentum is coded by a twistor assignable to massless M^4 -momentum by a point of $SU(3)/U(1) \times U(1)$ giving $T(M^4) \times T(CP_2)$.

By the previous arguments, the inclusion of helicities and electroweak charges gives twistor lift of $M^8 - H$ correspondence.

1. In the case of E^4 the helicities would correspond to two $SO(4)$ spins to be mapped to right and left-handed electroweak spins or weak spin and weak charges. Twistor space $T(CP_2)$ gives hopes about a unified description of color - and electro-weak quantum numbers in terms of partial waves in the space $SU(3)/U(1) \times U(1)$ for selections of quantization axes for color quantum numbers.
2. A possible problem relates to the particles massive in M^4 sense having more helicity states than massless particles. How can one describe the presence of additional helicities. Should one introduce the analog of Higgs mechanism providing the missing massless helicities? Quantum view about twistors describes helicity as a quantum number - conformal weight - of a wave function in the twistor sphere S^2 . In the case of massive gauge bosons which would require the introduction of zero helicity as a spin 0 wave function in twistor space.
3. One should relate the description in terms of M^8 momenta to the description in terms of $M^4 \times CP_2$ color partial waves massless in 8-D sense. The number of partial waves for given CP_2 mass squared is finite and this should be the case for quaternionic E^4 momenta. How color quantum numbers determining the M^4 mass relate to complex E^4 momenta parameterized by $U(2)$ plus two constraints coming from complex light-likeness. The number of degrees of freedom is 2 for given $U(2)$ orbit and the quantization suggests dramatic reduction in the number of 8-momenta. This strongly suggests that it is only possible to talk about wave functions in the space of allowed E^4 momenta - that is in the twistor space $T(CP_2)$. Fixing the M^4 -part of 8-momentum parameterized by a point of CP_2 leaves only a wave function in the fiber S^2 .

The discussion leaves some questions to ponder.

1. $M^8 - H$ correspondence raises the question whether the octonionic M^8 or $M^4 \times CP_2$ represents the fundamental level. Or are they just alternative descriptions made possible by the quaternionicity of space-time surface in M^8 and quaternionic momentum space necessitating quaternionicity of the tangent space of X^4 ?
2. What about more general $SO(1, 7)$ transformations? Are they needed? One could consider the possibility that $SO(1, 7)$ acts in the moduli space of octonion structures of M^8 . If so, then these additional moduli must be included. Otherwise given 8-D momenta have M_0^2 part fixed and orbit of given M^4 momentum is the smaller, the smaller the E^2 part of M^4 momentum is. It reduces to point if M^4 momentum reduces to M_0^2 .

3 How the two twistors spaces assignable to M^4 relate to each other?

Twistor Grassmann approach [B4, B3, B2, B5, B6, B1] uses as twistor space the space $T_1(M^4) = SU(2, 2)/SU(2, 1) \times U(1)$. Twistor lift of classical TGD uses $M^4 \times S^2$ [K3]: this seems to be necessary since $T_1(M^4)$ does not allow M^4 as space-space. The formulation of the twistor amplitudes in terms of SH using the data assignable to the 2-D surfaces - string world sheets and partonic 2-surfaces perhaps - identified as surfaces in $T(M^4) \times T(CP_2)$ is an attractive idea suggesting a very close correspondence with twistor string theory of Witten and construction of scattering amplitudes in twistor Grassmann approach.

One should be able to relate these two twistor spaces and map the twistor spaces $T(X^4)$ identified as surfaces in $T(H) = T(M^4) \times T(CP_2)$ to those in $T_1(H) = T_1(M^4) \times T(CP_2)$. This map is strongly suggested also by twistor string theory. This map raises hopes about the analogs of twistor Grassmann amplitudes based on introduction of $T(CP_2)$.

At least the projections of 2-surfaces to $T(M^4)$ should be mappable to those in $T_1(M^4)$. A stronger condition is that $T(M^4)$ is mappable to $T_1(M^4)$. Incidence relations for twistors $Z = (\lambda, \mu)$ assigning to given M^4 coordinates twistor sphere, are given by

$$\mu_{\dot{\alpha}} = m_{\alpha\dot{\alpha}} \lambda^{\alpha} .$$

They have as a general solution set of twistors satisfying

$$m_{\alpha\dot{\alpha}} = \frac{\lambda_{A,\alpha} \mu_{B,\dot{\alpha}}}{\langle \lambda_A \lambda_B \rangle} + \frac{\lambda_{B,\alpha} \mu_{A,\dot{\alpha}}}{\langle \lambda_B \lambda_A \rangle} .$$

The solutions are invariant under complex scalings $(\lambda, \mu) \rightarrow k(\lambda, \mu)$. Therefore co-incidence relations allow to assign projective line - sphere S^2 - to a point of M^4 in $T(M^4)$. This sphere naturally corresponds to S^2 in $T(M^4) = M^4 \times S^2$. This allows to assign pairs $(m \times S^2)$ in $T(M^4)$ to spheres of $T_1(M^4)$ and one can map the projections of 2-surfaces to $T(M^4)$ to $T_1(M^4)$.

Two M^4 points separated by light-like distance correspond to twistor spheres intersecting at one point as is clear from the fact that the difference $m_1 - m_2$ of the points annihilates the twistor λ . $T_1(M^4)$ singular as fiber bundle over M^4 since the same point of fiber is projected to two different points of M^4 .

REFERENCES

Theoretical Physics

- [B1] Trnka Y Arkani-Hamed N. The Amplituhedron. Available at: <http://arxiv.org/abs/1312.2007>, 2013.
- [B2] Feng B Witten E Britto R, Cachazo F. Direct Proof of Tree-Level Recursion Relation in Yang-Mills Theory. *Phys Rev*. Available at: <http://arxiv.org/abs/hep-th/0501052>, 94:181602, 2005.

- [B3] Witten E Cachazo F, Svrcek P. MHV Vertices and Tree Amplitudes In Gauge Theory. Available at: <http://arxiv.org/abs/hep-th/0403047>, 2004.
- [B4] Witten E. Perturbative Gauge Theory As a String Theory In Twistor Space. Available at: <http://arxiv.org/abs/hep-th/0312171>, 2003.
- [B5] Arkani-Hamed N et al. A duality for the S-matrix. Available at: <http://arxiv.org/abs/0907.5418>, 2009.
- [B6] Arkani-Hamed N et al. The All-Loop Integrand For Scattering Amplitudes in Planar N=4 SYM. Available at: <https://arxiv.org/abs/1008.2958>, 2010.
- [B7] Penrose R. The Central Programme of Twistor Theory. *Chaos, Solitons & Fractals*, 10, 1999.

Books related to TGD

- [K1] Pitkänen M. TGD as a Generalized Number Theory: Quaternions, Octonions, and their Hyper Counterparts. In *TGD as a Generalized Number Theory*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdnumber.html#visionb>, 2006.
- [K2] Pitkänen M. Does Riemann Zeta Code for Generic Coupling Constant Evolution? In *Towards M-Matrix*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdquantum.html#fermizeta>, 2015.
- [K3] Pitkänen M. About twistor lift of TGD? In *Towards M-Matrix*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdquantum.html#hgrtwistor>, 2016.
- [K4] Pitkänen M. From Principles to Diagrams. In *Towards M-Matrix*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdquantum.html#diagrams>, 2016.
- [K5] Pitkänen M. The classical part of the twistor story. In *Towards M-Matrix*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdquantum.html#twistorstory>, 2016.