

Did RNA replicate in codon-wise manner during RNA era?

M. Pitkänen

Email: matpitka6@gmail.com.

<http://tgdttheory.com/>.

June 20, 2019

Abstract

It is possible to replicate unfolded RNA strands in Lab by using enzymes known as ribozymes, which are RNA counterparts of enzymes, which are amino-acid sequences. In the presence of folding the replication is however impossible. Since ribozymes are in general folded, they cannot thus catalyze their own replication in this manner. It has been however discovered that the replication using RNA triplets - genetic codons - as basic unit can be carried out in laboratory even for the folded RNA strands and with rather low error rate. Also the ribozyme involved can thus replicate in codon-wise manner. For units longer than 3 nucleotides the replication becomes prone to errors.

The TGD based model for the findings relies on the vision that there are several realizations of the counterparts of DNA, RNA, tRNA, and amino-acids and of the genetic code so that chemical code is only one particular realization. For the dark realization in terms of entangled dark proton triplets one cannot analyze the codons to triplets of ordered letters so that codon is the smallest unit. This motivates the proposal that RNA replication during RNA era happened in codon-wise manner and relied on pre-tRNA in which amino-acid catalyzed the addition of RNA of tRNA to RNA sequence. The crucial evolutionary step would have been analogous to the emergence of written language in which words decomposed into letters meaning a transition from RNA era to DNA era and DNA replication and transcription in a letter-wise fashion. At this step DNA and RNA polymerases and DNA helicase emerged. This picture is discussed from the point of view of the realization of the code in terms of 3-chords formed from dark photons. The 12-note scale forming the basis of model of bio-harmony based on 64 chord harmony emerges naturally.

Contents

1	Introduction	1
2	TGD based model for the findings	2

1 Introduction

There was an interesting popular article in Spacedaily with title “*Scientists crack how primordial life on Earth might have replicated itself*” (see <http://tinyurl.com/y92ng5vd>). The research paper [I1] is titled “*Ribozyme-catalysed RNA synthesis using triplet building blocks*” and published in eLife (see <http://tinyurl.com/ya5qyjfn>).

It is possible to replicate unfolded RNA strands in Lab by using enzymes known as ribozymes, which are RNA counterparts of enzymes, which are amino-acid sequences. In the presence of folding the replication is however impossible. Since ribozymes are in general folded, they cannot thus catalyze their own replication in this manner. The researchers however discovered that the replication using RNA triplets - genetic codons - as basic unit can be carried out in laboratory even for the folded RNA strands and with rather low error rate. Also the ribozyme involved can thus replicate in codon-wise manner. For units longer than 3 nucleotides the replication becomes prone to errors.

The TGD based model for the findings relies on the vision that there are several realizations of the counterparts of DNA, RNA, tRNA, and amino-acids and of the genetic code so that chemical code is only one particular realization [L2, L1, L4]. For the dark realization in terms of entangled dark proton triplets one cannot analyze the codons to triplets of ordered letters so that codon is the smallest unit. This motivates the proposal that RNA replication during RNA era happened in codon-wise manner and relied on pre-tRNA in which amino-acid catalyzed the addition of RNA of tRNA to RNA sequence. The crucial evolutionary step would have been analogous to the emergence of written language in which words decomposed into letters meaning a transition from RNA era to DNA era and DNA replication and transcription in a letter-wise fashion. At this step DNA and RNA polymerases and DNA helicase emerged. This picture is discussed from the point of view of the realization of the code in terms of 3-chords formed from dark photons. The 12-note scale forming the basis of model of bio-harmony [L1] (see <http://tinyurl.com/yad4tqw1>) based on 64 chord harmony emerges naturally: in replication/transcription the letter of DNA/RNA codon must couple resonantly to 3 frequencies depending on the position in the codon so that $4 \times 3 = 12$ frequencies are needed for the 4 letters.

2 TGD based model for the findings

These findings are highly interesting in TGD framework. In TGD the chemical realization of genetic code is not fundamental. Rather, dark matter level would provide the fundamental realizations of analogs of DNA, RNA, tRNA, and amino-acids as dark proton sequences giving rise to dark nuclei at magnetic flux tubes [L4] (see <http://tinyurl.com/yalny39x>). Also ordinary nuclei correspond in TGD Universe to sequences of protons and neutrons forming string like entities assignable to magnetic flux tubes.

The basic unit representing DNA, RNA and tRNA codon and amino-acid would consist of 3 entangled dark protons. The essential aspect is that by entanglement the dark codons do not decompose to products of letters. This is like words of some languages, which do not allow decomposition to letters. This representation is holistic. As we learn to read and write, we learn the more analytic western view about words as letter sequences. Could the same hold true in evolution so that RNA triplets would have come first as entities pairing with dark RNA codons from dark proton triplets as a whole? Later DNA codons would have emerged and paired with dark DNA codons. Now the coupling would have been letter by letter in DNA replication and transcription to mRNA.

It is intriguing that tRNA consists of RNA triplets combined from amino-acids and analogs of mRNA triplets! The translation of mRNA to amino-acids having no 3-letter decomposition alone forces the holistic view but one can ask whether something deeper is involved. This might be the case. I have been wondering whether during RNA era RNA replicated using a prebiotic form of translational machinery, which replicated mRNA rather than translated RNA to protein formed from amino-acids (AAs) with AA serving as a catalyst.

1. During RNA era amino-acids associated with pre-tRNA molecules would serve as catalysts for replication of RNA codons. The linguistic mode would have been “holistic” during RNA era in accordance with the findings of the above experiments. RNA codon would have been the basic unit.
2. This would have led to a smaller number of RNAs since RNA and RNA like molecules in tRNA are not in 1-1 correspondence. A more realistic option could have been replication of subset of RNA molecules appearing in tRNA in this manner.
3. Then a great evolutionary leap leading from RNA era to DNA era would have occurred. AA catalyzed replication of RNA would have transformed to a translation of RNA to proteins and the roles of RNA and AA in tRNA would have changed. [Perhaps the increase of h_{eff} in some relevant structure as quantum criticality was reached led to the revolution]
4. At this step also (subset of) DNA and its transcription to (a subset of) mRNA corresponding to tRNA had to emerge to produce mRNA in transcription. In the recent biology DNA replicates and is transcribed nucleotide by nucleotide rather than using codon as a unit so

that helicases and DNA and RNA polymerases catalyzing replication and transcription should have emerged at this step. The ability of DNA to unwind with the help of helicase enzyme helping DNA to unwind is essential for the transcription and translation of DNA. Therefore helicase must have emerged together with the “analytic linguistic mode” as an analog of written language (DNA) decomposing codons to triplets of letters. This would be a crucial step in evolution comparable to the emergence of written language based on letters. Also the counterpart of RNA polymerase and separate RNA nucleotides for transcription should have emerged if not already present.

An alternative option would involve “tDNA” as the analog of tRNA and the emergence of helicase and polymerases later as the transition from holistic to analytic mode took place.

The minimal picture would be emergence of a subset of DNA codons corresponding to RNAs associated with pre-tRNA and the emergence of the analogs of helicase and DNA and RNA polymerases as the roles of amino-acid and RNA codon in tRNA were changed.

5. How DNA could have emerged from RNA? The chemical change would have been essentially the replacement of ribose with de-oxiribose to get DNA from RNA and U → T. Single O-H in ribose was replaced with H. O forms hydrogen bonds with water and this had to change the hydrogen bonding characteristics of RNA.

If the change of $h_{eff} = n \times h_0$ was involved, could it have led to stabilization of DNA? Did cell membrane emerge and allow to achieve this? I have proposed [L4] (see <http://tinyurl.com/yalny39x>) that the emergence of cell membrane meant the emergence of new representation of dark genetic code based on dark nuclei with larger value of h_{eff} .

Remark: One has $h = 6 \times h_0$ in the most plausible scenario [L3, L5] (see <http://tinyurl.com/goruuzm> and <http://tinyurl.com/y9jxyjns>)

The communication between dark and ordinary variants of biomolecules involves resonance mechanism and would also involve genetic code represented as 3-chords, music of light, and it is interesting to see whether this model provides additional insights.

1. The proposal is that 3-chords assignable to nucleotides as music of light with allowed 64 chords defining what I have called bio-harmony is essential for the resonance [L6, L7, L5] (see <http://tinyurl.com/ydhxen4g>, <http://tinyurl.com/yd5t82gq>, and <http://tinyurl.com/y9jxyjns>). The 3 frequencies must be identical in the resonance: this is like turning 3 knobs in radio. This 3-fold resonance would correspond to the analytic mode. The second mode could be holistic in the sense that it would involve only the sum only the sum of the 3 frequencies modulo octave equivalence assigning a melody to a sequence of 3-chords.
2. The proposal is that amino-acids having not triplet decomposition are holistic and couple to the sum of 3 frequencies assignable to tRNA and mRNA in this manner. Also the RNAs in tRNA could couple to mRNA in this manner. One could perhaps say that tRNA, mRNA and amino-acids codons sing whereas DNA provides the accompaniment proceeding as 3-chords. The couplings of DNA nucleotides to RNA nucleotides would rely on the frequencies assignable to nucleotides.
3. If the sum of any 3 frequencies associated with mRNA codons is not the same except when the codons code for the same amino-acids, the representation of 3-chords with the sum of the notes is faithful. The frequencies to DNA and RNA nucleotides cannot be however independent of codons since the codons differing only by a permutation of letters would correspond to the same frequency and therefore code for the same amino-acid. Hence the information about the entire codon would be needed also in transcription and translation and could be provided either by dark DNA strand associated with DNA strand or by the interactions between the nucleotides of the DNA codon.
4. The DNA codon itself would know that it is associated with dark codon and the frequencies assignable to nucleotides could be determined by the dark DNA codon. It would be enough that the frequency of the letter depends on its position in the codon so that there would be 3 frequencies for every letter: 12 frequencies altogether.

What puts bells ringing is that this the number of notes in 12-note scale for which the model of bio-harmony [L1, L6] (see <http://tinyurl.com/yad4tqw1> and <http://tinyurl.com/ydhxen4g>) based on the fusion of icosahedral (12 vertices and 20 triangular faces) and tetrahedral geometries by gluing icosahedron and tetrahedron along one face, provides a model as Hamiltonian cycle and produces genetic code as a by-product. Different Hamiltonian cycles define different harmonies identified as correlates for molecular moods.

Does each DNA nucleotide respond to 3 different frequencies coding for its position in the codon and do the 4 nucleotides give rise to the 12 notes of 12-note scale? There are many choices for the triplets but a good guess is that the intervals between the notes of triplet are same and that fourth note added to the triplet would be the first one to realize octave equivalence. This gives uniquely $CEG\sharp$, $C\sharp FA$, $DF\sharp B\flat$, and $DG\sharp B$ as the triplets assignable to the nucleotides. The emergence of 12-note scale in this manner would be a new element in the model of bio-harmony.

There are $4!=24$ options for the correspondence between $\{A, T, C, G\}$ as the first letter and $\{C, C\sharp, D, D\sharp\}$. One can reduce this number by a simple argument.

(a) Letters and their conjugates form pyrimidine-purine pairs T, A and C, G . The square of conjugation is identity transformation. The replacement of note with note defining at distance of half-octave satisfies this condition (half-octave - tritonus - was a cursed interval in ancient music and the sound of ambulance realizes it). Conjugation could correspond to a transformation of 3-chords defined as

$$CEG\sharp \leftrightarrow DF\sharp B\flat, \quad C\sharp FA \leftrightarrow D\sharp GB.$$

(b) One could have

$$\begin{aligned} \{T, C\} &\leftrightarrow \{CEG\sharp, C\sharp FA\}, & \{A, G\} &\leftrightarrow \{DF\sharp B\flat, D\sharp GB\}, \\ &\text{or} \\ \{T, C\} &\leftrightarrow \{DF\sharp B\flat, D\sharp GB\}, & \{A, G\} &\leftrightarrow \{CEG\sharp, C\sharp FA\}. \end{aligned}$$

(c) One can permute T and C and A and G in these correspondences. This leaves 8 alternative options. Fixing the order of the image of (T, C) to say $(C, C\sharp)$ fixes the order of the image of (A, G) to $(D, D\sharp)$ by the half-octave conjugation. This leaves 4 choices. Given the bio-harmony and having chosen one of these 4 options one could therefore check what given DNA sequence sounds as a sequence of 3-chords [L1].

That the position the frequency associated with the nucleotide depends on its position in the codon would also reflect the biochemistry of the codon and this kind of dependence would be natural. In particular, different frequencies associated with the first and third codon would reflect the parity breaking defining orientation for DNA.

That the position the frequency associated with the nucleotide depends on its position in the codon would also reflect the biochemistry of the codon and this kind of dependence would be natural. In particular, different frequencies associated with the first and third codon would reflect the parity breaking defining orientation for DNA.

REFERENCES

Biology

[I1] Holliger P et al. Ribozyme-catalysed RNA synthesis using triplet building blocks. *eLife*. Available at: <https://elifesciences.org/articles/35255>, 2018.

Articles about TGD

- [L1] Pitkänen M. Geometric theory of harmony. Available at: http://tgdtheory.fi/public_html/articles/harmonytheory.pdf, 2014.
- [L2] Pitkänen M. About Physical Representations of Genetic Code in Terms of Dark Nuclear Strings. Available at: http://tgdtheory.fi/public_html/articles/genecodemodels.pdf, 2016.
- [L3] Pitkänen M. Hydrinos again. Available at: http://tgdtheory.fi/public_html/articles/Millsagain.pdf, 2016.
- [L4] Pitkänen M. About the Correspondence of Dark Nuclear Genetic Code and Ordinary Genetic Code. Available at: http://tgdtheory.fi/public_html/articles/codedarkcode.pdf, 2018.
- [L5] Pitkänen M. Dark valence electrons and color vision. Available at: http://tgdtheory.fi/public_html/articles/colorvision.pdf, 2018.
- [L6] Pitkänen M. Emotions as sensory percepts about the state of magnetic body? Available at: http://tgdtheory.fi/public_html/articles/emotions.pdf, 2018.
- [L7] Pitkänen M. Homonymy of the genetic code from TGD point of view. Available at: http://tgdtheory.fi/public_html/articles/homonymy.pdf, 2018.