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Abstract

Holography= holomorphy principle allows to solve the extremely nonlinear partial differ-
ential equations for the space-time surfaces exactly by reducing them to algebraic equations
involving an identically vanishing contraction of two holomorphic tensors of different types. In
this article, space-time counterparts for elliptic curves and doubly periodic elliptic functions,
in particular Weierstrass function, are considered as an application of the method.

=W w NN

(o), BTSN N

10
10
11
12
12
13
13
15
15
15
16


http://tgdtheory.com/public_html/

CONTENTS 2

Calabi-Yau manifolds are n-complex-dimensional generalizations of elliptic surfaces and
recently found to emerge in a quantum field theory based model for energy production in the
scattering of blackholes. This motivates the question whether the holography= holomorphy
principle could allow the appearance of hyperbolic variant of K3 surface as 2-complex di-
mensional CY manifolds as analogs of lattice cells for periodic space-time surfaces, perhaps as
nonlinear generalizations of 4-dimensional plane waves with the periods serving as counterparts
of wave vectors. The space-time surfaces are identified as intersections of 2 6-D surfaces: could
they correspond in some cases to hypercomplex variants of 3-complex-dimensional Calabi-Yau
manifolds?

Partonic orbits as surfaces at which the Minkowskian signature of the metric transforms
from Minkowskian to Euclidian are identified as orbits of partonic 2-surfaces. Holography=
holomorphy vision allows to transform det(gs4) = 0 condition to a set 1-D Virasoro conditions
labelled by points of the partonic 2-surface.

Contents

1 Introduction

Holography = holography principle [L9, [L3],[L.7) L8] leads to an explicit construction of the solutions
of field equations by reducing the field equations from extremely nonlinear partial differential
equations to algebraic equations. In this article, elliptic curves and functions are considered as an
application.

1.1 Holography=holomorphy as the basic principle

Holography=holomorphy principle allows to solve the field equations for the space-time surfaces
exactly by reducing them to algebraic equations.

1. Two functions f; and fo that depend on the generalized complex coordinates of H = M* x
CP; are needed to solve the field equations. These functions depend on the two complex
coordinates &; and & of C'P, and the complex coordinate w of M* and the hypercomplex
coordinate u for which the coordinate curves are light-like. If the functions are polynomials,
denote them f; = P, and fy = P».

Assume that the Taylor coefficients of these functions are rational or in the expansion of
rational numbers, although this is not necessary either.

2. The condition f; = 0 defines a 6-D surface in H and so does fo = 0. This is because the
condition gives two conditions (both real and imaginary parts for f; vanish). These 6-D
surfaces are interpreted as analogs of the twistor bundles corresponding to M* and CPx.
They have fiber which is 2-sphere. This is the physically motivated assumption, which might
require an additional condition stating that £&; and & are functions of w as analogs of the
twistor bundles corresponding to M* and CP,. This would define the map mapping the
twistor sphere of the twistor space of M* to the twistor sphere of the twistor space of C' Py
or vice versa. The map need not be a bijection but would be single valued.

The conditions f; = 0 and fo = 0 give a 4-D spacetime surface as the intersection of these
surfaces, identifiable as the base space of both twistor bundle analogies.

3. The equations obtained in this way are algebraic equations rather than partial differential
equations. Solving them numerically is child’s play because they are completely local. TGD
is solvable both analytically and numerically. The importance of this property cannot be
overstated.

4. However, a discretization is needed, which can be number-theoretic and defined by the ex-
pansion of rationals. This is however not necessary if one is interested only in geometry and
forgets the aspects related to algebraic geometry and number theory.
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5. Once these algebraic equations have been solved at the discretization points, a discretization
for the spacetime surface has been obtained.

The task is to assign a spacetime surface to this discretization as a differentiable surface.
Standard methods can be found here. A method that produces a surface for which the
second partial derivatives exist because they appear in the curvature tensor.

An analogy is the graph of a function for which the (y,z) pairs are known in a discrete set.
One can connect these points, for example, with straight line segments to obtain a continuous
curve. Polynomial fit gives rise to a smooth curve.

6. It is good to start with, for example, second-degree polynomials P; and P; of the generalized
complex coordinates of H.

1.2 How could the solution be constructed in practice?

For simplicity, let’s assume that f; = P; and fo = P» are polynomials.

1. First, one can solve for instance the equation P (u, w, &1, &2) = 0 giving for example & (u, w, &)
as its root. Any complex coordinates w, & or & is a possible choice and these choices can
correspond to different roots as space-time regions and all must be considered to get the full
picture. A completely local ordinary algebraic equation is in question so that the situation
is infinitely simpler than for second order partial differential equations. This miracle is a
consequence of holomorphy.

2. Substitute & (u, w, &) in Py to obtain the algebraic function P (u, w, &1, &2 (u, w, &1)) = Q1 (u, w, &1).

3. Solve &; from the condition Q; = 0. Now we are dealing with the root of the algebraic func-
tion, but the standard numerical solution is still infinitely easier than for partial differential
equations.

After this, the discretization must be completed to get a space-time surface using some
method that produces a surface for which the second partial derivatives are continuous.

Very interesting special cases are polynomials with order not larger than 4 since for these the
roots can be solved explicitly. I have proposed that P, characterizes the cosmological constant as
a correspondence between the twistor spheres of M* and C'P, and is characterized by the winding
number. In standard cosmology A is a constant of Nature but in TGD it is predicted to have a
hierarchy of values. The simplest relationship would be P, = &5 — w™, n integer. In this case, one
can solve & (w) and substitute it to P; to obtain the condition

P1(§1,§2(w),w,u):() . (11)

If P, as a polynomial of £&; has order lower than 5, the roots of & can be solved explicitly.
Elliptic curves satisfy the condition

E—wltaw+b=0 . (1.2)

The projections of the w-plane are doubly periodic curves and therefore of special interest. For
Py =& —w? and Py = €2 — wé + aw + b, the space-time surface would be a 4-D analog of an
elliptic curve. If a and b depend on u, the 3-surface becomes dynamical.

1.3 Do Calabi-Yau manifolds as generalizations of elliptic curves appear
in TGD?

Calabi-Yau manifolds are n-complex-dimensional generalizations of elliptic surfaces and recently
found to emerge in a quantum field theory based model for energy production in the scattering of
blackholes [?]. This motivates the question whether the holography= holomorphy principle could
allow the appearance of hyperbolic variant of K3 surface as 2-complex dimensional CY manifolds
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as analogs of lattice cells for periodic space-time surfaces, perhaps as nonlinear generalizations of
4-dimensional plane waves with the periods serving as counterparts of wave vectors. The space-
time surfaces are identified as intersections of 2 6-D surfaces: could they correspond in some cases
to hypercomplex variants of 3-complex-dimensional Calabi-Yau manifolds?

1.4 Holography= holomorphy vision and a more precise view of partonic
orbits

A more precise view about the 3-D light-like trajectories of 2-dimensional parton surfaces is devel-
oped on the basis of holograpy= holomorphy hypothesis. Partonic orbits are identified as light-like
3-surfaces at which the signature of the induced metric changes from Minkowskian to Euclidian
so that the metric determinant vanishes. It turns out that this condition generalizes the Virasoro
conditions for 1-dimensional light-like curves to the 3-dimensional light-like partonic orbits. Also
an explicit procedure for finding the partonic orbits is discussed.

2 Elliptic curves as an application

One can test whether the numerical method works when the equation giving &; in terms of w can be
solved analytically. For elliptic curves & = & (w) , which I have discussed already earlier [L1}, [L3],
this is the case.

2.1 Elliptic curves

The third order polynomial characterizing the elliptic curve (see|this) can be be expressed in terms
of the root of a third order polynomial Ps(w) as

E: & =4(w—ep)(w—e)(w—e3) , (2.1)

One can choose the complex w in such a manner that the equation contains no term proportional
to w?. This is guaranteed if the condition e; + e + e3 = 0 holds true. In this case one obtains the
form

E:E%:4w3792w7937 ’
g2 = —4(e1ez +eze3 +ezer) , gz =4dejezes , e +ext+e3=0 .

2.2 Connection with Weierstrass elliptic functions

There is a connection with Weierstrass elliptic functions, which satisfy the differential equation

0 (2)” = 4p(2)° — g29(2) — g3 - (2.3)

Clearly, By using z as a complex coordinate instead of w, & (w) and w for the elliptic curve
can be expressed in terms of Weierstrass elliptic function, which is a solution of this differential
equation

G(w)=¢'(2) , w(z)=p(2) . (2.4)

Elliptic functions are doubly periodic and using z = p~!(w) as a complex coordinate instead
of w, this periodicity becomes manifest. The solution possesses a discrete conformal symmetry
consisting of a discrete subgroup of 2-D translations and this gives rise to a lattice structure. This
conforms with the fact that the elliptic curve, as a compact 2-D surface in the space spanned by
coordinates (£1,w) has the topology of a torus and therefore can allow translations as conformal
symmetries. This is the case for the elliptic curves considered.
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One can represent torus in a complex plane with coordinate z in terms of Weierstrass elliptic
function g having a double periodicity in z-plane as conformal symmetries. The torus corresponds
to the fundamental domain (2-D lattice cell) obtained by identifying the opposite boundaries of
the lattice cell. The periods wy and we define non-orthogonal directions and their ratio 7 = wq /wo
is conformal invariant.

One can solve the fundamental periods w; and wsy in the following way. Define the auxiliary
quantities

apgp =\ €1 — €3, bo = Ve — €y, Co =€y — €3, . (25)

The condition e; + es + e3 = 0 allows to eliminate eg so that one has

ag =/ —€g, b() = Ve — €, Co — —€1, . (26)

The fundamental periods w; and wy for the elliptic curve can be calculated very rapidly by

™ ™

w1 = M(ao,bo)’ w2 = M(Cg,ibo)

2.7)

Or more explicitly

Y N(Veava—a) | 2T M ive —a) (2.8)

Here M(z,y) is defined as arithmo-geometric mean of x and y by a geometric iteration (see this).
Assuming x > y > 0 one has

a=2,90=Y , nt1 = (an+ 9n)/2, g1 = V/(angn) - (2.9)

At the limit n — oo one has a,, 41

simeqa, — a and gn11 ~ g, — g and one has a = (a + g)/2 and g = ,/ag implying a = g so that
arithmetic and geometric means are identical. Care is required to take the correct sign of square
root at each step of iteration (positive in the case considered). The iteration generalizes to the
complex case and there probably exist tested programs performing the iteration.

2.3 Elliptic functions and planetary orbits

Weierstrass elliptic functions p are periodic in complex plane and this inspires the question of how
they rate to the formulas for the elliptic planetary orbits in the gravitational potential V (r) = k/r.
Choose the mass unit so that the mass is m = 1. By spherical symmetry, orbits are planar
and angular momentum conservation gives L = r2d¢/dt as a constant of motion. In the radial
degree of freedom, energy conservation E = (dr/dt)?/2 — k/r + L?/2r? gives (dr/dt)*> = E +
k/r — L?/r?. By using u = 1/r as variable, one obtains (du/dt)? = Eu* + ku® — L?u? giving
du/dt = v/Eu* + ku3 — L2u?2, which in turn gives t = fdu/\/Eu4 + ku3 — L2u?. This gives the
planetary orbit as an elliptic integral. The elliptic integral continued to complex values z of the
time coordinate ¢ defines explicitly the inverse of a doubly periodic elliptic function.

This integrand gives an elliptic function (see this), which is more general than p. The integrand

1/4/(1 = c22)(1 + E%2) gives Abelian elliptic functions whereas the integrand 1/+/(1 — t2)(1 — k2t2)
gives Jacobi elliptic functions.

The elliptic integral defines the inverse of the Weierstrass elliptic function g only for £ = 0
so that the polynomial under the square root reduces to a third order polynomial. The integrand
reduces to 1/uvku — L2. The square root factor vanishes at ug = L?/k which corresponds to
the minimal distance r between the two masses and v = 0, which corresponds to r = oco. This
corresponds to a critical situation in which elliptic orbit transforms to a parabolic orbit. The
absence of periodicity at real axis is consistent with the double periodicity of @ in the complex
plane.
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One can transform the integrand to a form appearing in p by assuming k = 4 and by making a
linear coordinate change v — v, u = v — v, and choosing vy in such a way that the v? term under
the square root vanishes. The required value of vy is vg = —L?/6k. The parameters go and g3 in
4v3 — gov — g3 are given by go = L?/24 and g3 = —L5275373.

One can calculate the inverse of 2 = p~!(w) (complex analog of time coordinate) for a complex
argument w (complex analog of the radial coordinate of a planet at the elliptic orbit) by calculating
the complex integral

1
ot (w) = / dw .
(wo—w) \/AW? — gow — g3

The integration path + can be chosen in infinitely many ways and a small deformation does not
affect the result. The argument of the square root as a polynomial has three roots and the
deformation of the integration path in such a way that the deformed curve passes over a root
of 4w3 — gow — g3, the integral changes. This gives rise to the infinitely many-valued nature of
o~ 1(w). For a root with multiplicity 1, the integrand has 1/,/w — wq type singularity as the end
point of a cut and since the cut means discontinuity, the integral depends on which side of the cut
the integration path goes. For a double root there is a pole.

The connection between planetary dynamics and generalized complex surfaces is intriguing
and leads to ask whether the connection is more general so that space-time surfaces defined by
the conditions f; = 0, fo = 0 represent some dynamical systems, say periodic systems in spher-
ically symmetric potential. These surfaces should allow interpretation as closed surfaces of C'P;
with coordinates &; and w. These surfaces are characterized some genus and should correspond
to a conformal equivalence class characterized by Teichmueller parameters (in the case of torus
assignable to the elliptic functions there is only one modular invariant 7 defined by the ratio of
complex periods). The condition of being closed might require additional constraints. Could closed
surfaces as solutions to the conditions (f1, f2) = (0,0) correspond to nonlinear first order differen-
tial equations with & = dE/dz and w = E(z) defining higher genus analogs of elliptic curves and
elliptic functions?

2.4 Calabi-Yau manifolds as generalizations of elliptic curves

I received a like to a very interesting Nature article reporting the work of Driesse et al on calculation
of gravitational scattering amplitudes of blackholes in a quantum field theory model. The title
of the article [?] (see this) is ”Emergence of Calabi Yau manifolds in high-precision black-hole
scattering”. There is also popular article (see this) describing the findings. The motivation is that
blackholes are are elementary particle-like objects characterized byt only mass, spin, and charge.

Let us look first at the abstract of the article.

When two massive objects (black holes, neutron stars or stars) in our universe fly past each
other, their gravitational interactions deflect their trajectories. The gravitational waves emitted
in the related bound-orbit system-the binary inspiral-are now routinely detected by gravitational-
wave observatories. Theoretical physics needs to provide high-precision templates to make use of
unprecedented sensitivity and precision of the data from upcoming gravitational-wave observatories.
Motivated by this challenge, several analytical and numerical techniques have been developed to
approzimately solve this gravitational two-body problem. Although numerical relativity is accurate
it is too time-consuming to rapidly produce large numbers of gravitational-wave templates. For
this, approximate analytical results are also required. Here we report on a new, highest-precision
analytical result for the scattering angle, radiated energy and recoil of a black hole or neutron star
scattering encounter at the fifth order in Newton’s gravitational coupling G, assuming a hierarchy
in the two masses. This is achieved by modifying state-of-the-art techniques for the scattering of
elementary particles in colliders to this classical physics problem in our universe. Our results show
that mathematical functions related to Calabi-Yau (CY) manifolds, 2n-dimensional generalizations
of tori, appear in the solution to the radiated energy in these scatterings. We anticipate that our
analytical results will allow the development of a new gemeration of gravitational-wave models,
for which the transition to the bound-state problem through analytic continuation and strong-field
resummation will need to be performed.

These findings look interesting from the TGD point of view. Calabi-Yau (CY) manifolds have
an arbitrary complex dimension n. They generalize the notion of periodic orbit. In 1-D case orbit


https://www.nature.com/articles/s41586-025-08984-2
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becomes a complex 2-D manifold, elliptic surface. But complex differential geometry allows a
generalization to n-D real periodic orbits and their complex counterparts.

1. Torus is the simplest CY and 2-real-D elliptic doubly periodic surfaces appearing in complex
analysis represent the basic example. I have discussed their representations at the level of
space-time surfaces in the framework provided by holography= holomorphy vision. Weier-
strass surfaces is one example [L13].

The periods of planetary orbits in Coulomb force expressible in terms of elliptic integrals
very probably led to the notion of elliptic Riemann surfaces by making the time variable
complex. Elliptic Riemann surfaces are compact but define doubly periodic structures when
represented in complex plane? Could the two periods define analogs of momenta?

2. The K3 surface (see this)) is a 4-(real)-dimensional CY manifold and a purely algebraic object
having a unique topology. It appears in fourth order G* in the calculation. K3 surface allows
a Kéahler metric. It is not clear to me how unique this metric is. The existence of the
Kahler metric is important from the TGD point of view since induced metric codes for the
Riemannian geometric aspects of TGD.

Holography= holomorphy vision reduces TGD to algebraic geometry, which can be also
regarded as Riemann geometry. Therefore an interesting question is whether a 4-real-D
complex K3 surface could be represented in the TGD framework as a complex surface. Does
Euclidean signature prevent this or does the K3 surface have a Minkowskian analog obtained
by making the second complex coordinate hypercomplex?

K3 surface can be represented as Fermat quartic surface z* + y* + 2% + t* = 0 in the twistor
space CP; assigned M*, or rather, its compact version. Twistor spaces of M* and CP,
appearing as factors of H = M* x C'P, are unique in the sense that they are the only 4-D
spaces allowing twistor bundles with a K&hler metric [L14].

In TGD, CP; generalizes to its hypercomplex variant with one complex coordinate made
hyperbolic and corresponds to SU(3,1)/SU(3) x U(1) [L14]. This generalization allows to
identify the base space of the twistor bundle as M?, rather than its compactified version.
The hyperbolic counterpart of the quartic Fermat surface might serve as a one particular
space-time surface in holography= holomorphy vision [L4, [7, [L1T] [.14].

In TGD, a generalized complex manifold is obtained from a complex manifold by making
one complex coordinate hypercomplex. H = M* x CP, and space-time surfaces X* in H
are generalized complex manifolds. Suppose that the double periodicity of the 2-dimensional
case generalizes so that the hyperbolic variant of K3 surface could correspond to a lattice
cell of a 4-D periodic structure. Could one assign the hyperbolic counterpart of K3 surface
a 4-D variant of a plane wave? This would conform with the view that gravitational waves
are involved with the scattering of blackholes. Could kind of representation generalize to all
kinds of plane waves and could K3 be one of the simplest examples?

3. The 3-complex-dimensional CYs were not mentioned in the article. They appear in the
spontaneous compactification of the string models. Now the topology is not unique and the
famous number 10°°° was introduced as a rough estimate for their number. This turned out
to be an untestable and fatal production.

What a 3-real-dimensional periodic ”orbit” and its complex generalization could mean? By
holography= holomorphy vision [L4} 7, [L11] [L.14], space-time surfaces are representable as
intersections of 2 3-D generalized complex manifolds X® and Y% in H and could be seen as
analogs of twistor spaces for M* and C'P,. The twistor space CP3 is a CY manifold. Also
the SU(3)/U(1) x U(1) as the twistor space of CP, is a Kéhler manifold [A2]: this makes
TGD unique.

Could it happen that X% or Y is a generalized CY manifold with one hypercomplex coor-
dinate? 6-D real periodicity would require double periodicity also in hyperbolic coordinate,
which looks unrealistic since by hyper-complex analyticity only the second real hyperbolic
coordinate of the pair (u,v) appears as argument in the function pair (fi, f2) : H — C? defin-
ing the space-time surface as its root. It would seem that only one hypercomplex coordinate
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can allow the periodicity? 3-D (2-D) generalized complex homology would be non-trivial for
these 6-surfaces (space-time surfaces).

3 Holography= holomorphy vision and a more precise view
of partonic orbits

3-D light-like partonic orbits are a central piece of the TGD view of elementary particles. In the
sequel a more precise identification of these surfaces is considered.
It is however useful to start by clarifying some basic aspects of dynamics in the TGD Universe.

1. There are two kinds of degrees of freedom in TGD: geometric, i.e. degrees of freedom of
the space-time surface, and fermionic. All elementary particles are made up of fermions and
antifermions: bosons emerge. There are no bosonic primary quantum fields.

2. The basic result from the solution of the Dirac equation for H spinor fields, assuming that
M* has a non-trivial Kihler structure [[.12], is that the mass scale of colored partial waves of
fermions is given by C'P, mass scale and there are no free massless gluons or quarks. However,
massless color singlets for which the difference in the numbers of quarks and antiquarks is
a multiple of three, are possible. This gives baryons and mesons. p-Adic thermodynamics
gives small thermal masses for the massless modes states appearing as ground states for the
generalization of super-conformal representations.

Here comes a crucial difference between QCD and TGD. In lattice QCD there would be no
g — 2 anomaly whereas the approach based on the information given by physical hadrons
imply the anomaly (see this). In TGD, color singlets, in particular hadrons, are indeed the
fundamental objects. The anomaly would be real and the new physics implied by TGD
predicts it [L12]. For example, copies of hadron physics at larger mass scales are predicted.
Also the color singlets formed from higher color partial waves of quarks and leptons give rise
to an infinite number of new hadrons and also leptons: I have called them lepto hadrons
and there is evidence for them [K3]. This could not be farther from the notion of the desert
assumed in GUTs. It will be exciting to see whether QCD or TGD is right.

3. The arguments of the n-point functions of the second quantized free fermion fields of H
(scattering amplitudes) are points of the spacetime surface so that the dynamics of the
spacetime surface affects the scattering amplitudes. Effectively, the spacetime surface defines
the classical background in terms of the induced fields: induced metric, spinor connection,
etc... Free fermion field do not allow pair creation in ordinary QFTs. The possibillity
of exotic smooth structures for 4-D space-times comes in rescue here [L10] [?] The exotic
smooth structure can be seen as the ordinary smooth structure with defects. Defects define
analogs of vertices for the creation of fermion pair interpreted as turning of a fermion line
in time direction. Since bosons correspond bound states of fermions and antifermions rather
than primary quantum fields, all interaction vertices reduce to this vertex.

A particle can be seen in two ways:

1. Particle as a 3-surface and its Bohr orbit as a four-surface X*.

2. Particle as a fermion and its orbit, the fermion line, is a light-like curve, maybe even a
light-like geodesic line in M* x C'P, or M*.

The spacetime surface X* has a rich anatomy and this leads to a more detailed view of what
particles are.

1. X* has internal structure and the 3-D partonic orbits define light-like surfaces X3 at which
the Minkoski signature of the surface becomes Euclidean so that the metric determinant
vanishes.


https://bigthink.com/starts-with-a-bang/anomaly-muon-g-2-puzzle/
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2. A fermion line would be an intersection of 2-D string world sheet and a 3-D light-like partonic
orbit. The proposal is that string world sheet can be obtained as the intersection of two
spacetime surfaces X* and Y* if they have the same Hamilton-Jacobi structure at the level
of H [L4], i.e. allow the same generalized complex H coordinates u, w, &1, & and their
conjugates ( = v). The corrected view of generalized analyticity however forces to challenges
this assumption although it is physically very attractive.

One can ask whether the mutual interactions of particles as space-time surfaces occur only
when they have the same Hamilton-Jacobi (H-J) structure. If so, the interactions can be
described in terms of their intersections consisting of string world sheets and fermion lines at
their boundaries. If so, a strong analogy with string models would emerge. The second option
is that the intersections are discrete. Also now fermionic n-point functions are well-defined.

Also the self-interactions could be described by considering infinitesimal deformation of the
space-time surface preserving H-J structure and finding the string world sheets in this case.

3. In TGD, the genus of the parton surface is an important topological quantum number [K2].
The genera g = 0,1,2 corresponds to the observed fermion generations. ¢ = 2 allows a
bound state for the 2 handles of the sphere that are like particles. This is because g < 2
allows global conformal symmetry. In the g > 2 topology, ¢ handles are like particles in a
multiparticle state, and the mass spectrum of the states is continuous, unlike for elementary
particles.

Also the homological charge of the partonic 2-surface, identifiable as K&hler magnetic charge
of the space-time surface is an important topological quantum number.

This article was born as an attempt to develop a more precise view about the 3-D light-like
trajectories of 2-dimensional parton surfaces on the basis of holograpy= holomorphy hypothesis
(H-H).

1. CP, type extremals [K1] have a 1-D light-like curve as M* projection. Their complex defor-
mations satisfy H-H. The projection corresponds to a coordinate curve of the hypercomplex
coordinate u or v. The generalization of the (f1, f2) = (0,0) hypothesis to them turned out
to be impossible: C'P, projection turned out to be 3-dimensional and failed to satisfy H-H.

The assumption that the space-time surface X* is invariant under generalized conjugation
taking v to v and vice versa, implies that X% must have two sheets with v = vy or u = ug
permuted by the generalized conjugation. They meet at the 3-surface X2 u = v. This implies
uy = vo implying that two M* coordinates u,v are constant and one has 3-D surface of C' P,
invariant under complex conjugation of complex H coordinates. At this surface, the light-like
curves for the two sheets meet at an edge, which has an interpretation in terms of an exotic
smooth structure in turn having interpretation in terms of a vertex for a creation of a fermion
pair.

2. Partonic orbits can be identified as light-like 3-surfaces at which the signature of the induced
metric changes from Minkowskian to Euclidian so that the metric determinant vanishes and
the induced 4-metric degenerates to an effectively 2-D metric.

3. The light-like v or v coordinate lines can have edges at the partonic orbits. This has led
to a proposal for how exotic smooth structures necessary for defining fermion pair creation
vertices emerge via partonic orbits as defects of the standard smooth structure [LI0, [L2].
Fermion pair as a fermion returning backwards in time would correspond to the edge of u (or
v) coordinate line. These conditions generalize the Virasoro conditions for 1-dimensional
light-like curves to the 3-dimensional light-like partonic orbits.

4. The light-likeness of the coordinate lines generalizes the Virasoro conditions for 1-dimensional
light-like curves to the 3-dimensional light-like partonic orbits and one obtains a set of 1-D
Virasoro conditions parametrized by the points of the partonic 2-surface. In fact, the 1-D
Virasoro conditions emerged first for C' P, type extremals [KI] and led to the realization that
the generalization of conformal invariance in some sense must be a fundamental symmetry
of TGD: the discovery of holography= holomorphy principle finally led to a detailed under-
standing of this symmetry [L6]. Also an explicit procedure for finding the partonic orbits is
discussed.
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3.1 The identification of the partonic orbits

It took a considerable time to realize that holography= holomorphy vision has delicate technical
problems and the recent view was found by trial and error.

3.1.1 Definition of hypercomplex conjugation

What does one mean with the generalization of the complex conjugation when applied to the argu-
ment of f?7 Could it correspond a) to (u,w, &1, &) — (u, W, &1, &2) so that there is no hypercomplex
conjugation or b) to (v,w, &1, &) — (u, W, &1, &) so that there is hypercomplex conjugation.

1. For option a), the roots of f and f represent the same surface. For the roots of f the
contribution of complex coordinates to g,, and gy, is vanishing but the components g,z and
there is only the contribution of M* metric to g,,. Partonic orbits are not possible.

2. For option b), the roots of the conjugate f do not coincide with the roots of f unless sym-
metries exist. If the space-time surface is invariant under the generalized conjugation (in
analogy with complex plane), it must be a union of the u-type and v-type regions defines
the space-time surface. Hypercomplex conjugation would be a non-local symmetry trans-
forming to each other two parts of the space-time surface. The 3-surface u = v would be a
3-dimensional surface along which the two space-time regions would be glued together.

Consider the option b) in more detail.

1. How to identify the u- and v-type regions? In the model for elementary particles, Euclidian
regions as deformations of C' P, extremals connect two Minkowskian space-time sheets, which
are extremely near to each other having a distance of order C'P, radius. Could the two
Minkowskian space-time sheets correspond to u- and v-type regions and could generalized
complex conjugation (u,w, &1, &) < (v,W, &, &) transform then to each other.

2. Could the 3-surface X? at which the sheets intersect so that both u and v coordinates
associated with the sheets are identical, define the 2-surface X? along which the sheets are
glued together? Could this surface be identifiable as the light-like partonic orbit.

The wormhole contact identified in this way has 3-D C P, projection and does not correspond
to the C'P; type extremal. It is not clear whether this is a problem or not.

3. Presumably, there would be discontinuity associated with the derivatives of the embedding
space coordinates at X2, where the u- and v-type time evolutions at the two sheets would
be glued together.

4. Could X3 be interpreted in terms of an exotic smooth structure [A3, [A4] [AT] allowing an
interpretation as the standard smooth structure with defects? Could the u- lines transform
to v-lines at X3 and give rise to edges violating the standard smoothness.

Also the partonic orbits could define analogous defects since the u- resp. v-lines could have
an edge. The identification of fermion lines as these kinds of lines allow the interpretation
of defects as vertices for the creation of fermion-antifermion pair as turning of fermion line
backwards in time [L10| [L2]?

3.1.2 Technical problems of the holography= holomorphy vision

Consider first the technical problems related to the finding of the roots of (fi, f2) appearing in
the Euclidean space-time regions. Note that this is only an ansatz, which is less general than H-H
and need not work for wormhole contacts as deformations of C'P, type extremals [KI].

1. The first problem is that in Minkowskian regions defining the parallel space-time sheets one
has two kinds of solutions for which hypercomplex coordinate u resp. its conjugate v
appears in f; resp. its conjugate. These should correspond to a single solution and the only
way is to consider their union. The two regions in question have a natural identification
as Minkowskian space-time sheets connected by a wormhole contact with an Euclidean
signature of the induced metric.
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At the surface, where the two sheets are glued, f; must be invariant under conjugation,
which for real coefficients of f; requires u = v and reality of various complex coordinates or
at least that the surface in question is invariant under complex conjugation.

2. In Euclidean regions, the realization of H-H, using (f1, f2) = (0,0) ansatz assuming that
either hypercomplex coordinate wu or v is a dynamical variable, leads to a problem. Either
w or v is a complex analytic function f of C'Py coordinates and its reality implies Im(f) =0
so that CP, projection is 3-dimensional, which means the failure of the holomorphy with
respect to the C'P, coordinates. For a moment I thought that Wick rotation might help but
this was not the case.

3. This forces to give up (f1, f2) = (0,0) ansatz and assume only H-H. The original vision was
that the Euclidean region as a wormhole contact corresponds to a deformation of a canonically
embedded CP, so that it has a light-like coordinate curve of u or v as M* projection. These
space-time surfaces are holomorphic so that field equations are satisfied.

The gluing condition implies constancy condition v = vy resp. u = uy and v resp. u is
replaced with a real C'P, coordinate s(u) resp. s(v). M?* complex coordinate w can be a
function of C' P, coordinates.

4. The gluing condition for the two sheets requires uy = vo which for v = m°® + m3 and
v =m® —m? gives m® = 2up and m® = 0. At the points of this 3-surface) there is an
edge at which the coordinate curves for u and v meet: the interpretation could be in terms
of an exotic smooth structure [A3l [A4l [A1] as standard smooth structure with a defect to
which fermion pair creation or fermion scattering vertex can be assigned. The two sheets
are glued together along a 3-surface X3 with 3-D C' P, projection invariant under complex
conjugation. The C' P, projection X3 must contain a homologically non-trivial 2-surface since

the wormhole contact must carry a monopole flux between the space-time sheets.

This tentative picture would relate several key ideas of TGD: H-H involving hypercomplex
numbers, the notion of light-like partonic orbit, the idea that exotic smooth structures make
possible non-trivial scattering theory in 4 dimensional space-time. One can compare this picture
with the intuitive phenomenological picture.

3.1.3 The 3-D light-like orbits of partonic 2-surfaces

The trajectories of partonic 2-surfaces are singularities at which the Euclidean induced 4-geometry
transforms into Minkowskian. The light-like dimension implies 4/|det(g4)] = 0. The challenge is
to derive the partonic orbits from this.

1. H-J structure defines Kahler structure M* C H inducing that of X* and is independent
of holography= holomorphy hypothesis. The induced Kéhler structure of X* is defined by
the projection of the sum of M* and C'P, Kihler forms and need not be the same as that
of M*. If the proposal holds true, these structures differ only at the partonic orbits. The
generalized complex coordinates of X% (hypercomplex coordinate u (or v) and complex
coordinate w) are a subset of the generalized complex coordinates of H, which also include
2 complex coordinates of C'Ps.

The induced Kahler structure of X*, which is more or less equivalent with Hamilton-Jacobi

structure, defines a slicing of X* by light-like 3-surfaces with one light-like curves, which
can be taken to correspond to the hypercomplex coordinate u, which is constant along the
lines u = ug. Also its dual slicing, assignable to the v-surface is well-defined.

The 4-metric is hermitian and is a tensor of type (1,1) having only 4 independent components.
The only non-vanishing component of the induced 3-metric g% at X3 defined by the projection
of the 4-metric is g,z so that the slice is metrically 2-dimensional. Light-cone boundary
provides a simple example of this.
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2. The space-time surface X* is defined by the conditions (f1, f2) = (0,0), where f; and f are
analytic functions H = M* x CP, — C? depending only on the hypercomplex coordinate
u with light-like coordinate curves and complex coordinates w, & and & of H but not on
the coordinate v as hypercomplex conjugate u and the conjugates @, &1, &;. The surfaces are
same.

As a special case, f; are polynomials or rational functions. Additional restrictions can be
posed on the coefficients of the polynomials. The conditions (fi, f2) = (0,0) have been
studied in some cases [L13].

3. y/det(gs) = 0 gives an additional condition and gives a 3-D light-like partonic orbit X3.

3.1.4 det(gs) = 0 condition as a generalization of Virasoro conditions

The g2, = 0 condition has an interpretation as a generalization of the Virasoro conditions of string
models to the 4-D context.

1. If the situation were 2-dimensional instead of 4-D, the det(gs) = 0 condition would give a
light-like curve and the light-likeness would give rise to the Virasoro conditions. This was
actually one of the first observations as I discovered C' P, extremals, whose M* projection is
a light-like curve for the Kéhler action [K1]. For the action defined by the sum of Kéhler
action and volume term the light-like curves are replaced with light-like geodesics of M* and
possibly of H. The conditions as such are not Virasoro conditions. It is the derivative of
the conditions with respect to the curve parameter, which gives the Virasoro conditions. By
taking Fourier transform one obtains the standard form of the Virasoro conditions.

The Virasoro conditions can fail at discrete points and these singularities have an interpreta-
tion as vertices and also as points at which the generalized holomorphy fails. The poles and
zeros of the ordinary analytic function are analogs for this.

2. By holomorphy= holography vision alone implies that the space-time surface is sliced by
light-like curves. These curves satisfy Virasoro conditions so that one has a generalization
of Virasoro conditions to a bundle of conditions parameterized by points of a 3-D section
of the space-time surface. Space-time surface itself does not define a light-like orbit of the
3-surface.

3. For the 4-D generalization, the light-like curve is replaced by a 3-D light-like parton trajectory
identifiable as a 2-D bundle of light-like curves so that 1-D Virasoro conditions are true for
each curve. The analogs of Virasoro conditions are indeed very natural also now because 2-D
conformal invariance is generalized to 4-dimensional one. The Virasoro conditions have one
integer, the conformal weight. Now the Fourier transform with respect to the coordinates of
X*, say u and w gives conditions labelled by two integers having interpretation as conformal
weights.

This suggests that conditions can be seen as analogs of Virasoro conditions. Their generaliza-
tion gives rise to analogs of the corresponding gauge conditions for the Kac-Moody algebra,
just like in the string model. A lot of physics would be involved.

4. A new element brought by TGD is that algebras would have non-negative conformal weights
meaning that an entire fractal hierarchy of isomorphic algebras is predicted such that sub-
algebra and its commutator with the entire algebra annihilate the physical states [L6]. This
makes possible a hierarchy of gauge symmetry breakings in which a subspace of the entire
algebra transforms from a gauge algebra to a dynamical algebra.

3.2 How to find the partonic orbits?

In the sequel, the partonic orbit refers to the light-like boundary at which the signature of the
induced metric changes from Minkowskian to Euclidian. In the Minkowskian region (f1, f2) = (0,0)
ansatz works and,depending on which sheet one considers, the passive coordinate v or v becomes
constant at the boundary.
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One must solve the induced metric for a given solution f = (fi, f2) = (0,0) in Minkowskian
region and find what happens to it at the boundary. This means moving from mere algebraic
geometry to differential geometry because the induced metric depends on the partial derivatives
of the imbedding coordinates. The complexity of the task depends on how strong assumptions one
makes.

3.2.1 Two alternative identifications of partonic orbits

One can consider two alternative identifications of partonic orbits.

1. One could start from a completely general solution in Minkowskian region and consider only
the det(g4) = 0 condition without any additional assumptions such as the Hamilton-Jacobi
structure.

2. If one assumes holography= holomorphy principle, 3-surfaces with g2, = 0 implying det(g,4) =
0 condition, are good candidates candidates for partonic orbits, which must be metrically
2-dimensional. Since the signature transforms to Euclidian, the induced metric must receive
a CP, contribution, which implis the conditions det(g4) = 0 and g%, = 0 implying metric
2-dimensionality.

Simple physical considerations help to understand what the partonic orbits look like. The
simplest surface to consider is deformed M* for which C'P, projection is a geodesic line: ® = wt.
The induced metric is gy = 1 — R2w?, gij = —0i;, where R is C'P; length scale. For R2w? =1, the
time-like direction becomes light-like. Something analogous happens also in the general case. The
rapid time variation of the &;(w, u) and &;(w, v) is what can change the sign of det(g4). Some partial
derivatives 0,&;(u,2) and 9&; (v, w) must have order of magnitude 1/R. Therefore the numerical
calculation must start from a situation in which these time derivatives are large.

To find the partonic orbits defined in the way already discussed, it is useful to find a region of
space-time surface whether the gradients of C'P, coordinates as functions of u coordinate are of
order 1/R so that gt can be near zero.

3.2.2 det(g4) = 0 condition as a possible definition of the parton orbit

This section gives some idea about how concrete calculations might proceed. The condition
det(g4) = 0 is a natural guess for the precise definition of the partonic orbit as light-like 3-surfaces
at which 4-metric degenerates to 2-dimensional metric.

The condition det(gs) = 0 is a natural guess for the precise definition of the partonic orbit
as light-like 3-surfaces at which 4-metric degenerates to 2-dimensional metric. Consider in more
detail the det(g4 = 0) option for partonic surfaces using H-J coordinates but without assuming
H-H vision. The following also describes how to calculate the induced metric.

For X* Kahler form is obtained by inducing the sum of Kahler forms of M* and C'P, and is in
general different from that M*. The H-J coordinates are however the same. If the coordinates of
X* are not H-J coordinates one must det(g4) = 0 condition without hermiticity conditions on the
induced metric. This requires an additional computational effort.

For H-J coordinates for X*, the det(gs) = 0 is equivalent with the g% = 0 condition and the
situation simplifies dramatically and one must find the 3-surfaces with g2, = 0.

1. The general form of the induced metric is

9ap = hriOahFOgh! . (3.1)

For H-J coordinates, a and 3 refer to u,v,w,w and k and [ refer to u,v,w,w,&1,&. The
metric of H in these coordinates can be written easily. From this, we one can calculate the
induced metric.

2. For the generalized complex coordinates, not necessarily consistent with the H-J structure,
the rows of the induced metric g can be written as a matrix in the general case in the form
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(guu gfw Guw gu@)
(gvu Guv  Gvw gvﬁ) (32)
(gwu Guv GJuw gwﬁ)
(9ou  Gwo Yww Yow)

All components of the metric are in general non-vanishing.

3. Holomorphy, implying that the embedding space metric and induced metric are tensors of
type (1,1), implies the vanishing of a large fraction of elements of g*. This gives

Gou 0 Gow 0

3.3
0 Guwwv 0 Juww ( )
Jwou 0 Jww 0

The symmetry go.s = ggo leaves only 4 independent matrix elements. 92 s Guw, Gows G-
The determinant of this metric vanishes if a partonic orbit is in question.

This is the expression of the induced metric in the Euclidean regions. Partonic orbit corre-
sponds to the interfaces at which g,, = 0 is true. The field equations (f; = 0, fo = 0) in the
Euclidean region must be solved using Wick rotation.

4. In the Minkowskian regions, where u (or v) serves as a parameter, g reduces to its
Minkowskian contribution and components g, and g,z vanish. Partonic orbits are not pos-
sible in these regions. The induced 3-metric g3 at light-like u coordinate lines in Minkowskian
regions reduces to

0 0 0
0 0 Juw (3.4)
0 Jow 0

The situation is metrically 2-dimensional. Also g4 is metrically 2-dimensional if the metric
changes from Minkowskian to Euclidean so that g  vanishes.

5. If one has fo = & — w and f1(&,w, h) is a polynomial of degree n < 5 with respect to
w, analytic expressions for &;(h,w) are possible and the analytic calculation of the partial
derivatives can be considered. Otherwise, we have to use numerical methods. One could
hope that a symbolic program for calculating partial derivatives could be found .

6. If the reduction of the condition det(g4) = 0 to the condition g2, = 0 indeed takes place, the
key variable is

gh, = 0uhF9,h = g0, + 5,70,5%0,5 . (3.5)

Here g0, denotes the M* contribution to the induced metric. For det(gy) = 0 the M* and
C P contributions cancel each other and one has

90, = —s5,;0s"3" . (3.6)

A generalization of a light-like geodesic of H to a bundle of light-like curves parameterized
by the points of the partonic 2-surface is in question.
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3.3 Considerations inspired by LLM summaries of TGD articles

Tuomas Sorakivi prepared LLM summaries about some articles related to TGD, in particular the
article [L13] in which the relation of the holography = holomorphy vision to elliptic surfaces and
the notion of partonic orbits are considered.

The discussions and the LLM summaries inspired considerations related to the general view
about the definition of the partonic orbits involving the conditions /g; = 0 assuming generalized
holomorphy and to the details related to the model for the pairs of space-time sheets connected
by wormhole contacts.

3.3.1 What conjugation means for generalized complex coordinates

Generalized complex structure involves hypercomplex coordinates and this involves non-trivial
delicacies related to the counterpart of generalized complex conjugation.

1. The expression for g,, involves conjugation of C'P, cooordinates £*. It is important to note
that conjugation means that means

& (u,w) = € (v,w) .

This is because v is the hypercomplex conjugate of u. In the conditions f; = 0, only the
hypercomplex and therefore real u coordinate occurs in the functions f;(u,w, &4, €2), i = 1,2.

2. Relevant question concerns the interpretation of the fact that the hypercomplex conjugation
u — v is involved? The presented model for a pair of spacetime sheets is that, for example,
the upper sheet has an active coordinate v and the lower one has v.

Conjugation would take from the "upper” spacetime sheet to the ”lower” one if both are
involved. This would indicate that the sheets are the relations of generalized complex conju-
gation. This is not a necessary assumption, but it is possible and I have suggested it.

3. This formal interpretation seems strange, but in ordinary complex conjugation it is like this.
x + 1y, y > 0 corresponds to the upper half plane and x — iy, y > 0 to the lower half plane.
Conjugation takes from the upper half plane to the lower one. On the real axis y = 0 the
planes meet.

So two 4-D Minkowski spacetime sheets would be generalizations of the half planes. The real
axis would be the Euclidean 3-D C'P; inside the extremal: it is not the same as the parto orbit:
the language model had mixed them up. In the used H-J coordinates, u =t—z =v =t + z,
that is z = 0, would hold. This 3-surface in the direction of time would correspond to the
world line of a particle at rest in M?.

3.3.2 Connection with particle massivation and ideas of Connes

The fact that this 3-surface inside the C' P, type extremal is like a particle at rest necessarily means
that there are 2 space-time sheets and they are connected by a wormhole contact. Massification
has necessarily occurred.

1. If only one space-time sheet is involved, it is a half-plane equivalent of one of the two. Is
this possible? Could the light-like 3-D orbit of the parton surface be a track edge in the
Minkowski region? Is such a solution possible or are wormhole contacts and a pair of space-
time sheets necessarily needed. In any case, the fermion lines would be on partonic 2-surfaces,
so a partonic surface is needed.

2. Interestingly, a top French mathematician Connes ended up proposing that the Higgs mech-
anism in non-commutative geometry would correspond to the Minkowski space doubling in
the same way. Also in TGD framework the massivation would occur in the same way!

I have been in Schrodinger’s cat-like state regarding this question: it would seem that the
boundary conditions do not allow boundaries at all. On the other hand, I have also considered
the possibility allowing light-like boundaries.
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3. The fact that only the coordinate u or v appears in the generalized analytic functions f; and
fo means that an analogy is made between the wave motion at the speed of light ¢ — z or
t = z and the coordinate on which the wave depends. In the string model, the terms left
mover and right mover are used.

The situation in which both space-time sheets are involved would correspond in the string
model to the fact that a wave coming along one space-time sheet is reflected back on this
three-surface of C' P, type extremal and returns along the other space-time sheet.

If a single sheet with light-like boundaries are possible, it would correspond to massless
particles. Either a left-mover or a right-mover, but not both. On the other hand, p-adic
thermodynamics predicts that photons and gravitons also have a small mass.

3.3.3 Testing whether the conditions g,, = 0 allow solutions

Tuomas had, using the language model, come up with a proposal to investigate whether there are
analytical solutions to the condition g,, = 0 on a partonic surface. If there are, then we can be
satisfied. On the other hand, it could happen that there are none. I thought about it at night
and found out that such solutions really do exist. The task is to find such a simple situation that
numerical calculations are not needed.

1. I already made a simplifying assumption earlier that f, is of the form f, = &2 — w™. There

would be no u-dependence at all. fo = 0 would give £&; = w™. There would be no need to
find the roots either.

A more general solution would be fo = P(£2,w) without u-dependence. Now the roots of
the polynomial must be solved. This does not change the situation.

2. We could make a similar assumption for f;, but assume u-dependence.
fi=filg,w,u) =& —glw,u) .

We can simplify it even further by assuming

g(w,u) = uh(w) .
So we can solve & as
& = uh(w) .
3. Now we have everything we need to solve the condition g,, = 0.

(a) The C'P; metric 8 g7 15 known. Here we must remember that conjugation means u — v!

(b) The vanishing condition g,, = 0 gives

5,70uE"0,E = —1 .

(¢) The non-vanishing partial derivatives are

This gives

sygh(w)h(w) = -1 .
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(d) The component of the C'P, metric s;7 < 0 appears in the formula (the C' P, metric is
Euclidean) and is known and is proportional to 1/(1 + r2) [L5],

=g 4T

and depends on the uv via

€' = uvg(w)g(w) .
The equation can be solved for the uv function in terms of a function k(w,w deducible
from the condition:
wv = k(w,w).
In the (u,v) plane, this is a hyperbola for the given values of w. So there are solutions.
We can breathe a sigh of relief.
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