

Could Pollack effect make cell membrane a self-loading battery?

M. Pitkänen

Email: matpitka6@gmail.com.

<http://tgdtheory.com/>.

June 20, 2019

Abstract

The so called Clarendon dry pile is 175 years old battery still working. The current is very weak (nano Ampere) but the working of the battery is claimed to be not well-understood. The TGD inspired model for cold fusion leads to the proposal that Pollack effect is part of electrolysis. This inspires the idea that Pollack effect and possibly also the associated cold fusion could make Clarendon dry pile a self-loading battery. Cell membrane can be regarded as the analog of self-loading battery, and in TGD framework also as a generalised Josephson junction. Hence one can ask whether also cell membrane could be seen as a self-loading battery utilizing Pollack's mechanism. This would also allow to understand why hyperpolarization stabilizes the membrane potential and why depolarization generates nerve pulse.

1 Introduction

Elemer Rosinger had a Facebook link to an article telling about Clarendon dry pile, a very long-lived battery providing energy for an electric clock (see <http://tinyurl.com/zeut69y>, <http://tinyurl.com/jhrww2a>, and <http://tinyurl.com/gvbrhra>). This clock known also as Oxford bell has been ringing for 175 years now and the article suggests that the longevity of the battery is not really understood. The bell is not actually ringing so loud that human ear could hear it but one can see the motion of the small metal sphere between the oppositely charged electrodes of the battery in the video.

The function principle of the clock is simple. The gravitational field of earth is also present. When the sphere touches the negative electrode, it receives a bunch of electrons and gives the bunch away as it touches positive electrode so that a current consisting of these bunches is running between electrons. The average current during the oscillation period of 2 seconds is nanoampere so that nanocoulomb of charge is transferred during each period (Coulomb corresponds to a 6.242×10^{18} elementary charges (electrons)).

The dry pile was discovered by priest and physicist Giuseppe Zamboni at 1812 (see <http://tinyurl.com/jkvttj6f>). The pile consists of 2,000 pairs of pairs of discs of tin foil glued to paper impregnated with Zinc sulphate and coated on the other side with manganese dioxide: 2,000 thin batteries in series. The operation of battery gradually leads to the oxidation of Zinc and the loss of magnase dioxide but the process takes place very slowly. One might actually wonder whether it takes place too slowly so that some other source of energy than the electrostatic energy of the battery would be keep the clock running. Karpen pile is analogous battery discover by Vasily Karpen (see <http://www.greenoptimistic.com/karpen-pile/#.V9JMiceHvJA>). It has now worked for 50 years.

Cold fusion is associated with electrolysis. Could the functioning of this mystery clock involve cold fusion taken seriously even by American Physical Society thanks to the work of the group of prof. Holmlid. Electrolytes have of course been “understood” for aeons. Ionization leads to charge separation and current flows in the resulting voltage. With a feeling of deep shame I must confess that I cannot understand how the ionization is possible in standard physics. This of course might be just my immense stupidity - every second year physics student would immediately tell that this is “trivial” - so trivial that he would not even bother to explain why. The electric field between the

electrodes is immensely weak in the scale of molecules. How can it induce the ionisation? Could ordinary electrolytes involve new physics involving cold fusion liberating energy? These are the questions which pop up in my stupid mind. Stubborn as I am in my delusions, I have proposed what this new physics might be with inspiration coming from strange experimental findings of Gerald Pollack, cold fusion, and my own view about dark matter has phases of ordinary matter with non-standard value $h_{eff} = n \times h$ of Planck constant. Continuing with my weird delusions I dare ask: Could cold fusion provide the energy for the “miracle” battery?

2 What batteries are?

To understand what might be involved one must first learn some basic concepts. I am trying to do the same.

1. Battery (see <http://tinyurl.com/8xqsnab>) consists of two distinct electrochemical cells (see <http://tinyurl.com/jq81jmo>). Cell consists of electrode and electrolyte. The electrodes are called anode and catode. By definition electron current along external wire flows to catode and leaves anode.
2. There are also ionic currents flowing inside the battery. In absence of the ionic currents the electrodes of the battery lose their charge. In the loading the electrodes get their charges. In the ideal situation the ionic current is same as electron current and the battery does not lose its charging. Chemical reactions are however taking place near and at the electrodes and in their reversals take place during charging. Chemical changes are not completely reversible so that the lifetime of the battery is finite.

The ionic current can be rather complex: the carriers of the positive charge from anode can even change during the charge transfer: what matters that negative charge from catode is transferred to anode in some manner and this charge logistics can involve several steps. Near the catode the currents of positive ions (cations) and electrons from the anode combine to form neutral molecules. The negative current carriers from catode to the anode are called anions.

3. The charge of the electrochemical cell is in the electrolyte near the surface of the electrode rather than inside it as one might first think and the chemical processes involve neutralization of ion and the transfer of neutral outcome to or from the electrode.
4. Catode - or better, the electrochemical cell containing the catode - can have both signs of charge. For positive charge one has a battery liberating energy as the electron current connecting the negative and positive poles goes through the load, such as LED. For negative charge current flows only if there is external energy feed: this is loading of the battery. External voltage source and thus energy is needed to drive the negative charges and positive charges to the electrodes. The chemical reactions involved can be rather complex and proceed in reverse direction during the loading process. Travel phone battery is a familiar example.

During charging the roles of the anode and catode are changed: understanding this helps considerably.

3 Could dark cold fusion make possible self-loading batteries?

Could TGD based models for Pollack effect [L1] and for cold fusion [L2] [K5] help to understand why the Clarendon dry pile is so long lived?

1. The battery is series of very many simpler batteries. The mechanism should reduce to the level of single building brick. This is assumed in the following.
2. The charge of the battery tends to be reduced unless the ionic and electronic currents are identical. Also chemical changes occur. The mechanism involved should oppose the reduction

of the charging by creating positive charge to the catode and negative charge to the anode or induce additional voltage between the electrodes of the battery inducing its loading. The energy feed involved might also change the direction of the basic chemical reactions as in the ordinary loading by raising the temperature at catode or anode.

3. Could be formation of Pollack's exclusion zones (EZs) [L1] in the electrolytic cell containing the anode help to achieve this? EZs carry a high electronic charge. According to TGD based model [L1] protons are transformed to dark protons at magnetic flux tubes. If the positive dark charge at the flux tubes is transferred to the electrolytic cell containing catode and transformed to ordinary charge, it would increase the positive charge of the catode. The effect would be analogous to the loading of battery. The energy liberated in the process would compensate for the loss of charge energy due to electronic and ionic currents.
4. In the ordinary loading of the battery the voltage between batteries induces the reversal of the chemical processes occurring in the battery. This is due to the external energy feed. Could the energy feed from dark cold fusion induce similar effects now? For instance, could the energy liberated at the catode as positively charged dark nuclei transform to ordinary ones raise the temperature and in this manner feed the energy needed to change the direction of the chemical reactions.

The alert reader has probably already asked whether self-loading battery might help to develop a technology making possible both production of elements by cold fusion and very long-lived batteries.

4 Cell membrane as self-loading battery and how nerve pulse is generated?

The model for self-loading battery might have an interesting application to the possible new physics of cell membrane [?, K1, K3] .

1. Cell membrane consisting of two lipid layers defines the analog of a battery. Cell interior plus inner lipid layer (anode) and cell exterior plus outer lipid layer (catode) are analogs of electrolyte cells.

What has been troubling me for two decades is how this battery manages to load itself. Metabolic energy is certainly needed and ADP-ATP mechanism is essential element. I do not however understand how the membrane manages to keep its voltage.

Second mystery is why it is hyperpolarization rather than polarization, which tends to stabilize the membrane potential in the sense that the probability for the spontaneous generation of nerve pulse is reduced. Neither do I understand why depolarization (reduction of the membrane voltage) leads to a generation of nerve pulse involving rapid change of the sign of the membrane voltage and the flow of various ionic currents between the interior and exterior of the cell.

2. In the TGD inspired model for nerve pulse cell interior and cell exterior or at least their regions near to lipid layers are regarded as super-conductors forming a generalized Josephson junction. For the ordinary Josephson junction the Coulombic energy due to the membrane voltage defines Josephson energy. Now Josephson energy is replaced by the ordinary Josephson energy plus the difference of cyclotron energies of the ion at the two sides of the membrane. Also ordinary Josephson radiation can be generated. The Josephson currents are assumed to run along magnetic flux tubes connecting cell interior and exterior. This assumption receives support from the strange finding that the small quantal currents associated with the membrane remain essentially the same when the membrane is replaced with polymer membrane.
3. The model for Clarendon dry pile suggests an explanation for the self-loading ability. The electrolytic cell containing the anode corresponds to the negatively charged cell interior, where Pollack's EZs would be generated spontaneously and the feed of protonic charge to the

outside of the membrane would be along flux tubes as dark protons to minimize dissipation. Also ions would flow along them. The dark protons driven to the outside of the membrane transform to ordinary ones or remain dark and flow spontaneously back and provide the energy needed to add phosphate to ADP to get ATP.

4. The system could be quantum critical in the sense that a small reduction of the membrane potential induces nerve pulse. Why the ability to generate Pollack's EZs in the interior would be lost for a few milliseconds during nerve pulse? The hint comes from the fact that Pollack's EZs can be generated by feeding infrared radiation to a water bounded by gel. Also the ordinary Josephson radiation generated by cell membrane Josephson junction has energy in infrared range!

Could the ordinary Josephson radiation generate EZs by inducing the ionization of almost ionized hydrogen bonded pairs of water molecules. The hydrogen bonded pairs must be very near to the ionization energy so that ordinary Josephson energy of about .06 eV assignable to the membrane voltage is enough to induce the ionization followed by the formation of $H_{3/2}O$. The resulting EZ would consist of layers with the effective stoichiometry $H_{3/2}O$.

As the membrane voltage is reduced, Josephson energy would not be anymore enough to induce the ionization of hydrogen bonded pair of water molecules, EZs are not generated, and the battery voltage is rapidly reduced: nerve pulse is created. In the case of hyperpolarization the energy exceeds the energy needed for ionization and the situation becomes more stable.

5. This model could also allow to understand the effect of anesthetics [K4] [L3]. Anesthetics could basically induce hyperpolarization so that Josephson photons would continually generate Pollack's EZ:s and creating of dark particles at the magnetic flux tubes. This need not mean that consciousness is lost at the cell level. Only sensory and motor actions are prevented because nerve pulses are not possible. This prevents formation of sensory and motor mental images at our level of hierarchy.

Meyer-Overton correlation states that the effectiveness of the anesthetic correlates with its solubility to the lipid membrane. This is the case if the presence of anesthetic in the membrane induces hyperpolarization so that the energies of the photons of Josephson radiation would be higher than needed for the generation of EZs accompanied by magnetic flux tubes along which ionic Josephson currents would flow between cell interior and exterior. For these quantal currents evidence exists [K2]. In the case of battery these dark ions would flow from the cell containing anode to that containing cathode. For depolarization the energy of Josephson photons would be too low to allow the kicking off protons from hydrogen bonded pairs of water molecules so that EZs would not be created and self-loading would stop and nerve pulse would be generated.

Acknowledgements: I am grateful Tapio Alasaarela for very stimulating discussions forcing to update my rather fragmentary knowledge about electrochemistry.

REFERENCES

Biology

[I1] The Fourth Phase of Water : Dr. Gerald Pollack at TEDxGuelphU. Available at: <https://www.youtube.com/watch?v=i-T7tCMUDXU>, 2014.

Books related to TGD

[K1] Pitkänen M. Dark Matter Hierarchy and Hierarchy of EEGs. In *TGD and EEG*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdeeg.html#eegdark>, 2006.

[K2] Pitkänen M. Quantum Model for Nerve Pulse. In *TGD and EEG*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdeeg.html#pulse>, 2006.

- [K3] Pitkänen M. Quantum Model of EEG. In *TGD and EEG*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdeeg.html#eegII>, 2006.
- [K4] Pitkänen M. Quantum Mind, Magnetic Body, and Biological Body. In *TGD based view about living matter and remote mental interactions*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/tgdlian.html#lianPB>, 2012.
- [K5] Pitkänen M. Cold Fusion Again. In *Hyper-finite Factors and Dark Matter Hierarchy*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/neuplanck.html#coldfusionagain>, 2014.

Articles about TGD

- [L1] Pitkänen M. Pollack's Findings about Fourth phase of Water : TGD View. Available at: http://tgdtheory.fi/public_html/articles/PollackYoutube.pdf, 2014.
- [L2] Pitkänen M. Cold Fusion Again . Available at: http://tgdtheory.fi/public_html/articles/cfagain.pdf, 2015.
- [L3] Pitkänen M. TGD based model for anesthetic action. Available at: http://tgdtheory.fi/public_html/articles/anesthetes.pdf, 2015.