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Abstract

In this article the notion of a fermion propagator in the TGD framework is discussed. It
is found that the construction is much more than a mere computational challenge. There are
two alternative approaches. Fermionic propagation could correspond a) to 8-D propagation in
H between points belonging to the space-time surface or its sub-manifold or b) to a 4-D- or
lower-dimensional propagation at the space-time level for the induced spinor fields as analog
of massless propagation.

For the option a), the separate conservation of baryon and lepton numbers requires fixed
H-chirality so that the spinor mode is sum of products of M* and C'P; spinors with fixed M*
and C'P, chiralities whose product is +1 or -1. This suggests that M* propagation is massless.
It came as a total surprise that the propagation of color modes in the conventional sense is not
possible in length scales above C'P, scale. The M* part of the propagator for virtual masses
above the mass of the color partial wave is of the standard form but for virtual masses below
it the progator is its conformal inversion. The connection with color confinement is highly
suggestive.

For light-like fermion lines at light-like partonic orbits, there are good reasons to expect
that the condition s1 = s2 is satisfied and implies that the propagation from s; is possible to
only a discrete set of points s2. Also this has direct relevance for the understanding of color
confinement and more or less implies the intuitively deduced TGD based model for elementary
fermions as 1-dimensional geometric objects.

Although the option b) need not provide a realistic propagator, it could provide a very
useful semiclassical picture for propagation along fermion lines. If the condition s1 = s2 is
assumed, fermionic propagation along light-like geodesics of H is favored and in accordance
with the model for elementary particles. This allows a classical space-time picture of particle
massivation by p-adic thermodynamics and color confinement.

Also the interpretational and technical problems related to the construction of 4-D variants
of super-conformal representations having spinor modes as ground states and to the p-adic
thermodynamics are discussed.
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1 Introduction

In this article the identification and calculation of the fermion propagator Sg(hi,hs) in H =
M* x CP, is discussed in detail. Also the definition of fermion propagator at space-time surface
is considered.

1.1 Basic expectations

Let us summarize the basic expectations first. The following view is only one of the many variants
and found by trial and error and must be taken with reservations.

1. The TGD view of fundamental interactions [L12] [L13] differs from that of the standard
model. The notion of color differs from that of QCD and electroweak gauge potentials
correspond to the components of the induced spinor connection of C P, [K4, [K5]. A strong
correlation between mass, color quantum numbers and electroweak quantum numbers at the
fundamental level corresponding to space-time surfaces is predicted [L17]. The standard view
is expected to emerge as an approximation at the QFT limit.

An important constraint is that the end points of the propagator are restricted to the space-
time surface X* or its lower dimensional sub-manifold. Second important point is that
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in M* the propagation is between identical M? chiralities by the separate conservation of
lepton and quark quantum numbers.

2. Two kinds of propagators can be imagined.

(a) The propagation in H is a geometric analog of off-mass shell propagation as off-space-
time surface propagation. There is hierarchy of geometric objects with dimensions
1,2,3,4 and for 1-D fermion lines the geometric costrains on propagation are very pow-
erful.

(b) The notion of induced spinor structure suggests that it might make sense to speak of
propagation along the space-time surface as analog of on-mass-shell propagation.
The induced Dirac equation in X* is analogous to the massless Dirac equation. This
suggests that the propagation is along light-like geodesics of H, whose projection
is a geodesic circle of C'Ps, could be a good semiclassical description. This would
give a classical geometric correlate for the fermion propagation even if the space-time
propagator might not be needed.

What can on say about H-propagation.

1. A well-defined H chirality implies that the M* part of the propagator is a massless propaga-
tor. The first guess is that the virtual fermions are associated with the masses p?> = A2, A2 is
the eigenvalue of the square of C'P, Dirac operator, as predicted by the H Dirac equation in
H. The fermion propagator should have poles at these masses. A direct calculation indeed
shows that the coefficient of massless M* propagator has these poles.

2. In CP, degrees of freedom, a well-defined H chirality implies that the H propagator
Dg(my, s1),(ma,s2)) is reduced to a bilocal inner product for the two modes with the
same CP, chirality defined by the propagator factor associated with the propagator.

3. For the propagator between fermionic color partial waves, there is an integration over the
CP, projection at both ends of the propagator line, say 3-surfaces at the boundaries of causal
diamond (CD). This strongly suggests that this inner product tends to vanish for 2-D and
3-D geometric objects.

For 1-D light-like fermion lines identifiable as intersections of 3-D light-like partonic orbits
and string world sheets, the situation changes. There is strong correlation between the ends
of the fermion line. Even more, for the end points of the partonic lines, s; = so is true
in the case if the partonic line is light-like M? geodesic so that the outcome is the local
inner product over C' P, projection as 2-D partonic surface: the projections are identical at
the ends of the line. It can also be a light-like geodesic of M* x S* C M*C P, belonging to
the partonic orbit.

4. There is also an argument [L16] supporting the view that the interactions can be assigned
with string world sheets and fermion lines.

(a) Consider space-time surfaces X* and Y* having an interpretation as analogs of Bohr
orbits for 3-D particle-like objects. The interactions between X* and Y can be assigned
with fermion fields in their intersection. In the generic case, the intersection is a discrete
set of points and one can argue that this does not give rise to any interactions.

(b) The Hamilton-Jacobi structure [L7] of X* is induced from that of M* x C'P, and the the
coordinates of X4 can be locally chosen to be coordinates (u,v,w) of M* or (u,v,&;) for
M* x CP,. If the Hamilton-Jacobi structures associated with X* and Y'* are equivalent,
X* and Y* can have overlapping projections to the (u,v) plane. By hypercomplex
analyticity, the functions (f1, f2) depend on w or v only. If this coordinate is u then v
effectively disappears from the dynamics and can consider the situation for u = constant
slices of H, X* and Y* with dimensions 7, 3, and 3 respectively. The intersection of
3-D slices has dimension D = 7 — 3 — 3 = 1 having interpretation as a fermion line.
The intersection X* NY* has dimension 1+1=2 having interpretation as a string world
sheet, which is however effectively 1-D because v is not a dynamical degree of freedom.
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(c) The interpretation of the string world sheet is as a quantum coherent interaction region
in the interaction of X4 and Y. Since v has no dynamical role, it effectively reduces
to the fermion lines identifiable as 1-D intersections of string world sheets and light-like
partonic orbits.

1.1.1 How do the physical color quantum numbers emerge?

It must be taken into account that physical fermions are either color singlets or triplets, not
arbitrarily high color partial waves satisfying only the triality condition ¢t = 1 for quarks and ¢t = 0
for leptons.

This is achieved in two ways.

1. Neutrino-antineutrino vy Vg pair screens the electroweak charges above weak boson Compton
length and could also screen the anomalous parts of color charges.

2. The solutions Dirac equation are ground states of conformal representations in which the
action of a conformal scaling generator generates higher excitations, which can have color
quantum numbers which add to those of color partial waves to give rise to color singlets and
triplets.

p-Adic thermodynamics [L5] describes the thermodynamics of the scaling generator, and gives
excellent predictions for the particle masses so that conformal algebra is involved in any case.

For the proposed form of the H propagator, the construction of the quantum states separates
completely from that for the propagator. The thermal masses predicted by p-adic thermodynamics
are not visible in the propagator. The masses of color partial waves are also invisible at the energies
considerably below the C' P, mass scale about 10~* Planck masses.

1.1.2 How could the confinement scale emerge?

In QCD, confinement occurring on some M* scale, the confinement scale, is a fundamental concept.
Free quarks are the basic dynamical entities below the confinement scale and transform to hadrons
above this scale.

1. In attempts to understand this, the space-time representation of H propagator Dg(my1, s1), (ma, $2))
for the massa propagator M* degrees of freedom should be used (see ).

One can consider two options depending on whether the propagation occurs in H or in X*.
In the case of H propagation the expectation is that it is effectively massless for all color
partial waves for the momenta considerably smaller than C' P, mass scale. The total surprise
was that there is no color propagation in the ordinary sense in scales longer than C'P; scale.
The M* propagator is its conformal inversion in long scales.

2. It is reasonable to expect that the p-adic length scale determines the scale at which the
confinement occurs. This is where the algebraic geometry of the spacetime surface comes
into play.

Here holography= holomorphy vision suggests a concrete approach.

1. In the holography= holomorphy vision [L11] [L15], space-time surfaces correspond to the
roots of polynomial pair f = (fi, f2) : H — C? of generalized complex coordinates of H (one
hypercomplex coordinate and 3 complex coordinates). They allow as dynamic symmetries
the maps g = (g1, 92) : C?> — C? defined as functional compositions f — g o f.

One can define prime polynomial pairs f as those which do not allow a decomposition f =
g o h. The prime polynomial pairs g = (g1, g2) can be defined similarly. The pairs (g1, Id)
are of special interest and in this case the prime polynomials g1 , = g, have prime degree p.

2. One should study the H propagator Dp(mi, s1), (me, s2)) for the polynomials g, and the
functional iterates g;k o f. The integration over C'P, projections of the end points gives a
bilocal inner product of the modes.
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The functional iterates of g, involve classical non-determinism identifiable as p-adic non-
determinism [L18] so that the correlation between color partial waves descreases as the num-
ber k of iteration steps increases. This would make the amplitude for a propagation over too
long scales impossible. p-Adic length scale could correspond to this scale. Note that very
large primes p are involved: for the electron one has p = Mjay = 2127 — 1.

The confinement scale can be identified as a p-adic length scale for quarks or hadrons, which
is determined by the thermal mass predicted by p-adic thermodynamics. The larger the value
of p, the longer the confinement scale.

Concerning the option based on X* propagation two observations can be made.

1. The possibly existing X* propagator would be the analog of a massless propagator since
the Dirac equation for induced spinor fields in X* is a generalization of the massless Dirac
equation. This notion makes sense also for the lower dimensional surfaces of X4 and 1-D
light-like curves are natural candidates for fermion lines.

2. For the propagation along the 1-dimensional along fermion lines identified as light-like M*
geodesics along parton surfaces, the condition s; = so is strongly suggestive so that there
would be no propagation in C'P,. This is not true for higher-dimensional objects.

There are two basic questions to be answered. Is the p-adic mass scale determined by the
spectrum of C'P, masses or by p-adic thermodynamics? Do the spectra of C' P, masses and of
p-adic thermal masses appear at the level of propagator or only at the level of initial and final
states of propagation?

1. A natural assumption is that the masses of quarks and leptons appear in the propagator
depend on the spectrum of color excitations m? = A2 for the fermions involved (vz7g for the
second option). Direct calculation indeed shows that it appears as poles in the H propagator.
The M* propagator is however effectively massless for masses scales considerably below the
C' P, mass scale.

2. p-Adic thermodynamics, in which the basic parameters characterizing the particle are the
p-adic prime p and the p-adic temperature T), = 1/n, works excellently so that it seems that
C P, mass spectrum does not make itself visible in the propagator. In p-adic thermodynamics,
alarge p ~ 2%, simplifies enormously and something similar can be expected now as well. This
separation between the structure of states and propagator would be a huge simplification.

3. Concerning X* propagation, the semiclassical description as light-like H geodesics of the
geodesic manifold M* x ST € M* x C' P, could be considered as a model. The masslessness of
H would no longer imply masslessness in M*. One could say that p-adic thermal excitations
deform the light-like geodesics of M* to those of M* x S' C H. Also this suggests that the
masses are not visible in the X* propagator as also the fact that they do not appear in the
X* Dirac operator suggests.

1.2 Plan of the article

The plan of the article is as follows.

1. T have considered several approaches to the calculation of the fermion propagator and in
the following I describe the most elegant looking view about the fermion propagation as
propagation in H. Assuming a fixed H chirality, the propagator reduces in M* to the
massless propagator in H and its coefficient has poles at the masses associated with the
color partial waves. The fact that the propagation depends strongly on the dimension of
the fundamental object, has powerful consequences and the existing intuitive picture about
fundamental fermion lines as light-like geodesics at partonic 2-surfaces follows. In the case of
fermion lines at partonic orbits, the condition s; = s5 would make C' P, propagation possible.
One can also understand color confinement in this picture.
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2

. The 4-D propagation along X* involves induced spinor structure and my intuitive feeling is

that also this perspective is important, at least as a semiclassical model. This would give a
very concrete classical view of the propagation even if a 4-D propagator were not useful. In
particular, the p-adic thermal massivation could be modelled semi-classically.

. Also the problems related to the origin of p-adicity and interpretational problems of p-

adic thermodynamics and to the generalized conformal invariance will be discussed in the
Appendix.

Fermion propagator at the level of embedding space

One can consider three alternative views concerning what fermion propagation could mean.

1. Fermions propagate in H and virtuality in geometric sense could mean that they can leave

the space-time surface during the propagation. Off mass-shell property would mean off-space-
time surface.

. Fermions propagate along the 4-D space-time surface X* as induced spinor fields and the

propagator is defined by the analog of 4-D massless Dirac operator. Also the propagation
along lower-dimensional surfaces of X4, in particular fermion lines, is possible.

. The propagation could also take place in the ”world of classical worlds” (WCW). This would

be the counterpart for the propagation as it is understood in string models. One must be
cautious here since holography= holomorphy vision implies that there is no path integral.

Could the two interpretations for the fermion propagation be consistent? The space-time

propagation as a 4-D propagation is geometrically much more restricted. Could the propagator
code for the information about initial and final quantum states as a kind of quantum-classical
correspondence?

2.1 Leptons and quarks as quantized free spinor fields in H

It is good to start with the description of H spinor fields and of the H Dirac equation. This topic
is also discussed in Appendix A.

2.1.1 Leptons and quarks as H spinors with different H chiralities

Consider first the general theory.

1. The second quantized spinor field in H = M* x C'P, can be written as superpositions of

modes multiplied with a creation or annihilation operator.

. Suppose that the spinor fields of H have a definite H-chirality so that they are either leptonic

or quark-like, not a superposition of the two: this would violate the superselection rule of
charge and fermion number.

One has

ToW, = V.. (2.1)

e = +1/ — 1 is the H-chirality and quarks and leptons have opposite chiralities.

. The Dirac equation is satisfied by the spinor modes of H. They are massless in H but not in

M*(!). This is essential for the twistorization and the divergence-free nature of the theory.

The Dirac operator is

D = D(M*) + D(CP,), (2.2)
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where

D(M*)) = ~+*py (2.3)

is the Dirac operator in M* and

D(CP,) =T*Dy,. (2.4)

is the Dirac operator in C'P,. Here Dy, is covariant derivative, which is defined by the spinor
connection of C'P, that encodes electroweak interactions. The Kéahler gauge potential Ay for
leptons is 34 and for quarks Ay. This explains the different electric charges of quarks and
leptons.

Twistorialization suggests that M* allows the analog of Kihler structure [.7] whereas vielbein
connection should be trivial by the flatness of the metric. Ké&hler form should satisfy the
analog self-duality meaning that locally it is analogous to mutually orthogonal electric and
magnetic fields of the same magnitude.

4. Quarks correspond to triality ¢ = 1 partial waves and leptons to triality ¢ = 0 partial waves
(see Appendix A). These modes are not simply color triplets for physical quarks and color
singlets for physical leptons. For physical fermions, a mechanism producing color triplets for
quarks and singlets for leptons is needed.

According to Appendix A, the color partial waves with different charges correspond to color
partial waves characterized by an integer pair (p,q). p and ¢ can thought of as giving the
numbers of triplets and anti-triplets in the tensor containing the representation in question.
The dimension of the color representation is d(p,¢) = (1/2)(p+ D)(1+ 1)(p+ g+ 2).

In the case of leptons, one has representations (p, p) for neutrinos and (3 + p, p) for charged
leptons. The dimensions are (p+1)?(p+2) neutrinos and (3+p+1)(3+p)(p+1) for charged
leptons. The color representations are the same for both C'P, chiralities which correspond
to opposite M* chiralities for a fixed H chirality.

In the case of quarks one has representations (p+1, p) and (p+4, p) for D resp. U type quarks
and the corresponding dimensions are 1/2(p+ 1)(p + 1)(2p + 3) resp. (p+6)(p+ 1)(p + 3)
The two C' P, chiralities are transformed to each other by D(C'P,): covariantly right-handed
neutrino is an exception since it is annihilated by D(CP).

5. The charge assignable to color partial wave is not a local notion characterized by a spinor
index since D(C P») mixes different isospin states, whose identification depends on the choice
of the vierbein in C'P,. This is understandable since the choice of the C' P, spinor basis is
determined apart from a local U(2) rotation. The same problem is encountered in standard
model and solved by going to unitary gauge. One can ask whether it might be possible to
define the counterpart of the unitary gauge as a global choice of C'P;, vierbein for which the
CP, spinor is constant or covariantly constant for a given color partial wave.

2.1.2 Dirac equation in H

1. Dirac equation in H says the following

DU, = 0. (2.5)

Here € = +1/ — 1 refers to quark/lepton.

2. Solutions to Dirac equation can be constructed by taking a spinor ®., which is not a solution
of Dirac equation, but satisfies the following conditions:
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(a) H-chirality is well defined.

Tyd, = ed.. (2.6)

H-chirality € is the product € = €; x €5 of M* chirality €; and CP, chirality e, . It is -1
if the M* and C'P; chiralities are opposite and +1 if they are the same.

Consider first the possibility that ®. is the tensor product of the M* spinor and the
C'P, spinor with the same or opposite chirality corresponding to quarks and leptons.

(b) ®. is M* plane wave so that D(M?*) = v¥p,, is effectively true.

(c) . satisfies the square of the Dirac equation but not the Dirac equation:

D2®, =0,
D(M*)?*®, = p*®,, (2.7)
D2(CPy)®, = —A%D,.

An eigenmode of D(M*)? and D?(CP,) is therefore in question. We obtain a spectrum
A2, the details of which are not relevant in this context.

The mass is quantized:

PP =A% (2.8)

3. How to obtain the solution of Dirac’s equation ¥.? It is obtained by operating on the spinor
®, with the Dirac operator D = D(M?) + D(CP):

U, = D®,. (2.9)

The Dirac equation holds

DU = D>¥, = 0. (2.10)

A couple of comments regarding the chiralities are in order.

1. The spinor ®, has well-defined M* and C' P, chiralities, but for the spinor D®, the chiralities
are not well-defined.

2. Although @, can be chosen as the product of the ¥ = 1 ® ¢ definite M* of the spinor with
chirality 1 and the spinor with chirality ¢ of the definition C'P,, then DV is a superposition

D(M*) ® ¢ + 1 @ D(CPy)o, (2.11)

where the H-chiralities have changed because D(M*) (D(CP»)) changes the chirality of M*
(CPy). Tt can be said that both M* and CP; chiralities are mixed when the mass is non-zero.

3. It turns out that only a right-handed neutrino can have a massless state.

2.2 Momentum space propagator in H

The first option is that the propagation takes place in H for the spinor modes of H in such a way
that only the endpoints of the propagator Dr(h1, he) are restricted to the space-time surface X*.
One could say that virtuality in geometric sense for the fermions means that they can leave the
space-time surface. The propagation along space-time surface already discussed would mean the
analog of on-mass-shell propagation.
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2.2.1 Massless Dirac propagator in M*

The M* case provides a kind of role model. For momentum basis, the inverse of the Dirac operator
can be solved algebraically and space-time representation involves integration over virtual momenta
with p? # 0.

The momentum space - and space-time representations of the massless Dirac propagator can
be found in the book ” An introduction to quantum field theory” by Peskin and Schréder (edition
1995, p. 660) (see {this) and are given by

1. The representation of the massless Dirac propagator in momentum space is given by

~ i/y . p
S = . 2.12
P) = 5 (212

Here the 1/(z + i¢) is a shorthand notation for 1/x F imd(x).

2. The space-time representation of the massless Dirac propagator is obtained from the momen-
tum representation Dp(p) = ip*yy/(p? + ie) as Fourier transform

' ip(omy) 1D i (rle=y)
o i (e __ (=Y 2.1
Sz —y) /(%)46 p* +ie 27r2< = y|* > =

This form conforms can be deduced from the scaling invariance.

As one might guess, the propagator has a part, which is a delta function concentrated on the
boundary of a double light-cone. The reader can verify this by calculating the 4-D volume
integral of Sgp(m = x — y) by using a standard definition of delta function in terms of 4-D
volume integral and the basic rules for integrating delta functions.

It is advantageous to use spherical coordinates (a,n, 6, ¢) related to linear Minkowski coor-
dinates m” by the equations

m® = a x cosh(n), m!'=a x sinh(n)cos(#), m? = a x sinh(n)sin(f)cos(p) m> = a x sinh(n)sin(f)sin

a®? = mPmy, defines the light-cone proper-time. The line element of the M* metric is that for
empty Robertson-Walker cosmology ds? = da? — a?(dr? /(1 +r?) — r?dQ?). The 4-D volume
element is dVy = a3r?dadrsin(0)dfde.

In the integrand of the volume integral, the dependence on a disappears. The integral of the
spatial part of mFy; over angle coordinates vanishes. The contribution of m®%yy gives two
delta functions corresponding to m & rj; non-vanishing at the light-cone boundary.

2.2.2 Deduction of the momentum space propagator H

The separate conservation of lepton and quark numbers forces the counterpart of the massless
propagator, not only in H but also in M*.

1. The H propagator corresponds to the inverse of the massless Dirac operator of H. It is
essential that the modes have a well-defined H-chirality meaning that lepton and quarks
numbers are separately conserved.

2. One could argue that since M?* masses for spinor modes are given by p? = A2 where A2 is
the eigenvalue of D(C'P,)?, each mode gives rise to a propagator with mass AZ. Since A,
corresponds to C'P, mass scale, only the covariantly constant right-handed neutrino would
propagate above C'P, mass scale! The other modes would propagate only in the C' P, length
scale. Note however that in M* massive propagation along light-like geodesics reduces to
massless propagation.


https://physics.stackexchange.com/questions/263846/the-analytical-result-for-free-massless-fermion-propagator
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The second problem is that for this view the poles at p? = A2 do not emerge and must be
put in by hand as normalization factors for off-mass-shell states. The reason is that the 1/D?
factor disappears in the matrix elements of D/D? + ie between the massive H spinor modes
W, which are of form ¥ = D®. The only exception is the right-handed neutrino, which
is covariantly constant in C'P, degrees of freedom. Only the right-handed neutrino would
progate.

The delicate difference with respect to the ordinary massive propagation in M* is that the
ordinary massive propagator is given by Dp = 1/(p*yx +m) = (pFy — m)/(p? — m? + ie)
by p? —m? = (p*vyi, +m)(P*vi, —m). In TGD, a propagator massive in M* sense is massless
in the 8-D sense and one has Dp = 1/D = D/(D? + ie).

3. What does the fixing the H-chirality implied by the separate conservation of quark and

lepton numbers mean? The H-spinor is a combination of two spinors, where the M* and
CP, chiralities €; and ey are well defined and their product € = €1e5 is +1 or -1 depending
on whether it is a quark or a lepton. The combinations (1,-1) and (-1,1) and on the other
hand (1,1) and (-1,-1) are possible.
But the fixed M* chirality means that propagation is like that for a massless fermion in
M*! The mass spectrum for D(P) does not show itself in the M* part of the propagator
and the construction of states and of the propagator are completely separate problems. This
picture also corresponds to the picture of QCD where massless quarks are assumed as an
approximation.

4. What about the propagation in C'P» degrees of freedom? It follows directly from the defining
condition that the propagator for geometric objects with dimension higher than 1 involves a
bilocal inner product: the small correlation between the end points and integration over the
geometric objects at the end points tends to make it very small.

1-D fermion lines at the partonic 2-surfaces are an exception in this case one expects s; = s
so that effectively one has delta function in C' P, degrees of freedom. There is no propagation
at all. The matrix elements of the propagator between quantum states constructed from
the conformal representations having H spinor modes as ground states are extremely simple
in this case and reduce to the same form as in QFTs for fermions with internal quantum
numbers.

2.2.3 Calculation of the momentum space propagator in H

Consider now the computation of the matrix elements of the fermionic H propagator plane waves
in M* and color partial waves in CP,. In the case of color partial waves there is integration of the
initial and final 3-surfaces or its sub-manifold at the boundaries of CD. The same is true in the
space-time representation of M 4 propagator.

1. One can write the H propagator as

1 D D DCP:.
1 Pt PO (2.14)
D D?+ie  p*+Dip,
(2.15)
where one effectively has
Dya =pFy, . Dip =AZ . (2.16)

2. The propagator can be expressed in two ways. Either by factoring out 1/Dpya:

1 1 1
= X
P+ Dep, PPy 14 (Dep,/pE)

(2.17)
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or by factoring out 1/D¢p,:

1 1 1
— = X
D Dcp, 1+ (pFv/Dcp,)
(2.18)
For both factorizations one can expand the second factor in the geometric series.
3. For the first option this gives
1 1 Dep
R X -1 k 2 \k
D pry Ek:( ) Pk )
(2.19)

Since H chirality is fixed, only the even powers in the series have non-vanishing matrix
elements. This gives

L=rloxil, o= (2.20)

This is a massless M* propagator with a coefficient, which is well defined for p? > A2. For
p? = A2 the coefficient has a pole as expected. Massless propagation for colored fermions
is possible but by Uncertainty Principle only in very short length scales. This is strongly
suggestive of color confinement. One obtains

4. For the second option, a well-defined H chirality implies

1 1 Pk
—_— = X —1 k X ({— .
D Dcp, zk:( ) (DCP2)

(2.21)

In this case the chirality condition implies that only the odd powers have non-vanishing
matrix elements and one obtains

2 2
5= "PuxTy (k) =uxiy s y=%k=1. (2.22)

>
3|

The coefficient is well defined for p> < A2 and has a pole at p = A2. What looks strange
is that the propagator for small momenta is proportional p*~;. There is no propagation of
colored fermions in long length scales in the usual sense. Again the interpretation in terms
of color confinement is highly suggestive.

5. The propagators for the two options are are related by inversion

E
=

2
P = e s =0 2 g =y (2.23)
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2.2.4 Some consequences

This result has some highly non-trivial consequences.

1. The H propagation includes the constraint that the end points of the propagator belong to
the space-time surface through the fact that h; and ho are on the same spacetime surface.

For geometric objects with dimension higher than 1 the bilocal matrix elements involving
integrations over the object tend to vanish. The light-like parton orbits are in a special role
now since the partonic 2-surfaces at the ends of the parton orbit can have a large number
of common points if their C'P, projections are identical. This would explain why they are
physically in an exceptional position. For fermion lines, the theory discretizes itself in C' Py
degrees of freedom! Discretization would not be an approximation but a prediction of the
theory. This is the basic idea behind the identification of cognitive representation as a number
theoretic discretization using points of the embedding space for which H coordinates make
sense both as real numbers and numbers in an extension of p-adic numbers.

The classical time evolution involves the failure of classical determinism identifiable as p-adic
non-determinism [L15] [L18]. There is a sequence of analogs of multifurcations involving non-
determinism. In this sequence the number of common points possessed by the initial and
final partonic orbits decreases and eventually the propagator amplitude becomes very small.
This means color confinement.

2. H propagation of color fermions is possible only for very short length scales corresponding to
virtual masses larger than the minimum value of A%2. Massless propagation in the usual sense
is not possible in long length scales since the M* part of the progator equals the inversion
pFy, of the ordinary massless propagator. The occurrence of inversion could be understood
in terms of the generalized conformal invariance.

From this it should be easy to understand what happens in quark and color confinement (glu-
ons are bound states of quarks and antiquarks in TGD). Colored fermions do not propagate
in the usual sense.

2.3 Coordinate space representation of the fermion propagator in H

The momentum representation of the propagator is well-defined but it is not at all obvious that
the space-time counterpart Dp(mq,s — 1,mq, s3) of the H propagator exists. It’s possible non-
existence might be interpreted as the impossibility to talk about the space-time propagation of
color in terms of color confinement: space-time propagation makes sense only for color singlets.

The explicit expression of the ordinary massless Dirac propagator as a Fourier transform of the
momentum space-propagator in M 4 can serve as a starting point:

Sp(m)= [ (gj& e~wm D

p2+ie
_ 1 y-m g ~-V (224)
272 \ Ja® =z e ) -
Here m = mq — ms is the difference of M* points and a = \/mFmy,.
1. For p? > A2, the replacement would be
i 1 1 _ AL
Prke T wFyede < Trw 0 T P
2. For p? < A2, the replacement would be
. . 2
P T Ty y=1/e =% (2:25)

Note that the pole in the momentum space disappears now. In the second case it is formally
present but the condition p? > A2 does not allow it. This could be interpreted by saying
that colored fermions do not appear as massless on-mass-shell states.
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Does the integral over the momentum space make sense and how could one perform it? Could
the fact that the geometric series is an alternating series help to achieve convergence? A very naive
approach would be to replaced iv*p,, with differential operator v*9;, and p? with the d’Alembertian
0O = m*9,0, and apply it to the space-time representation of massless Dirac propagator.

Consider first the physically interesting case p? < A2.

1. One can argue that the factor 1/(1+y) = >, (—1)*y" is obtained by applying the operator
1/(14y) = >, (—1)kO"% /A2F to the analog of space-time propagator defined by v-V [ exp(ip-
(my —mg))dVy = v - Vd(my —ma).

2. This gives rise to a highly singular alternating series
Dp(m)=7-V Y (~1D)FAP*O%(my —my) . (2.26)
k

This expression can be interpreted as a distribution. The basic formula is the definition of
the delta function as a distribution satisfying f(x)d(z)dx = f(0). This definition generalizes
to the derivatives of the delta function by using partial integration so that the derivatives
of delta function can be transformed to derivatives of f(x) at x = 0: the basic formula is
f(x)d(z)dx = —(df /dx)(0).

In the case of matrix elements of the Dirac propagator, the action of v -V and O must
be transferred in this way to an action on initial and final fermion states. This effectively
transforma the action of the propagator to the momentum representation which was the
starting point. Therefore it seems that in this case the space-time representation is not
useful as such.

What about the situation for p* > A2?

1. The coefficient 1/(1 4+ x) = > _(—1)"z™ is replaced with

1
TF@AZ/O) - (2.27)
Note that the representation

D Dk
= oAy = Ok () 5

n

would lead to the same result as in the first case.

2. The challenge is to define the action of 1/0J and its powers.

(a) 1/01is essentially a massless scalar propagator D(my,ms) = D(m;—msy) for a scalar field
and its action is not local. 1/00 = D(my —ms) generates a spherical wave concentrated
at the light-cone a® = (m; — ms)? = 0 (see this). The powers of 1/0J correspond to a
repeated non-local action of D(mj —msg). This brings in mind Huygens principle stating
that each point of the radiation field serves as a source of secondary wave but this is
something different. Here it is not quite clear to me whether to identify D(m; —ms) as
a retarded, advanced or Feynman propagator with both contributions present but with

opposite signs.

(b) One can start from the explicit expression for the Dirac propagator proportional Dp g =
v - V(1/a®) as the zeroth order contribution serving as a source for the first order
contribution. n'* order term serves as a source for (n + 1)** order contribution. One
can utilize the commutativity of the Dirac operator and 1/ to simplify the calculation
by applying first the operator 1/(1+ A2 /00) = 3", (—1)*(A%/0)" first to 1/a® and v-V
only after that.
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(c) The first step assigns an expanding spherical light-wave to each point my. If D can
be identified as retarded propagator, as zero energy ontology (ZEO) suggests, the first
order contribution at point m is given by an integral over the past directed light cone
LC_ for a retarded propagator with Dpg as a source. This contribution is of form
Dpy=—A2 [, D(m—m1)DpodV. In the n'™ order this gives the formula

Dppi1 = —A2 D(m —m1)Dg,dV . (2.28)
LC_

How to identify the integration measure dV'? The natural identification of dV is as a
scale invariant integration measure dV = (dr/r)d} associated with the coordinates of
the light-cone boundary (7,6, ¢) is natural.

3 Fermion propagator for the induced spinor fields

One could also associated fermionic propagation with the induced fermion fields. This could be
seen as the geometric analog for on-mass-shell propagation.

3.1 Is the fermion propagation along space-time surface a sensical no-
tion?

For the modes of the induced spinor field the propagation would take place along the spacetime
surface and possibly also along a related lower-dimensional surfaces such as a partonic 2-surface
and light-like curves along it.

1. This 4-dimensional (or possibly lower-dimensional) propagator corresponds to the inverse of
the Dirac operator for the induced gamma matrices as projection of the 8-D vector formed
by H gamma matrices. Induced gamma matrices anticommute to the induced metric.

2. One can also consider modified gamma matrices determined as contractions of the canonical
momentum currents of the classical action with the gamma matrices of H [K9, [K7]. These do
not anticommute to the induced metric but for them 4-D super-conformal symmetry would
be exact and classical field equations would appear as a consistency condition guaranteeing
hermiticity.

For the induced gamma matrices super-conformal symmetry is violated at the vertices [L.14],
where the full action makes itself visible: outside the singularities minimal surface property
consistent with volume action, giving rise to induced gamma matrices, holds true.

3. The beauty of this view (also that based on H propagator) is that the constructions of the
propagator and of the physical states would be completely separated from each other. The
propagator is the inverse of the Dirac operator for induced spinors. For H propagator the
construction is easy but the situation need not be the same now.

4. One might hope that holography= holomorphy principle [L11l .15, IL18|] allows the explicit
construction of the propagator using complex coordinates assignable to the Hamilton-Jacobi
structure involving hypercomplex coordinates (u,v) and complex coordinates (w,w) [L1].
Hypercomplex coordinates (u,v) would be the analogs of light-like coordinates and the
Minkowskian signature would make the propagation possible.

In the Euclidean situation the propagator would be bilinear in holomorphic and antiholomor-
phic modes hy = he would be a delta function singularity. Now the situation is more complex
but one might hope that Wick rotation for the second complex coordinate, transforming it
to hypercomplex coordinate, could give the propagator.

For light-like curves at partonic orbits identified as fermionic lines, the propagator can be
constructed explicitly by a semiclassical argument.

The induced/modified Dirac equation is necessary for the construction of WCW gamma ma-
trices and WCW Dirac equation as counterpart of generalized Super Virasoro conditions.
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. At the level of space-time surface induced spinor structure emerges and induced spinors are

restrictions of H spinors to X*. The guess is that induced spinors are holomorphic and
annihilated by holomorphic gammas just as in string models. For string world sheets the
same holds true but the modes depend only on the other hypercomplex coordinate wu.

. The problem is that the modes of H spinor fields are not holomorphic with respect to the

complex coordinates of H. It seems that one could construct holomorphic solutions of the
Dirac equation of H using generalized complex coordinates but they need not remain finite
in the entire H. However, space-time surfaces X* correspond to sub-manifolds of CD C H
and do not include the entire C'P; if they have time-like direction.

If a holomorphic basis for H spinor fields and a hypercomplex coordinate and one complex
coordinates of H as coordinates of X makes sense, the problem could be solved. The
restriction of W(h) to X* as ¥(h(zx)) would allow to express the fermionic oscillator operators
at X* as superpositions of those of H.

It is however far from clear whether the two spinor bases for H are equivalent and whether
one can relate the oscillator operators of the two bases to each other. For C'D boundary
conditions reduce the number of M* modes: for instance, for a particle in a box the momenta
are quantized. What is the effect of giving up the compactness of C'P; by allowing holes in
CP,? Could it increase the number of modes or could giving up the boundary conditions
restrict the number of modes? Certainly it would allow holomorphic modes as analogs of
massless modes.

Sphere S? with one point removed represents a simplified example. Spherical harmonics Y},
are solutions of V2t = [(I + 1)t and the powers of 2™ are solutions of V2 = 0. Can these
two bases be equivalent or should holomorphic solutions be counted as separate singular
solutions? Could the spinor modes be seen as sections for which behavior is 2™ at the upper
hemisphere and z~™ at the lower hemisphere. At the equatorial circle the modes would
coincide. Note that for both bases the component L, of angular momentum is well defined
for a given mode. In C'P, the color isospin and hypercharge would be well-defined for both
bases.

The holomorphic modes are proportional to z™ factors to p"exp(ing) whereas there is an
infinite number of different spherical harmonics Y,! with the same value of n. One can say
that holomorphic modes correspond effectively to 1-D space whereas Y,! correspond to 2-D
sphere. Same is true also in the case of CP, and M* so that the embedding space becomes
effectively 4-dimensional. This is to be expected since holomorphy effectively halves the
number of dimensions.

. If this works, one can write for the second half of H spinor field ¥ as

U= U"(h(u,v,&,&))af = af ZA" XN (u, w) Z\If w,v)al . (3.1)

n

A similar formula would be also true for the conjugate. The oscillator operators of H spinor
field and X* spinor field would be related by the formula

bim = S AL (X)al, (3.2)

This would fix the anticommutation relations for the oscillators operators at X* and the
computation of X* propagator as time order product for the fundamental fermion fields
would be possible.

It does not seem necessary to restrict the consideration to a lower-dimensional submanifold
of X* but also partonic orbits, string world sheets, and fermion lines are possible. On a
fermion line, there would be only one light-like coordinate and everything would be simple.
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One can criticize this approach.

1. In the case of Minkowski space it is clear what virtuality of the fermion means for the massless
case: the explicit expression for the massless fermion propagator implies the massive virtual
modes. For virtual modes with p? # 0 p*v, ¥ is nonvanishing.

2. What could the non-vanishing virtual momentum squared correspond to in the recent case?
The condition DV = (I'*Dj, + T*D;¥ = 0, reduces for the holomorphic modes, satisfying
D ¥ = 0, to the condition I'*W = 0. An analogous condition is true for the antiholomorphic
modes.

I'*W # 0 should be true for the virtual modes. This condition is consistent with the condition
that H chirality is fixed but means mixing of the M* chiralities which is the signature of
massivation due to the virtual mass.

3.2 A model for 4-D propagation as propagation along light-like geodesics
of H

Quantum classical correspondence suggests that the 4-D Dirac equation for the induced spinor
fields at the space-time surface has a physical meaning. The condition that no propagation in C'P;
occurs in H propagator suggests that the fermionic propagation in X4 reduces to 1-D propagation
along light-like geodesics of H and it is interesting to look for the consequences of this assumption.

3.3 Does the notion of fermion propagation along a light-like geodesic
line of H make sense?

The fermionic propagation in H looks like a realistic option and massless H- propagation could be
interpreted in terms of ” off-space-time sheet” propagation as analogs of off-mass-shell propagation.

On the other hand, the induction of spinor connection [K9, [K7| [L8] makes C'P; spinor fields
dynamical and the induction of spinor fields can be seen as its natural fermionic counterpart. Could
the solutions of the induced or modified Dirac equation as geometric analogs of on-mass shell states
have a physical meaning? What makes them so attractive is the 4-D conformal invariance allowing
us to construct them explicitly. Their analogs also appear in string models.

There is an entire dimensional hierarchy involved: besides 4-D propagation also propagation in
dimensions D = 1,2, 3 are possible and these modes have edge states (see|this) as condensed matter
analogs [L4]. As the matrix elements for the propagation of color fermion states are expected to be
very small except for fermionic lines at intersections of string world sheets and light-like partonic
2-surfaces. In the 1-D case the construction of the analog of the propagator is simple. Although
the propagator might not be a useful object, the classical view about space-time propagation could
be very useful and justified by quantum classical correspondence.

1. 1-D H propagation between hy = (mq,s1) and hy = (ma, s2) is expected to be possible
only when the condition s; = so is true. The set of points sy satisfying this condition for
a given s; is discrete. In ZEO, the H propagator defines a map between the 3-surfaces at
the boundaries of CD. This suggests that 1-D propagation in X* is preferred. At partonic
2-surfaces with 2-D C'P» projection, which does not change during the time evolution each
points s; has at least one s5. One can consider also lattice-like structures.

2. 8-D light-likeness and restriction to a fermion line suggests that this propagation is along a
light-like curve of H belonging to the space-time surface. If this light-like curve is geodesic,
then for for 51 # sy it is a light-like geodesic associated with M* x S', where S is the unique
geodesic circle connecting connecting s; # so. For s = so all geodesics belonging to the
space-time surface are possible and even a 4-D set of geodesic circles of C'Ps is possible unless
one poses additional conditions. For instance, 2-D C'P, projection is such a constraint. In
this kind of situation, one might speak of a resonance-like phenomenon.

Could one consider additional conditions? Light-like geodesics as basic geometric aspect of
twistors has also a C'P, counterpart. For the C'P; counterpart for twistorialization [L18], the
geodesic lines connecting a given point to infinity of the local Eguchi-Hanson coordinates [L8]
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defining a homologically non-trivial geodesic sphere is in a special role and would correspond
to the twistor sphere of the C'Py twistor space T(CP,) = SU(3)/U(1) x U(1). Could the
limitation to this set of C'P; circles make sense? The fact that two C'P; geodesic circles
always have an intersection point has a counterpart for M* twistors: the spheres of twistor
bundles for two points connected by a light-like geodesic intersect.

3. One cannot exclude the alternative in which the propagation occurs along general light-like
geodesics of X*. Also in this case the condition s; = sy implies that the set of points s,
connected to point s; is finite. This option will not be discussed in the sequel. Also in this
case the resonance can take place when the C'P, projection is a geodesic sphere.

These observations provide motivations for the study of the 1-D fermionic propagation for
induced spinor fields.

3.4 A model in which the fermions move along light-like geodesics of
M*x St c M* x CP,

It is interesting to study in more detail the assumption that the motion is along a light-like geodesic

of M* x S*.

1. The light-like geodesic of H makes it possible to get from the point s; in C'P, to point
satisfying in general sy # s,. In this case the velocity in M* is less than the speed of light:
B =wv/c < 1and the M* mass is not effectively zero as it is for a light-like geodesics of M.

It is also possible that the C'P, projection of the particle orbit wraps n times around S' and
returns to the original point in C'P,. This would indeed happen if the propagator in C'P»
degrees of freedom reduces to a delta function. At least this assumption is a very promising
simplification since the length scale of C'P; is very small compared to the length of the
projection of the geodesic line in M*.

2. The fermion can be thought of as moving along the light-like geodesic of M* x S':

(m® =t,m3 =z = Bt),® = wt,

B=2=v1-RWw?<1.

Here (3 is the particle’s velocity in M?.

(3.3)

The projection of the particle orbit in C'P, is a geodesic circle. The starting point and end
point of the propagator are on this geodesic line.

3. Since the fermion is no longer moving along the light-like geodesic line of M*, it no longer
behaves like a massless particle in M* sense. Quantum classical correspondence suggests
that this serves as a classical correlate for the mass of the particle resulting from p-adic
thermodynamics.

Unless 3 is very close to 1, i.e. unless the parameter wR is very small, there will be an
exponential damping caused by the thermal mass. If p-dic thermodynamics described the
situation, a reasonable guess is that the parameter wR is of the order of p-adic thermal mass
using C'P, mass as a unit (here h = 1) [L3].

4. If the C' P, propagator is approximated as or is a delta function then s; = so can be realized
if the particle wraps n times around S*:

AD =n x 27. (3.4)

In this case a 4-D set of circles S' belonging to X* is possible and one can say that a
resonance occurs. For C' P, type extremals this could occur. This is also the case if the C P,
projections is a geodesic sphere. The twistorial picture would suggest that the set of circles
correspond to a homologically trivial geodesic sphere of C'P, as an analog of the twistor
sphere parametrizing light-like geodesics in M*.
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5. For M* the time coordinate difference in the M* propagator would be

t2_t1:”wﬂ 22—21:6(752—151):5%. (35)
This could actually be a good approximation.

Suppose that the model indeed provides a semiclassical geometric description for the p-adic
thermal massivation.

1. One has mg —my = (t,8t). The difference a? = (mg — m;)? is the square of the Lorentz
invariant distance of M* and the parameter a should be of the order of the hadronic length
scale L.

This gives

a

7 = V/(ma —m)? = n2mp. (3.6)

R is the CP, radius and the natural length unit. The result is amazingly simple. a/R ~
Ly /R could be interpreted as the ratio of the hadron sizes scale to C'P, radius. This gives
estimate for n:

Ly Ly

= ~ = ~ 101 3.7
" 2rBR ~ 2wR ’ (3.7)

which gives R/Ly ~ 1/(27n). The parameter wR = /1 — $? is very small: one has

R2w?
5

1-8~1- (3.8)

2. One can estimate the order of magnitude for w and therefore also for 1 — 8. By quantum
classical correspondence, w should be of the order of the p-adic mass scale my of quark:
w ~ myg. This gives

R2 2
qu. (3.9)

1-8~1-

For § this gives and order of magnitude estimate relating 8 and n to each other:

1- 8~ (ZHy2(on) =2, (3.10)
Mg
The order of magnitude is 10732 for my /m, = 1.

The p-adic probabilities for the lowest excitations appearing in p-adic thermodynamics are
extremely small and of this order of magnitude. This guarantees that the p-adic thermal
mass coming from excitations with C'P, mass scale is of order particle mass.

p-Adic length scale hypothesis p ~ 2¥ gives m,R ~ R/L, ~ 1/\/p = 2-k/2_ Therefore one
has

WR~myR = LE ~ 27k, (3.11)

p

All these estimates are rough order of magnitude estimates.
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3. The expressions for the initial and final points of the light-like geodesic must be placed to the
space-time representation of the M* propagator for which a concrete formula must be given
as a Fourier transform. The C'P, points are in complex coordinates so = (Rsin(wRt),0,0,0,)
and s; = (0,0,0,0)

For s; = so this gives

% —n X 2mB =~ n x 2. (3.12)

The relevant parameter would be n, which would be very large and determined by the p-adic
length-scale hypothesis.

3.5 Could the propagator for the induced spinor fields along a light-like
geodesic of H make sense?

It is not at all clear whether the propagator in X* or along light-like geodesics of H is a useful
concept. It is however interesting to see whether one could define and calculate the propagator for
the Dirac operator associated with the induced spinor fields. There is dimensional hierarchy: 4-D
propagator, 2-D propagator at string world sheets, and 1-D propagator at fermion lines. Perhaps
also 3-D propagator at partonic orbits. Holography= holomorphy vision could make it possible to
solve the propagator in terms of holomorphic solutions of the modified Dirac equation.

In 1-D situation the condition s; = s looks natural since the light-like geodesics of H defining
fermion lines are very simple. Could this be possible in this case?

1. The induced gamma matrix I'; is defined as a projection of the 8-vector defined by H gamma
matrices to the light-like geodesic (m® = t,m? = Bt, ® = wt):

Ty =0+ B7: + wRyy, 75 =—1. (3.13)

2. One could identify the fermionic lines as light-like M* x S' geodesics. The modified Dirac
equation I'"D;¥ = 0 is proportional to 1/gs, which diverges. This suggests that D;¥ = 0
or I'y¥ = 0 as a counterpart of the Dirac equation or both of them are true for fermionic
on-mass-shell states.

The condition I';¥ = 0 as the analog of 7*p, ¥ = 0 would fix a definite H chirality correlating
M* and C P, chiralities and should hold true also for off-mass-shell states. The off-mass shell
property would correspond to D;¥ = pW¥, where p is the counterpart of mass squared for
off-mass-shell mass.

3. The analog of the momentum space propagator associated with a point pair connected by a
light-like H geodesic would be

Dp = bl (3.14)

p2+ie”

Here p is the analog of momentum. Dp would be contracted by H spinor mode at both ends
of the light-like H geodesic connecting the points of H. These modes would be on-mass-
shell-modes as solutions of the Dirac equation of H, just like the end points of the Feynman
graphs. The spectrum of the Dirac operator of H would not appear at all in the propagator,
which would mean an enormous simplification. This picture is also consistent with the view
based on the conformal algebra.

4. The spatial representation of the propagator would be given by a Fourier transform as

Di(t1, to) = 3t [ dp=eleltalfe), (3.15)
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The ends of the propagator lines satisfy t; — to =t = nwR. For momenta p = kw/n, k € Z,
the phase factors would be equal to 1 and a constructive interference would take place.

One can argue that the sum over these momenta gives the dominating contribution to the
propagator. Omne can also argue that only these momenta are allowed by the boundary
conditions at the ends of the propagator line.

This contribution would be

Dp(tist2) = 52 3k oy = aeC(L)- (3.16)

The sum diverges but could be interpreted as the value of Riemann zeta ((s) = > n~° for
s=1.

The matrix element of Dp is between two H spinor modes which define the ground states for
the super-conformal representations associated with the physical fermions.

1. The H spinor modes are estimated at points h; = (mq, s1) and he = (mag, s3) connecting
by the circle S' and m{ = t satisfies t = nw27R + ¢1, where ¢ € {0,27} is negligible as
compared to nw2m R.

One can fix the M* points m; and my apart from the constraint (¢ ~ nw2r R,z = t) but
must integrate over C' P, points s; and ss.

2. The geodesic circle S* is determined by the pair (s, s2) of CP, points so that the wRvs,
where 7, is induced gamma matrix

d d
Ty =Tropst %2, 22 =u. (3.17)

Here I'y, are C'P, gamma matrices and are proportional to R.

3. The matrix element between eigenstates of H-chirality in sum of parts involving v, = vo+/57.
and v, = wly.

(a) 7 is proportional 'y, depends explicitly on the point pair (s1,s2) so that this matrix
element correlates points s; and ss.

(b) The matrix element of 7, involves the contraction ®., (s1)®,,(s2). If the integrations
were over the entire C'P;, the outcome would vanish. However, the constraint that the
points hy and ho belong to the same space-time surface does not allow the integration
over both C'Ps:s and the constraint that the points are at the ends of the light-like
curve at the partonic orbit and the ends of the fermion line resides at partonic 2-surfaces,
implies further restrictions. The integrations are over the partonic 2-surfaces X2 and Y2
using the measure /g2 defined by the induced metric. This gives to the matrix element
and dependence on the genus of partonic 2-surface essential for the family replication
phenomenon [K1l, [K3|] [L6].

A About the solutions of Dirac equation in H
This section serves as an Appendix and re-represents information appearing in [K3]. First the

TGD view of electroweak and color interactions is compared with the standard view. After that
the general solutions of the Dirac equation in H are discussed.
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A.1 How does the TGD view of standard model interactions differ from
the standard model view?

TGD based vision standard model interactions differs in several respects from the standard view.

1. In TGD, elementary particles correspond to closed monopole flux tubes as analogs of hadronic
strings connecting two Minkowskian space-time sheets by Euclidean wormhole contacts. The
light-like orbits of wormhole throats (partonic orbits) carry fermions and antifermions at light
curves located at light-like 3-surfaces, which define interfaces between Minkowskian string
world regions and Euclidean regions identified as deformed C'P» type extremals.

2. The basic difference at the level of H spinor fields is that color quantum numbers are not
spin-like but are replaced with color partial waves in C'P;. Color degrees of freedom are
analogous to the rotational degrees of freedom of a rigid body. An infinite number of color
partial waves emerges for both quarks and leptons. In TGD, color and electroweak degrees of
freedom are strongly correlated as is also clear from the fact that color symmetries correspond
to the non-broken symmetries as isometries of C'P, and electroweak symmetries correspond
to the holonomies of C'P;, which are automatically broken gauge symmetries.

The spectrum of color partial waves in H is different for U and D type quarks and for charged
leptons and neutrinos. The triality of the partial wave is zero for leptons and 1 resp. -1 for
quarks resp. antiquarks. At the level of fundamental fermions, which do not correspond as
such to fermions as elementary particles, there is a strong violation of isospin symmetry.

The physical states are constructed using p-adic thermodynamics [K3| [K1] [L5] for the scaling
generator Ly of the conformal symmetries extended to the space-time level and involve the action
of Kac-Moody type algebras. The basic challenge of the state construction of the physical states
is to obtain physical states with correct color quantum numbers.

1. General irrep of SU(3) is labelled by a pair (p,q) of integers, where p resp. ¢ corresponds

intuitively to the number of quarks resp. antiquarks. The dimension of the representation is
d(p,q) = (1/2)(p+ g+ D(p+q+2).
The spinors assignable to left and right handed neutrino correspond to representations of
color group of type (p,p), where the integers and only right-handed neutrino allows singlet
(0,0) as covariantly constant C'Py spinor mode. (1,1) corresponds to octet 8. Charged
leptons allow representations of type (34 p,p): p = 0 corresponds to decuplet 10. Note that
(0, 3) corresponds to 10.

Quarks correspond to irreps of type obtained from leptons by adding one quarks that is
replacing (p + 3,p) with (p +4,p) (p = 0 gives d = 20) or (p,p) with (p+ 1,p) (p = 1 gives
d = 42). Antiquarks are obtained by replacing (p,p + 3) replaced with (p,p +4) and (p, p)
with (p,p + 1).

2. Physical leptons (quarks) are color singlets (triplets). One can imagine two ways to achieve
this.

Option I: The conformal generators act on the ground state defined by the spinor harmonic
of H. Could the tensor product of the conformal generators with spinor modes give a color
singlet state for leptons and triplet state for quarks? The constraint that Kac-Moody type
generators annihilate the physical states, realizing conformal invariance, might pose severe
difficulties.

In fact, TGD leads to the proposal that there is a hierarchical symmetry breaking for confor-
mal half-algebras containing a hierarchy of isomorphic sub-algebras with conformal weights
coming as multiplets of the weights of the entire algebra. This would make the gauge sym-
metry of the subalgebra with weights below given maximal weight to a physical symmetry.

Option II: The proposal is that the wormhole throats also contain pairs of left- and right-
handed neutrinos guaranteeing that the total electroweak quantum numbers of the string-
like closed monopole flux tube representing hadron vanishes. This would make the weak
interactions short-ranged with the range determined by the length of the string-like object.
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One must study the tensor products of vUr and Upvg states with the leptonic (quark)
spinor harmonic to see whether it is possible to obtain singlet (triplet) states. The tensor
product of a neutrino octet with a neutrino type spinor contains a color singlet. The tensor
product 8 ® 8 =1+ 84 + 85 + 10 + 10 + 27 contains 10 and its tensor product with 10 for
quark contains a color triplet.

The ground states for the Super Virasoro representations correspond to spinor harmonics in
M* x CP, characterized by momentum and color quantum numbers. The correlation between
color and electro-weak quantum numbers is wrong for the spinor harmonics and these states would
be also hyper-massive. One can imagine two mechanisms.

1. The super-symplectic generators could allow to build color triplet states having negative
vacuum conformal weights, and their values are such that p-adic massivation is consistent
with the predictions of the earlier model differing from the recent one in the quark sector.
In the following the construction and the properties of the color partial waves for fermions
and bosons are considered. The discussion follows closely to the discussion of [AT] .

2. In the concrete model for elementary particles a pair of left- and right-handed neutrino
associated with the monopole flux tube screens weak isospin above weak boson Compton
length. This pair could be in such color partial waves that the outcome is leptonic color
singlet and quark color triplet.

In the sequel only the color partial waves in H are discussed. This reduces to the discussion of
the eigenstates of C'Py d’Alembertian whose eigestates the spinor harmonics are.

A.2 General construction of solutions of Dirac operator of H

The construction of the solutions of massless spinor and other d’Alembertians in Mfﬁ x CPy is
based on the following observations.

1. d’Alembertian corresponds to a massless wave equation M* x C'P, and thus Kaluza-Klein
picture applies, that is Mi mass is generated from the momentum in C P, degrees of freedom.
This implies mass quantization:

M? = M

n o (A1)
where M2 are eigenvalues of C'P, Laplacian. Here of course, ordinary field theory is consid-
ered. In TGD the vacuum weight changes mass squared spectrum.

2. In order to get a respectable spinor structure in C'P, one must couple C'P, spinors to an
odd integer multiple of the Kéhler gauge potential. Leptons and quarks correspond to n = 3
and n = 1 couplings respectively. The spectrum of the electromagnetic charge comes out
correctly for leptons and quarks.

3. Right handed neutrino is covariantly constant solution of C' P, Laplacian for n = 3 coupling
to Kéahler gauge potential whereas right handed ”electron” corresponds to the covariantly
constant solution for n = —3. From the covariant constancy it follows that all solutions
of the spinor Laplacian are obtained from these two basic solutions by multiplying with an
appropriate solution of the scalar Laplacian coupled to K&ahler gauge potential with such a
coupling that a correct total Kahler charge results. Left handed solutions of spinor Laplacian
are obtained simply by multiplying right handed solutions with C' P, Dirac operator: in this
operation the eigenvalues of the mass squared operator are obviously preserved.

4. The remaining task is to solve scalar Laplacian coupled to an arbitrary integer multiple of
Kahler gauge potential. This can be achieved by noticing that the solutions of the massive
CP, Laplacian can be regarded as solutions of S® scalar Laplacian. S° can indeed be re-
garded as a circle bundle over C'P, and massive solutions of C' P, Laplacian correspond to the
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solutions of S® Laplacian with exp(is7) dependence on S* coordinate such that s corresponds
to the coupling to the Kahler gauge potential:

s=n/2 . (A.2)

Thus one obtains

D? = (D, —iA,d,)(D" —iArd,) + 02 (A.3)

so that the eigen values of C' P, scalar Laplacian are

m3(s) = m2+ s> (A4)

for the assumed dependence on 7.

5. What remains to do, is to find the spectrum of S° Laplacian and this is an easy task.
All solutions of S® Laplacian can be written as homogenous polynomial functions of C?
complex coordinates Z* and their complex conjugates and have a decomposition into the
representations of SU(3) acting in natural manner in C3.

6. The solutions of the scalar Laplacian belong to the representations (p,p+ s) for s > 0 and to
the representations (p + |s|,p) of SU(3) for s < 0. The eigenvalues m?(s) and degeneracies
d are

2A

m*(s) = §[p2+(|8|+2)p+\3\] , p>0,
i = %(p+1)(p+|5|+1)(2p+|5|+2). (A5)

A denotes the “cosmological constant” of CP, (R;; = As;j).

A.2.1 Solutions of the leptonic spinor Laplacian

Right handed solutions of the leptonic spinor Laplacian are obtained from the asatz of form

vp = Ps_ov} (A.6)

where up is covariantly constant right handed neutrino and ® scalar with vanishing Kéhler charge.
Right handed ”electron” is obtained from the ansatz

er = Po_zel | (A7)

where €%, is covariantly constant for n = —3 coupling to Kéhler gauge potential so that scalar

function must have Kéhler coupling s = n/2 = 3 a in order to get a correct Kahler charge. The
d’Alembert equation reduces to

(D,D" — (1 —e)A)® = —m? |
e(v)y=1, ele)=-1. (A.8)
The two additional terms correspond to the curvature scalar term and JiX*' terms in spinor

Laplacian. The latter term is proportional to Kéahler coupling and of different sign for v and e,
which explains the presence of the sign factor € in the formula.
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Right handed neutrinos correspond to (p,p) states with p > 0 with mass spectrum
2 mi .,
mi = 2A . (A.9)

Right handed “electrons” correspond to (p,p + 3) states with mass spectrum

2
m
m?(e) = ?1 [p*+5p+6] , p>0 . (A.10)
Left handed solutions are obtained by operating with C' P, Dirac operator on right handed solutions
with one exception: the action of the Dirac operator on the covariantly constant right handed

neutrino ((p = 0,p = 0) state) annihilates it.

A.2.2 Quark spectrum

Quarks correspond to the second conserved H-chirality of H-spinors. The construction of the
color partial waves for quarks proceeds along similar lines as for leptons. The Kahler coupling
corresponds to n = 1 (and s = 1/2) and right handed U type quark corresponds to a right handed
neutrino. U quark type solutions are constructed as solutions of form

UR = uRq)Szzl s (A.ll)
where up possesses the quantum numbers of covariantly constant right handed neutrino with
Kahler charge n =3 (s = 3/2). Hence ®, has s = —1. For Dg one has

DR = dr(bs:? . (A12)

dgr has s = —3/2 so that one must have s = 2. For Ug the representations (p + 1, p) with triality
one are obtained and p = 0 corresponds to color triplet. For Dy the representations (p,p + 2) are
obtained and color triplet is missing from the spectrum (p = 0 corresponds to 6).

The C' P, contributions to masses are given by the formula

2

m?*(U,p) = %[p2+3p+2] , p>0,
2 m:{ 2
m?(D,p) = ?[p +4p+4] , p>0 . (A.13)

Left handed quarks are obtained by applying Dirac operator to right handed quark states and
mass formulas and color partial wave spectrum are the same as for right handed quarks.

The color contributions to p-adic mass squared are integer valued if m3/3 is taken as a fun-
damental p-adic unit of mass squared. This choice has an obvious relevance for p-adic mass
calculations since canonical identification does not commute with a division by integer. More
precisely, the images of number xp in canonical identification has a value of order 1 when z is
a non-trivial rational whereas for x = np the value is n/p and extremely is small for physically
interesting primes. This choice does not however affect the spectrum of massless states but can
affect the spectrum of light states in case of electro-weak gauge bosons.

B Foundational questions

There are several foundational questions involved. What is the origin of the p-adicity? What is
the justification of p-adic thermodynamics and what does it have a counterpart at quantum level?
What are the poorly understood aspects of p-adic thermodynamics? What is the understanding of
generalized superconformal representations and possible interpretational and technical problems.
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B.1 Questions related to the p-adic thermodynamics

The nice feature of both approaches is that the propagators carry a minimum amount of information
about the quantum states at the 3-surfaces to which the end points of the propagator are associated.
Therefore the construction of physical states with correct total color quantum numbers do not affect
the propagators. One also circumvents the problem how to take into account the massivation by
p-adic thermodynamics at the level of the fermionic propagators.

This construction says nothing about how physical fermions are constructed and how the get
their masses via p-adic thermodynamics.

B.1.1 The origin of p-adic thermodynamics

The understanding of the origin of p-adic thermodynamics is the first challenge.

1. In p-adic thermodynamics, the scaling generator Lg takes the role of energy as a generator
of time translations. Ordinary 2-D conformal invariance requires that physical states are
annihilated by Lg. All states created by Ly would correspond to gauge degrees of freedom.
This cannot be the case in p-adic thermodynamics.

In TGD, the conformal algebras are replaced by half-algebras [L9], which allow an infinite
hierarchy of sub-algebras isomorphic to the full algebra, which means that a finite-dimensional
sub-algebra transforms from gauge algebra to a dynamical symmetry algebra and p-adic
thermodynamics applies to states in this finite-dimensional state space.

2. In the 2-D version of the p-adic thermodynamics, the ground state is necessarily tachyonic
with a negative conformal weight representing the mass squared. The physical ground state
with a vanishing mass squared is obtained by applying conformal generators with a positive
conformal weight. Where do the generators with tachyonic conformal weight come from?

(a) p-Adic thermodynamics in its recent formulation [L5] answers this question by extending
the conformal algebra from dimension 2 to dimension 4 so that one has hypercomplex
and complex coordinate and there are conformal weights associated with both of them.
The 4-dimensional conformal invariance is realized in holography= holomorphy (H-H)
vision involving the notion of Hamilton-Jacobi structure in an essential way [L7]. There
are conformal weights associated with hypercomplex resp. complex coordinates and the
corresponding conformal weights are non-negative resp. negative. Their sum vanishes
for massless ground states.

(b) M® — H duality [L10} [L18] provides further insights to the tachyon problem. In M¥,
the momentum space M* corresponds to a quaternionic subspace of octonions realized
as the normal space of point y of the 4-surfaces Y* C M®. The point y carries the
fermion. The 8-D mass squared always vanishes but the M* part is in general non-
vanishing. For some points y € Y* the normal space M* is such that the E* part of the
8-momentum vanishes and the particle is massless in M* sense. This is the counterpart
for the cancellation of the two conformal weights at the level of H.

B.1.2 Questions related to the origin of p-adicity

One can also make ontological questions related to p-adicity.

1. What is the origin of the p-adicity? H-H vision [L15] [L18] has led to a considerable progress in
the attempts to understand the origin of p-adicity and the p-adic length scale hypothesis. The
notion of functional p-adic numbers suggests how the p-adicization and adelization emerge.
One can even ask whether it is necessary to introduce the p-adic and adelic variants of the
embedding space in this approach.

2. p-Adic thermodynamics is a statistical description and must be an approximation to a genuine
quantal description. Quantum TGD can be formally regarded as a square root of thermody-
namics at a quantum critical temperature defined by the Kéhler coupling strength [K6, [K2].
Could it make sense to speak of a square root of p-adic thermodynamics in which thermal
probabilities correspond to quantal probabilities. Thermal state would be replaced by a
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quantum state. Very naively, thermodynamic weights would be replaced with their complex
square roots, that is ordinary square roots involving a phase factor.

B.1.3 Challenging the p-adic view of cognition

The progress in the mathematical understanding of TGD has repeatedly challenged various working
hypotheses. At this time, the progress in the understanding of holography= holomorphy vision
challenged the proposed p-adic view of cognition and intention and raised the question whether
ordinary p-adics could emerge from what I call functional p-adics as a generalization of p-adics
[L15].

1. In the TGD based vision about p-adic physics as physics of cognition, the discretizations
defining the intersection of realities and p-acidicites as real and p-adic space-time surfaces
define cognitive representations consisting of points of H = M* x CP, with preferred H
coordinates in an extension of rationals. One can challenge this picture for C'Py since it is
not a linear space. For M8 identifiable as octonions with the inner product defined as the real
part of the octonionic product, the situation is linear and the objection can be circumvented
since there exist highly unique linear coordinates. The need for preferred coordinates raises
however as an objection.

2. One of the motivations for the p-adic vision about cognition was the inherent non-determinism
of p-adic differential equations. Could p-adic view of cognition and imagination explain the
non-determinism of imagination? Could the realization of an intention as action correspond
to a quantum transition in which a p-adic counterpart of real space-time surfaces, obeying
the same defining equations, is replaced with its real counterparts.

The basic objection is that conservation laws might not allow this unless the conserved
quantities are in an intersection of reals and the extension of p-adic numbers induced by an
algebraic extension of rationals. If one accepts zero energy ontology [L1], in which quantum
states are zero energy states identified as pairs of states with opposite total quantum numbers
(this expresses classical conservation laws), this objection might be circumvented.

Holography = holomorphy vision, which in fact forces zero energy ontology, suggests a re-
analysis of these proposals.

1. Space-time surfaces for which the Taylor coefficients appearing in function pairs (f1, fa)
appearing in holomorphy= holography vision are in an extension of rationals and can be
regarded as real numbers or to belong corresponding extensions p-adics. This is the case
also for cognitive representations as the discretizations of space-time surfaces defined by
points of H with coordinates in an extension of rationals. Are the p-adic — real transitions
really needed? The question about the meaning of the intention-to action transition however
remains. Is the p-adic variant of the space-time surface replaced with the real variant?

2. Is p-adic physics really something fundamental or does it emerge at the level of WCW?
Holography= holomorphy vision leads to a generalization of p-adics to functional p-adics.
Functional p-adic primes correspond to polynomials with prime degree p and functional p-adic
number would be a power series of a polynomial with degree p with coefficients which have
degree smaller than p. Functional p-adics would have space-time surfaces as representations.

The functional p-adic numbers can be mapped by very-many-to-one morphism to p-adics
[L15] by assigning to the functional p-adic number defined in terms of the degrees of the
polynomials involved. This would provide a long-sought-for explanation for the p-adic length
scale hypothesis and give a direct connection with the vision about cognitive hierarchies. It
would also explain why small primes 2 and 3 appearing in the p-adic length scale hypothesis
are special: for these primes the roots of the polynomial can be solved analytically. What is
also nice that functional p-adics do not require any preferred coordinates and do not pose any
restrictions on the coefficients of f; and f; since only the degree of the polynomial matters.

3. In this framework it is not clear whether ordinary p-adics are needed as a fundamental
concept: are only the real variants of H and M® needed? Could ordinary p-adics emerge
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from the functional p-adics represented at WCW level as real space-time surfaces. Could the
crucial p-adic non-determinism correspond to the classical non-determinism at the level of
real space-time?

4. But what could the transformation of intention to action mean in this framework? Is it associ-
ated with any small state function reduction (SSFR) in the degrees of freedom corresponding
to the classical and p-adic non-determinism replacing superposition of real space-time sur-
faces with a new one?

Intention means an idea about the future, about a goal. Intention means time directedness.
Zero energy ontology replaces 3-surfaces with 4-surfaces with analogs of Bohr orbits as slightly
non-deterministic space-time surfaces obeying holography. Could this 4-D character of the
fundamental geometric objects be enough to explain intentionality.

B.2 Two problems related to generalized superconformal representa-
tions

The generalizations of super-conformal representation involved two problems.

B.2.1 A problem with super-conformal representations

What about the higher conformal excitations giving rise to the p-adic thermal mass? There does
not seem to be any point or need to modify the massless propagators since they are associated
with the ground state of the super-conformal representations. There is however a problem.

In string models the super generators Gy, of Ramond representation and G,41/2 of Neveu-
Schwarz representation define the analog of the Dirac operator. The anticommutators {G,,, G} }
and {Gn41/2, GIL 41 /2} give Virasoro generators L,. In the Ramond representation one has Gy =

PPy + Gyiv,0. The Ramond representation therefore contains the ordinary Dirac operator acting
in cm degrees of freedom.

In pa-dic thermodynamics [K3| [L5] based on the TGD view of conformal invariance [L9], the
Majorana option is not possible. Since the ordinary gamma matrices do not carry a fermion
number, the Ramond formula of G would involve generators with a vanishing fermion number and
non-vanishing fermion number. Same applies also to G,,.

1. A possible solution of the problem is that super generators and their Hermitian conjugates
define two kinds of supergenerators. For Ramond representation, this would also include
the counterparts of ordinary gamma matrices. The algebra creating the states would involve
only non-negative conformal weights and possess a fractal hierarchy of included sub-algebras
isomorphic to the entire algebra.

2. Could Gy is non-hermitian so that both Gy resp. G(JS carrying a fermion number 1 resp. -1 are
allowed. The counterparts of M* gamma matrices would be analogous to fermionic creation
and annihilation operators, which would correspond to a complex structure in center-or mass
degrees of freedom.

WCW gamma matrices [L9] correspond to Noether super charges defined by the classical
action principle related by supersymmetry to the bosonic Noether charges and carry a well-
defined fermion number and they are matrix elements between the zero modes of the induced
spinor modes and H spinor fields. The constant spinor modes could correspond to the coun-
terparts of the ordinary gamma matrices. Therefore H spinor fields need not be Majorana.

The Hamilton-Jacobi structure [L7] for M* based on hyper-complex and complex structure
would make the generalized complexification of M* possible. The conjugation for complex
coordinate and its hypercomplex counterpart would correspond to the hermitian conjugation
for the operators =, and 7, producing v} =+, and 4} = 7 for both leptonic and quark-like
representations. These gamma matrices would act as quantum operators.
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B.2.2 Could one speak of the propagation of color singlets at WCW level?

There are 3 kinds of spinor fields and Dirac operators corresponding to three levels: embedding
space H, spacetime surface X* and the ”"world of classical worlds” (WCW). A clear distinction
must be made between these.

The propagation of fundamental fermions in H was already considered and supports color
confinement: colored modes do not propagate on-mass-shell except in C'P, mass scales. Could the

propagation of the physical states identifiable as color singlet bound states of fundamental fermions
be describable at the level of WCW?

1. Bound states of fundamental fermions are color singlets. The lowest states are massless but
p-adic thermodynamics generates thermal mass for them. At quantum level, one expects
that the square root of p-adic thermodynamics provides a proper description. A lot remains
to be understood.

The problem is that superposition of states with different masses violates Lorentz invariance
in the standard ontology. Zero energy ontology (ZEO) could be of help here: there would be
time-like quantum entanglement and Lorentz invariance would not be violated.

2. WCW Dirac equation would correspond to the super Virasoro conditions and for the states
of generalize superconformal/super symplectic representations. WCW gamma matrices cor-
respond to Noether super charges defined by the classical action principle related by super-
symmetry to the bosonic Noether charges. They also include the counterparts of ordinary
gamma matrices as entities carrying fermion numbers. This solves the already mentioned
problem caused by the fact that spinor fields are not Majorana.

3. Is it possible to speak of the analog of propagation for WCW spinor fields or is this necessary
at all? The analog of the fermionic propagator would correspond to the operator defined by
the Super Virasoro charge bilinear in the counterparts of the analogs of Kac-Moody gener-
ators and WCW gamma matrices and therefore carries a fermion number. It is difficult to
understand how this could make sense physically without giving up fermion number conser-
vation. Its square corresponds to the Virasoro scaling generator conserving fermion number.
Note that there are also two scaling generators and also this complicates the situation further.
It would seem that their sum annihilates the ground states as massless states.

B.3 Does 8-dimensionality imply 8-dimensional relativity?

One cannot avoid the question whether 8-dimensionality implies an 8-D generalization of relativity.

1. The completely new element is that at M8 level M* as normal space is not fixed but dynam-
ical: could one speak of relativity for mass squared? The Lorentz boosts of this relativity
could correspond to the Lorentz group SO(1,7) of M8. Also Go as a subgroup affects the
M* mass squared values since it does not leave quaternionic subspace M* invariant although
it does not affect the energy.

2. Masslessness in the 8-D sense at M? level forces us to challenge the assumption that the
particles always have a well-defined 4-D mass squared. As a matter of fact, p-adic thermody-
namics and its possible quantum variant as a square root of thermodynamics [K6| [K2] already
does this. Could one think that mass is more like a transversal or longitudinal momentum
squared and depends on the state of motion characterized by the normal space of Y4?

3. What about color quantum numbers: could 8-D relativity apply even to them. This would
change dramatically the views of color. In M8, SO(4) acting on E* C M? is the counterpart
of SU(3) acting in CP, C H and also as a subgroup SU(3) C G4 of octonion automorphisms
leaving invariant the octonion unit defining M? time direction in the normal space. M*
as a quaternionic normal space of Y* varies and therefore also the subgroup SU(3) C Gs.
Suppose that one replaces normal space-with a new one by deforming Y such that the point
y € E* is not affected. What happens?

I have asked whether SO(4) — SU(3) duality between hadron physics and QCD type physics
could correspond to M® — H duality [[2} L3, [L10, L18]. Could M® — H duality map the



B.4 Is the proposed picture consistent with M® — H duality 29

2 Cartan quantum numbers of SO(4) representations appearing in M8 spinor harmonics to
those of SU(3) representations of H spinor harmonics. Could the representations of SU(3)
be restricted to the U(2) subgroup of the covering group of SO(4) in accordance with the
left-right asymmetry of the standard model?

Suppose that SO(1,7) and also G5 transformations affect the SO(4) representations. If so,
then by M® — H duality in the proposed form they also affect the SU(3) color partial waves
for H spinors. By color confinement this is however not easy to observe.

B.4 Is the proposed picture consistent with M® — H duality

M?®— H duality [L10} [L18] plays a central role in TGD. Therefore one can also worry about whether
octotwistors, which for physical states must reduce in some sense to quaternionic twistors, are a
well-defined notion. The octonionic spinors must reduce to quaternionic spinors for the physical
states in some sense. Massless Dirac equation must be satisfied and the analogs of the chirality
conditions for H, M* and C P, must make sense.

In the sequel the massless octonionic Dirac equation will be discussed.

1. Octonionic and quaternionic spinors are very much analogous to the 2-spinors appearing in
the definition of twistors since 4" in the Dirac equation is replaced with a real octonion
unit. The masslessness condition is obtained when Minkowski inner product is defined as
the real part for the product of octonions. The counterparts of sigma matrices are identified
as quaternions and octonions and matrix representations for the quaternionic units are not
used. This allows the introduction of a commuting imaginary unit ¢ doubling the number of
degrees of freedom and replacing octospinors with their complexified counterparts.

2. The octonionic Dirac equation looks like the ordinary Dirac equation but with gamma ma-
trices replaced with octonionic units. The quaternionic Dirac equation involves quaternionic
units but it is essential that they are not represented as matrices. This allows the introduc-
tion of imaginary uni ¢ commuting with the quaternionic and octonionic units and implies
double of the degrees of freedom so that one can have analogs of complex spinors.

The octonionic units are analogs of Pauli sigma matrices and the first problem is caused by
the lacking anticommutativity of the real unit with other octonion units. The Dirac equation
however makes sense also in this case.

3. The 8-D masslessness condition must correspond to the condition that the real part of the
square of Dirac operator on spinors vanishes. For momentum eigenstates this gives the usual
algebraic conditions for masslessness.

4. H spinors have a defined H-chirality guaranteeing separate conservation of quark and lepton
numbers. H-chirality € is a product € = €163 of M 4 and CP, chiralities. Alls these chiralities
should be definable also at the level of M8. Also the octonionic Dirac equation for H spinors
should be consistent with the chirality condition.

(a) The decomposition of octonion units to quaternion units {1, x|k = 1,2,3} and co-
quaternion units I,{1, Ix|k = 1,2,3} suggests the identification of the counterpart of
I'y. The matrix I'g is defined as the product of H gamma matrices satisfies I'2 = —1,
anticommutes with H gamma matrices. H chirality corresponds to the eigenvalue of
iT'9 equal to e = +1. The eigen spinors with chirality e are of the form (1 + €il'g)¥.
The spinors with fixed H-chirality are tensor products of spinors of fixed M* chirality
and CP, chirality and the product of these chiralities defines H-chirality.

(b) The operator ily, satisfying (il;)? = 1, is a good guess for the counterpart of I'g for the
octonionic spinors. The octospinors with a fixed M?® chirality e should be of the form
(14 €il,)Ty. It is easy to check that for an octospinor of form ¥, = ¥, + I, ¥, having
a fixed chirality €, one obtains

Uy, = ieW, (B.1)
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so that the spinor is determined completely by its quaternionic part. Perhaps this might
be regarded as a realization of quaterniocity.

(c¢) One can decompose also the quaternionic spinors to two parts corresponding to the de-
composition to complex subspace spanned by {1, I} and co-complex subspace spanned
by {I, Is}. This allows us to define M* chirality and its E* counterpart.

5. Octonionic Dirac equation for the momentum eigenstates can be decomposed to a sum of
quaternionic and co-quaternionic parts

DV = (pi I, + Lips 1)U =0 . (B.2)

The real part of D? gives the Minkowskian mass shell condition p? — p3 = 0.

The Dirac equation for the U, = (1 + iely) ¥ gives

D\I/() = (plffk + I4p§Ik)\I/0 + quo =0 .
A _ ok . (B.3)

D = pily + Lips Iy.) -
Tilde means a conjugation of quaternionic imaginary units. This gives two separate equa-
tions? Are they consistent? By multiplying the equation with tildes by 1 = —I2 from
left and transporting the second I through the equation to right, one obtains the equation
—1Is (p’f]k + I4p’2“Ik)\IIOI5 = 0. The two equations are therefore consistent.
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