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Abstract

In this article I consider some questions related to the twistor lift of TGD.

1. What does the induction of the twistor structure really mean?

2. Can the analog of Kihler form assignable to M* suggested by the symmetry between
M* and C'P, and by number theoretical vision appear in the theory. What would be the
physical implications?

3. How does gravitational coupling emerge at fundamental level?

4. Could one regard localization of spinor modes to string world sheets as a localization to
Lagrangian sub-manifolds of space-time surface with vanishing induced Kéhler form. La-
grangian sub-manifolds would be commutative in the sense of Poisson bracket. How this
relates to the idea that string world sheets correspond complex (commutative) surfaces
of quaternionic space-time surface in octonionic imbedding space.

1 Introduction
In this article I consider further questions related to the twistor lift.

1. What does the induction of the twistor structure really mean? What is meant with twistor
space. For instance, is the twistor sphere for M* time-like or space-like. The induction
procedure involves dimensional reduction forced by the condition that the projection of the
sum of Kéhler forms for the twistor spaces T(M*) and T(CP,) gives Kéhler form for the
twistor sphere of X*. Better understanding of the details is required.

2. Can the analog of Kihler form J(M*) assignable to M* suggested by the symmetry between
M* and CP, and by number theoretical vision appear in the theory? What would be the
physical implications?

The basic objection is the loss of Poincare invariance. This can be however avoided by
introducing the moduli space for Kahler forms. This moduli space is actually the moduli
space of causal diamonds (CDs) forced in any case by zero energy ontology (ZEO) and playing
central role in the generalization of quantum measurement theory to a theory of consciousness
and in the explanation of the relationship between geometric and subjective time [K5].

Why J(M*) would be needed? J(M*) corresponds to parallel constant electric and magnetic
fields in given direction. Constant £ and B = F fix directions of quantization axes for energy
(rest system) and spin. One implication is transversal localization of imbedding space spinor
modes: imbedding space spinor modes are products of harmonic oscillator Gaussians in
transversal degrees of freedom very much like quarks inside hadrons.

Also CP breaking is implied by the electric field and the question is whether this could explain
the observed CP breaking as appearing already at the level of imbedding space M* x CP.
The estimate for the mass splitting of neutral kaon and anti-kaon is of correct order of
magnitude.

Whether stationary spherically symmetric metric as minimal surface allows a sensible physical
generalization is a killer test for the hypothesis that J(M?) is covariantly constant. The
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question is basically about how large the moduli space of forms J(M?*) can be allowed to
be. The mere self duality and closedness condition outside the line connecting the tips of
CD allows also variants which are spherically symmetric in either Minkowski coorinates or
Robertson-Walker coordinates for light-cone.

. How does gravitational coupling emerge at fundamental level? The first naive guess is ob-

vious: string area action is scaled by 1/G as in string models. The objection is that p-adic
mass calculations suggest that string tension is determined by C'P; size R: the analog of
string tension appearing in mass formula given by p-adic mass calculations would be by a
factor about 10~® smaller than that estimated from string tension. The discrepancy evapo-
rates by noticing that p-adic mass calculations rely on p-adic thermodynamics at imbedding
space level whereas string world sheets appear at space-time level. Furthermore, if the ac-
tion assignable to string world sheets is effective action expressing 4-D action in 2-D form
as strong form of holography (SH) suggests string tension is expected to be function of the
parameters appearing in the 4-D action.

. Could one regard the localization of spinor modes to string world sheets as a localization to

Lagrangian sub-manifolds of space-time surface having by definition vanishing induced Kéahler
form: J(M*)+ J(CP,) = 0. Lagrangian sub-manifolds would be commutative in the sense of
Poisson bracket. Could string world sheets be minimal surfaces satisfying J(M?*)+J(CPy) =
0. The Lagrangian condition allows also more general solutions - even 4-D space-time surfaces
and one obtains analog of brane hierarchy. Could one allow spinor modes also at these analogs
of branes. Is Lagrangian condition equivalent with the original condition that induced W
boson fields making the em charge of induced spinor modes ill-defined vanish and allowing also
solution with other dimensions. How Lagrangian property relates to the idea that string world
sheets correspond to complex (commutative) surfaces of quaternionic space-time surface in
octonionic imbedding space.

More details about the induction of twistor structure

The notion of twistor lift of TGD [K14] [L3] has turned out to have powerful implications concerning
the understanding of the relationship of TGD to general relativity. The meaning of the twistor lift
really has remained somewhat obscure. There are several questions to be answered. What does
one mean with twistor space? What does the induction of twistor structure of H = M* x CP, to
that of space-time surface realized as its twistor space mean?

2.1 What does one mean with twistor space?

The notion of twistor space has been discussed in [K14] from TGD point of view.

1. In the case of twistor space of M* the starting point of Penrose was the isomorphism between

the conformal group of Spin(4,2) of 6-D Minkowski space M*?2 and the group SU(2,2) acting
on 242 complex spinors.

6-D twistor space could be identified as 6-D coset space SU(2,2)/SU(2,1)xU(1). For E° this
would give projective space CP; = SU(4)/SU(3) x U(1) and in twistor Grassmann approach
this definition is indeed used. It is thought that the problems caused by Euclidization are
not serious.

. One can think SU(2,2) as 4 x 4 complex matrices with orthogonal complex row vector Z; =

(Zi1, s Zig), and norms (1,1, —1 — 1) in the metric s? = 3" ¢;]2:]?, ¢ < (1,1,—1,—1). The
sub-matrices defined by (Zxa, Zks, Zka), k = 2, 3,4, can be regarded apart from normalization
elements of SU(1,2). The column vector with components Z;; with Z; 1 = /1 + p?, p2 =
|Z21|* — | Z31)% — | Z41|? corresponds to a point of the twistor space. The S? fiber for given
values of p and (Zs1, Z41) could be identified as the space spanned by the values of Z;.
Note that S? would have time-like signature and the signature of twistor space would be
(3,3), which conforms with the existence of complex structure. There would be dimensional
democracy at this level.
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3. The identification of 4-D base of the twistor space is unclear to me. The base space of the
this twistor space should correspond to the conformal compactification M2 of M* having
metric defined only apart from conformal scaling. The concrete realization M7 would be in
terms of M*? light-cone with points projectively identified. As a metric object this space is
ill-defined and can appear only at the level of scattering amplitudes in conformally invariant
quantum field theories in M*?.

4. Mathematicians define also a second variant of twistor space with S? fiber and this space
is just M* x S? |BS| (see http://arxiv.org/pdf/1308.2820.pdf). This space has a well-
defined metric and seems to be the only possible one for the twistor lift of classical TGD
replacing space-time surfaces with their twistor spaces. Whether the signature of S2 is time-
like or space-like has remained an open question but time-like signature looks natural. The
radius Rp of S? has been proposed to be apart from a numerical constant equal to Planck
length {p. Note that the isometry group is 9-D SO(3,1) x SU(2) rather than 15-D SU(2,2).
In TGD light-likeness in 8-D sense replaces light-likeness in 4-D sense: does this somehow
replace the conformal symmetry group SO(4,2) with SO(3,1) x SO(3)? Could SU(2) rotate
the direction of spin quantization axis.

2.2 Twistor lift of TGD

In TGD one replaces imbedding space H = M* x C P, with the product T' = T(M*) x T(CPy) of
their 6-D twistor spaces, and calls T'(H) the twistor space of H. For C'P» the twistor space is the
flag manifold T(CP,) = SU(3)/U(1) x U(1) consisting of all possible choices of quantization axis
of color isospin and hypercharge.

1. The basic idea is to generalize Penrose’s twistor program by lifting the dynamics of space-
time surfaces as preferred extremals of Kéhler action to those of 6-D Kéahler action in twistor
space T(H). The conjecture is that field equations reduce to the condition that the twistor
structure of space-time surface as 4-manifold is the twistor structure induced from T'(H).

Induction requires that dimensional reduction occurs effectively eliminating twistor fiber
S$2(X?) from the dynamics. Space-time surfaces would be preferred extremals of 4-D Kihler
action plus volume term having interpretation in terms of cosmological constant. Twistor
liftt would be more than an mere alternative formulation of TGD.

2. The reduction would take place as follows. The 6-D twistor space T'(X*) has S? as fiber and
can be expressed locally as a Cartesian product of 4-D region of space-time and of S?. The
signature of the induced metric of S? should be space-like or time-like depending on whether
the space-time region is Euclidian or Minkowskian. This suggests that the twistor sphere of
M* is time-like as also standard picture suggests.

3. Twistor structure of space-time surface is induced to the allowed 6-D surfaces of T'(H ), which
as twistor spaces T(X*) must have fiber space structure with S? as fiber and space-time
surface X* as base. The Kihler form of T'(H) expressible as a direct sum

J(T(H)) = J(T(M*")) & J(T(CP))

induces as its projection the analog of Kéhler form in the region of T'(X?) considered.

There are physical motivations (CP breaking, matter antimatter symmetry, the well-definedness
of em charge) to consider the possibility that also M* has a non-trivial symplectic/Kihler
form of M* obtained as a generalization of ordinary symplectic/Kihler form [L3]. This re-
quires the decomposition M* = M? x E? such that M? has hypercomplex structure and E?
complex structures.

This decomposition might be even local with the tangent spaces M?(z) and E?(x) integrat-
ing to locally orthogonal 2-surfaces. These decomposition would define what I have called
Hamilton-Jacobi structure [K9]. This would give rise to a moduli space of M* Kiihler forms
allowing besides covariantly constant self-dual Kihler forms with decomposition (m?,m?)
and (m', m?) also more general self-dual closed Kihler forms assignable to integrable local
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decompositions. One example is spherically symmetric stationary self-dual Kéhler form cor-
responding to the decomposition (m°,r,s) and (6, ) suggested by the need to get spherically
symmetric minimal surface solutions of field equations. Also the decomposition of Robertson-
Walker coordinates to (a,r) and (6, 7) assignable to light-cone M} can be considered.

The moduli space giving rise to the decomposition of WCW to sectors would be finite-
dimensional if the integrable 2-surfaces defined by the decompositions correspond to orbits of
subgroups of the isometry group of M* or CD. This would allow planes of M*, and radial half-
planes and spheres of M* in spherical Minkowski coordinates and of M j‘_ in Robertson-Walker
coordinates. These decomposition could relate to the choices of measured quantum numbers
inducing symmetry breaking to the subgroups in question. These choices would chose a
sector of WCW [K3§] and would define quantum counterpart for a choice of quantization axes
as distinct from ordinary state function reduction with chosen quantization axes.

4. The induced Kihler form of S? fiber of T'(X*) is assumed to reduce to the sum of the induced
Kihler forms from S? fibers of T(M*) and T(CP,). This requires that the projections of
the Kihler forms of M* and CP; to S?(X*) are trivial. Also the induced metric is assumed
to be direct sum and similar conditions holds true.These conditions are analogous to those
occurring in dimensional reduction.

Denote the radii of the spheres associated with M* and CP» as Rp = klp and R and the
ratio Rp/R by e. Both the Kéhler form and metric are proportional to Rf) resp. R? and
satisfy the defining condition Jy,.g"*Js = —gg;. This condition is assumed to be true also for
the induced Kéhler form of J(S?(X?).

Let us introduce the following shorthand notations

St =8%(X1), S§=5%CPR) , S§5=5*M"),

J(S? 32

(2.1)

This gives the following equations.

Ji=J+es, gi=g2+egs , JigiJi=-g1 .
(2.2)

Projections to S7 = S%(X*) are assumed at r.h.s.. The product of the third equation is
defined as tensor contraction and involves contravariant form of g.

2.3 Solutions to the conditions defining the twistor lift

Consider now solutions to the conditions defining the twistor lift.

1. The simplest solution type corresponds to the situation in which either S3 (S%) equals to
S?) and S2 (S%) projection of T(X?) is single point. In this case the conditions of Eq.
are trivially satisfied. These two solutions could correspond to Euclidian and Minkowskian
space-time regions. Also the solution for which twistor sphere degenerates to a point must
be considered and form J(M*?) = 0 this would correspond to the reduction of dimensionally
reduced action to Kéhler action defining the original variant of TGD. Note that preferred
extremals are conjectured to be minimal surfaces extremals of Kéhler action always [L1].

2. One can consider also more general solutions. Depending on situation, one can use for S2(X*)
either the coordinates of S3 or S37. Let us choose S3. One can of course change the roles of
the spheres.

Consider an ansatz for which the projections of J and J3 to S? are in constant proportionality
to each other. This is guaranteed if the spherical coordinates (u = cos(0), ®) of S3 and S7 are
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related by (u(M*?), ®(M*?)) = (u(CPy),n®(CP,)) so that the map between the two spheres
has winding number n. With this assumption one has

J1 = (1 + 67’L)J2 s

2.
g=1+en?)gs , (23)
The third condition of Eq. [I] equation gives
(14+ne)? = (1+n2%)* . (2.4)
This in turn gives
l+ne=68(1+n2%) , §==+1 .
(2.5)

The only solution for § = +1is n =0 or n = 1. For § = —1 there are no solutions.

One has 341 different solutions corresponding to the degenerate solution (n1,n2) = (0,0)
and 3 solutions with (n1,n9) equal (1,0), (0,1) or (1,1). The conditions are very stringent
and it is not clear whether there are any other solutions.

3. The further conditions implying locally direct sum for g and J pose strong restrictions on
space-time surfaces. The conjecture that the solutions of these conditions correspond to
preferred extremals of 6-D Kéhler action leads by dimensional reduction to the conclusion
that the 4-D action contains besides 4-D Kihler action also a volume term coming from 52
Kahler actions and giving rise to cosmological constant.

What is of special interest is that for the degenerate solution the volume term vanishes,
and one has mere 4-D Kéhler action with induced Kéahler form possibly containing also
J(M*?), which leads to a rather sensible cosmology having interpretation as infinite volume
limit for causal diamond (CD) inside which space-time surfaces exist. This limit could be
appropriate for QFT limit of TGD, which indeed corresponds to infinite-volume limit at
which cosmological constant approaches zero.

What could be the physical interpretation of the solutions?

1. Physical intuition suggests that S7 must be space-like for Euclidian signature of space-time
region [(n1,n2) = (1,0)] and time-like for Minkowskian signature [(ny,n2) = (0,1)].

2. By quantum classical correspondence one can argue that the non-vanishing of space-time
projection of J(M*) resp. J(CP,) is necessary to fix local quantization axis of spin resp.
weak isospin. If so, then nqy = 1/0 resp. no = 1/0 would tell that the projection of J(CP)
resp. J(M?) is non-vanishing/vanishes. If both contributions vanish [(n1,n2) = (0,0)] one
has generalized Lagrangian 4-surface, which would be vacuum extremal. The products of 2-D
Lagrangian manifolds for M* and C'P» would be vacuum extremals. One can wonder whether
there exist 4-surfaces representable as a graph of a map M* — CP, such that the induced
Kahler form vanishes. This picture allows only the imbeddings of trivial Robertson-Walker
cosmology as vacuum extremal of Kahler action since both M* contribution to Kahler action
and volume term would be non-vanishing [(n1,n2) = (0,1)].

2.4 Twistor lift and the reduction of field equations and SH to holomor-
phy

It has become clear that twistorialization has very nice physical consequences. But what is the deep
mathematical reason for twistorialization? Understanding this might allow to gain new insights
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about construction of scattering amplitudes with space-time surface serving as analogs of twistor
diatrams.

Penrose’s original motivation for twistorilization was to reduce field equations for massless fields
to holomorphy conditions for their lifts to the twistor bundle. Very roughly, one can say that the
value of massless field in space-time is determined by the values of the twistor lift of the field over
the twistor sphere and helicity of the massless modes reduces to cohomology and the values of
conformal weights of the field mode so that the description applies to all spins.

I want to find the general solution of field equations associated with the Kéhler action lifted to
6-D Kéhler action. Also one would like to understand strong form of holography (SH). In TGD
fields in space-time are are replaced with the imbedding of space-time as 4-surface to H. Twistor
lift imbeds the twistor space of the space-time surface as 6-surface into the product of twistor
spaces of M* and CP,. Following Penrose, these imbeddings should be holomorphic in some sense.

Twistor lift T(H) means that M* and C Py are replaced with their 6-D twistor spaces.

1. If S? for M* has 2 time-like dimensions one has 3+3 dimensions, and one can speak about
hyper-complex variants of holomorphic functions with time-like and space-like coordinate
paired for all three hypercomplex coordinates. For the Minkowskian regions of the space-
time surface X* the situation is the same.

2. For T(CP;) Euclidian signature of twistor sphere guarantees this and one has 3 complex
coordinates corresponding to those of S? and C'P,. One can also now also pair two real
coordinates of S? with two coordinates of CP; to get two complex coordinates. For the
Euclidian regions of the space-time surface the situation is the same.

Consider now what the general solution could look like. Let us continue to use the shorthand
notations S7 = S?(X?); 53 = S?(CP); 3 = S?(M*).

1. Consider first solution of type (1,0) so that coordinates of S5 are constant. One has holomor-
phy in hypercomplex sense (light-like coordinate ¢t — z and ¢ + z correspond to hypercomplex
coordinates).

(a) The general map T'(X*) to T(M*) should be holomorphic in hyper-complex sense. S%is
in turn identified with S? by isometry realized in real coordinates. This could be also
seen as holomorphy but with different imaginary unit. One has analytical continuation of
the map S? — S? to a holomorphic map. Holomorphy might allows to achieve this rather
uniquely. The continued coordinates of S? correspond to the coordinates assignable
with the integrable surface defined by E?(x) for local M?(x) x E?(x) decomposition
of the local tangent space of X*. Similar condition holds true for T(M*). This leaves
only M?(x) as dynamical degrees of freedom. Therefore one has only one holomorphic
function defined by 1-D data at the surface determined by the integrable distribution
of M?(z) remains. The 1-D data could correspond to the boundary of the string world
sheet.

(b) The general map T'(X*) to T(C P») cannot satisfy holomorphy in hyper-complex sense.
One can however provide the integrable distribution of E?(x) with complex structure
and map it holomorphically to C'P,. The map is defined by 1-D data.

(c) Altogether, 2-D data determine the map determining space-time surface. These two
1-D data correspond to 2-D data given at string world sheet: one would have SH.

2. What about solutions of type (0, 1) making sense in Euclidian region of space-time. One has
ordinary holomorphy in C'P; sector.

(a) The simplest picture is a direct translation of that for Minkowskian regions. The map
S% — 52 is an isometry regarded as an identification of real coordinates but could be
also regarded as holomorphy with different imaginary unit. The real coordinates can be
analytically continued to complex coordinates on both sides, and their imaginary parts
define coordinates for a distribution of transversal Euclidian spaces E2(x) on X* side
and E%(z) on M* side. This leaves 1-D data.
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(b) What about the map to T'(M*)? Tt is possible to map the integrable distribution E3(z)
to the corresponding distribution for 7'(M*) holomorphically in the ordinary sense of the
word. One has 1-D data. Altogether one has 2-D data and SH and partonic 2-surfaces
could carry these data. One has SH again.

3. The above construction works also for the solutions of type (1,1), which might make sense
in Euclidian regions of space-time. It is however essential that the spheres S5 and S3 have
real coordinates.

SH thus would thus emerge automatically from the twistor lift and holomorphy in the proposed
sense.

1. Two possible complex units appear in the process. This suggests a connection with quaternion

analytic functions [K14] suggested as an alternative manner to solve the field equations.
Space-time surface as associative (quaterionic) or co-associate (co-quaternionic) surface is a
further solution ansatz.
Also the integrable decompositions M?(x) x E?(z) resp. Ef(x) x E3(x) for Minkowskian
resp. Euclidian space-time regions are highly suggestive and would correspond to a foliation
by string wold sheets and partonic 2-surfaces. This expectation conforms with the number
theoretically motivated conjectures [K12].

2. The foliation gives good hopes that the action indeed reduces to an effective action consisting
of an area term plus topological magnetic flux term for a suitably chosen stringy 2-surfaces
and partonic 2-surfaces. One should understand whether one must choose the string world
sheets to be Lagrangian surfaces for the Kihler form including also M* term. Minimal surface
condition could select the Lagrangian string world sheet, which should also carry vanishing
classical W fields in order that spinors modes can be eigenstates of em charge.

The points representing intersections of string world sheets with partonic 2-surfaces defining
punctures would represent positions of fermions at partonic 2-surfaces at the boundaries of
CD and these positions should be able to vary. Should one allow also non-Lagrangian string
world sheets or does the space-time surface depend on the choice of the punctures carrying
fermion number (quantum classical correspondence)?

3. The alternative option is that any choice produces of the preferred 2-surfaces produces the
same scattering amplitudes. Does this mean that the string world sheet area is a constant for
the foliation - perhaps too strong a condition - or could the topological flux term compensate
for the change of the area?

The selection of string world sheets and partonic 2-surfaces could indeed be also only a gauge
choice. I have considered this option earlier and proposed that it reduces to a symmetry
identifiable as U(1) gauge symmetry for Kahler function of WCW allowing addition to it of a
real part of complex function of WCW complex coordinates to Kéahler action. The additional
term in the Ké&hler action would compensate for the change if string world sheet action in
SH. For complex Kéhler action it could mean the addition of the entire complex function.

3 How does the twistorialization at imbedding space level
emerge”?

An objection against twistorialization at imbedding space level is that M*-twistorialization requires
4-D conformal invariance and massless fields. In TGD one has towers of particle with massless
particles as the lightest states. The intuitive expectation is that the resolution of the problem is
that particles are massless in 8-D sense as also the modes of the imbedding space spinor fields are.

To explain the idea, let us select a fixed decomposition M® = Mg x Eg and assume that the
momenta are complex - for motivations see below.

1. With inspiration coming from M®— H duality [K7] suppose that for the allowed compositions
M8 = M* x E* one has M* = M2 x E? with Mg fixed, and corresponding to real octonionic
unit and preferred imaginary unit. Obviously 8-D light-likeness for M® = Mg x E3 reduces
to 4-D light-likeness for a preferred choice of M® = M* x C'P, decomposition.
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2. This suggests that in the case of massive M momenta one can apply twistorialization to the
light-like M*-momentum and code the information about preferred M* by a point of C P, and
about 8-momentum in M® = M{ x E¢ by an SU(3) transformation taking Mg to M?. Pairs
of twistors and SU(3) transformations would characterize arbitrary quaternionic 8-momenta.
8-D masslessness gives however 2 additional conditions for the complex 8-momenta probably
reducing SU(3) to SU(3)/U(1) x U(1) - the twistor space of CP,! This would also solve the
basic problem of twistor approach created by the existence of massive particles.

The assumption of complex momenta in previous considerations might raise some worries. The
space-time action of TGD is however complex if Kéhler coupling strength is complex, and there
are reasons to believe that this is the case. Both four-momenta and color quantum numbers -
all Noether charges in fact - could be complex. A possible physical interpretation for complex
momenta could be in terms of the natural width of states induced by the finite size of CD. Also in
twistor Grassmannian approach one encounters complex but light-like four-momenta. Note that
complex light-like space-time momenta correspond in general to massive real momenta. It is not
clear whether it makes sense to speak about width of color quantum numbers: their reality would
give additional constraint. The emergence of M? mass in this manner could be involved with the
classical description for the emergence of the third helicity.

The observation that octonionic twistors make sense and their restriction to quaternionic
twistors produce ordinary M* twistors provides an alternative view point to the problem. Also
M8 — H duality proposed to map quaternionic 4-D surfaces in octonionic M® to (possibly quater-
nionic) 4-D surfaces in M* x CP, is expected to be relevant. The twistor lift of M® — H duality
would give T(M?®) — T(H) duality.

Twistor Grassmann approach [B4, B3, B2, B5, B6} B1] uses as twistor space the space T} (M*) =
SU(2,2)/SU(2,1) x U(1) whereas the twistor lift of classical TGD uses M* x S2. The formulation
of the twistor amplitudes in terms of SH using the data assignable to the 2-D surfaces - string
world sheets and partonic 2-surfaces perhaps - identified as surfaces in T'(M*) x T(C Py) requires
the mapping of these twistor spaces to each other - the incidence relations of Penrose indeed realize
this map.

3.1 M?® — H duality at space-time level

Twistors emerge as a description of massless particles with spin [B7] but are not needed for spin
zero particles. Therefore one can consider first mere momenta.

1. Consider first space-time surfaces of M® with Minkowskian signature of the induced metric
so that the tangent space is M*. M® — H duality [K7] implies that C' P, points parameterize
quaternionic sub-spaces M? of octonions containing fixed MZ C M*. Using the decomposi-
tion 141+ 3+ 3 of complexified octonions to representations of SU(3), it is easy to see that
this space is indeed C'P,. M* correspond to the sub-space 1+1+2 where 2 is SU(2) C SU(3)
doublet.

CP; spinor mode would be spinor mode in the space of quaternionic sub-spaces M* C M8
with Mg C M* with real octonionic unit defining preferred time like direction and imaginary
unit defining preferred spin quantization axis. M® — H duality allows to map quaternionic
4-surfaces of M* D Mg to 4-surfaces in H. The latter could be quaternionic but need not to.

2. For Euclidian signature of the induced metric tangent space is E*. In this case co-associative
surfaces are needed since the above correspondence make sense only if the tangent space
corresponds to M*. For instance, for C P, type exremals tangent space corresponds to E*.
M* and E* change roles. Also now the space of co-associative tangent spaces is C'P, since co-
associative tangent space is the octonionic orthogonal complement of the associative tangent
space. One would have Euclidian variant of the associative case.

M8 — H correspondence raises the question whether the octonionic M® or M* x C P, represents
the level, which deserves to be called fundamental. Or are they just alternative descriptions made
possible by the quaternionicity of space-time surface in M?® and quaternionic momentum space
necessitating quaternionicity of the tangent space of X#? In any case, one should demonstrate
that the spectrum of states with M* x E* with quaternionic light-like 8-momenta is equivalent
with the spectrum of states for M* x CP,
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3.2 Parametrization of light-like quaternionic 8-momenta in terms of
T(CPR)

The following argument shows that the twistor space T(C'P2) emerges naturally from M® — H
correspondence for quaternionic light-like M® momenta.

1. Continue to assume a fixed decomposition M® = M x Ej, and that for the allowed com-
positions M® = M* x E* one has M* = M2 x E? with Mg fixed. Light-like quaternionic
8-momentum in M® = M{ x E§ can be reduced to light-like M* momentum and vanishing
E* momentum for some preferred M® = M* x E* decomposition.

One can therefore describe the situation in terms of light-like M*-momentum and U(2)
transformation (as it turns out) mapping this momentum to 8-D momentum in given frame
and giving the M and Ej momenta. The alternative description is in terms Mg massive
momentum and the E3 momentum. The space of light-like complex M* momenta with fixed
M@ part and non-vanishing E? part is given by C'P; as also the space of quaternionic planes.
Given quaternionic plane is in turn characterized by massless M*-momentum.

2. The description of M*-massive momentum should be based on twistor associated with the
light-like M* momentum plus something describing the SU(3) transformation leaving the
preferred imaginary unit of M2 un-affected. The transformations leaving unaffected the
M* part of M8-momentum coded by the SU(2) doublet 2 of color triplet 3 in the color
decomposition of complex 8-momentum 1+ 1+3+43 but acting on E4 part 1+ 3 non-trivially
correspond to U(2) subgroup. U(2) element thus codes for the E* part of the light-like
momentum and SU (3) code for quaternionic 8-momenta, which can be also massive. Massless
and complex M* momenta are coded by SU(3)/U(2) = CP;, as also the tangent spaces of
Minkowskian space-time regions (by M® — H duality).

3. General complex quaternionic momenta with fixed M? part are parameterized by SU(3).
Complex light-like 8-momenta satisfy two additional constraints from light-likenes condi-
tion, and one expects the reduction of SU(3) to SU(3)/U(1) x U(1) - the twistor space
of CP,. Therefore the light-like 8-momentum is coded by a twistor assignable to massless
M*-momentum by an point of SU(3)/U(1) x U(1) giving T(M*) x T(CPy).

By the previous arguments, the inclusion of helicities and electroweak charges gives twistor lift
of M® — H correspondence.

1. In the case of E* the helicities would correspond to two SO(4) spins to be mapped to right
and left-handed electroweak spins or weak spin and weak charges. Twistor space T(CPs)
gives hopes about a unified description of color - and electro-weak quantum numbers in terms
of partial waves in the space SU(3)/U(1) x U(1) for selections of quantization axes for color
quantum numbers.

2. A possible problem relates to the particles massive in M* sense having more helicity states
than massless particles. How can one describe the presence of additional helicities. Should one
introduce the analog of Higgs mechanism providing the missing massless helicities? Quantum
view about twistors describes helicity as a quantum number - conformal weight - of a wave
function in the twistor sphere S2. In the case of massive gauge bosons which would require
the introduction of zero helicity as a spin 0 wave function in twistor space.

3. One should relate the description in terms of M® momenta to the description in terms of M* x
CP, color partial waves massless in 8-D sense. The number of partial waves for given CP;,
mass squared is finite and this should be the case for quaternionic £E4 momenta. How color
quantum numbers determining the M* mass relate to complex E* momenta parameterized
by U(2) plus two constraints coming from complex light-likeness. The number of degrees of
freedom is 2 for given U(2) orbit and the quantization suggests dramatic reduction in the
number of 8-momenta. This strongly suggests that it is only possible to talk about wave
functions in the space of allowed E* momenta - that is in the twistor space T(C'P,). Fixing
the M*-part of 8-momentum parameterized by a point of C'P, leaves only a wave function
in the fiber S2.
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The discussion leaves some questions to ponder.

1. M8 — H correspondence raises the question whether the octonionic M® or M* x C'P, repre-
sents the fundamental level. Or are they just alternative descriptions made possible by the
quaternionicity of space-time surface in M® and quaternionic momentum space necessitating
quaternionicity of the tangent space of X4?

2. What about more general SO(1,7) transformations? Are they needed? One could consider
the possibility that SO(1,7) acts in the moduli space of octonion structures of M8. If so,
then these additional moduli must be included. Otherwise given 8-D momenta have Mg
part fixed and orbit of given M* momentum is the smaller, the smaller the E? part of M*
momentum is. It reduces to point if M* momentum reduces to Mg.

3.3 A new view about color, color confinement, and twistors

To my humble opinion twistor approach to the scattering amplitudes is plagued by some mathe-
matical problems. Whether this is only my personal problem is not clear.

1. As Witten shows in [B4], the twistor transform is problematic in signature (1,3) for Minkowski
space since the the bi-spinor p playing the role of momentum is complex. Instead of defining
the twistor transform as ordinary Fourier integral, one must define it as a residue integral.
In signature (2,2) for space-time the problem disappears since the spinors i can be taken to
be real.

2. The twistor Grassmannian approach works also nicely for (2,2) signature, and one ends up
with the notion of positive Grassmannians, which are real Grassmannian manifolds. Could it
be that something is wrong with the ordinary view about twistorialization rather than only
my understanding of it?

3. For M* the twistor space should be non-compact SU(2,2)/SU(2,1) x U(1) rather than
CP; =5U(4)/SU(3) x U(1), which is taken to be. I do not know whether this is only about
short-hand notation or a signal about a deeper problem.

4. Twistorilizations does not force SUSY but strongly suggests it. The super-space formalism
allows to treat all helicities at the same time and this is very elegant. This however forces
Majorana spinors in M* and breaks fermion number conservation in D = 4. LHC does not
support A/ = 1 SUSY. Could the interpretation of SUSY be somehow wrong? TGD seems
to allow broken SUSY but with separate conservation of baryon and lepton numbers.

In number theoretic vision something rather unexpected emerges and I will propose that this
unexpected might allow to solve the above problems and even more, to understand color and even
color confinement number theoretically. First of all, a new view about color degrees of freedom
emerges at the level of M3.

1. One can always find a decomposition M® = Mg x E® so that the possibly complex light-
like quaternionic 8-momentum restricts to MZ. The preferred octonionic imaginary unit
represent the direction of imaginary part of quaternionic 8-momentum. The action of G2 to
this momentum is trivial. Number theoretic color disappears with this choice. For instance,
this could take place for hadron but not for partons which have transversal momenta.

2. One can consider also the situation in which one has localized the 8-momenta only to M* =
Mg x E?. The distribution for the choices of E? C Mg x E* = M* is a wave function in
CP,. Octonionic SU(3) partial waves in the space CP, for the choices for M3 x E? would
correspond ot color partial waves in H. The same interpretation is also behind M2 — H
correspondence.

3. The transversal quaternionic light-like momenta in E? C Mg x E? give rise to a wave function
in transversal momenta. Intriguingly, the partons in the quark model of hadrons have only
precisely defined longitudinal momenta and only the size scale of transversal momenta can be
specified. This would of course be a profound and completely unexpected connection! The
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introduction of twistor sphere of T'(C'P,) allows to describe electroweak charges and brings in
C P, helicity identifiable as em charge giving to the mass squared a contribution proportional
to @2, so that one could understand electromagnetic mass splitting geometrically.

The physically motivated assumption is that string world sheets at which the data determin-
ing the modes of induced spinor fields carry vanishing W fields and also vanishing generalized
Kihler form J(M*) + J(CP). Em charge is the only remaining electroweak degree of free-
dom. The identification as the helicity assignable to T'(CP») twistor sphere is natural.

4. In general case the M? component of momentum would be massive and mass would be
equal to the mass assignable to the E® degrees of freedom. One can however always find
Mg x E® decomposition in which M? momentum is light-like. The naive expectation is that
the twistorialization in terms of M? works only if M? momentum is light-like, possibly in
complex sense. This however allows only forward scattering: this is true for complex M?
momenta and even in M* case.

The twistorial 4-fermion scattering amplitude is however holomorphic in the helicity spinors
A and has no dependence on ;. Therefore carries no information about M? mass! Could
M? momenta be allowed to be massive? If so, twistorialization might make sense for massive
fermions!

M@ momentum deserves a separate discussion.

1. A sharp localization of 8-momentum to M means vanishing transversal E? momentum so
that the action of U(2) would becomes trivial. Neither Mg localization nor localization to
single M* (localization in C'P,) looks implausible physically - consider only the size scale of
CP).

For the preferred extremals of twistor lift of TGD either M* or C'P, twistor sphere can
effectively collapse to a point. This would mean disappearence of the degrees of freedom
associated with M* helicity or electroweak quantum numbers.

2. The localization to M* D Mg is possible for the tangent space of quaternionic space-time
surface in M?8. This could correlate with the fact that neither leptonic nor quark-like induced
spinors carry color as a spin like quantum number. Color would emerge only at the level
of H and M? as color partial waves in WCW and would require de-localization in the C' Py
cm coordinate for partonic 2-surface. Note that also the integrable local decompositions
M* = M?(z) x E?(x) suggested by the general solution ansiitze for field equations are
possible.

3. Could it be possible to perform a measurement localization the state precisely in fixed Mg
always so that the complex momentum is light-like but color degrees of freedom disappear?
This does not mean that the state corresponds to color singlet wave function! Can one say
that the measurement eliminating color degrees of freedom corresponds to color confinement.
Note that the subsystems of the system need not be color singlets since their momenta need
not be complex massless momenta in Mg. Classically this makes sense in many-sheeted
space-time. Colored states would be always partons in color singlet state.

4. At the level of H also leptons carry color partial waves neutralized by Kac-Moody generators,
and I have proposed that the pion like bound states of color octet excitations of leptons
explain so called lepto-hadrons [K8]. Only right-handed covariantly constant neutrino is an
exception as the only color singlet fermionic state carrying vanishing 4-momentum and living
in all possible Mg:s, and might have a special role as a generator of supersymmetry acting
on states in all quaternionic subs-spaces M*.

5. Actually, already p-adic mass calculations performed for more than two decades ago K4l [K3|
K6], forced to seriously consider the possibility that particle momenta correspond to their
projections o MZ C M*. This choice does not break Poincare invariance if one introduces
moduli space for the choices of MZ C M* and the selection of Mg could define quantization
axis of energy and spin. If the tips of CD are fixed, they define a preferred time direction
assignable to preferred octonionic real unit and the moduli space is just S?. The analog of
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twistor space at space-time level could be understood as T(M?*) = M* x S? and this one
must assume since otherwise the induction of metric does not make sense.

What happens to the twistorialization at the level of M8 if one accepts that only MZ momentum
is sharply defined?

1. What happens to the conformal group SO(4,2) and its covering SU(2,2) when M* is re-
placed with MZ C M8? Translations and special conformational transformation span both
2 dimensions, boosts and scalings define 1-D groups SO(1,1) and R respectively. Clearly,
the group is 6-D group SO(2,2) as one might have guessed. Is this the conformal group
acting at the level of M8 so that conformal symmetry would be broken? One can of course
ask whether the 2-D conformal symmetry extends to conformal symmetries characterized by
hyper-complex Virasoro algebra.

2. Sigma matrices are by 2-dimensionality real (op and o3 - essentially representations of real
and imaginary octonionic units) so that spinors can be chosen to be real. Reality is also
crucial in signature (2,2), where standard twistor approach works nicely and leads to 3-D
real twistor space.

Now the twistor space is replaced with the real variant of SU(2,2)/SU(2,1) x U(1) equal
to SO(2,2)/S0O(2,1), which is 3-D projective space RP? - the real variant of twistor space
CPs3, which leads to the notion of positive Grassmannian: whether the complex Grass-
mannian really allows the analog of positivity is not clear to me. For complex momenta
predicted by TGD one can consider the complexification of this space to C'P; rather than
SU(2,2)/5U(2,1) x U(1). For some reason the possible problems associated with the signa-
ture of SU(2,2)/SU(2,1) x U(1) are not discussed in literature and people talk always about
CP;. Is there a real problem or is this indeed something totally trivial?

3. SUSY is strongly suggested by the twistorial approach. The problem is that this requires
Majorana spinors leading to a loss of fermion number conservation. If one has D = 2 only
effectively, the situation changes. Since spinors in M? can be chosen to be real, one can
have SUSY in this sense without loss of fermion number conservation! As proposed earlier,
covariantly constant right-handed neutrino modes could generate the SUSY but it could be
also possible to have SUSY generated by all fermionic helicity states. This SUSY would be
however broken.

4. The selection of M# could correspond at space-time level to a localization of spinor modes to
string world sheets. Could the condition that the modes of induced spinors at string world
sheets are expressible using real spinor basis imply the localization? Whether this localization
takes place at fundamental level or only for effective action being due to SH, is a question to
be settled. The latter options looks more plausible.

To sum up, these observation suggest a profound re-evalution of the beliefs related to color
degrees of freedom, to color confinement, and to what twistors really are.

3.4 How do the two twistor spaces assignable to M* relate to each other?

Twistor Grassmann approach [B4l, B3], B2, [B5, [B6, [BI] uses as twistor space the space T7(M*) =
SU(2,2)/SU(2,1) x U(1). Twistor lift of classical TGD uses M? x S2: this seems to be necessary
since Ty (M*) does not allow M* as space-space. The formulation of the twistor amplitudes in terms
of SH using the data assignable to the 2-D surfaces - string world sheets and partonic 2-surfaces
perhaps - identifed as surfaces in T(M*) x T(CP,) is an attractive idea suggesting a very close
correspondence with twistor string theory of Witten and construction of scattering amplitudes in
twistor Grassmann approach.

One should be able to relate these two twistor spaces and map the twistor spaces T'(X?)
identified as surfaces in T(H) = T(M*) x T(CP,) to those in Ty (H) = Ty(M*) x T(CP,). This
map is strongly suggested also by twistor string theory. This map raises hopes about the analogs
of twistor Grassmann amplitudes based on introduction of T'(CP,).
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At least the projections of 2-surfaces to T'(M*) should be mappable to those in T7(M*). A
stronger condition is that T'(M*) is mappable to 77 (M*). Incidence relations for twistors Z = (), i)
assigning to given M* coordinates twistor sphere, are given by

Po = Maa A .

This condition determines a 2-D sub-space - complex light ray - of complexified Minkowski space
MZ. Also complex scaling of Z determines the same sub-space. Therefore twistor sphere corre-
sponds to a complex light ray M#, whose points differ by a shift by a complex light-like vector (A
is null bi-spinor annihilated by light-like m).

Since twistor line (projective sphere) determines a point of M2, two points of twistor sphere
labelled by A and B are needed to determined m:

R AA,allB,é n AB,altA,é
T (Mads))  (AAa)

The solutions are invariant under complex scalings (A, ) — k(A, ). Therefore co-incidence rela-
tions allow to assign projective line - sphere S? - to a point of M* in T'(M*). This sphere naturally
corresponds to S? in T(M*) = M* x S2. This allows to assign pairs (m x S?) in T(M*) to spheres
of T1(M*) and one can map the projections of 2-surfaces to T'(M*) to Ty (M*?).

Thus one cannot assign M* point to single twistor but can map any pair of points at twistor
sphere of T} (M*) to the same point of M* in T(M*) = M* x S? and also identify the twistor
sphere with S2. Twistor spheres are labelled by the base space of T7(M*?) and therefore base space
can be mapped to M*?.

Two M* points separated by light-like distance correspond to twistor spheres intersecting at
one point as is clear from the fact that the difference m, — mo of the points annihilates the twistor
A. T1(M*) is singular as fiber bundle over M* since the same point of fiber is projected to two
different points of M*.

Could one replace T'(M*) with Ty(M*) by modifying the induction procedure suitable?

1. Ty(M*) = SU(2,2)/SU(2,1) x U(1) has SU(2,2) invariant metric and SU(2,2) corresponds
to the 15-D spin covering group of SO(4,2) having SO(3,1) as sub-group. What does one
obtain if one induces the metric of the base space of Ty (M?) to M* via the above identifica-
tion?

The induced metric would depend on the choice of the base space, and one would have
analog of gauge invariance since for a given point of the base the point of the fiber sphere
can be chosen freely. A reasonable guess is that the induced metric is determined apart from
conformal scaling. One could fix the gauge by - say - assuming that the S? point is constant
but it is not clear whether this allows to get the flat M* metric with any choice.

2. If the twistor sphere of T)(M 4) has radius of order Planck length [p, the overall scaling
factor of the metric of Ty (M?) is of order [%. Also the induced M* metric would have this
scaling factor. For T (M*) one could not perform this scaling. This need not be a problem
in T(M*) since one scale up the flat metric of M* by scaling the coordinates. This kind of
scaling would in fact smooth out the possible deviations from flat M* metric very effectively.
In any case, it seems that one must assume that imbedding space corresponds to T'(M?).

4 Can the Kihler form of M* appear in Kahler action?

I have already earlier considered the question whether the analog of Kéhler form assignable to M*
could appear in Kéhler action. Could one replace the induced Kéhler form J(CP) with the sum
J = J(M*) + J(CP,) such that the latter term would give rise to a new component of Kiihler
form both in space-time interior at the boundaries of string world sheets regarded as point-like
particles? This could be done both in the Kéhler action for the interior of X* and also in the
topological magnetic flux term [ J associated with string world sheet and reducing to a boundary
term giving couplings to U(1) gauge potentials A, (CP) and A, (M?) associated with J(CP,) and
J(M*). The interpretation of this coupling is an interesting challenge.
What conditions one can pose on J(M*%)?



4. Can the Kihler form of M* appear in Kihler action? 14

1. The simplest possibility is that J(M?) is covariantly constant and self-dual. J(M*) would
define a global decomposition M* = M? x E? in terms of parallel constant electric and
magnetic fields of equal magnitude. CD with this variant of J(M?*) would be naturally
associated with planewave like radiative solutions.

2. One could however give up the covariant constancy. In this case spherically symmetric vari-
ants of J(M*) naturally associated with sperically symmetric stationary metric and possible
analogs of Robertson-Walker metrics. J(M?*) would be closed except at the world line con-
necting the tips of CD and carry identical magnetic and electric charges.

3. J(M*) would define Hamilton Jacobi-structure and an attractive idea is that the orthogonal
2-surfaces associated with the foliation of M?* are orbits of a subgroup of Poincare group.
This structure would characterize quantum measurement at the level of WCW and quantum
measurement would involve selection of a sector of WCW characterized by J(M*) [K5].

Consider now the objections against introducing J(M*) to the Kihler action at imbedding
space level.

1. J(M*) would would break translational and Lorentz symmetries at the level of imbedding
space since J(M?) cannot be Lorentz invariant. For imbedding space spinor modes this
term would bring in coupling to the self-dual Kihler form in M*. The simplest choice is
A= (A =2A, =0,4, = y,A, = 0) defining decomposition M* = M? x E?. For Dirac
equation in M* one would have free motion in preferred time-like (t,z)-plane plane M? in
whereas in x- and y-directions (E? plane) would one have harmonic oscillator potentials due
to the gauge potentials of electric and magnetic fields. One would have something very similar
to quark model of hadron: quark momenta would have conserved longitudinal part and non-
conserved transversal part. The solution spectrum has scaling invariance W(m*) — ¥(Am*)
so that there is no preferred scale and the transversal scales scale as 1/E and 1/k,.

2. Since J(M*) is not Lorentz invariant, Lorentz boosts would produce new M? x E? decom-
position (or its local variant). If one assumes above kind of linear gauge as gauge invariance
suggests, the choices with fixed second tip of causal diamond (CD) define finite-dimensional
moduli space SO(3,1)/5S0(1, 1) x SO(2) having in number theoretic vision an interpretation
as a choice of preferred hypercomplex plane and its orthogonal complement. This is the
moduli space for hypercomplex structures in M* with the choices of origins parameterized
by M*. The introduction of the moduli space would allow to preserve Poincare invariance.

3. If one generalizes the condition for Kihler metric to J2(M?*) = —g(M*) fixing the scaling
of J, the coupling to A(M?*) is also large and suggests problems with the large breaking
of Poincare symmetry for the spinor modes of the imbedding space for given moduli. The
transversal localization by the self-dual magnetic and electric fields for J(M*) would produce
wave packets in transversal degrees of freedom: is this physical?

This moduli space is actually the moduli space introduced for causal diamonds (CDs) in
zero energy ontology (ZEO) forced by the finite value of volume action: fixing of the line
connecting the tips of CD the Lorentz boost fixing the position for the second tip of CD
parametrizes this moduli space apart from division with the group of transformations leaving
the planes M? and E? having interpretation a plane defined by light-like momentum and
polarization plane associated with a given CD invariant.

4. Why this kind of symmetry breaking for Poincare invariance? A possible explanation pro-
posed already earlier is that quantum measurement involves a selection of quantization axis.
This choice necessarily breaks the symmetries and .J(M*) would be an imbedding space cor-
relate for the selection of rest frame and quantization axis of spin. This conforms with the
fact that CD is interpreted as the perceptive field of conscious entity at imbedding space level:
the contents of consciousness would be determined by the superposition of space-time sur-
faces inside CD. The choice of J(M?*) for CD would select preferred rest system (quantization
axis for energy as a line connecting tips of CD) via electric part of .J(M*) and quantization
axis of spin (via magnetic part of J(M#?). The moduli space for CDs would be the space for
choices of these particular quantization axis and in each state function reduction would mean
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a localization in this moduli space. Clearly, this reduction would be higher level reduction
and correspond to a decision of experimenter.

To summarize, for J(M*) = 0 Poincare symmetries are realized at the level of imbedding space
but obviously broken slightly by the geometry of CD. The allowance of J(M#%) # 0 implies that
both translational and rotational symmetries are reduced for a given CD: the interpretation would
be in terms of a choice of quantization axis in state function reduction. They are however lifted
to the level of moduli space of CDs and exact in this more abstract sense. This is nothing new:
already the introduction of ZEO and CDs force by volume term in action forced by twistor lift of
TGD implies the same. Also the view about state function reduction requires wave functions in
the moduli space of CDs. This is also essential for understanding how the arrow of geometric time
is inherited from that of subjective time in TGD inspired theory of consciousness [K2| [K15].

What about the situation at space-time level?

1. The introduction of J(M%) part to Kihler action has nice number theoretic aspects. In
particular, J selects the preferred complex and quaternionic sub-space of octonionic space of
imbedding space. The simplest possibility is that the Kahler action is defined by the Kahler
form J(M*) + J(CP,).

Since M* and C'P, Kahler geometries decouple it should be possible to take the counterpart
of Kihler coupling strength in M* to be much larger than in C'P, degrees of freedom so that
M* Kihler action is a small perturbation and slowly varying as a functional of preferred
extremal. This option is however not in accordance with the idea that entire Kéhler form is
induced.

2. Whether the proposed ansétze for general solutions make still sense is not clear. In particular,
can one still assume that preferred extremals are minimal surfaces? Number theoretical vision
strongly suggests - one could even say demands - the effective decoupling of Kéahler action
and volume term. This would imply the universality of quantum critical dynamics. The
solutions would not depend at all on the coupling parameters except through the dependence
on boundary conditions. The coupling between the dynamics of Kéhler action and volume
term would come also from the conservation conditions at light-like 3-surfaces at which the
signature of the induced metric changes.

3. At space-time level the field equations get more complex if the M* projection has dimension
D(M*) > 2 and also for D(M*) = 2 if it carries non-vanishing induced J(M?). One would
obtain cosmic strings of form X2 x Y2 as minimal surface extremals of ordinary Kihler
action or X2 Lagrangian manifold of M* as also CP, type vacuum extremals and their
deformations with M* projection Lagrangian manifold. Thus the differences would not be
seen for elementary particle and string like objects. Simplest string worlds sheet for which
J(M*) vanishes would correspond to a piece of plane M2,

M* is the simplest minimal surface extremal of Kihler action necessarily involving also
J(M*%). The action in this case vanishes identically by self-duality (in Euclidian signature
self-duality does not imply this). For perturbations of M* such as spherically symmetric
stationary metric the contribution of M* Kéhler term to the action is expected to be small
and the come mainly from cross term mostly and be proportional to the deviation from flat
metric. The interpretation in terms of gravitational contribution from M* degrees of freedom
could make sense.

4. What about massless extremals (MEs)? How the induced metric affects the situation and
what properties second fundamental form has? Is it possible to obtain a situation in which the
energy momentum tensor 7% and second fundamental form H* 5 have in common components

which are proportional to light-like vector so that the contraction 7% H 2 5 vanishes?

Minimal surface property would help to satisfy the conditions. By conformal invariance one
would expect that the total Kéhler action vanishes and that one has J¢ J7? o ag®® + bk“k”.
These conditions together with light-likeness of Kahler current guarantee that field equations
are satisfied.
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In fact, one ends up to consider a generalization of MEs by starting from a generalization
of holomorphy. Complex CP, coordinates ¢ would be functions of light-like M? coordinate
uy = k-m, k light-like vector, and of complex coordinate w for E? orthogonal to M?2.
Therefore the C' P, projection would 3-D rather than 2-D now.

w ww)? HZZT
The CP, contribution to the induced metric has only components of form Agy, w, Ag,w,
and gwy. There is also contribution g,,,_ = 1, where v is the light-like dual of u in plane
M?. Contravariant metric can be expanded as a power series for in the deviation (Ag, LW
Agy,w) of the metric from (gy u_,gww). Only components of form g“+* and g“™ are
obtained and their contractions with the second fundamental form vanish identically since
there are no common index pairs with simultaneously non-vanishing components. Hence it
seems that MEs generalize!

The second fundamental form has only components of form Hffw}, H5+7 and HY

I have asked earlier whether this construction might generalize for ordinary MEs. One can in-
troduce what I have called Hamilton-Jacobi structure for M* consisting of locally orthogonal
slicings by integrable 2-surfaces having tangent space having local decomposition M2 x E2
with light-like direction depending on point x. An objection is that the direction of light-like
momentum depends on position: this need not be inconsistent with momentum conserva-
tion but would imply that the total four-momentum is not light-like anymore. Topological
condensation for MEs and at MEs could imply this kind modification.

5. There is also a topological magnetic flux type term for string world sheet. Topological term
can be transformed to a boundary term coupling classical particles at the boundary of string
world sheet to CP, Kéahler gauge potential (added to the equation for a light-like geodesic
line). Now also the coupling to M* gauge potential would be obtained. The condition
J(M*)+ J(CP,) = 0 at string world sheets [K14] is very attractive manner to identify string
world sheets as analogs of Lagrangian manifolds but does not imply the vanishing of the net
U(1) couplings at boundary since the induce gauge potentials are in general different.

Also topological term including also M* Kihler magnetic flux for string world sheet con-
tributes also to the modified Dirac equation since the gamma matrices are modified gamma
matrices required by super-conformal symmetries and defined as contractions of canonical
momentum densities with imbedding space gamma matrices [KI0]. This is true both in
space-time interior, at string world sheets and at their boundaries. CP, (M?) term gives a
contribution proportional to CP; (M*) gamma matrices.

At imbedding space level transversal localization would be the outcome and a good guess
is that the same happens also now. This is indeed the case for M? defining the simplest
extremal. The general interpretation of M* Kahler form could be as a quantum tool for
transversal dynamical localization of wave packets in Kahler magnetic and electric fields of
M*. Analog for decoherence occurring in transversal degrees of freedom would be in question.
Hadron physics could be one application.

How to test this idea?

1. It might be possible to kill the assumption that J(M?) is covariantly constant by showing
that one does not obtain spherically symmetric Schwartschild type metric as a minimal
surface extremal of generalized Kéhler action: these extremals are possible for ordinary
Kihler action |L1] [K13]. For the canonical imbedding of M* field equations are satisfied
since energy momentum tensor vanishes identically. For the small deformations the presence
of J(M*) would reduce rotational symmetry to cylindrical symmetry.

The question is basically about how large the moduli space of forms J(M?*) can be allowed
to be. The mere self duality and closedness condition outside the line connecting the tips
of CD allows also variants which are spherically symmetric in either Minkowski coorinates
or Robertson-Walker coordinates for light-cone.An attractive proposal is that the the pairs
of orthogonal 2-surface correspond to Hamilton-Jacobi structures for which the two surfaces
are orbits of subgroups of Poincare group.

2. J(M*) could make its presence manifest in the physics of right-handed neutrino having no
direct couplings to electroweak gauge fields. Mixing with left handed neutrino is however
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induced by mixing of M* and C'P, gamma matrices. The transversal localization of right-
handed neutrino in a background, which is a small deformation of M* could serve as an
experimental signature.

3. CP breaking in hadronic systems is one of the poorly understood aspects of fundamental
physics and relates closely to the mysterious matter-antimatter asymmetry. The constant
electric part of self dual J(M*) implies CP breaking. I have earlier consider that Kihler
electric fields could cause this breaking but now the electric field is not constant. Second
possibility is that matter and antimatter correspond to different values of h.ry and are
dark relative to each other. The question is whether J(M?*) could explain the observed CP
breaking as appearing already at the level of imbedding space M* x C'P, and whether this
breaking could explain hadronic CP breaking and matter anti-matter asymmetry. Could M*
part of Kéhler electric field induce different hess/h = n for particles and antiparticles.

5 About string like objects

String like objects and partonic 2-surfaces carry the information about quantum states and about
space-time surfaces as preferred extremals if strong form of holography (SH) holds true. SH has
of course some variants. The weakest variant states that fundamental information carrying ob-
jects are metrically 2-D. The light-like 3-surfaces separating space-time regions with Minkowskian
and Euclidian signature of the induced metric are indeed metrically 2-D, and could thus carry
information about quantum state.

An attractive possibility is that this information is basically topological. For instance, the
value of Planck constant heyy = n x h would tell the number sheets of the singular covering
defining this surface such that the sheets co-incide at partonic 2-surfaces at the ends of space-time
surface at boundaries of CD. In the following some questions related to string world sheets are
considered. The information could be also number theoretical. Galois group for the algebraic
extension of rationals defining particular adelic physics would transform to each other the number
theoretic discretizations of light-like 3-surfaces and give rise to covering space structure. The
action at partonic 2-surfaces should be trivial if one wants singular covering: this would mean that
discretizations of partonic 2-surfaces consist of rational points. hef¢/h = n could in this case be a
factor of the order of Galois group.

The original observation was that string world sheets should carry vanishing W boson fields in
order that the em charge for the modes of the induced spinor field is well-defined. This condition
can be satisfied in certain situations also for the entire space-time surface. This raises several
questions. What is the fundamental condition forcing the restriction of the spinor modes to string
world sheets - or more generally, to surface of given dimension? Is this restriction dynamical. Can
one have an analog of brane hierarchy in which also higher-D objects can carry modes of induced
spinor field [K11]? Could the analogs of Lagrangian sub-manifolds of X* C M* x CP; satisfying
J(M*) + J(CPy) = 0 define string world sheets and their variants with varying dimension? The
additional condition would be minimal surface property.

5.1 How does the gravitational coupling emerge?

The appearance of G = [% has coupling constant remained for a long time actually somewhat of
a mystery in TGD. Ip defines the radius of the twistor sphere of M* replaced with its geometric
twistor space M* x S2 in twistor lift. G makes itself visible via the coefficients pyq. = 8TA/G
volume term but not directly and if preferred extremals are minimal surface extremals of Kéahler
action p,q. makes itself visible only via boundary conditions. How G appears as coupling constant?

Somehow the M* Kihler form should appear in field equations. 1/G could naturally appear
in the string tension for string world sheets as string models suggest. p-Adic mass calculations
identify the analog of string tension as something of order of magnitude of 1/R? [K4]. This identifi-
cation comes from the fact that the ground states of super-conformal representations correspond to
imbedding space spinor modes, which are solutions of Dirac equation in M* x C'P,. This argument
is rather convincing and allows to expect that the p-adic mass scale is not determined by string
tension.
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The problem is that the length of string like objects would be given by Planck length or C'P;
length if either of these pictures is the whole truth. One expects long gravitational flux tubes
mediating gravitational interactions. The hypothesis he.rr = nh = hy = GMm/vg, where vy < ¢
is a parameter with dimensions of velocity, suggests that the string tension assignable to the flux
tubes mediating gravitational interaction between masses M and m is apart from a numerical
factor equal to A;TQ, where gravitational Compton length is Ag, = hgr/m = GM/vg so that the
length of the flux tubes is of order Ag.

The problem is that the length of string like objects would be given by Planck length or C'Ps
length if either of these pictures is the whole truth. One would like to have long gravitational
flux tubes mediating gravitational interactions. Strong form of holography (SH) indeed suggests
that stringy action appears as effective action expressing 4-D space-time action and modified Dirac
action as 2-D actions assignable to string world sheets [L2] (see http://tinyurl.com/zylrd7w).
This view would allow to understand the localization of spinor modes to string world sheets carrying
vanishing W fields in terms as an effective description implying well-defineness of classical em charge
and conservation of em charge at the level of scattering amplitudes. In fact that the introduction
of the Kéhler form .J(M*) would allow to understand string world sheets as analogs of Lagrangian
sub-manifolds.

5.2 Non-commutative imbedding space and strong form of holography

Quantum group theorists have studied the idea that space-time coordinates are non-commutative
and tried to construct quantum field theories with non-commutative space-time coordinates (see
http://tinyurl.com/z3m8sny). My impression is that this approach has not been very successful.
In Minkowski space one introduces antisymmetry tensor Ji; and uncertainty relation in linear M*
coordinates m” would look something like [m*, m!] = 1%J kL where Ip is Planck length. This would
be a direct generalization of non-commutativity for momenta and coordinates expressed in terms
of symplectic form J*.

14-1-D case serves as a simple example. The non-commutativity of p and g forces to use either p
or ¢. Non-commutativity condition reads as [p, g] = AJP? and is quantum counterpart for classical
Poisson bracket. Non-commutativity forces the restriction of the wave function to be a function
of p or of ¢ but not both. More geometrically: one selects Lagrangian sub-manifold to which the
projection of J,, vanishes: coordinates become commutative in this sub-manifold. This condition
can be formulated purely classically: wave function is defined in Lagrangian sub-manifolds to
which the projection of J vanishes. Lagrangian manifolds are however not unique and this leads
to problems in this kind of quantization. In TGD framework the notion of “World of Classical
Worlds” (WCW) allows to circumvent this kind of problems and one can say that quantum theory
is purely classical field theory for WCW spinor fields. “Quantization without quantization” would
have Wheeler stated it.

General Coordinate Invariance poses however a problem if one wants to generalize quantum
group approach from M* to general space-time: linear M* coordinates assignable to Lie-algebra
of translations as isometries do not generalize. In TGD space-time is surface in imbedding space
H = M* x CP,: this changes the situation since one can use 4 imbedding space coordinates
(preferred by isometries of H) also as space-time coordinates. The analog of symplectic structure
J for M* makes sense and number theoretic vision involving octonions and quaternions leads to
its introduction. Note that C'P» has naturally symplectic form.

Could it be that the coordinates for space-time surface are in some sense analogous to symplectic
coordinates (p1,p2,q1,q2) so that one must use either (p1,p2) or (¢1,¢2) providing coordinates for
a Lagrangian sub-manifold. This would mean selecting a Lagrangian sub-manifold of space-time
surface? Could one require that the sum J,, (M*) + J,,(CP,) for the projections of symplectic
forms vanishes and forces in the generic case localization to string world sheets and partonic 2-
surfaces. In special case also higher-D surfaces - even 4-D surfaces as products of Lagrangian
2-manifolds for M* and CP; are possible: they would correspond to homologically trivial cosmic
strings X2 x Y2 € M* x C P, which are not anymore vacuum extremals but minimal surfaces if
the action contains besides Kéction also volume term.

But why this kind of restriction? In TGD one has strong form of holography (SH): 2-D string
world sheets and partonic 2-surfaces code for data determining classical and quantum evolution.
Could this projection of M* x C'P, symplectic structure to space-time surface allow an elegant
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mathematical realization of SH and bring in the Planck length [p defining the radius of twistor
sphere associated with the twistor space of M* in twistor lift of TGD? Note that this can be done
without introducing imbedding space coordinates as operators so that one avoids the problems
with general coordinate invariance. Note also that the non-uniqueness would not be a problem as
in quantization since it would correspond to the dynamics of 2-D surfaces.

The analog of brane hierarchy for the localization of spinors - space-time surfaces; string world
sheets and partonic 2-surfaces; boundaries of string world sheets - is suggestive. Could this hi-
erarchy correspond to a hierarchy of Lagrangian sub-manifolds of space-time in the sense that
J(M*) + J(CPy) = 0 is true at them? Boundaries of string world sheets would be trivially La-
grangian manifolds. String world sheets allowing spinor modes should have J(M*) + J(CP) = 0
at them. The vanishing of induced W boson fields is needed to guarantee well-defined em charge
at string world sheets and that also this condition allow also 4-D solutions besides 2-D generic
solutions.

This condition is physically obvious but mathematically not well-understood: could the condi-
tion J(M*)+ J(CP,) = 0 force the vanishing of induced W boson fields? Lagrangian cosmic string
type minimal surfaces X? x Y2 would allow 4-D spinor modes. If the light-like 3-surface defining
boundary between Minkowskian and Euclidian space-time regions is Lagrangian surface, the total
induced Kéhler form Chern-Simons term would vanish. The 4-D canonical momentum currents
would however have non-vanishing normal component at these surfaces. I have considered the pos-
sibility that TGD counterparts of space-time super-symmetries could be interpreted as addition
of higher-D right-handed neutrino modes to the 1-fermion states assigned with the boundaries of
string world sheets [K11].

Induced spinor fields at string world sheets could obey the “dynamics of avoidance” in the
sense that both the induced weak gauge fields W, Z° and induced Kéhler form (to achieve this U(1)
gauge potential must be sum of M* and CP, parts) would vanish for the regions carrying induced
spinor fields. They would couple only to the induced em field (!) given by the R;is part of CPy
spinor curvature [K1] for D = 2,4. For D = 1 at boundaries of string world sheets the coupling
to gauge potentials would be non-trivial since gauge potentials need not vanish there. Spinorial
dynamics would be extremely simple and would conform with the vision about symmetry breaking
of electro-weak group to electromagnetic gauge group.

It is relatively easy to construct am infinite family of Lagrangian string world sheets satisfying
J(M*) + J(CPy) = 0 using generalized symplectic transformations of M* and C P, as Hamiltonian
flows to generate new ones from a given Lagrangian string world sheets. One must pose minimal
surface property as a separate condition. Consider a piece of M? with coordinates (t,z) and
homologically non-trivial geodesic sphere S? of C'P, with coordinates (u = cos(©),®). One has
J(M*);, =1 and J,s = 1. Identify string world sheet via map (u, ®) = (kz,wt) from M? to S2.
The induced CP; Kahler form is J(CPy);, = kw. kw = —1 guarantees J(M*) + J(CP,) = 0.
The strings have necessarily finite length from L = 1/k < z < L. One can perform symplectic
transformations of C'P, and symplectic transformations of M* to obtain new string world sheets.
In general these are not minimal surfaces and this condition would select some preferred string
world sheets.

An alternative - but of course not necessarily equivalent - attempt to formulate SH would be
in terms of number theoretic vision. Space-time surfaces would be associative or co-associative de-
pending on whether tangent space or normal space in imbedding space is associative - that is quater-
nionic. These two conditions would reduce space-time dynamics to associativity and commutativity
conditions. String world sheets and partonic 2-surfaces would correspond to maximal commutative
or co-commutative sub-manifolds of imbedding space. Commutativity (co-commutativity) would
mean that tangent space (normal space as a sub-manifold of space-time surface) has complex tan-
gent space at each point and that these tangent spaces integrate to 2-surface. SH would mean
that data at these 2-surfaces plus number theoretic discretization of space-time surface would be
enough to construct quantum states. Therefore SH would be thus slightly broken. String world
sheet boundaries would in turn correspond to real curves of the complex 2-surfaces intersecting par-
tonic 2-surfaces at points so that the hierarchy of classical number fields would have nice realization
at the level of the classical dynamics of quantum TGD.

To sum up, one cannot exclude the possibility that J(M*) is present implying a universal
transversal localization of imbedding space spinor harmonics and the modes of spinor fields in
the interior of X*: this could perhaps relate to somewhat mysterious de-coherence interaction
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producing locality and to CP breaking and matter-antimatter asymmetry. The moduli space for
M* Kihler structures proposed by number theoretic considerations would save from the loss of
Poincare invariance and the number theoretic vision based on quaternionic and octonionic structure
would have rather concrete realization. This moduli space would only extend the notion of WCW.

5.2.1 Two options for fundamental variational principle

One ends up to two options for the fundamental variational principle.

Option I: The fundamental action principle for space-time surfaces contains besides 4-D action
also 2-D action assignable to string world sheets, whose topological part (magnetic flux) gives rise
to a coupling term to Kahler gauge potentials assignable to the 1-D boundaries of string world
sheets containing also geodesic length part. Super-symplectic symmetry demands that modified
Dirac action has 1-, 2-, and 4-D parts: spinor modes would exist at both string boundaries, string
world sheets, and space-time interior. A possible interpretation for the interior modes would be as
generators of space-time super-symmetries [K11].

This option is not quite in the spirit of SH and string tension appears as an additional parameter.
Also the conservation of em charge forces 2-D string world sheets carrying vanishing induced W
fields and this is in conflict with the existence of 4-D spinor modes unless they satisfy the same
condition. This looks strange.

Option II: Stringy action and its fermionic counterpart are effective actions only and justified
by SH. In this case there are no problems of interpretation. SH requires only that the induced
spinor fields at string world sheets determine them in the interior much like the values of analytic
function at curve determine it in an open set of complex plane. At the level of quantum theory
the scattering amplitudes should be determined by the data at string world sheets. If the induced
W fields at string world sheets are vanishing, the mixing of different charge states in the interior
of X* would not make itself visible at the level of scattering amplitudes!

If string world sheets are generalized Lagrangian sub-manifolds, only the induced em field would
be non-vanishing and electroweak symmetry breaking would be a fundamental prediction. This
however requires that M* has the analog of symplectic structure suggested also by twistorialization.
This in turn provides a possible explanation of CP breaking and matter-antimatter asymmetry. In
this case 4-D spinor modes do not define space-time super-symmetries.

The latter option conforms with number theoretically broken SH and would mean that the
theory is amazingly simple. String world sheets together with number theoretical space-time
discretization meaning small breaking of SH would provide the basic data determining classical and
quantum dynamics. The Galois group of the extension of rationals defining the number-theoretic
space-time discretization would act as a covering group of the covering defined by the discretization
of the space-time surface, and the value of heyr/h = n would correspond to dimension of extension
dividing the order of its Galois group. The phase transitions reducing n would correspond to
spontaneous symmetry breaking leading from Galois group to a subgroup and the transition would
replace n with its factor.

The ramified primes of the extension would be preferred primes of given extension. The ex-
tensions for which the number of p-adic space-time surfaces representable also as a real algebraic
continuation of string world sheets to preferred extrenal is especially large would be physically
favored as also corresponding ramified primes. In other words, maximal number of p-adic imagi-
nations would be realizable so that these extensions and corresponding ramified primes would be
winners in the number-theoretic fight for survival. Whether this conforms with p-adic length scale
hypothesis, remains an open question.
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