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Abstract

Holography = holomorphy vision generalizes the realization of quantum criticality in terms
of conformal invariance. Holography = holomorphy vision provides a general explicit solution
to the field equations determining space-time surfaces as minimal surfaces X* ¢ H = M* x
CP,. For the first option the space-time surfaces are roots of two generalized analytic functions
P, P> defined in H . For the second option single analytic generalized analytic function defines
X* as its root and as the base space of 6-D twistor twistor-surface X in the twistor bundle
T(H) = T(M*) x TCP,) identified as a zero section

By holography, the space-time surfaces correspond to not completely deterministic orbits
of particles as 3-surfaces and are thus analogous to Bohr orbits. This implies zero energy
ontology (ZEO) and to the view of quantum TGD as wave mechanics in the space of these
Bohr orbits located inside a causal diamond (CD), which form a causal hierarchy. Also the
construction of vertices for particle reactions has evolved dramatically during the last year
and one can assign the vertices to partonic 2-surfaces.

M?® — H duality is a second key principle of TGD. M® — H duality can be seen as a number
theoretic analog for momentum-position duality and brings in mind Langlands duality. M3
can be identified as octonions when the number-theoretic Minkowski norm is defined as Re(0?).
The quaternionic normal space N(y) of y € Y? C M?® having a 2-D commutative complex
sub-space is mapped to a point of CP;. Y* has Euclidean signature with respect to Re(oz),
The points y € Y* are lifted by a multiplication with a co-quaternionic unit to points of the
quaternionic normal space N (y) and mapped to M 4 C H inversion.

This article discusses the relationship of the holography = holomorphy vision with the
number theoretic vision predicting a hierarchy heys = nho of effective Planck constants such
that n corresponds to the dimension for an extension rationals (or extension F' of rationals).
How could this hierarchy follow from the recent view of M® — H duality? Both realizations
of holography = holomorphy vision assume that the polynomials involved have coefficients in
an extension F' of rationals Partonic 2-surfaces would represent a stronger form of quantum
criticality than the generalized holomorphy: one could say islands of algebraic extensions F
from the ocean of complex numbers are selected. For the P option, the fermionic lines would
be roots of P and dP/dz inducing an extension of F in the twistor sphere. Adelic physics would
emerge at quantum criticality and scattering amplitudes would become number-theoretically
universal. In particular, the hierarchy of Planck constants and the identification of p-adic
primes as ramified primes would emerge as a prediction.

Also a generalization of the theory of analytic functions to the 4-D situation is suggestive.
The poles of cuts of analytic functions would correspond to the 2-D partonic surfaces as vertices
at which holomorphy fails and 2-D string worlds sheets could correspond to the cuts. This
provides a general view of the breaking of the generalized conformal symmetries and their
super counterparts as a necessary condition for the non-triviality of the scattering amplitudes.

Contents

1 Introduction

Quantum criticality is realized in terms of conformal invariance in string models and conformal
field theories. Holography = holomorphy vision [L15] generalizes the realization of vision to the
TGD framework. This view has developed considerably during the last years and provides a
general explicit solution to the field equations determining space-time surfaces as minimal surfaces
X* C H= M* x CP, obeying generalized holomorphy.

By holography, the space-time surfaces correspond to not completely deterministic orbits of
particles as 3-surfaces and are thus analogous to Bohr orbits. This leads to zero energy ontol-
ogy (ZEO) and to the view of TGD as wave mechanics in the space of these Bohr orbits inside
causal diamonds (CD), which form a scale hierarchy. The construction of vertices for particle
reactions identified as these singular lower-D belonging to the light-like 3-surfaces as interfaces of
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Minkowskian and Euclidean space-time regions defining partonic orbits has also evolved dramati-
cally during the last year and one can assign the vertices to the partonic 2-surfaces thanks to the
understanding of the modified Dirac equation [L13] [L.20].

There are two guesses for the vertices. Either as partonic 2-surfaces or as point-like singularities
at which the monopole flux tube representing a particle splits to two. The latter interpretation looks
more plausible. Fermion lines at light-like partonic orbits would correspond to poles of analytic
functions, which are not vertices. At them the minimal surface property would fail. String world
sheets having partonic lines as boundaries would be the analogs of cuts as singularities.

M8 — H duality is a second key principle of TGD. It has developed to its recent form [L16]
rather slowly during the years via several wrong tracks [L4, L5, [L14]. M® — H duality can be
seen as a number theoretic analog for the momentum-position duality and also brings in mind
Langlands duality [A2, [AT] [LI0]. In the recent view, it is essential that M® can be identified
as octonions when its number-theoretic Minkowski norm is defined as Re(0?). The quaternionic
normal space N(y) of y € Y4 C M8, having a 2-D commutative complex sub-space, is mapped to
a point of CP,. Y* has Euclidean signature with respect to Re(0?). The points y € Y* are lifted
by a multiplication with a co-quaternionic unit to points of the quaternionic normal space N(y)
and mapped to M* C H inversion.

This article discusses the relationship of the holography = holomorphy vision developed in
[L21 [L15] with the number theoretic vision predicting a hierarchy heyy = nhg of effective Planck
constants such that n corresponds to the dimension of an extension rationals. The question is
whether and how this hierarchy follows from the recent view of M® — H duality differing consid-
erably from the earlier view. Also the consistency with the number theoretic vision is discussed.

There are two realizations for the holography = holomorphy vision which need not be mutually
exclusive.

1. For the first option, the space-time surfaces are roots of two generalized analytic functions
f1, fo of hypercomplex coordinate (having light-like coordinate curves in M*) and 3 complex
coordinates of H. As a special case f1, fo reduces to a pair (P;, P2) of polynomials. The
minimal surface property holds true for any general coordinate invariant action constructible
in terms of the induced geometry and fails only at lower-dimension singularities. This vision
has tensions with the number theoretical vision. The roots P; = 0 and P, = 0 define 6-
surfaces, whose intersection is X*. A possible interpretation is as analogs of twistor spaces
of M* and CPs.

2. There is also a variant of this picture in which the space-time surface is identified as a
holomorphic zero section of the twistor surface X6 C T(M?) x T(C Py) defined as a root of
single polynomial P. This option makes the nice predictions of the number theoretic vision
relying strongly on polynomials with coefficients, which are rational or in an extension F' of
rationals.

The islands of rationals and their algebraic extensions would be selected by quantum criticality
from the ocean of complex numbers. In music, the rational ratios for the frequencies of the
Pythagorean scale would represent a similar phenomenon [L1] [L7, [L8] [L12]. In this way quantum
criticality defining a hierarchy of number theoretical discretization of WCW would make possible
adelic physics and scattering amplitudes would become number-theoretically universal. For the
P = 0 option, the hierarchy of Planck constants and Galois groups as number theoretical symmetry
groups would emerge as predictions. Also p-adic primes essential for p-adic mass calculations would
correspond to ramified primes of P. The P = 0 option seems to be however consistent with the
(Py, P2) = (0,0) option.

The generalization of the theory of analytic functions to the 4-D situation is suggestive.

1. The poles and cuts of analytic functions determine them as an analog of holographic data.
Poles could correspond to light-like fermion lines at which the holomorphy fails and the 2-D
string worlds sheets connecting partonic orbits of different monopole flux tubes could corre-
spond to the cuts. This failure of analyticity would make non-trivial scattering amplitudes
possible, and also lead to the breaking of various conformal symmetries and their super
counterpparts and also to the generation of an analog of Higgs vacuum expection [L.20].



2. About the evolution of the concept of M® — H duality 4

2. These singularities would define at least a part of the data defining holography allowing to
determine the space-time surface (also the 3-surfaces at the ends of space-time surfaces at
the boundaries of CD might be needed). This picture brings in mind electrostatics in 2-
dimensions where poles and cuts define point charges and line charges as sources. This is
nothing but an analog of holography. The light-like fermionic lines at the light-like partonic
orbits are the most natural counterparts of poles of analytic function and string world sheets
define the analogs of cuts. This would mean a strong analogy with the ordinary complex
analysis

3. The singularities would realize a stronger form of quantum criticality than the generalized
holomorphy, and there is a rather precise geometric analogy with catastrophe theory predict-
ing a hierarchy of critical surfaces at which some number of roots coincide (cusp catastrophe
represents a simple example).

4. The splitting of a closed monopole flux tube representing a particle reaction vertex rise to
a fundamental vertex for particle creation involving a creation of a fermion pair which does
not seem to correspond to these singularities. The splitting process starts as a touching
of the flux tube portions at parallel Minkowskian space-time sheets and generates a worm-
hole contact, which then splits to two wormhole contacts identifiable as ”ends” of final state
monopole flux tubes. This involves a splitting of the wormhole throats at a point in which a
fermion pair can be created. These two touching points represent genuinely 0-dimensional
singularities defining analogs of QFT vertices having no counterpart in 2-D complex anal-
ysis. A connection with exotic smooth structures [A5] [AG, [A4], uniquely distinguishing
4-manifolds, and identifiable as standard smooth structure with defects, proposed to be
identifiable in terms of the 2-D singularities, is highly suggestive [L9] [[.20].

2 About the evolution of the concept of M® — H duality

M8 — H duality [L4, [L5, [L14] can be seen as a number-theoretic analog of momentum position
duality. M?® — H duality also relates geometric and number theoretic vision of quantum TGD and
could serve as a physical realization of Langlands duality [L10]. Note that all single-fermion states
are predicted to be massless in the 8-D sense and therefore their 8-D momenta are expected to
reside at the 7-D light-cone of M8.

The development of M8 — H duality has been a rather tortuous process and has involved several
wrong tracks.

2.1 The problems with the original forms of M® — H duality

The very first form of M® — H duality mapped M* C H to a quaternionic tangent space of
M* c M8: octonions are metrically M® with respect to the number theoretic norm RE(0?). The
cold shower [L4l [L5] was that the distribution of quaternionic tangent spaces is not in general
integrable to a 4-surface Y* and it seems that only trivial associative surfaces (M*) are possible.

This forced the conclusion that the normal spaces must be quaternionic, one could call this co-
associativity [L4} [L5]. The distribution of normal spaces is indeed known to be associative always.
This however forced complexification of M8 in order to get the metric signature correctly and this
led to a multitude of problems.

The form of M® — H duality discusses in [L4] [L5] assumed the algebraic continuation of polyno-
mials P(z) of complex variable z for which the imaginary unit commutes with octonionic imaginary
units to polynomials of complexified octonion.

1. P(z) was assumed to have rational or even integer coefficients smaller than the degree. This
led to the proposal that the roots of P(t) correspond to mass squared values m? defining
mass shells in M* C M® as p2 — > p? = m?. This assumption had very nice implications
concerning the number theoretic vision. This led to the notion of associative holography.
One fixes the 3-surfaces defining the boundary data of the holography to be mass shells
H3 ¢ M* c M?® and continues this data to associative 4-surfaces. The problem was that
these holographic data look quite too simple. Deformations in normal direction would seem
to be necessary.
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2. Perhaps the most serious problem of the approach was that complex roots correspond to
complex masses so that one must complexity M®. This led to rather complicated construc-
tions |L4l [L5] [L14]. The assumption that the roots are real could solve this problem but
looks somewhat ad hoc.

3. The image of M* C H in M?® was identified as a co-quaternionic sub-space of complexified
octonions M. The octonionic number theoretic norm is defined without the conjugation with
respect to ¢. There are many choices for the subspace for which the octonionic coordinates
are real or purely imaginary and all signatures of the number theoretic norm defined by 02
are possible. This also led to interpretational problems: to what what particular M* c M3
does M* C H correspond to? Does this choice have a physical significance?

2.2 The view of M® — H duality in 2024

In [L16], 1T introduced a dramatic simplification of the earlier version of the M® — H duality
[L4l L5, L14] allowing to get rid of the complexification of M?® interpreted as an 8-D momentum
space.

The trick is to define the number theoretic norm, not as oo, but as the real part RE(0?)
of 0%: the real part here means the part of o?> proportional to the octonionic real unit. This
definition applies also to complex numbers and quaternions as subspaces of octonions. This norm
is Minkowskian and allows the identification of octonions as M?® in the metric sense.

In this interpretation, the projections of the points of H to M* C H = M* x C P, correspond
by M® — H duality to the points of Y4 ¢ M® = M* x E* such that the M* projection m of the
point of X* associated with C'P, point s is mapped by inversion I : m* — heffmk/mlml to a
point of the quaternionic normal space N(y(s)) as its preferred point and naturally projects to the
corresponding point of Y4, Y* is Euclidian with respect to the number theoretic norm already
described.

Number theoretic holography would be realized by requiring that the mass squared value
assignable to the M* point of the normal space of point of Y* has the same Euclidean mass
squared value as the point corresponds to so that Y4 belongs to the 7-D light-cone of octonions
with Minkowskian number-theoretic norm. This correspondence would define an analogue of Wick
rotation and pose a constraint on the number theoretic holography. The boundary data given
at these Euclidian mass shells S and associativity (quaternionic normal space) would serve as a
dynamical principle.

Consider first a simplified view of M® — H duality as I understand it now, assuming that the
M* projection of X* is 4-D.

1. The idea is that the points of X* C H are mapped to the points of Y* c M3, The M*
projection of X4 is mapped to the normal Minkowskian normal space of Euclidian surface E*.
The CP, projection associated with a given point of Y4 parametrizes the normal spaces for
it. The assumption that the normal spaces are quaternionic and contain a Minkowskian 2-D
commutative space implies that they can be parametrized by C'P,. The normal spaces and 2-
D subspaces form integrable distributions and determine Y by number theoretic holography
using the integrable distribution of Minkowskian normal spaces as holographic data located
at 3-D surfaces. The tangent spaces of Y4 have an Euclidian number theoretic metric. The
points of Y are in 1-1 correspondence with those of C'P, except at the singularities at which
the normal space is not unique.

2. The 4-surface Y* ¢ M?® is Euclidean. All points of Y# have as quaternionic normal space
isomorphic to M* C M3 containing M?, which is complex and commuting sub-space of
octonions. The normal space N(y) of y € Y* as M* is not unique but this has a geometric
interpretation and does not lead to the problem of non-uniquencess of M* C M? as the
previous view of M® — H duality.

The normal space contains the M* point associated with the point of CP, as a preferred
point having an interpretation as 4-momentum. This point is ”active” if there is a fermion
at the corresponding point of X4. One has a geometric representation of the many-fermion
state in Y% mapped to the points of M* projection of X* by M8 — H duality.
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3.

The new form of M® — H duality requires a lift of the point y C Y* to a point of its
quaternionic and Minkowskian normal space N (y), which is mapped by inversion to M* C H.
Multiplication with an imaginary unit e of Y4 would perform the lift but can one choose e
uniquely?

Is the uniqueness really necessary? The choice of the basis of quaternionic units for the
quaternionic normal space is fixed up to local U(2) rotation. The same is true for the
basis of the complement. Could the interpretation be in terms of the M? counterpart of
the electroweak gauge group? Color symmetries would correspond to the SU(3) C Ga of
octonionic automorphisms so that the standard model symmetries would be realized number-
theoretically. The inverse of the lift would allow to map the points M* C H to the points of Y4
and realize the correspondence between points of M* and CP, for the surfaces representable
as graphs of a map M* — CP.

The spinor modes of fermion in C'P,, can be mapped to the spinor modes in Y* for each
fermionic momentum. Number theoretical vision suggests that the momentum components
are real algebraic integers of the extensions of rationals associated with the space-time surface
in question.

This picture applies when the M* projection of X* is 4-D. If this is not the case the situation
is more complex.

1.

The ideal C'P, extremal for which M* coordinates are constant, corresponds to a singularity,
where the normal space at the point of M3 is not unique: the normal open spaces span entire
C P, one has what alebraic geometers call blow up and it occurs often for algebraic surfaces.
The vertex of a cone is the basic example: in this case tangent and normals spaces are not
unique.

For deformed C'P, extremals M* projection is a 1-D light-like geodesic line in M* C H and
also in M®. Along this curve, the normal spaces form give rise to a 3-dimensional surfaces
of CPQ

. Cosmic strings also correspond to such a singularity: in a 2-D string world sheet X2 C M4,

the normal spaces at a given point form a 2-D complex manifold of C'P;.

At singularities at which the normal space of Y'# is not unique, there are additional conditions
on the allowed spinor modes since the spinor mode must have the same value for all normal
spaces involved. The vanishing of the allowed spinor modes at these points would allow to
satisfy these condition.

. The number-theoretic quantization of M* momenta requires that the momentum components

are real integers in the algebraic extenssion of the rationals related to the region of X*
considered. The momentum unit is determined by the size scale of the causal diamond (CD).

What could be the physical interpretation of Y4?

1.

Y* can be sliced by the images of r= constant 3-spheres S® C C'P,. Could the time evolution
in X* with respect to the light-cone proper time of M* C H have as an analog the evolution
of the C' P, projection with respect to the radial coordinate r of C'P, defining a slicing of Y4
by M8 — H duality? Or can one speak of time evolution below the scale of causal diamond
CD, which implies temporal non-locality below its scale.

. Positive and negative energy states at the half-cones of C'D would be mapped to the opposite

light-cones in the Minkowskian normal space of Y#. This brings in mind Wick rotation as
the Euclidization trick used in quantum field theories. Could M® — H duality define Y*
as a kind of Euclidization of X*? If so, one would have both M* and CP, perspective of
the dynamics and also mixed perspectives (cosmic strings). The failure of M*%- and/or CP,
projection to be 4-D would force mixed perspective.
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3 Holography=holomorphy vision

In this section holography=holomorphy vision and its relation to the theory of analytic functions,
to the number theoretic vision and to M® — H duality will be discussed. It must be confessed that
during the preparation of this section, the view of the realization of the holography=holomorphy
vision simplified dramatically and a considerable portion of the text became obsolete.

3.1 About the geometric description of fermion pair creation vertex in
the framework of catastrophe theory

It is good to start from a physical picture. The intuitive idea is that vertices somehow correspond
to partonic 2-surfaces X2 on one hand and to the points of X2 at which fermion lines turn back
in time. Is the fundamental vertex a 2-D parton surface or is it point-like or are both aspects
involved? This is the basic question. One must clarify what happens topologically in the
creation of a fermion pair. A non-vanishing monopole flux means homological non-triviality of the
partonic 2-surfaces.

1. The catastrophe theory picture implies that a given catastrophe involves a hierarchy of sin-
gularities such that the number of co-incinding roots and criticality increases. In the case of
cusp catastrophe, the tip of the cusp would correspond to the situation in which all 3 roots
of the third order catastrophe polynomial coincide.

There are good reasons to expect that also now this is the generic situation. This would
suggest that a point-like vertex initiates a process leading to a creation of a pair of
wormhole contacts with opposite monopole fluxes.

2. What happens that a single closed monopole flux tube splits two two monopole flux tubes?
This flux tube has portions at parallel Minkowskian space-time sheets with distance of
order CP, radius and they carry opposite monopole fluxes. Topologically this process
corresponds to a reconnection when the flux tubes are idealized with strings. One must
generalize this to that for 3-D objects.

At the point of touch, the signature of the induced metric must be between Minkowskian
and Euclidean signatures so that the induced 4 metric is degenerate. = The touching point
starts to grow to an Euclidean 3-D region and gives gradually rise to a wormhole contact with
a vanishing total monopole flux between the throats. It has opposite wormhole throats with
a vanishing total magnetic flux having a 2-D interface with Minkowskian regions. After this
both wormhole throats are pinched to two parts with one common point, pinch, between
them. Splitting occurs and one has two separate closed flux tubes having the wormhole
contacts as their second ”end”.

3. This process could be also visualized in terms of the 2-D C'P, projections X? and Y2 of
two parallel flux tube portions in M*, which fuse, evolve to a flux tube portion in CP, and
split again to 2 wormhole contacts. X2 and Y? touch and fuse to form an intermediate
wormhole contact, which  evolves to two pieces with opposite monopole fluxes, which are
side by side and in C'P,. The two flux tubes separate and develop a pinch, which then splits.

4. The fermion pair would be naturally created at the pinch formed in the final step. For
this pinched partonic 2-surface, a global generalized complex structure is not possible since
the generalized complex structures at the two parts differ by the conjugation of the hyper
hypercomplex coordinate (note that also the conjugation of also CP, coordinates might be
involved. The holomorphy fails at the pinch at least. The other option is that one just
does not have global smooth generalized complex coordinates. The situation would be
similar also before the pinch and the holomorphy would fail at the 3-D pieces of the orbits
of the throats of the intermediate worm contact.

5. Here one must ask what one means as one speaks of singularity at which the minimal surface
property fails. The evolution associated with the splitting of the monopole flux tube involves
a development of the opposite light-like wormhole throats as a boundary of a growing 2-D
Euclidean region. This evolution defines a 3-dimensional light-like region. Does the trace of
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the second fundamental form have a 3-D delta function singularity?:  this is in conflict
with the guess that the singularities are 2-D [L20]. The final state just before the splitting
is a pair of touching wormhole throats. Does this define the 2-D delta function singularity
or does the touching point correspond to a point-like delta function singularity analogous
to the tip of the cusp catastrophe?

It is good to make a more explicit comparison with the catastrophe theory of Rene Thom [A3].

1. One considers gradient dynamics dz’/dt = 9;V and one considers possible equilibria as
extrema of a potential function V({z'},{a;}). A deep result is that, although the number
of the behaviour variables z? can be large, it is possible to choose a single relevant variable,
call it x. Furthermore, in suitable coordinates the potential function can be chosen to be a
polynomial. A possible physical identification for the control variables is as 4 space-time
coordinates or a subset of them.

2. If the number of control variables a; is not larger than 4 there are 7 elementary catastrophes
and the catastrophes for m behavior variables can be engineered from the catastrophes for
m — 1 behavior variables.

3. The number of sheets of the catastrophe manifold in the space spanned by the behavior
variable x and control variables a; corresponds to the number of roots to the condition
dV/dx = 0. The catastrophe manifold is a k-dimensional surface for &k control variables.

Different roots correspond to sheets of the catastrophe manifold and meet at lower-dimensional
surfaces at which the roots are degenerate. This means criticality in which a dropping to
another stable sheet driven by the rapid dynamics can occur. The critical manifolds form
a hierarchy and at the tip of the many-sheeted catastrophe region all roots are identical.

3.2 The tension between the holography=holomorphy vision and number-
theoretic vision

The relationship between holography=holomorphy vision and number theory vision involving the
hierarchy of effective Planck constants and M® — H duality should be understood better. The
updated view M® — H duality [L16] modifies radically the original vision [L4, [L5, [L14] based on
polynomials P(o) of complexified octonions with rational (or equivalently integer -) coefficients
obtained as a continuation of ordinary complex polynomials P(z) of variable z = x + iy with
imaginary unit ¢ commuting with the octonionic imaginary units. The earlier vision was
consistent with several general ideas such as prediction of the hierarchy of Planck constants and
the identification of p-adic primes as ramified primes for these kinds of the polynomials P. It also
supported the notion of Galois confinement. These parts of the earlier vision should survive.

The hope is that holography=holomorphy vision allows to get naturally the roots of polynomials
and corresponding algebraic extensions and even polynomials with rational or integer coefficients.
This would also give ramified primes.

One needs a guiding principle and number theoretical quantum criticality is such a principle.
It states that rationals and algebraic numbers correspond to islands in the ocean of complex con-
tinuum unstable under perturbations selected by quantum criticality which is the basic principle
of TGD. This already implies holography=holomorphy principle but does not fix its details com-
pletely.  p-Adic primes would characterize elementary particles rather than space-time regions.
This suggests that the number theoretic quantum criticality is reduced to single fermion level and
allows to identify light-like fermion lines at the light-like orbits of partonic 2-surfaces and assign
the ramified primes and h.yy = nhg to them.

3.2.1 Criticism of the (P, ;) = (0,0) option

There are many tensions to be resolved. The holography=holomorphy vision forces us to
reconsider both the earlier view of M®— H duality and the number theoretical vision. The existing
number theoretical vision in turn challenges the detailed realization of the holography=holomorphy
vision based on (Pi, P;) = (0,0) option.
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1. In the earlier version of M® — H duality [L4} [L5, [L14] a single polynomial P of single com-
plex variable z with coefficients in the field of rationals (or its extension), continued to a
polynomial in a complexification of octonions, defined the holographic data in turn defining
the space-time surface.

Although this approach had shortcomings it also had very nice features. The dimension of
the algebraic extension determined by the roots of P defined effective Planck constant and
the spectrum of ramified primes of P as factors of its discriminant had interpretation as
p-adic primes. The applications of TGD rely on these notions.

2. For the most obvious realization of holography=holomorphy vision a pair (P, P;) of
polynomials replaces a single polynomial P(0). Is it possible to reduce the conditions
(P1,Py) = (0,0) to a single condition P(z) = 0 for some choice of P and 27 In the re-
cent case z would correspond to a complex coordinate at the light-like partonic 2-surface as
a slice of the partonic orbit and there are very many choices.

Putting the lightlike-coordinate u to zero (restriction of fermion line at a light-like partonic
orbit) one has polynomials P; of w, ¢!, and £2 and one can choose any w, &, or &2 as
dependent variable z. The degree of P; as a polynomial of z depends on the choice of z.
One can find the common 6-D roots of P; for each choice and they correspond to the
intersection of 4-D surfaces P, = 0 and P, = 0. If the argument w, €', or €2 is an
algebraic number, the roots are algebraic numbers. This leaves a lot of freedom and it is
very difficult to figure out the general picture!

Therefore it is far from clear how to identify fermionic lines represented as points of X2
such that they are roots of a polynomial with coefficients in some extension of rationals.
However, if can identify a unique extension F of rationals, and a unique polynomial P(z) of
a highly unique variable z independent of the variables w, &', and €2, its ramified primes
would determine the spectrum of p-adic length scales and h.¢s = nhy would corresponds
the degree of its Galois group.

3.2.2 Does P =0 option for holomorphy = holography option solve the problems?

How could one solve the problems of the Py, P») option?

1. The quantum criticality of TGD suggests that there is a catastrophe theoretic hierarchy
of criticalities corresponding to the surfaces P(z) = 0 giving the space-time surface and
as special case partonic 2-surface X2 as v = 0 constant section of the partonic orbit X3.
Criticality corresponds to the coincidence of two roots so that one would have P(z) = 0
and dP(dz) = 0 at criticality. The roots would give the intersections of the fermionic lines
with the partonic 2-surface. The roots of P would define an extension of the coefficient field
F of P as an extension of rationals and the ramified primes of P belonging to F.

2. The twistor lift suggests a natural identification of the coordinate z. Twistor lift replaces
the space-time surface X* with a twistor space X% as a S? bundle over X*. X6 would be
determined by the 6-D Kihler action.  z could be identified as a complex coordinate of 52
determined up to holomorphy. Suppose that X is known. A natural identification of X*
is a section of twistor bundle X° can be identifiable as a root of a polynomial P, ;(z), where
t can be take to be one of the coordinates (w, ¢!, €?) (note that u = constant at X*. The
conditions P = 0 and dP/dz = 0 at fermionic lines would fix the value of z and if ¢ belongs
to F', one obtains an algebraic extension of F'.

The fermion line would be identified sufficiently uniquely if the choice P defining the section
is sufficiently unique. In fact, different sections could define different physics. The optimistic
expectation is that there is a finite number of sections or at least a finite-dimensional moduli
space of sections for a given for a given twistor-surface X.

There are 3 obvious choices for the coordinate t corresponding to the set {t1,t2,t3} = {w, £, £2}.
Can one identify the complex coordinate ¢ uniquely or does one obtain 3 kinds of roots also now
and what could this mean?
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1. If the partonic 2-surface is regarded as a Riemann surface, the natural local coordinate is
ti, and the polynomials Py(z,u,t)) are uniquely determined. The choice of ¢} is determined
apart from holomorphic bijection and Hamilton-Jacobi structure [L21] dictates the choice of
w a high degree and in C' P, Eguchi-Hanson coordinates, favoured by their group theoretical
properties, are natural.

2. If all 3 choices of ), are possible, one obtains 3 kinds of roots. If the roots zj,; and 2, ;
coincide, they can correspond to the same point of X* but need not do so.

The partonic 2-surface is many-sheeted with respect to both C P, and M*. Different w-roots
would correspond to the multi-sheetedness with respect to C P, and different sheets could
be assigned with parallel monopole flux tubes going through the w-plane. The physical
intuition suggests that, due to the small size of C'Ps, the number of roots in C'P, direction
is small CP; for a given M* point whereas in the direction of M* the number of w-roots
can be very large giving rise to a large value of hesy/ho = n.

3. In the case of the standard twistor bundle over M*, S? represents the directions of light-like
geodesics emanating from a point of M*. The twistor fibers S? at different M* points have
a common point if there is a light-like geodesic connecting them. This is expected to be a
reasonable guess also now.

Could the w-roots correspond to intersecting twistor spheres for which the points with a
different w coordinate are connected by a light-like geodesic of M*? Since the light-like
coordinate u is constant and v is fixed, this is not plausible. This would suggest that the
complex coordinate for the S2 as the cross section of the light cone boundary defines a
preferred coordinate identifiable as the coordinate of the twistor sphere.

4. The same question can be posed in the case of C'P; for which the light-like geodesics are
replaced with radial geodesics from the origin of Eguchi-Hanson coordinates directed to the
homologically non-trivial geodesic sphere at r = oo. The points pairs at these geodesics
would have intersecting twistor spheres. Could the C'P, points associated with w-roots in
the radial direction be located along these radial geodesics of C' P, so that there could be a
large number of w-roots per C' P, type roots? The complex coordinate of the homologically
non-trivial sphere of C'P; could serve as the analog of the coordinate of the twistor sphere.

One can argue that there is a problem with number theoretic general coordinate invariance
(GCI) since the form of the P can change in a generalized holomorphism of H expected to have
no physical effect. Is there a unique choice of coordinates allowing to avoid the problem?

1. For the (Py, P») option, the X* is identified as an intersection X% N X$ of 6-surfaces X as
roots of P;. Could X? be identified as twistor surfaces as counterparts of the twistor spaces
T(M*) and T(CP,) with different twistor spheres but the same base space?

If so,the complex coordinates of the twistor spheres of T'(M*) and T'(C P») should correspond
to the complex coordinates of the twistor sphere of light-like geodesics of the light-cone
boundary and of radial geodesics of C'Py directed from origin to homologically nontrivial
sphere of C'Py ”at infinity”.

2. The construction of X8 as an extremal of the 6-D Kihler action for X6 C T(M*) x T(CPy)
[K5] identifies the twistor spheres of T(M*) and T(CP,). Does this mean X as twistor
bundles are related by the mapping of the space of light-like geodesics of light-cone boundary
and/or light-like partonit orbit to the space of radial geodesics of C'Py?

3. This would make the situation highly unique. Holomorphies for a given choice of w resp.
¢! or €2 would correspond to SO(3) and U(2) acting linearly on the complex coordinate.
These groups reduce to SO(2) and U(1) x U(1) by the choice of the quantization axes. The
coordinate w would reduce to the complex coordinate of the twistor sphere of T'(M*) at the
light-cone boundary (at least). At partonic orbits the complex coordinate £ of the geodesic
sphere of C'P; and w would be related by a map characterized by a winding number.

Some comments on the physical interpretation are in order.
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1. p-Adic primes are rather large, Mio7; = 2'27 — 1 for electrons. I have proposed that one

could pose constraints on the size of the polynomial coefficients, say that they are smaller
than the degree of the polynomial.  In this case it is not clear how to obtain such large
ramified primes unless the degree of P is very large. The degree of polynomial increases
exponentially in repeated iteration giving rise to an analog for the approach to chaos [L6].
This would increase the dimension of the extension.

2. As found, the polynomial P can be identified as a polynomial of Minkowski-coordinate
w, or of CP, coordinate ¢! or £2. CP, is rather small and one expects that in CP;,
directions the number of sheets is rather small so that P as a polynomial of £ or ¢2 should
have a rather small degree and corresponding hesr/hg should be rather small.

In M* there is a lot of room and the degree of P as a polynomial of w can be rather large
and therefore also the value of hefy/ho for these fermion lines is large and their number
can be large. Therefore the corresponding ramified primes and associated p-adic length
scales can be rather large in this case. It would seem that the p-adic length scale is naturally
assignable to P(t,u,w). If p-adic length scale is assignable to P(t,&%), it should be smaller
than C'P, scale and could correspond to excitations of superconformal and supersymplectic
algebras with mass scales which are higher than C'P, mass scale.

P = 0 option reduces the pair of polynomials (P;, P») to single polynomial P, allows to interpret
the space-time surface X* as a section of its twistor space X° determined by 6-D Kihler action
and  to identify fermion lines as surfaces (P = 0,dP/dz = 0). This view implies the notions
of effective Planck constant and ramified primes, and allows to understand number theoretical
evolution as the increase of algebraic complexity in two ways: as a collective evolution of the
extensions of rationals F' appearing as the coefficient field of P and as the evolution at the single
particle level for the polynomial P. If the polynomial P can be iterated, a connection with chaos
theory |L6] emerges. Also a complexification of catastrophe theory emerges and the space-time
surface is analogous to a complexification of the cusp catastrophe.

3.2.3 (P,P2) = (0,0) option and P = 0 option need not be inconsistent with each
other

P = 0 option starts from the twistor surface X° as a known entity and determines X* as its section
whereas the (Pp, P,) = (0,0) option represents X° as a solution of field equations. Therefore these
options need not be inconsistent with each other.

1. One can start from a problem. One can argue that the (P, P;) = (0,0) option cannot
represent the twistor surface X% However, the condition P, = 0 or P, = 0  defines a
6-D  surface X? as a solution. Could these 2 6-surfaces have interpretation as concrete
representations for the H projections of two twistor surfaces X9 € T(M*) x T(CP;) having
a common base space X*?

2. How could X? correspond to S2 bundle over X4?  Could the two disjoint twistor spheres
S? be counterparts for the twistor spheres of T(M*) and T(CP,) having as base-spaces M*
and CP,. Could one say that these base spaces are replaced with the projections of X* to
M* and CP, to get X%. Geometrically these two spheres would correspond to the space of
light-like rays emanating and to the space of C'P, radial geodesics of C'P, emanating from
the point (m,s) € X* D H and would now be concretely represented as “heavenly spheres”.
These spheres need not be metric spheres. Note however that the light-cone boundary as the
space of light-like geodesics is metrically a 2-sphere.

In ZEO the non-trivial homology of M* twistor sphere could be represented by the effectively
missing tips of cd C M*, by the axis connecting the tips of the cd, or by the light-like
boundaries of cd indeed representing the space of light-rays analogs to the moment of Big
Bang and Big Crunch.
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3.3 Catastrophe theoretic vision of TGD

The analog catastrophe theoretic vision emerges in the TGD framework. One can consider this
vision at the level of the space-time surface and at the level of H and they correspond to the
representations of the spacetime surface as a root of two polynomials P;, P, and as a root of single
polynomial P.

For the (P, P») = (0,0) option, which is mathematically correct but for which the relationship
to the basic number theoretical ideas is unclear, one has the following picture.

1. The wvanishing of the gradient of V is replaced by the vanishing two generalized complex
functions f; and f3, which can be also taken as polynomials P; with coefficients, which are
rational or in an extension F' of rationals. The polynomial coefficients of P; depend on the 4
generalized complex coordinates of H.

2. General coordinate invariance however reduces their number to 2 when one chooses as space-
time coordinates a subset of 2 generalized complex coordinates (2!, 22) (hypercomplex and
complex coordinate in Minkowskian regions and 2 complex coordinates in Euclidean regions).
Space-time coordinates become the analogs of complex control variables and the remaining
2 generalized complex H coordinates (w!,w?) take the role of complex behavior variables.

Instead of dV/dz = 0, one has P, =0 and P, = 0.

3. Space-time surface as the counterpart of catastrophe manifold has two generalized complex
dimensions. An interesting question is whether it makes sense to regard (Py, P») as a gradient
(partialV/Ow', 0V /Ow?) of a complex value potential function with respect to the complex
behavior variables. If this is possible, one could have a complexification of the catastrophe
theory and the catastrophe could correspond to a complexified cusp with two generalized
complex control variables instead of 2 real control variables.

The second option, introduced in this article, is based on a single polynomial with coefficients,
which are rational or in an extension F' of rationals and elegantly reproduces the earlier basic ideas
related to the number theoretic vision.

The catastrophe manifold is replaced with a space-time surface X*. The condition dV/dx = 0
is replaced with the condition P, +(z) = 0 for generalized complex polynomial P, which has
as the behavior variable z identified as the complex coordinate of the twistor sphere and
the light-like hyper-complex coordinate u and complex variable ¢ are control variables. There
are 3 basic ways to choose t as t € {w,&!, &2}, P can be interpreted as a complex gradient
dV/dz of V = [ Pdz with respect to the behavior variable z so that one has dV, .(z)/dz = 0.
The conditions (P,dP/dz) = 0 are true for the fermion lines which represent criticality at
which two sheets of the catastrophe graph coincide. Fermion lines are analogous to the folds
of the cusp catastrophe. Space-time surface as the counterpart of a catastrophe manifold
has 2 generalized complex dimensions as also the cusp catastrophe. An interesting question
is how unique the function P(z) defining the space-time surface as a section of the twistor
bundle X6 is.

It is interesting to look for the catastrophe theoretic interpretation of the already discussed
model for what would happen in the splitting of a closed monopole flux tube to two monopole
fluxes leading to a creation of a fermion pair.

2. In the ordinary catastrophe theory, cusp catastrophe might be enough to describe what
happens. The abstract cusp catastrophe corresponds to a 2-D surface in 3-space spanned
by a behavior variable and two control variables. The upper and lower sheets are stable
whereas the intermediate sheet between them is unstable.

2. The stable sheets would correspond to the initial state with a single monopole flux tube and
to the final state with two monopole flux tubes. The intermediate wormhole contact would
correspond to the unstable sheet of the cusp. The touching of the flux tubes would lead from
the initial stable sheet to the unstable sheet. The intermediate wormhole contact would then
move along the unstable sheet and end up to a critical point (formation of pinch) and end
up to the second stable sheet.
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3. In this description, the state of the entire system corresponds to a point of the 3-D space
spanned by the 2 control parameters and 1 behavior variable. Therefore it is not possible to
identify the control variables of cusp as a subset of space-time coordinates and the behavior
variable as an H-coordinate orthogonal to the space-time surface. Rather, the evolution
of the system between the initial and final states should correspond to a part of a 4-D
catastrophe manifold.

3.4 Holography=holomorphy vision as a realization of quantum criti-
cality and the theory of analytic functions

A generalized complex structure can be seen as a realization of the quantum criticality of the TGD
Universe just like 2-D conformal theories can be seen as a realization of criticality. The generalized
complex structure of the space-time surface, or Hamilton-Jacobi structure as I call it, combines
hypercomplex and complex structures into a 4-D structure [L21].

Hamilton-Jacobi structure involves an integral distribution of the local tangent space-decompositions
M?(x) x E?*(z) allowing to assign a pair (u,v) of coordinates with light-like coordinate curves
to the distribution of M?(z) and complex coordinates w,w to the distribution transversal spaces
E?(x). This structure generalizes to H by introducing complex coordinates (£, £2) for CP.

There are two options, which can be consistent. In the (Py, P») option determining space-time
as 4-surface, the spacetime surfaces are identified as roots of two generalized analytic functions
fi(u,w,€4,€2) and fo(u, w, £, €2) (polynomials in the special case) defined in H and are minimal
surfaces apart from possible 2-D singularities. This option could also allow the identification of
the analogs of twistor spaces of M* and CP; as 6-D roots of P; or P, having X4 as intersection
and common base space. In the P = 0 option space-time surface X% is identified as a base space
of the twistor-surface X% in T(M*) x T(CP,). X% could be determined by the (P;, P;) option.

This leads to the question, whether the theory of analytic functions could generalize from
dimension 2 to dimension 4. I am not a mathematician in a technical sense and know almost
nothing about the existing mathematical knowledge. However, I can make guesses by using a
physicist’s intuition.

1. In the theory of analytic functions, one basic question is whether an analytic function can
be constructed from its singularities. This is essentially holography.

Electrostatics in dimension D = 2 serves as an instructive physical example. The electric
field can be fixed when the point charges and line charges corresponding to the poles and
cuts for the analytic function are known. Only poles are obtained for rational functions.
Cuts (such as 2!/ and log(z)) and essential singularities (exp(1/z)) are also possible. Does
this picture generalize to the 4-D case?

2. The twistor Grassmannian description of the scattering amplitudes leads to the hypothesis
that the amplitudes are coded by the lower-dimensional singularities of the amplitudes. Also
this situation corresponds to holography in a very general sense.

3. In TGD, the construction of scattering amplitudes with the help of vertices and the asso-
ciated light-like parton surfaces leads to the same kind of situation.

These observations motivate the question whether and how the theory of analytic functions
in dimension 2 could generalize to dimension 4 in the TGD framework.

1. Does, for example, the representation of an analytic function in terms of its singularities gen-
eralize? Suppose that 3-D light-like parton surfaces and associated 2-D partonic 2-surfaces
identified as vertices, where the generalized holomorphy breaks down, are known? Can the
space-time surface be derived as a generalized holomorphic 4-surface in H, determined by
two analytic functions f; and f> (in the generalized sense) as their roots. Could the partonic
2-surfaces be enough? Or are also string world sheets perhaps identifiable as the counterpart
of cuts needed as data. What about the boundary values of the function f; at the light-like
boundaries of causal diamond CD inside which the space-time surfaces are located as analogs
of Bohr orbits.
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2. Hilbert’s principal value theorem (see this) gives an analytic function determined in the
complex plane as a sum of contributions corresponding to poles and cuts. Charges and line
charges determine the electric field. In poles, the holographic information is determined by
residued, and in cuts by the discontinuity of the real-analytical function across the cut.

What can one say about the singularities? Does the singularity correspond to an entire
light-like partonic orbit, to a 2-D partonic surface as a section of partonic orbit, to mere light-like
fermion line along it, to string world sheet, or to a point-like particle reaction vertex as a defect
of a smooth structure as has been assumed hitherto?

1. The number theoretical considerations related to holography=holomorphy vision realized
using P = 0 option imply that the light-like fermion lines along a light-like partonic orbit
are theoretically very special and analogous to the lines of criticality for cusp catastrophe.

The fermion line is a static structure and one cannot assign to it acceleration in M* degrees
of freedom as the trace of the second fundamental form defining a generalized acceleration.
What could diverge is the C'P; part of the generalized acceleration having an interpretation
as an analog of the Higgs field.

The light-like coordinate along the light-like fermion line is constant so that metrically it is
analogous to a pole of an analytic function. On the other hand, topologically the fermion
line is analogous to a cut and it would form part of a boundary of a string world sheet
having interpretation as a generalization of cut. The analogy of the fermion line as the
critical line of the catastrophe graph of cusp catastrophe suggests that the trace of the
second fundamental form in C'P, degrees of freedom indeed diverges at it. There would be
a fold in the C'Py direction. A possible interpretation is that the fermion line serves as a
source of various gauge fields.

2. There is also another kind of singularity: in a creation of a fermion pair in the splitting of
closed monopole flux tube, the point at which the fermion and antifermion lines begin would
correspond to singularity as an analog for an edge at which fermion turns backwards in time.
This singularity is analogous to the vertex of a cusp catastrophe at which 2 folds meet.

This kind of turning point is analogous to an edge on the path of a Brownian particle.
A monopole flux tube would decay to two so that the topological viewpoint of a particle
emission would be in question. Also at this singularity one expects the holomorphy and
minimal surface property to fail. In fact this could be true inside the entire intermediate
wormhole contact formed in the process. The vision about the splitting of monopole
flux tubes [L20] leads to the identification of interaction vertices as genuinely point- like
singularities at which standard smooth structure has a defect so that an exotic smooth
structure is obtained.

3. String world sheets are assumed to connect the 3-D partonic orbits of different monopole
flux tubes. The interpretation of string as an analog of a cut is suggestive. For the cuts of
the analytic function 2/, the real axis is a seat of discontinuity. By introducing the notion
of n-fold covering space of the complex plane one gets rid of the discontinuity. Could the
string world sheets correspond to the orbits of stringy singularities such that 27 rotation
around the singularities in the generalized complex coordinates of H lead to a point at a
different space-time sheet and one obtains n-fold covering. The analogy with line charges
suggests that it makes sense to assign dynamics to these objects.

n-fold covering suggests an n-fold value of the effective Planck constant and the interpretation
as a dark phase as n-fold covering of M* or subspace M?2. Also n-fold coverings of C'P or
its geodesic sphere S? are possible and would look like copies of M* regions inside which
the map from CP; to M* is 1-valued. Now the sheets of the covering would correspond to
different copies, for instance flux tubes.

Consider now what happens in singularities from the perspective of field equations.
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1.

At singularities defined as loci where the minimal surface property fails, the field equations
for the entire action are valid, but are not separately true for various parts of the action.
Generalized holomorphy breaks down. The fermion lines as singularities are completely
analogous to the poles of an analytic function in 2-D case and there is analogy with the 2-D
electrostatics, where the poles of analytic function correspond to point charges. The fermion
lines are boundaries of string world sheets and these are analogous to cuts as line charges.
The cut disappears as a singularity when the complex plane is replaced with its covering
and the same occurs at the space-time level.

The field equations at the singularity give the TGD counterparts of Einstein’s equations,
analogs of geodesic equations, and also the analogy Newton’s F=ma (also in C'P, degrees
of freedom). The generalized 8-D acceleration H* defined by the trace of the second
fundamental form, is localized on the singularities.  Singularities can be seen as analogs
for the sources of gauge fields. This interpretation could apply to fermion lines analogous
to line charges, which correspond to cuts of an analytic function in 2-D electrostatics. At
these singularities the C'P; part of the generalized acceleration H* could diverge.

Singularities in a stronger sense can be interpreted as sources for various fermion currents
and supercurrents implying their apparent non-conservation at the singularity. This kind of
singularity could correspond to a vertex at which a fermion-antifermion pair is created
and fermion number conservation is apparently violated since the fermion line ends. Actually
only the separate conservation of fermion and antifermion numbers is broken. Here also the
M* part of H* would diverge.

One can pose several questions.

1.

What are the counterparts of the residues, i.e. holographic data? Does the holographic
data correspond to the entire 3-D parton trajectory, on only to the 2-D vertices as partonic
surfaces and to the wormhole throats defining the interfaces of Minkowskian and Euclidean
space-time sheets, or perhaps only light-like fermionic lines at the light-like orbits of the
partonic 2-surfaces?

Under what conditions are generalized analytic functions f;(u,w, &1, €2) and fo(u, w, &Y, €2)
are determined by this holographic data? It should be possible to determine the Taylor
or Laurent coefficients of f; from the data. Can one imagine an explicit formula? Under
what conditions the functions reduce to polynomials with rational (equivalently integer -)
coefficients?

Generalized holomorphy could be seen as a realization of quantum criticality. Physical
intuition also suggests that quantum criticality selects extensions of rationals as islands in
the sea of real numbers and also makes possible number theoretical physics as adelization of
TGD making possible cognitive representations as unique number-theoretical discretizations
L2l L3].

Should also the 2-D string world sheets connecting wormhole throats of different monopole
flux tubes be included as the physical intuition suggests (these string like entities should not
be confused with 4-D cosmic strings X2 x Y2 € M* x CP, and the monopole flux tubes as
their thickenings).

Are the genuinely 2-D string world sheets analogous to hypercomplex cuts? At them, the
hypercomplex analytic function, which depends on the coordinate of a light-like curve of
M*, would be discontinuous. The 4-surface would be either discontinuous along the stringy
curve or space-time surface could correspond to a covering of a region of M* so that a
rotation of 27 around the stringy curve leads to another sheet and rotation of n2rw
rotation is needed in to return to the original point. I have assigned a fractional spin
to this kind of situation. In C'P, degrees of freedom the same phenomenon is possible and
fractional charges could be assigned with them.

What about the 3-surfaces at the light-like boundaries of the C'D defining the ”ends” of
X*. Should these 3-surfaces be  given as data or could they be fixed from holographic
data provided by the fermion lines and string world sheets?



4. Beltrami flows, intebrable flows and holography = holomorphy hypothesis 16

4. Isit possible to have a general formula for the functions f; and fo (or for P) determining the
space-time surface X* analogous to the formula of Hilbert in terms of the holographic data?
This formula would be a classical analog for the determination of the scattering amplitudes
from their lower-dimensional momentum space singularities in the twistor Grassmannian
approach.

4 Beltrami flows, intebrable flows and holography = holo-
morphy hypothesis

Beltrami flows [?, 7, 7, 7, ?] (see this) appear in several contexts. Google AT informs that Beltrami
flow is a force-free flow field at 3-sphere. The simplest Hopf fibration (see this) is from 3-sphere
to 2-sphere and fibers correspond to circles and there are numerous generations of Hopf fibration:
the fibration S° — C'P, is of special interest in TGD.

4.1 Some background

Some background about Beltrami flows is in order.

1. For the Beltrami flow (see this) velocity field satisfies curl(v) = Av so that curl(v) is parallel
to v. In fluid dynamics Beltrami flow corresponds to a flow for which vorticity w = V x v
and velocity v are parallel. w x v = 0 gives w = V x v = a(z, t)v. Beltrami flows in S satisfy
this condition and are exact solutions to Euler equations.

2. In magnetohydrodynamics one can replace velocity field with magnetic field B and of the
current j satisfies j = V x B = aB implying the vanishing of the Lorentz force j x B. The
current flows along field lines and in TGD the flow of particles along monopole flux tubes
is the counterpart for this flow. These Beltrami flows involve the linking and knotting of
magnetic field lines. Similar situation prevails in hydrodynamics.

Jenny Lorraine Nielsen has proposed that the Hopf fibration S* — S — CP; could provide
a theory of everything (see this) and that Beltrami flows (see this) associated with this kind of
fibrations play a key role in physics. The scalar A, which depends on position, appearing in the
definition of Beltrami flow has dimensions of 1/length. Mass has dimension of ii/length so that 1/A
should be identified as an analog of Compton length. These flows are topologically very interesting
and involve linking and knotting of the flow lines.

The claim of Jenny Nielsen is that it is possible to understand particle massivation in terms of
Beltrami flows. Higgs expectation defining the mass spectrum in the standard model is identified
as hbarA for the eigenvalue A of the lowest eigenmode of Beltrami flow. It would seem that A is
assumed to be constant: this is not necessary. It must be possible to relate A to the radius of S3
and one chooses it suitably to get Higgs vacuum expectation. To get masses of fermions one must
put them in by hand as couplings of fermions to Higgs so that one does not really predict fermion
masses: to my best understanding, the situation remains the same as in the standard model. TGD
leads to a predictive model for the masses of elementary fermion [K4, [K3] [L11] allowing also to
predict hadron masses [L23].

4.2 Motivations for considering Beltrami flows and integrable flows from
the TGD point of view

The field equations of TGD reduce to conservation laws for isometry charges so that TGD is
analogous to hydrodynamics. Beltrami flows, generalized to 4-D situation, are indeed a basic
aspect of TGD [K2l [K1] and it is interesting to try to relate them to the new vision of TGD, in
particular the holography = holomorphy principle [L17, [L.22] [L27, [L21] [L1§].

Only irrotational Beltrami flows are possible in the plane. The simplest integrable planar flows,
having interpretation as irrotational and incompressible Beltrami flows, reduce to gradient flows
except at singularities.

These flows do not correspond to the flows defined by complex analytic maps or symplectic
maps of plane, whose generalizations to higher dimensions play a key role in TGD. These flows,
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definable for the generalized complex structure of H = M* x CP, and X* C H accompanied by
Kahler structure and symplectic structure, allow global coordinates along their time and have a
natural interpretation as hydrodynamical flows in the induced Kahler field.

The complex flows give rise to maps, which have as singularities are 2-D partonic surfaces and
string world sheets. In the view of scattering amplitudes, vertices correspond to partonic 2-surfaces
at which the lines of the analogs of Feynman diagrams meet each other [L28] whereas string world
sheets as intersections of two 4-surfaces with common Hamilton-Jacobi structure [[.21] characterize
interactions as contact interactions.

4.3 Beltrami flows and integrable flows in TGD

The generalization of Beltrami flows to 4-D context is one of the key ideas of TGD [K2| [K1] but
I have not discussed them explicitly in the recent framework based on holography = holomorphy
vision (H-H) ) [L17, [L22].

1. The motivation is that TGD is formally hydrodynamics in the sense that field equations
express local conservation of isometry charges of M* x CP,. There is actually infinite-
dimensional algebra of conserved charges. The proposal is that in TGD, the Beltrami flows
generalize genuinely 4-dimensional flows and correspond to classical field configuration for
which the 4-D Lorentz force involving electric components vanishes.

2. The definition of the Beltrami flow is however different since one cannot regard the magnetic
field as a vector field in 4 dimensions. For field equations Kahler current typically vanishes
but can be also light-like. The counterpart of Beltrami flow states that K&ahler current is
proportional to the corresponding axial current:

=Dy J" = a x P A, J0g

The divergence of j# vanishes and this must be true also for the instanton current.

This is the case if the C'P; projection of the space-time surface is at most 3-dimensional. If it
is 4-D the parameter o must vanish since the divergence of the axial current gives instanton
density e#*8 JuvJap, which is non-vanishing for CP, and by self-duality proportional to
J# J,,. Hence the only option is o = 0 for D = 4.

3. If these Beltrami flows are integrable, they can give a physical realization of some, perhaps
all, space-time coordinates as coordinated varying along the flow lines of some isometry
current. The time component of 4-force has interpretation as dissipation power and also
vanishes. These non-dissipative configurations play a key role in TGD and are natural when
space-time surfaces are identified as quantum coherence regions.

4. The key idea sharpening dramatically the notion of Beltrami flow supported by H-H vision
is that complex analytic maps f : z — f(z) allow us to construct integrable flows. What
matters physically would be singularities: poles and zeros. Without them these maps would
be just general coordinate transformations.

In TGD, this generalizes to 4 dimensions by the introduction of generalized complex structure
in H = M* x CP,. The presence of hypercomplex coordinates in M* motivates the term
?generalized”. In 4-D context, poles and zeros as singularities of a flow correspond to string
world sheets and partonic 2-surfaces. The second key idea is that fermions at the flow lines
serve as markers and provide information about the flow. In the cognitive sector they realize
Boolean logic.

Complex structure is often accompanied by Kéhler structure. Its generalization to the
Hamilton-Jacobi structure [L21] of H and M* involves hypercomplex structure. Kihler
structure involves symplectic structure and the symplectic symmetries of H induce isome-
tries of the "world of classical worlds” (WCW) [L15] as also the generalized holomorphic
transformations of H.
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Symplectic resp. holomorphic transformations preserve areas resp. angles, which in 2-D
case are canonically conjugate variables so that these transformations should be very closely
related. Symplectic flows are not gradient flows but one can assign to their flow lines a global
coordinate the Hamilton canonically conjugate to the Hamilton of the flow. Also complex
analytic flows allow this.

4.3.1 Flows in the complex plane

Flows in the plane are not usually regarded as interesting Beltrami flows since in this case the
condition V X v = av cannot be satisfied for integrable flows as gradient flows unless the vortic-
ity and a position dependent eigenvalue o vanish. There are however other ways to satisfy the
integrability. Complex analytic maps define define integrable flows in more general sense.

One can start from flows in plane, in particular integrable flows.

1.

Integrability means that the flow lines of the flow give rise to globally defined coordinate lines
which fill the space smoothly. Intuition suggests that without integrability and the existence
of a global coordinate along flow lines, the flow would be more like a random motion analogous
to the motion of gas particles. Integrability would bring in smoothness and the flow looks
like a fluid flow.

Integrability in strongest form requires that the velocity v for the flow line is a gradient
v = grad(¢) of the global coordinate in question. This implies V x v = 0 and o = 0. This
condition is very strong and implies irrotationality so that a rotational flow is only possible
in a global sense. There are however milder ways to guarantee the integrability.

Note that exotic smooth structures [A5 [AG, [A4] possible in TGD [L19l [LI [L26] would
correspond to flows for which smoothness fails at singularities to make possible fermionic
interactions, although fermions are free in TGD. But this is possible only for 4-D space-time.

1. Flows of plane defined by complex analytic maps

The flows defined by complex analytic maps define integrable flows.

1.

In the case of complex plane, analyticity conditions for a map f : 2 == (u, v) give Cauchy-
Riemann conditions 0,v" = dyv¥ and 9,v* = —0,vY expressing complex analyticity. Neither
V x v nor V - v vanishes. One has neither gradient flow or incompressible flow.

One can also consider velocity fields j = (j*, j¥) satisfying the Cauchy-Riemann conditions.
The exponentiation of v defines a flow as the analytic map z — f(z) = u + v of the complex
plane which in the case of the plane is of the same form as the generator of the flow. The flow
lines can be identified as coordinate lines of the new coordinates u and v and defined by the
conditions I'm(f) = v = constant and Re(f) = u = constant so that the flow is integrable.

In the case of a complex plane, both the holomorphic vector fields 7 and maps f can however
have poles and zeros as singularities and it is important to make a clear distinction between
these two interpretations. Zeros of the map f = (u,v) correspond to point-like vortex cores
and poles to point-like sources and sinks at which the analyticity fails. If f is interpreted as
an electric or magnetic field, poles correspond to charges as sources of the electric field and
vortices to point currents as sources of the magnetic field.

. One can also allow cuts. They appear if a complex analytic map is many-valued, such as

fractional power and it is made discontinuous by taking only a single branch. Second option
is to allow a covering in which case the complex plane becomes many-sheeted. In TGD, this
picture is generalized to a 4-D situation.

2. Symplectic flows in plane

One can consider also symplectic flows in plane E? endowed with Kihler form Joy = —Jya = 1,
which is negative of the tensor squared of the metric g;; = &;; of E2. Symplectic flows preserve the
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signed area defined by the symplectic form which in complex coordinates corresponds to the Kéhler
form which in complex coordinates defines a geometric representation of the imaginary unit.

The flows defining infinitesimal generators of the symplectic transformations are in the general
case of the form j*¥ = J¥ 9 H, where index raising is by the metric. In the case of plane E?
the explicit expression is (j7,j¥) = (0yH, —0yH), where H is the Hamiltonian of the flow, which
defines conserved ”energy” constant along flow lines. The vanishing of the divergence D, j* means
the preservation of the area.

Symplectic flow is not a gradient flow but it allows a global coordinate varying along the flow
lines. This follows from the existence of the canonical conjugate H¢ of H, whose Poisson bracket
with H equals to on: {H®, H} = O, HJ*'9,H = 1. The equation for H® along the flow lines of H
is dH¢/dt = {H®,H} = 1 and is solve by H¢ = t so that H. defines the gradient flow giving rise
to a global coordinate. The plane decomposes to a union of flow lines as H = E surfaces.

4.3.2 The 2-dimensional flows related to the simplest Hopf fibration $3 — 52

Consider first the Hopf fibration S3 — S2. The simplest visualization of the fibration is in terms of
inverse images of the circles S* of $2 in S3 under bundle projection. The fibers associated with the
points S? correspond to linked, non-intersecting circles in S3. The twist or linkage is characterized
by an integer known as Chern number. That the inverse images are smooth 2-surfaces, is highly
non-trivial and is due to the fact that the flow in S? is integrable. Any integrable flow allows
similar smooth lift.

For visualization purposes, one can represent S2 as E? and S as E3. For instance, the inverse
images of the circles S' C S? with a constant latitude 6, identified as flow lines, define a slicing of
E3\ Z, where Z is z-axis, by tori ST C S the origin of E® and projecting to a circle with center
point at the origin of E2. Poles of 52 correspond to tori which degenerate to a single point, the
origin E3. The inverse images of closed flow lines in S® are tori for any integrable flow.

The flows of S® consistent with the Hopf fibration are unions of toric flows at the tori S* x S*
characterized by 2 winding numbers (n1,ns) project to circles S C S2. Note that the flow in 52
is not geodesic flow. The flows of charged particles along closed cosmic strings with homologically
trivial S? C C'P, as cross section and define analogs of these flows.

Besides Betrami flows V x v = awv in S? also other flows S? loosely related to Hopf fibrations
and its generalization are interesting in the TGD framework. Since S? has complex and Kihler
structures, the integrable flows of S? should be reducible to analytic maps f : 2 — f(2) of S to
itself. From the TGD point of view, especially interesting flows flow are magnetohydrodynamics
geodesic flows of CP; (and C'P») coupled to its Kihler form as U(1) field for which S (S°) define
the fiber of U! bundle.

1. At the fermionic the presence of the S as fiber of S brings in a coupling of S? spinors to a
covariantly constant Kihler form of S2, which corresponds to a U(1) symmetry assignable to
S1. In the case of S2, the coupling is not necessary but in the case of C' P, the Hopf fibration
8% — C'P; allows Spin,. structure and leads to the standard model couplings and symmetries
in TGD.

2. S? with Kihler structure can be visualized for the standard embedding S? — E3 as a
covariantly constant magnetic field B orthogonal to S2. Another way to describe B is as a
covariantly constant antisymmetric 2-tensor in S2.

3. At the hydrodynamical level, one can consider hydrodynamics in which geodesic free motion
couples to the magnetic field defined by the Kahler form via Lorentz force. The magnetic
force causes a twisting so that the motion is not anymore along a big circle. The flow lines
tend to turn towards the North Pole or South Pole and approach/or leave the poles from
South or North. Chiral symmetry is clearly violated.

For the lift of this flow to S flow lines define a union of non-intersecting linked circles
S! as fibers of S% — S2 giving rise to tori in the case of closed flow lines. If the S? flow
is integrable, it is possible to label the fiber circles by a time coordinate, so that they are
expected to combine to form a smooth 2-D manifold. Vortex singularities must correspond
to single fiber S, possibly contracted to a point.
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4. The basic question is whether a given flow is integrable rather than like a random motion of
gas molecules for which flow lines can intersect and do not form a smooth filling of the space.
Complex and Kihler structures make sense also for S2. The conclusion is that analytic maps
z — f(z) of a complex coordinate of S? define an integrable flow. The real and imaginary
parts of f(z) define the velocity field v. Also symplectic flows define flows global coordinate
along the flow lines so that the flow lines allow a lift to tori in S3.

5. There are two kinds of singularities at which the analyticity fails: zeros correspond to vor-
tices and poles to sources and sinks. Everywhere else the flow is locally incompressible and
irrotational so that both the divergence and rotor of the velocity field vanish. If the flow has
no singularities it can be regarded as a mere coordinate change. Singularities contain the
physics. It would seem that only integrable flows allow a lift to flows in S®.

4.3.3 Hopf fibration S°> = CP,

In TGD, the projection S® — CP, is the crucial Hopf fibration since it makes it possible to
provide C'P, with a respectable spinor structure. The Kéahler coupling gives rise to the standard
model couplings and symmetries and H = M* x CP; is physically unique: weak interactions are
color interactions in C' P, spin degrees of freedom (charge and weak isospin). What is essential is
the coupling of the Kéahler gauge potential to spinors. This in turn leads to a Dirac equation in
H = M* x CP; and the induced Dirac equation at the space-time surface X*.

1. At the hydrodynamical level one has a geodesic flow coupled to the self-dual Kéahler form
of CP, . One has Euclidian analogs of constant electric and magnetic fields, which are of
the same magnitude. They would be orthogonal in E* but in CP, their inner product gives
constant instanton density. In this case the inverse images of the flow lines not linked.

2. Also now complex analytic maps f : CP, — CP, define integrable flows with singularities
guaranteeing that the inverse images of flow lines in S° are 2-D smooth manifolds. There
are two complex coordinates and one can have poles with respect to both of them. Both
poles and zeros are replaced with 2-D surfaces and also the analogs of cuts appearing if
many-valued maps f are allowed.

3. Also symplectic maps define flows global coordinate along the flow lines so that the flow lines
allow a lift to tori in S°.

4.3.4 (P, type extremals

At the next level one can consider C'P, type extremals, which are deformations of the canonical
embedding of CP, as an Euclidean 4-surface of H = M* x C'P, for which M 4 coordinates are
constant. They can be said to define basic building bricks of particles in TGD. The CP; type
extremal has locally the same induced metric and Kéhler structure as CP, but its M* projection
is a light-like curve, light-like geodesic in the simplest situation. It also ends, that is holes realized
as 3-surfaces.

1. The above situation for which time is time parameter as 5:th coordinate is replaced with M*
time coordinate u varying along the light-like curve. Also now the complex analytic functions
f: CPy — CP; define integrable flows. Time coordinate labels 3-D sections of the flow.

2. Now these flows would carry real physics. Induced Dirac equation effectively reduces to 1-D
Dirac equation for fermion lines identified and holomorphy solves it, very much like in string
models.

The physical interpretation is very concrete. The addition of fermions to fermion lines serves
as an addition of a marker making the flow visible. Fermions as markers allow to get infor-
mation about the underlying geometric flow making itself visible via the time evolution of
the many-fermion state.

In TGD, fermions also realize Boolean logic at quantum level and the time evolutions between
fermionic states can be seen as logical implication A — B. Spinor structure as square root
of metric structure fuses logic and geometry to a larger structure.
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4.3.5 Flows at space-time surfaces X* Cc H

In holography = holomorphy vision space-time surfaces are roots for a pair f = (fi, f2) : H — C?
of two generalized analytic functions f; of one real hypercomplex coordinate u of M*, and the
remaining 3 complex coordinates of H. Let us denote one of the complex coordinates by w, which
can be either an M* or C'P, coordinate.

1. The roots give space-time surfaces as minimal surfaces solving the field equations for any
classical action as long as it is general coordinate invariant and constructible in terms of in-
duced geometry. The extremely nonlinear field equations reduce to local algebraic conditions
and Riemannian geometry to algebraic geometry.

2. X* shares one hypercomplex coordinate and one complex coordinate with H and both X*
and H have generalized complex structure. X* has hypercomplex coordinate u (u =t — z of
M? in the simplest situation) and complex coordinate w (coordinate of complex plane E? in
the simplest situation). This defines the Hamilton-Jacobi structure of X*.

3. Complex analytic maps of X* are of the form by (v — f(u),w — g(u,w)). Integrable
flows are induced by these maps. If there are no singularities they correspond to general
coordinate transformations. The map by f having singularities generates a new Hamilton-
Jacobi structure.

4. Poles and zeros in the w-plane correspond to 2-D string world sheets. The counterparts
of zeros and poles for hypercomplex plane, parameterized by a discrete set of values of the
real hypercomplex coordinate u correspond to singular partonic 2-surfaces with complex
coordinate w at the light-like orbit of a partonic 2-surface.

These singular partonic 2-surfaces can be identified as TGD counterparts analogs of vertices
at which fermionic lines can change their direction. At these surfaces the trace H of the second
fundamental form vanishing everywhere else by minimal surface property has a delta function
like singular. Its C'P, part has an interpretation as analog of Higgs vacuum expectation value.
The claim of Jenny Nielsen is analogous to this result. In TGD also the M* part of H is
non-vanishing and corresponds to a local acceleration concentrated at the singularity. An
analog of Brownian motion is in question.

One could very loosely say that the parameter « for Beltrami flow vanishes everywhere except
at singularities where it has interpretation as value of the analog of Higgs expectation as the
trace of the second fundamental form.

String world sheets in turn mediate interactions since they connect to each other the light-like
orbits of partonic 2-surfaces. This view conforms with the basic physical picture of TGD.

A summary of the situation would look like follows.

1. It would seem that in TGD the flows in C'P; and CP, are more important than flows in S3
and S° but that the integrable flows allow a lift of the flow lines to smooth manifolds of the
total space. The spheres provide the needed Kéhler form guaranteeing the twisting of the
flow and making in the case of S? possible arbitrarily complex flow topologies as knotting,
braiding, and linking. Also 2-knots are possible in 4-D context.

2. The flows with a coupling to the induced Kéhler form have a clear physical interpretation and
the fermion lines central in the TGD based view of scattering amplitudes could correspond
to the flow lines. The flows without singularities define general coordinate transformations.
What about the Kéhler flows expected to have singularities? Could they have some physical
interpretation?

String world sheets are identifiable as intersections of two space-time surfaces with the same
H-J structure, this applies also to self-intersections. Partonic 2-surfaces in turn are coun-
terparts of vertices at which the TGD counterparts of Feynman lines meet [L28]. These
singularities play a key role in the construction of scattering amplitudes in the TGD frame-
work. Also the singularities of the complex flows in the presence of K&hler force have this kind
of singularities as counterparts vortices and sinks and sources. Could the flow singularities
correspond to self intersections and partonic 2-surfaces?
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3. Could the analytic maps with singularities defined by Kéhler flow allow to define Hamilton-
Jacobi structure in geometric terms using the information about its singularities as self-
intersections.

4. The realization that fermion lines very concretely serve as markers of a hydrodynamic flow.

5 How to create monopole flux loops?

Yesterday evening we had a very fruitful discussion with Marko Manninen about wormhole contacts
and monopole flux loops. The question was following: How do wormhole contact pairs, which
correspond to elementary particles, arise?. We pondered this a lot, but the final outcome remained
vague and bothered me and I continued to ponder the problem during the night. Finally, I realized
that the problem was structurally the same as another problem: how is the creation of fermion
pairs possible in TGD even though spinor fields in H = M* x CP, are free fields? The solution
was also the same and possible only for 4-D spacetime surfaces.

5.1 Some basic facts

I will summarize the basic facts first and then the results.

1. A wormhole contact is a Euclidean spacetime region that connects two Minkowski spacetime
sheets. They appear as two different types.

(a)
(b)

One that arises when the sheets touch each other. This region is not stable because
there is no net magnetic flux flowing from one sheet to the other.

One with a monopole flux. One can talk about a very short piece of flux tube. Since
the flux is conserved, it cannot arise when the sheets touch. On the other hand, the
conservation of flux stabilizes the tube so that it cannot be split. It must be however
made clear that their emergence is not in conflict with the fundamental conservation
laws.

How could monopole wormhole contacts arise? This is the basic question we pondered.
During late-night reflections it became clear that the attempts that first came to my
mind did not work.

2. Some more facts are in order.

(a)

The boundary conditions of the field equations of TGD do not allow open flux tubes,
i.e. cylinders with ends from which flux would escape into vacuum. The flux losses at
the ends would compensate each other, but this is not enough. Local conservation is
required and is not possible. Flux tubes must be closed loops in which monopole flux
flows.

This implies that wormhole contacts carrying monopole flux must emerge in pairs. They
can be visualized as two wormhole contacts, i.e. magnetic flux flows from throat A; to
throat By, from there to throat By on the lower sheet and from there to throat Ay and
further to throat A; on the upper sheet. This makes a closed loop. At least massive
elementary particles would correspond to such. Point-like fermions would inhabit the
throats. What single wormhole contact looks like is familiar from visualization of them
in general relativity (see this). Now however the size is extremely small since the contact
has the size scale of C' P, about 10* Planck lengths.

Magnetic flux corresponds to Kahler magnetic charge. It must be conserved as it flows
along the tube. The total magnetic charge would be zero if open flux tubes were allowed.
Here the hydrodynamic analogy to incompressible flow, which is actually mathematically
very accurate, helps.

But what happens when one has several closed flux tubes carrying magnetic flux and
possibly fusing and decaying? Is the sum of the total fluxes conserved for closed flux
tubes in this kind of reaction? This would generalize the conservation of flux inside a
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single tube. The flux for a closed flux tube would be analogous to an electric charge
but should not be confused with it.

If conservation holds true, one could conclude that if a monopole flux tube breaks up
into two flux tubes with fluxes n; and ns, then the flux remains n = ny + no?

A reasonable half-guess is that flux can be considered as some kind of conserved charge.
This makes sense if the sign of the flux can be operationally defined. If a flux tube has
some kind of chirality (DNA helix is an example of this) or parity, then it determines
the sign of the flux regardless of the position of the flux tube.

Different chiralities could also be represented by flux tubes that are complex conjugates
of each other with respect to the complex conjugation of C'P,. This would correspond
to charge-conjugation. Holography = holomorphy hypothesis predicts this kind of ge-
ometric charge conjugation affecting the space-time surface. A given space-time sheet
would contain only matter or antimatter and this could explain the mysterious matter-
antimatter symmetry. Matter and antimatter would live at different space-time sheets.

(e) In any case, even the creation of a single closed monopole flux tube is impossible. So
the simplest possibility is that they are created in pairs so that the fluxes are opposite.
How would this happen?

5.2 Connection with the similar problem related to the creation of
fermion pairs

Here a connection to a similar problem related to the fermion pair creation emerges.

1. In TGD, the spinor fields in H = M* x CP;, are free [L.25, [L24]. This is the only option. If
a quartic term coupling were added to the action, the result would be a non-renormalizable
theory and thus a catastrophe.

The problem is that in TGD gauge bosons do not correspond to primary quantum fields but
emerge as bound states of fermions and antifermions. Is the creation of fermion pairs from
a vacuum or from a classical induced field then possible at all? In QED, it is possible in
the quantized electromagnetic field but also when the field is classical and this is in fact the
approximation made in applications like atomic and molecular physics.

2. What could the pair creation correspond geometrically? An intuitive picture of what happens
has been clear since Dirac’s time. The fermion line turns back in time when a pair is created.
This picture generalizes to TGD. The V-shaped fermion line has an edge with an infinite
acceleration. This is not possible in physics respecting smoothness.

3. Now comes the connection with zero energy ontology. In TGD, the particle is geometrically
replaced by a ”Bohr orbit” of a 3-surface and the infinite acceleration at the edge of the V'
corresponds to the failure of the holomorphy at a singular 3-surface. These singularities are
the fundamental prediction and correspond to the mild non-determinism of the holography
= holomorphy principle. Field equations are not violated; these singular 3-surfaces at which
the minimal surface property fails are analogous to the poles or zeros of analytic functions.
These singular surfaces can be identified as generalized interaction vertices.

At the edge of the V, the minimal surface property fails and the trace of the second fun-
damental form, which is the generalization of the acceleration form 1-D to a 4-D object,
is infinite. Its C'P, part transforms under symmetries like the Higgs. The Higgs would be
non-zero and only at the vertices and have an infinite value there. The M? part corresponds
to the ordinary acceleration and the particle’s earthly pilgrimage would be geometrically
analogous to 8-D Brownian motion such that the vertices represent special moments in its
elementary particle life since in TGD inspired theory of consciousness they correspond to
conscious choices even at this level.

4. A couple of years ago I realized that the edge singularity of a fermion line could correspond
to the phenomenon known as ”exotic smooth structure” [?]ossible in TGD [?] It is an exotic
smooth structure, which reduces to the standard smooth structure except for defects that
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5.3

are 3-surfaces: they are "edges” and correspond geometrically to particle vertices in TGD.
Differentiability is broken.

The exotic smooth structures only occur in dimension D = 4. Pair creation and non-trivial
fermionic dynamics are only possible in 4-D spacetime! A really bad problem of general
relativity turns into a triumph in TGD.

Do also monopole flux tubes turn back in time?

Now we are very close to solving the original problem. So: how do monopole flux loops arise?

1.

The emergence of a pair formed by closed monopole flux tubes corresponds to a situation when
a closed monopole flux tube coming from the geometric future turns back to the geometric
future! More general reversals can occur and the emission of virtual particles at vertices
corresponds to this.

Therefore, a particle pair in geometric sense can be created in the classical induced field in
a geometric sense. What happens to fermion lines also happens to 3-surfaces.

This view generalizes: a closed monopole flux tube can break up, thus creating, for example,
two monopole flux tubes and the total flux is conserved. It should be however made clear
that the proposed mechanism does not throw the textbooks of physics to a paper basket but
only generalizes and makes them more precise by providing concrete geometric description
of elementary particles as extended geometric objects.
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