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Abstract

Metaplectic group appears as a covering group of linear symplectic group Sp(2n, F') for
any number field and its representations can be regarded as analogs of spinor representations
of the rotation group. Since infinite-D symplectic group of 6Mjl_ X C P2, where 5Mi is light-
cone boundary, appears as an excellent candidate for the isometries of the ”world of classical
worlds” in zero energy ontology (ZEO), one can ask whether and how the notion of metaplectic
group could generalize to TGD framework.

The condition for the existence of metaplectic structure is same as of the spinor structure
and not met in the case of C'P,. One however expects that also the modified metaplectic
structure exists if one couples spinors to an odd integer multiple of Kéhler gauge potential.
For triality 1 representation assignable to quarks one has n = 1. The fact that the center
of SU(3) is Z3 suggests that metaplectic group for C'Ps is 3- or 6-fold covering of symplectic
group instead of 2-fold covering.

Besides the ordinary representations of SL(2, C') also the possibly existing analogs of meta-
plectic representations of SL(2,C) = Sp(2, C) acting on wave functions in hyperbolic space Hs
represented as a? = > —r? hyperbololoid of Mf‘l_ are cosmologically interesting since the many-
sheeted space-time in number theoretic vision allows quantum coherence in even cosmological
scales and there are indications for periodic redshift suggests tesselations of H3 analogous to
lattices in E* and defined by discrete subgroup of SI(2,C). In this case one could require that
only the subgroup SU(2) is represented projectively so that one would have an analogy with
modular functions for discrete subgroup of SL(2, Z) would be represented in this manner.

1 Introduction

Metaplectic group appears as a covering group of linear symplectic group Sp(2n, F') for any number
field and its representations can be regarded as analogs of spinor representations of the rotation
group. Since infinite-D symplectic group of 5Mf‘; x C Py, where 5Mfi is light-cone boundary, appears
as an excellent candidate for the isometries of the ”world of classical worlds” in zero energy ontology
(ZEO) |K3| 7, K5l K4l [K2] [K1], one can ask whether and how the notion of metaplectic group
could generalize to TGD framework.

The condition for the existence of metaplectic structure is same as of the spinor structure and
not met in the case of C'P;. One however expects that also the modified metaplectic structure
exists if one couples spinors to an odd integer multiple of Kéhler gauge potential. For triality
1 representation assignable to quarks one has n = 1. The fact that the center of SU(3) is Z3
suggests that metaplectic group for C'P; is 3- or 6-fold covering of symplectic group instead of
2-fold covering.

Besides the ordinary representations of SL(2,C) also the possibly existing analogs of meta-
plectic representations of SL(2,C) = Sp(2,C) acting on wave functions in hyperbolic space Hj
represented as a? = t? — 12 hyperbololoid of Mfi are cosmologically interesting since the many-
sheeted space-time in number theoretic vision allows quantum coherence in even cosmological scales
and there are indications for periodic redshift suggests tesselations of Hz analogous to lattices in E>
and defined by discrete subgroup of SI(2,C). In this case one could require that only the subgroup
SU(2) is represented projectively so that one would have an analogy with modular functions for
discrete subgroup of SL(2, Z) would be represented in this manner.
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1.1 Heisenberg group, symplectic group, and metaplectic group

The following gives a brief summary of basics related to Heisenberg group, symplectic group, and
metaplectic group.

1.1.1 Heisenberg group

1. The matrix representation of the simplest Heisenberg group http://tinyurl.com/y2fomegs
is given by matrices
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A 3-D Lie group is in question. The multiplication for group elements (a1,b1,c;) and
(az, ba, c2) is given by (a1, b1, c1)o(as, by, ca) = (a1 +as, b1 +ba, 1 +ca—ayby). The coefficients
(a,b,c) can be belong to any ring sin the inverse can be expressed using only product and
sum as (—a, —b,ab — ¢). In particular, discrete variants of Heisenberg group such as those
associated with extensions of rationals, exist. For odd primes one can define Heisenberg
group modulo p as group of order p? in finite field F,.

2n + 1-D Heisenberg group consists of upper triangular with unit matrix at diagonal.

2. Continuous Heisenberg group is a nilpotent Lie group of dimension d = 3. Nilpotency means
that it is Lie algebra elements are nilpotent. The Lie algebra is generated by upper-diagonal
matrices and the commuation relations for the Lie algebra basis are [X,Y] = Z, [X, Z] =0,
[Y,Z] = 0. The coordinate X = ¢ and differential operator Y = p = hd,, Z = ihlsatisfying
[p, q] = ihld, define a concrete representation of the Lie algebra of the simplest 3-D Heisenberg
group in the space of functions f(¢). By introducing n pairs of coordinates commuting to
unit matrix one obtain 2n + 1-D Heisenberg group.

1.1.2 Symplectic group

Symplectic group acts as automorphisms of Heisenberg group. Symplectic group leaves
acts in function algebra of function H(p,q) leaving invariant Poisson bracket {Hy, Ho} =
0qgH10,Hy — 0yH20,H1. The Poisson bracket {p,q} = 1 giving the element of J, , = 1 sym-
plectic form remaining invariant under symplectic transformations. Exponentiation of any
Hamiltonian H(p, q) acting as Hamiltonian generates symplectic flows. Symplectic group is
infinite-D.

3-D linear symplectic group Sp(2, F) is obtained as a special case. In continuous case Hamil-
toniansare linear functions of p and ¢ so that the action by Poisson bracket is linear. General
linear symplectic groupSp(2n, F') acts in 2n-D space spanned spanned by the analogs of
(gp, pi).- When symplectic form is accompanied by complex structure and Kéhler form sym-
plectic isometries define a finite-D subgroup of symplectic group. For instance, in case of
C P, symplectic isometries define group SU(3).

1.1.3 Metaplectic group

Metaplectic group Mp,,(2n, F') (see http://tinyurl.com/y5mpswy8 and http://tinyurl.
com/y4kjys3e)) is an m-fold covering of the linear symplectic group Sp(2n, F'). Metaplectic
group like also linear symplectic group metaplectic grop is defined for all number fields,
in particular p-adic number fields and even adeles. All representations of the metapelectic
group are infinite-D (non-compactness is not the only reason: even finite-D non-unitary
matrix representations fail to exist).

Sp(2, R) co-incides with a covering group the special linear group Si(2, R) acting as real
Mobius transformations in upper half-plane. Metaplectic group does not allow finite-D matrix
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representations and all representations are infinite-dimensional. Metaplectic group can be
regarded as m-fold cover of symplectic group and in Weil representation the cover can be
chosen to be 2-fold cover.

The elements for the metaplectic group M3(2, R) as 2-fold covering of Sp(2, R) have rep-
resentation as pairs (g,€) with g a Mdbius transformation represented by matrix (a, b; ¢, d)
with unit determinant acting as z — (az +b)/(cz +d) and with €(2)? = cz +d. The product
of group elements is given by (g1, epsilony)(g2,€2) = (g192,¢€), €(2) = €1(g2(2))ea(z). The
entities transforming in this manner are not functions but analogous to spinors and one can
speak of symplectic spinors.

. One can generalize the notion of symplectic structure to that of metaplectic structure. The

topological conditions (the second Stiefel-Withney class vanishes) for the existence of meta-
plectic structure for given symplectic manifold are same as for the spinor structure.

Interestingly, in the case of C'P, this condition is not satisfied and the problem is circum-
vented by coupling C' P, spinors to an odd multiple of K&hler gauge potential giving rise to
Kahler form: this is essential for obtain electroweak couplings correctly for the induced spinor
structure at space-time surface. Since Kéahler form relates so closely to symplectic structure,
it is reasonable to expect that also in case of C'Py( CPy,) symplectic spinors exist.

The center of isometry group SU(3) of CP, is Z3 acting trivial on C' P, coordinates. The
action is analogous to that of Md&bius transformations being induced by linear action oof
SU(3) on projective coordinates (z1, 22, 23) and by the projective map such as (21, 22, 23) —
(21/23,22/23,1) in given coordinate patch defined by a choice of two complex coordinates
(zi, 2;) now (21/23,22/23). Do symplectic spinors spinors transform like C'P, spinors under
metaplectic action of SU(3)?

C P, spinors with unit coupling to Kahler gauge potential allow triality ¢ = £1 partial impos-
sible without the coupling making possible spinor structure and presumabley also metaplectic
struture. Does this mean that in the case of C'P, the metaplectic group must be identified
as 3-fold or possibly 6-fold covering of symplectic group. The holomy group is electroweak
U(2) and acts like SU(2) x U(1). Does holonomy group acts as double covering of SO(3)
and as 3-fold covering of U(1) giving 6-fold covering of tangent space group SO(4)?

Possible role of metaplectic role in TGD

Since symplectic symmetries are fundamental in TGD, metaplectic group could have a role in
TGD.

2.1 Symplectic group in TGD

In TGD the symplectic transformations of § M ff_ x C' Py, where 5M_‘f_ is light-cone boundary, and
generated by Hamiltonian algebra, are central and act in the "world of classical worlds” (WCW)
K3}, 7, K5, K4, K2l [KT].

1. WCW is formed by pairs of 3-surfaces with members at opposite boundaries of causal dia-

mond CD = cd x CP, of imbedding space H = M* x CP,. cd is causal diamond of M*
defined as intersection of future and past directed light-cones. The members of the pair are
connected by preferred extremal of action defined by twistor lift of TGD: it is sum of Kéahler
action and volume term. Preferred extremal is analogous to Bohr orbit.

. The obvious question is whether also infinite-D symplectic group of § M. i x C' P, allows meta-

plectic variant. Second question is how symplectic spinors relate to ordinary spinors. Are
ordinary spinors of H symplectic spinors as one might expect?

. In TGD the spinors of ”world of classical worlds” (WCW) [K3|, ?, [K5] should have interpre-

tation as symplectic spinors. Spinors of WCW are fermionic Fock states created by quark
oscillator operators replacing theta parameters in super-coordinates and in super-spinors of
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super variant of imbedding space H. Their local composites appear as monomials with vanish-
ing quark number in hermitian super-coordinates of super-variant of H and in super-quark-
spinors of super-H containing only monomials with odd quark number. These super-fields
differ from those of standard SUSY since monomials of theta parameters are replaced with
monomials of quark oscillator operators and Majorana spinors are not in question.

Infinite-D metaplectic group (5Mi x CPs should act on WCW spinor fields and the action
should be induced from action in H.

2.2 Kac-Moody type approach to representations of symplectic/metaplectic
group

Representations of the symplectic/metaplectic group. Kac-Moody type approach is strongly sug-
gested physically. Kac-Moody group has Lie-algebra which is central extension of the Lie-algebra
of local gauge transformation. Kac-Moody algebra elements are labelled by elements with confor-
mal weight n € Z but also the variant n > 0 (”half-algebra” exists as sub-algebra is clear from the
commutation relations.

1. Let r denote the radial light-like coordinate of light-cone boundary 5Mi x CPs. (5Mi =
52 x R* is metrically 2-sphere S? and this implies extension of usual conformal invariance
for S? to conformal invariance localized with respect to r and explains why 4-D Minkowski
space is physically unique.

Radially local conformal transformations z — f(r, z)of light-cone boundary with scaling
r — |df (r, z, zbar) /dz|~! x r in light-cone radial coordinate r compensating for the conformal
scaling factor |df (r, z, zbar)/dz|? as isometries of light-cone boundary as also color rotation
local with respect to r. One has radially local S = SO(3) x SU(3) as isometries of light-cone
boundary. This would serve as the TGD variant of color gauge symmetry.

2. Effective localization of the symplectic algebra of S% x C' P, with respect to the radial light-like
coordinate r. Denote the radial conformal weight h.

Option 1: Radial waves of form ", h = —1/2+iy (something to do with zeros of zeta) behave
like plane waves with wave vector y for in inner product defined by integration measure dr.
Orthogonal plane-wave basis effectively.

Restriction to causal diamond CD defined as intersection of future and past directed light-
cones implies 7 < 7,4, defining the size of CD and periodic boundary conditions for a
discrete basis . If h = —1/2 + iy corresponds to a zero of zeta, the size of CD determined
by Tmaz is quantized. For instance, sin(yln(rmaz)) = 0 would imply In(rme.) = n X 7/y.
Also cos(yln(rmaz)) = 0 can be considered.

Option 2: One can include the real part of h to the integration measure of inner product
defined as du = dr/r. This is dimensionless and very natural by scaling invariance. For
this choice one has h = iy and the connection with Riemann zeta is not anymore natural.
Tmaz = exp(n X 7/y) would give periodic boundary conditions.

For y = km one would have r,,q, = exp(1/k), k integer. This conforms with the adelic picture
since the infinite-D extension of rationals generated by e'/* induces finite-D extension of p-
adic numbers since eP is ordinary p-adic number.

y = kn/log(p) gives rmax = p™/*
allowing roots of p.

and one can construct finite-D extensions of rationals

3. Super-symplectic algebra is assumed to have fractal structure . There is a hierarchy of
isomorphic super-sympletcic sub-algebras SSA,, n = 1,2..., for which conformal weights
n-multiples of the weights for the entire algebra.

Option 1: One would have also conformal weights n(—1/2 + dy) for these radial waves
however inner product using dmu= dr as integration measures does reduce to inner product
for plane waves but to [r~ " exp(in(y1 — y2))du, u = log(r/rg). This leads out from the
original state space. The modification of the integration measure to du = r{n — 1)dr does
not seem plausible.
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Option 2: Identify the conformal weight as h = iy and include the real part -1/2 to the
dimensionless integration measure du = dr/r. This allows fractal hierarchy h = niy. This
seems to be the only elegant option so that the connection with Riemann zeta seems artificial

This picture leads to some conjectures and questions.

1.

Sub-algebra SSA,, and its commutator with entire algebra SSA represented trivially for phys-
ical states. Also classical Noether charges vanish: this gives strong conditions on preferred
extremals and makes them analogs of Bohr orbits: only preferred pairs of 3-surfaces at op-
posite boundaries of CD are connected by preferred extremal. Hierarchy of state spaces is
the outcome.

This would be generalization of Super Virasoro conditions for which only the entire algebra
would act trivially apart from the scaling generator Ly.

Could the hierarchies of extensions of rationals with dimensions nq|ng|... (| is for "divides”)
correspond to hierarchies of inclusions of hyper-finite factors.

Could the hierarchies of SSA,, with nq|ns|... correspond to hierarchies of extensions of ex-
tensions of.... of rationals with dimensions nq|na|....

5M_‘f_ x CPy is metrically S? x C'P, and this leads to some questions.

1.

Could one have Kac-Moody type representation of the symplectic algebra of S% x C'P», which
is radially local and involves central extension? This is physically suggestive.

Symplectic isometries of S? x C' P, local with respect to r would define a sub-representation.

Hamiltonians products of §M$ x C'P, Hamiltonians for 6M3 and CP» labelled by angular
momentum j and by the 2 Casimirs of triality ¢ = 0 color representations.

Isometry algebras SO(3) and SU(3) are sub-algebras of symplectic algebra determined by
Hamiltonians at light-cone boundary in given representation to themselves. There are no
higher-D sub-algebras so that one cannot consider hierarchy analogous to the hierarchy of
sub-algebras labelled by radial conformal weights as n-multiples of weights of the entire
algebra.

This in turn leads to a series of questions concerning what happens if one takes gauge symmetry
and Kac-Moody symmetry as its analog as a physical guideline.

1.

The metaplectic group of SL(2, R) has only infinite-D representations but no matrix rep-
resentations. Can this be true also for the metaplectic representation of infinite-D for
SO(3) x SU(3) which is compact and allow finite-D unitary ordinary representations. SO(3)
must be lifted to SU(2) and this is natural for quark spinors. SU(3) allows only triality ¢ = 0
partial waves.

Since SU(3) has Z3 as center one expects that the notion of metaplectic representation in
this case generalizes so that one has 3-fold covering of function space instead of 2-fold one.
Quark spinors indeed allow C' P, partial waves which are in ¢ = 1 representations. As already
noticed C'P; allows does not allow metaplectic structure in standard sense but the coupling to
the Kahler gauge potential probably makes this possible since the condition for the existence
of generalized metaplectic structure is same as for the existence of modified spinor structure.

. Should one treat all S? Hamiltonians with [ > 1 as gauge degrees of freedom? A possible

interpretation would be in terms of finite measurement resolution and analog of Kac-Moody
symmetry acting very much like gauge symmetry representing the finite measurement reso-
lution. Symplectic group would effectively reduce to SO(3) x SU(3). If so, one would have
SO(3) x SU(3) gauge theory with [ = 1 states and spin 1/2 states with color as particles.

Only quark triplets and singlets of fermions and color octets of gluons are observed. Without
any additional conditions TGD predicts infinite number of spinor harmonics. For C'P, spinor
harmonics there is a correlation for the color quantum numbers and electroweak quantum
numbers of spinor harmonic. In QCD the color representation of quark does not however
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depend on electroweak quantum numbers. Also the masses of spinor harmonics depend on
electroweak quantum numbers and are typically very large.

Remark: One could of course ask whether quarks could move in different color partial waves
but having ¢t = 1. This however seems rather implausible.

The proposal is that Kac-Moody type generators can be used to build massless states with
have correct correlation between color represented as angular momentum like quantum num-
ber and electroweak quantum numbers. Could the experimental absence of higher color
partial waves be due to the fact the gauge nature of higher excitations of symplectic algebra
making higher color partial waves of quarks and leptons gauge degrees of freedom?

4. What about [ = 1 states assignable to SO(3)? Twistor lift of TGD predicts that also M* has
analog of Kéhler form and induced U(1) gauge field analogous to induced Kéhler form. The
physical effects are weak and would be responsible for CP breaking and matter antimatter
asymmetry. Could the [ = 1 triplet correspond to this U(1) gauge boson somewhat like SU(3)
octet corresponds to gluon (gluon is identified as pair of quark and antiquark at different
positions)?

5. How does this relate to the analog of metaplectic group for SO(3) x SU(3)? What about the
central extension of SO(3) x SU(3) assignable to spinor representations with weight n = 1/2.
If one adds to the Hamilton associated with rotation generator L, around z-axis in SO(3)
and to hyper-charge generator Y of SU(3) a constant, one obtains what looks like central
extension at the level of Poisson brackets since right hand side of brackets receives an additive
constant. In SU(3) degrees of freedom one can have only ¢ = 0 color partial waves for scalars
but for spinors one obtains the ¢ = 1 waves and can say that color partial waves possess and
anomalous hyper-charge Y.

The spectra of L, and Y are shifted but Killing vector fields are not affected. The couplings
of isometry generators are changed since there is coupling proportional to Hamiltonian. This
does not seem to have have interpretation as a mere gauge transformation since it makes
t = 1 color partial waves possible for quarks.

2.3 Relationship to modular functions

The metaplectic representations involve in basic form Sp(2n, F'), F' any number field.

1. n =1 is physically special: one has Sp(2,C) = SL(2,C), which is double covering of Lorentz
group. The so called modular representations giving rise to basic functions appearing in
number theory are related to the representations of SL(2,C) with the condition that SL(2,Z)
or its discrete subgroup (there are infinite number of them) is represented either trivially or
mere projective factor. In the representation realizing SL(2,C) as Mobius transformations
z — (Az+ B)/Cz + D) or upper half-plane one has f(z) — (Cz + D)* f(z) when (A,B;C,D)
represents element of SL(2,Z) or its subgroup G. k is integer or half integer. One has modular
invariance apart from the projective factor.

Although these nodularity conditions apply only to a discrete subgroup of SL(2, R) they
they imply projective invariance of the analytic functions involved so that projectively their
support of the function reduces to G\H, H upper complex plane analogous to unit cell.
Could this kind of conditions correspond to the proposed analogs of Kac-Moody type gauge
conditions proposed for symplectic symmetries of IM$ x CPy?

2. SO(3,1) acts as isometries of the hyperbolic space Hs identifiable as the hyperboloid Hj as
a® = t? —r? = constant surface of future light-cone Mi: a defines in TGD Lorentz invariant
cosmic time and is natural imbedding space coordinate in ZEO. Since SL(2, Z) has infinite
number if discrete subgroups, one has infinite number of tesselations of Hj analogous to
lattices in 3-D Euclidian space.

In TGD quantum coherence is possible in even cosmological scales since TGD predicts hier-
archy of effective values of Planck constants. Could one have quantum coherent structures
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represented as tesselations of the hyperboloid? The prediction would be quantization of red-
shift as reflection of quantization of distances from given point of tesselations to other points.
Evidence for this kind of quantization has been observed.

3. Finite measurement resolution suggests consideration of tesselations as discretization of Hj
and assignable to extensions of rationals and also to subgroups of SL(2, Z). This would mean
discretized wave functions in the tesselation. This would be like wave function for particle
in discrete lattice in E®. On the other hand, modular functions with projective modular
invariance would be analogs for wave functions of particles periodic symmetry implied by
lattice but represented projectively.

Could one decompose the representation to products of modular forms as projective represen-
tations in coset space SL(2,C)/T', T" a discrete subgroup of SL(2,C) and of representations
of discrete subgroup corresponding to finite measurement resolution. This would be like rep-
resentation of wave functions as products of discrete lattice wave function and wave functions
in the space of momenta modulo lattice momenta: Fermi sphere would be replaced by the
coset space SU(2)/G.

4. The projective factor €2(Z) = (Cz + D)¥ is essential for the projective representation of
Sp(2,C). Is it possible to generalize this factor acting on upper complex plane to the case
of H3? If subgroup SO(3) is represented projectively, then one can use for Hj coordinates
(r,0,¢), such that 7 as radius of sphere S? remains invariant under r and SO(3) actsob the
complex coordinate of S? transforming linearly under SO(1) as z — (Az + B)/(Cz + D)
so that the projective factor can be identified. These representations would be analogous to
modular representations: the discrete subgroup of SL(2,C) would be replaced with SU(2).

It would seem that it must be replaced with SU(2) as subgroup. Could one generalize the
notion of modular form invariant under discrete subgroup of SL(2,C') so that the discrete
subgroup would become discrete subgroup of SO(3) (SU(2)).

Platonic solids are lattices at S? and their isometries and finite subgroups D(2n) appear in
McKay correspondence relating discrete subgroups of SU(2) and ADE Lie groups. Finite
measurement resolution as dual interpretation. What about infinite discrete subgroups. Does
invariance mean projective SU(2) invariance (the case when n = 0)
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