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In the TGD Universe space-time surfaces within causal diamonds (CDs) are fundamental
objects.

1. M8 — H duality means that one can interpret the space-time surfaces in two manners:
either as an algebraic surface in complexified M® or as minimal surfaces in H = M*xCP;.
M?® — H duality maps these surfaces to each other.

2. Minimal surface property holds true outside the frame spanning minimal surface as 4-D
soap film and since also extremal of Kahler action is in question, the surface is analog
of complex surface. The frame is fixed at the boundaries of the CD and dynamically
generated in its interior. At frame the isometry currents of volume term and Kéhler
action have infinite divergences which however cancel so that conservation laws coded
by field equations are true. The frames serve as seats of non-determinism.

3. At the level of M?® the frames correspond to singularities of the space-time surface. The
quaternionic normal space is not unique at the points of a d-dimensional singularity and
their union defines a surface of C'P» of dimension d. =4 — D < d defining in H a blow
up of dimension d..

In this article, the inspiration provided by 2-D minimal surfaces is used to deepen the TGD
view about space-time as a minimal surface and also about M® — H duality and TGD itself.

1. The properties of 2-D minimal surfaces encourage the inclusion of the phase with a
vanishing cosmological constant A phase. This forces the extension of the category of
real polynomials determining the space-time surface at the level of M® to that of real
analytic functions. The interpretation in the framework of consciousness theory would
be as a kind of mathematical enlightenment, transcendence also in the mathematical
sense.

2. A > 0 phases associated with real polynomials as approximations of real analytic func-
tions would correspond to a hierarchy of inclusions of hyperfinite-factors of type I,
realized as physical systems and giving rise to finite cognition based on finite-D exten-
sions of rationals and corresponding extensions of p-adic number fields.

3. The construction of 2-D periodic minimal surfaces inspires a construction of minimal

surfaces with a temporal periodicity. For A > 0 this happens by gluing copies of minimal
surface and its mirror image together and for A = 0 by using a periodic frame.
A more general engineering construction using different basic pieces fitting together like
legos gives rise to a model of logical thinking with thoughts as legos. This also allows
an improved understanding of how M® — H duality manages to be consistent with the
Uncertainty Principle (UP).

4. At the physical level, one gains a deeper understanding of the space-time correlates
of particle massivation and of the TGD counterparts of twistor diagrams. Twistor lift
predicts M* Kahler action and its Chern-Simons implying CP breaking. This part is
necessary in order to have particles with non-vanishing momentum in the A = 0 phase.

Contents

1 Introduction

In the quantum TGD based on zero energy ontology (ZEO) space-time surfaces within causal
diamonds (CDs) are fundamental objects [LI1, [L17]. M® — H duality plays a central role: the
earlier views can be found in [L2, [L3l [L4] and the recent view in [L12 [L13, IL16] differing in
some aspects from the earlier view. M® — H duality means that one can interpret the space-time
surfaces in two manners: either as an algebraic surfaces in complexified M?8 or as minimal surfaces
in H= M*x CP, [L17]. M® — H duality maps these surfaces to each other.

The twistor lift of TGD is another key element [K2, [K3]. It replaces space-time surfaces with
their 6-D twistor spaces represented as 6-D surfaces in the product of twistor spaces assignable
to M* and C'P, and having an induced twistor structure. This implies dimensional reduction of
a 6-D Kahler action to a sum of a 4-D Kahler action and volume term having interpretation in
terms of cosmological constant A. Kéahler structure exists only for the twistor spaces of M* and
CP; [Ad] so that the theory is unique.
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Each extension of rationals (EQ) corresponds to a different value A > 0. For A = 0, the
finite-D extension of rationals determined by real polynomials would be replaced with real analytic
functions or subset of them.

Whether A = 0 can be accepted physically, will be one of the key topics of this article. At
the level of adelic theory of cognition [L6l [L5] this question boils down to the question whether
cognition is always finite and related to finite-D extensions of rationals of whether also infinite-D
extensions and transcendence can be allowed.

1.1 Basic notions

M?® — H duality and twistor lift of TGD are the basic notions relevant for what follows and its is
appropriate to discuss them briefly.

1.1.1 Space-time surfaces at the level of M?

The recent view of M® — H duality [L12, [L13, [L16] deserves a brief summary.

At M?® level, space-time surfaces can be regarded as algebraic 4-surfaces in complexified M3
having interpretation as complexified octonions. The dynamical principle states that the normal
space of the space-time surface at each point is associative and therefore quaternionic. The space-
time surfaces are determined by the condition that the real part of an octonionic polynomial
obtained as an algebraic continuation of a real polynomial with rational coefficients vanishes.

This gives a complex surface which is minimal surface from which one takes a real part by
projecting to real part of complexified M3: it is not clear whether it is minimal surface of M3.
Minimal surface property is the geometric analog of a massless d’Alembert equation LI [L9].

Also real analytic functions can be considered [L12] [L13] but this leads to infinite-D extensions
of rationals in the adelization requiring that also the p-adic counterparts of the space-time surfaces
exist. Whether this phase which would correspond to A = 0, can be accepted physically, will be
one of the key topics in the sequel.

The conditions defining the space-time surfaces are exactly solvable and the conjecture is that
these surfaces are minimal surfaces by their holomorphy (the induced metric of the space-time
surface does not however play any role and its role is taken by the complexification number theoretic
octonion norm which is real valued for the real projections) [L12, [LT3] [L16].

1.1.2 Space-time surfaces at the level of H = M* x CP,

At the level of H = M* x CP;,, space-time surfaces are preferred extremals (PEs) of a 6-D Kihler
action fixed by the twistor lift of TGD [K3]. The existence of the twistor lift makes TGD unique
since only the twistor spaces of T(M*) and T(C P») have the needed Kiihler structure [?]. The 6-D
twistor space T(X?) of the space-time surface X* is represented as a 6-surface X6 in T(M*?) x
T(CP). T(X*) has S? as fiber and X* as base. The twistor structure of 7'(X?) is induced
from the product of twistor structures of T(M*) and T(CP;). The S? bundle structure of X°
requires dimensional reduction and dimensionally reduced 6-D Kahler action consists of a volume
term having an interpretation in terms of length scale dependent cosmological constant A and 4-D
Kahler action.

Physically ”preferred” means holography: to a given 3-surface at the either boundary of CD
one can assign a unique space-time surface as an analog of Bohr orbit. This assumption is very
probably too strong: the number of Bohr orbits is finite and the dynamically determined frames
of the space-time surface would characterize the non-determinism [L17]. ”Preferred” has several
mathematical meanings, which are conjectured to be equivalent.

One of those meanings is that space-time surfaces simultaneous extremals of both volume term
and Kaéhler action and field equations reduce almost everywhere to the analogs of the conditions
satisfied by complex surfaces of complex manifolds. Note that the field equations express local
conservation laws for the isometries of H = M* x C'P, and are in this sense hydrodynamic.

The field equations for preferred extremals do not depend on coupling parameters. This ex-
presses quantum criticality and reduces the number of solutions dramatically as required by the
fact that at the level the field equations are algebraic rather than differential equations.
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Space-time surfaces are therefore minimal surfaces everywhere except at singularities, which
are lower-dimensional surfaces. At singularities they are satisfied only for the entire action. The
divergences of the isometry currents for the volume term and Kéhler action would have delta
function singularities, which must cancel each other to guarantee conservation laws.

The singular surfaces can be wormhole throats as boundaries of C'P;, type extremals at which
the signature of the induced metric changes, partonic 2-surfaces acting as analogs of vertices at
which light-like partonic orbits representing the lines of generalized Feynman (or twistor) diagram
meet, and string world sheets having light-like boundaries at partonic orbits.

Also 3-D singularities are predicted and could be associated to time= constant hyperplanes of
M*, which in M?® picture are associated with the roots of the polynomials determining space-time
region: I have christened these roots ”very special moments in the life of self” [L8]. The roots
define 6-spheres as universal special solutions and they intersect future light-cone along ¢ = 7,
hyper-plane. It is possible to glue different solutions together along these planes so that they can
serve as loci of classical non-determinism.

The singular surfaces are analogous to the frames of soap films [L17]: part of them are fixed and
at the boundaries of CD and part of them are dynamically generated. Classical conservation laws
for the isometry currents expressing field equations pose strong conditions on what can happen in
vertices.

1.1.3 M?® — H correspondence for the singularities

By M® — H correspondence, the singular surfaces of X* C H correspond to the singularities of the
pre-image at the level of M8. For the singularities X* C M® the quaternionic normal space of X*
is not unique at points of a d < 4 dimensional surface but is replaced with a union of quaternionic
normal spaces labelled by the points of sub-manifold of C' P, for which the dimension is d. = 4 —d.
At the level of H, the singular points blow-up to d.-dimensional surfaces. What happens for the
normal space at a puncture of 3-space serves as a good analog.

In particular, the deformation of a C' P, type extremal as a singularity corresponds to an image
of a 1-D singularity with (d = 1,d. = 3) and d. = 3-dimensional blow up. The properties of
CP, type extremals suggest the 1-D curve is light-like curve for mere Kéahler action and light-like
geodesic for the Kéahler action plus volume term.

These situations correspond to A = 0 and A > 0, where A is length scale dependent cosmological
constant as coefficient of the volume term of action.

1.1.4 Membrane like structures as particularly interesting singularities

Membrane-like structures appear in all length scales from soap bubbles to large cosmic voids and
it would be nice if they were fundamental objects in the TGD Universe. The Fermi bubble in the
galactic center is an especially interesting membrane-like structure also from the TGD point of
view as also the membrane- like structure presumably defining the analog of horizon for the TGD
counterpart of a blackhole. Cell membrane is an example of a biological structure of this kind. I
have however failed to identify candidates for the membrane-like structures.

An especially interesting singularity would be a static 3-D singularity M x X2 with a geodesic
circle S' C CP; as a local blow-up.

1. The simplest guess is a bubble-like structure as a product M! x §% x S* € M* x CP,. The
problem is that a soap bubble is not a minimal surface: a pressure difference between interior
and exterior of the bubble is required so that the trace of the second fundamental form is
constant. Quite generally, closed 2-D surfaces cannot be minimal surfaces in a flat 3-space
since the vanishing curvature of the minimal surface forces the local saddle structure.

2. A correlation between M* and CP, degrees of freedom is required. In order to obtain a
minimal surface, one must achieve a situation in which the S? part of the second fundamental
form contains a contribution from a geodesic circle S C C'P; so that its trace vanishes. A
simple example would correspond to a soap bubble-like minimal surface with M* projection
M?' x X2, which has having geodesic circle S! as a local C'P, projection, which depends
on the point of M1 x X?2.
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The simplest candidate for the minimal surface M! x S? € M*. One could assign a geodesic
circle S C CPs to each point of S? in such a manner that the orientation of S' C CP,
depends on the point of S2.

A natural simplifying assumption is that one has S* C S? C CP,, where S? is a geodesic
sphere of C'P, which can be either homologically trivial or non-trivial. One would have a
map S? — S? such that the image point of point of S? defines the position of the North
pole of S? defining the corresponding geodesic circle as the equatorial circle.

The maps S? — S? are characterized by a winding number. The map could also depend on
the time coordinate for M so that the circle S! associated with a given point of S* would
rotate in S?. North pole of S? defining the corresponding geodesic circle as an equatorial
circle. These maps are characterized by a winding number. The map could also depend on
the time coordinate for M' so that the circle S! associated with a given point of S* would
rotate in S7.

The minimal surface property might be realized for maximally symmetric maps. Isometric
identification using map with winding number n = +1 is certainly the simplest imaginable
possibility.

Large voids of size scale or order 10® light years forming honeycomb like structures are rather

mysterious objects, or rather non-objects. The GRT based proposal is that the formation of
gravitational bound states leads to these kinds of structures in general relativity but I do now
know how convincing these arguments really are.

One should answer two questions: what are these voids and why do they form these lattice-like

structures?

One explanation of large voids is based on the TGD based view about space-time as a 4-surface

in H=M*x CP;.

1. Space-time surfaces have M* projection, which is 4-D for what I call Einsteinian space-times.

At this limit general relativity is expected to be a good approximation for the field theory
limit of TGD.

However, the M* projection can be also 3-D , 2-D or 1-D. In these cases one has what looks
like a membrane, string, or point-like particle. All these options are realized. The simplest
membranes would look like M*! x §2 x S, S! a geodesic circle of C'P,, which depends on
a point of M' x S? defining the M* projection. Only this assumption allows us to have
a minimal surface. Varying S' creates the analog of pressure difference making soap films
possible. I discovered this quite recently although the existence of membrane like entities
was almost obvious from the beginning.

Small perturbations tend to thicken the dimension of M* projection to 4 but the deformed
objects are in an excellent approximation still 3-D, 2-D or 1-D.

. Large voids could be really voids in a good idealization! Even 4-D space-time would be

absent! The void would be the true vacuum. It should be noticed that matter as smaller
objects, say cosmic strings thickened to flux tubes, would in turn have galaxies as tangles,
which in turn would have stars as tangles. The TGD counterparts of blackholes would be
dense flux tube spaghettis filling the entire volume.

What is remarkable that membranes are everywhere: large voids, blackhole horizons, Fermi
bubbles, cell membranes, soap bubbles, bubbles in water, shock wave fronts, etc....

What could then give rise to the lattice like structures formed from voids? Here TGD suggests

a rather obvious solution.

1. The lattices could correspond to tessellations of the 3-D hyperbolic space H? for which cosmic

time coordinate identified as light-cone proper time is constant. H? allows an infinite number
of tessellations whereas Euclidean 3-space allows a relatively small number of lattices.

There is even empirical evidence for these tessellations. Along the same line of sight there
are several sources of light and the redshifts are quantized. One speaks of God’s fingers. This
is what any tessellation of cosmic voids would predict: cosmic redshift would define effective
distance. Of course also tessellations in smaller scales can be considered.
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2. Also ordinary atomic lattices could involve this kind of tessellations with atomic nuclei at
the centers of the unit cells as voids. The space between nucleus and atom would literally be
empty, even 4-D space-time would be absent!

3. Also the TGD inspired model for genetic code [L15] involves a particular tessellation of H3
realized at the magnetic body (MB) of a biological system and realizing genetic code. This
leads to the conjecture that genetic code is universal and does not characterize only living
matter. It would be induced to the space-time surface in the sense that part of tessellation
would define a tessellation at the space-time surface. At the level of dark matter at MB, 1-D
DNA could also have 2-D and even 3-D analogs, even in ordinary living matter!

1.2 Key questions

The basic question to be discussed in the following is what the general ideas about 2-D minimal
surfaces can teach about minimal surfaces in M® and H, and more generally, about quantum TGD.

1.2.1 Uncertainty Principle and M® — H duality

The interpretation of M® as analog of momentum space [L12, [L13] meant a breakthrough in the
understanding of M2 — H duality but created also a problem. How can one guarantee that M8 — H
duality is consistent with Uncertainty Principle (UP)? The surfaces to which one can assign well
defined momentum in M?® should correspond to the analogs of plane waves in H and geometrically
to periodic surfaces.

The fact that at the level of M® the surfaces are algebraic surfaces defined by polynomials with
rational coefficients poses therefore a problem. Periodicity requires trigonometric functions. The
introduction of real anlytic functions with rational Taylor coeflients would force the introduction
of infinite-D extensions of rationals and make this possible. This is however in conflict with the
idea about the finiteness of cognition forming the basic principle of adelic physics [L6, [L7].

1.2.2 Is the category of polymials enough?

Is it possible to have periodic minimal surfaces at the level of H or at the level of both M2 and H
without leaving the category polynomials?

1. Could the non-local character of the M® — H duality in C'P, degrees freedom miraculously
give rise to periodic functions at the level of H? Or should one perhaps modify M3 — H
duality itself to achieve this [L16].

2. Periodic frames assignable to light-like curves in M?® as light-like curves would allow to achieve
periodicity in the same manner as for helicoid but this requires the extension of the category
of real polynomials to real analytic functions in M®. One could even give up the assumption
about a Taylor expansion with rational coeflicients and assume that the coefficients belong to
some possibly transcendental extension of rationals. This option would make sense in A = 0
phase.

3. Or could geometry come in rescue of algebra? Could one construct periodic surfaces both
at the level of M8 and H purely geometrically by gluing minimal surfaces together to form
repeating patterns as is done for 2-D minimal surfaces? This option could work in A > 0
phases: smoothness at the junctions would be given up but local conservation laws would
hold true for the entire action rather than for volume term and Kahler action separately.

If transcendental extensions are allowed, they would naturally contain some maximal root e/
and its powers. The induced extension of p-adics is finite-D since eP is an ordinary p-adic number.
Logarithms of log(k), 1 < k < p, and their powers are needed to define p-adic logarithm for given
p. The outcome is an infinite-D extension. Also 7 and its powers are expected to belong to the
minimal transcendental extension.

It came as a surprise to me that is not known whether e and 7 are algebraically independent
over rationals, that is whether a polynomial equation P(z,y) = 0 with rational coefficients is true
for (z,y) = (m,e) (https://cutt.ly/xmyL23W.) This would imply that 7 belongs to the extension


https://cutt.ly/xmyL23W

2. About 2-D minimal surfaces 7

defined by the polynomial P(y,e) in an extension of rationals by e. Same would be true in the
corresponding finite-D extensions of p-adic numbers. The algebraic independence of 7w and e would
have rather dramatic implications for the TGD view about cognition. That 7 and e are algebraically
independent follows from a more general conjecture by Schanuel and https://cutt.ly/ImyL1YJ).

1.2.3 Is also A > 0 phase physically acceptable?

Can one allow also A = 0 phase for the action. In this case the action reduces to mere Kéhler
action defined by M* and C' P, Kihler forms analogous to self-dual covariantly constant U (1) gauge
fields? Could one see A = 0 phase as an analog of Higgs=0 phase?

In this phase the category of rational functions would expand to a category of real analytic func-
tions and infinite extensions of rationals containing transcendental numbers would be unavoidable
and allow light-like curves as frames instead of piecewise light-like geodesics.

One could argue that since the evolution of mathematical consciousness has led to the notion
transcendentals and transcendental functions, they must be realized also at the level of space-time
surfaces.

One can invent objections against the A = 0 phase for which Kéhler action has only C' P, part
and serving at the same time as arguments for the necessity of M* part.

1. For a mere C'P, Kéhler action, the C P, type extremals representing building bricks of ele-
mentary particles become vacuum extremals and are lost from the spectrum. However, also
the M* part of Kéhler action predicted by the twistor lift gives rise to Chern-Simons (C-S)
term assignable to the light-like 3-surface X? as the orbit of partonic 2-surface and one can
assign a momentum to X % The boundary conditions guaranteeing momentum conservation
make possible momentum exchange between interior and X7 .

2. CP, Kahler action has a huge vacuum degeneracy since space-time surfaces with 2-D La-
grangian manifold as a C'P, projection are vacuum extremals. A > 0 eliminates most of these
extremals. Also the M* part of Kéahler action, which vanishes for canonically imbedded M*,
implies that most vacuum extremals of C'P, Kéhler action cease to be extremals even for
A=0.

While writing the first version of this article I had not realized that what the correct form for
the Kahler property in M* case is.

1. Suppose for definiteness the simplest option that the M* Kihler form are associated with
the decomposition M* = M? x E2. A more general decomposition corresponds to Hamilton-
Jacobi structure in which the distributions for M?(x) and E?(x) orthogonal to each other
are integrable and define slicings of M* [L18].

2. The naive guess was that J? = —g condition must be satisfied. This implies that the M? part
of Kéhler form of M* = M? x E? decomposition has an electric part, which is imaginary
so that the energy density is of form —E? + B? (= 0 for M*). For instance, solutions of
M? xY?, where Y? is any Lagrangian manifold of C'P, would have negative energy for A = 0.
Even worse, Kahler gauge potential would be imaginary and the modified Dirac equation
would be non-hermitian.

3. The problem disappears by noticing that the M? by its signature has hypercomplex rather
than complex structure, which means that the counterpart of the imaginary unit satisfies
e? = 1 rather than 2 = —1. This allows a real Kihler electric field and the situation is the
same as in Maxwell’s theory.

2 About 2-D minimal surfaces

A brief summary about 2-D minimal surfaces and questions raised by them in TGD framework is
in order. One can classify minimal surfaces to those without frame and with frame.
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2.1 Some examples of 2-D minimal surfaces

The following examples about minimal surfaces are collected from the general Wikipedia article
about minimal surface https://cutt.ly/Hn673ry) and various other Wikipedia articles. This
article gives also references to articles (for instance the article ”"The classical theory of minimal
surfaces” of Meeks and Perez [A5]) and textbooks discussing minimal surfaces , see for instance
[A4]. Also links to online sources are given. ” Touching Soap Films - An introduction to minimal
surfaces” https://cutt.ly/dmwMnJ7)) serves as a general introduction to minimal surfaces ).
There is also a gallery of periodic minimal surfaces (https://cutt.ly/RmwMQ49), which is of
special interest from the TGD point of view.

1. Minimal surfaces without frame

In E3 frameless minimal surfaces have an infinite size and are often glued from pieces, which
asymptotically approach a flat plane.

Catenoid (https://cutt.ly/in675Z6)) is obtained by a rotation of a catenoid, which is the form
of the chain spanned between poles of equal height in the gravitational field of Earth. Catenoid has
two planes as asymptotics and is obtained from torus by adding two punctures. Costa’s minimal
surface (https://cutt.ly/in65wyP) is obtained from torus by adding a single puncture and its
second end looks like a catenoid.

Frameless minimal surfaces in E® allow also lattice-like structures. Schwarz minimal surface
(https://cutt.ly/dn65rJm) is an example about minimal giving rise to 3-D lattice like structure.
These surfaces have minimal genus g = 3.

In compact spaces closed minimal surfaces are possible and some quite surprising results hold
true, see the popular article “Math Duo Maps the Infinite Terrain of Minimal Surfaces” (http:
//tinyurl.com/yyetb7c7). These surfaces have area proportional to volume of the embedding
space and the explanation is that these surfaces fill the volume densely [A2] [A3].

2. Minimal surfaces with lattice like structure

There exists also minimal surfaces with lattice-like structure.

1. Riemann described a one parameter of minimal surfaces with a 1-D lattice structure consisting
of shelfs connected by catenoids (https://cutt.ly/Pn65y3f).

2. Scherk surfaces (https://cutt.ly/3n650eB) are singly or doubly periodic. Scwartz surfaces
(https://cutt.ly/un65pCK) are triply periodic structures defining 3-D lattices and have
minimal genus g = 3. This kind of surfaces have been used to model condensed matter
lattices. These surfaces have also hyperbolic counterparts.

3. Minimal surfaces spanned by frames

Minimal surfaces with frames allow to models soap films and are obtained as a solution of the
Plateau’s problem (https://cutt.ly/7n65fgT).

1. Helicoid (https://cutt.ly/Wn65jgT) represents a basic example of a simply periodic framed
surface. Also helicoid involves transcendental functions. A portion of helicoid is locally
isometric to catenoid.

2. Arbitrary curves can serve as frames with some mild restrictions. The minimal surface need
not be unique. A given 2-D minimal surface is obtained in topological sense from a compact
manifold by adding a puncture to represent boundaries defined by frames or the boundaries
at infinity.

2.2 Some comments on 2-D minimal surfaces in relation to TGD

The study of the general properties of 2-D minimal surfaces from the TGD perspective suggest
a generalization to the TGD framework and also makes possible a wider perspective about TGD
itself.

1. Frameless minimal surfaces in TGD framework
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Frameless minimal surfaces in E® have infinite sizes since they are locally saddle like. In
TGD framework, the most interesting space-time surface are expected to be framed. Despite this
frameless minimal surfaces are of interest.

1. In the TGD framework the minimal surfaces could extend to infinity in time-direction and
remain finite in spatial directions. The asymptotically flat 2-plane could in TGD correspond
to the simplest extremals of action: M* and "massless extremals” (MEs); surfaces X2 x Y2
with X? a string world sheet and Y2 complex manifold of C'Py; and CP, type extremals with
1-D light-like curve as C'P, projection.

Conservation laws do not allow M* even in principle unless the total angular momentum and
color charges vanish. Various singularities could deform flat M* in close analogy with point
and line charges.

2. In curved compact spaces also closed minimal surfaces are possible [A2L[A3] (http://tinyurl,
com/yyetb7c7). One can wonder whether C' P, as a curved space might allow a volume-filling
closed 2-D or 3-D minimal surfaces besides complex surfaces and minimal Lagrangian man-
ifolds [L9]. For A > 0, only complex surfaces defined by polynomials in M?® appear in PEs.
It is difficult to see how this kind of exotic structure could define a physically interesting
partonic 2-surface although formally one could consider a product of string world sheet and
this kind of 2-surface.

2. Minimal surfaces with lattice structure

2-D minimal surfaces in E? allow lattice-like structures with dimensions 1, 2 and even 3. They
are are interesting also in TGD framework.

1. Scwartz surface (https://cutt.ly/un65pCK), call it S, allows in the TGD framework a
variant of form M! x S x S, where S' is a geodesic sphere. Same applies to all 2-D minimal
surfaces allowing a lattice structure and could be in a central role in condensed matter physics
according to TGD. Also hyperbolic variants of a lattice like structure expected to relate to
the tesselations of hyperbolic 3-space can be considered and could play important role at the
level of magnetic bodies (MBs) as indeed suggested [L15].

2. If A = 0 phase is physically acceptable, it would make possible light-like curves as frames
and also lattice-like minimal surfaces with periodicity forced by that of the light-like curve
assignable to to C P, type extremal as M?® pre-image.

Note that A = 0 phase relates to A > 0 phase by the breaking of conformal symmetry
transforming light-like curves to light-like geodesics. The interpretation of A = 0 phase in
terms of the emergence of continuous string world sheet degrees of freedom is attractive.

Another interpretation would be based on the hierarchy of Jones inclusions of hyper-finite
factors of type I (HFFs). A > 0 phase would define the reduced configuration space (" world
of calassical worlds” (WCW)) in finite measurement resolution defined by the included HFF
representing measurement resolution and A = 0 phase as the factor without this reduction.
The approximation of real analytic functions by polynomials of a given degree would define
the inclusion. This sequence of approximations would be realized as genuine physical systems
,;rather than only approximate descriptions of them.

3. For A > 0 allowing only polynomial function, periodic smooth minimal surfaces in M?®. The
construction of Schwartz surface suggests how one can circumvent this difficulty.

Schwartz surface defines a 3-D lattice obtained by gluing together analogs of unit cells. If a
region of a minimal surface intersects orthogonally a plane, the gluing of this surface together
with its mirror image gives rise to a larger minimal surface and one can construct an entire
lattice-like system in this way. These surfaces are not smooth at the junctions.

In the TGD framework, one would construct lattice in time direction and the gluing would
occur at edges defined by 3-D ¢t = r, planes ("very special moments in the life of self”
IL8]). Local conservation laws as limits of field equations are enough and derivatives can
be discontinuous at ¢ = r, planes. The expected non-uniqueness of the gluing procedure
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would mean a partial failure of the strict classical determinism having a crucial role in the
understanding of cognition in ZEO. This is discussed in [L17].

MB3-picture suggests a very concrete geometric recipe for constructing minimal surfaces pe-
riodic in time direction and this would make it possible to realize UP for M® — H duality.

The general vision would be that A > 0 phases the periodic minimal surfaces can be constructed

as piecewise smooth lattice-like structures in the category of real polynomials by using the gluing
procedure whereas in A = 0 phase they correspond to smooth surfaces in the category of real
analytic functions.

3

3. Minimal surfaces spanned by frames

Minimal surfaces spanned by frames are of special interest from TGD point of view.

1. In the TGD framework. Minimal surfaces are spanned by fixed frames at the boundary of

CD and by dynamically generated frames in the interior of CD. The dynamically generated
frames break strict determinism, which means that space-time surfaces as analogs of Bohr
orbits becomes non-unique [L17] and holography (for its various forms see [L12} [L13]) forced
by the General Coordinate Invariance is not completely unique.

. CP, type extremal in H would correspond to 1-D singularity in M?® analogous to a frame

assigned 2-D minimal surfaces. The physical picture suggests that this curve is a light-like
curve for the Kéahler action (A = 0) and a light-like geodesic for action involving also volume
term (A > 0). In the first case the periodicity of the light-like curve could give rise to periodic
minimal surfaces as generalization of helicoid. In the second case discretized variants could
replace these curves.

. For the minimal surfaces discussed above, polynomials are not enough for their construc-

tion and the examples involve transcendental functions like trigonometric, exponential and
logarithmic functions in their definition.

The same is expected to be true also in TGD. Should one leave the category of polynomials
and allow all real analytic functions with rational Taylor coefficients? Or should one assume
also the A = 0 phase making possible real analytic functions?

As far as cognitive representations are involved, this would mean that cognition becomes infi-
nite since the extensions of p-adic become infinite. Could A = 0 phase be associated with an
expansion of consciousness, kind of enlightment, and relate to mathematical consciousness?

Space-time surfaces as 4-D minimal surfaces

Years after writing the original version of this article holography = holomorphy principle [L.25]
led to the conclusion that space-time surfaces as analogs of Bohr orbits for particles as 3-surfaces
are minimal surfaces apart from singularities. Therefore the 4-D minimal surfaces became basic
object of study.

3.1 Periodic minimal surfaces with periodicity in time direction

There are several motivations for the periodic minimal surfaces.

3.2 Consistency of M® — H duality with Uncertainty Principle

Consistency of M® — H duality with UP is one motivation.

1. M?® is interpreted as an analog of momentum space. M?® — H correspondence must be

consistent with UP. If M® — H correspondence in M* degrees of freedom involves inversion
of form m* — heypmkF/m?. [L12, IL13, IL16]. This solves the problem only partially. M® — H
correspondence should realize also the idea about plane wave as space-time counterpart of
point in momentum space.



3.3 Bohr orbitology for particles in terms of minimal surfaces 11

The first guess [L16] would be that the X* € CD C M?® is mapped to a union of translates
of images of CD by inverse of P*, where is the total momentum assignable to CD. What I
saw as a problem, was that this gives a lattice-like many-particle state rather than a single
particle state as a counterpart of a plane wave.

If the momentum is space-like, this is indeed the case. Therefore I proposed that the image
is a quantum superposition of translates rather than their union and represents an analog
of plane wave. I failed to realize that this is not the case for time-like momentum since
periodicity in time direction does not mean lattice as many-particle state.

A geometric correspondence for time-like momenta is possible after alll The problem is
a concrete realization of this correspondence and here the geometric construction gluing
together the analogs of unit cells to form a periodic structure in time direction suggests
itself.

2. Quite concretely, one could take part of X* € CD C M?® defining particle and construct
a periodic surface with a period determined by the total time-like momentum assignable to
this part of X*. X* has a slicing by planes e = e,, [L8] assignable to 6-branes with topology
of S% defining universal special solutions of algebraic equations. Here e, is a root of the real
polynomial defining X4,

One could take a piece [eq, ..., ex] of X* C C'D and glue it to its time reversal in M?® to get
a basic unit cell and fuse these unit cells together to obtain a periodic structure.

The differences e; — e;j, which for M 8 correspond to energy differences, are mapped by
inversion to time differences ¢; — ¢; in H. The order of magnitude for the p-adic length
scale assignable to CD in question is the same as for the largest difference for the roots as
conjectured on basis of the conjecture that the p-adic length scale correspond to a ramified
prime of the extension dividing |¢; — ¢;|? for some pair (i, ). The p-adic prime for CD need
not however be a ramified prime and one can develop an argument for how it emerges [L17].

3. Rather remarkably, one can glue together portions [t1,..t,] and the mirror image of [t, .,
for any k. All possible sequences of this kind are possible! This suggests an analogy to logical
reasoning: [t,,t,+1] would represent a basic step ¢, — t,4+1 in the reasoning and one could
combine these steps. Could this process serve as the geometric correlate for logical thought
or as engineeering at the level of fundamenta interactions?

The physicalists refusing to accept non-determinism at the fundamental level fail to realize
that our technology relies on a fusion of deterministic processes and is therefore not consistent
with strict determinism. Also computer programs consist of deterministic pieces.

4. There is still one open question. Does the construction of the time lattices occur only at
the level of H or both at the level of M® and H? One can argue that the realization of the
analog of inverse Fourier transform forces the construction at both sides.

3.3 Bohr orbitology for particles in terms of minimal surfaces

In TGD, space-time surfaces correspond to analogs of Bohr orbits. One should also have classical
space-time analogs for ordinary bound states as Bohr orbits for particles. Atoms represent the basic
example. In TGD Universe, Bohr model should be much more than mere semiclassical model. Also
the geodesic orbits of particles in gravitational fields should have minimal surface analogs.

The Bohr orbits should be representable as parts of minimal surfaces identifiable as deformed
C P, type extremals. There are two options to consider corresponding to A = 0 phase and to A > 0
phases.

1. A =0 phase

A = 0 phase corresponds to a long length scale limit but general consideratons encourage its
inclusion as a genuine phase. Its relation to A > 0 phases would be like the relation of real numbers
to extensions of rationals and transcendental functions to polynomials.

1. For A = 0, C'P; type extremals are vacuum extremals and correspond to 1-D singularities,
which are light-like curves in M8 blown up to orbits of wormhole contacts in H.
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Light-like curve as an M* projection of Bohr orbit of this kind can give rise to ”zitterbewe-
gung” as a helical motion with average cm velocity v < c¢. The proposal for the TGD based
geometric description of Higgs mechanism realizes this zitterbewegung of C P, type extremals
for Kéhler action. This makes it possible to assign to any particle orbit - be it Bohr orbit in
an atom or a geodesic path in a gravitational field, an average of a light-like curve.

2. Light-likeness gives rise to Virasoro conditions emerging in the bosonic string theories. This
served as a stimulus leading to the assignment of extended Kac-Moody symmetries to the
light-like partonic orbits X3 . The isometries of H define the extended Kac-Moody group.
The generators of the Kac-Moody algebra depend on the complex coordinate z of the partonic
2-surface and on the light-like radial coordinate of X?. Super-symplectic symmetries assigned
to the light-like §M$ x C' P, and identified as isometries of WCW have an analogous structure
K1] [L14].

The light-like orbits of the partonic 2-surfaces in H are connected by string world sheets. The
interpretation could be that in A = 0 phase strings emerge as additional degrees of freedom.

3. For C'P, part of Kéhler action A = 0 C'P, type extremals are vacua (this need not be the
case for the deformations). The C-S term for C' P, Kéahler action carries no momentum and
cannot contribute to momentum and cannot realize momentum conservation for deformed
C P, type extremals.

However, the C-S term for the M* part of Kihler action defines the partonic orbits as dy-
namical entities. If the projection of the deformation of C'P, type extremal at the wormhole
throat has M* projection with dimension D = 3, M* C-S term gives rise to non-vanishing
momentum currents and the smooth light-orbit is consistent with the momentum conserva-
tion if boundary conditions are realized. What is remarkable that M? C-S term also gives
rise to small CP breaking, whose origin is not understood in the standard model. The tiny
C-S breaking term would be paramount for the existence of elementary particles!

The implications of this picture are rather profound. It could be possible to assign to any
physical system rather detailed view about the minimal surfaces involved both at the level of H
and M3,

Could tachyonic states appear as parts of non-tachyonic states somewhat like tachyonic virtual
particles appear in Feynman graphs?

1. The possibly existing periodic minimal surfaces with tachyonic total momenta would have
an interpretation as lattice-like many-particle states. This excludes them as unphysical. In
fact, one cannot construct tachyonic periodic minimal surfaces in the proposed way since the
planes t = t,, have time-like normal.

2. M8 picture allows to interpret tachyonicity as a trick. In the M?® picture the choice of
M* c M? is in principle free. The mass squared of the particle depends on this choice
since M* momentum is a projection of M® momentum to M* C M3. For eigenstates of M*
mass, one can rotate M* C M? in such a manner that the mass squared vanishes. For a
superposition of states with different mass squared possible in ZEO this is not possible but one
can choose M* so that mass squared is minimized. This gives rise to p-adic thermodynamics
as a description for the mixing with heavier states.

One could understand the tachyonic ground state as an effective description for the choice of
M* in this manner.

2. A > 0 phase

For A > 0 only light-like geodesics are possible and this forces a modification of the above
picture by replacing light-like curves with piece-wise light-like geodesics.

1. A discrete variant of zitterbewegung consisting of pieces of light-like geodesics is suggestive.
The dynamics in stringy degrees of freedom would be almost frozen and completely dictated
by the ends of the string. Discretized version of smooth dynamics would be in question. This
kind of phenomenological model for hadronic strings has been proposed.
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2. The change of the direction of the partonic orbit takes place in a vertex. In M?® picture it
is associated with a partonic 2-surface associated with a ¢t = r,, hyperplane at which several
CP; type extremals meet at the level of H. These reactions could be seen as ordinary particle
reactions.

3. Another way to change the direction would be based on the interaction of parton with the
interior degrees of freedom so that conservation laws are not lost. The interaction between the
3-D orbit of wormhole throat and interior is defined by the condition that normal components
of the isometry currents of the total Kahler action are equal to the divergences of C-S currents
the partonic orbit. For the M part of C-S action only momentum currents are non-vanishing
whereas for C'P, only color currents are non-vanishing.

At the turning points the normal current of the entire Kéhler action - and the divergence
of the isometry current for C-S part C'P; type extremal must become non-vanishing and
divergent but cancel each other. Local conservation laws hold true and one can speak of
a momentum exchange between interior and wormhole throat. This picture applies also to
color currents.

3. A connection with Higgs mechanism

The fact that zitterbewegung makes the particle effectively massive in long enough scales,
suggests an analogy with the massivation by the Higgs mechanism.

1. The interactions between partonic orbits and the interior of the space-time surface are analo-
gous to the interactions of particles with a Higgs field leading to the massivation as the Higgs
field develops a vacuum expectation value.

2. M* Kihler form represents a constant self-dual Abelian gauge field. Although this field is
not a scalar field, it is analogous to the vacuum expectation value of the Higgs field as far as
its effects are considered.

4. A connection twistor diagrams and generalization of cognitive representations

Also a connection with twistor diagrams is suggestive. The light-like geodesic lines appearing
as 1-D singularities in M® would correspond to light-like differences of the time-like momenta
assignable to vertices. In H they are assignable with partonic 2-surfaces identifiable as boundaries
of 3-D blow ups of 1-D singularities in M®. In MS®, the graphs containing time-like momenta
connected by singular lines would define analogs of twistor diagrams. Also at the level of H the
lines connecting partonic 2-surfaces would be light-like as also the distances between them since
the inversion map preserves light-likeness of the tangent curves.

This would pose additional conditions on cognitive representations.

1. The original proposal [?]as that cognitive representation consists of points of X* for which M8
coordinates belong to the EQ associated with the polynomial considered. The expectation
was that one has a generic situation so that this set is automatically finite.

The explicit solution of the polynomial equations however led to a surprising finding was
that the number of these points was a dense set for the space-time surfaces satisfying co-
associativity conditions [L12] [LT3]. The second surprise was that co-associativity (associa-
tivity of normal space) is the only possible option.

2. The additional conditions guaranteeing that the cognitive representation consists of a finite
number of objects, generalize it from a discrete set of points to a union of singularities with
co-dimension d, =4 —d, d=1,2,3.

The vertices would be connected by d = 1 light-like singularities and belong to 2-D partonic
2-surfaces as d = 2 singularities at t = r,, surfaces in turn defining d = 3 singularities. Also
2-D string world sheets having d = 1 singularities as boundaries would be included.

3. This would also generalize twistor diagrams as a frame holographically coding for the space-
time surface as an analog of Bohr orbit. At the M? level, the definition of the parts of this
structure would involve only parameters with values in EQ (say the end points of a light-like
geodesic defining it).
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3.4 Periodic self-organization patterns, minimal surfaces, and time crys-
tals

Periodic self-organization patterns which die and are reborn appear in biology. Even after images,
which die and reincarnate, form this kind of periodic pattern. Presumably these patterns would
relate to the magnetic body (MB), which carries dark matter in the TGD sense and controls the
biological body (BB) counsisting of ordinary matter. The periodic patterns of MB represented as
minimal surface would induce corresponding biological patterns.

The notion of time crystal [B2] (https://cutt.ly/2n65x0k) as a temporal analog of ordinary
crystals in the sense that there is temporal periodicity, was proposed by Frank Wilczeck in 2012.
Experimental realization was demonstrated in 2016-2017 [D1] but not in the way theorized by
Wilczek. Soon also a no-go theorem against the original form of the time crystal emerged [B3] and
motivated generalizations of the Wilzeck’s proposal.

Temporal lattice-like structures defined by minimal surfaces would be obvious candidates for
the space-time correlates of time crystals.

1. One must first specify what one means with time crystals. If the time crystal is a system in
thermo-dynamic equilibrium, the basic thermodynamics denies periodic thermal equilibrium.
A thermodynamical non-equilibrium state must be in question and for the experimentally
realized time crystals periodic energy feed is necessary.

Electrons constrained on a ring in an external magnetic field with fractional flux posed to an
energy feed form a time crystal in the sense that due to the repulsive Coulomb interaction
electrons form a crystal-like structure which rotates. This example serves as an illustration
of what time crystal is.

2. Breaking of a discrete time translation symmetry of the energy feed takes place and the
period of the time crystal is a multiple of the period of the energy feed. The periodic
energy feed guarantees that the system never reaches thermal equilibrium. According to the
Wikipedia article, there is no energy associated with the oscillation of the system. In rotating
coordinates the state becomes time-independent as is clear from the example. What comes
to mind is a dynamical generation of Galilean invariance applied to an angle variable instead
of linear spatial coordinate.

3. Also the existence of isolated time crystals has been proposed assuming unusual long range
interactions but have not been realized in laboratory.

Time crystals are highly interesting from the TGD perspective.

1. The periodic minimal surfaces constructed by gluing together unit cells would be time crystals
in geometric sense (no thermodynamics) and would provide geometric correlates for plane
waves as momentum eigenstates and for periodic self-organization patterns induced by the
periodic minimal surfaces realized at the level of the magnetic body. It is difficult to avoid
the idea that geometric analogs of time crystals are in question.

2. The hierarchy of effective Planck constants h.yy = nhg is realized at the level of MB. To
preserve the values of h. s energy feed is needed since h.ss tends to be reduced spontaneously.
Therefore energy feed would be necessary for this kind of time crystals. In living systems,
the energy feed has an interpretation as a metabolic energy feed.

The breaking of the discrete time translation symmetry could mean that the period at MB
becomes a multiple of the period of the energy feed. The periodic minimal surfaces related to
ordinary matter and dark matter interact and this requires con-measurability of the periods
to achieve resonance.

3. Zero energy ontology (ZEO) predicts that ordinary (”big”) state function reduction (BSFR)
involves time reversal [L1I) [L17]. The experiments of Minev et al [Bl] [?] give impressive
experimental support for the notion in atomic scales, and that SFR looks completely classical
deterministic smooth time evolution for the observer with opposite arrow of time. Macro-
scopic quantum jump can occur in all scales but ZEO together with h.fs hierarchy takes care
that the world looks classical! The endless debate about the scale in which quantum world
becomes classical would be solely due to complete misunderstanding of the notion of time.
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4.

Time reversed dissipation looks like self-organization from the point of view of the external
observer. A sub-system with non-standard arrow of time apparently extracts energy from
the environment [L10]. Could this mechanism make possible systems in which periodic
oscillations take place almost without external energy feed?

Could periodic minimal surfaces provide a model for this kind of system?

1.

Suppose that one has a basic unit consisting of the piece [t1, .., tx] and its time reversal glued
together. One can form a sequence of these units.

Could the members of these pairs be in states, which are time reversals of each other? The
first unit would be in a self-organizing phase and the second unit in a dissipative phase.
During the self-organizing period the system would extract part of the dissipated energy
from the environment. This kind of state would be ”breathing” [L27].

There is certainly a loss of energy from the system so that a metabolic energy feed is required
but it could be small. Could living systems be systems of this kind?

. One can consider also more general non-periodic minimal surfaces constructed from basic

building bricks fitting together like legos or pieces of a puzzle. These minimal surfaces could
serve as models for thinking and language and behaviors consisting of fixed temporal patterns.

What the failure of classical non-determinism could mean
for 4-D minimal surfaces?

In TGD, holography = holomorphy principle predicts that space-time surfaces are analogous to
Bohr orbits for particles identified as 3-surfaces and defining the holographic data.

1.

The Bohr orbits out to be 4-D minimal surfaces irrespective of the action principle as long
as it is general coordinate invariant and constructible in terms of the induced geometry. 2-D
minimal surfaces are non-deterministic in the sense that same frames span several minimal
surfaces. Omne can expect that also in the 4-D case, non-determinism is unavoidable in
the sense that the Bohr orbit-like 4-surfaces are spanned by 3-D ”frames” as loci of non-
determinism.

At these 3-surfaces minimal surface property fails, the derivatives of the embedding space
coordinates are discontinuous and the second fundamental form diverges. Also the generalized
holomorphy fails. The failure of smooth structure caused by the edge in 4-D case can give
rise to an exotic smooth structure.

One can also say the singularities act as sources for the analog of massless field equations
defined by the vanishing of the trace of the second fundamental form and this justifies the
identification of the singularities as vertices in the construction of the scattering amplitudes.

. In the TGD inspired theory of consciousness, classical non-determinism gives rise to geo-

metric correlates of cognition and intentionality and the loci of non-determinism serve as
memory seats. Free will is not in conflict with classical determinism and the basic problem
of quantum measurement theory finds a solution in zero energy ontology.

The proposal is that the classical non-determinism corresponds to the non-determinism of
p-adic differential equations. In fact, TGD leads to a generalization of p-adic number fields
to their functional counterparts and they can be mapped to p-adic number fields by category-
theoretical morphism. This generalization allows us to understand the p-adic length scale
hypothesis which is central in TGD.

The study of the non-determinism for 2-D minimal surfaces could serve as a role

model in the attempts to understand non-determinism for 4-D minimal surfaces. What can one
say about the geometric aspects of classical non-determinism in the case of 2-D minimal surfaces?
Here Google Gemini provides help and one obtains a surprisingly detailed summary and its also
possible to make further questions. Here I summarize briefly what Google says.
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4.1 The classical non-determinism of 2-D minimal surfaces

The 2-D minimal surface spanned by a given frame (a closed, non-intersecting, simple wire loop or
collection of them in 3D space) is generally non-unique. While the existence of at least one minimal
surface (a surface of zero mean curvature with vanishing trace of the second fundamental form)
is guaranteed, a single frame can bound multiple, and sometimes even a continuum of, distinct
minimal surfaces. Here is a breakdown of the uniqueness of minimal surfaces.

1. Many frames, particularly non-convex ones, can span several distinct minimal surfaces.
A classic example is two coaxially aligned circles, which can bound two different catenoid
surfaces (a wider and a narrower one) or two separate disks.

2. In certain cases, a given curve can bound a continuous family of minimal surfaces, a phe-
nomenon often observed in physical soap film experiments.

3. Uniqueness is achieved only under specific conditions.

(a) Convex projection: If a closed Jordan curve I' has a one-to-one orthogonal projection
onto a convex planar curve, then I bounds a unique minimal disk, which is a graph over
that plane.

(b) Small total curvature: A smooth Jordan curve with a total curvature less than or equal
to 47 bounds a unique minimal disk.

(c) Sufficiently close to a plane: A C?-Jordan curve that is sufficiently close to a plane curve
in the C2-topology bounds a unique minimal disk.

4. Stability vs. sbsolute uniqueness: A minimal surface is ”stable” if small perturbations in-
crease its area. Often, a frame may bound multiple minimal surfaces, but only one is the
absolute, global minimum, while others are unstable or local minima.Plateau’s Problem:
The classical problem asks for the surface of minimum area, which exists, but is not always
unique.

Summary: While soap film experiments often produce a single, stable minimal surface, the
boundary value problem can have multiple solutions. Uniqueness is the exception, not the rule,
and depends strongly on the geometric ”convexity” of the framing wire.

4.2 'What could one conclude about the space-time surfaces as minimal
surfaces?

The above Google summary helps to make guesses about the naive generalization of these findings
in the 4-D situation.

How unique is the minimal surface spanning a given frame?

One can go to Google and pose the question "How unique is the minimal surface spanning a
given frame?”. One obtains a nice summary and can ask additional questions. The following
considerations are inspired by this question.

1. In the case of ordinary minimal surfaces, it is enough that there exists a plane for which the
minimal surface is representable as a graph of a map and the projection of the frame to the
plane is convex, i.e. any of its points can be connected by a line inside the curve defined by
the projection. An essential assumption is that the 2-D surface is representable locally as
a graph over a plane. Curves whose plane projection has an interior, which is non-convex
(not all interior points can be connected by a curve in the interior) can also lead to a failure
of determinism. Cusp catastrophe, defined in terms of roots of a polynomial of degree 3, is
a 2-D  example of non-convexity. Note that the cusp is  3-sheeted.

2. Consider the general meaning of convexity for objects of dimension d in linear spaces with
dimension d + 1. One considers a projection of the object with dimension d (say frame to a
higher-dimensional space. For minimal surfaces, the object is the frame of dimension d =1
and the space has dimension d = 3. For Riemannian manifolds straight lines can be
identified as geodesic lines. Planes could be generalized to geodesic manifolds.
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The convexity criterion has a straightforward analog when the embedding space is 8-D
H = M* x CP, and minimal surface is 4-D space-time surface X*.

1.

The projection of the 3-D frame, defining the holographic data or a locus of non-
determinism defining secondary holographic data, to some 4-D submanifold analogous
to the plane should be convex. The surface should be also representable as a graph of a map
from the 4-D manifold to H. One could consider projections of the frame X3 to all geodesic
submanifolds G4 of dimension D = 4. G4 € {M* E? x S', E? x S?}, where S' and S? are
geodesic manifolds of C'P, appear as candidates.

For physically most interesting cases C' P; projection has at least dimension 2 so that E?xS? is
of special interest. Could one choose G4 to be holomorphic sub-manifolds? If hypercomplex
holomorphy does not matter, this would leave only 2-D M? projection. Is it enough to
consider G4 = E? x §?? Situation would resemble that for ordinary minimal surfaces. Could
one consider the convexity of the E? and S? projections?

Convexity: the points of X2 can be connected by geodesic lines. Should they be space-like or

could also light-like partonic orbits serve as loci of non-determinism. What about 3-surfaces
inside C'P; representing a wormhole contact at which two parallel Minkowskian space-time
sheets meet?

The convexity criterion should be satisfied for all frames defined by 3-D singularities assumed
to be given.

If the 3-D frame corresponding to the roots of f; = 0, fo = 0 is manysheeted over G*,
the projection contains several overlapping regions corresponding to the roots. One does not
have a single convex region. This is one source of non-determinism.

Note: If the projection to M* is bounded by genus g > 0 surface, the M* projection is
not convex. Now however C'P, comes to rescue. Consider as an example a cosmic string
X' x S%, where X! is convex and space-like. If the C'P, projection is g > 0 surface, the
situation is the same. Could this relate to the instability of higher genera. Would it be
induced by classical non-determinism?

4.2.1 What could be the role of generalized holomorphy?

The failure of holomorphy implies singularities identified as loci of auxiliar holomorphic data and
seats of non-determinism.

1.

Often the absolute minimum is unique. The degeneracy of the absolute minimum would
mean additional symmetry. This kind of additional symmetry in the case of Bohr orbits of
electrons in an atom corresponds to rotational symmetry implying that the orbit can be in
any plane going through the origin.

. How does this relate to f = (f1, fo) = 0 conditions has as roots the space-time surface as

a generalized complex submanifold of H? Each solution corresponds to a collection of the
roots for these conditions and each root corresponds to a space-time region. Two or more
roots are identical at the 3-D interfaces of the roots. Each root defines a region of some
geodesic submanifold of H defining local generalized complex coordinates of X* as a subset
of corresponding H coordinates in this region. Separate solutions would be independent
collections of the roots.  Two roots co-incide at at the 3-D interfaces between roots. Cusp
catastrophe gives a good 2-D illustration.

3-D singularities as analogs of frames correspond to the frames of 4-D ”soap films”. Since
derivatives are discontinuous, the singularities correspond to edges of the space-time and
would define defects of the standard smooth structure. This would give rise to an exotic
smooth structures.

The non-determinism should correspond to the branching of the space-time surfaces at the
singularities X3 giving rise to alternative Bohr orbits. There is analogy with bifurcations,
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in particular with shock waves and bifurcations could correspond to the underlying 2-adicity
and relate to the p-adic length scale hypothesis.

There would be several kinds of edges of X* associated with the same X3. The non-
representability of the singularity X3 as a graph P(X3) — X3, where P(X?) is the
projection of the singularity to G4 should be essential. Also the non-convexity of the region
bounded by P(X?) in G4 matters.

5. The volumes of the minimal surfaces spanning a given frame need not be the same and the
absolute minimum for the volume, or more generally classical action, could be in the special
role. The original proposal indeed was that absolute minima are physically special.

If dynamical symmetries are involved, the extrema can be degenerate. The minimal surfaces
are analogs of Bohr orbits and in atomic physics Bohr orbits have degeneracy due to the
fact they can be in arbitrary plane: this corresponds to the choice of the quantization axis
of angular momentum.

Could the symmetries for the 3-D ”frames” induce this kind of degeneracy? Could Galois
groups act as symmetries? This would give connection between the view of cognition as an
outcome of classical non-determinism and the number theoretic view of cognition relying on
Galois groups.

5 About the justification for the holography = holomorphy
vision and related ideas

The recent view of Quantum TGD [L20, .22 [L21, T.25] 26 [L23] has emerged from several
mathematical discoveries.

1. Holography = holomorphy principle (HH) reduces classical field equations at the Minkowskian
regions of the space-time surface to algebraic roots f = (f1, f2) = (0,0) of two functions
which are analytic functions of 4 generalized complex coordinates of H = M* x C P, involving
3 complex coordinates and one hypercomplex coordinate of M*.

2. Space-time surface as an analog of Bohr orbit is minimal surface, which means that it gener-
alized the notion of geodesic line in the replacement of point-like particle with 3-surface and
that the non-linear analogs of massless field equations are satisfied by H coordinates so that
analog of particle-wave duality is realized geometrically.

3. Minimal surface property holds true independently of the classical action as long as it is gen-
eral coordinate invariant and constructible in terms of the induced geometry. This strongly
suggests the existence of a number theoretic description in which the value of action as analog
of effective action becomes a number theoretic invariant.

4. The minimal surface property fails at 3-D singularities at which derivatives of the embedding
coordinates are discontinuous and the components of the second fundamental form have delta
function divergences so that its trace as local acceleration and an analog of the Higgs field,
diverges.

These discontinuities give rise to defects of smooth structure and in 4-D case an exotic smooth
structure emerges and makes possible description of fermion pair creation (boson emission)
although the fermions are free particles. Fermions and also 3-surfaces turn backwards in
time. This is possible only in dimension D=4.

One can criticize this picture as too heuristic and of the lack of explicit examples. T am grateful
for Marko Manninen, a member of our Zoom group, who raised this question. In the following I
try to make it clear that the outcome is extremely general and depends only on the very general
aspects of what generalized holomorphy means. I hope that colleagues would realize that the
TGD approach to theoretical physics is based on general mathematical principles and refined
conceptualization: this approach is the diametric opposite of, say, the attempt to understand
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physics by performing massive QCD lattice calculations. Philosophical and mathematical thinking,
taking empirical findings seriously, dominates rather than pragmatic model building and heavy
numerics.

5.1 H-H principle and the solution of field equations

Consider first how H-H leads to an exact solution of the field equations in Minkowskian regions of
the space-time surface (the solution can be found also in Euclidean regions).

1. The partial differential equations, which are extremely non-linear, reduce by generalized
H-H to algebraic equations in which one has contractions of holomorphic tensors of different
type vanishing identically if one has roots of f = (f1, f2) = (0,0). f1 and f2 and generalized
analytic functions of generalized complex coordinates of H.

This means a huge simplification since the Riemannian geometry reduces to algebraic geom-
etry and partial differential equations reduce to local algebraic equations.

2. There are two kinds of induced gauge fields: induced metric and induced gauge potentials,
Kahler gauge potential for the Kahler action. The variation with respect to induced metric
gives a contraction of two holomorphic 2-tensors to the field equations. The variation
with respect to gauge potential gives contraction of two holomorphic vector fields. The
contractions are between tensors/vectors of different types and vanish identically.

(a) Consider the metric first. The contraction is between the energy momentum tensor of
type (1,-1)+(-1,1) and the second fundamental form of type (1,1)+(-1,-1). Here 1
refers to a complex coordinate and -1 to its conjugate as tensor index. These contractions
vanish identically.

The vanishing of the trace of the second fundamental form occurs independently of
the action and gives minimal surface except at singularities.

(b) Consider next the induced gauge potentials. In this case one has contraction of vector
fields of different type (of type (1)and (-1) and also now the outcome is vanishing.
In the case of more general action, such as volume + Kahler action, one also has a
contraction of light-like Kahler current with a light-like vector field which vanishes too.
The light-like K&hler current is non-vanishing for what I call "massless extremals”. This
miracle reflects the enormous power of generalized conformal invariance.

3. For more general actions these results are probably true too but there I have no formal proof.
If higher derivatives are involved one obtains higher derivatives of the second fundamental
form which are of type (1,1,...,1) contracted with tensors which have mixed indices.

Actions containing higher derivatives might be excluded by the requirement that only delta
function singularities for the trace of the second fundamental form defining the analog of the
Higgs field are possible.

4. The result has analog already in ordinary electrodynamics in 2-D systems. The real and
imaginary parts of an analytic function satisfy the field equations except at poles and cuts
define the point charges and line charges. Also in string models the same occurs.

Concerning explicit examples, I used 8 years after my thesis to study exact solutions of field
equations of TGD [?, ?]. The solutions that I found were essentially action independendent and
had interpretation as minimal surfaces.

5.2 Singularities as analogs of poles of analytic functions

Consider now the singularities.

1. The singularities 3-surfaces at which the generalized analyticity fails for (f1, f2): they are
analogs of poles and zeros for analytic functions. At 3-D singularities the derivatives of
H coordinates are discontinuous and the trace of the second fundamental form has a delta
function singularity. This gives rise to edge.
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Singularities are analogous to poles of analytic functions and correspond to vertices and
also to loci of non-determinism serving as seats of conscious memories.

2. At singularities the entire action contributes to the field equations which express conservation
laws of classical isometry charges. Note that the trace of the second fundamental form defines
a generalized acceleration and behaves like a generalization of the Higgs field with respect to
symmetries.

Outside singularities the analog of massless geodesic motion with a vanishing acceleration
occurs and the induced fields are formally massless. At singularities there is an infinite
acceleration so that particles perform 8-D Brownian motion.

3. Singularities as edges correspond to defects of the standard smooth structure as edges of
space-time surface analogous to the frames of a soap film. The dependence of the loci of
singularities on the classical action is expected from the condition that the field equations
stating conservation laws are true for the entire action.

It is possible that exotic smooth structure is at least partially characterized by the classical
action having interpretation as effective action. For a mere volume action singularities
might not be possible: if this is true it would correspond to the analog of massless free theory
without fermion pair creation. In this case, the trace of the second fundamental form should
vanish although its components should have delta function divergences.

This makes it possible to interpret fermionic Feynman diagrams geometrically as Brownian
motion of 3-D particles in H [L24] [L26] [L23]. In particular, fermion pair creation (and also
boson emission) corresponds to 3-surface and fermion lines turning backwards in time.

4. The physical interpretation generalizes the interpretation in classical field theories, where
charges are point-like. In massless field theories, charges as singularities serve as sources
of fields. The trace of the second fundamental form vanishes almost everywhere (minimal
surface property) stating that the analog of the charge density, serving as a source
of massless field defined for H coordinates, vanishes except at the singularities. The
generalized Higgs field defines the source concentrated to 3-D singularities.

5. Classical non-determinism is an essential assumption. Already 2-D minimal surfaces allow
non-determinism and soap films spanned by a given frame provide a basic example. The
geomeric conditions under which non-determinism is expected, are known and can be gen-
eralized to 4-D context. Google LLM gives detailed information about the non-determinism
in 2-D case and I have discussed the generalization to 4-D case in [LI19] [K4].
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