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Abstract

Recently a considerable progress has occurred in the understanding of number theoretic
aspects of quantum TGD.

1. There are reasons to think that TGD could be formulated purely number theoretically

without introduction of any action principle. This would conform with the M® — H
duality and the generalization of the geometric Langlands correspondence to dimension
D =4.
Number theoretic vision however gives extremely powerful constraints on the vacuum
functional suggesting even an explicit formula for it. The condition that this expression
corresponds to the exponent of Kéhler function expressible as Kahler action fixes the
coupling constant evolution for the action.

2. Extensions of rationals, the corresponding Galois groups and ramified primes assignable
to polynomials and identifiable as p-adic primes assigned to elementary particles are
central notions of quantum TGD. In the recent formulation based on holography =
holomorphy principle, it is not quite clear how to assign these notions to the space-time
surfaces. The notion of Galois group has a 4-D generalization but can one obtain the
ordinary Galois groups and ramified primes? Two ways to achieve this are discussed in
this article.

One could introduce a hierarchy of 4-polynomials (f1, f2, fs, f4) instead oly (f1, f2) and
the common roots all 4 polynomials as a set of discrete points would give the desired
basic notions assignable to string world sheets.

One can also consider the maps (f1, f2) = Go(f1, f2) = (91(f1, f2), 92(f1, f2)) and assign
these notions to the surfaces (g1 (f1, f2), g2(f1, f2)) = (0,0).

3. Number theoretical universality is possible if the coefficients of the analytic functions
(f1, f2) of 3 complex coordinates and one hypercomplex coordinate of H = M* x CP;
are in an algebraic extension of rationals. This implies that the solutions of field equations
make sense also in p-adic number fields and their extensions induced by extensions of
rationals.

In this article the details of the adelicization boiling to p-adicization for various p-adic
number fields, in particular those assignable to ramified primes, are discussed. p-Adic frac-
tals and holograms emerge very naturally and the iterations of (fi,f2) — G o (f1,f2) =
(g1(f1, f2), 92(f1, f2) define hierarchical fractal structures analogs to Mandelbrot and Julia
fractals and p-adically mean exponential explosion of the complexity and information con-
tent of cognition. The possible relationship to biological and cognitive evolution is highly
interesting.

Both p-adicization and hyperfinite finite factors of type II; (HFFs) [K5l [K1], which both
allow a description of finite measurement resolution. The relationship between these two
building bricks of TGD is discussed.
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1

Introduction

Recently a considerable progress has occurred in the understanding of number theoretic aspects of
quantum TGD [L&| [LI0]. These steps of progress are buried in the separate articles and chapters
to that it is appropriate to collect them to a single article.

1. There are reasons to think that TGD could be formulated using only number theoretic con-

cepts without the introduction of any action principle. The reason is that the holomorphy=
holography principle implies that field equations are satisfied for any general coordinate in-
variant action constructible in terms of the induced geometry. This would conform with
the M® — H duality and the generalization of the geometric Langlands correspondence to
dimension D = 4.

Number theoretic vision however gives extremely powerful constraints on the vacuum func-
tional suggesting even an explicit formula for it in terms of a discriminant assignable to a
polynomial. The condition that this expression corresponds to the exponent of Kahler func-
tion expressible as Kahler action fixes the coupling constant evolution for the action defining
the space-time surface. At those singularities, in which the space-time surface is branched,
manifold property requires selection of a single branch and boundary conditions expressing
the conservation laws must be satisfied. This poses constraints on the action and the
coupling parameters appearing in the action. Also the modified Dirac action determined by
supersymmetry must satisfy these constraints.

. Extensions of rationals, the corresponding Galois groups and ramified primes assignable

to the polynomials defining the extensions and identifiable as p-adic primes assigned to
elementary particles are central notions of quantum TGD. The recent formulation is based
on holography = holomorphy principle giving space-time surfaces as 4-D roots for a pair
(f1, f2) of analytic functions of 3 complex coordinates and 1 hypercomplex coordinate of H
with Taylor coefficients in an extension of rationals. In this approach it is however not quite
clear how to assign these notions to the space-time surfaces. The notion of Galois group has
a generalization to 4-D generalization but can one obtain the ordinary Galois groups and
ramified primes? Two ways to achieve this are discussed in this article.

One could introduce a hierarchy of 4-polynomials (f1, fo, f3, f4) instead oly (f1, f2) giving
rise to 4-D, 2-D and 0-D geometric objects. The common roots all 4 polynomials as a set of
discrete points would give the desired basic notions assignable to string world sheets.
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One can also consider the maps (f1, f2) = G o (f1, f2) = (91(f1, f2), 92(f1, f2)) and assign
these notions to the surfaces (g1 (f1, f2), g2(f1, f2)) = (0,0).

3. Number theoretical universality is possible if the coefficients of the analytic functions (f1, f2)
of 3 complex coordinates and one hypercomplex coordinate of H = M* x CP, are in an
algebraic extension of rationals. This implies that the solutions of field equations make sense
also in the extensions of p-adic number fields induced by extensions of rationals.

In this article the details of the adelicization boiling to p-adicization for various p-adic number
fields, in particular those assignable to ramified primes, are discussed. p-Adic fractals and holo-
grams emerge very naturally and the iterations of (f1, f2) = G o (f1, f2) = (91(f1, f2), 92(f1, f2))
define hierarchical fractal structures analogs to Mandelbrot and Julia fractals and p-adically mean
exponential explosion of the complexity and information content of cognition. The possible rela-
tionship to biological and cognitive evolution is highly interesting.

Both p-adicization and hyperfinite finite factors of type II; (HFFs) [K5| [K1], which both allow
a description of finite measurement resolution. The relationship between these two building bricks
of TGD is discussed.

2 Does the universality of the holomorphy-holography prin-
ciple make the notion of action un-necessary in the TGD
framework?

It is gradually becoming clear that in the TGD framework the holography-holomorphy principle
could make the notion of action defining the space-time surfaces un-necessary at the fundamental
level. Only the Dirac action for the second quantized free spinors of H and the induced Dirac
action would be needed.

The geometrization of physics would reduce to its algebraic geometrization and number the-
oretical universality would allow to describe correlates of cognition. The four-dimensionality of
space-time surfaces would be essential in making the theory non-trivial by allowing to identify ver-
tices for fermion pair creation in terms of defects of the standard smooth structure of the space-time
surface making it an exotic smooth structure.

2.1 Holography=holomorphy as the basic principle

Holography=holomorphy principle allows to solve the field equations for the space-time surfaces
exactly by reducing them to algebraic equations.

1. Two functions f; and fo that depend on the generalized complex coordinates of H=M* x
C P, are needed to solve the field equations. These functions depend on the two complex
coordinates &; and & of C'P, and the complex coordinate w of M* and the hypercomplex
coordinate u for which the coordinate curves are light-like. If the functions are polynomials,
denote them f; = Py and fo = Ps.

Assume that the Taylor coefficients of these functions are rational or in the expansion of
rational numbers, although this is not necessary either.

2. The condition f; = 0 defines a 6-D surface in H and so does fo = 0. This is because the
condition gives two conditions (both real and imaginary parts for f; vanish). These 6-D
surfaces are interpreted as analogs of the twistor bundles corresponding to M* and CPs.
They have fiber which is 2-sphere. This is the physically motivated assumption, which might
require an additional condition stating that £; and & are functions of w as analogs of the
twistor bundles corresponding to M* and CP,. This would define the map mapping the
twistor sphere of the twistor space of M*? to the twistor sphere of the twistor space of C' P,
or vice versa. The map need not be a bijection but would be single valued.

The conditions f; = 0 and fo = 0 give a 4-D spacetime surface as the intersection of these
surfaces, identifiable as the base space of both twistor bundle analogies.
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3. The equations obtained in this way are algebraic equations rather than partial differential
equations. Solving them numerically is child’s play because they are completely local. TGD
is solvable both analytically and numerically. The importance of this property cannot be
overstated.

4. However, a discretization is needed, which can be number-theoretic and defined by the ex-
pansion of rationals. This is however not necessary if one is interested only in geometry and
forgets the aspects related to algebraic geometry and number theory.

5. Once these algebraic equations have been solved at the discretization points, a discretization
for the spacetime surface has been obtained.

The task is to assign a spacetime surface to this discretization as a differentiable surface.
Standard methods can be found here. A method that produces a surface for which the
second partial derivatives exist because they appear in the curvature tensor.

An analogy is the graph of a function for which the (y,z) " pairs are known in a discrete set.
One can connect these points, for example, with straight line segments to obtain a continuous
curve. Polynomial fit gives rise to a smooth curve.

6. It is good to start with, for example, second-degree polynomials P; and P; of the generalized
complex coordinates of H.

2.2 How could the solution be constructed in practice?

For simplicity, let’s assume that f; = P; and fo = P» are polynomials.

1. First, one can solve for instance the equation Ps(u, w, &1, &) = 0 giving for example & (u, w, £1)
as its root. Any complex coordinates w, & or & is a possible choice and these choices can
correspond to different roots as space-time regions and all must be considered to get the full
picture. A completely local ordinary algebraic equation is in question so that the situation
is infinitely simpler than for second order partial differential equations. This miracle is a
consequence of holomorphy.

2. Substitute & (u, w, &) in Py to obtain the algebraic function Py (u, w, &1, &2 (u, w, &1)) = Q1 (u, w, &1).

3. Solve &; from the condition Q; = 0. Now we are dealing with the root of the algebraic func-
tion, but the standard numerical solution is still infinitely easier than for partial differential
equations.

After this, the discretization must be completed to get a space-time surface using some
method that produces a surface for which the second partial derivatives are continuous.

Very interesting special cases are polynomials with order not larger than 4 since for these the
roots can be solved explicitly. I have proposed that P, characterizes the cosmological constant as
a correspondence between the twistor spheres of M* and C P, and is characterized by the winding
number. In standard cosmology A is a constant of Nature but in TGD it is predicted to have a
hierarchy of values. The simplest relationship would be P, = & — w'™, n integer. In this case, one
can solve & (w) and substitute it to P; to obtain the condition

P1(£17£2(w)7w7u) =0.
If P, as a polynomial of £ has order lower than 5, the roots of & can be solved explicitly.
Elliptic curves satisfy the condition
Eg—wtaw+b=0 .

The projections of in w-plane are doubly periodic curves and therefore of special interest. For
Py =& —w? and P = €2 — wé + aw + b, the space-time surface would be a 4-D analog of an
elliptic curve. If a and b depend on u, the 3-surface becomes dynamical.
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2.3 Algebraic universality

What is so remarkable is that the solutions of (f1, f2) = (0,0) to the variation of any action if the
action is general coordinate invariant and depends only on the induced geometry. Metric and the
tensors like curvature tensor associated with it and induced gauge fields and tensors associated
with them.

The reason is that complex analyticity implies that in the equations of motion there appears
only contractions of complex tensors of different types. The second fundamental form (external
curvature) defined by the trace of the tensor with respect to the induced metric defined by the
covariant derivatives of the tangent vectors of the space-time surfaces is as a complex tensor of
type (2,0)4(0,2) and the tensors contracted with it are of type (1,1). The result is identically zero.

The holography-holomorphy principle provides a nonlinear analogy of massless field equations
and the four surfaces can be interpreted as trajectories for particles that are 3-surfaces instead of
point particles, i.e. as generalizations of geodesics. Geodesics are indeed 1-D minimal surfaces.
We obtain a geometric version of the field-particle duality.

2.4 Number-theoretical universality

If the coefficients of the function f; and fy are in an extension of rationals, number-theoretical
universality is obtained. The solution in the real case can also be interpreted as a solution in the
p-adic cases p = 2,3,5,7, ... when we allow the expansion of the p-adic number system as induced
by the rational expansions.

p-adic variants of space-time surfaces are cognitive representations for the real surfaces. The
so-called ramified primes are selected for a special position, which can be associated with the
discriminant as its prime factors. A prime number is now a prime number of an algebraic expan-
sion. This makes possible adelic physics as a geometric correlate of cognition. Cognition itself is
assignable to quantum jumps.

2.5 Is the notion of action needed at all at the fundamental level?

The universality of the space-time surfaces solving the field equations determined by hologra-
phy=holomorphy principle forces us to ask whether the notion of action is completely unnecessary.
Does restricting geometry to algebraic geometry and number theory replace the principle of action
completely? This could be the case.

1. The vacuum functional exp(K), where the K&hler function corresponds to the classical action
, could be identified as the discriminant D associated with a polynomial. It would therefore be
determined entirely by number theory as a product of differences of the roots of a polynomial
P or in fact, of any analytic function. The problem is that the space-time surfaces are
determined as roots of two analytic functions f; and fs, rather than only one.

2. Could one define the 2-surfaces by allowing a third analytic function f3 so that the roots
of (f1, f2, f3) = (0,0,0) would be 2-D surfaces. One can solve 3 complex coordinates of
M* x CP, as functions of the hypercomplex coordinate u whereas its dual remains free. One
would have a string world sheet with a discrete set of roots for the 3 complex coordinates
whose values depend on time. By adding a fourth function f; and substituting the 3 complex
coordinates, fy = 0 would allow as roots values of the coordinate u. Only real roots would
be allowed. A possible interpretation of these points of the space-time surface would be as
loci of singularities at which the minimal surface property, i.e. holomorphy, fails.

Note that for quadratic equations ax? + bz + ¢ = 0, the discriminant is D = b? — 4ac and
more generally the product of the differences of the roots. This formula also holds when f;
and fo are not polynomials.

The assumptions that some power of D corresponds to exp(K) and that K corresponds to
the action imply additional conditions for the coupling constants appearing in the action ,
i.e. the coupling constant evolution.

3. This is not yet quite enough. The basic question concerns the construction of the interaction
vertices for fermions. These vertices reduce to the analogs of gauge theory vertices in which



3. About adelization of TGD 6

induced fermion current assignable to the volume action is contracted with the induced gauge
boson.

The volume action is a unique choice in the sense that in this case the modified gamma
matrices defined as contractions of the canonical momentum currents of the action with the
gamma matrices of H reduce to induced gamma matrices, which anticommute to the induced
metric. For a general action this is not the case.

The vertex for fermion pair creation corresponds to a defect of the standard smooth structure
for the space-time surface and means that it becomes exotic smooth structure. These defects
emerge in dimension D=4 and make it unique. In TGD, bosons are bound states of fermions
and antifermions so that this also gives the vertices for the emission of bosons.

For graviton emission one obtains an analogous vertex involving the second fundamental form
at the partonic orbit. The second fundamental form would have delta function singularity
at the vertex and vanish elsewhere. If field equations are true also in the vertex, the action
must contain an additional term, say Kahler action. Could the singularity of the second
fundamental form correspond to the defect of the standard smooth structure?

4. If this view is correct, number theory and algebraic geometry combined with the geometric
vision would make the notion of action un-necessary at the fundamental level. Geometrization
of physics would be replaced by its algebraic geometrization. Action would however be a
useful tool at the QFT limit of TGD.

Physical intuition suggests that the various general coordinate invariant actions could have
physical relevance. For branched space-time surfaces manifold property forces to select one branch.
The natural condition is that classical conservation laws are satisfied at the lower dimension surface
at which branching would occur. This could select the classical action and the coupling constant
evolution of various coupling parameters associated with it. This would add to the modified gamma
matrices determined as contractions of canonical momentum currents and gamma matrices of H
an additional term so that the anticommutators would not give the induced metric anymore.
Could this replacement of the induced metric with a modified metric containing terms quadratic
in canonical momentum currents be regarded as some kind of radiative correction?

3 About adelization of TGD

p-Adicization of TGD relates real number based physics as physics of sensory perceptions to the
physics of cognition based on number theoretic notions, in particular p-adic number fields which
combine with reals to adeles forming a number theoretical hierarchy.

3.1 How to assign ordinary Galois groups, and ramified primes to space-
time surfaces?

Extensions of rationals, Galois groups, and ramified primes assignable to polynomials of a single
complex variable are central in the number theoretic vision. It is not however completely clear
how they should emerge from the holography= holomorphy vision.

1. If the functions g; = P; are polynomials, which vanish at the origin (0,0) (this is not a
necessary condition), the surfaces (f1, f2) = (0,0) are roots of (P1(f1, f2), P2(f1, f2)) = (0,0).
Besides these roots, there are roots for which (f1, f2) does not vanish. One can solve the
roots fo = h(f1) from g¢2(f1, f2) = 0 and substitute to P;(f1, f2) = 0 to get Pi(f1,h(f1)) =
Py o H(f1)) = 0. The values of H(f1) are roots of P; and are algebraic numbers if the
coefficients of P, are in an extension of rationals. One can assign to the roots discriminant,
ramified primes, and Galois group. This is just what the phenomenological number
theoretical picture requires.

2. In the earliest approach to M® — H duality summarized in [L3, [L4, [L7] polynomials P
of a single complex coordinate played a key role. Although this approach was a failure, it
added to the number theoretic vision Galois groups and ramified primes as prime factors
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of the discriminant D, identified as p-adic primes in p-adic mass calculations. Note that
in the general case the ramified primes are primes of algebraic extensions of rationals: the
simplest case corresponds to Gaussian primes and Gaussian Mersenne primes indeed appear
in the applications of TGD [K3| [K4].

The problem was to assign a Galois group and ramified primes to the space-time surfaces
as 4-D roots of (f1, f2) = (0,0). One can indeed define the counterpart of the Galois group
defined as analytic flows permuting various 4-D roots of (f1, f2) = (0,0) [LS].

Since the roots are 4-D surfaces, it is far from clear whether there exists a definition of
discriminant as an analog for the product of root differences. Also it is unclear what the
notion of ramified prime could mean. However, the ordinary Galois group plays a key role
in the number theoretic vision: can one identify it? An possible identification of the
ordinary Galois group and ramified primes would by the assignment to maps defined by
(f1, f2) = (P1(f1, f2), P2(f1, f2)) would be in terms of (Pi(f1, f2), P2(f1, f2)) = (0,0) giving
the roots Py (f1,h(f1)) =0 as values of h(f1). The roots belong to extension rationals even
when f; are arbitrary analytic functions of H coordinates but correspond geometrically to
4-surfaces.

3. The earlier proposal is that the ordinary Galois group can be assigned to the partonic 2-
surfaces so that points of the partonic 2-surface as roots of a polynomial give rise to the Galois
group and ramified primes. The most elegant way to realize this is to introduce 4 polynomials
(Py, Py, Ps, Py). The roots of (Py, Pa, P3) allow to solve the 3 complex coordinates as a
function of the hypercomplex coordinate u. This surface can be identified as a string world
sheet.

The additional condition Py(u) = 0 gives roots which are algebraic numbers if the coefficients
of P, are in an extension of rationals. Note that only real roots are allowed.

The interpretation of the roots for u would be as singularities of the space-time surface
located at the partonic 2-surfaces where the minimal surface property fails and the trace
of the second fundamental form diverges. These points would correspond to vertices for the
creation of a fermion pair and would represent defects of the standard smooth structure
giving rise to an exotic smooth structure [L1I} L5 L12].

Cognition always requires a discretization.

1. The space of space-time surfaces ("world of classical worlds”, WCW) allows a hierarchy of
discretizations. The Taylor coefficients of the two analytic functions f1, fo defining space-time
belong to some extension F of rationals forming a hierarchy. Therefore a given space-time
surface corresponds to a discrete set of integers/rationals in an extension of rationals so
that also WCW is discretized for given E. For polynomials and rational functions this set
is discrete. This gives a hierarchy. At the level of the space-time surface an analogous
discretization in terms of E takes place.

2. Godel number for a given theorem as almost deterministic time evolution of 3-surface would
be parametrized by the Taylor coefficients in a given extension of rationals. Polynomials
are simplest analytic functions and irreducible polynomials define polynomial primes having
no decomposition to polynomials of a lower degree. Polynomial primes might be seen as
counterparts of axioms. General analytic functions are analogous to transcendentals.

3. One can form analogs of integers as products of polynomials inducing products of space-
time surfaces as their roots. The space-time surfaces are unions for the space-time surfaces
defined by the factors but an important point is that they have a discrete set of intersection
points. Fermionic n-point functions defining scattering amplitudes are defined in terms of
these intersection points and give a quantum physical realization giving information of the
quantum superpositions of space-time surfaces as quantum theorems.
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3.2 p-Adicization, assuming holography = holomorphy principle, pro-
duces p-adic fractals and holograms

The recent chat with Tuomas Sorakivi, a member of our Zoom group, was about the concrete
graphical representations of the spacetime surfaces as animations. The construction of the rep-
resentations is shockingly straightforward, because the partial differential equations reduce to al-
gebraic equations that are easy to solve numerically. For the first time, it seems that GPT has
created a program without obvious bugs. The challenges relate to how to represent time=constant
2-D sections of the 4-surface most conveniently and how to build animations about the evolution
of these sections.

Tuomas asked how to construct p-adic counterparts for space-time surfaces in H = M* x CP;.
I have been thinking about the details of this presentation over the years. Here is my current vision
of the construction.

1. By holography = holomorphy principle, space-time surfaces in H correspond to roots
(f1, f2) = (0,0) for two analytic (holomorphic) functions f; of of 3 complex coordinates and
one hypercomplex coordinate of H. The Taylor coefficients of f; are assumed to be rational
or in an algebraic extension of rationals but even more general situations are possible. A
very important special case are polynomials f; = P;.

2. If we are talking about polynomials or analytic functions with coefficients that are rational or
in algebraic extension to rationals, then a purely formal p-adic equivalent can be associated
with every real surface with the same equations.

3. However, there are some delicate points involved.

(a) The imaginary unit sqrt(-1) is in algebraic expansion if p modulo 4=3. What about
p modulo 4=1. In this case, sqrt(-1) can be multiplied as an ordinary p-adic number
by the square root of an integer that is only in algebraic expansion. So the problem is
solved.

(b) In p-adic topology, large powers of p correspond to small p-adic numbers, unlike in real
topology. This eventually led to the canonical concept of identification. Let’s translate
the powers of p in the expansion of a real number into powers of p (the equivalent of
the decimal expansion).

anpn Ane anpin .

This map of p-adic numbers to real numbers is continuous, but not vice versa. In this
way, real points can be mapped to p-adic points or vice versa. In p-adic mass calcula-
tions, the map of p-adic points to real points is very natural. One can imagine different
variants of the canonical correspondence by introducing, for example, a pinery cutoff
analogous to the truncation of decimal numbers. This kind of cutoff is unavoidable.

(c) As such, this correspondence from reals to p-adics is not realistic at the level of H
because the symmetries of the real H do not correspond to those of p-adic H. Note
that the correspondence at the level of spacetime surfaces is induced from that at the
level of the embedding space.

4. is forces number theoretical discretization, i.e. cognitive representations (p-adic and more
generally adelic physics is assumed to provide the correlates of cognition). The symmetries
of the real world correspond to symmetries restricted to the discretization. The lattice struc-
ture for which continuous translational and rotational symmetries are broken to a discrete
subgroup is a typical example.

Let us consider a given algebraic extension of rationals.

(a) Algebraic rationals can be interpreted as both real and p-adic numbers in an exten-
sion induced by the extension of rationals. The points of the cognitive representations
correspond to the algebraic points allowed by the extension and correspond to the inter-
section points of reality as a real space-time surface and p-adicity as p-adic space-time
surface.
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(b) These algebraic points are a series of powers of p, but there are only a finite number
of powers so that the interpretation as algebraic integers makes sense. One can also
consider rations of algebraic integers if canonical identification is suitably modified.
These discrete points are mapped by the canonical identification or its modification to
the rational case from the real side to the p-adic side to obtain a cognitive representation.
The cognitive representation gives a discrete skeleton that spans the spacetime surface
on both the real and p-adic sides.

Let’s see what this means for the concrete construction of p-adic spacetime surfaces.

1. Take the same equations on the p-adic side as on the real side, that is (f1, f2) = (0,0), and
solve them around each discrete point of the cognitive representation in some p-adic sphere

with radius p~".

The origin of the generalized complex coordinates of H is not taken to be the origin of p-adic
H, but this canonical identification gives a discrete algebraic point on the p-adic side. So,
around each such point, we get a p-adic scaled version of the surface (f1, f2) = (0,0) inside
the p-adic sphere. This only means moving the surface to another location and symmetries
allow it.

2. How to glue the versions associated with different points together? This is not necessary and
not even possible!

The p-adic concept of differentiability and continuity allows fractality and holography. These
are closely related to the p-adic non-determinism meaning that any function depending on
finite number of pinary digits has a vanishing derivative. In differential and partial differential
equations this implies non-determinism, which I have assumed corresponds to the real side
of the complete violation of classical determinism for holography.

The definition of algebraic surfaces does not involve derivatives but also for algebraic surfaces
the roots of (f1,f2) = (0,0) can develop branching singularities at which several roots as
space-time regions meet and one must choose one representative [L9].

(a) Assume that the initial surface is defined inside the p-adic sphere, whose radius as
the p-adic norm for the points is p~", n integer. One can even assume that a p-adic

counterpart has been constructed only for the spherical shell with radius p=".

The essential thing here is that the interior points of a p-adic sphere cannot be distin-
guished from the points on its surface. The surface of a p-adic sphere is therefore more
like a shell. How do you proceed from the shell to the ”interiors” of a p-adic sphere?

(b) The basic property of two p-adic spheres is that they are either point strangers or one
of the two is inside the other. A p-adic sphere with radius p~™ is divided into point
strangers p-adic spheres with radius p~"~! and in each such sphere one can construct a
p-adic 4-surface corresponding to the equations (f1, f2) = (0,0). This can be continued
as far as desired, always to some value n=N. It corresponds to the shortest scale on the
real side and defines the measurement resolution/cognitive resolution physically.

(¢) This gives a fractal for which the same (f1, f2) = (0,0) structure repeats at different
scales. We can also go the other way, i.e. to longer scales in the real sense.

(d) Also a hologram emerges. All the way down to the smallest scale, the same structure
repeats and an arbitrarily small sphere represents the entire structure. This strongly
brings to mind biology and genes, which represent the entire organism. Could this
correspondence at the p-adic level be similar to the one above or a suitable generalization
of it?

3. Many kinds of generalizations can be obtained from this basic fractal. Endless repetition of
the same structure is not very interesting. p-Adic surfaces do not have to be represented by
the same pair of functions at different p-adic scales.

Of particular interest are the 4-D counterparts to fractals, to which the names Feigenbaum,
Mandelbrot and Julia are attached. They can be constructed by iteration
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(f1, f2) = G(f1, f2) = (91(f1, f2), g2(f1, f2)) = G(G(f1, f2)) — -

—-n

so that at each step the scale increases by a factor p. At the smallest scale p~™ one has
(f1, f2) = (0,0). At the next, longer scale p~V ! one has G(fi, f2) = (0,0), etc.... One
can assign to this kind of hierarchy a hierarchy of extensions of rationals and associated
Galois groups whose dimension increases exponentially meaning that algebraic complexity,
serving as a measure for the level of conscious intelligence and scale of quantum coherence
also increases in the same way.

The iteration proceeds with the increasing scale and the number-theoretic complexity mea-
sured the dimension of the algebraic extension increases exponentially. Cognition becomes
more and more complex. Could this serve as a possible model for biological and cognitive
evolution as the length scale increases?

The fundamental question is whether many-sheeted spacetime allows for a corresponding
hierarchy at the real side? Could the violation of classical determinism interpreted as p-adic
non-determinism for holography allow this?

3.3 How could p-adicization and hyper-finite factors relate?

Factors of type I are von Neumann algebras acting in the ordinary Hilbert space allowing a
discrete enumerable basis. Also hyperfinite factors of type II; (HFFs in the sequel) play a central
role in quantum TGD [K5, [K1]. HFFs replace the problematic factors of type IIT encountered
in algebraic quantum field theories. Note that von Neumann himself regarded factors of type III
pathological.

3.3.1 HFFs and p-adic physics as key notions of TGD

HFF's have rather unintuitive properties, which I have summarized in [K5 [K1].

1. The Hilbert spaces associated with HFFs do not have a discrete basis and one could say
that the dimension of Hilbert spaces associated with HFFs corresponds to the cardinality
of reals. However, the dimension of the Hilbert space identified as a trace Tr(Id) of the
unit operator is finite and can be taken equal to 1.

2. HFFs have subfactors and the inclusion of sub-HFFs as analogs of tensor factors give rise to
subfactors with dimension smaller than 1 defining a fractal dimension. For Jones inclusions
these dimensions are known and form a discrete set algebraic numbers. In the TGD frame-
work, the included tensor factor allows an interpretation in terms of a finite measurement
resolution. The inclusions give rise to quantum groups and their representations as analogs
of coset spaces.

p-Adic numbers represent a second key notion of TGD.

1. p-Adic number fields emerged in p-adic mass calculations [K2| [K3|[K4] [L6]. Their properties
led to a proposal that they serve as correlates of cognition. All p-adic number fields are
possible and can be combined to form adele and the outcome is what could be called adelic
physics [L1), L2].

2. Also the extensions of p-adic number fields induced by the extensions of rationals are involved
and define a hierarchy of extensions of adeles. The ramified primes for a given polynomial
define preferred p-adic primes. For a given space-time region the extension is assignable
to the coefficients for a pair of polynomials or even Taylor coefficients for two analytic
functions defining the space-time surface as their common root.

3. The inclusion hierarchies for the extensions of rationals accompanied by inclusion hierarchies
of Galois groups for extensions of extensions of .... are analogous to the inclusion hierarchies
of HFFs.
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3.3.2 Holography = holomorphy vision

Before discussing how p-adic and real physics relate, one must summarize the recent formulation
of TGD based on holography = holography correspondence.

1. The recent formulation of TGD allows to identify space-time surfaces in the imbedding space
H = M*xCP, as common roots for the pair (fi, f2) of generalized holomorphic functions
defined in H. If the Taylor coefficients of f; are in an extension of rationals, the conditions
defining the space-time surfaces make sense also in an extension of p-adic number fields
induced by this extension. As a special case this applies to the case when the functions f;
are polynomials. For the completely Taylor coefficients of generalized holomorphic functions
fi, the p-adicization is not possible. The Taylor series for f; must also converge in the
p-adic sense. For instance, this is the case for exp(x) only if the p-adic norm of z is not
smaller than 1.

2. The notion of Galois group can be generalized when the roots are not anymore points but
4-D surfaces [L8]. However, the notion of ramified prime becomes problematic.

The notion of ramified primes makes sense if one allows 4 polynomials (P, P, P, Py) instead
of two. The roots of 3 polynomials (Py, P2, P3) give rise to 2-surfaces as string world sheets
and the simultaneous roots of (P, Py, P3, Py) can be regarded as roots of the fourth
polynomial and are identified as physical singularities identifiable as vertices [L11].

Also the maps defined by analytic functions g in the space of function pairs (f1, f2) generate

new space-time surfaces. One can assign Galois group and ramified primes to h if it is
a polynomial P in an extension of rationals. The composition of polynomials P; defines
inclusion hierarchies with increasing algebraic complexity and as a special case one obtains
iterations, an approach to chaos, and 4-D analogs of Mandelbrot fractals.

3.3.3 Canonical identification and cognitive representations

Consider now the relationship between real and p-adic physics.

1. The connection between real and p-adic physics is defined by common points of reals and
p-adic numbers defining a discretization at the space-time level and therefore a finite mea-
surement resolution. This correspondence generalizes to the level of the space-time surfaces
and defines a highly unique discretization depending only on the pinary cutoff for the alge-
braic integers involved. The discretization, I call it cognitive representation, is not completely
unique since the choice of the generalized complex coordinates for H is not completely unique
although the symmetries of H make it highly unique.

2. This picture leads to a vision in which reals and various p-adic number fields and their
extensions induced by rationals form a gigantic book in which pages meet at the back of the
book at the common points belonging to rationals and their extensions.

What it means to be a point ”common” for reals and p-adics, is not quite clear. These
common numbers belong to an algebraic extension of rationals inducing that of p-adic numbers.
Since a discretization is in question, one can require that these common numbers have a finite
pinary expansion in powers of p. For points with coordinates in an algebraic extension of
rationals and having p-adic norm equal to 1, a direct identification is possible. In the general
case, one can consider two options for the correspondence between p-adic discretization and its
real counterpart.

1. The real number and the number in the extension have the same finite pinary expansions.
This correspondence is however highly irregular and not continuous at the limit when an
infinite number of powers of p are allowed.
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2. The real number and its p-adic counterpart are related by canonical identification I. The
coeflicients of the units of the algebraic extension are finite real integers and mapped to
p-adic numbers by zr = I(zp) = >  z,p~ " — 1z, = Y. x,p". The inverse of I has the same
form. This option is favored by the continuity of I as a map from p-adics to reals at the
limit of an infinite number of pinary digits.

Canonical identification has several variants. In particular, rationals m/n such that m and
n have no common divisors and have finite pinary expansions can be mapped their p-adic
counterparts and vice versa by using the map m/n — I(m)/I(n). This map generalizes to
algebraic extensions of rationals.

The detailed properties of the canonical identification deserve a summary.

1. For finite integers I 1is a bijection. At the limit when an infinite number of pinary digits
is allowed, [ is a surjection from p-adics to reals but not a bijection. The reason is that
the pinary expansion of a real number is not unique. In analogy with 1=.999...for decimal
numbers, the pinary expansion [(p — 1)/p] > ,5op " 1is equal to the real unit 1. The
inverse images of these numbers under canonical identification correspond to z, = 1 and
yp =@ —1)P> k>0 p*. yp has p-adic norm 1/p and an infinite pinary expansion.

More generally, I maps real numbers =) _n T,p~ " + o ap~

andy =3 nTap "+
(an —Dp M +p NV 1p—1)Y,50p " to the same real number so that at the limit of
infinite number of pinary digits, the inverse of I is two value for finite real integers if one
allows the two representations.  For rationals formed from finite integers there are 4 inverse

images for I(m/n) = I(m)/I(n).

2. One can consider 3 kinds of p-adic numbers. p-Adic integers correspond to finite ordinary
integers with a finite pinary expansion. p-Adic rationals are ratios of finite integers
and have a periodic pinary expansion. p-Adic transcendentals correspond to reals with non-
periodic pinary expansion. For real transcendentals with infinite non-periodic pinary
expansion the p-adic valued inverse image is unique since xyp does not have a largest
pinary digit.

3. Negative reals are problematic from the point of view of canonical identification. The reason
is that p-adic numbers are not well-ordered so that the notion of negative p-adic number is
not well-defined unless one restricts the consideration to finite p-adic integers and the their
negatives as —n = (p — 1)(1 —p)n = (p — 1)(1 + p + p*> + ...)n. As far as discretizations
are considered this restriction is very natural. The images of n and —n under I would
correspond to the same real integer but being represented differently. This does not make
sense.

Should one modify I so that the p-adic —n is mapped to real —n? This would work
also for the rationals. The p-adic counterpart of a real with infinite and non-periodic
pinary expansion and its negative would correspond to the same p-adic number. An analog
of compactification of the real number to a p-adic circle would take place.

3.3.4 Analogies between p-adicization and HFF's

Both hyperfinite factors and p-adicization allow a description of a finite measurement resolution.
Therefore a natural question is whether the strange properties of hyperfinite factors, in particular
the fact that the dimension D of Hilbert space equals to the cardinality of reals on one hand and
to a finite number (D = 1 in the convention used) on the other hand, could have a counterpart
in the p-adic sector. What is the cardinality of p-adic numbers defined in terms of canonical
identification? Could it be finite?

1. Consider real finite real integers x = Zg:_ol Tpp"™ but with z = 0 excluded. Each pinary

digit has p values and the total cardinality of these numbers of this kind is p® — 1. These
real integers correspond to two kinds of p-adic integers in canonical identification so that the
total number is 2p" —2. One must also include zero so that the total cardinality is
M =2pN — 1. Identify M as a p-adic integer. Its padic norm equals 1.
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2. As a p-adic number, M corresponds to M, =2pN + (p—1)(1+p+p?+..) =pN +pV+1 +
(p—1D)(1+p+...—p")). One can write M, = pN +pV 2+ (p—1)(1+p+...—p" —pN+l).
One can continue in this way and obtains at the limit N — oo pN7>®(1 +p+..)+ (p —
1)(1+p+...+pN¥~1). The first term has a vanishing p-adic norm. The canonical image of
this number equals p at the limit N — oo. The cardinality of p-adic numbers in this sense
would be that of the corresponding finite field! Does this have some deep meaning or is it
only number theoretic mysticism?
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