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Abstract

An updated view about M8−H duality is discussed. M8−H duality allows to deduce M4×CP2

via number theoretical compactification. One important correction is that octonionic spinor
structure makes sense only for M8 whereas for M4 ×CP2 complefixied quaternions characterized
the spinor structure.
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Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors and
twistor spaces are highly relevant for quantum TGD. In the following some general observations
distilled during years are summarized.

There is a beautiful pattern present suggesting that H = M4 × CP2 is completely unique on
number theoretical grounds. Consider only the following facts. M4 and CP2 are the unique 4-D
spaces allowing twistor space with Kähler structure. Octonionic projective space OP2 appears
as octonionic twistor space (there are no higher-dimensional octonionic projective spaces). Oc-
totwistors generalise the twistorial construction from M4 to M8 and octonionic gamma matrices
make sense also for H with quaternionicity condition reducing OP2 to to 12-D G2/U(1) × U(1)
having same dimension as the the twistor space CP3 × SU(3)/U(1) × U(1) of H assignable to
complexified quaternionic representation of gamma matrices.

A further fascinating structure related to octo-twistors is the non-associated analog of Lie group
defined by automorphisms by octonionic imaginary units: this group is topologically six-sphere.
Also the analogy of quaternionicity of preferred extremals in TGD with the Majorana condition
central in super string models is very thought provoking. All this suggests that associativity
indeed could define basic dynamical principle of TGD.

Number theoretical vision about quantum TGD involves both p-adic number fields and clas-
sical number fields and the challenge is to unify these approaches. The challenge is non-trivial
since the p-adic variants of quaternions and octonions are not number fields without additional
conditions. The key idea is that TGD reduces to the representations of Galois group of algebraic
numbers realized in the spaces of octonionic and quaternionic adeles generalizing the ordinary
adeles as Cartesian products of all number fields: this picture relates closely to Langlands pro-
gram. Associativity would force sub-algebras of the octonionic adeles defining 4-D surfaces in the
space of octonionic adeles so that 4-D space-time would emerge naturally. M8−H correspondence
in turn would map the space-time surface in M8 to M4 × CP2.

1 Introduction

Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors and twistor
spaces are highly relevant for quantum TGD. In the following some general observations distilled
during years are summarized. This summary involves several corrections to the picture which has
been developing for a decade or so.

A brief updated view about M8−H duality and twistorialization is in order. There is a beautiful
pattern present suggesting that M8 −H duality makes sense and that H = M4 × CP2 is completely
unique on number theoretical grounds.

1. M8 −H duality allows to deduce M4 × CP2 via number theoretical compactification. For the
option with minimal number of conjectures the associativity/co-associativity of the space-time
surfaces in M8 guarantees that the space-time surfaces in M8 define space-time surfaces in H.
The tangent/normal spaces of quaternionic/hyper-quaternionic surfaces in M8 contain also an
integrable distribution of hyper-complex tangent planes M2(x).

An important correction is that associativity/co-associativity does not make sense at the level of
H since the spinor structure of H is already complex quaternionic and reducible to the ordinary
one by using matrix representations for quaternions. The associativity condition should however
have some counterpart at level of H. One could require that the induced gamma matrices at each
point could span a real-quaternionic sub-space of complexified quaternions for quaternionicity
and a purely imaginery quaternionic sub-space for co-quaternionicity. One might hope that it
is consistent with - or even better, implies - preferred extremal property. I have not however
found a viable definition of quaternionic ”reality”. On the other hand, it is possible assigne the
tangent space M8 of H with octonion structure and define associativity as in case of M8.

The delicacies coming from the signature of imbedding space metric are discussed and the
conjecture that real-octonion-analyticity could define quaternionic surfaces in M8 is considered
as also the variant of this hypothesis for H.

2. M4 and CP2 are the unique 4-D spaces allowing twistor space with Kähler structure. M8 allows
twistor space for octonionic spinor structure obtained by direct generalization of the standard
construction for M4. M4 × CP2 spinors can be regarded as tensor products of quaternionic
spinors associated with M4 and CP2: this trivial observation forces to challenge the earlier
rough vision, which however seems to stand up the challenge.
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3. Octotwistors generalise the twistorial construction from M4 to M8 and octonionic gamma matri-
ces make sense also for H with quaternionicity condition reducing 12-D T (M8) = G2/U(1)×U(1)
to the 12-D twistor space T (H) = CP3 × SU3/U(1) × U(1). The interpretation of the twistor
space in the case of M8 is as the space of choices of quantization axes for the 2-D Cartan algebra
of G2 acting as octonionic automorphisms. For CP2 one has space for the chocies of quantization
axes for the 2-D SU(3) Cartan algebra.

4. It is also possible that the dualities extend to a sequence M8 → H → H... by mapping the
associative/co-associative tangent space to CP2 and M4 point to M4 point at each step. One
has good reasons to expect that this iteration generates fractal as the limiting space-time surface.

5. A fascinating structure related to octo-twistors is the non-associated analog of Lie group defined
by automorphisms by octonionic imaginary units: this group is topologically 7-sphere. Second
analogous structure is the 7-D Lie algebra like structure defined by octonionic analogs of sigma
matrices.

The analogy of quaternionicity of M8 pre-images of preferred extremals and quaternionicity of the
tangent space of space-time surfaces in H with the Majorana condition central in super string models
is very thought provoking. All this suggests that associativity at the level of M8 indeed could define
basic dynamical principle of TGD.

In the following some general view about these topics distilled during years are summarized.
The first section deals with M8 − H duality and second second with the various manners to define
twistors. Third section is devoted to the recent view about number theoretic vision: the key idea is
that TGD reduces to the representations of Galois group of algebraic numbers realized in the spaces
of octonionic and quaternionic adeles generalizes the ordinary notion of adele: this picture relates
closely to Langlands probram. Associativity would force sub-algebras of octonionic adeles defining
4-D surfaces in the space of octonionic adeles so that 4-D space-time would emerge naturally. M8−H
correspondence in turn would map the space-time surface in M8 to M4×CP2. This summary involves
several corrections to the picture which has been developing for a decade or so.

2 Number theoretic compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to associativity or co-associativity. Originally M8 − H duality was introduced as a
number theoretic explanation for H = M4×CP2. Much later it turned out that the completely excep-
tional twistorial properties of M4 and CP2 are enough to justify X4 ⊂ H hypothesis. Skeptic could
therefore criticize the introduction of M8 as an un-necessary mathematical complication producing
only unproven conjectures and bundle of new statements to be formulated precisely.

One can question the feasibility of M8 −H duality if the dynamics is purely number theoretic at
the level of M8 and determined by Kähler action at the level of H. Situation becomes more democratic
if Kähler action defines the dynamics in both M8 and H: this might mean that associativity could
imply field equations for preferred extremals or vice versa or there might be equivalence between two.
This means the introduction Kähler structure at the level of M8, and motivates also the coupling of
Kähler gauge potential to M8 spinors characterized by Kähler charge or em charge. One could call
this form of duality strong form of M8 −H duality.

The strong form M8 − H duality boils down to the assumption that space-time surfaces can be
regarded either as surfaces of H or as surfaces of M8 composed of associative and co-associative
regions identifiable as regions of space-time possessing Minkowskian resp. Euclidian signature of the
induced metric. They have the same induced metric and Kähler form and WCW associated with
H should be essentially the same as that associated with M8. Associativity corresponds to hyper-
quaterniocity at the level of tangent space and co-associativity to co-hyper-quaternionicity - that
is associativity/hyper-quaternionicity of the normal space. Both are needed to cope with known
extremals. Since in Minkowskian context precise language would force to introduce clumsy terms like
hyper-quaternionicity and co-hyper-quaternionicity, it is better to speak just about associativity or
co-associativity.

For the octonionic spinor fields the octonionic analogs of electroweak couplings reduce to mere
Kḧler or electromagnetic coupling and the solutions reduce to those for spinor d’Alembertian in 4-D
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harmonic potential breaking SO(4) symmetry. Due to the enhanced symmetry of harmonic oscillator,
one expects that partial waves are classified by SU(4) and by reduction to SU(3)×U(1) by em charge
and color quantum numbers just as for CP2 - at least formally.

Harmonic oscillator potential defined by self-dual em field splits M8 to M4 × E4 and implies
Gaussian localization of the spinor modes near origin so that E4 effectively compactifies. The The
resulting physics brings strongly in mind low energy physics, where only electromagnetic interaction
is visible directly, and one cannot avoid associations with low energy hadron physics. These are some
of the reasons for considering M8−H duality as something more than a mere mathematical curiosity.

Remark: The Minkowskian signatures of M8 and M4 produce technical nuisance. One could
overcome them by Wick rotation, which is however somewhat questionable trick.

1. The proper formulation is in terms of complexified octonions and quaternions involving the intro-
duction of commuting imaginary unit j. If complexified quaternions are used forH, Minkowskian
signature requires the introduction of two commuting imaginary units j and i meaning double
complexification.

2. Hyper-quaternions/octonions define as subspace of complexified quaternions/octonions spanned
by real unit and jIk, where Ik are quaternionic units. These spaces are obviously not closed
under multiplication. One can however however define the notion of associativity for the sub-
space of M8 by requiring that the products and sums of the tangent space vectors generate
complexified quaternions.

3. Ordinary quaternions Q are expressible as q = q0 + qkIk. Hyper-quaternions are expressible
as q = q0 + jqkIk and form a subspace of complexified quaternions Qc = Q ⊕ jQ. Similar
formula applies to octonions and their hyper counterparts which can be regarded as subspaces of
complexified octonions O⊕ jO. Tangent space vectors of H correspond hyper-quaternions qH =
q0 + jqkIk + jiq2 defining a subspace of doubly complexified quaternions: note the appearance
of two imaginary units.

The recent definitions of associativity and M8 duality has evolved slowly from in-accurate charac-
terizations and there are still open questions.

1. Kähler form for M8 implies unique decomposition M8 = M4 × E4 needed to define M8 − H
duality uniquely. This forces to introduce also Kähler action, induced metric and induced Kähler
form. Could strong form of duality meant that the space-time surfaces in M8 and H have same
induced metric and induced Kähler form? Could the WCWs associated with M8 and H be
identical with this assumption so that duality would provide different interpretations for the
same physics?

2. One can formulate associativity in M8 by introducing octonionic structure in tangent spaces or
in terms of the octonionic representation for the induced gamma matrices. Does the notion have
counterpart at the level of H as one might expect if Kähler action is involved in both cases?
The analog of this formulation in H might be as quaternionic ”reality” since tangent space of
H corresponds to complexified quaternions: I have however found no acceptable definition for
this notion.

The earlier formulation is in terms of octonionic flat space gamma matrices replacing the ordinary
gamma matrices so that the formulation reduces to that in M8 tangent space. This formulation
is enough to define what associativity means although one can protest. Somehow H is already
complex quaternionic and thus associative. Perhaps this just what is needed since dynamics has
two levels: imbedding space level and space-time level. One must have imbedding space spinor
harmonics assignable to the ground states of super-conformal representations and quaternionicity
and octonionicity of H tangent space would make sense at the level of space-time surfaces.

3. Whether the associativity using induced gamma matrices works is not clear for massless ex-
tremals (MEs) and vacuum extremals with the dimension of CP2 projection not larger than
2.

4. What makes this notion of associativity so fascinating is that it would allow to iterate duality as
a sequence M8 → H → H... by mapping the space-time surface to M4×CP2 by the same recipe
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as in case of M8. This brings in mind the functional composition of octo-analytic functions
suggested to produced associative or co-associative surfaces. The associative (co-associative)
surfaces in M8 would correspond to loci for vanishing of imaginary (real) part of octonion-real-
analytic function.

It might be possible to define associativity in H also in terms of modified gamma matrices defined
by Kähler action (certainly not M8).

1. All known extremals are associative or co-associative in H in this sense. This would also give
direct correlation with the variational principle. For the known preferred extremals this variant
is successful partially because the modified gamma matrices need not span the entire tangent
space. The space spanned by the modified gammas is not necessarily tangent space. For instance
for CP2 type vacuum extremals the modified gamma matrices are CP2 gamma matrices plus an
additional light-like component from M4 gamma matrices.

If the space spanned by modified gammas has dimension D smaller than 3 co-associativity is
automatic. If the dimension of this space is D = 3 it can happen that the triplet of gammas spans
by multiplication entire octonionic algebra. For D = 4 the situation is of course non-trivial.

2. For modified gamma matrices the notion of co-associativity can produce problems since modified
gamma matrices do not in general span the tangent space. What does co-associativity mean
now? Should one replace normal space with orthogonal complement of the space spanned by
modified gamma matrices? Co-associativity option must be considered for D = 4 only. CP2

type vacuum extremals provide a good example. In this case the modified gamma matrices
reduce to sums of ordinary CP2 gamma matrices and ligt-like M4 contribution. The orthogonal
complement for the modified gamma matrices consists of dual light-like gamma matrix and two
gammas orthogonal to it: this space is subspace of M4 and trivially associative.

2.1 Basic idea behind M8 −M4 × CP2 duality

If four-surfaces X4 ⊂ M8 under some conditions define 4-surfaces in M4 × CP2 indirectly, the spon-
taneous compactification of super string models would correspond in TGD to two different manners
to interpret the space-time surface. This correspondence could be called number theoretical compact-
ification or M8 −H duality.

The hard mathematical facts behind the notion of number theoretical compactification are follow-
ing.

1. One must assume that M8 has unique decomposition M8 = M4 × E4. This would be most
naturally due to Kähler structure in E4 defined by a self-dual Kähler form defining parallel
constant electric and magnetic fields in Euclidian sense. Besides Kähler form there is vector
field coupling to sigma matrix representing the analog of strong isospin: the corresponding
octonionic sigma matrix however is imaginary unit times gamma matrix - say ie1 in M4 -
defining a preferred plane M2 in M4. Here it is essential that the gamma matrices of E4 defined
in terms of octonion units commute to gamma matrices in M4. What is involved becomes clear
from the Fano triangle illustrating octonionic multiplication table.

2. The space of hyper-complex structures of the hyper-octonion space - they correspond to the
choices of plane M2 ⊂M8 - is parameterized by 6-sphere S6 = G2/SU(3). The subgroup SU(3)
of the full automorphism group G2 respects the a priori selected complex structure and thus
leaves invariant one octonionic imaginary unit, call it e1. Fixed complex structure therefore
corresponds to a point of S6.

3. Quaternionic sub-algebras ofM8 are parametrized byG2/U(2). The quaternionic sub-algebras of
octonions with fixed complex structure (that is complex sub-space defined by real and preferred
imaginary unit and parametrized by a point of S6) are parameterized by SU(3)/U(2) = CP2

just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation
as the isometry group of CP2, as the automorphism sub-group of octonions, and as color group.
Thus the space of quaternionic structures can be parametrized by the 10-dimensional space
G2/U(2) decomposing as S6 × CP2 locally.
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4. The basic result behind number theoretic compactification and M8−H duality is that associative
sub-spaces M4 ⊂ M8 containing a fixed commutative sub-space M2 ⊂ M8 are parameterized
by CP2. The choices of a fixed hyper-quaternionic basis 1, e1, e2, e3 with a fixed complex sub-
space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice of e2 and e3 amounts to fixing
e2±

√
−1e3, which selects the U(2) = SU(2)×U(1) subgroup of SU(3). U(1) leaves 1 invariant

and induced a phase multiplication of e1 and e2 ± e3. SU(2) induces rotations of the spinor
having e2 and e3 components. Hence all possible completions of 1, e1 by adding e2, e3 doublet
are labeled by SU(3)/U(2) = CP2.

Consider now the formulation of M8 −H duality.

1. The idea of the standard formulation is that associative manifold X4 ⊂M8 has at its each point
associative tangent plane. That is X4 corresponds to an integrable distribution of M2(x) ⊂M8

parametrized 4-D coordinate x that is map x → S6 such that the 4-D tangent plane is hyper-
quaternionic for each x.

2. Since the Kähler structure of M8 implies unique decomposition M8 = M4 × E4, this surface
in turn defines a surface in M4 × CP2 obtained by assigning to the point of 4-surface point
(m, s) ∈ H = M4 × CP2: m ∈ M4 is obtained as projection M8 → M4 (this is modification
to the earlier definition) and s ∈ CP2 parametrizes the quaternionic tangent plane as point of
CP2. Here the local decomposition G2/U(2) = S6 × CP2 is essential for achieving uniqueness.

3. One could also map the associative surface in M8 to surface in 10-dimensional S6×CP2. In this
case the metric of the image surface cannot have Minkowskian signature and one cannot assume
that the induced metrics are identical. It is not known whether S6 allows genuine complex
structure and Kähler structure which is essential for TGD formulation.

4. Does duality imply the analog of associativity for X4 ⊂ H? The tangent space of H can be seen
as a sub-space of doubly complexified quaternions. Could one think that quaternionic sub-space
is replaced with sub-space analogous to that spanned by real parts of complexified quaternions?
The attempts to define this notion do not however look promising. One can however define
associativity and co-associativity for the tangent space M8 of H using octonionization and can
formulate it also terms of induced gamma matrices.

5. The associativity defined in terms of induced gamma matrices in both in M8 and H has the
interesting feature that one can assign to the associative surface in H a new associative surface
in H by assigning to each point of the space-time surface its M4 projection and point of CP2

characterizing its associative tangent space or co-associative normal space. It seems that one
continue this series ad infinitum and generate new solutions of field equations! This brings in
mind iteration which is standard manner to generate fractals as limiting sets. This certainly
makes the heart of mathematician beat.

6. Kähler structure in E4 ⊂ M8 guarantees natural M4 × E4 decomposition. Does associativity
imply preferred extremal property or vice versa, or are the two notions equivalent or only
consistent with each other for preferred extremals?

A couple of comments are in order.

1. This definition differs from the first proposal for years ago stating that each point of X4 contains
a fixed M2 ⊂ M4 rather than M2(x) ⊂ M8 and also from the proposal assuming integrable
distribution of M2(x) ⊂ M4. The older proposals are not consistent with the properties of
massless extremals and string like objects for which the counterpart of M2 depends on space-
time point and is not restricted to M4. The earlier definition M2(x) ⊂ M4 was problematic in
the co-associative case since for the Euclidian signature is is not clear what the counterpart of
M2(x) could be.

2. The new definition is consistent with the existence of Hamilton-Jacobi structure meaning slicing
of space-time surface by string world sheets and partonic 2-surfaces with points of partonic 2-
surfaces labeling the string world sheets [K2]. This structure has been proposed to characterize
preferred extremals in Minkowskian space-time regions at least.
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3. Co-associative Euclidian 4-surfaces, say CP2 type vacuum extremal do not contain integrable
distribution of M2(x). It is normal space which contains M2(x). Does this have some physical
meaning? Or does the surface defined by M2(x) have Euclidian analog?

A possible identification of the analog would be as string world sheet at which W boson field is
pure gauge so that the modes of the modified Dirac operator [K3] restricted to the string world
sheet have well-defined em charge. This condition appears in the construction of solutions of
modified Dirac operator.

For octonionic spinor structure the W coupling is however absent so that the condition does not
make sense in M8. The number theoretic condition would be as commutative or co-commutative
surface for which imaginary units in tangent space transform to real and imaginary unit by a
multiplication with a fixed imaginary unit! One can also formulate co-associativity as a condition
that tangent space becomes associative by a multiplication with a fixed imaginary unit.

There is also another justification for the distribution of Euclidian tangent planes. The idea
about associativity as a fundamental dynamical principle can be strengthened to the statement
that space-time surface allows slicing by hyper-complex or complex 2-surfaces, which are com-
mutative or co-commutative inside space-time surface. The physical interpretation would be as
Minkowskian or Euclidian string world sheets carrying spinor modes. This would give a con-
nection with string model and also with the conjecture about the general structure of preferred
extremals.

4. Minimalist could argue that the minimal definition requires octonionic structure and associativ-
ity only in M8. There is no need to introduce the counterpart of Kähler action in M8 since the
dynamics would be based on associativity or co-associativity alone. The objection is that one
must assumes the decomposition M8 = M4 × E4 without any justification.

The map of space-time surfaces to those of H = M4×CP2 implies that the space-time surfaces
in H are in well-defined sense quaternionic. As a matter of fact, the standard spinor structure
of H can be regarded as quaternionic in the sense that gamma matrices are essentially tensor
products of quaternionic gamma matrices and reduce in matrix representation for quaternions
to ordinary gamma matrices. Therefore the idea that one should introduce octonionic gamma
matrices in H is questionable. If all goes as in dreams, the mere associativity or co-associativity
would code for the preferred extremal property of Kähler action in H. One could at least hope
that associativity/co-associativity in H is consistent with the preferred extremal property.

5. One can also consider a variant of associativity based on modified gamma matrices - but only in
H. This notion does not make sense in M8 since the very existence of quaternionic tangent plane
makes it possible to define M8−H duality map. The associativity for modified gamma matrices
is however consistent with what is known about extremals of Kähler action. The associativity
based on induced gamma matrices would correspond to the use of the space-time volume as
action. Note however that gamma matrices are not necessary in the definition.

2.2 Hyper-octonionic Pauli ”matrices” and the definition of associativity

Octonionic Pauli matrices suggest an interesting possibility to define precisely what associativity
means at the level of M8 using gamma matrices (for background see [K7] ).

1. According to the standard definition space-time surface X4 ⊂ M8 is associative if the tangent
space at each point of X4 in X4 ⊂ M8 picture is associative. The definition can be given also
in terms of octonionic gamma matrices whose definition is completely straightforward.

2. Could/should one define the analog of associativity at the level of H? One can identify the
tangent space of H as M8 and can define octonionic structure in the tangent space and this
allows to define associativity locally. One can replace gamma matrices with their octonionic
variants and formulate associativity in terms of them locally and this should be enough.

Skeptic however remindsM4 allows hyper-quaternionic structure and CP2 quaternionic structure
so that complexified quaternionic structure would look more natural for H. The tangent space
would decompose as M8 = HQ+ ijQ, weher j is commuting imaginary unit and HQ is spanned



2.3 Are Kähler and spinor structures necessary in M8? 8

by real unit and by units iIk, where i second commutating imaginary unit and Ik denotes
quaternionic imaginary units. There is no need to make anything associative.

There is however far from obvious that octonionic spinor structure can be (or need to be!)
defined globally. The lift of the CP2 spinor connection to its octonionic variant has questionable
features: in particular vanishing of the charged part and reduction of neutral part to photon.
Therefore is is unclear whether associativity condition makes sense for X4 ⊂M4 × CP2. What
makes it so fascinating is that it would allow to iterate duality as a sequences M8 → H → H....
This brings in mind the functional composition of octonion real-analytic functions suggested to
produced associative or co-associative surfaces.

I have not been able to settle the situation. What seems the working option is associativity in
both M8 and H and modified gamma matrices defined by appropriate Kähler action and correlation
between associativity and preferred extremal property.

2.3 Are Kähler and spinor structures necessary in M8?

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces obtained
as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler action
with same value of Kähler action defining Kähler function. As found, this leads to the conclusion that
the M8 −H duality is Kähler isometry. Coupling of spinors to Kähler potential is the next step and
this in turn leads to the introduction of spinor structure so that quantum TGD in H should have full
M8 dual.

2.3.1 Are also the 4-surfaces in M8 preferred extremals of Kähler action?

It would be a mathematical miracle if associative and co-associative surfaces in M8 would be in 1-
1 correspondence with preferred extremals of Kähler action. This motivates the question whether
Kähler action make sense also in M8. This does not exclude the possibility that associativity implies
or is equivalent with the preferred extremal property.

One expects a close correspondence between preferred extremals: also now vacuum degeneracy is
obtained, one obtains massless extremals, string like objects, and counterparts of CP2 type vacuum
extremals. All known extremals would be associative or co-associative if modified gamma matrices
define the notion (possible only in the case of H).

The strongest form of duality would be that the space-time surfaces in M8 and H have same
induced metric same induced Kähler form. The basic difference would be that the spinor connection
for surfaces in M8 would be however neutral and have no left handed components and only em
gauge potential. A possible interpretation is that M8 picture defines a theory in the phase in which
electroweak symmetry breaking has happened and only photon belongs to the spectrum.

The question is whether one can define WCW also for M8. Certainly it should be equivalent
with WCW for H: otherwise an inflation of poorly defined notions follows. Certainly the general
formulation of the WCW geometry generalizes from H to M8. Since the matrix elements of symplectic
super-Hamiltonians defining WCW gamma matrices are well defined as matrix elements involve spinor
modes with Gaussian harmonic oscillator behavior, the non-compactness of E4 does not pose any
technical problems.

2.3.2 Spinor connection of M8

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic con-
straint to the spinor structure of M8 is that it reproduces basic facts about electro-weak interactions.
This includes neutral electro-weak couplings to quarks and leptons identified as different H-chiralities
and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units. This is possible but perhaps a more natural
option is the introduction of just single Kähler form as in the case of CP2.
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2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The naive replacement of
sigma matrices appearing in the coupling of electroweak gauge fields takes the left handed parts
of these fields to zero so that only neutral part remains. Further, gauge fields correspond to
curvature of CP2 which vanishes for E4 so that only Kähler form form remains. Kähler form
couples to 3L and q so that the basic asymmetry between leptons and quarks remains. The
resulting field could be seen as analog of photon.

4. The absence of weak parts of classical electro-weak gauge fields would conform with the standard
thinking that classical weak fields are not important in long scales. A further prediction is that
this distinction becomes visible only in situations, where H picture is necessary. This is the case
at high energies, where the description of quarks in terms of SU(3) color is convenient whereas
SO(4) QCD would require large number of E4 partial waves. At low energies large number of
SU(3) color partial waves are needed and the convenient description would be in terms of SO(4)
QCD. Proton spin crisis might relate to this.

2.3.3 Dirac equation for leptons and quarks in M8

Kähler gauge potential would also couple to octonionic spinors and explain the distinction between
quarks and leptons.

1. The complexified octonions representing H spinors decompose to 1 + 1 + 3 + 3 under SU(3)
representing color automorphisms but the intepretation in terms of QCD color does not make
sense. Rather, the triplet and single combine to two weak isospin doublets and quarks and
leptons corresponds to to ”spin” states of octonion valued 2-spinor. The conservation of quark
and lepton numbers follows from the absence of coupling between these states.

2. One could modify the coupling so that coupling is on electric charge by coupling it to electro-
magnetic charge which as a combination of unit matrix and sigma matrix is proportional to
1 + kI1, where I1 is octonionic imaginary unit in M2 ⊂M4. The complexified octonionic units
can be chosen to be eigenstates of Qem so that Laplace equation reduces to ordinary scalar
Laplacian with coupling to self-dual em field.

3. One expects harmonic oscillator like behavior for the modes of the Dirac operator of M8 since
the gauge potential is linear in E4 coordinates. One possibility is Cartesian coordinates is
A(Ax, Ay, Az, At) = k(−y, x, t,−z). Thhe coupling would make E4 effectively a compact space.

4. The square of Dirac operator gives potential term proportional to r2 = x2 + y2 + z2 + t2 so that
the spectrum of 4-D harmonic oscillator operator and SO(4) harmonics localized near origin are
expected. For harmonic oscillator the symmetry enhances to SU(4).

If one replaces Kähler coupling with em charge symmetry breaking of SO(4) to vectorial SO(3)
is expected since the coupling is proportional to 1 + ike1 defining electromagnetic charge. Since
the basis of complexified quaternions can be chosen to be eigenstates of e1 under multiplication,
octonionic spinors are eigenstates of em charge and one obtains two color singles 1±e1 and color
triplet and antitriplet. The color triplets cannot be however interpreted in terms of quark color.

Harmonic oscillator potential is expected to enhance SO(3) to SU(3). This suggests the reduction
of the symmetry to SU(3)× U(1) corresponding to color symmetry and em charge so that one
would have same basic quantum numbers as tof CP2 harmonics. An interesting question is how
the spectrum and mass squared eigenvalues of harmonics differ from those for CP2.
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5. In the square of Dirac equation JklΣkl term distinguishes between different em charges (Σkl
reduces by self duality and by special properties of octonionic sigma matrices to a term propor-
tional to iI1 and complexified octonionic units can be chosen to be its eigenstates with eigen
value ±1. The vacuum mass squared analogous to the vacuum energy of harmonic oscillator is
also present and this contribution are expected to cancel themselves for neutrinos so that they
are massless whereas charged leptons and quarks are massive. It remains to be checked that
quarks and leptons can be classified to triality T = ±1 and t = 0 representations of dynamical
SU(3) respectively.

2.3.4 What about the analog of Kähler Dirac equation

Only the octonionic structure in T (M8) is needed to formulate quaternionicity of space-time surfaces:
the reduction to real-O-analyticity would be extremely nice but not necessary. Most importantly, there
is no need to introduce Kähler action (and Kähler form) in M8. Even the octonionic representation of
gamma matrices is un-necessary. Neither there is any absolute need to define octonionic Dirac equation
and octonionic Kähler Dirac equation nor octonionic analog of its solutions nor the octonionic variants
of imbedding space harmonics.

It would be of course nice if the general formulas for solutions of the Kähler Dirac equation
in H could have counterparts for octonionic spinors satisfying quaternionicity condition. One can
indeed wonder whether the restriction of the modes of induced spinor field to string world sheets
defined by integrable distributions of hyper-complex spaces M2(x) could be interpretated in terms of
commutativity of fermionic physics in M8. M8 −H correspondence could map the octonionic spinor
fields at string world sheets to their quaternionic counterparts in H. The fact that only holomorphy
is involved with the definition of modes could make this map possible.

2.4 How could one solve associativity/co-associativity conditions?

The natural question is whether and how one could solve the associativity/-co-associativity conditions
explicitly. One can imagine two approaches besidesM8 → H → H... iteration generating new solutions
from existing ones.

2.4.1 Could octonion-real analyticity be equivalent with associativity/co-associativity?

Analytic functions provide solutions to 2-D Laplace equations and one might hope that also the field
equations could be solved in terms of octonion-real-analyticity at the level of M8 perhaps also at the
level of H. Signature however causes problems - at least technical. Also the compactness of CP2

causes technical difficulties but they need not be insurmountable.
For E8 the tangent space would be genuinely octonionic and one can define the notion octonion-

real analytic map as a generalization of real-analytic function of complex variables (the coefficients of
Laurent series are real to guarantee associativity of the series). The argument is complexified octonion
in O ⊕ iO forming an algebra but not a field. The norm square is Minkowskian as difference of two
Euclidian octonionic norms: N(o1 + io2) = N(o1)−N(o2) and vanishes at 15-D light cone boundary.
Obviously, differential calculus is possible outside the light-cone boundary. Rational analytic functions
have however poles at the light-cone boundary. One can wonder whether the poles at M4 light-cone
boundary, which is subset of 15-D light-cone boundary could have physical significance and relevant
for the role of causal diamonds in ZEO.

The candidates for associative surfaces defined by Oc-real-analytic functions (I use Oc complex-
ified octonions) have Minkowskian signature of metric and are 4-surfaces at which the projection of
f(o1 + io2) to Im(O1), iIm(O2), and iRe(Q2)⊕ Im(Q1) vanish so that only the projection to hyper-
quaternionic Minkowskian sub-space Re(Q1)⊕ iIm(Q2) with signature (1,-1,-,1-,1) is non-vanishing.
Co-associative surfaces would be surfaces for which the projections to Re(O1), iRe(O2), and to Im(O1)
so that only the projection to iIm(O2) with signature (−1− 1− 1− 1) is non-vanishing.

These sub-manifolds are excellent candidate for associative and co-associative 4-surfaces if one
believes on the intuition from complex analysis (the image of real axes under the map defined by
Oc-real-analytic function is real axes in the new coordinates defined by the map). The possibility to
solve field equations in this manner would be of enormous significance since besides basic arithmetic
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operations also the functional decomposition of Oc-real-analytic functions produces similar functions.
One could speak of the algebra of space-time surfaces.

What is remarkable that the complexified octonion real analytic functions are obtained by analytic
continuation from single real valued function of real argument. The real functions form naturally a
hierarchy of polynomials (maybe also rational functions) and number theoretic vision suggests that
there coefficients are rationals or algebraic numbers. Already for rational coefficients hierarchy of
algebraic extensions of rationals results as one solves the vanishing conditions. There is a temptation
to regard this hierarchy coding for space-time sheets as an analog of DNA.

If one can realize the condition that the Oc-analytic-function defines an integrable distribution of
hyper-complex planes M2(x), one obtains space-time surfaces in H by the M8 −H correspondence.
The existence of this distribution should relate to the Oc-real-analyticity. The string world sheet
corresponding to this distribution could be pre-image of fixed M2 in M4 = HQ. It would however
seem that it is not unique: G2/SU(3) = S6 parametrizes possible choices of M2 in Q. For this option
construction of preferred extremal in the best possible world would require the map of its tangent
spaces to points of CP2 and projection of HQ to M4.

An analogous construction can be imagined for complexified quaternions by using doubly com-
plexified quaternions to treat the Minkowskian signature. properly. One would have therefore two
commuting imaginary units: i for the Minkowskian signature and j for the complexified quaternions
replacing octonions. The transition from M8 H would replace non-commutative imaginary unit I
with commutative imaginary unit i.

2.4.2 Quaternionicity condition for space-time surfaces

Quaternionicity actually has a surprisingly simple formulation at the level of space-time surfaces. The
following discussion applies to both M8 and H with minor modifications if one accepts that also H
can allow octonionic tangent space structure, which does not require gamma matrices.

1. Quaternionicity is equivalent with associatitivity guaranteed by the vanishing of the associator
A(a, b, c) = a(bc)− (ab)c for any triplet of imaginary tangent vectors in the tangent space of the
spacetime surface. The condition must hold true for purely imaginary combinations of tangent
vectors.

2. If one is able to choose the coordinates in such a manner that one of the tangent vectors
corresponds to real unit (in the imbedding map imbedding space M4 coordinate depends only
on the time coordinate of space-time surface), the condition reduces to the vanishing of the
octonionic product of remaining three induced gamma matrices interpreted as octonionic gamma
matrices. This condition looks very simple - perhaps too simple!- since it involves only first
derivatives of the imbedding space vectors.

One can of course whether quaternionicity conditions replace field equations or only select pre-
ferred extremals. In the latter case, one should be able to prove that quaternionicity conditions
are consistent with the field equations.

3. Field equations would reduce to tri-linear equations in in the gradients of imbedding space
coordinates (rather than involving imbedding space coordinates quadratically). Sum of analogs
of 3× 3 determinants deriving from a× (b× b) for different octonion units is involved.

4. Written explicitly field equations give in terms of vielbein projections eAα , vielbein vectors eAk ,
coordinate gradients ∂αh

k and octonionic structure constants fABC the following conditions
stating that the projections of the octonionic associator tensor to the space-time surface vanishes:

eAαe
B
β e

C
γ A

E
ABC = 0 ,

AEABC = f E
AD f D

BC − f D
AB f E

DC ,

eAα = ∂αh
keAk ,

Γk = eAk γA .

(2.1)
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The very naive idea would be that the field equations are indeed integrable in the sense that
they reduce to these tri-linear equations. Tri-linearity in derivatives is highly non-trivial outcome
simplifying the situation further. These equations can be formulated as the as purely algebraic
equations written above plus integrability conditions

FAαβ = Dαe
A
β −Dβe

A
α = 0 . (2.2)

One could say that vielbein projections define an analog of a trivial gauge potential. Note
however that the covariant derivative is defined by spinor connection rather than this effective
gauge potential which reduces to that in SU(2). Similar formulation holds true for field equations
and one should be able to see whether the field equations formulated in terms of derivatives of
vielbein projections commute with the associatitivity conditions.

5. The quaternionicity conditions can be formulated as vanishing of generalization of Cayley’s
hyperdeterminant for ”hypermatrix” aijk with 2-valued indiced
(see http://en.wikipedia.org/wiki/Hyperdeterminant). Now one has 8 hyper-matrices with
3 8-valued indices associated with the vanishing AEBCDx

ByCzD = 0 of trilinear forms defined by
the associators. The conditions say somethig only about the octonioni structure constants and
since octonionic space allow quaternionic sub-spaces these conditions must be satisfied.

The inspection of the Fano triangle [A3] expressing the multiplication table for octonionic imag-
inary units reveals that give any two imaginary octonion units e1 and e2 their product e1e2 (or
equivalently commutator) is imaginary octonion unit (2 times octonion unit) and the three units span
together with real unit quaternionic sub-algebra. There it seems that one can generate local quater-
nionic sub-space from two imaginary units plus real unit. This generalizes to the vielbein components
of tangent vectors of space-time surface and one can build the solutions to the quaternionicity condi-
tions from vielbein projections e1, e2, their product e3 = k(x)e1e2 and real fourth ”timelike” vielbein
component which must be expressible as a combination of real unit and imaginary units:

e0 = a× 1 + biei

For static solutions this condition is trivial. Here summation over i is understood in the latter term.
Besides these conditions one has integrability conditions and field equations for Kähler action. This
formulation suggests that quaternionicity is additional - perhaps defining - property of preferred
extremals.

2.5 Quaternionicity at the level of imbedding space quantum numbers

From the multiplication table of octonions as illustrated by Fano triangle [A3] one finds that all edges of
the triangle, the middle circle and the three the lines connecting vertices to the midpoints of opposite
side define triplets of quaternionic units. This means that by taking real unit and any imaginary
unit in quaternionic M4 algebra spanning M2 ⊂ M4 and two imaginary units in the complement
representing CP2 tangent space one obtains quaternionic algebra. This suggests an explanation for
the preferred M2 contained in tangent space of space-time surface (the M2:s could form an integrable
distribution). Four-momentum restricted to M2 and I3 and Y interpreted as tangent vectors in CP2

tangent space defined quaterionic sub-algebra. This could give content for the idea that quantum
numbers are quaternionic.

I have indeed proposed that the four-momentum belongs toM2. IfM2(x) form a distribution as the
proposal for the preferred extremals suggests this could reflect momentum exchanges between different
points of the space-time surface such that total momentum is conserved or momentum exchange
between two sheets connected by wormhole contacts.

2.6 Questions

In following some questions related to M8 −H duality are represented.

http://en.wikipedia.org/wiki/Hyperdeterminant
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Figure 1: Octonionic triangle: the six lines and one circle containing three vertices define the seven
associative triplets for which the multiplication rules of the ordinary quaternion imaginary units hold
true. The arrow defines the orientation for each associative triplet. Note that the product for the
units of each associative triplets equals to real unit apart from sign factor.

2.6.1 Could associativity condition be formulated using modified gamma matrices?

Skeptic can criticize the minimal form ofM8−H duality involving no Kähler action inM8 is unrealistic.
Why just Kähler action? What makes it so special? The only defense that I can imagine is that Kähler
action is in many respects unique choice.

An alternative approach would replace induced gamma matrices with the modified ones to get the
correlation In the case of M8 this option cannot work. One cannot exclude it for H.

1. For Kähler action the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, assign to a given

point of X4 a 4-D space which need not be tangent space anymore or even its sub-space.

The reason is that canonical momentum current contains besides the gravitational contribution
coming from the induced metric also the ”Maxwell contribution” from the induced Kähler form
not parallel to space-time surface. In the case of M8 the duality map to H is therefore lost.

2. The space spanned by the modified gamma matrices need not be 4-dimensional. For vacuum
extremals with at most 2-D CP2 projection modified gamma matrices vanish identically. For
massless extremals they span 1- D light-like subspace. For CP2 vacuum extremals the modified
gamma matrices reduces to ordinary gamma matrices for CP2 and the situation reduces to the
quaternionicity of CP2. Also for string like objects the conditions are satisfied since the gamma
matrices define associative sub-space as tangent space of M2 × S2 ⊂ M4 × CP2. It seems that
associativity is satisfied by all known extremals. Hence modified gamma matrices are flexible
enough to realize associativity in H.

3. Modified gamma matrices in Dirac equation are required by super conformal symmetry for the
extremals of action and they also guarantee that vacuum extremals defined by surfaces in M4×
Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified
definition of associativity in H does not affect in any manner M8 −H duality necessarily based
on induced gamma matrices in M8 allowing purely number theoretic interpretation of standard
model symmetries. One can however argue that the most natural definition of associativity is
in terms of induced gamma matrices in both M8 and H.
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Remark: A side comment not strictly related to associativity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would have
two different metrics associated with the space-time surface. Only if the action defining space-time
surface is identified as the volume in the ordinary metric, these metrics are equivalent. The index
raising for the effective metric could be defined also by the induced metric and it is not clear whether
one can define Riemann connection also in this case. Could this effective metric have concrete physical
significance and play a deeper role in quantum TGD? For instance, AdS-CFT duality leads to ask
whether interactions be coded in terms of the gravitation associated with the effective metric.

Now skeptic can ask why should one demand M8−H correspondence if one in any case is forced to
introduced Kähler also at the level of M8? Does M8 −H correspondence help to construct preferred
extremals or does it only bring in a long list of conjectures? I can repeat the questions of the skeptic.

2.6.2 Minkowskian-Euclidian ↔ associative–co-associative?

The 8-dimensionality of M8 allows to consider both associativity of the tangent space and associativity
of the normal space- let us call this co-assosiativity of tangent space- as alternative options. Both
options are needed as has been already found. Since space-time surface decomposes into regions whose
induced metric possesses either Minkowskian or Euclidian signature, there is a strong temptation to
propose that Minkowskian regions correspond to associative and Euclidian regions to co-associative
regions so that space-time itself would provide both the description and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

2.6.3 Can M8 −H duality be useful?

Skeptic could of course argue that M8−H duality generates only an inflation of unproven conjectures.
This might be the case. In the following I will however try to defend the conjecture. One can however
find good motivations for M8 −H duality: both theoretical and physical.

1. If M8 − H duality makes sense for induced gamma matrices also in H, one obtains infinite
sequence if dualities allowing to construct preferred extremals iteratively. This might relate to
octonionic real-analyticity and composition of octonion-real-analytic functions.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
as hyper-quaternionic surfaces. Unfortunately, it is not clear whether one should introduce the
counterpart of Kähler action in M8 and the coupling of M8 spinors to Kähler form. Note that
the Kähler form in E4 would be self dual and have constant components: essentially parallel
electric and magnetic field of same constant magnitude.

3. M8−H duality provides insights to low energy physics, in particular low energy hadron physics.
M8 description might work when H-description fails. For instance, perturbative QCD which
corresponds to H-description fails at low energies whereas M8 description might become per-
turbative description at this limit. Strong SO(4) = SU(2)L × SU(2)R invariance is the ba-
sic symmetry of the phenomenological low energy hadron models based on conserved vector
current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC). Strong
SO(4) = SU(2)L×SU(2)R relates closely also to electro-weak gauge group SU(2)L×U(1) and
this connection is not well understood in QCD description. M8 −H duality could provide this
connection. Strong SO(4) symmetry would emerge as a low energy dual of the color symmetry.
Orbital SO(4) would correspond to strong SU(2)L × SU(2)R and by flatness of E4 spin like
SO(4) would correspond to electro-weak group SU(2)L × U(1)R ⊂ SO(4). Note that the inclu-
sion of coupling to Kähler gauge potential is necessary to achieve respectable spinor structure in
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CP2. One could say that the orbital angular momentum in SO(4) corresponds to strong isospin
and spin part of angular momentum to the weak isospin.

This argument does not seem to be consistent with SU(3) × U(1) ⊂ SU(4) symmetry for
Mx Dirac equation. One can however argue that SU(4) symmetry combines SO(4) multiplets
together. Furthermore, SO(4) represents the isometries leaving Kähler form invariant.

2.6.4 M8 −H duality in low energy physics and low energy hadron physics

M8 −H can be applied to gain a view about color confinement. The basic idea would be that SO(4)
and SU(3) provide provide dual descriptions of quarks using E4 and CP2 partial waves and low energy
hadron physics corresponds to a situation in which M8 picture provides the perturbative approach
whereas H picture works at high energies.

A possible interpretation is that the space-time surfaces vary so slowly in CP2 degrees of freedom
that can approximate CP2 with a small region of its tangent space E4. One could also say that color
interactions mask completely electroweak interactions so that the spinor connection of CP2 can be
neglected and one has effectively E4. The basic prediction is that SO(4) should appear as dynamical
symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [K5] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

2.7 Summary

The overall conclusion is that the most convincing scenario relies on the associativity/co-associativity
of space-time surfaces define by induced gamma matrices and applying both for M8 and H. The fact
that the duality can be continued to an iterated sequence of duality maps M8 → H → H... is what
makes the proposal so fascinating and suggests connection with fractality.
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The introduction of Kähler action and coupling of spinors to Kähler gauge potentials is highly
natural. One can also consider the idea that the space-time surfaces in M8 and H have same induced
metric and Kähler form: for iterated duality map this would mean that the steps in the map produce
space-time surfaces which identical metric and Kähler form so that the sequence might stop. M8

H

duality might provide two descriptions of same underlying dynamics: M8 description would apply in
long length scales and H description in short length scales.

3 Octo-twistors and twistor space

The basic problem of the twistor approach is that one cannot represent massive momenta in terms
of twistors in an elegant manner. One can also consider generalization of the notion of spinor and
twistor. I have proposed a possible representation of massive states based on the existence of preferred
plane of M2 in the basic definition of theory allowing to express four-momentum as one of two
light-like momenta allowing twistor description. One could however ask whether some more elegant
representation of massiveM4 momenta might be possible by generalizing the notion of twistor -perhaps
by starting from the number theoretic vision.

The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as massless
states in M8 and M4 × CP2 (recall M8 − H duality). One can therefore map any massive M4

momentum to a light-like M8 momentum and hope that this association could be made in a unique
manner. One should assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality. The
spinor assigned with the light-like four-momentum is not unique without additional conditions. The
existence of covariantly constant right-handed neutrino in CP2 degrees generating the super-conformal
symmetries could allow to eliminate the non-uniqueness. 8-dimensional twistor in M8 would be a pair
of this kind of spinors fixing the momentum of massless particle and the point through which the
corresponding light-geodesic goes through: the set of these points forms 8-D light-cone and one can
assign to each point a spinor. In M4×CP2 definitions makes also in the case of M4×CP2 and twistor
space would also now be a lifting of the space of light-like geodesics.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma matrix
algebra which is not a matrix representation. The mapping of gamma matrices to this representation
allows to define a notion of hyper-quaternionicity in terms of the modified gamma matrices both in
M8 and H.

The basic challenge is to achieve twistorial description of four-momenta or even M4 × CP2 quan-
tum numbers: this applies both to the momenta of fundamental fermions at the lines of generalized
Feynman diagrams and to the massive incoming and outcoming states identified as their composites.

1. A rather attractive way to overcome the problem at the level of fermions propagating along
the braid strands at the light-like orbits of partonic 2-surfaces relies on the assumption that
generalized Feynman diagrammatics effectively reduces to a form in which all fermions in the
propagator lines are massless although they can have non-physical helicity [K6]. One can use
ordinary M4 twistors. This is consistent with the idea that space-time surfaces are quaternionic
sub-manifolds of octonionic imbedding space.

2. Incoming and outgoing states are composites of massless fermions and not massless. They are
however massless in 8-D sense. This suggests that they could be described using generalization
of twistor formalism from M4 to M8 and even betterm to M4 × CP2.

In the following two possible twistorializations are considered.

3.1 Two manners to twistorialize imbedding space

In the following the generalization of twistor formalism for M8 or M4 × CP2 will be considered in
more detail. There are two options to consider.

1. For the first option one assigns to M4×CP2 twistor space as a product of corresponding twistor
spaces T (M4) = CP3 and the flag-manifold T (CP2) = SU(3)/U(1) × U(1) parameterizing the
choices of quantization axes for SU(3): TH = T (M4) × T (CP2). Quite remarkably, M4 and
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CP2 are the only 4-D manifolds allowing twistor space with Kähler structure. The twistor space
is 12-dimensional. The choice of quantization axis is certainly a physically well-define operation
so that T (CP2) has physical interpretation. If all observable physical states are color singlets
situation becomes more complex. If one assumes QCC for color quantum numbers Y and I3,
then also the choice of color quantization axis is fixed at the level of Kähler action from the
condition that Y and I3 have classically their quantal values.

2. For the second option one generalizes the usual construction for M8 regarded as tangent space
of M4 × CP2 (unless one takes M8 −H duality seriously).

The tangent space option looks like follows.

1. One can map the points of M8 to octonions. One can consider 2-component spinors with
octonionic components and map points of M8 light-cone to linear combinations of 2 × 2 Pauli
sigma matrices but with octonionic components. By the same arguments as in the deduction of
ordinary twistor space one finds that 7-D light-cone boundary is mapped to 7+8 D space since
the octonionic 2-spinor/its conjugate can be multiplied/divided by arbitrary octonion without
changing the light-like point. By standard argument this space extends to 8+8-D space. The
points of M8 can be identified as 8-D octonionic planes (analogs of complex sphere CP1 in this
space. An attractive identification is as octonionic projective space OP2. Remarkably, octonions
do not allow higher dimensional projective spaces.

2. If one assumes that the spinors are quaternionic the twistor space should have dimension
7+4+1=12. This dimension is same as for M4 × CP2. Does this mean that quaternion-
icity assumption reduces T (M8) = OP2 to T (H) = CP3 × SU(3)/U(1) × U(1)? Or does
it yield 12-D space G2/U(1) × U(1), which is also natural since G2 has 2-D Cartan alge-
bra? Number theoretical compactification would transform T (M8) = G2/U(1) × U(1) to
T (H) = CP3 × SU(3)/U(1) × U(1). This would not be surprising since in M8 − H-duality
CP2 parametrizes (hyper)quaternionic planes containing preferred plane M2.

Quaternionicity is certainly very natural in TGD framework. Quaternionicity for 8-momenta
does not in general imply that they reduce to the observed M4-momenta unless one identifies
M4 as one particular subspace of M8. In M8 − H duality one in principle allows all choices
of M4: it is of course unclear whether this makes any physical difference. Color confinement
could be interpreted as a reduction of M8 momenta to M4 momenta and would also allow the
interpretational problems caused by the fact that CP2 momenta are not possible.

3. Since octonions can be regarded as complexified quaternions with non-commuting imaginary
unit, one can say that quaternionic spinors in M8 are ”real” and thus analogous to Majorana
spinors. Similar interpretation applies at the level of H. Could one can interpret the quaternion-
icity condition for space-time surfaces and imbedding space spinors as TGD analog of Majorana
condition crucial in super string models? This would also be crucial for understanding super-
symmetry in TGD sense.

3.2 Octotwistorialization of M8

Consider first the twistorialization in 4-D case. In M4 one can map light-like momoment to spinors
satisfying massless Dirac equation. General point m of M4 can be mapped to a pair of massless
spinors related by incidence relation defining the point m. The essential element of this association
is that mass squared can be defined as determinant of the 2 × 2 matrix resulting in the assignment.
Light-likeness is coded to the vanishing of the determinant implying that the spinors defining its rows
are linearly independent. The reduction of M4 inner product to determinant occurs because the 2× 2
matrix can be regarded as a matrix representation of complexified quaternion. Massless means that
the norm of a complexified quaternion defined as the product of q and its conjugate vanishes. Incidence
relation s1 = xs2 relating point of M4 and pair of spinors defining the corresponding twistor, can be
interpreted in terms of product for complexified quaternions.

The generalization to the 8-D situation is straightforward: replace quaternions with octonions.

1. The transition to M8 means the replacement of quaternions with octonions. Masslessness cor-
responds to the vanishing norm for complexified octonion (hyper-octonion).
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2. One should assign to a massless 8-momentum an 8-dimensional spinor identifiable as octonion
- or more precisely as hyper-octonion obtained by multiplying the imaginary part of ordinary
octonion with commuting imaginary unit j and defining conjugation as a change of sign of j or
that of octonionic imaginar units.

3. This leads to a generalization of the notion of twistor consisting of pair of massless octonion
valued spinors (octonions) related by the incidence relation fixing the point of M8. The incidence
relation for Euclidian octonions says s1 = xs2 and can be interpreted in terms of triality for
SO(8) relating conjugate spinor octet to the product of vector octed and spinor octet. For
Minkowskian subspace of complexified octonions light-like vectors and s1 and s2 can be taken
light-like as octonions. Light like x can annihilate s2.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma matrix
algebra which is not a matrix representation. The mapping of gamma matrices to this representation
allows to define a notion of hyper-quaternionicity in terms of the modified gamma matrices both in
M8 and H.

3.3 Octonionicity, SO(1, 7), G2, and non-associative Malcev group

The symmetries assignable with octonions are rather intricate. First of all, octonions (their hyper-
variants defining M8) have SO(8) (SO(1,7)) as isometries. G2 ⊂ SO(7) acts as automorphisms of
octonions and SO(1, 7)→ G2 clearly means breaking of Lorentz invariance.

John Baez has described in a lucid manner G2 geometrically (http://math.ucr.edu/home/baez/
octonions/node14.html). The basic observation is that that quaternionic sub-space is generated
by two linearly independent imaginary units and by their product. By adding a fourth linearly
independent imaginary unit, one can generated all octonions. From this and the fact thatG2 represents
subgroup of SO(7), one easily deduces that G2 is 14-dimensional. The Lie algebra of G2 corresponds to
derivations of octonionic algebra as follows infinitesimally from the condition that the image of product
is the product of images. The entire algebra SO(8) is direct sum of G2 and linear transformations
generated by right and left multiplication by imaginary octonion: this gives 14+14 = 28 = D(SO(8)).
The subgroup SO(7) acting on imaginary octonsions corresponds to the direct sum of derivations and
adjoint transformations defined by commutation with imaginary octonions, and has indeed dimension
14 + 7 = 21.

One can identify also a non-associative group-like structure.

1. In the case of octonionic spinors this group like structure is defined by the analog of phase
multiplication of spinor generalizing to a multiplication with octonionic unit expressible as linear
combinations of 8 octonionic imaginary units and defining 7-sphere plays appear as analog of
automorphisms o→ uou−1 = uou∗.

One can associate with these transformations a non-associative Lie group and Lie algebra like
structures by defining the commutators just as in the case of matrices that is as [a, b] = ab− ba.
One 7-D non-associative Lie group like structure with topology of 7-sphere S7 whereas G2 is
14-dimensional exceptional Lie group (having S6 as coset space S6 = G2/SU(3)). This group
like object might be useful in the treatment of octonionic twistors. In the case of quaternions
one has genuine group acting as SO(3) rotations.

2. Octonionic gamma matrices allow to define as their commutators octonionic sigma matrices:

Σkl =
i

2
[γk, γl] . (3.1)

This algebra is 14-dimensional thanks to the fact that octonionic gamma matrices are of form
γ0 = σ1 ⊗ 1, γi = σ2 ⊗ ei. Due to the non-associativity of octonions this algebra does not
satisfy Jacobi identity - as is easy to verify using Fano triangle - and is therefore not a genuine
Lie-algebra. Therefore these sigma matrices do not define a representation of G2 as I thought
first.

http://math.ucr.edu/home/baez/octonions/node14.html
http://math.ucr.edu/home/baez/octonions/node14.html
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This algebra has decomposition g = h + t, [h, t] ⊂ t, [t, t] ⊂ h characterizing for symmetric
spaces. h is the 7-D algebra generated by Σij and identical with the non-associative Malcev
algebra generated by the commutators of octonionic units. The complement t corresponds to
the generators Σ0i. The algebra is clearly an octonionic non-associative analog fo SO(1, 7).

3.4 Octonionic spinors in M8 and real complexified-quaternionic spinors
in H?

This above observations about the octonionic sigma matrices raise the problem about the octonionic
representation of spinor connection. In M8 = M4 × E4 the spinor connection is trivial but for
M4 × CP2 not. There are two options.

1. Assume that octonionic spinor structure makes sense for M8 only and spinor connection is
trivial.

2. An alternative option is to identify M8 as tangent space of M4 × CP2 possessing quaternionic
structure defined in terms of octonionic variants of gamma matrices. Should one replace sigma
matrices appearing in spinor connection with their octonionic analogs to get a sigma matrix
algebra which is pseudo Lie algebra. Or should one map the holonomy algebra of CP2 spinor
connection to a sub-algebra of G2 ⊂ SO(7) and define the action of the sigma matrices as
ordinary matrix multiplication of octonions rather than octonionic multiplication? This seems
to be possible formally.

The replacement of sigma matrices with their octonionic counterparts seems to lead to weird
looking results. Octonionic multiplication table implies that the electroweak sigma matrices
associated with CP2 tangent space reduce to M4 sigma matrices so that the spinor connection
is quaternionic. Furthermore, left-handed sigma matrices are mapped to zero so that only the
neutral part of spinor connection is non-vanishing. This supports the view that only M8 gamma
matrices make sense and that Dirac equation in M8 is just free massless Dirac equation leading
naturally also to the octonionic twistorialization.

One might think that distinction betweeen different H-chiralities is difficult to make but it
turns out that quarks and leptons can be identified as different components of 2-component
complexified octonionic spinors.

The natural question is what associativization of octonions gives. This amounts to a condition
putting the associator a(bc)− (ab)c to zero. It is enough to consider octonionic imaginary units which
are different. By using the decomposition of the octonionic algebra to quaternionic sub-algebra and
its complement and general structure of structure constants, one finds that quaternionic sub-algebra
remains as such but the products of all imaginary units in the complement with different imaginary
units vanish. This means that the complement behaves effectively as 4-D flat space-gamma matrix
algebra annihilated by the quaternionic sub-algebra whose imaginary part acts like Lie algebra of
SO(3).

3.5 What the replacement of SO(7, 1) sigma matrices with octonionic sigma
matrices could mean?

The basic implication of octonionization is the replacement of SO(7, 1) sigma matrices with octonionic
sigma matrices. For M8 this has no consequences since since spinor connection is trivial.

For M4 × CP2 situation would be different since CP2 spinor connection would be replaced with
its octonionic variant. This has some rather unexpected consequences and suggests that one should
not try to octonionize at the level of M4 × CP2 but interepret gamma matrices as tensor products
of quaternionic gamma matrices, which can be replaced with their matrix representations. There are
however some rather intriguing observations which force to keep mind open.

3.5.1 Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.
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1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (3.2)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (3.3)

2. The octonionic representation is obtained as

γ0 = 1⊗ σ1 , γi = ei ⊗ σ2 . (3.4)

where ei are the octonionic units. e2i = −1 guarantees that the M4 signature of the metric comes
out correctly. Note that γ7 =

∏
γi is the counterpart for choosing the preferred octonionic unit

and plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = jei × σ3 , Σij = jf k
ij ek ⊗ 1 . (3.5)

Here j is commuting imaginary unit. These matrices span G2 algebra having dimension 14 and
rank 2 and having imaginary octonion units and their conjugates as the fundamental represen-
tation and its conjugate. The Cartan algebra for the sigma matrices can be chosen to be Σ01

and Σ23 and belong to a quaternionic sub-algebra.

4. The lower dimension D = 14 of the non-associative version of sigma matrix algebra algebra
means that some combinations of sigma matrices vanish. All left or right handed generators
of the algebra are mapped to zero: this explains why the dimension is halved from 28 to 14.
From the octonionic triangle expressing the multiplication rules for octonion units [A2] one finds
e4e5 = e1 and e6e7 = −e1 and analogous expressions for the cyclic permutations of e4, e5, e6, e7.
From the expression of the left handed sigma matrix I3L = σ23 + σ30 representing left handed
weak isospin (see the Appendix about the geometry of CP2 [K1]) one can conclude that this
particular sigma matrix and left handed sigma matrices in general are mapped to zero. The
quaternionic sub-algebra SU(2)L × SU(2)R is mapped to that for the rotation group SO(3)
since in the case of Lorentz group one cannot speak of a decomposition to left and right handed
subgroups. The elements of the complement of the quaternionic sub-algebra are expressible in
terms of Σij in the quaternionic sub-algebra.

3.5.2 Some physical implications of the reduction of SO(7, 1) to its octonionic counter-
part

The octonization of spinor connection of CP2 has some weird physical implications forcing to keep
mind to the possibility that the octonionic description even at the level of H might have something
to do with reality.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonionization. The right handed part is neutral containing only photon and Z0 so that the
gauge field becomes Abelian. Z0 and photon fields become proportional to each other (Z0 →
sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would obtain just
electrodynamics.
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2. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields in
SO(2) ⊂ SU(2)×U(1) in quaternionic sub-algebra which in a well-defined sense corresponds to
M4 degrees of freedom and gauge group becomes SO(2) subgroup of rotation group of E3 ⊂M4.
This looks like catastrophe. One might say that electroweak interactions are transformed to
gravimagnetic interactions.

3. In very optimistic frame of mind one might ask whether this might be a deeper reason for why
electrodynamics is an excellent description of low energy physics and of classical physics. This
is consistent with the fact that CP2 coordinates define 4 field degrees of freedom so that single
Abelian gauge field should be enough to describe classical physics. This would remove also the
interpretational problems caused by the transitions changing the charge state of fermion induced
by the classical W boson fields.

4. Interestingly, the condition that electromagnetic charge is well-defined quantum number for the
modes of the induced spinor field for X4 ⊂ H leads to the proposal that the solutions of the
modified Dirac equation are localized to string world sheets in Minkowskian regions of space-
time surface at least. For CP2 type vacuum extremals one has massless Dirac and this allows
only covariantly constant right-handed neutrino as solution. One has however only a piece of
CP2 (wormhole contact) so that holomorphic solutions annihilated by two complexified gamma
matrices are possible in accordance with the conformal symmetries.

Can one assume non-trivial spinor connection in M8

1. The simplest option encouraged by the requirement of maximal symmetries is that it is ab-
sent. Massless 8-momenta would characterize spinor modes in M8 and this would give physical
justification for the octotwistors.

2. If spinor connection is present at all, it reduces essentially to Kähler connection having different
couplings to quarks and leptons identifiable as components of octonionic 2-spinors. It should
be SO(4) symmetric and since CP2 is instant one might argue that now one has also instanton
that is self-dual U(1) gauge field in E4 ⊂ M4 × E4 defining Kähler form. One can loosely say
that that one has of constant electric and magnetic fields which are parallel to each other. The
rotational symmetry in E4 would break down to SO(2).

3. Without spinor connection quarks and leptons are in completely symmetric position at the level
of M8: this is somewhat disturbing. The difference between quarks and leptons in H is made
possible by the fact that CP2 does not allow standard spinor structure. Now this problem is
absent. I have also consider the possibility that only leptonic spinor chirality is allowed and
quarks result via a kind of anyonization process allowing them to have fractional em charges
(see http://www.tgdtheory.fi/public_html/articles/genesis.pdf).

4. If the solutions of the Kähler Dirac equation in Minkowskian regions are localized to two surfaces
identifiable as integrable distributions of planes M2(x) and characterized by a local light-like
direction defining the direction of massless momentum, they are holomorphic (in the sense of
hyper-complex numbers) such that the second complexified modified gamma matrix annihilates
the solution. Same condition makes sense also at the level of M8 for solutions restricted to string
world sheets and the presence or absence of spinor connection does not affect the situation.

Does this mean that the difference between quarks and leptons becomes visible only at the
imbedding space level where ground states of super-conformal representations correspond to to
imbedding space spinor harmonics which in CP2 cm degrees are different for quarks and leptons?

3.5.3 Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (3.6)

http://www.tgdtheory.fi/public_html/articles/genesis.pdf
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One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in the
space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds nat-
urally to the two spin states of the right handed neutrino. In quark sector this would mean that
right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as
representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(3.7)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states
with vanishing color isospin correspond to right handed fermions and the states with non-vanishing
SU(3) isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies
involved due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can
corresponds to a sub-manifold M2 ⊂M4.

4 Abelian class field theory and TGD

The context leading to the discovery of adeles (http://en.wikipedia.org/wiki/Adele_ring) was
so called Abelian class field theory. Typically the extension of rationals means that the ordinary
primes decompose to the primes of the extension just like ordinary integers decompose to ordinary
primes. Some primes can appear several times in the decomposition of ordinary non-square-free
integers and similar phenomenon takes place for the integers of extension. If this takes place one says
that the original prime is ramified. The simplest example is provided Gaussian integers Q(i). All odd
primes are unramified and primes p mod 4 = 1 they decompose as p = (a+ib)(a−ib) whereas primes
p mos 4 = 3 do not decompose at all. For p = 2 the decomposition is 2 = (1+i)(1−i) = −i(1+i)2 =
i(1− i)2 and is not unique {±1,±i} are the units of the extension. Hence p = 2 is ramified.

There goal of Abelian class field theory (http://en.wikipedia.org/wiki/Class_field_theory)
is to understand the complexities related to the factorization of primes of the original field. The
existence of the isomorphism between ideles modulo rationals - briefly ideles - and maximal Abelian
Galois Group of rationals (MAGG) is one of the great discoveries of Abelian class field theory. Also
the maximal - necessarily Abelian - extension of finite field Gp has Galois group isomorphic to the
ideles. The Galois group of Gp(n) with pn elements is actually the cyclic group Zn. The isomorphism
opens up the way to study the representations of Abelian Galois group and also those of the AGG.
One can indeed see these representations as special kind of representations for which the commutator
group of AGG is represented trivially playing a role analogous to that of gauge group.

This framework is extremely general. One can replace rationals with any algebraic extension
of rationals and study the maximal Abelian extension or algebraic numbers as its extension. One
can consider the maximal algebraic extension of finite fields consisting of union of all all finite fields
associated with given prime and corresponding adele. One can study function fields defined by the
rational functions on algebraic curve defined in finite field and its maximal extension to include Taylor
series. The isomorphisms applies in al these cases. One ends up with the idea that one can represent
maximal Abelian Galois group in function space of complex valued functions in GLe(A) right invariant
under the action of GLe(Q). A denotes here adeles.

In the following I will introduce basic facts about adeles and ideles and then consider a possible
realization of the number theoretical vision about quantum TGD as a Galois theory for the algebraic
extensions of classical number fields with associativity defining the dynamics. This picture leads

http://en.wikipedia.org/wiki/Adele_ring
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Class_field_theory
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automatically to the adele defined by p-adic variants of quaternions and octonions, which can be
defined by posing a suitable restriction consistent with the basic physical picture provide by TGD.

4.1 Adeles and ideles

Adeles and ideles are structures obtained as products of real and p-adic number fields. The formula
expressing the real norm of rational numbers as the product of inverses of its p-adic norms inspires
the idea about a structure defined as produc of reals and various p-adic number fields.

Class field theory (http://en.wikipedia.org/wiki/Class_field_theory) studies Abelian ex-
tensions of global fields (classical number fields or functions on curves over finite fields), which by
definition have Abelian Galois group acting as automorphisms. The basic result of class field theory
is one-one correspondence between Abelian extensions and appropriate classes of ideals of the global
field or open subgroups of the ideal class group of the field. For instance, Hilbert class field, which
is maximal unramied extension of global field corresponds to a unique class of ideals of the number
field. More precisely, reciprocity homomorphism generalizes the quadratic resiprocity for quadratic
extensions of rationals. It maps the idele class group of the global field defined as the quotient of the
ideles by the multiplicative group of the field - to the Galois group of the maximal Abelian extension
of the global field. Each open subgroup of the idele class group of a global field is the image with
respect to the norm map from the corresponding class field extension down to the global field.

The idea of number theoretic Langlands correspondence, [A1, A5, A4]. is that n-dimensional
representations of Absolute Galois group correspond to infinite-D unitary representations of group
Gln(A). Obviously this correspondence is extremely general but might be highly relevant for TGD,
where imbedding space is replaced with Cartesian product of real imbedding space and its p-adic
variants - something which might be related to octonionic and quaternionic variants of adeles. It
seems however that the TGD analogs for finite-D matrix groups are analogs of local gauge groups or
Kac-Moody groups (in particular symplectic group of δM4

+×CP2) so that quite heavy generalization
of already extremely abstract formalism is expected.

The following gives some more precise definitions for the basic notions.

1. Prime ideals of global field, say that of rationals, are defined as ideals which do not decompose to
a product of ideals: this notion generalizes the notion of prime. For instance, for p-adic numbers
integers vanishing mod pn define an ideal and ideals can be multiplied. For Abelian extensions
of a global field the prime ideals in general decompose to prime ideals of the extension, and the
decompostion need not be unique: one speaks of ramification. One of the challenges of tjhe class
field theory is to provide information about the ramification. Hilbert class field is define as the
maximal unramified extension of global field.

2. The ring of integral adeles (see http://en.wikipedia.org/wiki/Adele_ring) is defined as
AZ = R × Ẑ, where Ẑ =

∏
p Zp is Cartesian product of rings of p-adic integers for all primes

(prime ideals) p of assignable to the global field. Multiplication of element of AZ by integer
means multiplication in all factors so that the structure is like direct sum from the point of view
of physicist.

The ring of rational adeles can be defined as the tensor product AQ = Q⊗ZAZ . Z means that in
the multiplication by element of Z the factors of the integer can be distributed freely among the
factors Ẑ. Using quantum physics language, the tensor product makes possible entanglement
between Q and AZ .

3. Another definition for rational adeles is as R×
∏′
pQp: the rationals in tensor factor Q have been

absorbed to p-adic number fields: given prime power in Q has been absorbed to corresponding
Qp. Here all but finite number of Qp elements ar p-adic integers. Note that one can take
out negative powers of pi and if their number is not finite the resulting number vanishes.The
multiplication by integer makes sense but the multiplication by a rational does not smake sense
since all factors Qp would be multiplied.

4. Ideles are defined as invertible adeles (http://en.wikipedia.org/wiki/Idele_class_groupIdele
class group). The basic result of the class field theory is that the quotient of the multiplicative
group of ideles by number field is homomorphic to the maximal Abelian Galois group!

http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Adele_ring
http://en.wikipedia.org/wiki/Idele_class_group
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4.2 Questions about adeles, ideles and quantum TGD

The intriguing general result of class field theory (http://en.wikipedia.org/wiki/Class_field_
theory) is that the the maximal Abelian extension for rationals is homomorphic with the multiplicative
group of ideles. This correspondence plays a key role in Langlands correspondence.

Does this mean that it is not absolutely necessary to introduce p-adic numbers? This is actually
not so. The Galois group of the maximal abelian extension is rather complex objects (absolute Galois
group, AGG, defines as the Galois group of algebraic numbers is even more complex!). The ring Ẑ
of adeles defining the group of ideles as its invertible elements homeomorphic to the Galois group of
maximal Abelian extension is profinite group (http://en.wikipedia.org/wiki/Profinite_group).
This means that it is totally disconnected space as also p-adic integers and numbers are. What is
intriguing that p-dic integers are however a continuous structure in the sense that differential calculus
is possible. A concrete example is provided by 2-adic units consisting of bit sequences which can have
literally infinite non-vanishing bits. This space is formally discrete but one can construct differential
calculus since the situation is not democratic. The higher the pinary digit in the expansion is, the less
significant it is, and p-adic norm approaching to zero expresses the reduction of the insignificance.

1. Could TGD based physics reduce to a representation theory for the Galois groups of quaternions
and octonions?

Number theoretical vision about TGD raises questions about whether adeles and ideles could be
helpful in the formulation of TGD. I have already earlier considered the idea that quantum TGD
could reduce to a representation theory of appropriate Galois groups. I proceed to make questions.

1. Could real physics and various p-adic physics on one hand, and number theoretic physics based on
maximal Abelian extension of rational octonions and quaternions on one hand, define equivalent
formulations of physics?

2. Besides various p-adic physics all classical number fields (reals, complex numbers, quaternions,
and octonions) are central in the number theoretical vision about TGD. The technical problem
is that p-adic quaternions and octonions exist only as a ring unless one poses some additional
conditions. Is it possible to pose such conditions so that one could define what might be called
quaternionic and octonionic adeles and ideles?

It will be found that this is the case: p-adic quaternions/octonions would be products of rational
quaternions/octonions with a p-adic unit. This definition applies also to algebraic extensions
of rationals and makes it possible to define the notion of derivative for corresponding adeles.
Furthermore, the rational quaternions define non-commutative automorphisms of quaternions
and rational octonions at least formally define a non-associative analog of group of octonionic
automorphisms [K8].

3. I have already earlier considered the idea about Galois group as the ultimate symmetry group
of physics. The representations of Galois group of maximal Abelian extension (or even that for
algebraic numbers) would define the quantum states. The representation space could be group
algebra of the Galois group and in Abelian case equivalently the group algebra of ideles or adeles.
One would have wave functions in the space of ideles.

The Galois group of maximal Abelian extension would be the Cartan subgroup of the absolute
Galois group of algebraic numbers associated with given extension of rationals and it would be
natural to classify the quantum states by the corresponding quantum numbers (number theoretic
observables).

If octonionic and quaternionic (associative) adeles make sense, the associativity condition would
reduce the analogs of wave functions to those at 4-dimensional associative sub-manifolds of
octonionic adeles identifiable as space-time surfaces so that also space-time physics in various
number fields would result as representations of Galois group in the maximal Abelian Galois
group of rational octonions/quaternions. TGD would reduce to classical number theory! One
can hope that WCW spinor fields assignable to the associative and co-associative space-time
surfaces provide the adelic representations for super-conformal algebras replacing symmetries
for point like objects.

http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Profinite_group
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This of course involves huge challenges: one should find an adelic formulation for WCWin terms
octonionic and quaternionic adeles, similar formulation for WCW spinor fields in terms of adelic
induced spinor fields or their octonionic variants is needed. Also zero energy ontology, causal
diamonds, light-like 3-surfaces at which the signature of the induced metric changes, space-
like 3-surfaces and partonic 2-surfaces at the boundaries of CDs, M8 − H duality, possible
representation of space-time surfaces in terms of of Oc-real analytic functions (Oc denotes for
complexified octonions), etc. should be generalized to adelic framework.

4. Absolute Galois group is the Galois group of the maximal algebraic extension and as such
a poorly defined concept. One can however consider the hierarchy of all finite-dimensional
algebraic extensions (including non-Abelian ones) and maximal Abelian extensions associated
with these and obtain in this manner a hierarchy of physics defined as representations of these
Galois groups homomorphic with the corresponding idele groups.

5. In this approach the symmetries of the theory would have automatically adelic representations
and one might hope about connection with Langlands program [K4], [A1, A5, A4].

2. Adelic variant of space-time dynamics and spinorial dynamics?

As an innocent novice I can continue to pose stupid questions. Now about adelic variant of the
space-time dynamics based on the generalization of Kähler action discussed already earlier but without
mentioning adeles ( [K9]).

1. Could one think that adeles or ideles could extend reals in the formulation of the theory: note
that reals are included as Cartesian factor to adeles. Could one speak about adelic space-time
surfaces endowed with adelic coordinates? Could one formulate variational principle in terms of
adeles so that exponent of action would be product of actions exponents associated with various
factors with Neper number replaced by p for Zp. The minimal interpretation would be that in
adelic picture one collects under the same umbrella real physics and various p-adic physics.

2. Number theoretic vision suggests that 4:th/8:th Cartesian powers of adeles have interpretation
as adelic variants of quaternions/ octonions. If so, one can ask whether adelic quaternions
and octonions could have some number theoretical meaning. Adelic quaternions and octonions
are not number fields without additional assumptions since the moduli squared for a p-adic
analog of quaternion and octonion can vanish so that the inverse fails to exist at the light-cone
boundary which is 17-dimensional for complexified octonions and 7-dimensional for complexified
quaternions. The reason is that norm squared is difference N(o1) − N(o2) for o1 ⊕ io2. This
allows to define differential calculus for Taylor series and one can consider even rational functions.
Hence the restriction is not fatal.

If one can pose a condition guaranteeing the existence of inverse for octonionic adel, one
could define the multiplicative group of ideles for quaternions. For octonions one would ob-
tain non-associative analog of the multiplicative group. If this kind of structures exist then
four-dimensional associative/co-associative sub-manifolds in the space of non-associative ideles
define associative/co-associative adeles in which ideles act. It is easy to find that octonionic ide-
les form 1-dimensional objects so that one must accept octonions with arbitrary real or p-adic
components.

3. What about equations for space-time surfaces. Do field equations reduce to separate field equa-
tions for each factor? Can one pose as an additional condition the constraint that p-adic surfaces
provide in some sense cognitive representations of real space-time surfaces: this idea is formu-
lated more precisely in terms of p-adic manifold concept [K9]. Or is this correspondence an
outcome of evolution?

Physical intuition would suggest that in most p-adic factors space-time surface corresponds to
a point, or at least to a vacuum extremal. One can consider also the possibility that same
algebraic equation describes the surface in various factors of the adele. Could this hold true in
the intersection of real and p-adic worlds for which rationals appear in the polynomials defining
the preferred extremals.
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4. To define field equations one must have the notion of derivative. Derivative is an operation
involving division and can be tricky since adeles are not number field. The above argument
suggests this is not actually a problem. Of course, if one can guarantee that the p-adic variants of
octonions and quaternions are number fields, there are good hopes about well-defined derivative.
Derivative as limiting value df/dx = lim(f(x + dx) − f(x))/dx for a function decomposing to
Cartesian product of real function f(x) and p-adic valued functions fp(xp) would require that
fp(x) is non-constant only for a finite number of primes: this is in accordance with the physical
picture that only finite number of p-adic primes are active and define ”cognitive representations”
of real space-time surface. The second condition is that dx is proportional to product dx×

∏
dxp

of differentials dx and dxp, which are rational numbers. dx goes to xero as a real number but
not p-adically for any of the primes involved. dxp in turn goes to zero p-adically only for Qp.

5. The idea about rationals as points common to all number fields is central in number theoretical
vision. This vision is realized for adeles in the minimal sense that the action of rationals is well-
defined in all Cartesian factors of the adeles. Number theoretical vision allows also to talk about
common rational points of real and various p-adic space-time surfaces in preferred coordinate
choices made possible by symmetries of the imbedding space, and one ends up to the vision
about life as something residing in the intersection of real and p-adic number fields. It is not
clear whether and how adeles could allow to formulate this idea.

6. For adelic variants of imbedding space spinors Cartesian product of real and p-adc variants of
imbedding spaces is mapped to their tensor product. This gives justification for the physical
vision that various p-adic physics appear as tensor factors. Does this mean that the generalized
induced spinors are infinite tensor products of real and various p-adic spinors and Clifford algebra
generated by induced gamma matrices is obtained by tensor product construction? Does the
generalization of massless Dirac equation reduce to a sum of d’Alembertians for the factors?
Does each of them annihilate the appropriate spinor? If only finite number of Cartesian factors
corresponds to a space-time surface which is not vacuum extremal vanishing induced Kähler
form, Kähler Dirac equation is non-trivial only in finite number of adelic factors.

3. Objections leading to the identification of octonionic adeles and ideles

The basic idea is that appropriately defined invertible quaternionic/octonionic adeles can be re-
garded as elements of Galois group assignable to quaternions/octonions. The best manner to proceed
is to invent objections against this idea.

1. The first objection is that p-adic quaternions and octonions do not make sense since p-adic
variants of quaternions and octonions do not exist in general. The reason is that the p-adic
norm squared

∑
x2i for p-adic variant of quaternion, octonion, or even complex number can

vanish so that its inverse does not exist.

2. Second objection is that automorphisms of the ring of quaternions (octonions) in the maximal
Abelian extension are products of transformations of the subgroup of SO(3) (G2) represented
by matrices with elements in the extension and in the Galois group of the extension itself. Ideles
separate out as 1-dimensional Cartesian factor from this group so that one does not obtain
4-field (8-fold) Cartesian power of this Galois group.

One can define quaternionic/octonionic ideles in terms of rational quaternions/octonions multiplied
by p-adic number. For adeles this condition produces non-sensical results.

1. This condition indeed allows to construct the inverse of p-adic quaternion/octonion as a product
of inverses for rational quaternion/octonion and p-adic number. The reason is that the solutions
to
∑
x2i = 0 involve always p-adic numbers with an infinite number of pinary digits - at least

one and the identification excludes this possibility. The ideles form also a group as required.

2. One can interpret also the quaternionicity/octonionicity in terms of Galois group. The 7-
dimensional non-associative counterparts for octonionic automorphisms act as transformations
x → gxg−1. Therefore octonions represent this group like structure and the p-adic octonions
would have interpretation as combination of octonionic automorphisms with those of rationals.
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3. One cannot assign to ideles 4-D idelic surfaces. The reason is that the non-constant part of
all 8-coordinates is proportional to the same p-adic valued function of space-time point so that
space-time surface would be a disjoint union of effectively 1-dimensional structures labelled by
a subset of rational points of M8. Induced metric would be 1-dimensional and induced Kähler
and spinor curvature would vanish identically.

4. One must allow p-adic octonions to have arbitrary p-adic components. The action of ideles
representing Galois group on these surfaces is well-defined. Number field property is lost but
this feature comes in play as poles only when one considers rational functions. Already the
Minkowskian signature forces to consider complexified octonions and quaternions leading to
the loss of field property. It would not be surprising if p-adic poles would be associated with
the light-like orbits of partonic 2-surfaces. Both p-adic and Minkowskian poles might therefore
be highly relevant physically and analogous to the poles of ordinary analytic functions. For
instance, n-point functions could have poles at the light-like boundaries of causal diamonds and
at light-like partonic orbits and explain their special physical role.

The action of ideles in the quaternionic tangent space of space-time surface would be analogous
to the action of of adelic linear group Gln(A) in n-dimensional space.

5. Adelic variants of octonions would be Cartesian products of ordinary and various p-adic octo-
nions and would define a ring. Quaternionic 4-surfaces would define associative local sub-rings
of octonion-adelic ring.
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