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Abstract

In this article the implications of the updated vision of standard model physics and hadron
physics are considered. The goal is to develop a phenomenological picture of hadrons based
on the general mathematical framework of TGD and on the interpretation of strong and weak
interactions as different aspects of color interaction.

The additivity of the mass squared values identified as conformal weights at the level of the
embedding space H is a crucial assumption made also in the p-adic mass calculations. One
must check whether this assumption is physically sensical and how it relates to the additivity
of masses assumed in the constituent quark model and understand the relation between the
notions of current quark mass and constituent quark mass. One should also identify various
contributions to the hadron mass squared in the new picture and understand the hadronic
mass splittings.

The results of the simple calculations deducing the p-adic mass scales of hadrons and quarks
mean a breakthrough in the quantitative understanding of the hadronic mass spectrum. In
particular, the identification of color interactions in fermionic isospin degrees of freedom as
weak interactions with a p-adically scaled up range explains the mass splittings due to isospin.
The smallness of the Weinberg angle for scaled up weak interactions can explain how the
interactions become strong and why the parity violation for strong interactions is small. A
formula for Weinberg angle is deduced in terms of fermion masses.

1 Introduction

The key question of this work is how do the recent (2023-2025) advances in the understanding
TGD, the general structure of the TGD variant of the Standard Model, and of TGD view of
hadron physics affect the concrete picture of hadrons and help refine the picture of p-adic mass
calculations?
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1.1 Geometric and number-theoretic visions of physics as duals of each
other

TGD offers two visions of physics: physics as geometry and physics as number theory. Advances
in recent years have led to the interpretation of these visions as a 4-D generalization of Langlands
duality [L9, L12, L17], where the geometric and number-theoretic descriptions are dual and in
a relation resembling momentum-position duality, M8 − H duality [L8] is indeed analogous to
momentum position duality but formulated for particles identified as 3-surfaces or rather, with
the analogs of their slightly-nondeterministic Bohr orbits implied by holography = holomorphy
principle [L18, L6].

1. p-Adic thermodynamics has been reasonably well understood at the principle level [L5].
Much progress has been made in understanding the origin of the concepts of p-adicity and
adelicity during the last couple of years.

The function field counterparts of p-adic number fields follow from the holography = holo-
morphism principle [L12, L17, L14]. One can say that p-adicity generalizes from the 8-D level
to the WCW level, where WCW is the ”world of classical worlds” [K8, L7]. A structure-
preserving morphism is obtained from the p-adic function fields to the ordinary p-adic number
fields. The origin of the p-adic length-scale hypothesis is also understood. This correspon-
dence generalizes to adeles. Also the notion of multi-p-adicity emerges [L5, L12].

2. Classical non-determinism corresponds to the p-adic non-determinism and is interpreted as a
correlate for cognition. In the TGD Universe, cognition is present already at the elementary
particle level so that this has quite interesting interpretation. Conformal symmetry breaking
in p-adic thermodynamics is also understood. The violation of conformal invariance, which
is related to non-determinism, makes vertices for fermion pair creation possible and is an
essential part of the theory.

A connection with exotic smooth structures [A2, A3, A1] is highly suggestive [L10, L4, L11]
and suggests that non-trivial quantum dynamics is possible only in the space-time dimension
D = 4.

The defects of the ordinary smooth structure characterizing exotic smooth structure would
correspond to edges of the space-time surface. The objection is that this kind of defects
are possible also in other dimensions so that the question is whether the violation of the
4-D conformal invariance allows one to regard these edges as defects of the standard smooth
structure.

1.2 New understanding of strong and other interactions

TGD Universe has the symmetries of the standard model but their interpretation and realization
differs dramatically from that of the standard model [L15, L14, L16].

1. A hierarchy of copies of the standard model corresponding to a hierarchy of irreducible
representation of the color group for the CP2 partial waves of quarks and leptons labelled
by an integer, is predicted. Also leptons would have color partial waves and obey color
confinement. These copies of the standard model would be labelled by collections of p-adic
primes labelling the associated fermions. Mersenne primes could label at least the nucleons
and charged leptons of these copies of the standard model. Weak interaction in the hadronic
scale becomes strong interaction. M89 hadron physics with the mass of nucleon 512 times
that of ordinary proton is one particular prediction and in this work the question whether the
top quark could be identifiable as a quark of M89 hadron physics with the mass scale of proton
scaled up by factor 512. and the actual top could relate to the Aleph anomaly [C2] [K5].

2. Color interaction in CP2 spin degrees of freedom is identifiable as weak interaction, which
becomes strong when its scale becomes long [?]. One can equate the strong isospin with weak
isospin with color isospin: Is = Iw = Ic. The screening of weak interactions corresponds to
color confinement in CP2 spin degrees of freedom.

There is color confinement also in CP2 orbital degrees of freedom one and this is forced by
the condition that the mass squared identified as the sum of mass squared values of the many
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fermion state is vanishing and proportional to the color Casimir operator as in the case of
single fermion states [L15, L14, L16].

3. Weak screening, produced by neutrino-antineutrino pairs νLνR assignable to the closed flux
tubes associated with quarks and leptons, realizes the color confinement in CP2 spin degrees
of freedom. Only the electromagnetic charge is not screened. For the creation of a quark
pair one would have αw → N2

c × αw ≡ αs, where Nc is the number of colors. For αw =
αem/sin

2(θW ) ' .03 this gives αs = .27. Another, perhaps equivalent, view is that Weinberg
angle becomes small and makes αw large and also implies that parity breaking effects are
small for strong interactions. Strong interactions in CP2 spin degrees of freedom would
correspond to weak interactions but with a range which correspondd to hadronic, nuclear
and even electron length scale.

4. This picture conforms with the phenomenological geometric view of hadrons [K5, K6]. Quarks
correspond to closed monopole flux tubes as two-sheeted objects. The magnetic flux runs
along Minkowskian space-time sheet A, flows to a parallel Minkowskian space-time sheet
B through an Euclidean wormhole contact, flows back along B and returns to the sheet A
through a wormhole contact. The wormhole contacts correspond to the ”ends” of the string-
like object at a given space-time sheet. Quarks and the neutrino pair, which screens its weak
charge in scales longer than its length, are at the opposite ”ends” of the flux tube.

1.3 Different perspectives on hadron physics

TGD provides several views of hadron physics.

1. There are two levels of description corresponding to the fermionic level and the geometric
level. There is also a second division. The description of the hadronic phase, the H =
M4 × CP2 phase, is in terms of the modes of second quantized free H spinor fields and it
provides a description of incoming and outgoing quantum states. H picture has a restriction
to the level of causal diamond (CD) as a correlated for conscious entity [L14]: for this option
M4 has Hamilton-Jacobi structure [L6] and Kähler structure, which is trivial in hypercomplex
degrees of freedom [L16]. This phase is the analog of the hadron phase appearing in the initial
and final states of the scattering events.

The massless phase, the X4 phase, is based on the massless modes of the induced spinor
fields as solutions of the induced, or possibly of the modified Dirac equation determined by
the classical action and superconformal symmetry [L15] [K10]. This phase is the analog of
quark-gluon plasma.

The fundamental description of interactions in terms of the X4 phase whereas many-fermion
states correspond to the H phase. The parameterization of quantum states in the H phase
is possible in terms of a phenomenological description and is the goal of this work.

2. For the H-picture for which second quantized free H spinor fields are fundamental. In the
”world of classical worlds” (WCW) spinor fields of WCW are classical spinor fields and
WCW spinor structure and WCW gamma matrices are expressible in terms of the oscillator
operators of the second quantized H spinor fields. Their anticommutator defines WCW
Kähler metric metric [K8] [L7].

3. Color confinement can be understood at H and WCW levels. The additivity of the mass
squared allows us to predict color confinement [?] from the H Dirac equation alone. Also p-
adic thermodynamics [K4] [L5] assumes the additivity of mass squared. Tachyons play a key
role in the mechanism in the orbital degrees of freedom of CP2 and neutrino screening takes
care of color confinement in CP2 spin degrees of freedom and reduces to weak confinement
for weak interaction in hadron scale instead of intermediate boson scale.

This leads to a general view about particle reactions generalizing the notions of hadronization
and transition from hadron phase to quark gluon phase. Classical picture in the massless
phase relies on the notion of a magnetic body for hadrons and quarks consisting of monopole
flux tubes.
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In this work the implications of the updated vision of standard model physics and hadron
physics is considered. The goal is to develop a phenomenological picture of hadrons based on the
general mathematical framework of TGD and on the interpretation of strong and weak interactions
as different aspects of color interaction.

The additivity of the mass squared values identified as conformal weights at the level of the
embedding space H is a crucial assumption made also in the p-adic mass calculations. One must
check whether this assumption is physically sensical and how it relates to the additivity of masses
assumed in the constituent quark model and understand the relation between the notions of current
quark mass and constituent quark mass. One should also identify various contributions to the
hadron mass squared in the new picture and understand the hadronic mass splittings.

The identification of color interactions in fermionic isospin degrees of freedom as weak interac-
tions with a p-adically scaled up range explains the mass splittings due to isospin. The smallness of
the Weinberg angle for scaled up weak interactions can explain how the interactions become strong
and why the parity violation for strong interactions is small.Note however that there is evidence
for a large parity violation in strong interactions from RHIC [C1] discussed from the TGD point
of view in [K5]. A formula for Weinberg angle is deduced in terms of fermion masses.

In the sequel I describe the calculations in detail. The reason is that the results mean a
breakthrough in the development of the TGD view of strong interactions. If some colleague raising
a monthly salary could somehow become motivated to demonstrate that I am wrong, this would
make it easy to go through the arguments to find mistakes.

2 Phenomenological description of strong interactions in
TGD

The prediction that both leptons and quarks move in color partial waves of H = M4×CP2 spinor
fields predicting a hierarchy of copies of standard model physics [L15, L14] and the identification of
strong interaction as a weak interaction in a longer p-adic length scale than usually p-adic length
scale [L16] are the perhaps the most dramatic modifications of the standard model view of particle
physics.

2.1 The generalization of the QCD description of hadronic reactions

TGD modifies considerably the QCD description of strong interactions and this modification gen-
eralizes to all interactions.

2.1.1 H phase and X4 phase as the TGD counterparts of hadron phase and quark-
gluon plasma

Generalizations of the hadronic phase and quark-gluon plasma phase to what I call H phase and
X4 phase are in a well-defined sense universal and apply to both quarks,leptons, and gauge bosons
and even gravitons [L16].

1. The hadronic description of the initial and final states of reactions as many-fermion states
in H: one might speak of the H phase. The crucial difference to the standard model is that
mass squared is assumed to be additive in H phase as a conformal weight. 8-D masslessness
for the entire hadronic state plus the condition that mass is below the CP2 mass scale
requires the vanishing color Casimir operator and implies color confinement. Masslessness
means conformal confinement, which requires the allowance of tachyonic conformal weights
for composite fermions but not for physical states. Tachyons also appear in string models.
The additivity of the mass squared at the hadronic level also makes it possible to understand
color confinement. Note however that the conformal weight is not a conserved quantum
number.

2. The description of reactions by means of induced spinors of space-time surface X4 as massless
solutions of the induced/modified Dirac operator [L15] generalizes the notion of quark-gluon
plasma [L16]. By holomorphy = holography correspondence, the incoming particles corre-
spond to the analogs of Bohr orbits, which are however slightly non-deterministic such that
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the loci of non-determinism correspond to singularities to which interaction vertices can be
assigned.

The interactions are contact interactions in the sense that they can be assigned to the inter-
section of space-time surfaces as Bohr orbits of 3-D particles. For the same Hamilton-Jacobi
(or equivalently Kähler-) structure [L6, L18, L16] the intersections are 2-D string world sheets
but otherwise consist of a discrete set of points. This means a stringy description of the inter-
actions. Common H-J structure means that the interacting/ intersecting space-time surfaces
have common light-like coordinates u and v as hypercomplex analogs of complex coordinate
and its conjugate. The independence of the functions defining the space-time surface from
say v, implies that it this coordinate is not dynamical so the intersections are analogous to
the orbits of straight strings.

The emergence of the TGD analogy of the quark-gluon plasma phase resp. hadronization
corresponds to the transition from the H phase to X4 phase resp. X4 phase to H phase.

2.1.2 Finding of a phenomenological description of H phase as a basic challenge

Interactions in the massless X4 phase affect the hadronic final states as H states. The challenge
is to develop a phenomenological parameterization of the consequences of these interactions at the
hadronic level.

1. At the X4 level, massless current quarks are a natural concept. At the hadronic level, massive
constituent quarks are a more natural concept. Therefore the concept of constituent quark
should be generalized from the Gell-Mann quark model to TGD.

2. One must understand the contributions to the hadron mass in the H phase at the level of
phenomenology. Tachyonity is an additional element in the description at the level of H and
means that constituent quarks are extremely massive. Apart from the covariantly constant
right-handed neutrino, the H spinor modes have CP2 mass scale, which is 10−4×mPl. In an
excellent approximation, the quarks are at rest at the level of H but this is true only when
quark 3-momenta are measured with respect to the CP2 mass scale. With respect to the
hadron mass scale the quark momenta can be large.

3. In the H description the additivity of mass squared is natural. The additivity of energy and
momenta is not in conflict with the additivity of mass squared. However, in the phenomeno-
logical description provided by the Gell-Mann model, the additivity of mass is natural if the
constituent quarks are non-relativistic and as a good approximation at rest. The assumption
about static quarks in a sharp conflict with the additivity of mass squared.

H the additivity of mass squared is however consistent with the additivity of the 4-momenta
if one has (

∑
pi)

2 =
∑
p2
i . This requires that the state satisfies the constraint

∑
i,j

pi · pj = 0 . (2.1)

This gives for the four-momenta p = (Ei, pi,3) the condition

∑
i,j

EiEj − p3,ip3,jcos(θi,j) = 0 , (2.2)

which cannot be satisfied for positive energies unless the quarks are massless and have parallel
momenta. This would require that interaction terms in the mass squared formula are needed.
These terms would naturally relate to the presence of tachyonic momenta perhaps having
interpretation as the counterpart of attractive interaction energy.
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2.2 General form for the hadron mass formula assuming mass squared
additivity

The goal is to deduce a master formula for the hadron mass. The additivity of mass squared
identified as conformal weight is assumed at the fundamental level and the additivity of masses can
hold true only for the effective quark masses if there is a large additional contribution identifiable
as the TGD counterpart of the large gluonic contribution of QCD.

2.2.1 Various contributions to the hadron masses

The first challenge is to identify various contributions to hadron masses, or more precisely, to the
mass squared of hadron interpreted as a conformal weight.

1. The contribution of the parton surface genus explains the mass differences between fermion
generations. The simplest assumption is that it does not depend on the charge state except
through the CKM mixing.

This is supported by a comparison of the mass differences between baryons and off-diagonal
mesons: the mass difference for hadrons that differ by replacing the d quark with the s quark,
the additive mass formula is a good approximation. For example, D and Ds and B and Bs
and light baryons for which the Gell-Mann mass formula works well. For diagonal mesons,
mixing makes the comparison difficult. One must also consider baryons containing c and b
and here deviations occur as will be found.

2. The internal self-interaction energy of a quark produced due its interaction with neutrino-
antineutrino pair screening its weak charges.

This energy is negative because the total isospin for a quark on a scale larger than its size
is zero. The self-interaction energy corresponds to the interaction energy of a quark and
neutron pair νLνR (νLνR) and reduces to the interaction energy between a quark and its
conjugate νL (νL). The quark and neutrino pairs reside at the opposite ”ends” of a closed
monopole flux tube, each of which corresponds to a Euclidean wormhole contact connecting
2 spacetime sheets with Minkowskian signature.

It is noteworthy that the right-handed neutrino, which is the standard model’s thorn in the
side, plays a key role in TGD in both the quark and lepton sectors. It makes makes possible
electroweak screening, which in turn essentially corresponds to the creation of a color singlet
in the spin degrees of freedom of CP2. The fundamental mode for a right-handed neutrino
is massless because it is a covariant constant in CP2.

3. Magnetic contribution from the monopole flux tube of quarks and hadrons

The length of the flux tube associated with a quark characterizes the quark by giving a
magnetic contribution to the energy that is proportional to the length of the flux tube and
the string tension, which corresponds to the area of its M4 projection. The lengths are
different for U and D quarks except for u and d. The strings of U quarks are shorter than
those of D quarks. Examples of this are c-s and t-b.

4. The contribution of the hadronic magnetic body.

Fractality allows for hadronic flux tubes containing quark flux tubes inside them. Both
quarks and hadrons are therefore characterized by string tensions that correspond to their
mass scale, which would follow the p-adic length-scale hypothesis.

If it makes sense to talk about a hadronic strings as parts of the hadron magnetic body, the
the square of the reciprocal of the radius of the hadronic string could define the parameter
chracterizing a given hadronic physics. In the hadronic string model, which preceded QCD,
it was of the order T = 1/GeV2 ' 1/m2

N . This parameter would be determined by the p-dis
length-scale hypothesis. For ordinary hadrons it would be k = 107 and for M89 hadrons
k = 89.

The hadronic magnetic body is expected to have an onion-like structure such that large layers
give small corrections to the mass squared.
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5. Inside a hadron, the weak interaction for quarks corresponds to the traditional strong inter-
action in terms of strong isospin. It depends on the quark charges and spins and is important
in understanding mass differences. Weak magnetic interaction gives rise to the TGD coun-
terpart for the QCD description of color magnetic spin-spin splitting explains for instance
ρ− π and ∆−N mass splittings.

The general additive formula for the mass squared of the hadron, identified as a conformal
weight, is a direct generalization of the additive mass formula:

M2
H =

∑
i

m2(qi, νν) +
∑
i

m2(gi) +
∑
i

m2
i (magn, qi) +m2(magn, hadron) +

∑
i,j

m2)(qi, qj) .(2.3)

There are two additive quark level contributions, magnetic hadron level contribution and inter-
action contributions including scaled up weak Coulomb interaction and scaled up weak spin-spin
interaction as an analog of color magnetic spin-spin interaction. Also the interactions of quark and
neutrino spin with the weak magnetic field of the mopole flux tube assignable to the quark are
involved.

2.2.2 Quark level parameters

Consider first the quark level contributions to the mass squared identified as conformal weight.

1. Genus contribution m2(g) is associated with the end second end of the quark string and is
characterized by the p-adic length scale of the particle string. For a given p-adic length cale
it does not depend on the charge of the quark (note however the effects caused by CKM
mixing due to the different topological mixings of U and D type quarks).

2. The contribution m2)(qi, nuν) + m2)(magn, quark) is associated with the quark string and
depends on its p-adic length scale. The sign of m2)(qi, νν) is always negative and could
partially explain the mass differences of U and D type quarks and the dependence of the
p-adic mass scale on the quark. Note that p-adic thermodynamics predicts slightly different
masses for U and D type quarks with the same p-adic prime.

The Coulomb interaction energy between isospins of the quark and neutrino is negative. It
depends on the length of the string. The effective 1-D increases with distance. The string
carries Kähler magnetic field. The competition between these two contributions determines
the length of the string and the p-adic length scale of the particle. There could also be a
spin-spin interaction proportional to the product of inverse of the neutrino and quark mass
and analogous to the color magnetic spin-spin interaction energy. One can argue that the
interaction energy of the neutrino with the strong monopole magnetic field of the quark flux
tube dominates.

2.2.3 Hadron level parameters

At the level of hadron there are 3 kinds of contributions to the hadron’s mass squared identified
as conformal weight at the level of hadron.

1. The confromal weight m2(magn, hadron) is characterized by the hadronic string tension and
the lengths of monopole flux tubes associated with the hadronic magnetic body characterized
by the hadronic p-adic length scale. p = 107 is a good guess for nuclei.

2. m2)(qi, qj) correspond to weak interaction conformal weights associated with weak isospin but
are strong in the sense of having a long range characterized by the p-adic length scale. This
interaction corresponds to the standard view of the strong interaction. Here also magnetic
spin-spin interaction between isospins analogous to corresponding interaction in QCD is
involved.

3. Also the interaction conformal weights m
2)
q (magn) and m

2)
νL(magn) of the quark and neutrino

spins with the magnetic field B of the monopole flux tube must be included.



2.3 An estimate for the value of the parameter M2
0 from color magnetic spin-spin

splitting 9

2.3 An estimate for the value of the parameter M2
0 from color magnetic

spin-spin splitting

Also the color magnetic spin-spin splitting between ρ and π and more generally between pseu-
doscalars and vector/axial vector mesons. This splitting occurs also for baryons, say as N − ∆
splitting. I have discussed the splitting in [K7]. What is nice is that if the parameter M2

0 is the
same for the split pair, it would come as a prediction. In principle, this induces only a shift of the
parameter M2

0 when estimated without taking into account this splitting as is indeed done in the
sequel. The hypothesis of this article that M2

0 corresponds to octaves of the basic scale can be
compared to the prediction from spin-spin splitting. In the case of light mesons this shift is large
but for baryons it is very small.

Consider first the standard view of the splitting for the ρ− π system.

1. The splitting is of the form

m(ρ) = m0 + 3∆m
4 , m(π) = m0 − ∆m

4 ,

m0 = m(ρ)+3m(π)
4 , ∆ = m(ρ)−m(π) .

(2.4)

2. The splitting is proportional to the color coupling strength αs and the product of the inverses
of quark masses appear in the color magnetic moments of quarks. Also the factor 1/d3, where
d is the distance between quarks appears so that one has

∆m ∼ αs
s1 · s2

m1m2d3
, (2.5)

where d is the distance between quarks.

3. For pions, one has m0 ' 280 MeV, roughly twice the pion mass. A dimensional estimate for
the splittings is as ∆m ' 630 MeV which can be written as ∆m = αsm, where m is a mass
parameter. An estimate using light quark mass mu = md ' 5eV and αs = .1 gives nuclear
length scale d ' 10−14 m which is also the Compton scale of pion. This expression applies
also to other meson pairs such as K − K∗ and η − ω. For heavier meson the model does
not work well. The splittings are larger than predicted splittings which should be inversely
proportional to the product of the masses of the heavy quarks and therefore very small.

A natural guess is that this splitting has a TGD counterpart with SU(3) replaced with a scaled
up weak splitting for group SU(2)w representable as a subgroup of SU(3). Since mass squared is
now additive, it is not quite clear how to generalize the formula for the mass splitting. One can
consider two options.

1. One could identify the masses of ρ and π in terms of the already given non-relativistic formula
and calculate the mass squared values from this. This would bring nothing new. For the
N − ∆ system one can also consider a linear approximation ∆m2

0 = 2m0∆m, as ∆m. In
the case of pion the splitting is however rather large so that one can challenge the linear
approximation. Linearization is however a reasonable first guess and would have in the case
of pion

m2(ρ)2 = m2
0 + 2m0

3∆m
4 , m2(π) = m2

0 − 2m0
∆m

4 ,

m0 = m(ρ)+3m(π)
4 , ∆ = m(ρ)−m(π) .

(2.6)

∆m can be estimated as the interaction energy of color magnetic dipole moments proportional
to the spin and inverse of the quark mass. The product of spins gives a factor determining
the spin dependence of the splitting.



3. p-Adic mass calculations and the phenomenological picture 10

2. One can consider also an ad hoc formula obtained by replacing the meson mass with the
mass squared in the standard formula

m2(ρ)2 = m2
0 + 3∆m2)

4 , m2(π) = m2
0 − ∆m2)

4 ,

m2
0 = m2(ρ)+3m2(π)

4 , ∆m2) = m2(ρ)−m2(π) .
(2.7)

(a) In a linear approximation for m as square root of m2, one obtains the non-relativistic
formula for the mass splitting

m(ρ) ' m0 + 3∆m
4 , m(π) ' m0 − ∆m

4 ,

∆m = ∆m2)

8m0
.

(2.8)

(b) The analog of the standard formula in terms of color magnetic moments is obtained
from the identification

∆m2) = 2m0∆m . (2.9)

where ∆m is the analog for the standard expression for the spin-spin interaction en-
ergy having the same group theoretic structure. Now however the formula m0 =√

3×m2(S) +m2(V )/2, where S resp. V refers to scalar resp. vector, would replace
the formula m0 = (3×m(S) +m(V ))/4.

(c) For pion one would obtain for the parameter m2
0 identifiable as M2

0 the value m2
0/m

2
p '

.18 m0/mp = .43, that is 404 MeV and is larger than 280 MeV for the standard model.

(d) Could this have implications in the case of heavy quarks? If the value of m0 in the
above formula is larger than the value given by the standard formula, this is the case.
However, in the approximation mV = mS + ∆, one obtains m0 =

√
m2

0 ' mS +
∆/4 + (15/16)∆2/8ms, which is slightly larger than the prediction m0 = ms + ∆ of the
standard model.

3 p-Adic mass calculations and the phenomenological pic-
ture

In this section p-adic mass calculations for hadrons are discussed. Sections stars with objections,
then various p-adic mass scales assignable to hadron are discussed, contributions to the masses
of baryons and meson are identified and masses for quark are deduced from the mass spectra of
baryons and mesons.

3.1 Some objections against p-adic calculations

It is good to start with some objections against p-adic thermodynamics.

1. The first objection is following. Quarks would correspond to different values for p-adic prime
p determining their mass scale. One should sum over the mass squared values in different
p-adic number fields. The proposal is that this problem might be solved by the concept of
multi-p-adicity [L5] [K4], which is made possible by adelicity meaning that different p-adic
number fields are combined to adele with the additional assumption that these fields intersect
each other: the numbers that are power series with respect to an integer n are p-adic with
respect to the prime factors of n. A hadron would be a multi-p-adic object.

2. The notion of n-adic thermodynamics is well-defined but the problem is that each factor of
n gives rise to different values of real mass squared by canonical identification. Should one
sum over the real mass squared values and interpret it as mass squared for a many-fermion
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state? It is however far from clear whether this sum is identifiable as sum of the mass squared
values for different particles.

Should one use adelic theorem stating that rational numbers can be expressed as the product
of their p-adic norms. Could the real mass squared associated with n-adic mass squared be
defined as a product of p-adic norms for the mass squared obtained using n-adic thermody-
namics. Only the factors of n would appear in the product.

3. CKM mixing reduces in TGD to different topological mixings for the partonic 2-surfaces
assigned with U and D type quarks: the same applies in the leptonic sector. In [K7] the
number theoretically motivated hypothesis that the CKM matrix is a complex rational matrix
was studied.

This however led to very large CKM mixing for g = 0 and g = 1 topologies and changed
their roles: the lowest mass would correspond to g = 1 topology! Since the number theoretic
hypothesis was rather ad hoc, one cannot take this result seriously. There is also another
problem: the real counterparts of the cosines and sines associated with the CKM mixing
matrix in canonical identification does not give rise to a unitary matrix so that the rationality
of the CKM matrix is the worst possible option!

The most plausible solution of the problem relies on the fact that the matrix elements of
unitary matrice are in general expressible in terms of cosines and sines. Only the sines and
cosines associated with Pythagorean triangles are rational numbers. It can also happen that
some genuinely algebraic numbers reduce to rational numbers in some p-adic number fields.
If this does not happen, the associated phases can be mapped to themselves in canonical
identification for the p-adic number field considered, In the case of n-adic numbers, the
condition would be that this condition is true for all prime factors of n.

3.2 Does the Lorentz invariance for p-adic mass calculations require the
p-adic mass squared values to be Teichmüller elements?

p-Adic mass calculations involve canonical identification I : x =
∑
n xnp

n
∑
xnp

−n mapping the p-
adic values of mass squared to real numbers. The momenta pi at the p-adic side are mapped to real
momenta I(pi) at the real side. Lorenz invariance requires I(pi ·pj) = I(pi) ·I(pj). The predictions
for mass squared values should be Lorentz invariant. The problem is that without additional
assumptions the canonical identification I does not commute with arithmetics operations.

Sums are mapped to sums and products to products only at the limit of large p-adic primes p
and mass squared values, which correspond to xn ≤≤ p. The p-adic primes are indeed large: for
the electron one has p = M127 = 2127 − 1 ∼ 1038. In this approximation, the Lorentz invariant
inner products pi · pj for the momenta at the p-adic side are indeed mapped to the inner products
of the real images: I(pi · pj) = I(pi) · I(pj). This is however not generally true.

The question following.

1. Should this slight failure of Lorentz invariance be accepted as being due to the approximate
nature of the p-adic physics or could it be possible to modify the canonical identification?
It should be also noticed that in zero energy ontology [K11], the finite size of the causal
diamond (CD) reduces Lorent symmetries so that they apply only to Lorenz group acting on
either vertex of the CD.

2. Or could one consider something more elegant and ask under what additional conditions
Lorentz invariance is respected in the sense that inner products for momenta on the p-dic
side are mapped to inner products of momenta on the real side.

A possible solution of this problem is based on the notion of Teichmüller elements defining a
representation of finite field Gp in the field of p-adic numbers is discussed.

1. Teichmüller elements T (x) associated with the elements of a p-adic number field satisfy
xp = x, and define therefore a finite field Gp, which is not the same as that given by p-adic
integers modulo p. Teichmüller element T (x) is the same for all p-adic numbers congruent
modulo p and involves an infinite series in powers of p.
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The map x → T (x) respects arithmetics. Teichmüller elements of for the product and sum
of two p-adic integers are products and sums of their Teichmüller elements: T (x1 + x2) =
T (x1) + T (x2) and T (x1x2) = T (x1)T (x2).

2. If the thermal mass squared is Teichmüller element, it is possible to have Lorentz invariance
in the sense that the p-adic mass squared m2

p = pkpk defined in terms of p-adic momenta pk
is mapped to m2

R = I(m2
p) satisfying I(m2

p) = I(pk)I(pk). Also the inner product p1 · p2 of
p-adic momenta mapped to I(p1 ·p2) = I(p1) ·I(p2) if the momenta are Teichmüller elements.

3. Should the mass squared value coming as a series in powers of p mapped to Teichmüller
element or should it be equal to Teichmüller element?

(a) If the mass squared value is mapped to the Teichmüller element, the lowest order contri-
bution to mass squared from p-adic thermodynamics fixes the mass squared completely.
Therefore the Teichmüller element does not differ much from the p-adic mass squared
predicted by p-adic thermodynamics. For the large p-adic primes assignable to elemen-
tary particles this is true.

(b) The radical option is that p-adic thermodynamics and momentum spectrum is such that
it predicts that thermal mass squared values are Teichmüller elements. This would fix
the p-adic thermodynamics apart from the choice of p-adic number field or its extension.
Mass squared spectrum would be universal and determined by number theory. Note that
the p-adic mass calculations predict that mass squared is of order O(p): this is however
not a problem since one can consider the m2/p.

This would have rather dramatic physical implications.

1. If the allowed p-adic momenta are Teichmüller elements and therefore elements of Gp then
also the mass squared values are Teichmm̈uller elements. This would mean theoretical mo-
mentum quantization. This would imply Teichmüller property also for the thermal mass
squared since p-adic thermodynamics in the approximation that very higher powers of p give
a negligible contribution give a finite sum over Teichmm̈uller elements. Number theory would
predict both momentum and mass spectra and also thermal mass squared spectrum.

What does it mean that the product of Teichmüller elements is Teichmüller element? The
product xy can be written as

∑
k(xy)kp

k, (xy)k =
∑
l xk−lyl. For Teichmüller elements

(xy)k has no overflow digits. This is true also for I(xy) so that I(xy) = I(x)I(y). Similar
argument applies to the sum.

2. The number of possible mass squared values in p-adic thermodynamics would be equal to the
p-adic prime p and the mass squared values would be determined purely number theoretically
as Teichmüller representatives defining the elements of finite fieldGp. The p-adic temperature
[L13], which is quantized as 1/Tp = n, can have only p values 0, 1, ...p − 1 and 1/Tp = 0
corresponds to high temperature limit for which p-adic Boltzman weights are equal to 1 and
the p-adic mass squared is proportional to m2 =

∑
g(m)m/

∑
(g(m)), where g(m) is the

degeneracy of the state with conformal weight h = m. Tp = 1/(p− 1) corresponds to the low
temperature limit for which Boltzman weights approach rapidly zero.

3.3 p-Adic mass calculations in the hadronic sector

The mass calculations of leptons using p-adic thermodynamics are reasonably well understood [K4,
K1] [L5] and can serve as a useful guideline in the hadronic case. There are 2 basic contributions:
fermionic contributions and the contributions related to the genus of the parton surface. Genus-
generation correspondence explaining the family replication phenomenon and why there are only 3
fermion generations [K1] is essential. CKM mixing as a difference topological mixings for U and D
type quarks is also important but in the following considerations it will be neglected. The partonic
contribution is non-vanishing for g > 0 and dominates for g = 2.

The situation in the hadron sector not so clear and the recent progress in the TGD view of
standard odel physics might help. Several questions can be posed.
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1. In the TGD counterpart of the quark-gluon phase, X4 phase, the fermions are massless, ex-
cept mass parameters defined by Higgs expectations at the singularities defining the vertices.

p-Adic thermodynamics [K4] applies also at the hadron level [K7] and the proper description
is in terms of generalization of super-conformal representations of Kac-Moody algebra to the
level of ”world of classical worlds” (WCW) [K3, K2, K8] [L7]. At WCW level, the modes of
the second quantize H spinor fields define ground states for these representations.

Since hadrons consist of quarks, it makes sense to speak of quark masses at H level. Does
it make sense to assign p-adic mass scales to both quarks and hadrons? The earlier answer
”yes” conforms with the notion of many-sheeted space-time.

2. What p-adic mass scale does the fermionic contribution from the p-adic thermodynamics
assigned to the conformal scaling generator L0 (conformal weight as mass squared) correspond
to? Are the p-adic length scales the same as for the genus contribution from the partonic
surface? This is the case if the fermionic lines correspond to intersections of string world
sheets with the partonic orbits and will be assumed in the sequel.

3. The favored number of direct summands of the Virasoro algebra is 5. How can one understand
this in terms of fermionic and geometric contributions? There are fermionic contributions
to the scaling generator L0 from weak isospin identified as strong isospin, from the ordinary
spin, and from U(1) charge (electromagnetic charge). This would 3 direct summands to the
Virasoro algebra.

Concerning geometric contributions,let us assume that the description of the space-time
surface as a string world sheet or its deformation makes sense. In good approximation it has
2-D projections to M4 and CP2.

There is a geometric contribution from the 2 real M4 degrees of freedom orthogonal to the
string. By holomorpy, this corresponds to a single complex degree of freedom. Also the
deformations of the 2-D CP2 projection give 1 complex degree of freedom. This would give
3+2 5 degrees of freedom.

3.3.1 What p-adic mass scales are involved?

What p-adic mass scales does the description of hadron involve?

1. The massdifference between a proton and a neutron would most naturally correspond to the
difference associated with the weak isospin identifiable in the TGD framework as fermionic
color isospin and strong isospin. This mass difference is of order 1 MeV and suggests that
k = 127 space-time sheets with the size of order electron Compton length are involved with
the description of the hadron.

I have proposed that these sheets correspond to long monopole flux tubes assignable to the
magnetic body of the hadron and proposed that they could solve the anomaly due to the
slightly too large charge radius of the proton. These space-time sheets would play a key role
in the description of the energy levels of the nuclei for which MeV defines the natural length
scale. If these flux tubes correspond to the hadronic magnetic body, then their contribution
to the mass squared would be small.

2. ρ − π mass difference (see this and this) is large, of the order of 530 MeV. This suggests
the presence of a hadronic p-adic length scale, which corresponds to either hadronic p-adic
length scale k = 107 or k = 109. This space-time sheet could be accompanied to hadron
itself characterized by hadronic mass scale.

In QCD, color magnetic spin-spin interaction describes the mass squared difference and
in TGD the corresponding interaction would be associated with isospin. This interaction
explains also the large mass differences for baryons: N − ∆ mass difference is the basic
example.

3. The earlier considerations suggest that one can assign to pion a mass scale with is around
the p-adic mass scale k = 113 assigned with the nuclei. The mass scale would be about
mp/8 ' 940/9 = 100 MeV and would relate to the description of strong interactions in terms
of meson exchanges, in particular pion exchange.

https://en.wikipedia.org/wiki/List_of_mesons
https://en.wikipedia.org/wiki/List_of_baryons
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4. What about the role the Kähler structure of M4 important having also interpretation as
Hamilton-Jacobi structure? It has become clear that the hypercomplex part of the Kähler
form of M4 must vanish. This conforms with the physical intuition that only 2 M4 degrees of
freedom are dynamical and corresponds to the degrees of freedom orthogonal to that string
world sheet.

3.3.2 Contributions to the meson mass squared in the phenomenological picture

I have tried to develop a view of the contributions to mass or mass squared in the hope of getting
estimates for the quark masses and other parameters.

1. Mass differences for the mesons are therefore informative. Off-diagonal mesons do not mix
and are easy. They can be taken as a starting point. For diagonal bosons such as η, η′ and
heavier neutral mesons mixing brings in additional parameters. We can compare the mass
(squared) differences of mesons containing s, c and b to those not containing them.

2. The contribution from the genus of the partonic 2-surface dominates in p-adic mass calcula-
tions for g = 2 and is non-vanishing and large also for g = 1 but vanishes for g = 0. This
contribution depends on the p-adic length scale kq of the quark and the simplest assumption
is that kq does not depend on the hadron.

u, d, s, ... would correspond to a hierarchy of partonic 2-surfaces characterized by genus and
p-adic length scale kq. The CKM mixing due to the different topological mixings of partonic
2-surfaces must be also taken into account.

3. Quark would correspond to a fermion line as a boundary of a string world sheet at the orbit
of a partonic 2-surface identifiable as an ”end” of a closed 2-sheeted monopole flux tube.
”Ends” of the flux tube would be Euclidean wormhole contacts between the Minkowskian
space-time sheets.

String tension and length would parameterize the monopole flux tube and the simplest as-
sumption is that the p-adic prime is the same for the monopole flux tube and the partonic
2-surface carrying the quark and equals to kq.

4. Electroweak screening and its scaled variant for hadrons would realize color confinement in
CP2 spin degrees of freedom as electroweak screening above the meson length scale. The
second ”end” of the flux tube carries νLνR neutralizing the weak charge.

Can one assume that the p-adic prime of νL is the same as that for quark or that νL has the
same p-adic length scale as the ordinary neutrino? The quark mass would contain a rather
large additional contribution unless the negative contribution from the interaction of the
quark with the left-handed member of the neutrino pair compensates for it. This cancellation
might take place also for the ordinary neutrinos and explain why they are almost massless.
One must of course keep in mind that this picture is only one possible option.

5. There is also a weak, or actually rather strong Coulomb interaction, between quarks. It
can be repulsive or attractive. It could help to understand the ”too large” Ds − D mass
difference, the ”too small” Σc − Ξc mass difference and the ”wrong” sign of Σb − Ξb mass
differences which cannot be understood in a simple quark model without interactions. This
will be discussed later.

6. There is a hierarchy of p-adic length scales reflecting the many-sheeted of the space-time
and the scale of mass differences allows us to make tentative identifications of kq and p-adic
primes characterizing the hadron or its magnetic body.

k = 127 would relate to the mass differences between u and d measured in MeVs. This
scale could be assigned to hardon or its magnetic body of hadron with size about electron
Compton length: this could relate to the anomalously large charge radius of proton.

Muon and possibly also atomic nucleus corresponds to k = 113. It could also characterize
u and d quark if the mass squared is additive. The s-d mass difference of order 400 MeV
suggests that s quark could correspond to k = 109 or even k = 107 defining the nucleon mass
scale.
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3.3.3 Mass formula for mesons

The basis formula for the mass squared of a M is

m2(M) =
∑
i=1,2

m2
0(kqi) +m2(g, kqi) +m2)(kqi) + Y

=
∑
i=1,2

m2
0(113) +m2(g, 113) +m2)(113)]2kqi−113 + Y . (3.1)

Here m2) denotes sum of the negative quark-neutrino interaction conformal weight and of the
neutrino contribution to the mass squared of the quark monopole flux tube. m2) includes also a
positive contribution from the string tension of the monopole flux tube.

Y denotes the contribution to the interactions of quarks and possible contribution from the
magnetic body of the system. In the case of baryons this contribution is large and has interpretation
in terms of the hadronic string tension. The color magnetic spin-spin splitting of the ρ− π system
implies that the mass of the pion without this splitting is around 330 MeV. This suggests a
contribution to the magnetic body of the pion considerably larger than the quark contribution.
This contribution could be interpreted in terms of hadronic string tension.

The almost masslessness of free neutrinos and the success of the mass squared formula for the
pion suggest that this contribution for u and d quarks is very small but could be sizable for more
massive quarks.

Using pion mass squared as a unit one can write the mass squared formula as

m2(M)

m(π)2
=

∑
i=1,2

[X1(i) +X2(gi) +X3(gi)]2
113−kqi + Y ,

X1(i) =
m2

0(113)

m(π)2
,

X2(g) =
m2(g, 113)

m(π)2
,

X3(g) =
m2)(113)

m(π)2
(3.2)

Y counts for the strong isospin interaction energies between quarks and for the magnetic energy of
the meson. It is useful to estimate the parameters appearing inside the brackets [] in the formula
for a given value of g.

X1 refers to the purely fermionic contribution, X2 refers to the contribution from the genus of
the partonic orbit, and X3 to the contribution of from the magnetic energy and scaled weak inter-
action of fermion with the screening νLνR pair. The detailed formulas for the various contributions
will be discussed later.

The original view was that the formulas can be applied to non-diagonal mesons M for which
no mixing with other mesons takes place in the old fashioned quark models. However, it turned
out that model works excellently for diagonal mesons without any mixing, even better than for
non-diagonal ones.

3.3.4 Mass formula for baryons

One can also consider baryons. The Gell-Mann model with additive quark masses works nicely and
it is far from obvious that additivity for quark masses could work. If one assumes that quark masses
are for baryons the same as for mesons the only conclusion reached by studying nucleon mass is that
the additive mass squared formula must contain a large contribution M2

0 (B) which dominates over
the quark mass squared values m2

q. For baryons this would give in good approximation an additive
mass formula but with quark masses replaced with effective quark masses mq,eff = m2

q/2M0(B).
The interpretation mq,eff could be in terms of current quark masses deduced from the mass
differences between hadrons.
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It turns out that M0(B), and more generally M0(H), depends on the hadron. The requirement
that the effective masses mq do not depend on hadron implies that M0(H) is an octave of M(N)
or M(π) and that m2

q scales like M0(H).
M0(H) is identifiable as the TGD counterpart of the gluon contribution in QCD and would

correspond to the magnetic body of baryon. u and d masses are of order 2-5 MeV. M2
0 (H) would

correspond to hadronic string tension in a good approximation. This suggests an interpretation in
terms of hadronic string model generalized so that quarks monopole flux tubes are associated with
hadronic monopole flux tubes.

3.3.5 Mass formulas for quarks

It is possible to estimate quark masses from the p-adic mass formulas which include the contribu-
tion coming from genus [K4, K1] [L5]. From these formulas one can deduce convenient formulas
for m2

q/m
2
e using ke = 127 and simplifying the notation:

m2
q

m2
e

= 2127−kq

3
Aq
Ae

,

Au = 5 +Xu , Ac = 14 +Xc , At = 65 +Xt ,
Ad = 8 +Xd ,
As = 17 +Xs , Ab = 68 +Xb , A(e) = 5 +Xe.

(3.3)

The corrections Xq and Xe are positive and smaller than 1.

3.3.6 Mass splittings due to weak interactions in hadron scale

The identification of strong isospin, fermionic color isospin and weak isospin and strong interaction
as a weak interaction with a p-adically scaled up range means a rather dramatic modification of
the QCD picture.

1. The weak interaction would manifest itself as a Coulomb force analogous to the color Coulomb
force possibly important for understanding the mass splittings of hadrons and as magnetic
spin-spin interaction explaining ρ− π and ∆−N mass splittings.

2. At the level of H spinors color triplets for quarks can be understood. How do they emerge
at the level of X4. CP2 is analogous to a sphere but has 3 poles. This gives rise to the
counterpart of 3-fold color at the space-time level. There are 3 types X4 spinor modes
associated with the space-time surfaces having a hole associated with one of these 3 poles.
This implies that in the basic vertex describing creation of fermion pair αw is replaced with
9αw ' αs.

3. One can ask whether the increase of the p-adic length scale means that αw increases so the
scaled up weak force becomes even stronger in the hadronic scales - just as in QCD.

4. A serious objection is that large parity breaking effects in hadronic scales are predicted. I
have discussed this objection in [L11]. The smallness of sin2(θW ) for the scaled up variants
of weak interaction as strong interaction could make these effects small for hadrons.

3.3.7 Scaled up variant of weak Coulomb interaction and mass splittings of hadrons

p-Adic mass calculations predict different masses for U and D type quarks and the obvious question
is whether this could explain the mass squared difference between hadrons. It turns out that this
is not true. For pions one would obtain no mass splittings and for nucleons the predicted mass
splitting is too small. Could the weak Coulomb force explain the splittings?

Consider nucleons as an example. Proton corresponds to uud and neutron to udd and in absence
of electroweak contribution the additivity of mass squared gives

m2
n −mp2 = m2

d −m2
u . (3.4)
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The sign is correct but for the kd = ku = 113 option for the p-adic mass scales the splitting is
by a factor 1/4 too small.

1. For proton (uud) there is attractive weak Coulomb interaction between u-d pairs and repulsive
interaction between the quarks of the uu pair. For neutrons (udd), the repulsive interaction
is between members of the dd pair.

2. The first guess is that weak Coulomb force between quarks contribute to the mass squared
m2
H of the hadron a contribution, which is given by

∆m2
ij = 2mij∆mij , mij =

√
m2
i +m2

j , (3.5)

where ∆mij is identified as the weak Coulomb interaction energy of the quark pair in its rest
system.

3. For the n-p mass squared difference this would give additional contribution

∆(m2
n −m2

p) = 2(mdd∆mdd −muu∆muu) . (3.6)

Here the additivity of mass squared gives mqq =
√

2mq.

The physical intuition suggests that ∆mij corresponds to weak Coulomb interaction energy
∆mqq in the rest system of quark pair.

4. Since the quarks have the same isospin, the interaction is repulsive: this case is relevant for
n-p mass difference. The distance between quarks qi and qj of the same isospin is of the
order of the hadronic Compton length scale Lc(H) = 2π/mH . This would give the estimate

∆mij ∼
g2
w

Lc(H)
= 2αwm(H) .

Here the vertex for the creation of quark pair suggests that one could have αw → αsw = N2
c αw,

Nc = 3. The formula αw = αem/sin
2(θw) suggests that the value of sin2(θW ) could be

smaller for the p-adically scaled variants of weak interactions in long length scales and make
αw strong.

The basic objection agains TGD view of strong interactions is that it can lead to large parity
violation in hadron physics. The strength of parity violation is proportional to sin2(θw) and
its smallness could make these effects very small for the scaled variants of strong interaction.

5. From above formula, one would obtain

∆(m2
n −m2

p) = 4
√

2αw(mdmn −mump)

= 4(
√

2αw[xdm
2
d − xum2

u] ,

xd = 4
√

2αw
mn
md

, xu = 4
√

2αw
mp
mu

(3.7)

In the approximation mp = mn the correction is proportional to md −mu and is positive as
required. The contribution to the n−p mass difference 1.3 MeV would be ∆(m2

n−m2
p)/(mn+

mp) = .65 MeV and is of correct order of magnitude but lacks factor 2. The increase of αw
by factor 2 to 5× 10−2 would give rise to the needed value. This indeed is the magnitude of
the weak coupling strength.

6. If the quarks of opposite charge can be regarded free inside the hadronic volume, one ob-
tains apart from sign the previous estimate apart for quark pairs of opposite charges. This
contribution predic correct order of magnitude for Ds −D and Bs −B mass differences.
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In the case of baryons one can also consider the possibility of bound states between quarks of
opposite weak isospin and in the case of mesons between quark and its antiquark.

Atomic physics serves as a guideline making it possible to estimate the energetics.

1. The bound states energy scale for an atom consisting of electron and much heavier proton
is given by α2me/2. In the case of hadron the weak analog of this energy for a quark pair
would be of the order α2

Wmred/2, where the reduced mass is mred = m1m2/(m1 + m2). If
either quark is much lighter, the mass reduces to the mass of the lighter quark. For m1 = m2

one has µ = m1/2. This energy is considerably smaller that the estimate for the repulsive
energy proportional to αwmH .

2. For u and d quarks with mass scale of 100 MeV, the order of magnitude is .025 MeV for the
energy of qq bound state. In this case, the possibility that a bound state is formed and here
atomic physics provides a guideline. For the bound state of c quark and b quark this energy
would be of the order of .5 MeV and could explain the deviation of the TGD prediction for
D mass from the experimental value.

3.4 Deducing the quark masses from baryon masses

One deduce quark masses by using data for the hadron masses provided by the particle Data
Tables. Additivity of mass squared is suggestive for the constituent quarks which in QCD would
be explained in terms of the dominating gluonic contribution. One can compare hadronic mass
differences and try to extract different contributions to the constituent quark masses. One can
uses as data the masses of non-diagonal mesons, for which the mixing does not complicate the
situation.

The motivation for considering baryons first is that for light mesons spin-spin splitting is large
and the use of say pion mass as starting point to deduce quark parameters can lead to wrong
conclusions.

The additive mass formula works well for Gell-Mann model for light baryons and the corre-
spondence of the quark masses in the TGD based model and current quark masses and constituent
quark masses is given by

m2
q(TGD)

2M0
↔ mq(current) ,

mq(TGD)↔ mq(const) .

(3.8)

The values of mq can be deduced from the hadronic mass differences. From the formula

mB =
√
M2

0 (B) +
∑

m2
qi 'M0 +

∑
m2
qi

2M0(B)
(3.9)

one can estimate the quark masses m2
q and compare them to the predictions of p-adic mass

calculations. Note however that Ω baryon with mass 1672 MeV, the first order approximation√
1 + x ' 1 + x/2 is not so good anymore if one assumes M0(Ω) = M0(N).

3.4.1 Mass splittings due to different masses of u and d quarks

The mass splittings between hadrons quarks provide information about quark masses. The Gell-
Mann type model assumes additivity of quark masses and TGD predicts additivity of mass squared
values of quarks.

p-Adic mass calculations predict that the mass squared values for electron and quarks and the
contributions to the masses of U and D quarks coming from standard model degrees of freedom
are different.

An interesting question is whether these U − D mass differences alone can explain the mass
differences of hadrons differing only by the replacement U ↔ D. Let us assume that this is the
case.
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1. The contributions are

m2
U

m2
0

=
5 + ∆

3
2−kU ,

m2
D

m2
0

=
8 + ∆

3
2−kD . (3.10)

The parameter ∆ ≤ 1 corresponds to higher order corrections.

2. The mass formula for electron reads as

m2
e

m2
0

=
5 + ∆e

3
× 2−ke ,

. (3.11)

ke = 127 corresponds to the p-adic prime M127 = 2127 − 1 characterizing the electron.

3. These formulas allow to express quark masses in terms of electron mass:

m2
U

m2
e

=
5 + ∆U

5 + ∆e

1

3
2ke−kU ,

m2
D

m2
e

=
8 + ∆D

5 + ∆e

1

3
2ke−kD . (3.12)

∆e = ∆U looks plausible but ∆u = ∆d is a questionable assumption.

4. The mass squared splitting for U and D type quarks contributes to the proton-neutron mass
difference but, as will be found, not to pion mass difference. The mass squared values for
proton and neutron are given by

m2
n = M2

0 (B) +m2
u + 2m2

d , m2
p = M2

0 (B) + 2m2
u +m2

d . (3.13)

This gives

m2
n −m2

p = m2
d −m2

u . (3.14)

This gives

m2
n −m2

p

m2
e

=
2ke−kd

X
,

X = (5 + ∆e)
3

3 + ∆d −∆u
. (3.15)

This gives the prediction

2ke−kd =
m2
n −m2

p

m2
e

×X .

(3.16)

The neutron and proton masses are mn = 939.565 MeV and mp = 938.272. This gives
(m2

n −m2
p)/m

2
e = 9712.2. For the simplest option ∆u = ∆d and ∆e = 0, the right hand side

equals Y = 48561.
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5. The variation of the parameters ∆u, ∆d and ∆e can transform the right-hand side of the
previous equation a power of 2. The variation of ∆e allows to vary the scale of X in the
range [5, 6]. The variation of ∆u and ∆d gives a factor varying in the range [1/2, 1/4] so that
the value of X varies by an octave. This allows to tune the right-hand side of the equation
so that an integer value of ke − kd is obtained. Due to the variation of ∆d −∆u, the factor
X varies in the range [3/4, 3/2]Y = [32768, 65536].

6. The condition ke−kd = 16 would give kd = 111 and the upper end X = 65536. ke−kd = 112
would give the lower end X = 32768. For ku = kd = 111, the estimate meff

u would be
meff
u = 10.1 MeV. ku = kd = 112 would give meff

u = 5.0 MeV. ku = kd = 113 would give
meff
u = 2.5 MeV but is not allowed by the above estimate.

Of course, the physically quite plausible possibility is that the p − n mass difference is not
solely due to the u− d mass difference.

The prediction for the effective quark mass meff
q = m2

q/(2M0(H)) is

meff
q =

1

3
× 216 × sq + ∆q

5 + ∆e
× m2

e

2M0(H)
. (3.17)

One has (sd, su) = (8, 5) and in an excellent approximation one has M0 = mp = 940 MeV and
me = .5 MeV.

It is possible to test this prediction.

1. There are several empirical estimates for the current quark masses of u and d quark and
they vary in a rather wide range. An earlier estimate that I have used in my own article, is
meff
u ' 5 MeV and meff

d ' 10 MeV. The latest estimatem given by Google, is meff
u ∈

[2.0, 2.4] MeV and meff
d ∈ [4.7, 5.0] MeV. The above estimate favors the first option.

2. The kd = ku = 113 option is not allowed by the assumption that the mass difference for
nucleons are solely due to the u-d mass difference but deserves to be considered since it seems
the most realistic one. For (∆e,∆u,∆d) = (0, 0, 0) the prediction (meff

u ,meff
d ) = (2.91, 4.65)

MeV. The prediction for meff
u is slightly larger than the empirical esimate but the increase

of ∆e improves the situation and is almost consistent with the empirical values. ∆e = 1
gives (mu,md) = (2.43, 3.88) MeV. The increase of ∆d allows to raise the value of md

by at most a factor 9/8 gives (meff
u ,meff

d ) = (2.43, 4.37) MeV to be compared with the
smaller empirically estimated range [2.0, 2.4] MeV and [4.7, 5.0] MeV. This option gives
(mu,md) = (67.6, 90.6) MeV.

3. For the kd = ku = 112 option allowed by the above argument, the effective quark masses
become (meff

u ,meff
d ) = (4.86, 8.76) MeV. I have used this range in earlier considerations

related to quark masses. For this option one has (mu,md) = (95.87, 128.18) MeV.

4. For kd = ku = 111 option the effective quark masses would be (meff
u ,meff

d ) = (9.72, 17.52)
MeV. (mu,md) = (135.2, 181.2) MeV is not consistent with the condition M0(π) ≤ m(π)
so that this option is excluded.

5. The values of quark masses (mu,md) and mπ+ = 139.6 MeV allows to estimate M0(π)
from the formula M0(π) =

√
(m2

π+ − m2
d − m2

u). For kd = ku = 113 not favored by the

above argument, one has (meff
u ,meff

d ) = (2.43, 4.37) MeV giving M0(π) ' 139.51 MeV.
kd = ku = 112 and kd = 111 options would give an imaginary value of M0(π) so that they
are excluded.

The outcome of these considerations is that ku = kd = 113, which corresponds to Gaussian
Mersenne prime and is assigned with atomic nuclei, is favored but that the assumption that
proton mass difference is solely due to the different masses of U and D quarks does not favor this
option. One can invent several explanations for the discrepancy. The scaled weak interactions
between quarks in nucleon length scale contribute to the mass difference. For protons with uud
composition the repulsive Coulombic weak interaction energy for uu pair is expected to be by a
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factor 4 larger than from dd pair. Suppose that the same is true also the interaction conformal

weights m2)u and m
2)
d . The difference ∆w = m2)u − m

2)
d tends to decrease the n − p mass

difference. This contribution transforms the above used formula to

m2
n −m2

p + ∆w = m2
d −m2

u . (3.18)

must be nearly the same as the mass difference due to d − u mass difference in order to reduce
the mass difference by factor 1/4.

m2
n −m2

p → m2
n −m2

p + ∆w '
m2
n −m2

p

4
. (3.19)

3.4.2 The origin of mass splittings of pions

Also the mass differences of pions provide valuable information.

1. The mass of charged pion having ud type decomposition can be written as

m2(π±) = M2
0 (π) +m2

u +m2
d . (3.20)

Here M0(π) corresponds to the ground state contribution which can depend on hadron and
can be deduced one the p-adic mass scales ku and kd mu and md are fixed.

2. The prediction for the mass m(π0) ' 134 MeV of neutral pion is not straightforward. π0

us superposition of uu dd and the additivity of mass squared would suggest that the mass
formula is

m2(π0) = 1
2 [m2(uu) +m2(dd)] ,

m2(uu) = M2
0 (π) + 2m2

d , m2(dd) = M2
0 (π) + 2m2

u .
(3.21)

This gives

m2(π0) = M2
0 (π) +m2

u +m2
d = m2(π±) . (3.22)

so that no mass splitting for pions is predicted. This irrespective of the masses of u and d
quark.

The observed mass splittings must reflect electromagnetic and weak interaction between
quarks: for ud they are repulsive and attractive for qq and this could explain the mass
splitting.

If one assumes that the masses rather than mass squared values appear in the quantum
mechanical formula, one obtains

m(π0) =
1

2
[
√

2m2
d +M2

0 (π) +
√

2m2
u +M2

0 (π)] . (3.23)

Mass splitting would be obtained but in the TGD framework this formula is not logical.

3. In the QCD based model for ρ−π color magnetic mass splitting, the predicted common mass
of ρ and π before taking into account the spin-spin splitting, would be about 330 MeV and
is rather large when compared with the pion mass. Therefore one must be very cautious in
the estimates for quark masses. The TGD counterpart of color magnetic splitting is a scaled
variant of electroweak splitting.
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3.4.3 Are the effective quark masses hadron independent?

If the p-adic mass scale of a quark does not depend on a hadron, the TGD predictions differ from
those of the G-M type model. For massive baryons and mesons the effective masses of quarks,
which are light in the scale defined by the parameter M0(H), are given by meff

q = m2
q/2M0(B).

meff
q is predicted to decrease with M0(H) since there are reasons to expect that M(B) is larger for

baryons containing c and b quarks than for nucleons and M0(M) is larger for mesons containing
s, c and b quarks than for pions.

The guess inspired by the additive mass model is that the mass differences for pairs of light
hadrons obtained from each other by the replacement u → d or vice versa are nearly the same.
Could this be true also for hadrons which contain heavier quarks than u, s, and d?

If this is the case then the p-adic mass scale of the quark depends on baryon and is such that
the effective quark masses

meff
q =

m2
q

2M0(H)
, (3.24)

appearing in the mass differences of hadrons, do not depend on the hadron.
A weaker condition would be that the differences

meff
U −meff

D =
m2
U

2M0(H)
− m2

D

2M0(H)
, (3.25)

where U and D refer to either u and d or c and s, depend only weakly on hadron.
Suppose that it is possible to assign to M0(H) a hadronic p-adic mass scale characterized by

integer kH so that one has

M0(B) = M0(N)2(kB−kN )/2 , M0(M) = M0(π)2(kM−k−kπ)/2 . (3.26)

The condition

kq −
kH
2

= constant . (3.27)

would guarantee that the effective additivity of masses is achieved in a good approximation.
The proposal almost-predicts the values of M0. Since kq is a positive integer, the values of kH

must come as powers of 2, that is octaves.

1. If the mass of the baryonic quark mq is smaller that 2 times 2mN , kB = kN must be true
for baryons containing this quark besides u and d. For baryons containing only u, d and
s quarks this is the case. If the QCD estimate for the c quark mass about 2 GeV ' 2M0

corresponds to mc rather than meff
c , then for baryons containing c quark the value of kN can

be 2kN so that one has M0(N) → 2M0(N). If the QCD estimate for the b quark mass ' 4

GeV corresponds to mb rather than meff
b , then for baryons containing b quark it is possible

to have M0(N)→ 4M0(N).

2. M0(π) ∼ 139.51 MeV is the estimate following from the estimate for u and d masses. For
strange meson K and other strange mesons it is in principle possible to have M0(π) →
2M0(π). Same applies to charmed and beautiful mesons and M0(π)→ 2M0(N) for charmed
and M0(π)→ 4M0(N) for beautiful mesons is not excluded.

One cannot of course exclude the possibility that the quark mass scale does not depend on the
hadrons but that M0 comes in octaves. In this case the effective quark masses would be smaller for
heavier hadrons. It will be found that this indeed the case for baryons containing c and b quarks.

To sum up, in the proposed model the p-adic primes of light quarks most plausibly correspond
to (ku, kd) = (113, 113). The surprisingly large value of kq is due to the 1/3 factor of the mass
squared formula absent from the leptonic mass squared formula.
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3.4.4 Estimates for the masses of s, b and c and t quarks

One can also consider estimates for the masses of the heavier quarks. The earlier discussed mass
formula for quarks in terms of electron mass allows to deduce the contributions of p-adic thermo-
dynamics to the masses of s, c, b and t quarks. The basic mass formula [K4] reads as

mq
me

=
√

2127−kq

3
Aq
Ae

,

Au = 5 +Xu , Ac = 14 +Xc , At = 65 +Xt ,

Ad = 8 +Xd As = 17 +Xs , Ab = 68 +Xb , Ae = 5 +Xe.

(3.28)

Assuming that the corrections Xq and Xe vanish, one one obtains the following estimates

(kd,md/MeV ) = (113, 90.6) (ks,ms/MeV ) = (108, 385) (kb,mb/MeV ) = (103, 4361) ,

(ku,mu/MeV ) = (113, 67.6) (kc,mc/MeV ) = (103, 1979) (kt,mt/GeV ) = (93, 193) .
(3.29)

The change of kq by one unit, introducing a half octave scaling of mq, cannot be excluded. 1. The

mass of strange quark

The standard model estimate for the effective mass/current quark mass of the strange quark is

meff
s ∼ 100 MeV. From this one can get an estimate ms as ms =

√
2M0(N)meff

s using M0 ' mp

as ms ' 434 MeV to be compared with the prediction ms = 385 MeV of p-adic mass calculations
assuming ks = 108. ks = 107 would give ms = 544.5 MeV.

The estimates M0(π) = 139.51 MeV, md = 90.6 MeV and ms = 385 MeV allow us to estimate
the mass of kaon. This gives mK = 419.40 MeV. The empirical value is mK = 493.677 MeV.
M0(π) → 2M0(π) = M0(K) gives mK = 484 MeV, which is rather near to the empirical value.
This would however predict meff

s = 265.6 MeV, which is more than twice the value 100 MeV.

2. The mass of the charmed quark

p-adic mass calculation gives the estimate mc = 1979 MeV for kc = 103 whereas for kc = 105
one obtains mc ' 1 GeV. The QCD estimate meff

c ' 1270 MeV. Which value for kc is nearer to
truth?

1. An independent estimate for the value of mc can be deduced from the mass Λc = 2286 MeV
of Λc (csd) by using the formula

m(Λc) =
√
M2

0 +m2
c +m2

s +m2
d (3.30)

giving

mc =
√
m2(Λc)−M2

0 (N)−m2
s −m2

d ' 1.995 GeV . (3.31)

2. This is a disturbingly large value. However, the scaling M0(N) → M0(Λc) = 2M0(N)
guaranteeing the hadron independence of effective masses, accompanied by the scaling of ms

and md by factor 2, gives mc = 1198 MeV quite near to empirical estimate 1270 MeV. This
suggests that the scaling hypothesis making effective masses independent of hadron works.
The effective mass meff

c = m2
c/(4mp) is 381.7 MeV and very near to the strange quark mass:

is there an approximate isospin symmetry for effective masses! This could make it possible
to test the hypothesis by comparing hadrons containing c quark and 2 c quarks.
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3. The mass of b quark

In the standard model, b quark mass is estimated in QCD to be meff
b = 4.19 GeV. p-Adic

length sale hypothesis gives mb = 4.36 GeV.

1. One can estimatemb fromm(Σb) = 5810 MeV by using the formulam(Σb) =
√
M2

0 (B) +m2
b + 2m2

u.

For M0(N) ' mp mb =
√
m2(Σb)−M2

0 (N)− 2m2
u ' 5722 MeV, which is slightly below

m(Σb).

This would give the estimate for the effective mass meff
b as meff

b = m2
b/2M0(N) ' 8.45 GeV

larger than mb. This does not make sense.

2. The second possibility is that scaling hypothesis for M0 holds true and one has M0(B) =
4M0(N). The condition that the estimate gives the p-adic value of mb = 4361 MeV gives

M0(B, b) =
√
m2(Σb)−m2

b − 2m2
u ' 3837 MeV . (3.32)

This value is almost equal to 4MN ' 3.760GeV and supports the scaling hypothesis for
M0(H). meff

s is scaled down by factor 1/8to2.211 GeV which is one half of the value of mb

deduced in QCD framework. This is somewhat disturbing and would force to interprete the
empirically deduced value of b mass as mb.

4. The mass of the top quark

The top quark mass meff
t is estimated to be in the range 172.5-173 GeV. The p-adic mass

calculation gives 193 GeV for kt = 93 so that the error is 11 percent cnd could be due the magnetic
energy of the monopole flux tube assignable to top quark and to the negative interaction conformal
weight of t with the screening neutrino pair νLνR.

The reported mass of toponium candidate is in a good approximation twice the mass of top
quark: this would require M0(topo, t) =

√
2mt ' 2.6×M0(N) (M0(N) ' .94 GeV).

In TGD one can however challenge the identification of top quark. The p-adic mass scale of
top quark is 175 GeV and suspiciously high when compared with the mass scale 4 GeV of b quark.
In the TGD framework this suggests that the official candidate for top could be a quark of M89

hadron physics [K5] [L16] whereas the real top could have mass scale not much larger than that
of b quark.

The Aleph anomaly [K5] produces jets with invariant mass 55 GeV. If a meson is in question
the mass squared additivity suggests a quark with mass mq = 55/sqrt2 ' 39 GeV, which is roughly
10 times more massive than mb. Could the interpretation be as a pion of M89 hadron physics.
The toponium for which some evidence exists, could in turn have interpretation as the kaon of
M89 hadron physics. k = 97 would be a natural candidate for the p-adic length scale of this top
candidate whereas the standard candidate has kt = 93.

To sum up, the predictions for the p-adic mass scales of quarks are (ku, kd, ks, kc, kb, kt) =
(113, 113, 108, 105, 103, 93).

3.4.5 Test for the scaling of quark masses

Mass differences for beautiful and bottom containing baryons make it possible to test the scaling
law for quark masses guaranteeing that effective quark mass hadron independent.

1. The mass of Ξc resp. Σc is in the range [2470, 2500] MeV resp. [2450, 2500] MeV. Ξc − Σc
mass difference using average masses is only 10 MeV although Ξc resp. Σc has 2 resp. 1
s quarks. Thefore the quark model with additive quarks masses is problematic for heavy
baryons.

The prediction of the TGD based model is

m(Ξc)−m(Σc) =
(m2

s −m2
d)

m(Ξc) +m(Σc)
. (3.33)
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Using average masses for m(Ξc) and m(Σc) and masses mu,md,ms =) = (67, 90, 385) MeV
this predicts 11.7 MeV. This makes sense. However, the scaling hypothesis implies the scaling
of M0(Σ) = 4M0(N) and m2

s −m2
d by a factor 4 so that giving m(Ξc) −m(Σc) = 80 MeV.

This favours the scaling of M0(N) but not that of quark masses mq.

2. One can also consider the mass differences for beautiful baryons. The mass of Ξb resp. Σb
is 5797.9 MeV and 5816 MeV: probably also now the error margins are large. From this
Ξb−Σb mass difference would be -16 MeV and has a different sign from expected. The TGD
prediction for the mass difference is m(Ξb) − m(Σb) = (m2

s − m2
d)/(m(Ξb) + m(Σb) ' 4.8

MeV. If one assumes the scaling of m2
s and m2

d by factor 4, one obtains 19.2 MeV. Also this
favors the assumption that only M0 is scaled.

If the experimental mass difference really has a ”wrong” sign, one can ask whether the weak
(actually strong) b-s binding energy be larger than b-d binding energy. Assume that the
analogy with atomic Coulomb energy can be used. The quark decompositions are Ξc = dsc
and Σc = ddc and Ξb = dsb and Σc = ddb. c-s resp. c-d system behaves like a system with a
reduced mass µ = mcms/(mc +ms), resp. µ = mcmd/(mc +md).

The weak Coulomb binding energy is proportional to α2
w and increases the value of µ and

has larger magnitude for Ξc than for Σc. The magnitude in the case of c almost compensates
for the positive mass difference. For b having larger mass it more than compensates it so
that the mass difference changes sign.

To sum up, the predictions of p-adic length scale hypothesis for the quark masses deduced by
applying the mass formula based on the additivity of the mass squared values are excellent.

3.5 Are the quark masses deduced from baryons consistent with the
mass spectrum of mesons?

One can test whether the baryonic estimates for the p-adic mass scales (ku, kd, ks, kc, kb, kt) =
(113, 113, 108, 105, 103, 93) make sense for mesons. The values of kq can vary by one unit for heavy
quarks and it turns out that the value of kc = 103 is favored for charmonium whereas kc = 104 is
favored for non-diagonal charmed mesons.

The first guess was that the parameter M0 characterizing the magnetic body of meson and
included in the parameter Y in the previous formulas, vanishes for mesons. This guess was wrong.
It turns out that the octave hypothesis for M2

0 works rather nicely but that the octave depends on
the meson and in the case of charmed or beautiful mesons can be different for diagonal and non
diagonal mesons.

The condition m2) = 0 looks like a reasonable working hypothesis to start with. If the quark
masses are same for mesons as for baryons, this condition need not to be considered separately. It
could of course be used to improve the fit.

The mass splittings due to the isospin can be explained satisfactorily in terms assuming that
the weak Coulomb interaction in hadronic scale in the role of color interaction. The splitting is
proportional to the difference of masses of quark considered but in a good approximation does not
depend on the meson mass.

3.5.1 Pions

The masses of pions were already found to be consistent with the p-adic length scales kd = ku = 113.
The quark masses were estimated to be (mu,md) = (2.43, 4.37) MeV. The estimate for the value
of M0(π) was M0(π) ' 139.51 MeV. The effective quark masses are predicted to be very small:

(meff
u ,meff

d ) = (21, 68) keV.

3.5.2 Strange mesons

The neutral kaon has composition sd. The mass of the kaon is mK = 494 MeV. Baryonic estimate
gives ks = 108 and ms = 385 MeV. Kaon mass squared is given by m2

K = M2
0 (K) + m2

s + m2
d.

M2
0 (K) = 4∗M2

0 (π) gives mK = 484.0 MeV. The error is 2 percent. The repulsive weak interaction
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between s and d could increase the mass by this amount. Note that in a good approximation, the
correction does not depend on the meson mass.

The mass of η meson is predicted to be 544.5 MeV . The prediction is m(η) =
√

2ms = 544.5
MeV. The experimental value is m(η) = 547.9 MeV. The deviation is .6 percent. This successful
prediction suggests that no mixing between neutral mesons occurs as was believed in the original
quark model.

3.5.3 Charmed mesons

Charmonium (Ψ) has mass m(Ψ) = 3.098 GeV. For kc = 103, c quark is predicted to have mass
mc = 1979 MeV whereas the QCD based estimate gives a considerably smaller value mQCD

c = 1270
MeV. For kc = 104 the prediction is mc = 1379 MeV.

For M2
0 (Ψ) ' 2m2

p, mc is predicted to be mc =
√
m2

Ψ − 2m2
p ' 1.979 and is equal to the

experimental value.
D meson cd has mass m(D) = 1870 MeV, which is smaller than the value of mc = 1979 MeV

for kc = 103. The mass formula m(D) =
√
M2

0 (D) +m2
c +m2

d. For M2
0 (D) = 2M2

0 (B) the mass
squared formula gives mc = 1312 MeV from to be compared with mc = 1397 MeV for kc = 104.
The prediction for m(D) is 1930 MeV and is by 60 MeV larger. The error is 3 percent. The
attractive interaction between quark and antiquark increases the energy but seems too small to
explain the discrepancy. It would seem that kc has different values for Ψ and D. I have indeed
considered the possibility that the p-adic length scales can vary.

The repulsive weak interaction between c and c would decrease the estimate for mc. The
reduction of mass squared by weak interaction should correspond to m2

c −m2
c,exp = 3387 MeV2.

Supposed that the weak interaction contribution is for a bound state of md with mc and that
mred = mcmd/(mc +md) ' md is modified in the formation of bound state by

∆m2
D = 4

√
2αw(m2

red) . (3.34)

The formula

m(D) =
√
M2

0 (D) + ∆m2
D +m2

c +m2
d (3.35)

gives the improved estimate for mD as md = 1932 MeV. The contribution does not help.

3.5.4 Beautiful mesons

Consider next the mesons containing b quark. Bottonium () has mass mY = 9.40 GeV. kb =
102 predicts mb = 6.167 GeV whereas the mass derived theoretically from QCD is 4.19 GeV
and considerably smaller. p-Adic mass calculation predicts mb = 4361 MeV for kb = 103. For
M2

0 (Y ) ' 16m2
p allowed by the scaling hypothesis, the mass of Y is predicted to be 9.50 GeV, being

by .5 percent above the experimental estimate of 9.45 GeV. The attractive electroweak interaction
between b and b could explain the deviation.

For B meson (bs) with mass mB = 5279 MeV, the contribution of d quark to the mass is
negligible. Scaling hypothesis suggests M2

0 (B) = 4M2
0 (N) ' 4m2

p. M2
0 (B) = 8m2

p gives mB =√
8m2

p +m2
b +m2

s = 5122 MeV. The error is 2 percent. For M2
0 (B) = 10m2

p, which does not

confirm with the assumption that only the p-adic scalings by powers of 2 are allowed, one obtains
mB = 5292 MeV: the error is .2 percent. It seems that the value of M0(H) is different for
bottonium and B meson.

The repulsive weak interaction between b and s has a wrong sign and cannot explain the
discrepancy.

3.5.5 Mass differences between strange and non-strange beautiful mesons

For both charmed and beautiful c mesons the mass differences between strange and non-strange
variants produce problems. Similar problem was encountered for baryons.

Ds meson cd has mass 1968 MeV. The Ds−D mass splitting is 98 MeV. The additivity of mass
squared would give mD =

√
2M2

0 (N) +m2
c +m2

d and mD,s =
√

2M2
0 (N) +m2

c +m2
s predicting
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mB,s − mB ' (1/2mB) × (m2
s − m2

d) ' 2.86 MeV, which is considerably smaller than 87 MeV.
Here weak interaction correction ∆m2

B = 4
√

2αw × mbmD and similar correction for Ds gives
mDs −mD ' (mb −md)/2 ' 41 MeV for αw = 0.5, which has correct order of magnitude. For
αw = .1 ' αs the correction is 82 MeV. Note that in a good approximation the correction does
not depend on MD.

For Bs meson the mass is mBs = 5366 MeV. The mass difference mB,s − mB = 87 MeV is
almost the same as in the case of the D −Ds system. Also in this case weak correction predicts
mB,s − mB = 87 ' 82 MeV for αw = .1 ∼ αs. Note that for sin2(θw) = .2326, the values of
αw = .03: earlier the value .05 has been used. The argument that αs = N2

c αw, Nc = 3 occurs in
the vertex for a creation of a quark pair would give αw = .27.

4 Strong interactions as p-adically scaled weak interactions

In this section the view about strong interactions as p-dically scale weak interactions is studied in
more detail.

4.1 Reflections on parity violation

In this section the problem of parity violation at the hadron level. Parity violation is visible at
the level of atomic and nuclear physics via the interference between Z0 and γ exchanges. The
scattering of an electron and a hadron/nucleus/atom is an example of this. The absence of the
violation in strong interaction is far from obvious: RHIC has actually reported evidence for a parity
violation in the collisions of high energy heavy nuclei [C1] and I have considered this problem from
the TGD point of view [L1, L11].

The Z0 coupling is of the form

I3,L − sin2θWQem) .

The coupling is purely left-handed when the Weinberg angle vanishes. In this case, there is no
parity violation. Z0 has a small vecorial coupling via electromagnetic charge.

Some basic formulas and facts will be needed in what follows. The weak coupling strength and
U(1)Y coupling strength (see this) are given by the expressions

αw = αem
sin2(θW ) , αY = αem

cos2(θW ) . (4.1)

Y corresponds to the hypercharge. The ratio of W and Z masses is given by mW /mZ = cos(θW ).
The value of the Weinberg angle depends on the p-adic length scale. It can be deduced from the
parity violation of weak interactions and Möller scattering gives sin2(θW ) = .2397 ± .0013 (see
this).

How would parity violation appear in hadronic physics and why would it be small? If the weak
scale were replaced by the hadronic scale, large effects unless sin2(θW ) be very small? This would
also make the weak interaction long ranged because the weak boson propagator involves the mass
of the scaled intermediate boson, which is now p-adically scaled down.

First, we need to figure out how the screening of the weak interaction occurs at the quark and
lepton levels. TGD provides a concrete model for this.

1. Neutrino screening would handle the screening at the quark level. Later it will be found that
only the left-handed weak isospin can be shadowed but not the right-handed one, so the Z0

interaction remains for the right-handed isospin. In fact, I have proposed many applications of
TGD based on long-range classical Z0 fields [L3]. For instance, the hydrodynamical vortices
could correspond to the Z0 magnetic analogs of vortices in superconductors [L2].

Parity violation would make itself visible for the ordinary weak interactions for large values of
heff increasing the weak boson Compton length but leaving their masses unaffected. Weak
bosons would be effectively massless below the scaled up Compton scale. Chirality selection
in biology provides a particularly interesting application.

https://en.wikipedia.org/wiki/Weinberg_angle
https://en.wikipedia.org/wiki/Weinberg_angle
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2. If the p-adic length scale for intermediate bosons becomes large, the situation changes since
weak bosons become light also outside their Compton length. In hadrons this would happen
if strong interactions indeed are weak interactions with a scaled up range.

There are two challenges.

1. How to avoid large parity breaking effects (assuming that they are really absent, see [C1] [L1]!)
that contradict the standard assumption that strong interactions couple vectorially? Here
a crucial observation is that the isospin splitting occurs for the modes of H spinor fields so
that symmetry breaking is coded to the geometry of CP2.

2. How to avoid strong violation of isospin symmetry? In fact, there has been evidence of
isospin symmetry violation [L19] disussed from the TGD point of view in [L19] [K5]. Here an
important observation is that but the masses of left- and right-handed M4 states (the notion
can be defined although there is a mixing with opposite M4 parity due to massivation) are
identical. In the general case even the left- and right-handed masses would be different.

In the TGD framework, there is no strong vectorial isospin as a separate quantum number since
weak or right weak isospin, em charge, and genus of the partonic 2-surface are enough to label
quarks and leptons. Since the value of weak or right weak isospin dictages the em charge, one is
forced to ask whether the large mass differences between U and D quarks and charged leptons and
neutrinos can be interpreted as a large symmetry breaking related to the weak isospin in the TGD
framework.

4.1.1 How to describe parity violation in TGD

Parity violation effects at the atomic and nuclear level have been studied using the interference
between Z0 and γ exchanges implying differences for the transition rates for for atom and its mirror
atom (see this).

The Weinberg angle characterizes the γ − Z0 interference terms in weak scattering and one
can ask whether sin2(θW ) depends on p-adic length scale characterizing the scale copy of weak
interactions so that these effects remain small.

1. Effects at the fermion level would come from the reaction vertices, which violate parity
for weak bosons. Then there are also effects at the geometric level. For example, helical
structures break mirror symmetry and this would be an essential aspect of the parity violation
in biology.

2. In the TGD framework, νν screening at the quark level is proposed to make fermion parity
violation small for ordinary ~. For large heff phases the effects are large below the weak
boson Compton scaled up by factor ~eff/h since weak bosons are effectively massless. Note
that the Weinberg angle would vanish in this phase. This could take place in biology. The
masses of the intermediate bosons would remain large outside the scaled up weak scale.

3. For the p-adically scaled versions of weak bosons with standard value of Planck constant,
the masses of the intermediate bosons would scale down. There are many questions. What
happens to the vertices, which in the TGD framework are associated with the 3-D singular
surfaces X3 of the space-time surfaces at which the conformal invariance is violated. Does the
magnitude of the analogue of the Higgs expectation as the trace of the second fundamental
form scale down and involve the scaling up of the size of X3.

If the TGD view of the parity violation is to be tested, states must be created for which
fermions have a well-defined handedness, so that we can speak of a mirror image of a particle. The
effect of mirroring at both the H and X4 levels should be described. Parity violation is visible for
fermions at both the H via the modes of the H-Dirac equation. The fermionic effects are visible
also at the level of the space-time surface X4. Also the geometry of X4 reflects parity violation if
holomorphy= holography vision is assumed.

Consider first the embedding space level (briefly H-level). What does 8-D masslessness mean?
What does color confinement and ew screening mean at the H-level? What does heff ≥ h means?
How is testing possible for the initial and final states of particles that are built from H fermion
modes?

https://arxiv.org/html/2411.11861v1
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1. For the modes of H spinors M4 mixing of handedness occurs and the fermion can be only
dominantly left or right-handed. The covariantly constant right-handed neutrino is the only
exception. In this case, a mirror image cannot be formed because there is none.

However, a mirror image can be formed for the other modes. The momenta change their
signs. The masses are the same for the modes and their mirror images. Spins are not affected.

2. Also in CP2 degrees of freedom there is also mirroring and 8-D chiral symmetry implies
correlation between M4 and CP2 chiralities characterizing quarks and leptons. A fermion
can be constructed by operating D(H) = D(M4) +D(CP2) on any right- or left-handed H
spinor with a given H-chirality. Right- and left-handedness in M4 sense would characterize
these generating spinors.

3. Parity violation can appear at the H-level at the level of 3-momenta changing their sign in
mirroring.

4. I have proposed that the Dirac equation for spinor modes inside the causal diamonds CD [L16]
involves M4 Kähler structure or Hamilton-Jacobi (H-J) structure . This would discretize the
mass spectrum to string mass spectrum and involve reduction of Lorentz invariance.

The H-J structure [L6] can be defined for both X4 and M4 and one expects there are many
such structures. The solutions of classical field equations are characterized by the H-J structure
defining the generalization of complex structure of H involved also hypercomplex part in M4.

1. The H-J structure involves two parts. At each point of X4, the tangent space decomposes
to a 2-D longitudinal hypercomplex part and complex part transversal to it. This defines
local light-like momentum direction and complex polarization direction. These subspaces
define integrable distributions of Minkowskian 2-D longitudinal and Euclidian transversal
sub-spaces of the tangent space of X4.

2. The simplest H-J structure corresponds to a global orthogonal decomposition of M4 to M2×
E2. M4 is characterized by a light-like constant vector u and its hypercomplex conjugate v
and E2 regarded as a complex plane by a complex vector and its complex conjugate.

3. One can assign a Kähler form to the transversal degrees of freedom involving an integrable
distribution of Minkowskian 2-D subspaces of the tangent space of X4. It has turned out
that the analog of Kähler form in the longitudinal space must vanish: this is the counterpart
for the fact that these degrees of freedom are not physical in massless gauge theories.

What about the effect of reflection at the level of X4 level when the holography = holomorphy
vision holds true [L12, L18].

1. What happens to the H-J structure [L6] and associated Kähler structure in reflection. Holog-
raphy = holomorphy principle does not leave much room since the solutions of field equations
must go to new solutions. The study of the simplest H-J structure defined by the standard
linear M4 coordinates suggests the u↔ v. It should not be visible if the hypercomplex part
of Kähler is trivial as the phyhsical intuition requires. The complex coordinate w would
naturally change sign. This would naturally generalize to a general H-J structure.

2. In u ↔ v and z ↔ −z. The spacetime surface changes and at the same time the scattering
amplitudes defined by it change. Do the two sheets of the spacetime surface related by
hypercomplex conjugation u ↔ v change their roles. Does a line at a given throat of a
wormhole contact connecting the two space-time sheets drop to the opposite throat. The
parity violation induced by the classical dynamics of X4 would be thus visible at the level of
the geometry and be visible in biology as chiral selection.

Parity violation expresses itself in the spinor dynamics of the X4 level through vertices:
fermion lines move to the parallel sheet.

3. Parity violation is visible in atomic and nuclear physics. Z0+γ interference and Z0 exchanges
as well. In TGD, the classical Z0 potential describes this but not as a mere approximation.
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4.1.2 Parity violation in TGD

In TGD parity violation should show up as an internal property of hadrons or quarks. In standard
model, the violation is realized as the interference of γ and Z0 exchanges, say in the scattering of
leptons and hadrons. This scattering should also be visible inside hadrons and even inside quarks
could lead to too large parity violation in hadron physics. Above the scaled up intermediate boson
Compton length the weak screening by neutrino pairs would screen left-handed weak isospin but
not the right-handed component to which classical Z0 field couples.

There is no virtual boson exchange in the sense of QFTs since bosons as particles correspond
to bound states of fermions. Classical gauge fields correspond to induced spinor connection and
the generalization of Higgs corresponds to the trace of the second fundamental form [L16]. The
counterpart of gauge boson propagator however emerges from the correlations induced by the
functional integral over superposition of space-time surfaces as analogs of Bohr orbits and also
from the slight failure of the classical non-determinism of the holography giving rise to a discrete
sum of space-time surface resembling in some respects path integral.

In TGD, the interactions are basically contact interactions associated with the intersections
of the almost deterministic Bohr orbits of 3-surfaces. Here monopole flux tubes and ”massless
extremals” play a key role. The intersections are 2-D string world sheets if the H-J structures [?]re
indentical. If H-J the structures are not identical, the intersections consist of discrete points. Space-
time surfaces can also have this kind of self-intersections and they give raise to self-interactions
also at the level of hadrons and quarks.

In principle, parity violation can be studied by comparing quantum dynamics for the initial
states of hadrons which are mirror images of each other in both ermionic and geometric degrees of
freedom. There are two levels to be considered. At the level of H the action of mirror symmetry
and its action fermions is well-understood. It is essential that at the H level the masses are the
same for the spinor modes with different M4 chirality so the parity is not violated at the level of
the fermion masses. This picture also applies at the level of CD proposed to be endowed with
the M4 Kähler structure. At the level of the space-time geometry, the mirror image of X4

can be defined in the holography = holomorphy vision [L9, L12, L18]. 3 spatial coordinates are
mirrored. This would mean that the light-like hypercomplex coordinates of X4 are mapped to
each by hypercomplex conjugation u↔ v, maybe also in M4 for the causal diamonds (CD). The
complex coordinate w X4 is mapped to its negative.

The model for the two-sheeted structures [L18] assigned to particles led to the proposal that
the two parallel Minkowskian space-time sheets connected by wormhole contacts correspond mirror
images of each other with respect to hypercomplex coordinates [L16]. The fermion lines at the
partonic orbits associated would be mapped to the opposite wormhole throat. Spin direction of
the fermion is not affected but momentum direction changes.

4.1.3 Is the isospin symmetry violation of strong interactions really small?

In the standard model it is assumed that strong interactions respect strong isospin symmetry. But
do the strong interactions really respect the isospin symmetry? Could we have misinterpreted what
we see? If the quantum numbers of quarks really reduce to weak isospin and hyperchange and
parton genus serves as a topological characteristic, we can interpret the isospin symmetry violation
directly as mass differences of U and D quarks and in the leptonic sector as mass differences of
charged leptons and neutrinos.

At the level of H, the color representations associated with the modes of the H spinor field
with different charges are different. Weak screening makes leptons color singlets and quarks color
triplets in H, which in turn combine to form massless color singlets which get their mass by p-adic
thermodynamics [L16]. The underlying violation of isospin symmetry manifests itself as different
p-adic length scales for different charge states of quarks and leptons.

The massivation of the spinor modes of H-spinors implies that the modes do not have a pure
M4 chirality. Indeed, the 8-D chiral invariance, guaranteeing separate conservation of quark and
lepton numbers, forces a complete correlation of M4 and CP2 chiralities and implies the mixing for
all modes except covariantly constant right-handed neutrinos. Weak left-handed and right-handed
iso-spin replaces the ordinary strong isospin.

For left-handed chiralities the strong isospin would correspond to the weak isospin I3,L and
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the change in the direction of strong isospin is manifested in weak (and also strong -) interaction
occurring via charged currents. Only the classical Z0 force detects the change of the direction
of I3,R. It deserves to be noticed that recently a violation of strong isospin symmetry has been
reported [L19]. I have considered the interpretation of this observation in the TGD framework
[L19].

4.2 Weak screening

One can consider two basic options for weak screening. The strong option screening is in terms
of neutrino pairs. Left-handed fermions are screened also in the right-handed sector. For the
right- handed mode the right-handed isopin cannot be screened so that long range Z0 fields are
possible. Super-fluidity as Z0 analog of super-conductivity is one possible application and the
hierarchy of effective Planck constants could make it possible analogs of quantum vortices even in
hydrodynamics [L3, L2].

For a more general form also other fermion pairs are possible. Only the strong form of the
screening will be discussed in what follows.

4.2.1 Is strong screening sufficient for left-handed fermions?

νν pair consists of a left(/right)-handed neutrino and right(/left)-handed neutrino. νR has no
electroweak coupling and is massless if it is covariantly constant in CP2 degrees of freedom. Also
nontrivial color partial waves are possible. Right-handed fermions associated with the monopole
flux tube couple with νL via Z0 since the Z0 charge contains a vectorial part −sin2(θW )Qem.

1. Annihilation of the screening neutrino and screened fermion is not possible. Exchange of W
and Z0 between them is possible and so what Qem is visible. For the right-handed screened
fermions, only the exchange of Z0 is possible in both cases. Qem appears in the Z0 coupling
and this could partially explain the U-D asymmetry. W exchange and possibly also Z0

exchange could induce the decay of the screened fermion involving also topological decay of
the partonic 2-surface. Also the change of the genus could occur and induce CKM mixing.

2. One can also think of the analogy of the electroweak boson loops for screened fermions and
also for screening neutrino and it could also lead to decay. There would be no emission of
a virtual boson as a particle. Also the emission of virtual boson as a modification of the
classical induced field associated with classical non-determinism could induce a topological
decay of fermion as an emission of a partonic 2-surface.

3. The annihilation of νL−νL could lead to a classical analog for the emission of virtual Z0. This
could induce instability giving rise to a decay to Z0 and pure νR and could produce a mixing
of the screened neutrino with νR and massivation perhaps explaining neutrino massivation?

4.2.2 Why are quarks and leptons with smaller em charge more stable?

The instability against decay due to the TGD counterperts of electroweak interactions with the
fermion could make it possible to understand why U type quarks are shorter-lived the D type
quarks. This would be due to the decay of U to a lighter D by weak W emission. Same applies in
the leptonic sector. p-Adic mass scale hypothesis characterizes the mass of the fermion and could
be seen also as a characterizer of the stability: the higher the value of kq, the longer the age.

1. The integer kq defining the p-adic length scale as a function of the genus g grows faster for
U than D and faster for L than νL. For neutrinos, the growth is very slow. Q2

em contributes
to the conformal generator L0 in p-adic thermodynamics giving a contribution to the mass
squared of the fermion. The different-adic length scales for the two charge states of fermions
must relate to this.

2. The generalization of the p-adic numbers fields to their functional variants allows us to
interpret kq as the number of the iterations of second order polynomials associated with
definition of the space-time surfaces assignable to the fermion. Each iteration step involves
classical non-determinism realizable as a vertex for the emissions of TGD counterpart of
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virtual boson and can lead to a physical decay or topology change of the partonic 2-surface.
The higher the value of kq, the higher the stability.

3. The integer kq defining the p-adic length scale as a function of the genus g grows faster for
U than D and L than νL. For neutrinos, the growth is very slow. Q2

em contributes to the
conformal generator L0 in p-adic thermodynamics giving a contribution to the mass squared
of the fermion. The different-adic length scales for the two charge states of fermions must
relate to this.

4.3 How to understand Weinberg angle in TGD framework

Weinberg angle is one of the basic parameters of the standard model. In the following I will
consider the relation of the Weinberg angle to the quark mass spectrum and to the possible M2

0

parameter assignable to the Z0 and W bosons.

4.3.1 Charge representations for gauge bosons

The condition that the representations of gauge bosons as superpositions of fermion pairs represent
their couplings to fermion pairs represented as charged matrices fixes their representations to a
high degree.

The representations for Z0 and W , neglecting the actual non-locality of the representations of
the gauge bosons in terms of monopole flux tubes and treating the representative corresponding
current like quantities as local currents looks in a simplified form like follows:

W± = 1
N2
W

∑
gW±,g , 1

N2
Z
Z± = 1

NW

∑
g Z±,g ,

W±,g = W±,g,q +W±,g,L , Z±,g,U + Z±,g,D + Z±,g,L

(4.2)

NW and NZ are normalization factors discussed below. The contribution of a given genus g can
be decomposed to contributions from the chiralities L, and R and to contributions from different
em charges.

1. For W only the left-handed chirality contributes charges give the same contribution.

W±,g,q = 2ULgI±EDL,g , W±,g,L = 2L,LgI±Eνg,L,
E = εkγk .

(4.3)

2. For Z0 one obtains

Z±,g,q = UgLQZE(Ug)L + h.c+DLgQZEDL,g + h.c. ,

Z±,g,L = LgLQZE(Lg)L + h.c.+ νgLQZE(νg)L + h.c. ,
QZ = I3,L − pQem , p = sin2(θW ) .

(4.4)

4.3.2 Normalization factors defined by charge squared values

The normalization factors are important for what follows and are essentially sums of squares of
charge matrices over the generations, which decompose to sums over charge states and left- and
right-handed fermions

N2
Z =

∑
Q2
Z , N2

W =
∑
Q2
W , (4.5)

Here the sum is over all 3 fermion families that is generations g decomposing in turn to sums over
2 charge states and two M4 chiralities.
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The contributions to N2
W are identical and equal to I±I∓ = 1/4 and the sum contains 3×2 = 6

contributions from both quark sector and leptonic sector so that one obtains

N2
W =

∑
Q2
W = 3 . (4.6)

In the of
∑
Q2
Z over the states of single generation, the cross terms in the sum vanish since

they are proportional to I3, L and one obtains the sum over 3, generations, over charge states,
and over M4 left handed chirality for I2

3,L or both L and R for Q2
em. One has

∑
Q2 = 2× 5/9 for

quarks of single generation and
∑
Q2 = 2 for leptons of single generation. This gives

N2
Z =

∑
Q2
Z =

∑
I2
3,L + p2Q2

em = 3× [1/2 + 2p2(5/9)] + 3× [1/2 + 2p2] = 3× [1 + 2p2 +
28

9
p2] = 3× [1 + 4p2] .(4.7)

(4.8)

The contributions are the same at the symmetry limit p = 0. The ratio

N2
Z

N2
W

= 1 + 4p2 , (4.9)

4.3.3 Mass squared values for weak bosons

Mass squared values for weak bosons are sums over contributions to Q2
W and Q2

Z but multiplies
by the mass squared values for each family weighted with mass squared values for U and D and
for L and νL. squared values. Besides this there normalization by 1/N(W )or 1/NZ)

Analogous calculation can be done for the sum, or rather averages of M2(W ), values.

1. For M2(W ) one obtains

M2(W ) =
1

3

∑
M2(Ug) +M2(Dg) +M2(L) +M2(νL) . (4.10)

2. For M2(Z) the contribution is equal to 3
3+5p2M

2(W ) as is clear from the fact that this term

is what one obtains at the symmetry limit. Q2
em terms break the isospin symmetry.

For leptons the contribution from Q2
em is

2p2M2(Lg)

For quarks the contribution from Q2
em can be written as

2p2 4M2(Ug) +M2(Dg))

9
.

This gives a total contribution

M2(Z) =
1

3(1 + 4p2)
× [3M2(W ) + 2p2

∑
g

[
4

9
M2(Ug) +

1

9
M2(Dg) +M2(Lg)] . (4.11)

3. The ratio M2(W )/M2(Z) is given by

M2(Z)

M2(W )
=

1

1 + 4p2
(3 +

XZ

XW
) ,

XZ = 2p2
∑
g

[
4

9
M2(Ug) +

1

9
M2(Dg) +M2(Lg)] ,

XW =
∑

M2(Ug) +M2(Dg) +M2(L) +M2(νL) . (4.12)
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Note that in the I2
3,L contribution for Z0 is related by the ratio N2

Z/N
2(W ) to the W

contribution.

4.3.4 The approximation in which the contribution of top quark to mass squared
dominates

Since the top quark is so massive, the first approximation is to neglect the masses of other quarks
and leptons. This would give

M2(Z)

M2(W )
=

1

1 + 4p2)
(3 +

XZ

XW
) ,

XZ ' 2p2 4

9
M2(t) ,

XW 'M2(t) . (4.13)

This would give

M2(Z)

M2(W )
=

1

1 + 4p2)
(3 +

8

9
p2) . (4.14)

The solution of the condition

M2(Z)

M2(W )
=

1

1− p
(4.15)

allows us to solve the Weinberg angle and it is interesting to see whether any solutions exist. Using
the expression

M2(Z)

M2(W )
=

1

1 + 4p2
(3 +

XZ

XW
) (4.16)

leads to the expression of p as a root of third order polynomial equation

P (p) = p3 + a+ bp+ cp2 ,

a = −frac94 + x , b = 27
8+2x , c = 12−x

4+x , (4.17)

Here x denotes the ratio m2(b)/m2(t), which is in a good approximation zero if one assumes that
top quark is what it is believed to be. For x = 0, P (p) has indeed a root at p ' 5/12 ' .42 to be
compared with the actual value p ' .23,

4.3.5 Could light top quark reduce the value of the Weinberg angle?

The value of Weinberg angle is too small. Could the problem be that the official top quark
candidate is too massive as compared to the other quarks? As already discussed, the p-adic mass
scale of top quark is 175 GeV and suspiciously high when compared with the mass scale 4 GeV of
b quark. Could the official candidate for top be a quark of M89 hadron physics [K5] [L16] whereas
the real top could have mass scale not much larger than that of b quark.

Unfortunately, this option does not work. For x = m2(t)/m2(b) the root of P (p) is only slightly
larger so that even mt = mb fails to help. It is not plausible that the contribution of other quark
masses and lepton masses could move the root nearer to zero. However, the idea that the official
top is not the real one, is very attractive in the TGD framework.

Unfortunately, this option does not work. For x = m2(t)/m2(b) the root of P (p) is only slightly
larger so that even mt = mb fails to help. It is not plausible that the contribution of other quark
masses and lepton masses could move the root nearer to zero. However, the idea that the official
top is not the real one, is very attractive in the TGD framework.
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4.3.6 Could a non-vanishing value of M2
0 for weak bosons reduce the value of the

Weinberg angle?

The above calculation assumes that M2
0 (W ) = M2

0 (Z) ≡ M2
0 = 0. Could M2

0 > 0 allow an
acceptable solution? The interpretation of M2

0 would be in terms of the mass of the magnetic
body of the weak boson. Also a negative weak binding energy giving a negative contribution to
the mass squared can be considered.

Large values of M2
0 force M2(W ) = M2(Z) so that p = 0 is implied. Could the modified

polynomial P (M2
0 , p) allow to reduce the too large root p = 5/2 to the experimental value? con-

tinuity suggest that for small values of M2
0 there should be roots which are smaller than the root

already found.Whether the reduction of p almost factor 2 can be seen as a small change, is of
course questionable.

The modified condition relating the Weinberg angle to the parameter M2
0 reads as

M2
0 +M2(Z)

M2
0 +M2(W )

=
1

1− p
. (4.18)

It is convenient to study small perturbations of the solution already obtained by assuming that
M2

0 /M
2
0 (W ) ≡ ∆ is a small parameter inducing a small change of p. At the left hand side there is

also a change ∆M2(W ) due to the change ∆p of p. Using the fact that the non-deformed equation
giving p ' 5/12 holds true, the equation can be reduced to the form

(1− M2(Z)

M2(W )
)∆ =

[
−dM

2(Z)

dp
+

1

(1− p)2

]
∆p (4.19)

and allows to deduce the needed value of ∆ if the approximation works.

The derivative of dM2(Z)
dp is given by

dM2(Z)

dp
= − 8p

1 + 4p2

[
M2(Z) +

2

p
(M2(Z)− 3M2(W )

]
. (4.20)

This quantity is positive. Therefore the reduction of the value of p requires a negative value of ∆.
What could be the interpretation for this? If M2

0 includes also weak binding energy between quarks
forming W and Z, ∆ can be negative. One can of course ask whether the tachyonic character of
Higgs in the standard model and the predicted tachyonic states making possible light colored
states [L14, L16] could relate to this.

Assuming that top quark mass dominates, one can simplify the equation for ∆ and solve its
value for a given value of ∆p.
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