

TGD and condensed matter: a project proposal

September 6, 2021

Matti Pitkänen

Email: matpitka6@gmail.com.
http://tgdtheory.com/public_html/.
Recent postal address: Rinnekatu 2-4 A 8, 03620, Karkkila, Finland.

Contents

1	Introduction	3
2	TGD briefly	4
2.1	Space-time as 4-surface in $H = M^4 \times CP_2$	4
2.1.1	Basic extremals of classical action	5
2.1.2	QFT limit of TGD	5
2.2	World of classical worlds (WCW)	5
2.2.1	The failure of path integral forces WCW geometry	5
2.2.2	Implications of General Coordinate Invariance	6
2.2.3	WCW Kähler geometry from classical action	6
2.2.4	WCW geometry is unique	7
2.2.5	Isometries of WCW	7
2.3	Zero energy ontology (ZEO)	7
2.4	Number theoretic physics	8
2.4.1	p-Adic physics	8
2.4.2	Adelic physics	9
2.4.3	Adelic physics and quantum measurement theory	9
2.4.4	Entanglement paradox and new view about particle identity	10
2.4.5	What happens in quantum measurement?	12
2.4.6	Negentropy Maximization Principle	13
2.5	$M^8 - H$ duality	13
2.5.1	Associative dynamics in M_c^8	15
2.5.2	Associativity condition at the level of M^8	15
2.5.3	Uncertainty Principle and $M^8 - H$ duality	16
2.6	Different manners to understand the "complete integrability" of TGD	17
2.6.1	Preferred extremal property	17
2.6.2	Supersymplectic symmetry	18
2.7	Comparison of TGD with other theories	18

3 Some notions of condensed matter physics from the TGD point of view	18
3.1 The new view about classical fields	18
3.2 About quantum criticality in TGD	21
3.3 What infinite-volume limit could mean in TGD?	21
3.4 The notions of geometric phase, Berry curvature, and fidelity in TGD?	22
3.4.1 How the description in terms of Berry phase and fidelity could relate to TGD?	22
3.4.2 Could the singularity of the quantum metric relate to number theoretical physics?	23
3.4.3 Does infinite volume limit have spin-glass type degeneracy?	23
3.4.4 The parameters of the effective Hamiltonian from the TGD point of view	24
3.5 Quantum hydrodynamics in TGD context	25
3.6 Length scale hierarchies	26
3.7 A general model of macroscopic quantum phases	26
3.7.1 Hierarchy of quantizations at the level of WCW	26
3.7.2 WCW description of BECs and their excitations as analogs of particles	27
3.7.3 Superconductivity and superfluidity in TGD framework	27
3.7.4 WCW level is necessary for the description for purely geometric bosonic excitations	28
3.7.5 Exciton-polariton BECs	28
4 Some concrete questions	29
4.1 Could one assign quantum hydrodynamics to photonic quasi-crystalline structures?	29
4.1.1 Bernard-von Karman (BvK) vortex streets in TGD framework?	29
4.1.2 Is BvK for supra flows basically quantum phase transition increasing h_{eff} ?	30
4.2 Skyrmions in TGD framework	30
4.3 Dark matter and condensed matter physics	31
4.3.1 Could one make dark matter visible?	31
4.3.2 Polaritons and excitons in TGD	32
4.3.3 Braids, anyons, and Galois groups	33
4.3.4 Could dark matter as $h_{eff} = nh_0$ phases, quasicrystals, and the empirical absence of hyperon stars relate to each other?	33
4.4 Condensed matter Majorana fermions in the TGD framework	34
5 Goals of the project	35
5.1 Observation of dark matter	35
5.2 Topological physics at space-time and imbedding space levels	35
5.3 The new view about gauge fields	36
5.4 Number theoretical physics	36
5.5 ZEO and new view about quantum measurement theory and thermodynamics	37
A Appendix	41
A.1 Brief glossary of the basic concepts of TGD	41
A.2 Figures	44

Abstract

The purpose of this article is to give a rough overall view about Topological Geometrodynamics (TGD) and to consider at the general level its possible applications in condensed matter physics. It must be emphasized that TGD is only a vision, not a theory able to provide precise rules for calculating scattering amplitudes. A collective theoretical and experimental effort would be needed to achieve this. The proposal for a model of superconductivity [L26] provides a representative example about what TGD could possibly give for condensed matter physics.

The basic concepts and ideas of TGD are discussed; some concepts of condensed matter physics are considered from the TGD view; some concrete questions about condensed matter are discussed; and goals of the project "TGD and condensed matter" are listed.

1 Introduction

The purpose of this article is to give a rough overall view about Topological Geometrodynamics (TGD) and to consider its possible applications in condensed matter physics at the general level. It must be emphasized that TGD is only a vision, not a theory able to provide precise rules for calculating scattering amplitudes. A collective theoretical and experimental effort would be needed to achieve this. The proposal for a model of superconductivity [L26] provides a representative example about what TGD could possibly give for condensed matter physics.

It is perhaps good to explain what TGD is not and what it is or hoped to be. The article [L22] gives an overview of various aspects of TGD and is warmly recommended.

1. "Geometro-" refers to the idea about the geometrization of physics. The geometrization program of Einstein is extended to gauge fields allowing realization in terms of the geometry of surfaces so that Einsteinian space-time as abstract Riemann geometry is replaced with sub-manifold geometry. The basic motivation is the loss of classical conservation laws in General Relativity Theory (GRT)(see **Fig. 1**). Also the interpretation as a generalization of string models by replacing string with 3-D surface is natural.

Standard model symmetries uniquely fix the choice of 8-D space in which space-time surfaces live to $H = M^4 \times CP_2$ [?]. Also the notion of twistor is geometrized in terms of surface geometry and the existence of twistor lift fixes the choice of H completely so that TGD is unique [L7, L9](see **Fig. ??**). The geometrization applies even to the quantum theory itself and the space of space-time surfaces - "world of classical worlds" (WCW) - becomes the basic object endowed with Kähler geometry (see **Fig. 6**). General Coordinate Invariance (GCI) for space-time surfaces has dramatic implications. Given 3-surface fixes the space-time surface almost completely as analog of Bohr orbit (preferred extremal). This implies holography and leads to zero energy ontology (ZEO) in which quantum states are superpositions of space-time surfaces.

2. Consider next the attribute "Topological". In condensed matter physical topological physics has become a standard topic. Typically one has fields having values in compact spaces, which are topologically non-trivial. In the TGD framework space-time topology itself is non-trivial as also the topology of $H = M^4 \times CP_2$.

The space-time as 4-surface $X^4 \subset H$ has a non-trivial topology in all scales and this together with the notion of many-sheeted space-time brings in something completely new. Topologically trivial Einsteinian space-time emerges only at the QFT limit in which all information about topology is lost (see **Fig. 3**).

Practically any GCI action has the same universal basic extremals: CP_2 type extremals serving basic building bricks of elementary particles, cosmic strings and their thickenings to flux tubes defining a fractal hierarchy of structure extending from CP_2 scale to cosmic scales, and massless extremals (MEs) define space-time correletes for massless particles. World as a set or particles is replaced with a network having particles as nodes and flux tubes as bonds between them serving as correlates of quantum entanglement.

"Topological" could refer also to p-adic number fields obeying p-adic local topology differing radically from the real topology (see **Fig. 9**).

3. Adelic physics fusing real and various p-adic physics are part of the number theoretic vision, which provides a kind of dual description for the description based on space-time geometry and the geometry of "world of classical" orders. Adelic physics predicts two fractal length scale hierarchies: p-adic length scale hierarchy and the hierarchy of dark length scales labelled by $h_{eff} = nh_0$, where n is the dimension of extension of rational. The interpretation of the latter hierarchy is as phases of ordinary matter behaving like dark matter. Quantum coherence is possible in all scales.

The concrete realization of the number theoretic vision is based on $M^8 - H$ duality (see **Fig. 7**). The physics in the complexification of M^8 is algebraic - field equations as partial differential equations are replaced with algebraic equations associating to a polynomial with rational coefficients a X^4 mapped to H by $M^8 - H$ duality. The dark matter hierarchy

corresponds to a hierarchy of algebraic extensions of rationals inducing that for adeles and has interpretation as an evolutionary hierarchy (see **Fig. 8**).

$M^8 - H$ duality provides two complementary visions about physics (see **Fig. 2**), and can be seen as a generalization of the q-p duality of wave mechanics, which fails to generalize to quantum field theories (QFTs).

4. In Zero energy ontology (ZEO), the superpositions of space-time surfaces inside causal diamond (CD) having their ends at the opposite light-like boundaries of CD, define quantum states. CDs form a scale hierarchy (see **Fig. 11** and **Fig. 12**).

Quantum jumps occur between these and the basic problem of standard quantum measurement theory disappears. Ordinary state function reductions (SFRs) correspond to "big" SFRs (BSFRs) in which the arrow of time changes (see **Fig. 13**). This has profound thermodynamic implications and the question about the scale in which the transition from classical to quantum takes place becomes obsolete. BSFRs can occur in all scales but from the point of view of an observer with an opposite arrow of time they look like smooth time evolutions.

In "small" SFRs (SSFRs) as counterparts of "weak measurements" the arrow of time does not change and the passive boundary of CD and states at it remain unchanged (Zeno effect).

In section 1 this picture is discussed in more detail. In section 2 some concepts of condensed matter physics are discussed from the TGD view. In section 3 some concrete questions about condensed matter are discussed and the 4th section lists some goals of the project "TGD and condensed matter". The approach is rather general: this is the only possible option since I am not a condensed matter specialist.

2 TGD briefly

The following provides a sketchy representation of TGD. A longer representations can be found in [L22].

2.1 Space-time as 4-surface in $H = M^4 \times CP_2$

1. Energy problem of GRT means that since space-time is curved, one cannot define Poincare charges as Noether charges (see **Fig. 1**). If space-time X^4 is a surface in $H = M^4 \times CP_2$, the situation changes. Poincare symmetries are lifted to the level of $M^4 \subset H$.
2. Generalization of the notion of particle is in question: point-like particle \rightarrow 3-surface so that TGD can be seen also as a generalization of string model. String \rightarrow 3-surface. String world sheet $\rightarrow X^4$. The notions of the particle and space are unified.
3. Einstein's geometrization program is extended to standard model interactions. CP_2 codes for standard model symmetries and gauge fields. Isometries \leftrightarrow color $SU(3)$. Holonomies of spinor connection \leftrightarrow electroweak $U(2)$ [?]. Genus-generation correspondence provides a topological explanation of the family replication phenomenon of fermions [K1]: 3 fermion families are predicted.
4. Induction of spinors structure as projection of components of spinor connection from CP_2 to X^4 is central for the geometrization. The projections of Killing vectors of color isometries yield color gauge potentials. Parallel translation at X^4 using spinor connection of H . Also spinor structure is induced and means projection of gamma matrices.
5. Dynamics for X^4 is determined by an action S consisting of Kähler action plus volume term (cosmological constant) following from the twistor lift of TGD [K20, L9].
6. The dynamics for fermions at space-time level is determined by modified Dirac action determined by S being super-symmetrically related to it. Gamma matrices are replaced with

modified gamma matrices determined by the S as contractions of canonical momentum currents with gamma matrices. Preferred extremal property follows as a condition of hermiticity for the modified Dirac operator.

Second quantized H-spinors, whose modes satisfy free massless Dirac equation in H restricted to X^4 : this induces second quantization to X^4 and one avoids the usual problems of quantization in a curved background. This picture is consistent with the modified Dirac equation satisfied by the induced spinors in X^4 .

Only quarks are needed if leptons are 3-quark composites in CP_2 scale: this is possible only if one accepts the TGD view about color symmetries. This also provides a new view about matter antimatter asymmetry [L15, L25]. CP violation is forced by the M^4 part of Kähler form forced by the twistor lift.

2.1.1 Basic extremals of classical action

Practically any GCI action allows the same basic extremals (for basic questions related to classical TGD see **Fig. 3**).

1. CP_2 type extremals having light-like geodesic as M^4 projection and Euclidian signature of the induced metric serve as building bricks of elementary particles. If the volume term is absent as it might be at infinite volume limit, the geodesics become light-like curves [L31]. Wormhole contacts connecting two Minkowskian space-time sheets can be regarded as a piece of a deformed CP_2 type extremal. Monopole flux through contact stabilizes the wormhole contact.
2. Massless extremals (MEs)/topological light rays are counterparts for massless modes. They allow superposition of modes with single direction of massless momentum. Ideal laser beam is a convenient analogy here.
3. Cosmic strings $X^2 \times Y^2 \subset M^4 \times CP_2$ and their thickenings to flux tubes are also a central notion.

2.1.2 QFT limit of TGD

The induced gauge fields and gravitational field are expressible in terms of only 4 H - coordinates. Locally the theory is too simple to be physical.

1. Many-sheeted space-time means that X^4 is topologically extremely complex. CP_2 coordinates are many-valued functions of M^4 coordinates or vice versa or both. In contrast to this, the space-time of EYM theory is topologically extremely simple.
2. Einsteinian space-times have 4-D projection to M^4 . Small test particle experiences the sum of the classical gauge potentials associated with various space-time sheets. At QFT limit the sheets are replaced with a single region of M^4 made slightly curved and gauge potentials are defined as the sums of gauge potentials from different space-time sheets having common M^4 projection. Topological complexity and local simplicity are replaced with topological simplicity and local complexity. (see **Fig. 3**).

2.2 World of classical worlds (WCW)

The notion of WCW emerges as one gives up the idea about quantizing by path integral.

2.2.1 The failure of path integral forces WCW geometry

The extreme non-linearity implies that the path integral for surfaces space-time surfaces fails. A possible solution is generalize Einstein's geometrization program to the level of the entire quantum theory.

1. "World of classical worlds" (WCW) can be identified as the space of 3-surfaces endow with a metric and spinor structure (see **Fig. 6**). Hermitian conjugation must have a geometrization. This requires Kähler structure requiring also complex structure. WCW has Kähler form and metric.
2. WCW spinors are Fock states created by fermionic oscillator operators assignable to spinor modes of H basically [L20]. WCW gamma matrices as linear combinations of fermionic (quark) oscillator operators defining analog of vielbein.

WCW has also spinor connection and curvature in WCW. correspond The quantum states of world correspond formally to *classical* spinor fields in WCW. Gamma matrices of WCW expressible in terms of fermionic oscillator operators are also purely classical objects.

2.2.2 Implications of General Coordinate Invariance

General Coordinate Invariance (GCI) in 4-D sense forces to assign to 3-surface X^3 a 4-surface $X^4(X^3)$, which is as unique as possible. This gives rise to Bohr orbitology and quantum classical correspondence (QCC), and holography. Also zero energy ontology (ZEO) emerges.

Quantum states quantum superpositions of space-time surfaces as analogs of Bohr orbits. QCC means that the classical theory is an exact part of quantum theory (QCC).

A solution to the basic paradox of quantum measurement theory emerges [L14]: superposition of deterministic time evolutions is replaced with a new one in state function reduction (SFR): SFR does not force any failure of determinism for individual time evolutions.

2.2.3 WCW Kähler geometry from classical action

WCW geometry is determined by a classical action defining Kähler function $K(X^3)$ for a preferred extremal $X^4(X^3)$ defining the preferred extremal/Bohr orbit [K4] (see **Fig. 6**).

1. QCC suggests that the definition of Kähler function assigns a more or less unique 4-surface $X^4(X^3)$ to 3-surface X^3 . Finite non-uniqueness is however possible [L31].
2. $X^4(X^3)$ is identified as a *preferred* extremal of some general coordinate invariant (GCI) action forcing the Bohr orbit property/holography/ZEO. This means a huge reduction of degrees of freedom.

Remark:: Already the notion of induced gauge field and metric eliminates fields as primary dynamical variables and GCI leaves locally only 4 H -coordinates as dynamical variables.

3. Twistor lift [L7, L9] of TGD geometrizes the twistor Grassmann approach to QFTs. The 6-D extremal X^6 of 6-D Kähler action as a 6-surface in the product $T(M^4) \times T(CP_2)$ of twistor spaces of M^4 and CP_2 represents the twistor space of X^4 .

The condition that X^6 reduces to an S^2 bundle with X^4 as base space, forces a dimensional reduction of 6-D Kähler action to 4-D Kähler action + volume term, whose value for the preferred extremal defines the Kähler function for $X^4(X^3)$.

4. The volume term corresponds to a p-adic length scale dependent cosmological constant Λ approach zero at long p-adic length scale so that a solution of the cosmological constant problem emerges. Preferred extremal/Bohr orbit property means a simultaneous extremal property for *both* Kähler action and volume term. This forces X^4 to have a generalized complex structure (Hamilton-Jacobi structure) so that field equations trivialize and there is no dependence on coupling parameters. Universality of dynamics follows and the TGD Universe is quantum critical. In particular, Kähler coupling strength is analogous to a critical temperature and is quantized [L30].
5. Soap film analogy is extremely useful [L31]: the analogs of soap film frames are singular surfaces of dimension $D < 4$. At the frame the space-time surface fails to be a simultaneous extremal of both actions separately and Kähler and volume actions couple to each other. The corresponding contributions to conserved isometry currents diverge but sum up to a finite contribution. The frames define the geometric analogs for the vertices of Feynman diagrams.

2.2.4 WCW geometry is unique

WCW geometry is fixed by the existence of Riemann connection and requires maximal symmetries.

1. Dan Freed [A1] found that loop space for a given Lie group allows a unique Kähler geometry: maximal isometries needed in order to have a Riemann connection. Same expected to be true now [K2, K10].
2. Twistor lift of TGD [L7, L9] means that one can replace X^4 with its twistor space $X^6(X^4)$ in the product $T(M^4) \times T(CP_2)$ of the 6-D twistor spaces $T(M^4)$ and $T(CP_2)$. $X^6(X^4)$ is 6-surface with the structure of S^2 bundle.

Dimensionally reduced 6-D Kähler action gives sum of 4-D Kähler action and volume term. Twistor space must however have a Kähler structure and only the twistor spaces of M^4, E^4 , and CP_2 have Kähler structure [A2]. TGD is unique both physically and mathematically!

2.2.5 Isometries of WCW

What can one say about the isometries of WCW? Certainly, they should generalize conformal symmetries of string models.

1. The crucial observation is that the 3-D light-cone boundary δM_+^4 has metric, which is effectively 2-D. Also the light-like 3-surfaces $X_L^3 \subset X^4$ at which the Minkowskian signature of the induced metric changes to Euclidian are metrically 2-D. This gives an extended conformal invariance in both cases with complex coordinate z of the transversal cross section and radial light-coordinate r replacing z as coordinate of string world sheet. Dimensions $D = 4$ for X^4 and M^4 are therefore unique.
2. $\delta M_+^4 \times CP_2$ allows the group symplectic transformations of $S^2 \times CP_2$ made local with respect to the light-like radial coordinate r . The proposal is that the symplectic transformations define isometries of WCW [K2].
3. To the light-like partonic orbits one can assign Kac-Moody symmetries assignable to $M^4 \times CP_2$ isometries with additional light-like coordinate. They could correspond to Kac-Moody symmetries of string models assignable to elementary particles.

The preferred extremal property raises the question whether the symplectic and generalized Kac-Moody symmetries are actually equivalent. The reason is that isometries are the only normal subgroup of symplectic transformations so that the remaining generators would naturally annihilate the physical states and act as gauge transformations. Classically the gauge conditions would state that the Noether charges vanish: this would be one manner to express preferred extremal property.

2.3 Zero energy ontology (ZEO)

1. GCI in WCW implies holography, Bohr orbitology and ZEO [L14] [K23].
2. X^3 is more or less equivalent with Bohr orbit/preferred extremal $X^4(X^3)$. Finite failure of determinism is however possible [L31]. Zero energy states are superpositions of $X^4(X^3)$. Quantum jump is consistent with causality of field equations.
3. Causal diamond (CD) defined as intersection of future and past directed light cones ($\times CP_2$) plays the role of quantization volume, and is not arbitrarily chosen. CD determines momentum scale and discretization unit for momentum (see **Fig. 11** **Fig. 12**).
4. The opposite light-like boundaries of CD correspond for fermions dual vacuums (bra and ket) annihilated by fermion annihilation *resp.* creation operators. These vacuums are also time reversals of each other.

The first guess is that zero energy states in fermionic degrees of freedom correspond to pairs of this kind of states located at the opposite boundaries of CD. It however seems that at the M^8 level the correct identification is in terms of states localized at points inside the half-cones of CD. Positive/negative energy fermions would correspond to "upper" / "lower" half-cone of the CD.

5. Zeno effect can be understood if the states at either cone of CD do not change in "small" state function reductions (SSFRs). SSFRs are analogs of weak measurements. One could call this half-cone call as a passive half-cone. I have earlier used a somewhat misleading term passive boundary.

The time evolutions between SSFRs induce a delocalization in the moduli space of CDs. Passive boundary/half-cone of CD does not change. The active boundary/half-cone of CD changes in SSFRs and also the states at it change. Sequences of SSFRs replace the CD with a quantum superposition of CDs in the moduli space of CDs. SSFR localizes CD in the moduli space and corresponds to time measurement since the distance between CD tips corresponds to a natural time coordinate - geometric time. The size of the CD is bound to increase in a statistical sense: this corresponds to the arrow of geometric time.

6. There is no reason to assume that the same boundary of CD is always the active boundary. In "big" SFRs (BSFRs) their roles would indeed change so that the arrow of time would change. The outcome of BSFR is a superposition of space-time surfaces leading to the 3-surface in the final state. BSFR looks like deterministic time evolution leading to the final state as observed by Minev et al [L10] [L10].

7. h_{eff} hierarchy [K14, K15, K16] implied by the number theoretic vision [L16, L17] makes possible quantum coherence in arbitrarily long length scales at the magnetic bodies (MBs) carrying $h_{eff} > h$ phases of ordinary matter. ZEO forces the quantum world to look classical for an observer with an opposite arrow of time. Therefore the question about the scale in which the quantum world transforms to classical, becomes obsolete.

8. Change of the arrow of time changes also the thermodynamic arrow of time. A lot of evidence for this in biology. Provides also a mechanism of self-organization [L12]: dissipation with reversed arrow of time looks like self-organization [L32].

2.4 Number theoretic physics

Number theoretic physics involves the combination of real and various p-adic physics to adelic physics [L5, L6], and classical number fields [K19].

2.4.1 p-Adic physics

Motivation for p-adicization came from p-adic mass calculations [?, K1].

1. p-Adic thermodynamics for mass squared operator M^2 proportional to scaling generator L_0 of Virasoro algebra. Mass squared thermal mass from the mixing of massless states with states with mass of order CP_2 mass.
2. $\exp(-E/T) \rightarrow p^{L_0/T_p}$, $T_p = 1/n$. Partition function p^{L_0/T_p} . p-Adic valued mass squared mapped to real number by canonical identification $\sum x_n p^n \rightarrow \sum x_n p^{-n}$. Eigenvalues of L_0 must be integers for the Boltzmann weights to exist. Conformal invariance guarantees this.
3. p-adic length scale $L_p \propto \sqrt{p}$ from Uncertainty Principle ($M \propto 1/\sqrt{p}$). p-Adic length scale hypothesis states that p-adic primes characterizing particles are near to power of 2: $p \simeq 2^k$. For instance, for electron one has $p = M^{127} - 1$, Mersenne prime. This is the largest not completely super-astrophysical length scale.

Also Gaussian Mersenne primes $M_{G,n} = (1+i)^n - 1$ seem to be realized (nuclear length scale, and 4 biological length scales in the biologically important range 10 nm, 2.5 μ m).

4. p-Adic physics [K9] is interpreted as a correlate for cognition (see **Fig. 9**). Motivation comes from the observation that piecewise constant functions depending a finite number of binary digits have vanishing derivative. Therefore they appear as integration constants in p-adic differential equations. This could provide a classical correlate for the non-determinism of imagination.

2.4.2 Adelic physics

Adelic physics fuses real and various p-adic physics to a single structure [L6].

1. One can combine real numbers and p-adic number fields to a product: number fields would be like pages of a book intersecting along rationals acting as the back of the book.
2. Each extension of rational induces extensions of p-adic number fields and extension of the basic adele. Points in the extension of rationals are now common to the pages. The infinite hierarchy of adeles defined by the extensions forms an infinite library.
3. This leads to an evolutionary hierarchy (see **Fig. 8**). The order n of the Galois group as a dimension of extension of rationals is identified as a measure of complexity and of evolutionary level, "IQ". Evolutionary hierarchy is predicted.
4. Also a hierarchy of effective Planck constants interpreted in terms of phases of ordinary matter is predicted. X^4 decomposes to n fundamental regions related by Galois symmetry. Action is n times the action for the fundamental region. Planck constant h is effectively replaced with $h_{eff} = nh$. Quantum coherence scales are typically proportional to h_{eff} . Quantum coherence in arbitrarily long scales is implied. Dark matter at the magnetic body of the system would serve as controller of ordinary matter in the TGD inspired quantum biology [L32].

$h_{eff} = nh_0$ is a more general hypothesis. Reasons to believe that h/h_0 could be the ratio R^2/L_p^2 for CP₂ length scale R deduced from p-adic mass calculations and Planck length L_P [L30]. The CP₂ radius R could actually correspond to L_P and the value of R deduced from the p-adic mass calculations would correspond to a dark CP₂ radius $\sqrt{h/h_0}l_P$.

2.4.3 Adelic physics and quantum measurement theory

Adelic physics [L6] forces us to reconsider the notion of entanglement and what happens in state function reductions (SFRs). Let us leaven the question whether the SFR can correspond to SSFR or BSFR or both open for a moment.

1. The natural assumption is that entanglement is a number-theoretically universal concept and therefore makes sense in both real and various p-adic senses. This is guaranteed if the entanglement coefficients are in an extension E of rationals associated with the polynomial Q defining the space-time surface in M^8 and having rational coefficients.

In the general case, the diagonalized density matrix ρ produced in a state function reduction (SFR) has eigenvalues in an extension E_1 of E . E_1 is defined by the characteristic polynomial P of ρ .

2. Is the selection of one of the eigenstates in SFR possible if E_1 is non-trivial? If not, then one would have a number-theoretic entanglement protection.
3. On the other hand, if the SFR can occur, does it require a phase transition replacing E with its extension by E_1 required by the diagonalization?

Let us consider the option in which E is replaced by an extension coding for the measured entanglement matrix so that something also happens to the space-time surface.

1. Suppose that the observer and measured system correspond to 4-surfaces defined by the polynomials O and S somehow composed to define the composite system and reflecting the asymmetric relationship between O and S . The simplest option is $Q = O \circ S$ but one can also consider as representations of the measurement action deformations of the polynomial $O \times P$ making it irreducible. Composition conforms with the properties of tensor product since the dimension of extension of rationals for the composite is a product of dimensions for factors.
2. The loss of correlations would suggest that a classical correlate for the outcome is a union of uncorrelated surfaces defined by O and S or equivalently by the reducible polynomial defined by the $O \times S$ [L27]. Information would be lost and the dimension for the resulting extension

is the sum of dimensions for the composites. O however gains information and quantum classical correspondence (QCC) suggests that the polynomial O is replaced with a new one to realize this.

3. QCC suggests the replacement of the polynomial O the polynomial $P \circ O$, where P is the characteristic polynomial associated with the diagonalization of the density matrix ρ . The final state would be a union of surfaces represented by $P \circ O$ and S : the information about the measured observable would correspond to the increase of complexity of the space-time surface associated with the observer. Information would be transferred from entangled Galois degrees of freedom including also fermionic ones to the geometric degrees of freedom $P \circ O$. The information about the outcome of the measurement would in turn be coded by the Galois groups and fermionic state.
4. This would give a direct quantum classical correspondence between entanglement matrices and polynomials defining space-time surfaces in M^8 . The space-time surface of O would store the measurement history as kinds of Akashic records. If the density matrix corresponds to a polynomial P which is a composite of polynomials, the measurement can add several new layers to the Galois hierarchy and gradually increase its height.

The sequence of SFRs could correspond to a sequence of extensions of extensions of.... This would lead to the space-time analog of chaos as the outcome of iteration if the density matrices associated with entanglement coefficients correspond to a hierarchy of powers P^k [L18, ?].

Does this information transfer take place for both BSFRs and SSFRs? Concerning BSFRs the situation is not quite clear. For SSFRs it would occur naturally and there would be a connection with SSFRs to which I have associated cognitive measurement cascades [?]

1. Consider an extension, which is a sequence of extensions $E_1 \rightarrow \dots \rightarrow E_k \rightarrow \dots \rightarrow E_n$ defined by the composite polynomial $P_n \circ \dots \circ P_1$. The lowest level corresponds to a simple Galois group having no non-trivial normal subgroups.
2. The state in the group algebra of Galois group $G = G_n$ having G_{n-1} as a normal subgroup can be expressed as an entangled state associated with the factor groups G_n/G_{n-1} and subgroup G_{n-1} and the first cognitive measurement in the cascade would reduce this entanglement. After that the process could but need not to continue down to G_1 . Cognitive measurements considerably generalize the usual view about the pair formed by the observer and measured system and it is not clear whether $O - S$ pair can be always represented in this manner as assumed above: also small deformations of the polynomial $O \times S$ can be considered.

These considerations inspire the proposal the space-time surface assigned to the outcome of cognitive measurement G_k, G_{k-1} corresponds to polynomial the $Q_{k,k-1} \circ P_n$, where $Q_{k,k-1}$ is the characteristic polynomial of the entanglement matrix in question.

2.4.4 Entanglement paradox and new view about particle identity

A brain teaser that the theoretician sooner or later is bound to encounter, relates to the fermionic and bosonic statistics. This problem was also mentioned in the article of Keimer and Moore [D1] discussing quantum materials <https://cutt.ly/bWdTRj0>. The unavoidable conclusion is that both the fermions and bosons of the entire Universe are maximally entangled. Only the reduction of entanglement between bosonic and fermionic states of freedom would be possible in SFRs. In the QFT framework, gauge boson fields are primary fields and the problem in principle disappears if entanglement is between states formed by elementary bosons and fermions.

In the TGD Universe, all elementary particles are composites of fundamental fermions (quarks in the simplest scenario) so that if Fock space the Fock states of fermions and bosons express everything worth expressing, SFRs would not be possible at all!

Remark: In the TGD Universe all elementary particles are composites of fundamental fermions (quarks in the simplest scenario) localized at the points of space-time surface defining a number theoretic discretization that I call cognitive representation. Besides this there are also degrees of freedom associated with the geometry of 3-surfaces representing particles. These degrees of

freedom represent new physics. The quantization of quarks takes place at the level of H so that anticommutations hold true over the entire H .

Obviously, something is entangled and this entanglement is reduced. What these entangled degrees of freedom actually are if Fock space cannot provide them?

1. Mathematically entanglement makes sense also in a purely classical sense. Consider functions $\Psi_i(x)$ and $\Psi_j(y)$ and form the superposition $\Psi(x) = \sum_{ij} c_{ij} \Psi_i(x) \Psi_j(x)$. This function is completely analogous to an entangled state.
2. Number theoretical physics implies that the Galois group becomes the symmetry group of physics and quantum states are representations of the Galois group [L23, L24]. For an extension of extension of, the Galois group has decomposition by normal subgroups to a hierarchy of coset groups.

The representation of a Galois group can be decomposed to a tensor product of representations of these coset groups. The states in irreps of the Galois group are entangled and the SFR cascade produces a product of the states as a product of representations of the coset groups. Galois entanglement allows us to express the asymmetric relation between observer and observed very naturally. This cognitive SSFR cascade - as I have called it - could correspond to what happens in at least cognitive SFRs.

If so, then SFR would in TGD have nothing to do with fermions and bosons (consisting of quarks too) since the maximal fermionic entanglement remains. For instance, when one for instance talks about long range entanglement the entanglement that matters would correspond to entanglement between degrees of freedom, which do not allow Fock space description.

In the TGD framework, the replacement of particles with 3-surfaces brings in an infinite number of non-Fock degrees of freedom. Could it make sense to speak about the reduction of entanglement in WCW degrees of freedom? There is no second quantization at WCW level so that one cannot talk about Fock spaces WCW level but purely classical entanglement is possible as observed.

1. In WCW unions of disjoint 3-surfaces correspond to classical many-particle states. One can form single particle wave functions for 3-surfaces with a single component, products of these single particle wave functions, and also analogs of entangled states as their superposition realized as building bricks of WCW spinor fields.

If one requires that these wave functions are completely symmetric under the exchange of 3-surfaces, maximal entanglement in this sense would be realized also now and SFR would not be possible. But can one require the symmetry? Under what conditions one can regard two 3-surfaces as identical? For point-like particles one has always identical particles but in TGD the situation changes.

Here theoretical physics and category theory meet since the question when two mathematical objects can be said to be identical is the basic question of category theory. The mathematical answer is they are isomorphic in some sense. The physical answer is that the two systems are identical if they cannot be distinguished in the measurement resolution used.

2. The reduction of entanglement between the states represented by two wave functions (WCW spinors) in the space of 3-surfaces is possible only if the 3-surfaces considered in some sense not identical in the measurement resolution used, call the property of being identical (non-identical) I (NI).
 - (a) In the geometric sense, property I means that the 3-surfaces are related by isometry: practically all 3-surfaces would be non-identical in the maximal measurement resolution.
 - (b) If topology defines resolution, NI means that the 3-surfaces have different topologies as surfaces.
 - (c) If number theory defines the resolution, NI could mean several things. The 4-surfaces could correspond to different extensions of rationals having therefore different Galois groups in general.

They could also to degrees for the real polynomial characterizing by their rational coefficients, or even different polynomials. If all analytic functions are allowed [L24, ?] so that also transcendental extensions become possible, polynomials would provide a hierarchy of descriptions with a finite resolution.

If the fermionic momenta are algebraic integers and cognitive representations correspond to algebraic integers (in sharp contrast to the naive expectations) [L16, L17], the same algebraic extension would be a possible criterion for being identical.

This suggests a decomposition of WCW into sectors, each of which consist of identical 3-surfaces. Inside a given sector, the entanglement is maximal and allows only symmetric or antisymmetric representations of the permutation group S_n but between different sectors entanglement corresponds to an arbitrary representation of S_n and can be reduced.

2.4.5 What happens in quantum measurement?

According to the proposed TGD view about particle identity, the systems for which mutual entanglement can be reduced in SFR must be non-identical in the category theoretical sense.

When SFR corresponds to quantum measurement, it involves the asymmetric observer-system $O - S$ relationship. One cannot exclude SFRs without this asymmetry. Some kind of hierarchy is suggestive.

The extensions of rationals realize this kind of $O - S$ hierarchy naturally. The notion of finite measurement resolution strongly suggests discretization, which favors number theoretical realization. The hierarchies of effective Planck constants and p-adic length scale hierarchies reflect this hierarchy. What about the topological situation: can one order topologies to a hierarchy by their complexity and could this correspond to $O - S$ relationship?

The intuitive picture about many-sheeted space-time is as a hierarchical structure consisting of sheets condensed at larger sheets by wormhole contacts, whose throats carry fermion number. Intuitively, the larger sheet serves as an observer. p-Adic primes assignable to the space-time sheet could arrange them hierarchically and one could have entanglement between wavefunctions for the Minkowskian regions of the space-time sheets and the surface with a larger value for p would be in the role of O .

Quantum measurement involves also a measurement interaction. There must be an interaction between two different levels O and S of the hierarchy.

One can look at the measurement interaction from number theoretic point of view.

1. For cognitive measurements the step forming the composite $O \circ S$ of polynomials would represent the measurement interaction. Before measurement interaction systems would be represented by O and S and measurement interaction would form $O \circ S$ and after the measurement the situation would be as proposed.

Could one think that in BSFR the pair of uncorrelated surface defined by $O \times S$ with degree $n_O + n_S$ (analog for the additivity of classical degrees of freedom) is replaced with $O \circ S$ with degree $n_O \times n_S$ (analog for multiplicativity of degrees of freedom in tensor product) in BSFR? This would mean that the formation of $O \circ S$ is like a formation of an intermediate state in particle reaction or in chemical reaction.

Could the subsequent SSFR cascade define a cascade of cognitive measurements [L23]. I have proposed that this occurs in all particle reactions. For instance, nuclear reactions involving tunnelling would involve formation of dark nuclei with $h_{eff} > h$ in BSFR and a sequence of SSFRs in opposite time direction performing cognitive quantum measurement cascade [L13] and also the TGD based model for "cold fusion" relies on this picture [L4, L19]. After the SSFR cascade second BSFR would occur and bring back the original arrow of time and lead to the final state of the nuclear reaction.

From the point of view of cognition, BSFR would correspond to the heureka moment and the sequences of SSFRs to the cognitive analysis decomposing the space-time surface defined by $O \circ S$ to pieces.

2. One can also consider small perturbations of the polynomials $O \circ S$ as a measurement interaction. For instance, quantum superpositions of space-time surfaces determined by polynomials depending on rational valued parameters are possible. The Galois groups for two polynomials with parameters which are near to each other are the same but for some critical values of the parameters the polynomials separate into products. This would reduce the Galois group effectively to a product of Galois groups. Quantum measurement could be seen as a localization in the parameter space [L24].

The measurement interaction can be also considered from the topological point of view.

1. Wormhole contacts are Euclidean regions of $X^4 \subset H$ couples two parallel space-time regions with Minkowskian signature and could give rise to measurement interaction. Wormhole contact carries a monopole flux and there must be a second monopole contact to make flux loop possible. This structure has an interpretation as an elementary particle, for instance a boson. The measurement interaction could correspond to the formation of this structure and splitting by reconnection to flux loops associated with the space-time sheets after the interaction has ceased.

Remark: Wormhole contacts for $X^4 \subset H$ correspond in $M^8 - H$ duality images of singularities of $X^4 \subset M^8$. The quaternionic normal space at a given point is not unique but has all possible directions, which correspond to all points of CP_2 . This is like the monopole singularity of an electric or magnetic field. At the level of CP_2 wormhole contact is the "blow-up" of this singularity.

2. Flux tube pairs connecting two systems serve also as a good candidate for the measurement interaction. U-shaped monopole flux tubes are like tentacles and their reconnection creates a flux tube pair connecting two systems. SFR would correspond geometrically to the splitting of the flux tube pair by inverse re-connection.

2.4.6 Negentropy Maximization Principle

Negentropy Maximization Principle (NMP) [L29] is the basic variational principle of TGD based quantum measurement theory giving rise to a theory of consciousness.

The adelic entanglement entropy is the sum of the real entanglement entropy and p-adic entropies. The adelic negentropy is its negative. The real part of adelic entropy is non-negative but p-adic negentropies can be positive. The sum of p-adic negentropies can be larger than the real entropy for non-trivial extensions of rationals. NMP is expected to take care that this is indeed the case. Second law for the real entropy would still hold true and guarantee NMP. NMP states that SFRs cannot reduce the *overall* entanglement entropy although this can happen to subsystems. In SFRs this local reduction of negentropy would happen. Entanglement is not destroyed in SFRs in general and new entanglement negentropy can be generated. Although real entanglement entropy tends to increase, the positive p-adic negentropies assignable to the cognition would do the same so that net negentropy would increase. This would not mean only entanglement protection, but entanglement generation and cognitive evolution. This picture is consistent with the paradoxical proposal of Jeremy England [I1] [L2] that biological evolution involves an increase of entropy. It should be noticed that the increase of real entanglement entropy as such does not imply the second law. The reduction of real entropy transforms it to ensemble entropy since the outcome of the measurement is random. This entropy is entropy of fermions at space-time sheets. The fermionic entanglement would be reduced but transformed to Galois entanglement.

2.5 $M^8 - H$ duality

There are several observations motivating $M^8 - H$ duality (see **Fig. 7**).

3. There are four classical number fields: reals, complex numbers, quaternions, and octonions with dimensions 1, 2, 4, 8. The dimension of the embedding space is $D(H) = 8$, the dimension of octonions. Spacetime surface has dimension $D(X^4) = 4$ of quaternions. String world sheet

and partonic 2-surface have dimension $D(X^2) = 2$ of: complex numbers. The dimension $D(\text{string}) = 1$ of string is that of reals.

2. Isometry group of octonions is a subgroup of automorphism group G_2 of octonions containing $SU(3)$ as a subgroup. $CP_2 = SU(3)/U(2)$ parametrizes quaternionic 4-surfaces containing a fixed complex plane.

Could M^8 and $H = M^4 \times CP_2$ provide alternative dual descriptions of physics (see **Fig. 7**)?

1. Actually a complexification $M_c^8 \equiv E_c^8$ by adding an imaginary unit i commuting with octonion units is needed in order to obtain sub-spaces with real number theoretic norm squared. M_c^8 fails to be a field since $1/o$ does not exist if the complex valued octonionic norm squared $\sum o_i^2$ vanishes.

2. $M^8 - H$ duality means following. H would provide a geometric description, classical physics based on Riemann metric, differential geometric structures and partial differential equations deduced from an action principle. M_c^8 would provide a number theoretic description: no partial differential equations, no Riemannian metric, no connections...

M_c^8 has only the number theoretic norm squared, which is real only if M_c^8 coordinates are real or imaginary. This would define "physicality". One open question is whether all signatures for the number theoretic metric of X^4 should be allowed? Similar problem is encountered in the twistor Grassmannian approach.

3. The basic objection is that the number of algebraic surfaces is very small and they are extremely simple as compared to extremals of action principle. Second problem is that there are no coupling constants at the level of M^8 defined by action.

Preferred extremal property realizes quantum criticality with universal dynamics with no dependence on coupling constants. This conforms with the disappearance of the coupling constants from the field equations for preferred extremals in H except at singularities, with the Bohr orbitology, holography and ZEO. $X^4 \subset H$ is analogous to a soap film spanned by frame representing singularities and implying a failure of complete universality.

4. In M^8 , the dynamics determined by an action principle is replaced with the condition that the *normal* space of X^4 in M^8 is associative/quaternionic. The distribution of normal spaces is always integrable to a 4-surface. One cannot exclude the possibility that the normal space is complex 2-space, this would give a 6-D surface [L16, L17]. Also this kind of surfaces are obtained and even 7-D with a real normal space. They are interpreted as analogs of branes and are in central role in TGD inspired biology.

Could the twistor space of the space-time surface at the level of H have this kind of 6-surface as M^8 counterpart? Could $M^8 - H$ duality relate these spaces in 16-D M_c^8 to the twistor spaces of the space-time surface as 6-surfaces in 12-D $T(M^4) \times T(CP_2)$?

5. Symmetries in M^8 number theoretic: octonionic automorphism group G_2 which is complexified and contains $SO(1, 3)$. G_2 contains $SU(3)$ as M^8 counterpart of color $SU(3)$ in H . Contains also $SO(3)$ as automorphisms of quaternionic subspaces. Could this group appear as an (approximate) dynamical gauge group?

$M^8 = M^4 \times E^4$ as $SO(4)$ as a subgroup. It is not an automorphism group of octonions but leaves the octonion norm squared invariant. Could it be analogous to the holonomy group $U(2)$ of CP_2 , which is not an isometry group and indeed is a spontaneously broken symmetry.

A connection with hadron physics is highly suggestive. $SO(4) = SU(2)_L \times SU(2)_R$ acts as the symmetry group of skyrmions identified as maps from a ball of M^4 to the sphere $S^3 \subset E^4$. Could hadron physics \leftrightarrow quark physics duality correspond to $M^8 - H$ duality. The radius of S^3 is proton mass: this would suggest that M^8 has an interpretation as an analog of momentum space.

6. What is the interpretation of M^8 ? Massless Dirac equation in M^8 for the octonionic spinors must be algebraic. This would be analogous to the momentum space Dirac equation. Solutions would be discrete points having interpretation as quark momenta! Quarks pick up discrete points of $X^4 \subset M^8$. States turn out to be massive in the M^4 sense: solves the basic problem of 4-D twistor approach (it works for massless states only). Fermi ball is replaced with a region of a mass shell (hyperbolic space H^3).

M^8 duality would generalize the momentum-position duality of the wave mechanism. QFT does not generalize this duality since momenta and position are not anymore operators.

2.5.1 Associative dynamics in M_c^8

How to realize the associative dynamics in M_c^8 [L16, ?]?

1. Number theoretical vision requires hierarchy of extensions of rationals and polynomials with rational coefficients would realize them. Rational coefficients make possible the interpretation as a polynomial with p-adic argument and therefore number theoretical universality.

One cannot exclude the possibility that also real argument is allowed and that number theoretic universality and adelization applies only for the space-time surfaces defined by polynomials with rational coefficients.

2. Algebraic physics suggests that X^4 is in some sense a root of a M_c^8 valued polynomial. One can continue polynomials P with rational coefficients to M_c^8 by replacing the real argument with a complexified octonion.

3. The algebraic conditions should imply that the normal space of X^4 is quaternionic/associative. One can decompose octonions to sums $q_1 + I_4 q_2$, or "real" and "imaginary" parts q_i , which are quaternions and I_4 is octonion unit orthogonal to quaternions. The condition is that the "real" part of the octonionic polynomial vanishes. Complexified 4-D surface whose projection to a real section (M^8 coordinates imaginary or real so that complexified octonion norm squared is real) is 4-D.

4. $M^8 - H$ duality requires an additional condition. The normal space contains also a complex plane M^2 which is commutative. This guarantees that normal spaces correspond to a point of CP_2 . This is necessary in order to define $M^8 - H$ duality mapping X^4 from M^8 to H . M^2 can be replaced with an integrable distribution of M^2 s if the assignment of the CP_2 point to tangent space can be made unique. This is the case if the spaces $M^2(x)$ are obtained from $M^2(y)$ by a unique G_2 automorphism $g(x, y)$.

2.5.2 Associativity condition at the level of M^8

Associativity condition for polynomials allows to characterize space-time surfaces in terms of polynomials with rational coefficients and possibly also analytic functions with rational Taylor coefficients at M^8 level. $M^8 - H$ duality would map $X^4 \subset M^8$ to $X^4 \subset H$. In M_c^8 the space-time surfaces could be also seen as graphs of local (complex) G_2 gauge transformations.

Remark: Even real coefficients can be considered. In this case polynomials with rational coefficients would define a unique discretion of WCW and allow p-adicization and adelization.

In the generic case the the set of points in the extension of rationals defining cognitive representation is discrete and finite. The surprise was that the "roots" can be solved explicitly and that the discrete cognitive representation is dense so that momentum quantization due to the finite volume of CD must be assumed to obtain finite cognitive representation inside CD. Cognitive representation could be defined by the points which correspond to the 8-momenta solving octonionic Dirac equation. This is excellent news concerning practical applications.

2.5.3 Uncertainty Principle and $M^8 - H$ duality

The detailed realization of $M^8 - H$ duality involves still uncertainties. The quaternionic normal spaces containing fixed 2-space M^2 (or an integrable distribution of M^2) are parametrized by points of CP_2 . One can map the normal space to a point of CP_2 .

The tough problem has been the precise correspondence between M^4 points in $M^4 \times E^4$ and $M^4 \times CP_2$ and the identification of the sizes of causal diamonds (CDs) in M^8 and H . The identification is naturally linear if M^8 is analog of space-time but if M^8 is interpreted as momentum space, the situation changes. The option discussed in [L16, L17] maps mass hyperboloids to light-cone proper time =constant hyperboloids and it has turned out that this correspondence does not correspond to the classical picture suggesting that a given momentum in M^8 corresponds in H to a geodesic line emanating from the tip of CD.

1. The first constraint comes from the requirement that the identification of the point $p^k \in X^4 \subset M^8$ should classically correspond to a geodesic line $m^k = p^k \tau/m$ ($p^2 = m^2$) in M^8 which in Big Bang analogy should go through the tip of the CD in H . This geodesic line intersects the opposite boundary of CD at a unique point.

Therefore the mass hyperboloid H^3 is mapped to the 3-D opposite boundary of $cd \subset M^4 \subset H$. This does not fix the size nor position of the CD ($= cd \times CP_2$) in H . If CD does not depend on m , the opposite light-cone boundary of CD would be covered an infinite number of times.

2. The condition that the map is 1-to-1 requires that the size of the CD in H is determined by the mass hyperboloid M^8 . Uncertainty Principle (UP) suggests that one should choose the distance T between the tips of the CD associated with m to be $T = \hbar_{eff}/m$. The image of p^k is $m^k = \hbar_{eff} p^k / m^2$ and one obtains a linear map for a given mass and also consistency with the naive view about UP. m^k is on the proper time constant mass shell so the analog of Fermi ball of $H^3 \subset M^8$ is mapped to the light-like boundary of $cd \subset M^4 \subset H$

What about massless particles? p-Adic thermodynamics strongly suggests that also massless particles generate very small p-adic mass which is however proportional to $1/p$ rather than $1/\sqrt{p}$. The map is well defined also for massless states as a limit and takes massless momenta to the 3-ball at which upper and lower half-cones meet.

3. What about the position of the CD associated with the mass hyperboloid? It should be possible to map all momenta to geodesic lines going through the 3-ball dividing the largest CD involved with T determined by the smallest mass involved to two half-cones. This is because this 3-ball defines the geometric "Now" in TGD inspired theory of consciousness. Therefore all CDs in H should have a common center and have the same geometric "Now". One would have a slicing of M^4 by CDs with a common origin at their center and varying size scale T . The slicing of $X^4 \subset M^8$ by hyperboloids would be mapped to the slicing of $X^4 \subset H$ by CDs.

4. The inverse image of CDs in H would correspond to a union of mass shells in H so that CDs would not appear at M^8 side as assumed hitherto. This picture fits nicely with the general properties of the space-time surfaces as associative "roots" of the octonionic continuation of a real polynomial. A second nice feature is that the notion of CD at the level H is forced by this correspondence. "Why CDs?" at the level of H has indeed been a longstanding puzzle. A further nice feature is that the size of the largest CD would be determined by the smallest momentum involved.
5. Positive and negative energy parts of zero energy states would correspond to opposite boundaries of CDs and at the level of M^8 they would correspond to mass hyperboloids with opposite energies.
6. What could be the meaning of the occupied points of M^8 containing fermion (quark)? Could the image of the mass hyperboloid containing occupied points correspond to sub-CD at the level of H containing corresponding points at its light-like boundary? If so, $M^8 - H$ correspondence would also fix the hierarchy of CDs at the level of H .

One can argue that UP requires more than the naive condition $T = \hbar_{eff}/m$. The intuitive idea that a single point in M^8 corresponds to a discretized plane wave in H in a spatial resolution defined by the total mass of the CD complex. This planewave should be realized at the level of WCW as a superposition of shifted space-time surfaces defined by the above correspondence.

1. It is enough to realize the analogs of plane waves only for the actualized momenta corresponding to quarks of zero energy state. One can assign to CD as total momentum and opposite half-cones give total momenta of opposite sign. Denote this total momentum for a given active CD corresponding to mass m by $P_{tot}(m)$. In the limit when the volume of CD becomes infinite, this momentum should automatically vanish for zero energy states.
2. Denote the sum of the total momenta with positive energy associated with the active half-cones of all CDs by P_{tot} . This momentum is very large and naturally defines the spatial resolution. Denote by $M^k = nh_{eff}P_{tot}^k / \cdot P_{tot}^2$ the shift defined by P_{tot} . The analogs of plane waves for the sub-CDs should be discretized with this spatial resolution and at the limit of large total mass the discretization improves.
3. The image of X^4 in H for a given mass hyperboloid H^3 should define a geometric analog of a plane wave in WCW for the total momentum $P^k = \sum_i p_i^k$, $p_i^2 = m^2$ of H^3 , associated with the $CD(m)$ in M^8 . The WCW plane wave would not be a superposition of points but of shifted space-time surfaces. The argument of the plane wave would correspond to the shift of the $X^4 \subset CD(m) \subset H$.

Maximal spatial resolution is achieved if one shifts the $CD(m)$ in H inside the large CD by $nM^k = nh_{eff}P_{tot}^k / \cdot P_{tot}^2$ and forms the WCW spinor field as a superposition of shifted space-time surfaces $X^4(m)$ with plane wave phase factors $U_n = \exp(iP_{tot}(m) \cdot nM)$. At the limit when the size of the largest CD becomes infinite, the sum $\sum_n U_n$ is non-vanishing only for $iP_{tot} = 0$ and one obtains an momentum conserving zero energy state.

These states would be analogs of single particle states as plane waves, with particle replaced with many-quark state inside $CD(m)$. The generalization is obvious: perform the analog of second quantization by forming N -particle states in which one has N $CD(m)$ plane waves.

2.6 Different manners to understand the "complete integrability" of TGD

There are several ways to see how TGD could be a completely integrable theory.

2.6.1 Preferred extremal property

Preferred extremal property requires Bohr orbit property and holography and is an extremely powerful condition.

1. Twistor lift of TGD implies that X^4 in H is simultaneous extremal of volume action and Kähler action. Minimal surface property is counterpart for massless field equations and extremality for Kähler action gives interpretation for massless field as Kähler form as part of induced electromagnetic field.

The simultaneous preferred extremal property strongly suggests that 2-D complex structure generalizes for 4-D space-time surfaces and so called Hamilton-Jacobi structure [L11] meaning a decomposition of M^4 to orthogonal slicings by string world sheets and orthogonal partonic 2-surfaces would realize this structure.

2. Generalized Beltrami property [L26] implies that 3-D Lorentz force and dissipation for Kähler form vanish. The Kähler form is analogous to the classical Maxwell field. Energy momentum tensor has vanishing divergence, which makes it plausible that QFT limit is analogous to Einstein-Maxwell theory.

The condition also implies that the Kähler current defines an integrable flow so that there is global coordinate varying along flow lines. This is a natural classical correlate for quantum

coherence. Quantum coherence would be always present but broken only by the finite size of the region of the space-time considered.

Beltrami property plus current conservation implies gradient flow and an interesting question is whether conserved currents define gradient flows: non-trivial space-time topology would allow this at the fundamental level. Beltrami condition is a very natural classical condition in the models of supraphases.

2.6.2 Supersymplectic symmetry

The third approach is based on the super-symplectic symmetry of WCW. Isometry property would suggest that an infinite number of super-symplectic Noether charges are defined at the boundaries of CD by the action of the theory. They need not be conserved since supersymplectic symmetries cannot be symmetries of the action: if they were, the WCW metric would be trivial.

The gauge conditions for Virasoro algebra and Kac-Moody algebras suggest a generalization. Super-symplectic algebra (SSA) involves only non-negative conformal weights n suggesting extension to a Yangian algebra (this is essential!). Consider the hierarchy of subalgebras SSA_m for which the conformal weights are m -tuples of those of entire algebra. These subalgebras are isomorphic with the entire algebra and form a fractal hierarchy.

Assume that the sub-algebra SSA_m and commutator $[SSA_m, SSA]$ have vanishing classical Noether charges for $m > m_{max}$. These conditions could fix the preferred extremal. One can also assume that the fermionic realizations of these algebras annihilate physical states. The remaining symmetries would be dynamical symmetries.

The generators are Hamiltonians of $\delta M_+^4 \times CP_2$. The symplectic group contains Hamiltonians of the isometries as a normal sub-algebra. Also the Hamiltonians of and one could assume that only the isometry generators correspond to non-trivial classical and quantal Noether charges. Could the actions of SSA and Kac-Moody algebras of isometries be identical if a similar construction applies to Kac-Moody half-algebras associated with the light-like partonic orbits.

Super-symplectic symmetry would reduce to a hierarchy of gauge symmetries.

2.7 Comparison of TGD with other theories

Table 1 compares GRT and TGD and **Table 2** compares standard model and TGD.

3 Some notions of condensed matter physics from the TGD point of view

Before continuing I must emphasize that I am not a condensed matter physicist and have no practical experience about experimental physics. Therefore I cannot propose any experimental protocols. I dare to hope that the new vision about space-time and quantum theory could inspire people who are doing real condensed matter physics.

3.1 The new view about classical fields

The TGD view about classical gauge fields differs in many aspects from the Maxwellian and gauge theory view since the classical fields associated with the system define a geometric what I call its field body (magnetic body (MB)) is the term that I have used. MB can carry also electric fields very closely related to magnetic fields unless the corresponding space-time surface is static. MB consists of flux tubes and flux sheets.

There are 2 kinds of cosmic strings: with monopole flux (see **Fig. ??**) or without it. The simplest cases correspond to Y^2 , which is either a homologically non-trivial or trivial geodesic sphere of CP_2 .

This predicts two kinds of magnetic flux tubes and two kinds of magnetic and electric fields. This suggests a possible interpretation for the fields H, M, B appearing in Maxwell's theory as field H carrying monopole flux requiring no current as source, magnetization M as non-monopole part induced by H , and $B = H + M$ as their sum experienced by test particle in many-sheeted

	GRT	TGD
Scope of geometrization	classical gravitation	all interactions and quantum theory
Spacetime		
Geometry	abstract 4-geometry	sub-manifold geometry
Topology	trivial in long length scales	many-sheeted space-time
Signature	Minkowskian everywhere	also Euclidian
Fields		
classical	primary dynamical variables	induced from the geometry of H
Quantum fields	primary dynamical variables	modes of WCW spinor fields
Particles	point-like	3-surfaces
Symmetries		
Poincare symmetry	lost	Exact
GCI	true	true - leads to SH and ZEO
	Problem in the identification of coordinates	$H = M^4 \times CP_2$ provides preferred coordinates
Super-symmetry	super-gravitation	super variant of H : super-surfaces
Dynamics		
Equivalence Principle	true	true
Newton's laws and		
notion of force	lost	generalized
Einstein's equations	from GCI and EP	remnant of Poincare invariance at QFT limit of TGD
Bosonic action	EYM action	Kähler action + volume term
Cosmological constant	suggested by dark energy	length scale dependent coefficient of volume term
Fermionic action	Dirac action	Modified Dirac action for induced spinors
Newton's constant	given	predicted
Quantization	fails	Quantum states as modes of WCW spinor field

Table 1: Differences and similarities between GRT and TGD

	SM	TGD
Symmetries		
Origin	from empiria	reduction to CP_2 geometry
Color symmetry	gauge symmetry	isometries of CP_2
Color	analogous to spin	analogous to angular momentum
Ew symmetry	gauge symmetry	holonomies of CP_2
Symmetry breaking	Higgs mechanism	CP_2 geometry
Spectrum		
Elementary particles	fundamental	consist of fundamental fermions
Bosons	gauge bosons, Higgs	gauge bosons, Higgs, pseudo-scalar
Fundamental fermions	quarks and leptons	quarks: leptons as local 3-quark composites
Dynamics		
Degrees of freedom	gauge fields, Higgs, and fermions	3-D surface geometry and spinors
Classical fields	gauge fields, Higgs	induced spinor connection
	SU(3) Killing vectors of CP_2	
Quantal degrees of freedom	gauge bosons, Higgs,	quantized induced spinor fields
Massivation	Higgs mechanism	p-adic thermodynamics with superconformal symmetry

Table 2: Differences and similarities between standard model and TGD

space-time. The same would apply to D , P and E . If this interpretation is correct, TGD would have been secretly present in Maxwell's theory from the beginning.

The proposal that MB serves as a seat for dark matter as $h_{eff} = nh_0$ phases is central in the TGD inspired theory of consciousness and living matter. MB would be the boss and receive sensory input from ordinary biomatter and control it. This would happen in terms of dark photons with frequencies in EEG range and also in other ranges. The energies would be in the visible and UV range assigned to biophotons to which the dark photons would transform.

Magnetic flux tubes could accompany quantum vortices appearing in various macroscopic quantum phases. Even the hydrodynamical vortices in macroscopic scales could correspond to quantum coherent magnetic flux tubes with a large value of h_{eff} acting as a master forcing the coherent dynamics of ordinary matter. In hydrodynamics the classical Z^0 magnetic field, which in situations allowing skyrmions, is proportional to the induced Kähler form, could be important. Large parity breaking effects would be the prediction.

Also the view about radiation fields changes. Massless extremals (MEs)/topological light rays are counterparts for massless modes. They allow a superposition of modes with a single direction of massless momentum. The ordinary superposition of gauge potentials in gauge theory is replaced with union of space-time surfaces with common M^4 projection. The test particle experiences the sum of gauge potentials associated with various space-time sheets so that the gauge potentials effectively superpose. Ideal laser beam is a convenient analogy. MEs are ideal for precisely targeted communications without dispersion and dissipation. MEs are soliton-like entities and one can ask whether MEs could provide a model for solitons or accompany solitons. TGD based model for nerve pulse involves Sine-Gordon solitons with large h_{eff} assigned to the cell membrane and dark Josephson radiation would have MEs as space-time correlate [K7, K3, K8].

MEs do not allow standing waves possible in Maxwell theory but a set theoretic union of parallel MEs can effectively give rise to standing waves. Lorentz transformations give rise to waves moving with arbitrary sub-luminal velocity. Even a superposition in which fields effectively sum up to zero but there is a non-vanishing energy density as sum of energy densities for the two MEs, is possible.

3.2 About quantum criticality in TGD

In TGD number theoretical vision about physics brings a new view about quantum criticality.

1. Quantum criticality is actually the basic assumption of TGD: the Kähler coupling strength α_K appearing in the classical action principle of TGD would be analogous to a critical temperature and have a discrete spectrum. This would make the theory unique. All space-time sheets are quantum critical but at QFT limit this is of course masked by the replacement of sheets with a single region of M^4 made curved.
2. At the number theoretical M^8 side there is no action principle. The universality of the dynamics could be seen as a manifestation of quantum criticality. Can α_K emerge at M^8 level somehow from scattering amplitudes in M^8 and have a number theoretical origin [L30].
At the level of H coupling constants are visible only at the level of frames defining the space-time as an analog of soap film. The parts of the frame are images of singularities for the X^4 in M^8 . The challenge is to understand how the singularities of the space-time surfaces determine α_K already at the level of M^8 ?
p-adic thermodynamics for mass squared predicts a spectrum of temperatures with values coming as inverse integers [K5, K1]. Also this temperature quantization could be seen as a counterpart for the quantum criticality.
3. Quantum criticality involves long range correlations and the hierarchy of Planck constants characterizing them [K14, K15, K16]. h_{eff} corresponds to a dimension of extension of rationals characterizing the space-time surfaces. At criticality there is quantum superposition of space-time surfaces with various values of h_{eff} corresponding to polynomials defining the X^4 and one value of h_{eff} is selected in state function reduction.

3.3 What infinite-volume limit could mean in TGD?

Infinite volume limit corresponds to both thermodynamic and QFT limit and should be understood in the TGD framework. The questions are what it means if the infinite volume limit is actually realized and whether this has practical consequences.

1. At the level of ZEO infinite volume limit means that the size of causal diamond (CD) as an analog of Nature given quantization volume becomes infinite. The scattering amplitudes coded by zero energy states conserve Poincare quantum numbers at this limit.
2. At the level of H the volume action vanishes since the p-adic length scale dependent cosmological constant $\Lambda \propto 1/L_p^2$ approaches zero at the limit when the p-adic length scale L_p characterizing the X^4 becomes infinitely large.
If $\Lambda = 0$ phase is real, the action would reduce to mere Kähler action containing both M^4 contribution and CP_2 . In this case, one would also have extremals of form $X^2 \times Y^2$ for which CP_2 projection of the Lagrangian manifold with vanishing induced Kähler form. These extremals receive a negative contribution to energy from M^2 . Could the preferred extremal property exclude these solutions? **Remark: if the sign of M^4 Kähler action is changed, the electric contribution to energy is positive and magnetic contribution negative. For string- like objects this would guarantee positive contribution.**
3. In the number theoretic picture infinite volume limit in H could mean that polynomials defining $X^4 \subset M^8$ mapped to H are replaced with analytic functions with rational coefficients.

Polynomials are assumed to vanish at origin (this guarantees that roots are "inherited" in their functional composition) and so should also the analytic functions. The inverse $1/f$ is infinite at origin and does not belong to the set so that one does not have a function field. Since one has only multiplication, one can speak about functional primes as in the case of polynomials.

One can ask whether they should satisfy conditions guaranteeing that they can be regarded as polynomials of infinite order. Could one speak about polynomials of infinite degree as the limit of functional composites of polynomials with finite degree. As a matter of fact, infinite Galois groups are profinite groups and this requires this kind of inverse limit definition [?].

A concrete example is provided by the iteration of a polynomial of finite degree [?]. In this case the spectrum of roots contains a continuous part at the limit so that complex numbers as completion of rationals would emerge at the infinite volume limit much like the continuum spectrum of momenta emerges from a discrete spectrum.

3.4 The notions of geometric phase, Berry curvature, and fidelity in TGD?

Non-contractible ground state Berry phase in the loop over the parameter space is associated with QPTs and is associated Berry curvature defining non-trivial $U(1)$ holonomy (<https://cutt.ly/RWy7Deq>) Geometric phase (<https://cutt.ly/6Wy7GIT>) is a more general notion. It can be associated with homotopically non-trivial loops. For homotopically trivial loop geometric phase is due to non-trivial holonomy manifesting itself as Berry curvature. The Aharonov-Bohm effect represents an example about non-trivial holonomy. Electrons pass along paths closing together a region containing a magnetic field, which vanishes at the paths. Berry phase can be associated with loops in the parameter space for the Hamiltonian modelling the system.

Fidelity [D8] <https://cutt.ly/VWy5sVj>) defines a metric in the space of parameter dependent quantum states. It could be induced from metric of the parameter space. The abrupt changes of fidelity serve as a signature of quantum criticality.

Is this possible at the level of WCW?

1. WCW is a Kähler manifold [K10, K4]. Finite-dimensional Kähler manifolds have a trivial homotopy group. Complex coordinates of WCW contributing to Kähler form and metric correspond to complex coordinates. In these degrees there should be no homotopically trivial loops so that topological phase is not possible. The curvature of the Kähler form can however have effects.
2. The remaining degrees of freedom are zero modes and define the analog of the base space in bundle theory. They appear as parameters - essentially classical background fields - in the Kähler metric and Kähler form. The topology in the zero modes can have non-trivial homotopy. Geometric phase could be assigned with homotopically trivial loops in the zero modes.

At the infinite-volume limit the sub-WCW defined by the degenerate ground states with a Lagrangian manifold Y^2 as CP_2 projection (vanishing Kähler form and color gauge fields but non-vanishing weak gauge fields) is highly interesting. The preferred extremal property could exclude these space-time surfaces.

It seems that TGD could provide a unified description of all these exotic quantum coherent phases.

3.4.1 How the description in terms of Berry phase and fidelity could relate to TGD?

Consider first the identification of the TGD counterparts of Berry phase and fidelity.

1. In TGD the ground states are defined as space-time surfaces/3-surfaces and quantum states are their superpositions. The Kähler metric defines the analog of the quantum metric and the Kähler form corresponds to Berry curvature.

The fidelity of two quantum states $\Psi(\lambda)$ and $\Psi(\lambda + \delta\lambda)$ is defined as the overlap $\langle \Psi(\lambda) | \Psi(\lambda + \delta\lambda) \rangle$ in parameter space. The fidelity for nearby states is expected to change dramatically at singularity.

Fidelity at the level of WCW - rather than WCW spinor fields representing quantum states - would mean disappearance of appearance of quantal WCW degrees of freedom as zero models transform to dynamical quantal degrees of freedom or vice versa. This change would make itself visible at the level of quantum states whose inner product depends on the WCW Kähler metric.

2. WCW also allows spinor connection with some gauge group acting as non-abelian holonomies. This corresponds to non-Abelian Berry phase Kac-Moody algebras of H isometries are an excellent candidate in this respect. WCW allows super-symplectic group as isometries.
3. WCW metric has also zero modes, which do not contribute to the WCW metric. Any symplectic invariant associated with X^4 defines such an invariant and the induced CP_2 Kähler form is invariant under the symplectic transformations of CP_2 and can be said to define a continuum of this kind of invariants. This could induce a geometric phase, which is not due to a holonomy but non-trivial homotopy.

Kähler magnetic fluxes over 2-surfaces define such invariants. For closed surfaces these invariants reduce to quantized magnetic fluxes. Also M^4 Kähler form defines such invariants. At the boundary of CD the sphere S^2 (light-like radial coordinate =constant) has symplectic structure and also this defines solid angles assignable to 3-surfaces as seen from the tip of the CD as invariants.

3.4.2 Could the singularity of the quantum metric relate to number theoretical physics?

The singularity of the quantum metric would mean a reduction of the number of the dynamical quantum degrees of freedom contributing to the WCW metric meaning that the rank of the WCW metric tensor decreases. At criticality complex coordinates would transform to zero modes. Some complex coordinates of WCW would reduce to real coordinates. This would correspond to quantum criticality. In a concrete mechanical system some eigen modes would vanish and corresponding frequencies would become zero.

Since the TGD Universe is quantum critical and this is expected to be a generic phenomenon. Quantum criticality involves long range fluctuations which would correspond to large values of h_{eff} and therefore space-time surfaces which are algebraically complex. Could these long range fluctuations relate to almost zero modes with small frequencies and large wave lengths?

These phase transitions could be number theoretic. They would change the polynomial defining the X^4 (recall that quantum state is the superposition of space-time surfaces in ZEO). The dimension n for the extension of rationals is equal to the order of the Galois group and would change. Galois symmetries would act as zero mode symmetries. The dimensions of the representations of the Galois group in terms of quarks would also change. The change in the number of degrees of freedom would change the fidelity.

n defines also the algebraic dimension of the integers extended to algebraic integers for extension as a space regarded as a ring of integers. If algebraic integers can define components of the momenta, the dimension of the momentum space with integer components of momentum increases from 3 to $3n$ as the dimension of the Galois group increases by factor n . This increase occurs in the transitions in which the polynomial Q defining the space-time region is replaced with $P \circ Q$ such that P defines n -dimensional extension.

This would have rather dramatic effects since the radius of the Fermi ball with radius would be reduced by factor $1/n$ and could contain the same number of states as ordinary Fermi ball: this would mean an increase of density by factor n^3 corresponding to n sheets. Quasicrystal structure in both $X^4 \subset M^8$ and its images in $X^4 \subset H$ is also suggestive.

3.4.3 Does infinite volume limit have spin-glass type degeneracy?

One can look at the situation also at the infinite volume limit. At the infinite volume limit the action is expected to reduce to Kähler action. Whether this implies ground state degeneracy depends on whether preferred extremal property allows it.

1. In the original picture there was only CP_2 contribution to Kähler action. This implies huge vacuum degeneracy of CP_2 Kähler action. Any X^4 with CP_2 projection which is 2-D Lagrangian manifold is a vacuum extremal. WCW metric becomes singular if its inverse does not exist: this means singularity and the existence of zero modes. 4-D spin variant of glass degeneracy (https://en.wikipedia.org/wiki/Spin_glass) and classical non-determinism emerge. Classical non-determinism does however not look physically acceptable.
2. The twistor lift forces the Kähler action to have also an M^4 part obtained by analytical continuation from E^4 . Does the resulting Kähler action have ground state degeneracy at infinite volume limit?

The simplest extremals are of the form $X^4 = X^2 \times Y^2$, X^2 a minimal surface in M^4 and Y^2 a Lagrangian manifold in CP_2 . Symplectic transformations in CP_2 degrees act like $U(1)$ gauge transformations on CP_2 Kähler gauge potential and do not affect either Kähler form nor the Lagrangian manifold property.

Only the induced metric is affected so that the effects are purely gravitational. This gives rise to the ground state degeneracy. The area of CP_2 projection is not changed and the action is affected only by the change of the induced metric. Conserved quantities are modified only by gravitational effects and are non-vanishing. The extremals are deterministic and apart from gravitational effects one has a huge ground state degeneracy analogous to spin glass degeneracy.

Apart from gravitation, the WCW Kähler metric receives contributions only from M^4 degrees of freedom, which are not affected under these deformations. Could one say that CP_2 degrees have transformed to zero modes?

3. One can also have surfaces $X^2 \times Y^2 \subset M^4 \times CP_2$ such that both X^2 and Y^2 are Lagrangian manifolds at infinite volume limit. These would be vacuum extremals. Preferred extremal property should exclude them. Could the interpretation be that all quantum degrees of freedom have transformed to zero modes?
4. One can invent objections against this proposal.
 - (a) Negative energies might emerge from the electric energy in M^4 degrees of freedom. Electric field gives a negative contribution to energy density. Signature is Minkowskian for M^2 subset $M^2 \times E^2$. The M^2 part of Kähler form is obtained from its E^2 variant by multiplication with factor i . This might cause problems.
 - (b) These surfaces are extremals but the preferred extremal property could fail since the needed 4-D analog of complex structure is missing since Y^2 as a Lagrangian manifold is not a complex surface of CP_2 .
 - (c) There is however also an argument in favor of this picture. Ordinary Maxwellian magnetic fields correspond to a homologically trivial geodesic sphere of CP_2 and they are Lagrangian submanifolds. Therefore one cannot exclude the proposal.

3.4.4 The parameters of the effective Hamiltonian from the TGD point of view

Could the parameters of effective Hamiltonians have counterparts at the level of WCW?

1. 4-surfaces as WCW points define parameters in the analogs of eigenvalues of observables. Both supersymplectic and Kac-Moody algebras have as parameters the parameters coding the point of WCW and Kac-Moody algebra. Number theoretic coding of ground states based on the Galois group as a symmetry group and p-adic primes defining p-adic length scale is what comes to mind.

The preferred 4-surfaces would naturally correspond to the maxima of Kähler function. It is quite possible that Kähler coupling constant is complex so that the complex number defining the exponent of Kähler function has phase $\pm\pi/2$. The phase of the exponent is different and maxima are also stationary points. This would make possible interference effects central in QFTs. This is implied by the condition that classical conserved charges are apart from a phase factor real and can therefore be made real.

If M^8 space-time sheets are defined as "roots" of polynomials with rational coefficients [L16, L17], WCW becomes discrete and has the coefficients of polynomials as coordinates of a given point (X^4). An open question is why the maxima of Kähler function should correspond to rational polynomials with rational coefficients.

2. Super-symplectic transformations [K2, K10] as isometries of WCW are symmetries and can be regarded as a generalization of Kac-Moody type symmetries. The complex coordinate z and light-like radial coordinate r of the light-cone boundary are in the role of parameters. Analog of 3-D gauge group but gauge group replaced with the symplectic group of $S^2 \times CP_2$ is in question. The light-like orbits of partonic surfaces could naturally carry Kac-Moody algebra representations of isometries - at least at infinite volume limit.

Non-negative conformal weights parameterize the representations of this algebra. The construction of states would be as follows. A sub-algebra $SCA_{n_{max}}$ with conformal weight larger than n_{max} and its commutator with the entire algebra annihilate states. Only the states with conformal weight smaller than n_{max} remain. Other degrees of freedom are effectively gauge degrees of freedom. n_{max} is expected to depend on the polynomial, its Galois group and degree. A huge reduction of degrees of freedom takes place. The remnant of the super-symplectic group would act as dynamical symmetries.

Same could occur in the symplectic degrees of freedom labelled by Hamiltonians which are products of S^2 and CP_2 Hamiltonians. The only non-trivial normal subalgebra corresponds to isometries and states would be annihilated by the generators in the complement of this algebra.

Rational coefficients of a polynomial defining the X^4 serve as the parameters characterizing the ground state. Higher level description is in terms of the Galois group which depends only weakly on the polynomial.

3. What about the description at the level of X^4 ? The solutions of modified Dirac action for induced spinor fields depend on the parameters characterizing the space-time surface.

3.5 Quantum hydrodynamics in TGD context

In the standard picture quantum hydrodynamics is obtained from the hydrodynamic interpretation of the Schrödinger equation. Bohm theory involves this interpretation. (<https://cutt.ly/cWy309Ts>).

1. Quantum hydrodynamics appears in TGD as an *exact* classical correlate of quantum theory [K13]. Modified Dirac equation forces as a consistency condition classical field equations for X^4 . Actually, a TGD variant of the supersymmetry, which is very different from the standard SUSY, is in question.
2. TGD itself has the structure of hydrodynamics. Field equations for a single space-time sheet are conservation laws. Minimal surfaces as counterparts of massless fields emerge as solutions satisfying simultaneously analogs of Maxwell equations [L31]. Beltrami flow for classical Kähler field defines an integrable flow [L26]. There is no dissipation classically and this can be interpreted as a correlate for a quantum coherent phase.
3. Induced Kähler form J is the fundamental field variable. Classical em and Z^0 fields have it as a part. For $S^3 \subset CP_2$ em and Z^0 fields are proportional to J : which suggests large parity breaking effects. Hydrodynamic flow would naturally correspond to a generalized Beltrami flow and flow lines would integrate to a hydrodynamic flow.
4. The condition that Kähler magnetic field defines an integrable flow demands that one can define a coordinate along the flow line. This would suggest non-dissipating generalized Beltrami flows as a solution to the field equations and justifies the expectation that Einstein's equations are obtained at QFT limit.
5. If one assumes that a given conserved current defines an integrable flow, the current is a gradient. The strongest condition is that this is true for all conserved currents. The non-triviality of the first homotopy group could allow gradient flows at the fundamental level. The situation changes at the QFT limit.

6. Beltrami conditions make sense also for fermionic conserved currents as purely algebraic linear conditions stating that fermionic current is a gradient of some function bilinear in oscillator operators. Whether they are actually implied by the classical Beltrami conditions, is an interesting question.
7. Minimal surfaces as analogs of solutions of massless field equations and their additional property of being extremals of Kähler action gives a very concrete connection with Maxwell's theory [L31].

3.6 Length scale hierarchies

The length scale hierarchy associated with the hierarchy of Planck constants and p-adic length scale hierarchy lead to the proposal that one has quantum coherence and supra phase always realized in some scale and the loss of say superconductivity means only the reduction of this scale.

Also dark variants of valence electrons make sense and there is evidence for them. When looking at the definition of say exciton, one cannot avoid the impression that something is missing. Electrons and holes are assumed to have incredibly small effective masses. The very notion of effective mass is in conflict with the idea that one has a fundamental quantum theory description.

One also introduces in the Schrödinger equation dielectric constant which comes from macroscopic description. Why doesn't one do the same in the case of ordinary atoms. This kind of mixing of phenomenological descriptions with a fundamental description is to me a deadly sin.

One cannot avoid the crazy looking question whether exciton could be a valence electron which is dark with $h_{eff} = k \times h$ and binds with an atom. It would be automatically accompanied by a hole. The binding energies would be scaled like $1/k^2$ and one would obtain the energies which can be 3 orders of magnitude smaller than those for hydrogen.

3.7 A general model of macroscopic quantum phases

3.7.1 Hierarchy of quantizations at the level of WCW

Before saying anything about macroscopic quantum phases, one must define what many-particle states correspond at the level of WCW.

1. The combination of UP with $M^8 - H$ duality leads to the view that many particle states at the level correspond to many-fermion (quarks actually) such that the momenta of quarks correspond to momenta as points of $X^4 \subset M^8$ with components, which are algebraic integers. In TGD framework, where all particles, also bosons, are composites of fermions. At M^8 level Cooper pairs would correspond to pairs of occupied points of a mass shell $H^3 \subset M^8$. The image of the region of momentum space in H corresponds for quarks of given mass m corresponds to a region at the boundary of sub-CD with size given by Compton length $L = \hbar_{eff}/m$.
2. At the level of WCW , the analog of the many-quark state associated with a given quark mass corresponds to the analog of plane wave inside a large $CD \subset H$ defined by the smallest mass involve but with point-like particle replaces with space-time surface inside sub-CD ($CD(m)$) carrying zero energy state characterized by quark momenta at opposite boundaries of $CD(m)$ having opposite sign of energy.
3. The entanglement between these states due to Fermi statistics is however maximal and SFRs are not possible. How can one construct entangled states. The answer is simple perform the analog of second quantization at the level of WCW . One can form the analogs of 2-particle states by taking two CDs with specified quark content and assign to both the analogs of plane waves. If the CDs correspond to different extensions of rationals so that the effective Planck constants are different, one can entangle these states in WCW degrees of freedom. One can construction N-particle states by using the same recipe.
4. To each many quark state one can assign odd or even boson number and regard this state as analog of elementary fermion or boson. This is what is indeed done quite generally. Could this operation have deeper meaning. Could one require that the many-quark operators indeed

commute or anticommute mutually. This condition cannot hold true generally but could be posed as an additional condition to the physical states: the commutator/anticommutation would be proportional $h_{eff}I$, I identity matrix.

This construction would be third quantization. And nothing prevents from performing also fourth quantization within even larger CD. This hierarchy of quantizations brings in mind the basic hierarchical structures of the TGD Universe: many-sheeted space-time characterized by p-adic and dark length scale hierarchies, and also the hierarchy of infinite primes which corresponds to a repeated second quantization of supersymmetric arithmetic QFT [?] conjecture to correspond to the hierarchy of space-time sheets.

3.7.2 WCW description of BECs and their excitations as analogs of particles

Fermi statistics requires that the BEC correspond to a distribution of correlated momentum pairs with the sum of the momenta equal to the momentum of the boson. Cooper pairs also have binding energy so that the mass of the pairs is slightly smaller than the particle mass so that the Cooper pairs belong to different $H^3 \subset M^8$ than the free fermions.

For the excitations of BEC condensate giving rise to supracurrents and superflows, some momenta of fermions are different from the common momentum of BEC, usually larger than the common momentum of BEC. The image of excitation of BEC in H would be a pair at proper time=constant hyperboloid in H and the map of momentum to position would be linear inside $CD(m)$. BEC would look very much the same at both M^8 and H side of duality.

The space-time surface $X^4 \subset CD(m)$ should correspond to a minimal surface and to a generalized Beltrami flow defining an integrable coordinate along the flux lines. In the case of conserved current gradient flow (vortex flow is an example of this). All many-particle states would be of this kind in the scale of $CD(m)$. These multi-BEC states would be analogs of many-particle states and one would have many-particle states of BECs and their condensates, which could entangle in WCW degrees of freedom. For instance, the entanglement between geometric representations of Galois groups is possible. In the TGD inspired quantum biology the multi-BEC like states are proposed to play a key role [?, L28].

3.7.3 Superconductivity and superfluidity in TGD framework

The TGD based view about superconductivity and fluidity [L26] differs in many respects from BCS theory.

1. In the BCS theory superconducting state does not have a well defined fermion number and this leads to a somewhat questionable notion of coherent state of Cooper pairs. The Bogoliubov transformation creates the diagonalizable oscillator operator basis by mixing creation and annihilation operators. The resulting operators create superpositions of electrons and holes.

In the TGD framework, the interpretation would be that the hole actually corresponds to dark fermion with $h_{eff} > h$ at dark space-time sheet so that fermion number conservation is not lost. Bogoliubov operators would be replaced with superpositions of creation/annihilation operators associated with different space-time sheets and create states which are superpositions of state at the two space-time sheets. Effective Hamiltonian would include diagonalizable kinetic parts assignable to both space-time sheets, and the terms quadratic in creation/annihilation operators breaking fermion number conservation would be replaced with pairs of creation and annihilation operators associated with different space-time sheets describing the transfer of electron between the space-time sheets.

2. In the BSC theory Cooper pairs are carriers of supra current. In the TGD framework, dark electrons at dark spacetime-sheets could be the carriers. The binding energy of Cooper pairs liberated in their formation would provide the energy needed to transform ordinary electrons to dark electrons (the energies of particle states typically increase with h_{eff}). This makes possible superconductivity driven by energy feed possible also above critical temperature.
3. Can one describe supra currents and supra flows in terms of a single space-time surface as the classical space-time view based on Beltrami currents would suggest? This would mean that

supracurrent would correspond to a collection of momenta of dark electrons at $H^3 \subset M^8$ in the proposed TGD based model or collection of Cooper pairs with $h_{eff} = h$ as in the standard description. The current carriers would have fixed momenta at the two boundaries of $CD(m)$ corresponding to the analogs of initial and final state momenta. Is this all that one can say at the quantum level and is the description as a flow only a classical description. At quantum level one could only deduce the change of the positions for the group of particles defining the flow. This indeed conforms with the UP.

3.7.4 WCW level is necessary for the description for purely geometric bosonic excitations

The quantum description of sound requires WCW description since the phonons as oscillations of relative position of particles cannot be described in terms of quark-antiquark pairs. The description of exotic supra flows like that associated with magnon BEC in say 3He supra fluid allowing orbital magnetization requires WCW. A good manner to clarify thoughts is to look at what this means in the case of magnons.

- (a) Standard classical description (<https://en.wikipedia.org/wiki/Magnon>) suggests a direction of magnetization M which has changed due to the presence of external field H . This leads to the Landau-Lifschitz equation for the magnetization. The Fock space picture about magnons is as a plane wave for which the argument is the position of spin whose direction has changed. The quantization is described by introducing a Hamiltonian for spins. The relationship between these descriptions is somewhat obscure.
- (b) In TGD the fermionic Fock space description is not possible. Bosonic creation and annihilation operators would be needed but one cannot construct bosonic operators with a vanishing fermion number from quarks. Therefore magnons should correspond to WCW degrees of freedom.
- (c) In the TGD description, M would correspond at space-time level to the magnetic field at a non-monopole flux tube and H possibly at a monopole flux tube inducing the magnetization. Magnons would correspond to magnetization waves, as kinks propagating along magnetic flux tubes for M . Magnon should correspond to space-time surface H and this would determine its M^8 pre-image. If these excitations behave like identical particles, one can assign to them wave vectors and classical momenta.
- (d) Also the notion of BEC makes sense at WCW level since one can construct the counterparts of genuine bosonic oscillator operators. Super-symplectic and Kac-Moody algebras of WCW acting at the boundaries of CD indeed include purely bosonic operators. Similar description at WCW level applies also to phonons as quanta. Cooper pair BECs allow approximate description in terms of fermion pairs with given total momentum but with members having different momenta. One cannot however exclude the possibility that there purely bosonic BEC at WCW level such that each Cooper pair is associated with a bosonic excitation of space-time surface.

3.7.5 Exciton-polariton BECs

The claimed room temperature superconductivity for exciton-polariton Bose-Einstein condensate in quasi-crystals suggests that the TGD based model for superconductivity could generalize to a unified description of quantum coherent phases. In this case the energy feed is crucial and would serve in TGD framework as "metabolic energy feed" taking care that the distribution of $h_{eff} > h$ is preserved.

Also WCW level might be needed to describe the bosonic aspects of exciton-polariton BECs although exciton polariton states involve only photons excitons and electron-hole bound states. The description of plasmons involves oscillations of the relative position of electron and atomic nucleus and this requires the counterparts of the bosonic creation operators at the level of WCW.

(a) Polaritons and excitons could correspond to dark valence electrons in $h_{eff} > h$ phase and the value of h_{eff} would determine in which scale the phase appears. Beltrami fields would provide a quantum hydrodynamical description as an exact classical description of these phases. In principle also fermionic Beltrami currents could make sense and provide genuine quantum hydrodynamical description.

By the way, I saw an article about empirical verification of BvK vortex street in exciton-polariton BE condensate. TGD would provide at the level of principle a universal description as minimal surfaces also for this kind of system.

(b) One of the basic predictions is induced supraphases possible above the critical temperature where the formation of Cooper pairs of ordinary fermions cannot liberate the needed metabolic energy. h_{eff} can be however increased and its reduction can be prevented by energy feed. In living matter this would be metabolic energy feed. I learned that exciton-polariton condensate is an open system involving an energy feed!

(c) What about ordinary hydrodynamics? The basic prediction of TGD is that quantum coherence appears in all length scales at the level of magnetic bodies of the systems. Zero energy ontology predicts that state function reductions change the arrow of time and have a classical description in terms of time reverse solutions of classical field equations so that the Universe is bound to look classical for the observed with standard arrow of time.

Could it be that ordinary hydrodynamics corresponds to large values of h_{eff} at the level of MB controlling the dynamics at the lower levels?

4 Some concrete questions

4.1 Could one assign quantum hydrodynamics to photonic quasi-crystalline structures?

Photons and polaritons are analogous to conduction electrons in metals. Again I can only ask questions.

(a) Could they have as a classical correlate classical induced gauge fields such that the induced Kähler form defines a Beltrami flow with periodic properties? Flow lines are light-like locally but there would be a zitterbewegung involved.

(b) What does the quasicrystal structure mean? Photonic quasicrystal should have a description as a quasiperiodic X^4 . The identification of quasicrystals in terms of algebraic extensions of the ordinary lattices has been already considered. As a matter of fact, space-time surface X^4 defines a curved generalization of a quasicrystal obtained as points of X^4 belong to the set of points of $M^4 \subset M^8$ for which the M^4 coordinates are algebraic integers in the extension of rationals. In the "cut and project" construction (<https://cutt.ly/IWjxpLv>) one only replaces the low-dimensional plane in higher-D space containing ordinary crystal with the curved space-time surface. One can also define in M^8 crystal lattices tilted with respect to the chosen $M^4 \times E^4$ and obtain quasi-crystals and M^4 projections.

4.1.1 Bernard-von Karman (BvK) vortex streets in TGD framework?

Bernard-von Karman (BvK) vortex streets are observed in an exciton-polariton superfluid [D7] (<https://cutt.ly/FWj3cNw>). The formation of BvK vortex streets (<https://cutt.ly/YWy3mjC> and <https://cutt.ly/JWy3WYP>) is a hydrodynamical phenomenon due to dissipation.

Some facts about classical BvK are in order.

(a) The flow past obstacle is laminar or turbulent. Turbulence occurs above critical Reynolds number this corresponds to a critical velocity of suprafow. Turbulence gives rise to BvK

vortex streets observed in various macroscopically coherent phases analogous to hydrodynamic flows.

- (b) BvK involves a periodic emission of vortices from opposite sides of the body, say cylinder, occurring alternately. This means long range coherence in the scale of the body. Vortices grow after leaving the body. Boundary layer is at rest.
- (c) The role of pressure increase caused by velocity decrease. Change of the direction of velocity gives rise to vortices. Separation and formation of vortices occurs at critical fluid velocity at the thickest part of the obstacle.

4.1.2 Is BvK for supra flows basically quantum phase transition increasing h_{eff} ?

One can ask whether BvK for supra flows could be quantum phase transition creating MBs of vortices with $h_{eff} > h_{eff,flow}$.

- (a) TGD suggests that hydrodynamic vortices at the fundamental level correspond to Z^0 magnetic vortices. If the CP_2 projection of the X^4 is $U(2)$ invariant sphere of S^3 , both em and Z^0 field are proportional to Kähler form and long range weak interactions are possible.
- (b) The picture based on minimal surfaces would suggest that dissipation occurs at the frames and elsewhere there is no classical dissipation. Obstacles of the flow would serve as analogs of frames. Vortices have singular cores: do they correspond to frames?
- (c) Separation and formation of vortices is a critical phenomenon. In the TGD framework, it could relate to quantum criticality at some level of dark matter hierarchy and lead to the formation of phases with a large value of h_{eff} . The "metabolic energy" needed to increase h_{eff} would come from dissipation.
- (d) Even ordinary hydrodynamical vortices would be accompanied by quantum coherent structures at the level of their MBs.

What could happen in the process? One can only ask questions.

- (a) The velocity pattern of the vortex has radial velocity gradient zero and means absence of dissipation. The reason for the formation of vortices are the facts that near the obstacle velocity gradient becomes too large and dissipation starts and flow separation occurs.
- (b) Quantum criticality would appear when the flow velocity is above critical value so that dissipation near the obstacle begins. Could it give rise to a metabolic energy feed driving generation of $h_{eff} > h_{eff,flow}$ phases? Above this the dissipating flow would serve as an energy source making possible the increase of complexity and self-organization and generation of vortices with $h_{eff} > h_{eff,flow}$.
- (c) Could the formation of vortices correspond to a formation of new MBs with a different value of h_{eff} expected to occur at quantum criticality? Metabolic energy feed would generate the MBs of the vortices as additional layers in the hierarchy of dark matter. Although the values of h_{eff} could be even smaller than for the entire MB, the complexity would increase since the number of levels would increase.
- (d) Could the integer value quantized vortices correspond to the values of $h_{eff}/h = n$?

4.2 Skyrmiions in TGD framework

In hadron physics skyrmions (<https://en.wikipedia.org/wiki/Skyrmion>) appear at the level of momentum space. Proton as a skyrmion corresponds to a map of a 3-ball B^3 to $S^3 \subset E^4$ with non-trivial winding number. The points at the boundary are mapped to a single point so that B^3 effectively behaves like S^3 . The map thus represents an element of third homotopy group and if this element is non-trivial one has skyrmions whose winding number has interpretation as number of protons. The radius of S^3 is the proton mass so that S^3 indeed lives in momentum space. $SO(4) = SU(2)_L \times SU(2)_R$ assigned to the current

algebra picture of hadron physics acting as isometries of S^3 serves as the field space of skyrmions.

Skyrmions appear as topological defects also in condensed matter physics and correspond to 3-D magnetic field configurations inside B^3 and vanishing at the boundary of B^3 so that they define a map to S^3 . In this case, the winding number of the map can correspond to the number of electron pairs. They appear in superconductivity, quantum Hall systems, liquid crystals, magnetic systems, and Bose-Einstein condensates (BECs). One example corresponds to ferromagnetic spin-1 Bose-Einstein condensates [?](<https://cutt.ly/MWy3S5J>). Their universal appearance suggests that they could appear at fundamental level.

What TGD view would be following.

- (a) The proposal is that $M^8 - H$ duality allows to understand skyrmions as duality between the $SO(4)$ description of hadrons and $SO(4)$ symmetry group at M^8 level and QCD description in terms of quarks and gluons and color $SU(3)$ at the level of H .

In TGD framework skyrmions are associated with space-time surfaces in M^8 and skyrmion means a map from a ball $B^3 \subset M^4$ to the sphere $S^3 \subset E^4$. The radius of S^3 is proton mass squared: this conforms with the interpretation of M^8 as momentum space.

- (b) Skyrmion in as a map $B^3 \rightarrow S^3 \subset E^4 \subset M^8 = M^4 \times E^4$ is mapped to a map $B^3 \rightarrow S^3 \subset CP_2 \subset H$ by $M^8 - H$ duality. The map $B_3 \rightarrow B^3$ is by inversion (Uncertainty Principle). The map would have a non-trivial winding number.

What does the skyrmion sphere S^3 subset E^4 correspond to in CP_2 . Recall that normal space of X^4 is mapped to a point of CP_2 . The image of the Skyrmion looks like a graph for the normal space of $X^4 \subset M^8$ as a function of the point of X^4 . How does the normal space correlate with the E^4 point at S^3 ? Continuity and single-valuedness look natural. The 3-sphere in X^4 is mapped to a $D \leq 3$ surface.

Essentially homotopy associating normal space characterized by a point of CP_2 to $S^3 \subset CP_2$ is in question. CP_2 has a trivial third homotopy group. The homotopy equivalence class is trivial unless one fixes the radius as is done also in the original model by fixing the mass to correspond to the radius of $S^3 \subset E^4$.

Could $S^3 \subset E^4$ containing the octonionic real axis be mapped to a sphere $S^3 \subset CP_2$ invariant under $U(2)$. At S^3 Z^0 gauge field is proportional to Kähler form J as is also the electromagnetic field [?]. Therefore the long range correlations for Kähler form J are associated also with Z^0 . Large parity breaking effects would become possible and indeed appear in living matter (chirality selection for biomolecules).

- (c) Could the sphere $S^3 \subset M^8$ mapped to $S^3 \subset CP_2$ related by $M^8 - H$ duality define a common denominator of several exotic condensed matter phenomena? $S^3 \subset M^8$ define a quaternionic 3-sphere and the automorphism group of quaternions. One can assign to skyrmions a flat $SO(3)$ gauge potential [D5] (<https://arxiv.org/abs/1812.07974>). Could this relate to the speculated emergence of $SO(3)$ as a synthetic gauge group [D2]? (<https://cutt.ly/qWy3H9M>)?

4.3 Dark matter and condensed matter physics

4.3.1 Could one make dark matter visible?

Dark matter in TGD sense could make itself visible in many manners.

- (a) One can imagine diffraction by generating a dark photon or (dark) polariton beam using a laser beam providing the energy feed increasing h_{eff} . Dark photon beam would diffract from an analog of hole: the ordinary laser beam could represent the hole as a source of dark photons. The structure of dark matter at flux tubes involving flux tubes and their geometric patterns could become visible in this manner.

For instance, the braids formed by flux tubes could become visible. Here braid entropy is a central notion and central in TGD based view of hydrodynamics involving braiding in both time-like and space-like braiding [K12, K11, K22].

(b) In quantum biology dark matter at magnetic body with large h_{eff} as measure for complexity and intelligence, serves as the boss controlling ordinary biomatter, and its quantum coherence forces ordinary coherence of ordinary biomatter, which cannot be understood in physics and chemistry based on ordinary quantum physics [L32].

Solids are either in crystal or amorphous phase. Long range order in crystals is lacking and this is visible in the X-ray diffraction pattern. The diffraction pattern [D6] (<https://cutt.ly/ZWyLgjk>) for a hyperuniform amorphous material is very different and is called highly exotic (see **Fig. 15**). Apart from forward scattering peak, the diffraction pattern involves no scattering for a considerable range of scattering angles. I cannot avoid the temptation to speculate.

(a) Suppose that the proposed dark looking phases with $h_{eff} > h$ by their higher algebraic complexity (larger extension of rationals, larger Galois symmetries) control the lower levels in master slave hierarchy, in particular ordinary matter (now the amorphous film). Suppose that the scattering of say laser light feeding energy and increasing the value of h_{eff} creates dark photons or polaritons at this higher level. Suppose that polaritons scatter at flux tubes or flux sheets structures at higher level and eventually a transformation to ordinary photons occurs spontaneously. Could the interference of the scattered beam with incoming beam make the geometry of dark matter level visible as the example about scattering in hyperuniform matter would suggest?

(b) This high level would have longer quantum coherence length and perhaps range order since h_{eff} is larger. The long range order would be visible in the scattering pattern. Could just this happen when laser light generates a polariton-exciton condensate [D4] (<https://cutt.ly/4Wy8zi9>). Could one think of polariton vortex lattices [D3] (<https://cutt.ly/qWy8Zqf>) as counterparts of crystal lattices and could their presence become visible so that one could see dark matter. The polariton could correspond at flux tubes superposition of dark photon and of dark exciton identifiable as dark electron paired with ordinary hole formed when the electron was transferred to the flux tube. The photon component of the outgoing polariton beam formed by the transformation of dark photon to ordinary photon would reflect the structure of dark matter and flux tubes and leave the system as ordinary photons and generate the scattering pattern by interference.

4.3.2 Polaritons and excitons in TGD

It is better to represent the ideas as questions.

(a) Could one take the number theoretical model of macroscopic quantum phases as a guideline in attempts to understand polariton superfluidity and other quantum coherent phases involved.

(b) The increase of h_{eff} and preservation of its values requires energy feed to prevent dissipation if. Could the formation of quasiparticles provide the metabolic energy for $h_{eff} > h$ phases at MB responsible for the long range order? In the case of superconductivity the formation of the Cooper pairs would provide this energy for dark electrons at MB.

In BCS theory of superconductivity superconducting state does not have a well defined fermion number and this leads to somewhat questionable notion of coherent state of Cooper pairs. The Bogoliubov transformation creates the diagonalizable oscillator operator basis by mixing creation and annihilation operators. The resulting operators create superpositions of electron and hole.

In the TGD framework, the interpretation would be that the hole actually corresponds to dark fermion at another space-time sheets so that fermion number conservation is not lost. Bogoliubov operators would correspond to superpositions of creation/annihilation operators associated with different space-time sheets and create states which are superpositions of state at the two space-time sheets. Effective Hamiltonian

would include parts assignable to both space-time sheets, and the terms quadratic in creation/annihilation operators breaking fermion number conservation would be replaced with pairs of creation and hilation operators associated with different space-time sheets describing the transfer of electron between the space-time sheets.

- (c) Is the polariton condensate actually a macroscopic quantum phase? Could the polariton BE condensate only provide the energy feed making possible a macroscopic quantum phase at the level of MB, which would then induce ordinary (non-quantum) coherence of the polariton condensate.

4.3.3 Braids, anyons, and Galois groups

Braids and anyons in the TGD framework are discussed in [K17]. Braid statistics has an interpretation in terms of rotations as homotopies at a 2-D plane of the space-time surfaces instead of rotations in M^4 . One can use M^4 coordinates for the M^4 projection of the space-time surface.

If the space-time surface is n -sheeted, the rotation of 2π can take the particle to a different space-time sheet, and only n fold-rotation brings it back to its original position. The formula for fractional Hall conductivity is the same as in the case of integer Hall effect except that the $1/\hbar$ -proportionality is replaced with $1/\hbar_{eff}$ -proportionality in TGD framework [K17].

Degeneracy of fermion states also makes non-Abelian braid statistics possible. Since the Galois group acts as a symmetry group, the degeneracy would be naturally associated with the representations of the Galois group. Galois singletness of the many-anyon states guarantees reduces braid statistics to ordinary statistics for these them. Galois confinement is proposed to be a central element of quantum biology [L32, L27].

4.3.4 Could dark matter as $h_{eff} = nh_0$ phases, quasicrystals, and the empirical absence of hyperon stars relate to each other?

How could the dark matter make itself at the level of the fermionic states?

- (a) Consider the momentum space, which by (anti-)periodic boundary conditions corresponds to a 3-D space with integer coordinates with a momentum unit defined by the quantization volume.
- (b) In the TGD framework, fermionic momenta are realized as points of X^4 for which coordinates belong to the extension of rationals for the polynomial P defining the X^4 . For $n - D$ algebraic extension of rationals, the integers labelling the momentum components are replaced with points of an algebraically n -dimensional space with n integer coordinates. n basic vectors correspond to the roots of P . The Galois group acts as symmetries of this discrete space. Momentum vectors have $3n$ components.
- (c) If one assumes that momenta are real, the real momenta would be projections of these $3n$ -dimensional vectors to a real section of X^4 for which M_c^8 coordinates are real or purely imaginary.

This projection from an algebraically $3n$ -D space to 3-D real space is analogous to the projection from higher dimensional space used to realize quasicrystals and the outcome is quasicrystal-like structure defined by the momentum components. This structure can be mapped from M^8 to H and since quasicrystals are observed at space-time level this suggests that the linear version of $M^8 - H$ duality is its correct version.

Structures analogous to aperiodic crystals (quasicrystals) might be seen as a direct support for dark matter in the TGD sense. The quasicrystals could be realized at the level of the magnetic body (MB) or MB could induce their formation.

- (d) Algebraic extension increases the effective dimension of the discrete momentum space from 3 to $3n$ and the number of fermions inside the Fermi surface is increased by factor n^3 . This prediction looks non-sensible and supports the view about Galois confinement, which means that physical states, now configurations of some number of neutrons, are

Galois singlets. This implies that the total momentum for the singlest is integer valued as usual and also that the rational valued part is same for all neutrons of the singlet. Ordinary neutrons would be automatically Galois singlets.

Neutrons could have momenta in an extension of rationals but form Galois confined K -neutron states such that the sum of the momenta is ordinary integer valued lattice momentum. Cooper pairs with $K = 2$ is one possible option. The mass of the state would be Km_n and the number of states with the same Fermi momentum would be the number of Galois states from K neutrons with momenta which are algebraic integers. One can assume that the real part of momentum is just the same integer for all neutrons of the composite and the non-rational part is one of the units defining the extension if the representation is the representation defined by roots of the polynomial. The formation of Galois singlets implies reduction of the translational degrees of freedom of K neutrons to those of a single particle with K -fold mass. This also explains the reduction of the Fermi energy. Galois degrees of freedom would replace the momentum degrees of freedom so that Fermi statistics can be realized.

K -neutron states would have same momentum component k_i so that the density of states in the 3-D case would be reduced $d^3n/dk^3 \rightarrow K^{-3}d^3n/dk^3 = K^{-3}(2\pi/L)^3$, L the side of quantization cube. On the other hand, there would be a degeneracy $D(K, n)$ depending on extension and its dimension n so that one would have $d^3n/dk^3 \rightarrow (D(K, n)/K)^3(2\pi)^3/V$. The N/V number of states per volume would scale as $N/V \rightarrow (D(K, n)/K)^3N/V$ and Fermi energy $E_F \propto (N/V)^{2/3}/m$ would scale as $E_F \rightarrow (D(K, n)/K)^2E_F/K$ by $m \rightarrow Km$. For $(D(K, n)^2/K^3 < 1$, E_F would be reduced and the formation of a dark Galois confined state would be energetically favourable. For dark Cooper pairs with $K = 2$, the condition would be $D(2, n)/8 < 1$.

In the TGD inspired quantum biology genetic code is realized by triplets of dark protons at magnetic flux tubes parallel to DNA strands are assumed to be Galois singlets and genes in turn would be Galois singlest for a Galois group at larger space-time sheet [L21, L28]. Also dark photon triplets would be Galois singlets.

Ordinary superconductors could have as a current carrier either i) a single dark fermion or ii) dark Cooper pair. For option i), Cooper pairs of ordinary fermions provide the energy needed to increase h_{eff} to get the dark electron. For option ii), Galois confinement would generate dark Cooper pairs. The energy liberated in the formation of the Cooper pair would be used to increase h_{eff} of the pair.

A possible application is provided by the hyperon puzzle of neutron stars (<https://cutt.ly/jWy3Cnf>). The problem is that the core should suffer a transformation to a hyperon star because the Fermi energy is inversely proportional to the mass of the fermion and would therefore be reduced. There is however no evidence for hyperon stars or hyperon cores. Could part of neutrons transform to dark phase with $h \rightarrow nh$ forming Galois singlets of K neutrons (dark Cooper pairs (neutron superfluidity) or dark triplets) so that the Fermi energy would be reduced in the way explained. Dark Cooper pairs is the second option meaning neutron superfluidity.

4.4 Condensed matter Majorana fermions in the TGD framework

Condensed matter Majorana fermions are not genuine Majorana fermions, which have not been found in Nature and are impossible also in TGD as fundamental particles. Condensed matter Majorana quasiparticles could however have a TGD counterpart.

Majorana fermions (<https://cutt.ly/FWdXK4s>) are quasiparticles created by superpositions of fermionic creation and annihilation operators invariant under charge conjugation. This motivates the term Majorana particle. Majorana particles are also zero energy excitations and therefore can be created at topological defects as pairs with degenerate energies. This is due to the fact that momenta $p = G/2$ and $p = -G/2$, where G is a lattice momentum, correspond to the same energy.

The valence and conduction bands for a topological insulator must intersect at its boundary: this is the topological singularity at the level of the momentum space. This can happen at

boundaries of insulators and at topological defects. The single point intersection of Fermi bands at a single point looks locally like a double cone and at the tip the normal space is non-unique and the normal normal spaces span a circle in 3-D momentum space.

Consider now the situation in the TGD framework.

- (a) The counterparts of Majorana fermions should correspond to superpositions of ordinary and dark fermions at different energy bands - just like the Boboliuv particles of superconductors in the BCS model. These states cannot be C invariant. Kind of half dark-half visible, perhaps gray - fermions would be in question.
- (b) The momenta of the occupied fermion states of the momentum space of fermion (mass shell $H^3 \subset M^8$) define what I call cognitive representation consisting of a discrete set of points in an extension of rationals) $M^8 - H$ duality maps the points of $H^3 \subset M^4 \subset M^8$ to the points of the boundary δcd of 4-D causal diamond $cd \subset M^4 \subset H$ and therefore to the points of space-time surface. In particular, the boundaries of energy bands in M^8 are mapped to boundaries of the image in $\delta cd \subset H$ and define 2-D surfaces containing the edge states. In M^8 , the touching of two bands corresponds to a single point intersection of algebraic surfaces. These surfaces can be continued to the interior of X^4 by the flow defined by qv generalized Beltrami field.
- (c) The direction of the quaternionic normal spaces in M^8 at the tip should have all directions parametrized by a circle. This suggests that the tip is not be mapped to a single point, but to a circle formed by the set of CP_2 points. The conical topological singularity in M^8 would correspond to a closed circle $S^1 \subset CP_2$.
- (d) If Majorana particles have a counterpart in TGD, they should correspond to superpositions of ordinary and dark fermion with the special property that the fermions have identical energies i.e. momenta are $G/2$ and $-G/2$. This condition guarantees that these states have identical energies as required by the condition $E^2 - p^2 = m^2$ holding true in H^3 .

At the level of M^8 the polynomial defining the space-time surface would characterize topological defects as singularities. Various lower-D surfaces in momentum space and position space should be isometric surfaces as surfaces of H^3 , which looks a rather non-trivial prediction.

Remark: Note that the product of polynomials defines a disjoint set of spacetime surfaces [L24]. Also a single irreducible polynomial can have several space-time surfaces as roots and possibly intersecting at a discrete set of points in the generic situation.

5 Goals of the project

Testing of the basic concepts of TGD applied to condensed matter physics would be the basic goal of the project. The following lists some challenges.

5.1 Observation of dark matter

The observation of dark matter as $h_{eff} = nh_0$ phases in condensed matter systems is one basic goal (a11bqcritdark1,qcritdark2,qcritdark3). Macroscopic quantum phases, emergence of additional degrees of freedom, and the effective increase of the dimension of the momentum space from 3 to $3n$ are possible. Also photon scattering via the formation of polaritons could allow us to "see" the structure of dark matter at the level of MB as an interference pattern. The analog of X-ray diffraction would be in question.

5.2 Topological physics at space-time and imbedding space levels

The basic new physics element is the topological physics in the TGD sense based on non-trivial space-time topology at the fundamental level.

Some examples are in order.

- (a) Magnetic flux tubes are always closed, which means non-trivial first homotopy making possible the topological variant of the geometric phase.
- (b) Flux tube braidings would be a basic concept of topological hydrodynamics. Reconnections as changes of braid topology would be central and bring in 2-braids and knots of 2-D flux sheets in 4-D space-times (also intersections at discrete points replace links of 1-braids).
- (c) In TGD inspired biology systems have U-shaped flux tubes as tentacles with which they generate connections to the environment by reconnecting in which two U-shaped flux tubes of different systems such as molecules form a pair of flux tubes. Friction could be due to the formation of flux tube pairs. Static friction would be generated and the de-reconnection of flux tube pairs would require energy.

Also topological defects due to the embedding space topology are possible. The monopole flux reflects the non-trivial topology of CP_2 . Skyrmions result from the constraint that the ball $B^3 \subset M^4$ is mapped to the sphere S^3 of $E^4 \subset M^8$ or equivalently of CP_2 .

5.3 The new view about gauge fields

1. New view about gauge fields and also electromagnetic fields relies on flux tubes. Flux tubes appear as monopole flux tubes and non-monopole ones. Monopole flux tubes require no current to preserve the magnetic field.

This would explain magnetic fields in cosmic scales, why Earth's magnetic field has not disappeared [L3], and also the huge magnetic fields of magnetars and neutron stars. Could the fields H , M , and B of Maxwell's theory correspond to monopole fields, non-monopole fields induced by the motion of their flux quanta, and to their sum $B = M + H$.

2. The twistor lift of TGD [L7, L9] predicts that also M^4 should have Kähler structure defined by a self-dual constant Kähler form for which the electric part is imaginary. This implies a global CP breaking in M^4 that could induce a matter-antimatter asymmetry. 3 quarks would prefer to form baryons and antiquarks to form leptons as 3 antiquarks composites in primordial Universe and after the annihilation the remaining baryons would represent matter and leptons antimatter. This is possible only by the TGD view about color.

The mechanism of CP (T) violation could be essentially the same as in the topological insulators destroying the boundary conductivity by T violation. In the condensed matter case the magnetic field would receive $U(1)$ contributions from both CP_2 and M^4 degrees of freedom. The magnetic interaction energy with spin would have opposite signs for opposite spin directions and lead to CP and T violation. For cosmic strings and flux tubes the M^4 magnetic part would be small, which would explain the smallness of the CP violation. Since M^4 Kähler form contributes also to the $U(1)$ part of em and Z^0 fields, it could have small effects also at the level of condensed matter if M^4 projection of the flux tube is 4-D.

3. Wormhole contacts identified as pieces of deformed CP_2 type extremals serve as basic building bricks of elementary particles. The wormhole throats are identified as partonic surfaces and their orbits are light-like curves performing zitterbewegung. One can assign to them a Kac-Moody type algebra with non-negative conformal weights. This algebra is very much like gauge algebra but not quite. For instance, there is a hierarchy of representations for which only the generators with conformal weight larger than some maximal conformal weight h_{max} annihilate the physical states. Could these analogs of gauge algebras assignable to $M^2 \times CP_2$ isometries allow a realization of synthetic gauge groups acting also in M^4 spin degrees of freedom [?] (<https://cutt.ly/4Wy39B5>?)

5.4 Number theoretical physics

Number theoretical physics brings in new elements and involves in an essential manner $M^8 - H$ duality.

1. The hierarchy of effective Planck constants and p-adic physics as physics of cognition involving p-adic length scale physics means a completely new element of quantum theory central for understanding of various supra phases.
2. The number theoretical phase transitions changing the polynomial that determines $X^4 \subset M^8$ and therefore the extension of rationals and the Galois group as symmetry group would be a new element. Discrete degrees of freedom would appear or disappear. The scaling of the number of states within the Fermi ball could be one signature. Extensions could also give rise to quasicrystals.

The change of the fidelity described as the metric of the parametrized space of quantum states would take place. Fidelity would be coded by the Kähler metric of WCW and geometric phase by the Kähler form of WCW. This is because, the WCW Kähler metric induces the metric of quantum states depending on the parameters coding for the X^4 as a point of WCW.

3. Negentropy Maximization Principle (NMP) and adelic physics provide a new view about quantum measurements and about second law. In particular, a vision about how the information about measurement is stored in the space-time geometry modified in the measurement, emerges.

5.5 ZEO and new view about quantum measurement theory and thermodynamics

ZEO allows "big" state function reductions (BSFRs) in long scales. If time reversal indeed occurs, it induces a long lasting effective time reversal at the level of ordinary matter (genuine time reversals at this level last a very short time). Dissipation would effectively occur with an opposite arrow of time and lead to the formation of self-organization patterns [L12]. The findings of Minev et al discussed in [L10] support the new view about quantum theory.

The most dramatic implications would be to biology. In particular, homeostasis could be understood as self-organized quantum critical (SOQC) [L29]. Condensed matter systems in the presence of energy feed playing the role of metabolic energy feed could exhibit primitive aspects of living systems.

Note that at the QFT limit most of the information about the TGD based new physics is lost since both space-time topology and number theoretic structure is lost so that QFT is not able to test the relevant effects. However, it might be possible to make this hidden level visible.

REFERENCES

Mathematics

- [A1] Freed DS. The Geometry of Loop Groups, 1985.
- [A2] N. Hitchin. Kählerian twistor spaces. *Proc London Math Soc*, 8(43):133–151, 1981.. Available at: <http://tinyurl.com/pb8zpqo>.

Theoretical Physics

- [B1] Minev ZK et al. To catch and reverse a quantum jump mid-flight, 2019. Available at: <https://arxiv.org/abs/1803.00545>.

Condensed Matter Physics

- [D1] Keimer B and Moore JE. The physics of quantum materials. *Nature*, 13:1045,1055, 2017. Available at: <https://www.nature.com/articles/nphys4302>.

- [D2] Chen Y et al. Non-Abelian gauge field optics. *Nature Communications*, 10(3125), 2019. Available at: <https://www.nature.com/articles/s41467-019-10974-8>.
- [D3] Whittaker CE et al. Polariton Pattern Formation and Photon Statistics of the Associated Emission, 2017. Available at: <https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.031033>.
- [D4] Allen J. Dynamics of an Exciton-Polariton Condensate, 2016. Available at: https://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Spring2018/Files/Allen.pdf.
- [D5] Wang Z Qu F Ren JR, Wang H. The Wu-Yang potential of Magnetic Skyrmion from SU(2) Flat Connection, 2019. Available at: <https://arxiv.org/abs/1812.07974>.
- [D6] Torquato S. Hyperuniformity and its generalizations. *Phys Rev E*, 94(022122), 2016. Available at: <https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.022122>.
- [D7] Kadokura T Saito H, Aioi T. Benard-von Karman vortex street in an exciton-polariton superfluid. *Phys. Rev. B, Condensed matter*, 86(1), 2012. Available at: https://www.researchgate.net/publication/258013770_Benard-von_Karman_vortex_street_in_an_exciton-polariton_superfluid.
- [D8] Wei BB Sun G and Kou SP. Fidelity as a probe for a deconfined quantum critical point. *Phys. Rev. B*, 100(064427), 2019. Available at: <https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.064427>.

Biology

- [I1] England J Perunov N, Marsland R. Statistical Physics of Adaptation, 2014. Available at: <http://arxiv.org/pdf/1412.1875v1.pdf>.

Books related to TGD

- [K1] Pitkänen M. Construction of elementary particle vacuum functionals. In *p-Adic Physics*. Available at: <http://tgdtheory.fi/pdfpool/elvafu.pdf>, 2006.
- [K2] Pitkänen M. Construction of WCW Kähler Geometry from Symmetry Principles. In *Quantum Physics as Infinite-Dimensional Geometry*. Available at: <http://tgdtheory.fi/pdfpool/compl1.pdf>, 2006.
- [K3] Pitkänen M. Dark Matter Hierarchy and Hierarchy of EEGs. In *TGD and EEG*. Available at: <http://tgdtheory.fi/pdfpool/eegdark.pdf>, 2006.
- [K4] Pitkänen M. Identification of the WCW Kähler Function. In *Quantum Physics as Infinite-Dimensional Geometry*. Available at: <http://tgdtheory.fi/pdfpool/kahler.pdf>, 2006.
- [K5] Pitkänen M. Massless states and particle massivation. In *p-Adic Physics*. Available at: <http://tgdtheory.fi/pdfpool/mless.pdf>, 2006.
- [K6] Pitkänen M. Negentropy Maximization Principle. In *TGD Inspired Theory of Consciousness*. Available at: <http://tgdtheory.fi/pdfpool/nmpc.pdf>, 2006.
- [K7] Pitkänen M. Quantum Model for Nerve Pulse. In *TGD and EEG*. Available at: <http://tgdtheory.fi/pdfpool/pulse.pdf>, 2006.
- [K8] Pitkänen M. Quantum Model of EEG. In *TGD and EEG*. Available at: <http://tgdtheory.fi/pdfpool/eegII.pdf>, 2006.
- [K9] Pitkänen M. *p-Adic length Scale Hypothesis*. Online book. Available at: <http://www.tgdtheory.fi/tgdhtml/padphys.html>, 2013.

[K10] Pitkänen M. Recent View about Kähler Geometry and Spin Structure of WCW . In *Quantum Physics as Infinite-Dimensional Geometry*. Available at: <http://tgdtheory.fi/pdfpool/wcwnew.pdf>, 2014.

[K11] Pitkänen M. DNA as Topological Quantum Computer. In *Genes and Memes: Part I*. Available at: <http://tgdtheory.fi/pdfpool/dnatqc.pdf>, 2015.

[K12] Pitkänen M. Topological Quantum Computation in TGD Universe. In *Genes and Memes: Part I*. Available at: <http://tgdtheory.fi/pdfpool/tqc.pdf>, 2015.

[K13] Pitkänen M. About Preferred Extremals of Kähler Action. In *Physics in Many-Sheeted Space-Time: Part I*. Available at: <http://tgdtheory.fi/pdfpool/prext.pdf>, 2019.

[K14] Pitkänen M. Criticality and dark matter: part I. In *Hyper-finite Factors and Dark Matter Hierarchy: Part I*. Available at: <http://tgdtheory.fi/pdfpool/qcritdark1.pdf>, 2019.

[K15] Pitkänen M. Criticality and dark matter: part II. In *Hyper-finite Factors and Dark Matter Hierarchy: Part I*. Available at: <http://tgdtheory.fi/pdfpool/qcritdark2.pdf>, 2019.

[K16] Pitkänen M. Criticality and dark matter: part III. In *Hyper-finite Factors and Dark Matter Hierarchy: Part I*. Available at: <http://tgdtheory.fi/pdfpool/qcritdark3.pdf>, 2019.

[K17] Pitkänen M. Quantum Hall effect and Hierarchy of Planck Constants. In *Hyper-finite Factors and Dark Matter Hierarchy: Part II*. Available at: <http://tgdtheory.fi/pdfpool/anyontgd.pdf>, 2019.

[K18] Pitkänen M. Some questions related to the twistor lift of TGD. In *Towards M-Matrix: Part II*. Available at: <http://tgdtheory.fi/pdfpool/twistquestions.pdf>, 2019.

[K19] Pitkänen M. TGD as a Generalized Number Theory: Quaternions, Octonions, and their Hyper Counterparts. In *TGD as a Generalized Number Theory: Part I*. Available at: <http://tgdtheory.fi/pdfpool/visionb.pdf>, 2019.

[K20] Pitkänen M. The classical part of the twistor story. In *Towards M-Matrix: Part II*. Available at: <http://tgdtheory.fi/pdfpool/twistorstory.pdf>, 2019.

[K21] Pitkänen M. The Recent View about Twistorialization in TGD Framework. In *Towards M-Matrix: Part II*. Available at: <http://tgdtheory.fi/pdfpool/smatrix.pdf>, 2019.

[K22] Pitkänen M. Three new physics realizations of the genetic code and the role of dark matter in bio-systems. In *Genes and Memes: Part II*. Available at: <http://tgdtheory.fi/pdfpool/dnatqccodes.pdf>, 2019.

[K23] Pitkänen M. Zero Energy Ontology. In *Towards M-Matrix: part I*. Available at: <http://tgdtheory.fi/pdfpool/ZEO.pdf>, 2021.

Articles about TGD

[L1] Pitkänen M. Hypnosis as Remote Mental Interaction. Available at: http://tgdtheory.fi/public_html/articles/hypnosisarticle.pdf, 2013.

[L2] Pitkänen M. Jeremy England's vision about life and evolution: comparison with TGD approach . Available at: http://tgdtheory.fi/public_html/articles/englandtgd.pdf, 2015.

[L3] Pitkänen M. Maintenance problem for Earth's magnetic field. Available at: http://tgdtheory.fi/public_html/articles/Bmaintenance.pdf, 2015.

[L4] Pitkänen M. Cold fusion, low energy nuclear reactions, or dark nuclear synthesis? Available at: http://tgdtheory.fi/public_html/articles/krivit.pdf, 2017.

- [L5] Pitkänen M. Philosophy of Adelic Physics. In *Trends and Mathematical Methods in Interdisciplinary Mathematical Sciences*, pages 241–319. Springer. Available at: https://link.springer.com/chapter/10.1007/978-3-319-55612-3_11, 2017.
- [L6] Pitkänen M. Philosophy of Adelic Physics. Available at: http://tgdtheory.fi/public_html/articles/adelephysics.pdf, 2017.
- [L7] Pitkänen M. Questions about twistor lift of TGD. Available at: http://tgdtheory.fi/public_html/articles/twistquestions.pdf, 2017.
- [L8] Pitkänen M. p-Adicization and Adelic Physics. *Pre-Space-Time Journal.*, 8(3), 2017. See also http://tgdtheory.fi/public_html/articles/adelicphysics.pdf.
- [L9] Pitkänen M. The Recent View about Twistorialization in TGD Framework. Available at: http://tgdtheory.fi/public_html/articles/smatrix.pdf, 2018.
- [L10] Pitkänen M. Copenhagen interpretation dead: long live ZEO based quantum measurement theory! Available at: http://tgdtheory.fi/public_html/articles/Bohrdead.pdf, 2019.
- [L11] Pitkänen M. New results related to $M^8 - H$ duality. Available at: http://tgdtheory.fi/public_html/articles/M8Hduality.pdf, 2019.
- [L12] Pitkänen M. Quantum self-organization by h_{eff} changing phase transitions. Available at: http://tgdtheory.fi/public_html/articles/heffselforg.pdf, 2019.
- [L13] Pitkänen M. Solar Metallicity Problem from TGD Perspective. Available at: http://tgdtheory.fi/public_html/articles/darkcore.pdf, 2019.
- [L14] Pitkänen M. Some comments related to Zero Energy Ontology (ZEO). Available at: http://tgdtheory.fi/public_html/articles/zeoquestions.pdf, 2019.
- [L15] Pitkänen M. SUSY in TGD Universe. Available at: http://tgdtheory.fi/public_html/articles/susyTGD.pdf, 2019.
- [L16] Pitkänen M. A critical re-examination of $M^8 - H$ duality hypothesis: part I. Available at: http://tgdtheory.fi/public_html/articles/M8H1.pdf, 2020.
- [L17] Pitkänen M. A critical re-examination of $M^8 - H$ duality hypothesis: part II. Available at: http://tgdtheory.fi/public_html/articles/M8H2.pdf, 2020.
- [L18] Pitkänen M. Could quantum randomness have something to do with classical chaos? Available at: http://tgdtheory.fi/public_html/articles/chaostgd.pdf, 2020.
- [L19] Pitkänen M. Could TGD provide new solutions to the energy problem? Available at: http://tgdtheory.fi/public_html/articles/proposal.pdf, 2020.
- [L20] Pitkänen M. Could ZEO provide a new approach to the quantization of fermions? Available at: http://tgdtheory.fi/public_html/articles/secondquant.pdf, 2020.
- [L21] Pitkänen M. How to compose beautiful music of light in bio-harmony? https://tgdtheory.fi/public_html/articles/bioharmony2020.pdf, 2020.
- [L22] Pitkänen M. Summary of Topological Geometrodynamics. https://tgdtheory.fi/public_html/articles/tgdarticle.pdf, 2020.
- [L23] Pitkänen M. The dynamics of SSFRs as quantum measurement cascades in the group algebra of Galois group. Available at: http://tgdtheory.fi/public_html/articles/SSFRGalois.pdf, 2020.
- [L24] Pitkänen M. About the role of Galois groups in TGD framework. https://tgdtheory.fi/public_html/articles/GaloisTGD.pdf, 2021.
- [L25] Pitkänen M. Can one regard leptons as effectively local 3-quark composites? https://tgdtheory.fi/public_html/articles/leptoDelta.pdf, 2021.

[L26] Pitkänen M. Comparing the Berry phase model of super-conductivity with the TGD based model. https://tgdtheory.fi/public_html/articles/SCBerryTGD.pdf., 2021.

[L27] Pitkänen M. Galois code and genes. https://tgdtheory.fi/public_html/articles/Galoiscode.pdf., 2021.

[L28] Pitkänen M. Is genetic code part of fundamental physics in TGD framework? Available at: https://tgdtheory.fi/public_html/articles/TIH.pdf., 2021.

[L29] Pitkänen M. Negentropy Maximization Principle and Second Law. Available at: https://tgdtheory.fi/public_html/articles/nmpsecondlaw.pdf., 2021.

[L30] Pitkänen M. Questions about coupling constant evolution. https://tgdtheory.fi/public_html/articles/ccheff.pdf., 2021.

[L31] Pitkänen M. What could 2-D minimal surfaces teach about TGD? https://tgdtheory.fi/public_html/articles/minimal.pdf., 2021.

[L32] Pitkänen M and Rastmanesh R. The based view about dark matter at the level of molecular biology. Available at: http://tgdtheory.fi/public_html/articles/darkchemi.pdf., 2020.

A Appendix

A.1 Brief glossary of the basic concepts of TGD

The following glossary explains some basic concepts of TGD and TGD inspired biology.

- **Space-time as surface.** Space-times can be regarded as 4-D surfaces in an 8-D space $M^4 \times CP_2$ obtained from empty Minkowski space (M^4) by adding four small dimensions (CP_2). The study of field equations characterizing space-time surfaces as “orbits” of 3-surfaces (3-D generalization of strings) forces the conclusion that the topology of space-time is non-trivial in all length scales.
- **Geometrization of classical fields.** Both weak, electromagnetic, gluonic, and gravitational fields are known once the space-time surface in H as a solution of field equations is known.

Many-sheeted space-time (see **Fig. ??**) consists of space-time sheets with various length scales with smaller sheets being glued to larger ones by **wormhole contacts** (see **Fig. ??**) identified as the building bricks of elementary particles. The sizes of wormhole contacts vary but are at least of CP_2 size (about 10^4 Planck lengths) and thus extremely small. Many-sheeted space-time replaces reductionism with **fractality**. The existence of scaled variants of physics of strong and weak interactions in various length scales is implied, and biology is especially interesting in this respect.

- **Topological field quantization (TFQ)** . TFQ replaces classical fields with space-time quanta. For instance, magnetic fields decompose into space-time surfaces of finite size representing flux tubes or -sheets. Field configurations are like Bohr orbits carrying “archetypal” classical field patterns. Radiation fields correspond to topological light rays or massless extremals (MEs), magnetic fields to magnetic flux quanta (flux tubes and sheets) having as primordial representatives “cosmic strings”, electric fields correspond to electric flux quanta (e.g. cell membrane), and fundamental particles to CP_2 type vacuum extremals.
- **Field body** (FB) and **magnetic body** (MB). Any physical system has field identity - FB or MB - in the sense that a given topological field quantum corresponds to a particular source (or several of them - e.g. in the case of the flux tube connecting two systems).

Maxwellian electrodynamics cannot have this kind of identification since the fields created by different sources superpose. Superposition is replaced with a set theoretic union: only

the *effects* of the fields assignable to different sources on test particle superpose. This makes it possible to define the QFT limit of TGD.

- ***p-Adic physics*** [K9] as a physics of cognition and intention and the fusion of p-adic physics with real number based physics are new elements.
- ***Adelic physics*** [L5, L8] is a fusion of real physics of sensory experience and various p-adic physics of cognition.
- ***p-Adic length scale hypothesis*** states that preferred p-adic length scales correspond to primes p near powers of two: $p \simeq 2^k$, k positive integer.
- A ***Dark matter hierarchy*** realized in terms of a hierarchy of values of effective Planck constant $h_{eff} = nh_0$ as integers using $h_0 = h/6$ as a unit. Large value of h_{eff} makes possible macroscopic quantum coherence which is crucial in living matter.
- ***MB as an intentional agent using biological body (BB) as a sensory receptor and motor instrument***. The personal MB associated with the living body - as opposed to larger MBs assignable with collective levels of consciousness - has a hierarchical onion-like layered structure and several MBs can use the same BB making possible remote mental interactions such as hypnosis [L1].
- ***Magnetic flux tubes and sheets*** serve as “body parts” of MB (analogous to body parts of BB), and one can speak about magnetic motor actions. Besides concrete motion of flux quanta analogous to ordinary motor activity, basic motor motor actions include the contraction of magnetic flux tubes by a phase transition reducing Planck constant, and the change in thickness of the magnetic flux tube, thus changing the value of the magnetic field, and in turn the cyclotron frequency. Reconnections of the flux tubes allow two MBs to get in contact and temporal variations of magnetic fields inducing motor actions of MBs favor the formation of reconnections. Flux tube connections at the molecular level bring a new element to biochemistry making it possible to understand bio-catalysis. Flux tube connections serve as a space-time correlates for attention in the TGD inspired theory of consciousness.
- ***Cyclotron Bose-Einstein condensates (BECs)*** of various charged particles can accompany MBs. Cyclotron energy $E_c = hZeB/m$ is much below thermal energy at physiological temperatures for magnetic fields possible in living matter. In the transition $h \rightarrow h_{eff}$ E_c is scaled up by a fractal $h_{eff}/h = n$. For sufficiently high value of h_{eff} cyclotron energy is above thermal energy $E = h_{eff} ZeB/m$. Cyclotron Bose-Einstein condensates at MBs of basic biomolecules and of cell membrane proteins - play a key role in TGD based biology.
- ***Josephson junctions*** exist between two superconductors. In TGD framework, ***generalized Josephson junctions*** accompany membrane proteins such as ion channels and pumps. A voltage between the two super-conductors implies a ***Josephson current***. For a constant voltage the current is oscillating with the ***Josephson frequency***. The Josephson current emits ***Josephson radiation***. The energies come as multiples of ***Josephson energy***. In TGD generalized Josephson radiation consisting of dark photons makes communication of sensory input to MB possible. The signal is coded to the modulation of Josephson frequency depending on the membrane voltage. The cyclotron BEC at MB receives the radiation producing a sequence of resonance peaks.
- ***Negentropy Maximization Principle*** (NMP). NMP [K6] [L29] is the variational principle of consciousness and generalizes SL. NMP states that the negentropy gain in SFR is non-negative and maximal. NMP implies SL for ordinary matter.
- ***Negentropic entanglement*** (NE). NE is possible in adelic physics and NMP does not allow its reduction. NMP implies a connection between NE, the dark matter hierarchy, p-adic physics, and quantum criticality. NE is a prerequisite for an experience defining abstraction as a rule having as instances the state pairs appearing in the entangled state.

- ***Zero energy ontology (ZEO)*** In ZEO physical states are pairs of positive and negative energy parts having opposite net quantum numbers and identifiable as counterparts of initial and final states of a physical event in the ordinary ontology. Positive and negative energy parts of the zero energy state are at the opposite boundaries of a ***causal diamond*** (CD, see **Fig. 11**)) defined as a double-pyramid-like intersection of future and past directed light-cones of Minkowski space.
CD defines the “spot-light of consciousness”: the contents of conscious experience associated with a given CD is determined by the space-time sheets in the imbedding space region spanned by CD.

A.2 Figures

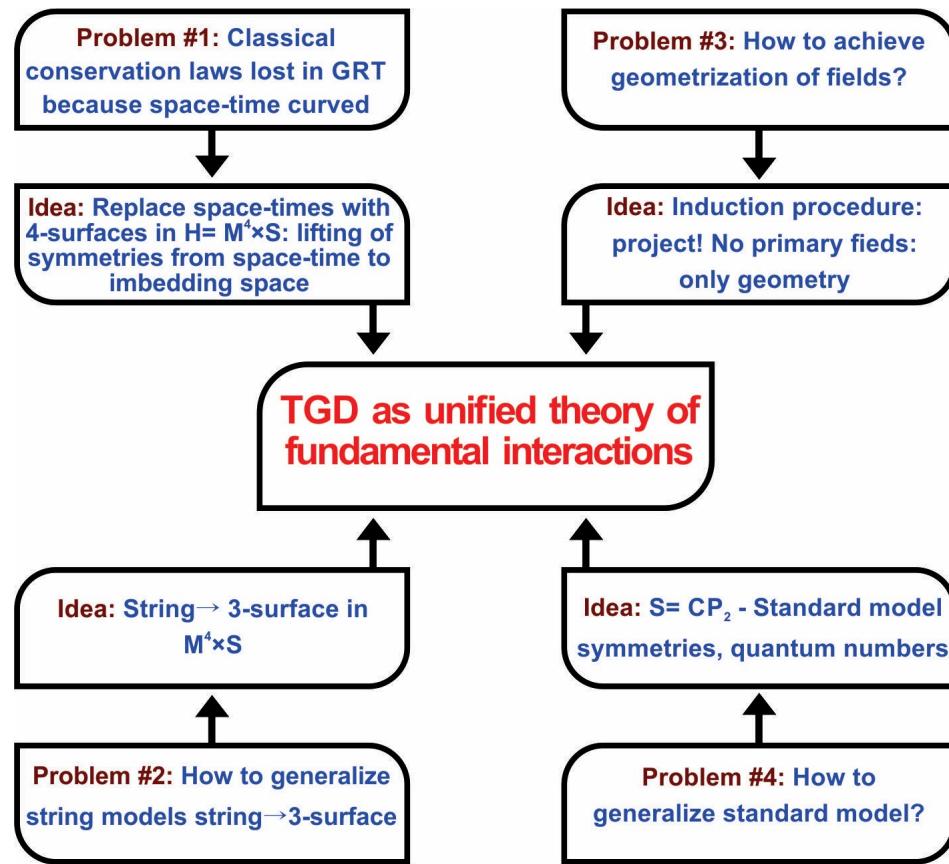
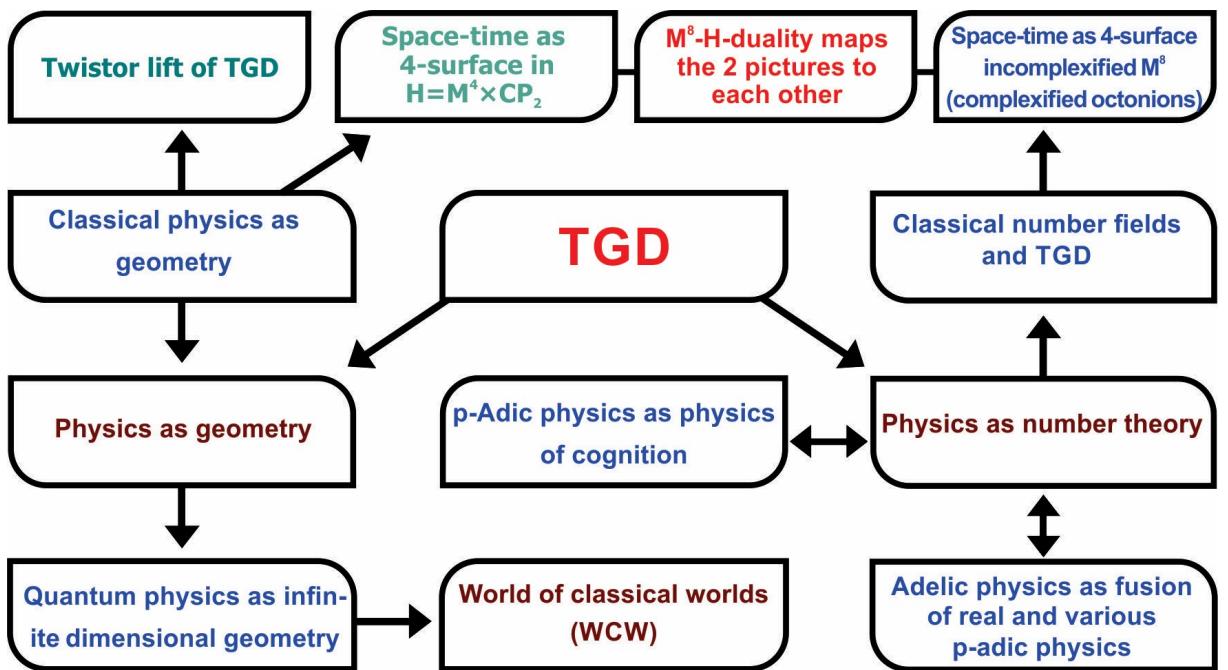
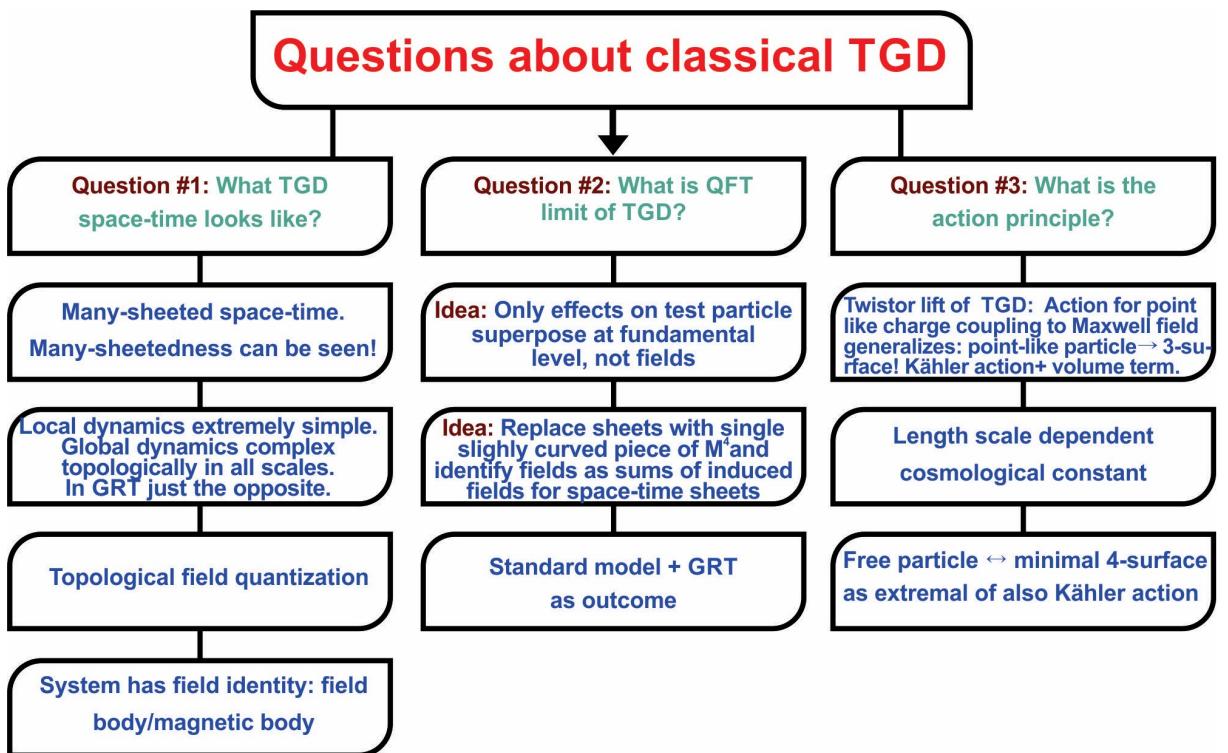
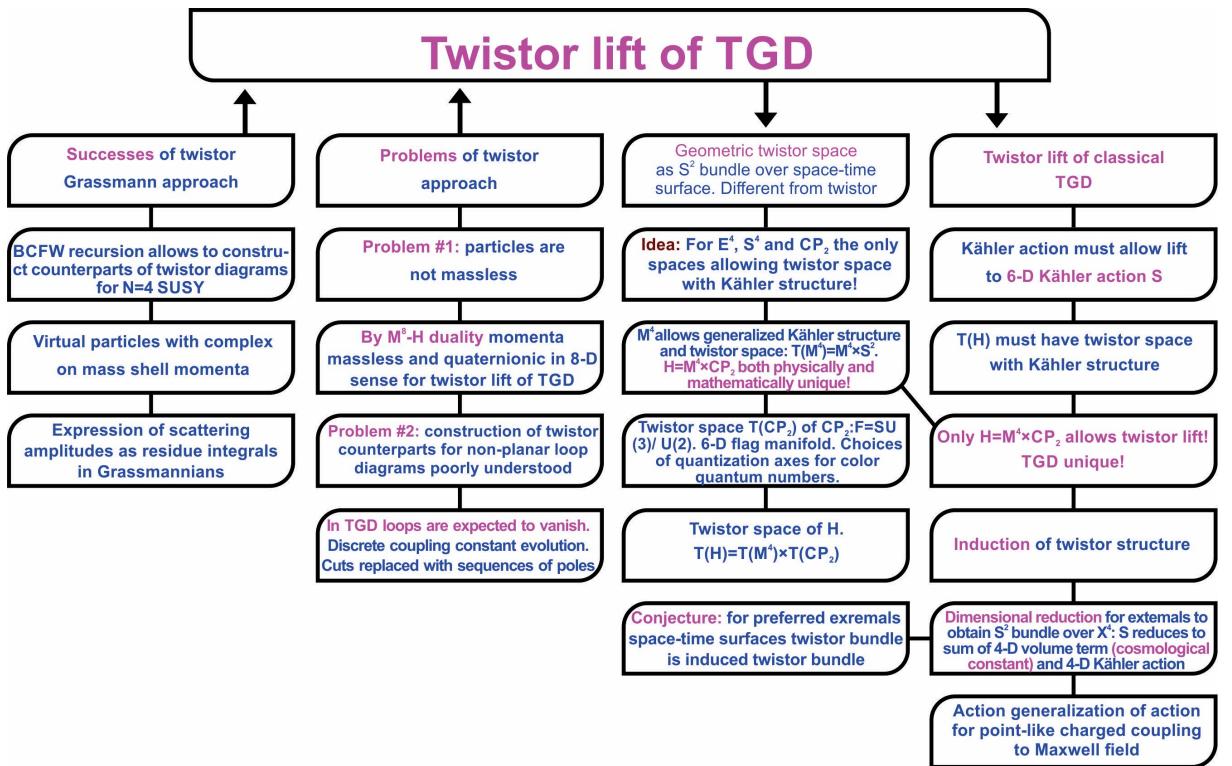
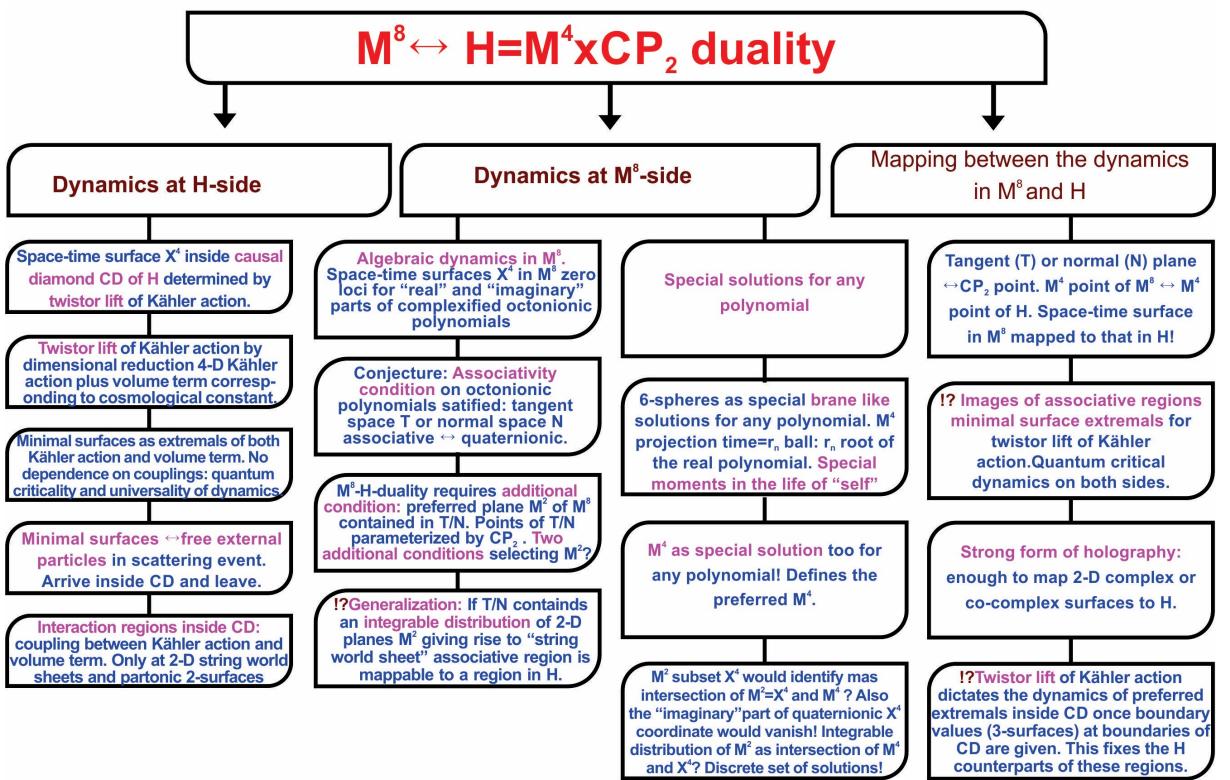
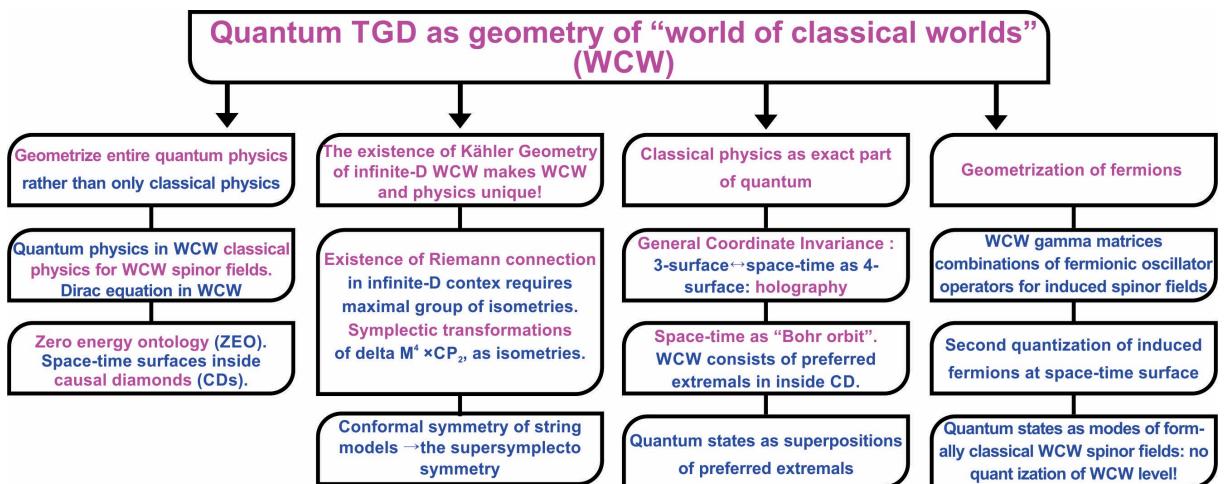
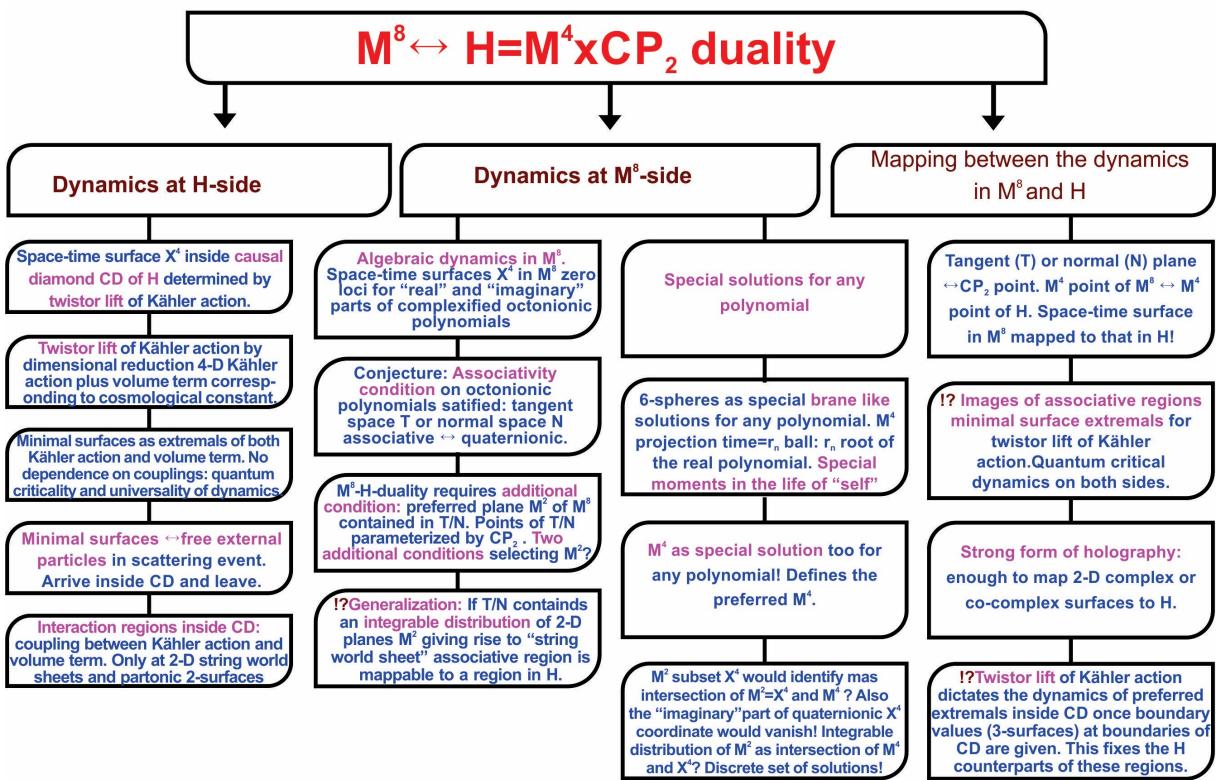




Figure 1: The problems leading to TGD as their solution.

Figure 2: TGD is based on two complementary visions: physics as geometry and physics as number theory.

Figure 3: Questions about classical TGD.

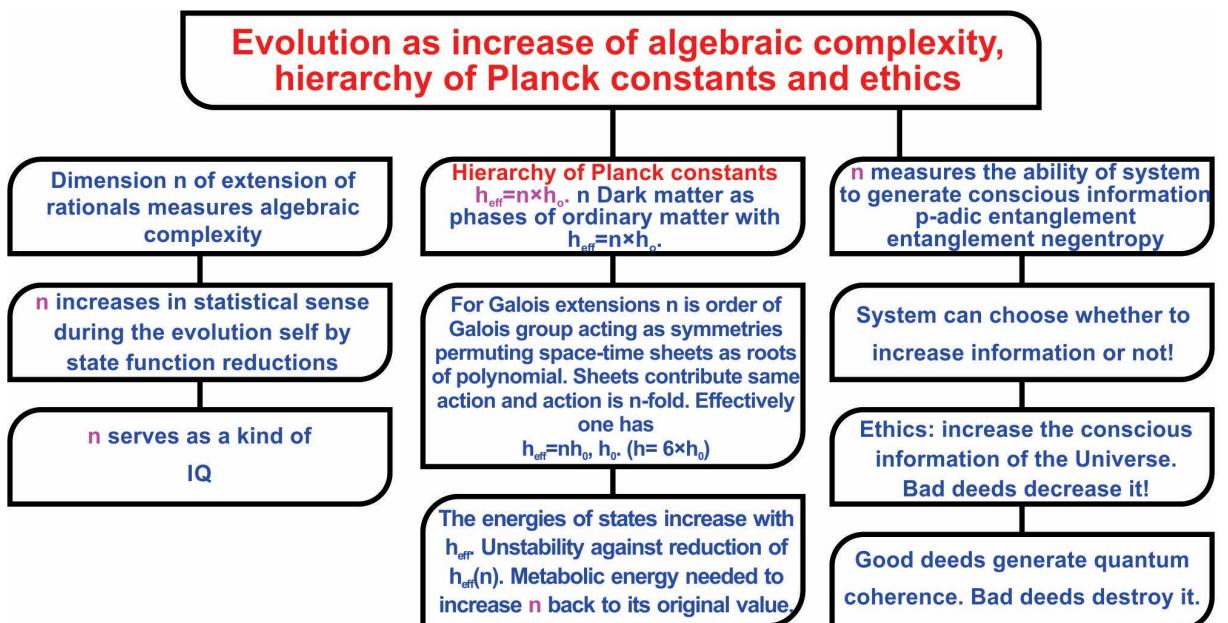

Figure 4: Twistor lift

Figure 5: $M^8 - H$ duality

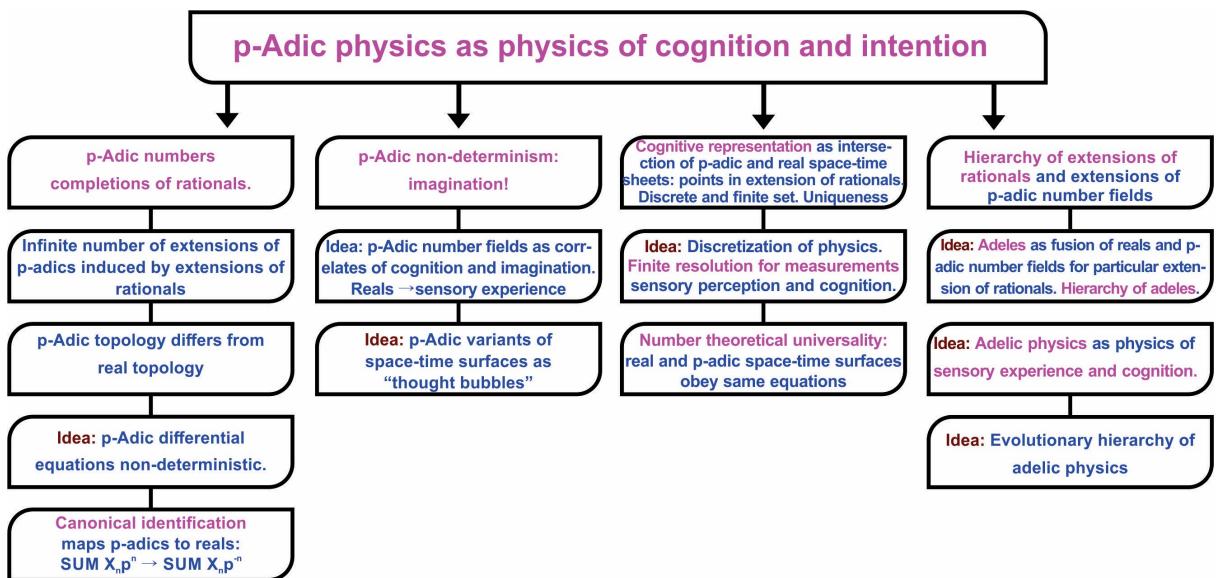
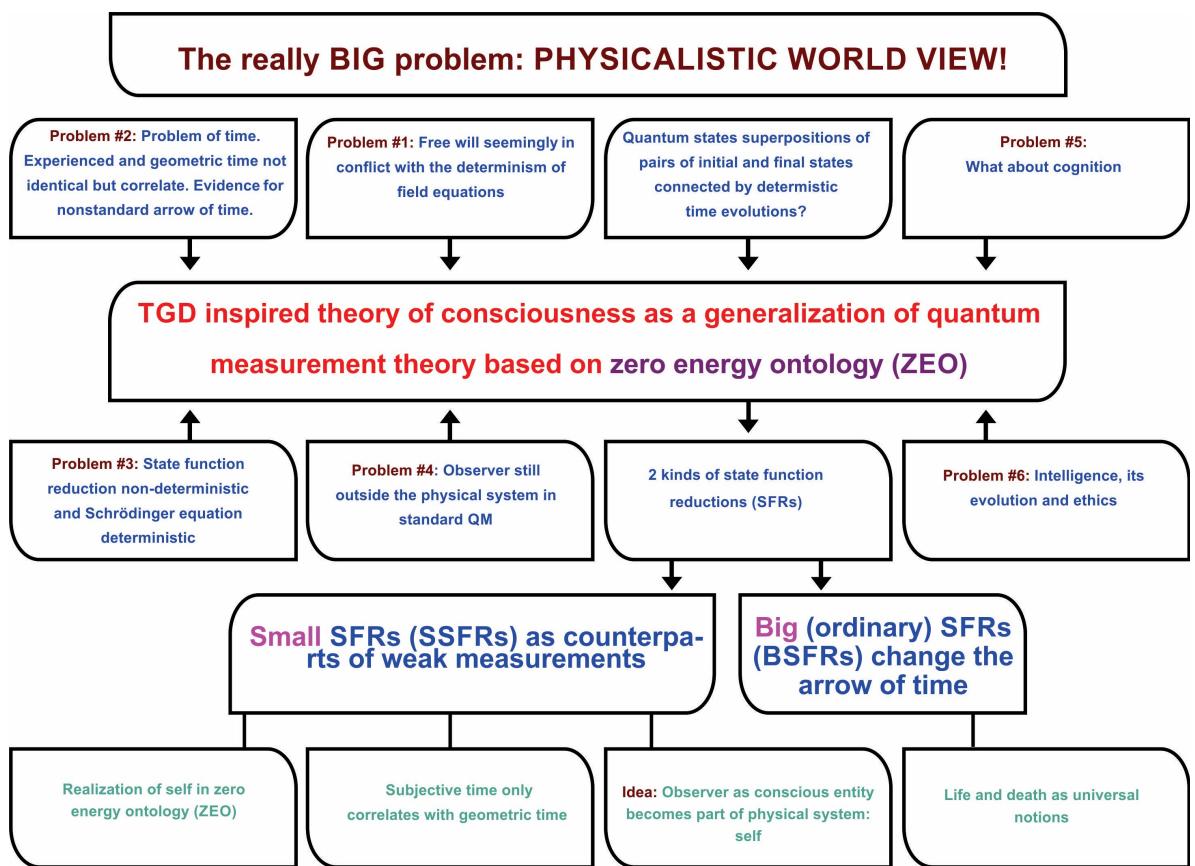
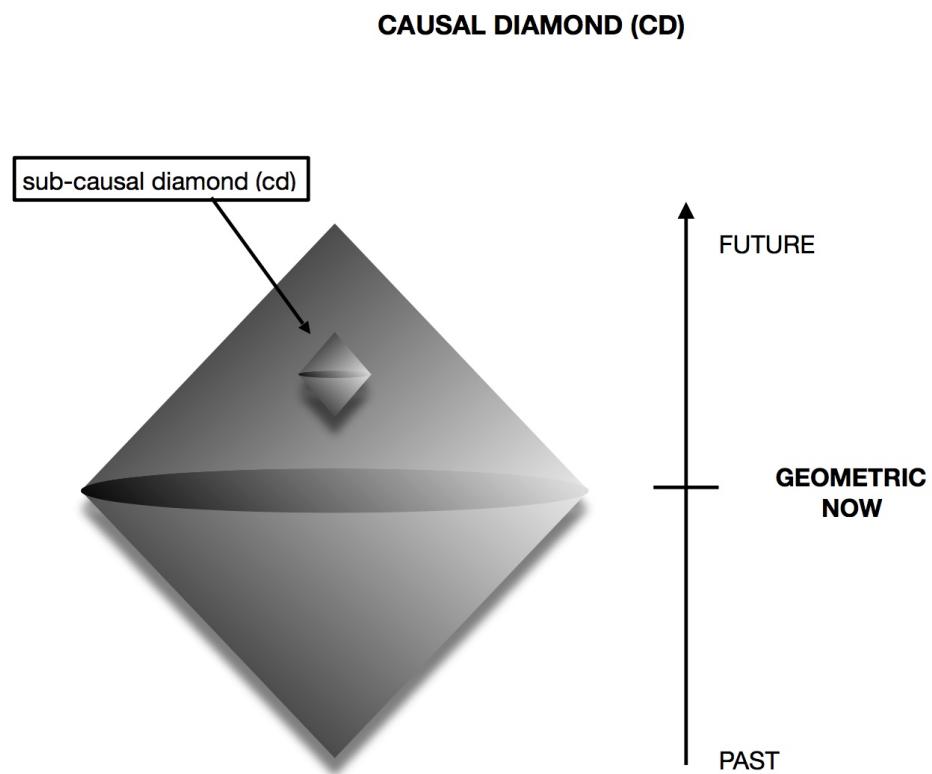


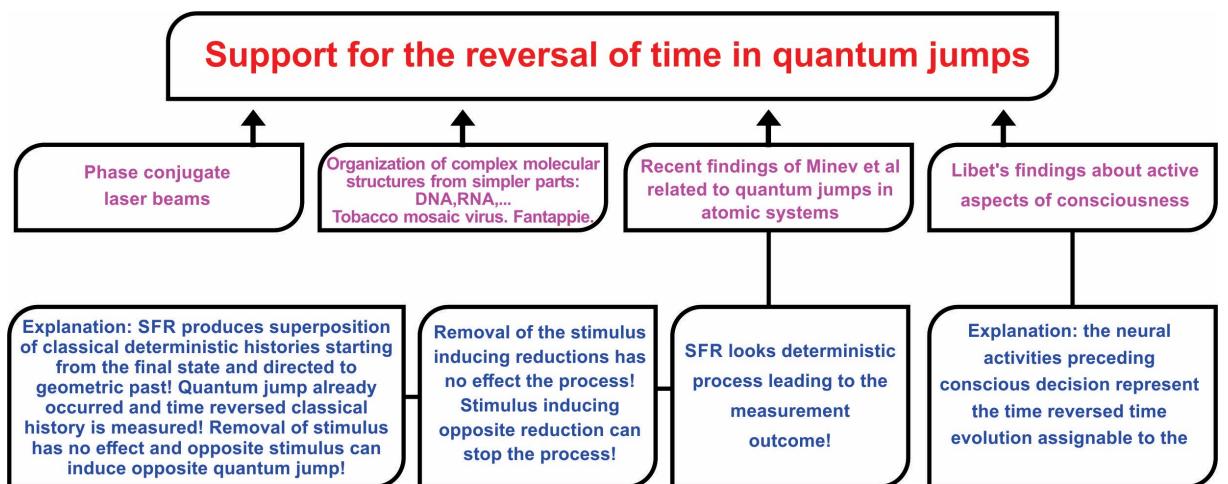
Figure 6: Geometrization of quantum physics in terms of WCW

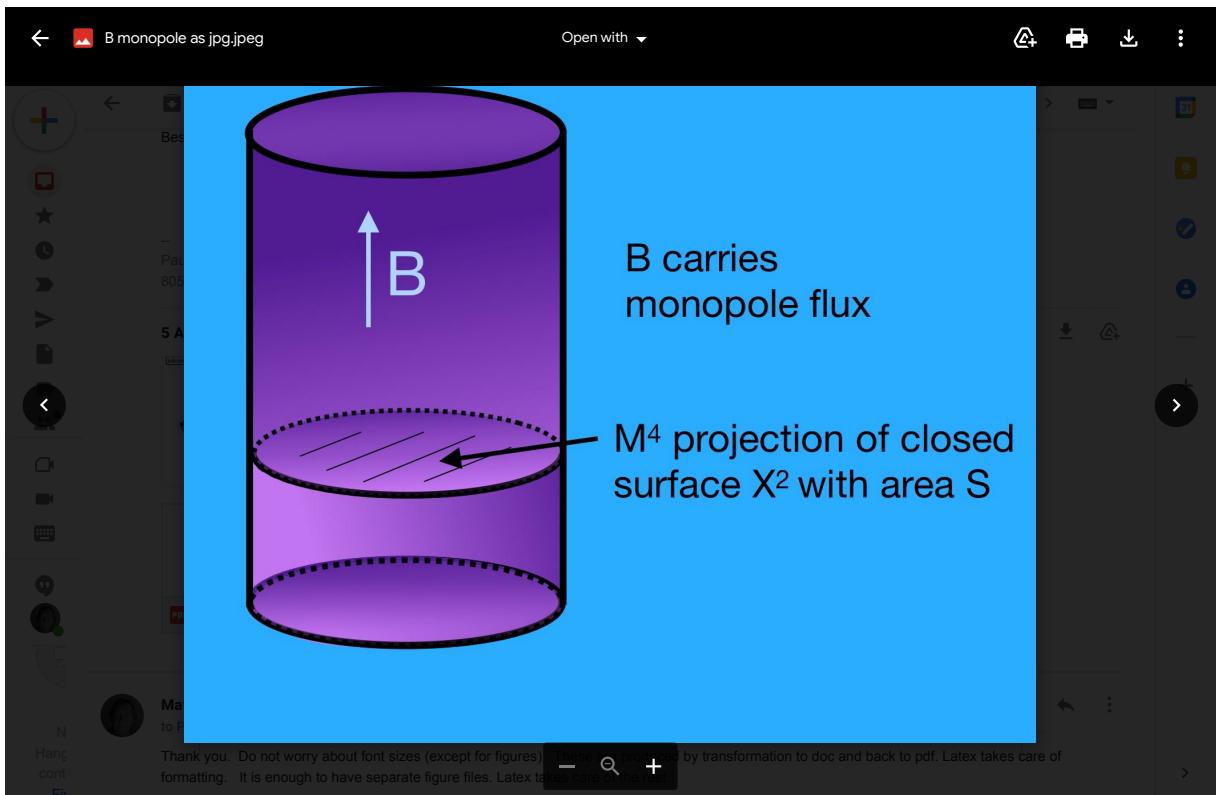
Figure 7: $M^8 - H$ duality

Figure 8: Number theoretic view of evolution

Figure 9: p-Adic physics as physics of cognition and imagination.



Figure 10: Consciousness theory from quantum measurement theory


Figure 11: Causal diamond

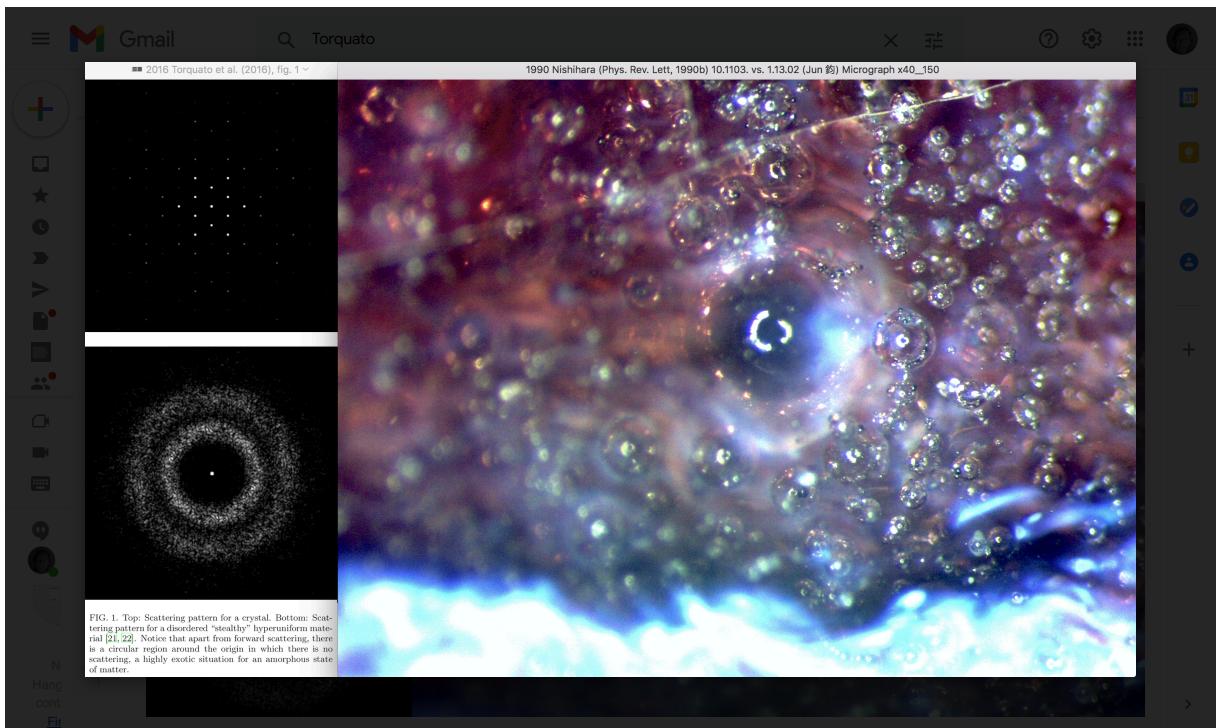

Figure 12: CDs define a fractal “conscious atlas”

Figure 13: Time reversal occurs in BSFR

Figure 14: The M^4 projection of a closed surface X^2 with area S defining the cross section for monopole flux tube. Flux quantization $e \oint B \cdot dS = eBS = kh$ at single sheet of n -sheeted flux tube gives for cyclotron frequency $f_c = ZeB/2\pi m = khZ/2\pi mS$. The variation of S implies frequency modulation.

Figure 15: The scattering from a hyperuniform amorphous material shows no scattering in small angles apart from the forward peak (<https://cutt.ly/ZWyLgjk>). This is very untypical in amorphous matter and might reflect the diffraction pattern of dark photons at the magnetic body of the system.