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Abstract

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions of
von Neumann algebras allowing to describe mathematically the notion of finite measurement
resolution.

In this article I will consider the notion of quantum matrix inspired by the recent view
about quantum TGD relying on the notion of finite measurement resolution. Complex matrix
elements are replaced with operators expressible as products of non-negative hermitian opera-
tors and unitary operators analogous to the products of modulus and phase as a representation
for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. Strong/weak permutation symmetry of deter-
minant requires its invariance under permutations of rows and/or columns. Weak permu-
tation symmetry means development of determinant with respect to a fixed row or column
and does not pose additional conditions. For weak permutation symmetry the permutation
of rows/columns would however have a natural interpretation as braiding for the hermitian
operators defined by the moduli of operator valued matrix elements and here quantum group
structure emerges. The commutativity of all sub-determinants is essential for the replacement
of eigenvalues with eigenvalue spectra of hermitian operators and sub-determinants define
mutually commuting set of operators.

Quantum matrices define a more general structure than quantum group but provide a
concrete representation and interpretation for quantum group in terms of finite measurement
resolution, in particular when q is a root of unity. One can also understand the fractal structure
of inclusion sequences of hyper-finite factors resulting by replacing operators appearing as
matrix elements with quantum matrices.

1 Introduction

The notion of quantum group [?]eplaces ordinary matrices with matrices with non-commutative
elements. This notion is physically very interesting, and in TGD framework I have proposed that
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it should relate to the inclusions of von Neumann algebras allowing to describe mathematically
the notion of finite measurement resolution [?] These ideas have developed slowly through various
side tracks.

In the sequel I will consider the notion of quantum matrix inspired by the recent view about
quantum TGD relying on the notion of finite measurement resolution and show that under some
additional conditions it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution.

1. The basic idea is to replace complex matrix elements with operators, which are products
of non-negative hermitian operators and unitary operators analogous to the products of
modulus and phase as a representation for complex numbers. Modulus and phase would be
non-commuting and have commutation relation analogous to that between momentum and
plane-wave in accordance with the idea about quantization of complex numbers.

2. The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. Strong/weak permutation symmetry of de-
terminant requires its invariance apart from sign change under permutations of rows and/or
columns. Weak permutation symmetry means development of determinant with respect to a
fixed row or column and does not pose additional conditions. For weak permutation symme-
try the permutation of rows/columns would however have a natural interpretation as braiding
for the hermitian operators defined by the moduli of operator valued matrix elements and
here quantum group structure emerges.

3. The commutativity of all sub-determinants is essential for the replacement of eigenvalues with
eigenvalue spectra of hermitian operators and sub-determinants define mutually commuting
set of operators.

Quantum matrices define a more general structure than quantum group but provide a concrete
representation for them in terms of finite measurement resolution, in particular when q is a root of
unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one obtains quantum matrices for which
the determinant is apart from possible change by a sign factor invariant under the permutations
of both rows and columns. One can also understand the recursive fractal structure of inclusion
sequences of hyper-finite factors resulting by replacing operators appearing as matrix elements
with quantum matrices and a concrete connection with quantum groups emerges.

In Zero Energy Ontology (ZEO) M-matrix serving as the basic building brick of unitary U-
matrix and identified as a hermitian square root of density matrix provides a possible application
for this vision. Especially fascinating is the possibility of hierarchies of measurement resolutions
represented as inclusion sequences realized as recursive construction of M-matrices. Quantization
would emerge already at the level of complex numbers appearing as M-matrix elements.

This approach might allow to unify various ideas behind TGD. For instance, Yangian algebras
emerging naturally in twistor approach are examples of quantum algebras. The hierarchy of Planck
constants should have close relationship with inclusions and fractal hierarchy of sub-algebras of
super-symplectic and other conformal algebras.

2 Well-definedness of the eigenvalue problem as a constraint
to quantum matrices

Intuition suggests that the presence of degrees of freedom below measurement resolution implies
that one must use density matrix description obtained by taking trace over the unobserved degrees
of freedom. One could argue that in state function reduction with finite measurement resolution
the outcome is not a pure state, or not even negentropically entangled state (possible in TGD
framework) but a state described by a density matrix. The challenge is to describe the situation
mathematically in an elegant manner.

1. There is present an infinite number of degrees of freedom below measurement resolution with
which measured degrees of freedom entangle so that their presence affects the situation. One
has a system with finite number degrees of freedom such as two-state system described by a
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quantum spinor. In this case observables as hermitian operators described by 2× 2 matrices
would be replaced by quantum matrices with elements, which in general do not commute.

An attractive generalization of complex numbers appearing as elements of matrices is ob-
tained by replacing them with products Hij = hijuij of hermitian operators hij with non-
negative spectrum (modulus of complex number) and unitary operators uij (phase of complex
number) suggests itself. The commutativity of hij and uij would look nice but is not neces-
sary and is in conflict with the idea that modulus and phase of an amplitudes do not commute
in quantum mechanics.

Very probably this generalization is trivial for mathematician. One could indeed interpret
the generalization in terms of a tensor product of finite-dimensional matrices with possibly
infinite-dimensional space of operators of Hilbert space. For the physicist the situation might
be different as the following proposal for what hermitian quantum matrices could be suggests.

2. The modulus of complex number is replaced with a hermitian operator having non-negative
eigenvalues. The representation as h = AA† + A†A is would guarantee this. The phase of
complex number would be replaced by a unitary operator U possibly allowing the represen-
tation U = exp(iT ), T hermitian. The commutativity condition

[hij , uij ] = 0 (2.1)

for a given matrix element is also suggestive but as already noticed, Uncertainty Principle
suggests that modulus and phase do not commute as operators. The commutator of modulus
and phase would naturally be equal to that between momentum operator and plane wave:

[hij , uij ] = i~× uij , (2.2)

Here ~ = h/2π can be chosen to be unity in standard quantum theory. In TGD it can be
generalized to a hermitian operator Heff/h with an integer valued spectrum of eigenvalues
given by heff/h = n so that ordinary and dark matter sectors would be unified to single
structure mathematically.

3. The notions of eigenvalues and eigenvectors for a hermitian operator should generalize. Now
hermitian operator H would be a matrix with formally the same structure as N×N hermitian
matrix in commutative number field - say complex numbers - possibly satisfying additional
conditions.

Hermitian matrix can be written as

Hij = hijuij for i>j Hij = uijhij for i<j , Hii = hi . (2.3)

Hermiticity conditions Hij = H†ji give

hij = hji , uij = u†ji . (2.4)

Here it has been assumed that one has quantum SU(2). For quantum U(2) one would have

U11 = U†22 = haua with ua commuting with other operators. The form of the conditions is
same as for ordinary hermitian matrices and it is not necessary to assume commutativity
[hij , uij ] = 0. Generalization of Pauli spin matrices provides a simple illustration.

4. The well-definedness of eigenvalue problem gives a strong constraint on the notion of her-
mitian quantum matrix. Eigenvalues of hermitian operator are determined by the vanishing
of determinant det(H − λI). Its expression involves sub-determinants and one must decide
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whether to demand that the definition of determinant is independent of which column or row
one chooses to develop the determinant.

For ordinary matrix the determinant is expressible as sum of symmetric functions:

det(H − λI) =
∑

λnSn(H) . (2.5)

Elementary symmetric functions Sn - n-functions in following - have the property that they
are sums of contributions from to n-element paths along the matrix with the property that
path contains no vertical or horizontal steps. One has a discrete analog of path integral
in which time increases in each step by unit. The analogy with fermionic path integral is
also obvious. In the non-commutative case non-commutativity poses problems since different
orderings of rows (or columns) along the same n-path give different results.

(a) For the first option one gives up the condition that determinant can be developed with
respect to any row or column and defines determinant by developing it with respect
to say first row or first column. If one developing with respect to the column (row)
the permutations of rows (columns) do not affect the value of determinant or sub-
determinants but permutations of columns (rows) do so unless one poses additional
conditions stating that the permutations do not affect given contribution to the deter-
minant or sub-determinant. It turns out that this option must be applied in the case
of ordinary quantum group. For quantum phase q = ±1 the determinant is invariant
under permutations of both rows and columns.

(b) Second manner to get rid of difficulty would be that n-path does not depend on the
ordering of the rows (columns) differ only by the usual sign factor. For 2× 2 case this
would give

ad− bc = da− cb , (Option 2) (2.6)

These conditions state the invariance of the n-path under permutation group Sn per-
muting rows or columns.

(c) For the third option the elements along n-paths commute: paths could be said to be
“classical”. The invariance of N -path in this sense guarantees the invariance of all
n-paths. In 2-D case this gives

[a, d] = 0 , [b, c] = 0 . (Option 3) (2.7)

5. One should have a well-defined eigenvalue problem. If the n-functions commute, one can
diagonalize the corresponding operators simultaneously and the eigenvalues problem reduces
to possibly infinite number of ordinary eigenvalue problems corresponding to restrictions to
given set of eigenvalues associated with N − 1 symmetric functions. This gives an additional
constraint on quantum matrices.

In 2-dimensional case one would have the condition

[ad− bc, a+ d] = 0 . (2.8)

Depending on how strong S2 invariance one requires, one obtains 0, 1, 2 nontrivial conditions
for 2 × 2 quantum matrices and 1 condition from the commutativity of n-functions besides
hermiticity conditions.

For N × N -matrices one would have N ! − 1 non-trivial conditions from the strong form of
permutation invariance guaranteeing the permutation symmetry of n-functions and N(N −
1)/2 conditions from the commutativity of n-functions.
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6. The eigenvectors of the density matrix are obtained in the usual manner for each eigenvalue
contributing to quantum eigenvalue. Also the diagonalization can be carried out by a uni-
tary transformation for each eigenvalue separately. Hence the standard approach seems to
generalize almost trivially.

What makes the proposal non-trivial and possibly physically interesting is that the hermitian
operators are not assumed to be just tensor products of N × N hermitian matrices with
hermitian operators in Hilbert space.

The notion of unitary quantum matrix should also make sense. The naive guess is that the
exponentiation of a linear combination of ordinary hermitian matrices with coefficients, which
are hermitian matrices gives quantum unitary matrices. In the case of U(1) the replacement of
exponentiation parameter t in exp(itX) with a hermitian operator gives standard expression for
the exponent and it is trivial to see that unitary conditions are satisfied also in this case. Also in
the case of SU(2) it is easy to verify that the guess is correct. One must also check that one indeed
obtains a group: it could also happen that only semi-group is obtained.

In any case, one could speak of quantum matrix groups with coordinates replaced by hermitian
matrices. These quantum matrix group need not be identical with quantum groups in the standard
sense of the word. Maybe this could provide one possible meaning for quantization in the case of
groups and perhaps also in the case of coset spaces G/H.

3 The relationship to quantum groups and and quantum
Lie algebras

It is interesting to find out whether quantum matrices give rise to quantum groups under suitable
additional conditions. The child’s guess for these conditions is that the permutation of rows and
columns correspond to braiding for the hermitian moduli hij defined by unitary operators Uij .

3.1 Quantum groups and quantum matrices

The conditions for hermiticity and unitary do not involve quantum parameter q, which suggests
that the naive generalization of the notion of unitary matrix gives unitary group obtained by
replacing complex number field with operator algebra gives group with coordinates defined by
hermitian operators rather than standard quantum group. This turns out to be the case and it
seems that quantum matrices provide a concrete representation for quantum group. The notion of
braiding as that for operators hij can be said to emerge from the notion of quantum matrix.

1. Exponential of quantum hermitian matrix is excellent candidate for quantum unitary matrix.
One should check the exponentiation indeed gives rise to a quantum unitary matrix. For
q = ±1 this seems obvious but one should check this separately for other roots of unity.
Instead of considering the general case, we consider explicit ansatz for unitary U(2) quantum
matrix as U = [a, b;−b†, a†]. The conditions for unitary quantum group in the proposed
sense would state the orthonormality and unit norm property of rows/columns.

The explicit form of the conditions reads as

ab− ba = 0 , ab† = b†a ,
aa† + bb† = 1 , a†a+ b†b = 1 .

(3.1)

The orthogonality conditions are unique and reduce to the vanishing of commutators.

Normalization conditions involve a choice of ordering. One possible manner to avoid the
problem is to assume that both orderings give same unit length for row or column (as done
above). If only the other option is assumed then only third or fourth equations is needed.
The invariance of determinant under permutation of rows would imply [a, a†] = [b, b†] = 0
and the ordering problem would disapper.
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2. One can look what conditions the explicit representation Uij = hijuij or equivalently [haua, hbub;−u†bhb, u†aha]
gives. The intuitive expectation is that U(2) matrix decomposes to a product of commutating
SU(2) matrix and U(1) matrices. This implies that ua commutes with the other matrices
involved. One obtains the conditions

hahb = hb(ubhau
†
b) , hbha = (ubhau

†
b)hb . (3.2)

These conditions state that the permutation of ha and hb analogous to braiding operation is
a unitary operation.

For the purposes of comparison consider now the corresponding conditions for SU(2)q matrix.

1. The SU(2)q matrix [a, b; b†, a†] with real value of q (see https://en.wikipedia.org/wiki/

Quantum_group) satisfies the conditions

ba = qab , b†a = qab†, bb† = b†b ,
a†a+ q2b†b = 1 , aa† + bb† = 1 .

(3.3)

This gives [a†, a] = (1 − q2)b†b. The above conditions would correspond to q = ±1 but
with complex numbers replaced with operator algebra. q-commutativity obviously replaces
ordinary commutativity in the conditions and one can speak of q-orthonormality.

For complex values of q - in particular roots of unity - the condition a†a + q2b†b = 1 is in
general not self-consistent since hermitian conjugation transforms q2 to its complex conjugate.
Hence this condition must be dropped for complex roots of unity.

2. Only for q = ±1 corresponding to Bose-Einstein and Fermi-Dirac statistics the conditions
are consistent with the invariance of n-functions (determinant) under permutations of both
rows and columns. Indeed, if 2 × 2 q-determinant is developed with respect to column, the
permutation of rows does not affect its value. This is trivially true also in N×N dimensional
case since the permutation of rows does not affect the n-paths at all.

If the symmetry under permutations is weakened, nothing prevents from posing quantum or-
thogonality conditions also now and the decomposition to a product of positive and hermitian
matrices give a concrete meaning to the notion of quantum group.

Do various n−functions commute with each other for SU(2)q? The only commutator of this
kind is that for the trace and determinant and should vanish:

[
b+ b†, aa† + bb†

]
= 0 . (3.4)

Since a†a and aa† are linear combinations of b†b = b†b, they vanish. Hence it seems that
TGD based view about quantum groups is consistent with the standard view.

3. One can look these conditions in TGD framework by restricting the consideration to the case
of SU(2) (ua = 1) and using the ansatz U = [ha, hbub;−u†bhb, ha]. Orthogonality conditions
read as

hahb = qhb(ubhau
†
b) , hbha = q(ubhau

†
b)hb .

If q is root of unity, these conditions state that the permutation of ha and hb analogous
to a unitary braiding operation apart from a multiplication with quantum phase q. For
q = ±1 the sign-factor is that in standard statistics. Braiding picture could help guess the
commutators of hij in the case of N ×N quantum matrices. The permutations of rows and
columns would have interpretation as braidings and one could say that braided commutators
of matrix elements vanish.

https://en.wikipedia.org/wiki/Quantum_group
https://en.wikipedia.org/wiki/Quantum_group
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The conditions from the normalization give

h2a + h2b = 1 , h2a + q2(u†bh
2
bub) = 1 . (3.5)

For complex q the latter condition does not make sense since h2a−1 and u†bh
2
bub are hermitian

matrices with real eigenvalues. Also for real values of q 6= ±1 one obtains contradicion since
the spectra of unitarily related hermitian operators would differ by scaling factor q2. Hence
one must give up the condition involving q2 unless one has q = ±1. Note that the term
proportional to q2 does not allow interpretation in terms of braiding.

4. Roots of unity are natural number theoretically as values of q but number theoretical uni-
versality allows the generic value of q would be a complex number existing simultaneously in
all p-adic number properly extended. This would suggest the spectrum of q to come as

q(m,n) = e1/mexp(
ı2π

n
) . (3.6)

The motivation comes from the fact that ep is ordinary p-adic number for all p-adic number
fields so e and also any root of e defines a finite-dimensional extension of p-adic numbers
[K1] [L1]. The roots of unity would be associated to the discretization of the ordinary angles
in case of compact matrix groups. Roots of e would be associated with the discretization of
hyperbolic angles needed in the case of non-compact matrix groups such as SL(2,C).

Also now unification of various values of q to single single operator Q, which is product of
commuting hermitian and unitary operators and commuting with the hermitian operator H
representing the spectrum of Planck constant would code the spectrum. Skeptic can of course
wonder, whether the modulus and phase of Q can be assumed to commute. The relationship
between integers associated with H and Q is interesting.

3.2 Quantum Lie algebras and quantum matrices

What about quantum Lie algebras? There are many notions of quantum Lie algebra and quantum
group. General formulas for the commutation relations are well-known for Drinfeld-Jimbo type
quantum groups (see https://en.wikipedia.org/wiki/Quantum_group). The simplest guess
is that one just poses the defining conditions for quantum group, replaces complex numbers as
coefficient module with operator algebra, and poses the above described conditions making possible
to speak about eigenvalues and eigen vectors. One might however hope that this representation
allows to realize the non-commutativity of matrix elements of quantum Lie algebra in a concrete
manner.

1. For SU(2) the commutation relations for the elements X+, X−, h read as

[h,X±] = ±X± , [X+, X−] = h . (3.7)

Here one can use the 2× 2 matrix representations for the ladder operators X± and diagonal
angular momentum generator h.

2. For SU(2)q one has

[h,X±] = ±X± , [X+, X−] = qh−q−h

q−q−1 . (3.8)

3. Using the ansatz for the generators but allowing hermitian operator coefficients in non-
diagonal generators X±, one obtains the condition

For SU(2)q one would have

https://en.wikipedia.org/wiki/Quantum_group
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[X+, X−] = h2+ = h2− =
qh − q−h

q − q−1
. (3.9)

Clearly, the proposal might make possible to have concrete representations for the quantum
Lie algebras making the decomposition to measurable and directly non-measurable degrees
of freedom explicit.

The conclusion is that finite measurement resolution does not lead automatically to standard
quantum groups although the proposed realization is consistent with them. Also the quantum
phases q = ±1 n = 1, 2 are realized and correspond to strong permutation symmetry and Bose-
Einstein and Fermi statistics.

4 About possible applications

The realization for the notion of finite measurement resolution is certainly the basic application
but one can imagine also other applications where hermitian and unitary matrices appear.

4.1 Density matrix description of degrees of freedom below measure-
ment resolution

Density matrix ρ obtained by tracing over non-observable degrees of freedom is a fundamental
example about a hermitian matrix satisfying the additional condition Tr(ρ) = 1.

1. A state function reduction with a finite measurement resolution would lead to a non-pure
state. This state would be describable using N × N -dimensional quantum hermitian quan-
tum density matrix satisfying the condition Tr(ρ) = 1 (or more generally Trq(ρ) = 1), and
satisfying the additional conditions allowing to reduce its diagonalization to that for a col-
lection of ordinary density matrices so that the eigenvalues of ordinary density matrix would
be replaced by N quantum eigenvalues defined by infinite-dimensional diagonalized density
matrices.

2. One would have N quantum eigenvalues - quantum probabilities - each decomposing to
possibly infinite set of ordinary probabilities assignable to the degrees of freedom below
measurement resolution and defining density matrix for non-pure states resulting in state
function reduction.

4.2 Some questions

Some further questions pop up naturally.

1. One might hope that the quantum counterparts of hermitian operators are in some sense
universal, at least in TGD framework (by quantum criticality). Could the condition that
the commutator of hermitian generators is proportional to i~ times hermitian generator pose
additional constraints? In 2-D case this condition is satisfied for quantum SU(2) generators
and very probably the same is true also in the general case. The possible problems result from
the non-commutativity but (XY )† = Y †X† identity takes care that there are no problems.

2. One can also raise physics related questions. What one can say about most general quantum
Hamiltonians and their energy spectra, say quantum hydrogen atom? What about quan-
tum angular momentum? If the proposed construction is only a concretization of abstract
quantum group construction, then nothing new is expected at the level of representations of
quantum groups.

3. Could the spectrum of heff define a quantum h as a hermitian positive definite operator?
Could this allow a description for the presence of dark matter, which is not directly observ-
able?
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4. M-matrices are basic building bricks of scattering amplitudes in ZEO. M-matrix is produce
of hermitian ”complex” square root H of density matrix satisfying H2 = ρ and unitary S-
matrix S. It has been proposed that these matrices commute. The previous consideration
relying on basic quantum thinking suggests that they relate like translation generator in radial
direction and phase defined by angle and thus satisfy [H,S] = i(Heff/h) × S. This would
give enormously powerful additional condition to S-matrix. One can also ask whether M-
matrices in presence of degrees of freedom below measurement resolution is quantum version
of M-matrix in the proposed sense.

5. Fractality is key notion of TGD and characterizes also hyperfinite factors. I have proposed
some realization of fractality such as infinite primes and finite-dimensional Hilbert spaces take
the role of natural numbers and ordinary sum and product are replaced by direct sum and
tensor product. One could also imagine a fractal hierarchy of quantum matrices obtained by
replacing the operators appearing as matrix elements of quantum matrix element by quantum
matrices. This hierarchy could relate to the sequence of inclusions of HFFs.
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