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Abstract

Ramified primes are special in the sense that their expression as a product of primes P; of
extension contains higher than first powers and the number P; is smaller than the maximal
number n defined by the dimension of the extension. The proposed interpretation of ramified
primes is as p-adic primes characterizing space-time sheets assignable to elementary particles
and even more general systems. It is not quite clear why ramified primes appear as preferred
p-adic primes and in the following Dedekind zeta functions and what I call ramified zeta
functions inspired by the interpretation of zeta function as analog of partition function are
used in attempt to understand why ramified primes could be physically special.

The intuitive feeling is that quantum criticality is what makes ramified primes so special. In
O(p) = 0 approximation the irreducible polynomial defining the extension of rationals indeed
reduces to a polynomial in finite field F}, and has multiple roots for ramified prime, and one
can deduce a concrete geometric interpretation for ramification as quantum criticality using
M?® — H duality.
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1 Introduction

Ramified primes (see http://tinyurl.com/m32nvcz| and http://tinyurl.com/y6yskkas) are
special in the sense that their expression as a product of primes of extension contains higher
than first powers and the number of primes of extension is smaller than the maximal number n
defined by the dimension of the extension. The proposed interpretation of ramified primes is as
p-adic primes characterizing space-time sheets assignable to elementary particles and even more
general systems.

In the following Dedekind zeta functions (see http://tinyurl.com/y5grktvp) as generaliza-
tion of Riemann zeta are studied to understand what makes them so special. Dedekind
zeta function characterizes given extension of rationals and is defined by reducing the contribu-
tion from ramified reduced so that effectively powers of primes of extension are replaced with first
powers.
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If one uses the naive definition of zeta as analog of partition function and includes full powers
Pfi the zeta function becomes a product of Dedekind zeta and a term consisting of a finite
number of factors having poles at imaginary axis. This happens for zeta function and its fermionic
analog having zeros along imaginary axis. The poles would naturally relate to Ramond and N-S
boundary conditions of radial partial waves at light-like boundary of causal diamond CD. The
additional factor could code for the physics associated with the ramified primes.

The intuitive feeling is that quantum criticality is what makes ramified primes so special. In
O(p) = 0 approximation the irreducible polynomial defining the extension of rationals indeed
reduces to a polynomial in finite field F}, and has multiple roots for ramified prime, and one can
deduce a concrete geometric interpretation for ramification as quantum criticality using M® — H
duality.

This article is one in a series of articles related to the number theoretical aspects of TGD.
M8 — H duality central concept in following and discussed in [L2, [L7, L5, [L6] [K3]. Also the
notion of cognitive representation as a set of points of space-time surface with preferred imbedding
space coordinates belonging to the extension of rationals defining the adele [K2] is important and
discussed in [L9, L8, [L11].

2 Dedekind zeta function and ramified primes

One can take mathematics and physical intuition guided by each other as a guideline in the attempts
to understand ramified primes.

1. Riemann zeta can be generalized to Dedekind zeta function (i for any extension K of
rationals (see http://tinyurl.com/y5grktvp)). (x characterizes the extension - maybe also
physically in TGD framework since zeta functions have formal interpretation as partition
function. In the recent case the complexity is not a problem since complex square roots
of partition functions would define the vacuum part of quantum state: one can say that
quantum TGD is complex square root of thermodynamics.

(i satisfies the same formula as ordinary zeta expect that one considers algebraic integers
in the extensions K and sums over non-zero ideals a - identifiable as integers in the case of
rationals - with n~*% replaced with N(a)™®, where N(a) denotes the norm of the non-zero
ideal. The construction of (x in the extension of rationals obtained by adding i serves as an
illustrative example (see http://tinyurl.com/y563wcwv). I am not a number theorists but
the construction suggests a poor man’s generalization strongly based on physical intuition.

2. The rules would be analogous to those used in the construction of partition function. log(N (a))
is analogous to energy and s is analogous to inverse temperature so that one has Boltzmann
weight exp(—log(N(a)s) for each ideal. Since the formation of ideals defined by integers of
extension is analogous to that for forming many particle states labelled by ordinary primes
and decomposing to primes of extension, the partition function decomposes to a product over
partition functions assignable to ordinary primes just like in the case of Riemann zeta. Let
K be an extension of rationals Q.

K2
dimension of extension and e; is the ramification degree. Let f; be so called residue degree

of P; defined as the dimension of K mod P; interpreted as extension of rational integers
Z mod p. Then one has > {e;fi = n.

Remark: For Galois extensions for which the order of Galois group equals to the dimension
n of the extension so that for given prime p one has e; = e and f; = f and efg = n.

3. Each rational prime p decomposes in the extension as p = Hi:l,...g P?i . where n is the

4. Rational (and also more general) primes can be divided into 3 classes with respect to this
decomposition.

For ramified primes dividing the discriminant D associated with the polynomial (D = b? —4c
for P(x) = 22 + bx + ¢) one has e; > 1 at least for one i so that f; = 0 is true at least
for one index. A simple example is provided by rational primes (determined by roots of
P(x) = 2% + 1 with discriminant —4): in this case p = 2 corresponds to ramified prime since
on has (1+4)(1 —4) =2 and 1+ ¢ and 1 — 4 differ only by multiplication by unit —i.
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5. Split primes have n factors P; and thus have (e; = 1, f; = 1,9 = n) . They give a factor
(1 — p~®)~™. The physical analogy is n-fold degenerate state with original energy energy
nlog(p) split to states with energy log(p).

Inert primes are also primes of extension and there is no splitting and one has (e; = e =
1,9 =1, f1 = f =n). In this case one obtains factor 1/(1 — p~™¢). The physical analogy is
n-particle bound state with energy nlog(p).

6. For ramified primes the situation is more delicate. Generalizing from the case of Gaussian
primes Q[i] (see http://tinyurl.com/y563wcwv) ramified primes pr would give rise to a
factor

g
1
H —fis
R

—1l-p
g is the number of distinct ideals P; in the decomposition of p to the primes of extension.

For Gaussian primes p = 2 has g = 1 since one can write (2) = (1+i)(1 —1i) = (1+14)2. This
because 1 + i and 1 — i differ only by multiplication with unit —¢ and thus define same ideal
in Q[i]. Only the number g of distinct factors P; in the decomposition of p matters.

One could understand this as follows. For the roots of polynomials ramification means that
several roots co-incide so that the number of distinct roots is reduced. e; > 1 is analogous to
the number co-inciding roots so that number if distinct roots would be 1 instead of e;. This
would suggests k; = 1 always. For ramified primes the number of factors Z, the number

le fik; = n for un-ramified case would reduce from to Zle fiki = mg, which is the
number of distinct roots.

7. Could the physical interpretation be that there are g types of bound states with energies
filog(p) appearing with degeneracy e¢; = 1 both in ramified and split case. This should relate
to the fact that for ramified primes p L/p contains non-vanishing nilpotent element and is not
counted. One can also say that the decomposition to primes of extension conserves energy:
> i1, g Cifilog(p) = nalog(p).

For instance, for Galois extensions (e; = e, f; = f,g = nq/ef) for given p the factor is
1/(1 —p=®)79: efg = ng. If there is a ramification then all P; are ramified. Note that e, f
an g are factors of ng.

8. Ome can can extract the factor 1/(1 — p~*) from each of the 3 contributions and organize
these factors to give the ordinary Riemann zeta. The number of ramified primes is finite
whereas the numbers of split primes and inert primes are infinite. One can therefore extract
from ramified primes the finite product

Chi = =pR") x Gk o CRr =, I 157 -

One can organize the remaining part involving infinite number of factors to a product of ¢
and factors (1 —p~%)/(1 = [[p~*))™ and (1 — p~*)/(1 — p~™*) giving rise to zeta function
-call it (g x - characterizing the extension. Note that (12%’ x has interpretation as partition
function and has pole of order ng at origin.

One therefore can write the (;, as

(k= Chroe X Coig X C
where (s i is the contribution of split and inert primes multiplied by (1 —p~*)

(r, has pole only at s = 1 and it carries in no obvious manner information about ramified
primes. The naive guess for (5, would be that also ramified primes pr would give rise to a factor

ﬁ 1

ey (1 _ péfis)ei :
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One could indeed argue that at the limit when e; prime ideals P; of extension co-incide, one should
obtain this expression. The resulting ¢ function would be product

Cnaive, K = GR,KCK Crx =11,, X(pr)

X(pr) = [}, W

Note that the parameters e;, f;, g depend on pr and that for Galois extensions one hase; = d, f; = f
for given pr. (g,r would have poles at along imaginary axis at points s = —n2w/log(p). Ramified
primes would give rise to poles along imaginary axis. As far as the proposed physical interpretation
of ramified primes is considered, this form looks more natural.

2.1 Fermionic counterparts of Dedekind zeta and ramified (

One can look the situation also for the generalization of fermionic zeta as analog of fermionic
partition function, which for rationals has the expression

F _ —s\ _ (s)

Supersymmetry of supersymmetric arithmetic QFT suggest the product of fermionic and bosonic
zetas. Also the supersymmetry of infinite primes for which first level of hierarchy corresponds
to irreducible polynomials suggests this. On the other hand, the appearance of only fermions as
fundamental particles in TGD forces to ask whether the ramified part of fermionic zeta might be
fundamental.

1. By an argument similar to used for ordinary zeta based on interpretation as partition function,
one obtains the decomposition of the fermionic counterpart of (£ Dirichlet zeta to a product
CE = <£7KC£,K<F of ramified fermionic zeta CQK, CSI”;K, and ordinary fermionic zeta (¥
The basic rule is simple: replace factors 1/(1 — p~** appearing in (x with (1 +p~*%) in CE
and extract (¥ from the resulting expression. This gives

F1 s s
CR,K = HpR(l _pR )CI};K ? Cg,K = HpR[ 7,g:1(1 +pr s)] .

where pr is ramified prime dividing the discriminant. C}I% x 1s analogous to a fermionic
partition function for a finite number of modes defined by ramified primes pgr of extension.

2. Also now one can wonder whether one should define (£ as a product in which ramified primes
give factor

TIT T +pr")e]

PR i=1

so that one would have
F F  F F
naive, K — CRJ(CK ) Cr = HpR Y(pr) »

Y(pR) — ?:1(1 _|_p1_%f'i8)€7‘,—1

Cr(naive, K) would have zeros along imaginary axis serving as signature of the ramified
primes.
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2.2 About physical interpretation of (p x and (}; K

(r,x and (g) x are attractive from the view point of number theoretic vision and the idea that
ramified primes are physically special. TGD Universe is quantum critical and in catastrophe theory
the ramification for roots of polynomials is analogous to criticality. Maybe the ramification for
p-adic primes makes them critical. K/(pr) has nilpotent elements, which brings in mind on mass
shell massless particles.

1. ¢r,x has poles at

s 2nmw
log(p) fi

and py = exp(in2w/f;) is a root of unity, which conforms with the number theoretical vision.
Only P; with e; > 1 contribute.

2. ZE . has zeros

(2n+ )7

§=i—
log(p) fi
and py = exp(i(2n + 1)7/f;) is a root of unity. Zeros are distinct from the poles of Zg k.

3. The product (R tot,x = <R7KCII;:,K has the poles and zeros of (g x and CE,K- In particular,
there is n:th order pole of Zg x at s = 0. The zeros of zp ; along imaginary axis at p?¥ = —1
also survive in (g tot, K -

¢ g’ x has only zeros and since fundamental fermions are primary fields in TGD framework,
one could argue that only it carries physical information. On the other hand, supersymmetric
arithmetic QFT [KI] and the fact that TGD allows SUSY [L10] suggests that the product
CrK X ZE,K is more interesting.

From TGD point of view the ramified zeta functions (g f, CE,K and their product (g x X (};K
look interesting.

1. (g x behaves like 7", ng =Y 9(e; — 1) near the origin. Could ng4-fold pole at s = 0 be in-
terpreted in terms of a massless state propagating along light-cone boundary of CD in radial
direction? This would conform with the proposal that zeros of zeta correspond to complex
radial conformal weights for super-symplecti algebra. That ramified primes correspond to
massless particles would conform with the identification of ramified prime as p-adic primes
labelling elementary particles since in ZEO their mass would result from p-adic thermody-
namics from a mixing with very massive states [L6].

Besides this there would be stringy spectrum of real conformal weights along negative real
axis and those coming as non-trivial zeros and these could correspond to ordinary conformal
weights.

2. The zeros of (}; x along imaginary axis might have interpretation as eigenvalues of Hamil-
tonian in analogy with Hilbert-Polya hypothesis. Maybe also the poles of (g x could have
similar interpretation. The real part of zero/pole would not produce troubles (on the other
hand, for waves along light-cone boundary it can be however absorbed to the integration
measure.

3. A possible physical interpretation of the imaginary conformal weights could be as conformal
weights associated with radial waves assignable to the radial light-like coordinate r of the
light-cone boundary: r indeed plays the role of complex coordinate in conformal symmetry
in the case of super-symplectic algebra suggested to define the isometries of WCW. Poles and
zero could correspond to radial modes satisfying periodic/anti-periodic boundary conditions.

The radial conformal weights s defined by the zeros of C}; x would be number theoretically
natural since one could pose boundary condition p*("/70) = —1 at r = r( requiring p** = —1
at the corner of c¢d (maximum value of 7 in CD = ¢d x CPs.
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For the poles of (g x the periodic boundary condition p's(r/70) = 1 is natural. The two bound-
ary conditions could relate to Ramond an N-S representations of super-conformal algebras
(see http://tinyurl.com/y49y2ouj). With this interpretation s = 0 would correspond to
a radial plane-wave constant along light-like radial direction and therefore light-like momen-
tum propagating along the boundary of CD. Other modes would correspond to other massless
modes propagating to the interior of CD.

4. T have earlier considered an analogous interpretation for a subset zeros of zeta satisfying
similar condition. The idea was that for given prime p as subset of s = 1/2 + iy; of non-
trivial zeros ¢ p® = p'/?tWi is an algebraic number so that p*¥ would be a root of unity.
Zeros would decompose to subsets labelled by primes p. Also for trivial zeros of ¢ (and also
poles) the same holds true as for the zeros and poles (r. This encourages the conjecture that
the property is true also for L-functions.

The proposed picture suggests an assignment of ”energy” E = nlog(p) to each prime and
separation of "ramified” energy E4 = nqlog(p), nq = >.{ fi(e; — 1), to each ramified prime. The
interpretation as partition function suggests that that one has g types of states of f; identical
particles and energy E; = f;log(p) and that this state is e;-fold degenerate with energies E; =
filog(p). For inert primes one would have f; = f = n. For split primes one would have e¢; = 1, f; =
1. In case of ramified primes one can separate one of these states and include it to the Dedekind
zeta.

2.3 Can one find a geometric correlate for the picture based on prime
ideals?

If one could find a geometric space-time correlate for the decomposition of rational prime ideals to
prime ideals of extensions, it might be also possible to understand why quantum criticality makes
ramified primes so special physically and wha this means.

What could be correlate for f; fundamental fermions behaving like single unit and what de-
generacy for e; > 1 does mean? One can look the situation first at the level of number fields @
and K and corresponding Galois group Gal(K/Q), finite fields F = Q/p and F; = K/P;, and
corresponding Galois group Gal(F;/F'). Appendix summarizes the basic terminology.

1. Inertia degree f; is the number of elements of F;/F, (F; = K/P; is extension of finite field
F, = Q/p). The Galois group Gal(F;/F},) is identifiable as factor group D;/I;, where the
decomposition group D; is the subgroup of Galois group taking P; to itself and the inertia
group I; leaving P; point-wise invariant. The orbit under Gal(F;/F}) in F;/F, would behave
like single particle with energy F; = f;log(p).

For inert primes with f; = n inertia group would be maximal. For split primes the orbits of
ideals would consist of f; = 1 points only and isotropy group would be trivial.

2. Ramification for primes corresponds intuitively to that for polynomials meaning multiple
roots as is clear also from the expression p = [[Pf*. In accordance with the intuition
about quantum criticality, ramification means that the irreducible polynomial reduced to a
reducible polynomial in finite field @ /p has therefore a multiple roots with multiplicities e;
(see Appendix). For Galois extensions one has (e; = e, f; = f) Criticality would be seen at
the level of finite field F}, = Q/p associated with ramified prime p.

The interpretation of roots of corresponding octonionic polynomials as n-sheeted covering space
like structures encourages to ask whether the independent tensor factors labelled by ¢ suggested
by the interpretation as a partition function could be assigned with the sheets of covering so that
ramification with e; > 1 would correspond to singular points of cognitive representation for which
e; sheets co-incide in some sense, maybe in finite field approximation (O(p) = 0). Galois groups
indeed act on the coordinates of point of cognitive representation belonging to the extension K.
In general the action does not take the point to a point belonging to a cognitive representation
but one can consider quantum superpositions of cognitive representations.

This suggests an interpretation in terms of space-time surfaces accompanied by cognitive rep-
resentation under Galois group. Quantum states would be superpositions of preferred extremals
at orbits of Galois group and for cognitive representations the situation would be discrete.
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. To build a concrete connection between geometric space-time picture and number theo-

retic picture, one should find geometric counterparts of integers, ideals, and prime ideals.
The analogs of prime ideals should be associated with the discretizations of space-time sur-
faces/cognitive representations in O(p) = 0 or O(P;) = 0 approximation. Could one include
only points of cognitive representations differing from zero in O(p) = 0 approximation and
form quantum states as quantum superpositions of these points of cognitive representation?

in O(p) = 0 approximation and for ramified primes irreducible polynomials would have
multiple roots so that e; sheets would co-incide at these points in O(p) = 0 approximation.
Th conjecture that elementary particles correspond to this kind of singularities has been
speculated already earlier with inspiration coming from quantum criticality.

In M?® picture the octonionic polynomials obtained as continuation of polynomials with
rational coefficients would be reduced to polynomials in finite field F},. One can study corre-
sponding discrete algebraic surfaces as discrete approximations of space-time surfaces.

One would like to have only single imbedding space coordinate since the probability that all
imbedding space coordinates correspond to the same P; is small. M® — H duality reduces the
number of imbedding space coordinates characterizing partonic 2-surfaces containing vertices
for fundamental fermions to single one identifiable as time coordinate.

At the light-like boundary of 8-D CD in M?® the vanishing condition for the real or imaginary
part (quaternion) of octonionic polynomial P(0) reduces to that for ordinary polynomial, and
one obtains n roots r,, which correspond to the values of M* time t = r,, defining 6-spheres
as analogs of branes. Partonic 2-surfaces corresponde to intersections of 4-D roots of P(0)
at partonic 2-surfaces. Galois group of the polynomial naturally acts on 7, labelling these
partonic 2-surfaces by permuting them. One could form representations of Galois group
using states identified as quantum superpositions of these partonic 2-surfaces corresponding
to different values of ¢t = r,,. Galois group leaves invariant the degenerate roots t = r,,.

The roots can be reduced to finite field F}, or K/P;. Ramification would take place in this
approximation and mean that e; roots ¢ = r,, are identical in O(p) = 0 approximation. e;
time values t = r,, would nearly co-incide. This gives more concrete contents to the statement
of TGD inspired theory of consciousness that these time values correspond to very special
moments in the life of self. Since this is the situation only approximately, one can argue that
one must indeed count each root separately so that partition function must be defined as
product of the contribution form ramified primes an Dedekind zeta.

The assignment of fundamental fermions to the points of cognitive representations at partonic
2-surfaces assignable to the intersections of 4-D roots and universal 6-D roots of octonionic
polynomials (brane like entities) conforms with this picture.

The analogs of 6-branes would give rise to additional degrees of freedom meaning effectively
discrete non-determinism. I have speculated with this determinism with inspiration coming
from the original identification of bosonic action as Kéhler action having huge 4-D spin glass
degeneracy. Also the number theoretic vision suggest the possibility of interpreting preferred
extremals as analogs of algebraic computations such that one can have several computations
connecting given states [LI]. The degree n of polynomial would determine the number of
steps and the degeneracy would correspond to n-fold degeneracy due to the discrete analogs
of plane waves in this set.

2.4 What extensions of rationals could be winners in the fight for sur-

vival?

It would seem that the fight for survival is between extensions of rationals rather than individual
primes p. Intuition suggests that survivors tend to have maximal number of ramified primes. These
number theoretical speciei can live in the same extension - to ”co-operate”.

Before starting one must clarify some basic facts about extensions of rationals.

1. Extension of rationals are defined by an irreducible polynomial with rational coefficients.

The roots give n algebraic numbers which can be used as a basis to generate the numbers of
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extension ast their rational linear combinations. Any number of extension can be expressed
as a root of an irreducible polynomial. Physically it is is of interest, that in octonionic picture
infinite number of octonionic polynomials gives rise to space-time surface corresponding to
the same extension of rationals.

2. One can define the notion of integer for extension. A precise definition identifies the integers
as ideals. Any integer of extension are defined as a root of a monic polynomials P(xz) =
L™ 4 pr_12” tx™ 1 4 ... 4 po with integer coefficients. In octonionic monic polynomials are
subset of octonionic polynomials and it is not clear whether these polynomials could be all
that is needed.

3. By definition ramified primes divide the discriminant D of the extension defined as the
product D = [],,;(r; — r;) of differences of the roots of (irreducible) monic polynomial
with integer coefficients defining the basis for the integers of extension. Discriminant has
a geometric interpretation as volume squared for the fundamental domain of the lattice of
integers of the extension so that at criticality this volume interpreted as p-adic number would
become small for ramified primes an vanish in O(p) approximation. The extension is defined
by a polynomial with rational coefficients and integers of extension are defined by monic
polynomials with roots in the extension: this is not of course true for all monic polynomials
polynomial (see http://tinyurl.com/k3ujjz7).

4. The scaling of the n — 1-tuple of coefficients (p,_1, .....,p1) to (apn_1,a*pp_1.....,a"po) scales
the roots by a: x, — ax,. If a is rational, the extension of rationals is not affected. In the
case of monic polynomials this is true for integers k. This gives rational multiples of given
root.

One can decompose the parameter space for monic polynomials to subsets invariant under
scalings by rational & # 0. Given subset can be labelled by a subset with vanishing coefficients
{pi,.}- One can get rid of this degeneracy by fixing the first non-vanishing p,,_; to a non-
vanishing value, say 1. When the first non-vanishing p; differs from pg, integers label the
polynomials giving rise to roots in the same extension. If only pg is non-vanishing, only the
scaling by powers k™ give rise to new polynomials and the number of polynomials giving rise
to same extension is smaller than in other cases.

Remark: For octonionic polynomials the scaling symmetry changes the space-time surface so
that for generic polynomials the number of space-time surfaces giving rise to fixed extension
is larger than for the special kind polynomials.

Could one gain some understanding about ramified primes by starting from quantum criticality?
The following argument is poor man’s argument and I can only hope that my modest technical
understanding of number theory does not spoil it.

1. The basic idea is that for ramified primes the minimal monic polynomial with integer co-
efficients defining the basis for the integers of extension has multiple roots in O(p) = 0
approximation, when p is ramified prime dividing the discriminant of the monic polynomial.
Multiple roots in O(p) = 0 approximation occur also for the irreducible polynomial defining
the extension of rationals. This would correspond approximate quantum criticality in some
p-adic sectors of adelic physics.

2. When 2 roots for an irreducible rational polynomial co-incide, the criticality is exact: this
is true for polynomials of rationals, reals, and all p-adic number fields. One could use this
property to construct polynomials with given primes as ramified primes. Assume that the
extension allows an irreducible olynomial having decomposition into a product of monomials
= x — r; associated with roots and two roots r1 and ry are identical: 71 = 7o so that
irreducibility is lost.

The deformation of the degenerate roots of an irreducible polynomial giving rise to the
extension of rationals in an analogous manner gives rise to a degeneracy in O(p) = 0 approx-
imation. The degenerate root r; = ro can be scaled in such a manner that the deformation
ro =r1(14+q)), ¢ = m/n = O(p) is small also in real sense by selecting n >> m.
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If the polynomial with rational coefficients gives rise to degenerate roots, same must happen
also for monic polynomials. Deform the monic polynomial by changing (r1,79 = r1) to
(r1,71(1+47)), where integer 7 has decomposition r = [, pf to powers of prime. In O(p) =0
approximation the roots r; and r2 of the monic polynomial are still degenerate so that p;
represent ramified primes.

If the number of p; is large, one has high degree of ramification perhaps favored by p-adic
evolution as increase of number theoretic co-operation. On the other hand, large p-adic
primes are expected to correspond to high evolutionary level. Is there a competition between
large ramified primes and number of ramified primes? Large hcs¢/ho = n in turn favors large
dimension n for extension.

3. The condition that two roots of a polynomial co-incide means that both polynomial P(z) and
its derivative dP/dz vanish at the roots. Polynomial P(x) = 2" +p,_12" ! +..pg is parame-
terized by the coefficients which are rationals (integers) for irreducible (monic) polynomials.
n — 1-tuple of coefficients (p,—1,.....,po) defines parameter space for the polynomials. The
criticality condition holds true at integer points n — 1 — D surface of this parameter space
analogous to cognitive representation.

The condition that critical points correspond to rational (integer) values of parameters gives
an additional condition selecting from the boundary a discrete set of points allowing ram-
ification. Therefore there are strong conditions on the occurrence of ramification and only
very special monic polynomials are selected.

This suggests octonionic polynomials with rational or even integer coefficients, define strongly
critical surfaces, whose p-adic deformations define p-adically critical surfaces defining an
extension with ramified primes p. The condition that the number of rational critical points
is non-vanishing or even large could be one prerequisite for number theoretical fitness.

4. There is a connection to catastrophe theory, where criticality defines the boundary of the
region of the parameter space in which discontinuous catastrophic change can take place as
replacement of roots of P(x) with different root. Catastrophe theory involves polynomials
P(z) and their roots as well as criticality. Cusp catastrophe is the simplest non-trivial
example of catastrophe surface with P(x) = 2*/4 — az — b2z?/2: in the interior of V-shaped
curve in (a,b)-plane there are 3 roots to dP(x) = 0, at the curve 2 solutions, and outside it
1 solution. Note that now the parameterization is different from that proposed above. The
reason is that in catastrophe theory diffeo-invariance is the basic motivation whereas in M8
there are highly unique octonionic preferred coordinates.

If p-adic length scale hypothesis holds true, primes near powers of 2, prime powers, in particular
Mersenne primes should be ramified primes. Unfortunately, this picture does not allow to say
anything about why ramified primes near power of 2 could be interesting. Could the appearance of
ramified primes somehow relate to a mechanism in which p = 2 as a ramified prime would precede
other primes in the evolution. p = 2 is indeed exceptional prime and also defines the smallest
p-adic length scale.

For instance, could one have two roots a and a + 2* near to each other 2-adically and could
the deformation be small in the sense that it replaces 2* with a product of primes near powers
of 2: 2F = IL ki L, pi, pi near 2%i? For the irreducible polynomial defining the extension of
rationals, the deforming could be defined by a — a + 2¥ could be replaced by a — a + 2¥ /N such
that 2% /N is small also in real sense.

3 Appendix: About the decomposition of primes of number
field K to primes of its extension L/K

The followings brief summary lists some of the basic terminology related to the decomposition of
primes of number field K in its extension.

1. A typical problem is the splitting of primes of K to primes of the extension L/K which
has been already described. One would like to understand what happens for a given prime
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in terms of information about K. The splitting problem can be formulated also for the
extensions of the local fields associated with K induced by L/K.

2. Consider what happens to a prime ideal p of K in L/K. In general p decomposes to product
p=[1, P’ of powers of prime ideals P; of L. For e; > 1 ramification is said to occur. The
finite field K/p is naturally imbeddable to the finite field L/P; defining its extension. The
degree of the residue field extension (L/P;)/(K/p) is denoted by f; and called inertia degree

of P; over p. The degree of L/K equals to [L: K] =Y e;f;.

If the extension is Galois extension (see http://tinyurl.com/zubey96), one has e; = e
and f; = f giving [L : K] = efg. The subgroups of Galois group Gal(L/K) known as
decomposition group D; and inertia group I; are important. The Galois group of F;/F
equals to D;/I;.

For Galois extension the Galois group Gal(L/K) leaving p invariant acts transitively on
the factors P; permuting them with each other. Decomposition group D; is defined as the
subgroup of Gal(L/K) taking P; to itself.

The subgroup of Gal(L/K) inducing identity isomorphism of P; is called inertia group I;
and is independent of i. I; induces automorphism of F; = L/P;. Gal(F;/F) is isomorphic to
D;/I;. The orders of I; and D; are e and ef respectively. The theory of Frobenius elements
identifies the element of Gal(F;/F') = D;/I; as generator of cyclic group Gal(F;/F') for the
finite field extension F;/F. Frobenius element can be represented and defines a character.

3. Quadratic extensions Q(y/n) are simplest Abelian extensions and serve as a good starting
point (see http://tinyurl.com/zofhmb8) the discrimant D = n for p mod 4 = 1 and
D = 4n otherwise characterizes splitting and ramification. Odd prime p of the extension not
dividing D splits if and only if D quadratic residue modulo p. p ramifies if D is divisible by p.
Also the theorem by Kronecker and Weber stating that every Abelian extension is contained
in cyclotomic extension of @ is a helpful result (cyclotonic polynomials has as it roots all n
roots of unity for given n)

Even in quadratic extensions L of K the decomposition of ideal of K to a product of those
of extension need not be unique so that the notion of prime generalized to that of prime ideal
becomes problematic. This requires a further generalization. One ends up with the notion of
ideal class group (see http://tinyurl.com/hasyllh): two fractional ideals I and Iy of L are
equivalent if the are elements a and b such that al; = bl;. For instance, if given prime of K has
two non-equivalent decompositions p = myme and p = mwymy of prime ideal p associated with K
to prime ideals associated with L, then 7o and 73 are equivalent in this sense with a = m; and
b = my4. The classes form a group Jx with principal ideals defining the unit element with product
defined in terms of the union of product of ideals in classes (some products can be identical).
Factorization is non-unique if the factor J / Pk - ideal class group - is non-trivial group. Q(v/—5)
gived a representative example about non-unique factorization: 2 x 3 = (1 ++/=5)(1 — /=5) (the
norms are 4 X 9 and 6 x 6 for the two factorizations so that they cannot be equivalent.

This leads to class field theory (see http://tinyurl.com/zdnw7j3 and http://tinyurl.com/
z3s4kjn).

1. In class field theory one considers Abelian extensions with Abelian Galois group. The theory
provides a one-to-one correspondence between finite abelian extensions of a fixed global field
K and appropriate classes of ideals of K or open sub-groups of the idele class group of K.
For example, the Hilbert class field, which is the maximal unramified abelian extension of
K, corresponds to a very special class of ideals for K.

2. Class field theory introduces the adele formed by reals and p-adic number fields @), or their
extensions induced by algebraic extension of rationals. The motivation is that the very tough
problem for global field K (algebraic extension of rationals) defines much simpler problems
for the local fields @), and the information given by them allows to deduce information about
K. This because the polynomials of order n in K reduce effectively to polynomials of order
n mod p* in Q) if the coefficients of the polynomial are smaller than p*. One reduces monic
irreducible polynomial f characterizing extension of () to a polynomial in finite field F},. This
allows to find the extension @), induced by f.


http://tinyurl.com/zu5ey96
http://tinyurl.com/zofhmb8
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http://tinyurl.com/zdnw7j3
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An irreducible polynomial in global field need not be irreducible in finite field and therefore
can have multiple roots: this corresponds to a ramification. One identifies the primes p for
which complete splitting (splitting to first ordinary monomials) occurs as unramified primes.

3. Class field theory also includes a reciprocity homomorphism, which acts from the idele class
group of a global field K, i.e. the quotient of the ideles by the multiplicative group of K,
to the Galois group of the maximal abelian extension of K. Wikipedia article makes the
statement “FEach open subgroup of the idele class group of K is the image with respect to
the norm map from the corresponding class field extension down to K”. Unfortunately, the
content of this statement is difficult to comprehend with physicist’s background in number
theory.
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