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Abstract

This article was inspired by the article ”A note on Lagrangian submanifolds of twistor
spaces and their relation to superminimal surfaces” of Reinier Storm. For curiosity, I decided
to look at Lagrangian surfaces in the twistor space of H = M4 ×CP2. The 6-D Kähler action
of the twistor space existing only for H = M4 × CP2 gives by a dimensional reduction rise
to 6-D analog of twistor space assitable to a space-time surface. In the dimensional reduction
the action reduces to 4-D Kähler action plus a volume term characterized by a dynamically
determined cosmological constant Λ.

One can identify space-time surfaces, which are Lagrangian minimal surfaces and therefore
have a vanishing Kähler action. If the Kähler structure of M4 is non-trivial as strongly
suggested by the notion of twistor space, these vacuum extremals are products X2 × Y 2 of
Lagrangian string world sheet X2 and 2-D Lagrangian surface Y 2 of CP2, and are deterministic
so that they allow holography. As minimal surfaces they allow a generalization of holography=
holomorphy principle: now the holomorphy is not induced from that of H but by 2-D nature
of X2 and Y 2. Therefore holography=holomorphy principle generalizes.

Λ can vanish and in this case the dimensionally reduced action equals Kähler action. In
this case, vacuum extremals are in question and symplectic transformations generate a huge
number of these surfaces, which in general are not minimal surfaces. Holography= holomorphy
principle is not however lost. Λ = 0 sector contains however only classical vacua and also the
modified gamma matrices appearing in the modified Dirac action vanish so that this sector
contributes nothing to physics.
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1 Introduction

I received from Tuomas Sorakivi a link to the article ”A note on Lagrangian submanifolds of twistor
spaces and their relation to superminimal surfaces” [A3] (see this). The author of the article is
Reinier Storm from Belgium.

The abstract of the article tells roughly what it is about.
In this paper a bijective correspondence between superminimal surfaces of an oriented Rieman-

nian 4-manifold and particular Lagrangian submanifolds of the twistor space over the 4-manifold
is proven. More explicitly, for every superminimal surface a submanifold of the twistor space is
constructed which is Lagrangian for all the natural almost Hermitian structures on the twistor
space. The twistor fibration restricted to the constructed Lagrangian gives a circle bundle over the
superminimal surface. Conversely, if a submanifold of the twistor space is Lagrangian for all the
natural almost Hermitian structures, then the Lagrangian projects to a superminimal surface and
is contained in the Lagrangian constructed from this surface. In particular this produces many La-
grangian submanifolds of the twistor spaces and with respect to both the Kähler structure as well as
the nearly Kähler structure. Moreover, it is shown that these Lagrangian submanifolds are minimal
submanifolds.

The article examines 2-D minimal surfaces X2 in the 4-D space X4 assumed to have twistor
space. From superminimality which looks somewhat peculiar assumption, it follows that in the
twistor space of X4 (assuming that it exists) there is a Lagrangian surface, which is also a min-
imal surface. Superminimality means that the normal spaces of the 2-surface form a 1-D curve
in the space of all normal spaces, which for the Euclidian signature is the 4-D Grassmannian
SO(4)/SO(2) × SO(2) = S2 × S2 (SO(1, 3)/SO(1, 1) × SO(2) for M4). Superminimal surface is
therefore highly flattened. Of course, already the minimal surface property favours flatness.

It is interesting to examine the generalization of the result to TGD because the interpretation
for Lagrange manifolds, which are vacuum extremals for the Kähler action with a vanishing induced
symplectic form, has remained open. Certainly, they do not fulfill the holomorphy=holography
assumption, i.e. they are not surfaces for which the generalized complex structure in H induces a
corresponding structure at 4-surface.

Superminimal surfaces look like the opposite of holomorphic minimal surfaces (this turned out
to be an illusion!). In TGD, they give a huge vacuum degeneracy and non-determinism for the
pure Kähler action, which has turned out to be mathematically undesirable. The cosmological
constant Λ, which follows from twistoralization, was thought to correct the situation.

I had not however notice that the Kähler action, whose existence for T (H) = T (M4)×T (CP2)
fixes the choice of H, gives a huge number of 6-D Lagrangian manifolds! Are they consistent with
dimensional reduction, so that they could be interpreted as induced twistor structures? Can a
complex structure be attached to them? Certainly not as an induced complex structure. Does the
Lagrangian problem of Kähler action make a comeback? Furthermore, should one extend the very
promising looking holography=holomorphy picture by allowing also Lagrangian 6-surfaces T (H)?

Do the Lagrangian surfaces of T (H) have a physical interpretation, most naturally as vacuums?
The volume term of the 4-D action characterized by the cosmological constant Λ does not allow
vacuum extremals unless Λ vanishes. For the twistor lift Λ is however dynamic and can vanish!
Do Lagrangian 6-surfaces in T (H) correspond to 4-D minimal surfaces in H, which are vacuums
and have a vanishing Λ = 0? Would even the original formulation of TGD be an exact part of the
theory and not just a long-length-scale limit? And does one really avoid the original problem due
to the huge non-determinism spoiling holography!

The question is whether the result presented in the article could generalize to the TGD frame-
work even though the super-minimality assumption does not seem physically natural at first?

2 Lagrangian surfaces in the twistor space of H = M 4×CP2

Let us consider the 12-D twistor space T (H) = T (M4)× T (CP2) and its 6-D Lagrangian surfaces
having a local decomposition X6 = X4 × S2. Assume a twistor lift with Kähler action on T (H).
It exists only for H = M4 × CP2 [L1, L2].

Let us first forget the requirement that these Lagrangian surfaces correspond to minimal sur-
faces in H. Consider the situation in which there is no generalized Kähler and symplectic structure

https://www.sciencedirect.com/science/article/abs/pii/S0926224520300784


2. Lagrangian surfaces in the twistor space of H = M4 × CP2 3

in M4.
One can actually identify Lagrangian surfaces in 12-D twistor space T (H).

1. Since X6 = X4 × S2 is Lagrangian, the symplectic form for it must vanish. This is also true
in S2. Fibers S2 together with T (M4) and T (CP2) are identified by an orientation-changing
isometry. The induced Kähler form S2 in the subset X6 = X4 × S2 is zero as the sum of
these two contributions of different signs. If this sum appears in the 6-D Kähler action, its
contribution to the 6-D Kähler action vanishes. Λ vanishes because the S2 contribution to
the 4-D action vanishes.

2. The 6-D Kähler action reduces in X4 to the 4-D Kähler action plus, which was the original
guess for the 4-D action. The problem is that in its original form, involving only CP2 Kähler
form, it involves a huge vacuum degeneracy. The CP2 projection is a Lagrangian surface or its
subset but the dynamics of M4 projection is essentially arbitrary, in particular with respect
to time. One obtains a huge number of different vacuum extremals. Since the time evolution
is non-deterministic, the holography, and of course holography=holomorphy principle, is lost.
This option is not physically acceptable.

How the situation changes when also M4 has a generalized Kähler form that the twistor space
picture strongly suggests, and actually requires.

1. Now the Lagrangian surfaces would be products X2 × Y 2, where X2 and Y 2 are the La-
grangian surfaces of M4 and CP2. The M4 projections of these objects look like string world
sheets and in their basic state are vacuums.

Furthermore, the situation is deterministic! The point is that X2 is Lagrangian and highly
fixed as such. In the previous case much more general surface M4 projection, even 4-D,
was Lagrangian. There is no loss of holography! Neither is the holography = holomorphy
principle lost: by their 2-D character X2 and Y 2 have a holomorphic structure.

What is important is that these Lagrangian 4-surfaces of H are obtained also when Λ is
non-vanishing. In this case they must be minimal surfaces. Physically this option means
that one has Lagrangian strings.

2. For Λ = 0, the symplectic transformations of H produce new vacuum surfaces. If they are
allowed, one might talk of symplectic phase. J = 0 phase gives rise to both classical and
fermionic vacuum since the modified gamma matries vanish since they are propertional to
vanishing canonical momentum currents. So that Lagrangian phase does not contribute to
physics for Λ = 0. There are however non-vacuum extremals for which the induced Kähler
field is non-vanishing (having induced complex structure).

For Λ 6= 0 Lagrangian surfaces which are non-vacuum extermals and only isometries are
allowed as symmetries. One can say that symplectic symmetr breaks down to isometries.
Irrespective of the value of Λ, the second phase with a induced complex structure would be
present and give rise to color interactions and hadrons and probably also elementary particles.
The interpretation of Lagrangian surfaces, which are string like entities, remains open.

3. In the Lagrangian phase induced Kähler form J and the induced color gauge fields vanish
and it does not involve monopole fluxes. This phase might be called Maxwell phase. For
Λ 6= 0 one would have two kinds of non-vacuum string like objects with string tension to
which Λ contributes.

Could the Lagrangian phase for Λ 6= 0 correspond to the Coulomb phase as the perturbative
phase of the gauge theories, while the monopole flux tubes (large heff and dark matter) would
correspond to the non-perturbative phase in which magnetic monopole fluxes are present? If
so, there would be an analogy with the electric-magnetic duality of gauge theories although
the two phases does not look like two equivalent descriptions of one and the same thing unless
one restricts the consideration to fermions.
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2.1 Can Lagrangian 4-surfaces be minimal surfaces?

I have not yet considered the question whether the Lagrangian surfaces can be minimal surfaces.
For non-vanishing Λ they must be such but for Λ = 0 this need not be the case. One can of course
ask whether this does matter at all for Λ = 0. In this case, one has only vacuum extremals and
the modified gamma matrices are proportional to the canonical momentum currents, which vanish.
Both bosonic and fermionic dynamics are trivial for Λ = 0. Therefore Λ = 0 does not give any
physics.

In the theorem the minimal Lagrangian surfaces were superminimal surfaces. For super-minimal
surfaces, a unit vector in the normal direction defines a very specific curve in normal space.

For a non-vanishing cosmological constant, the field equations for the Kähler action do not
force the Lagrangian surfaces to be minimal surfaces. For Λ 6= 0 there exists a lot of minimal
Lagrangian surfaces.

2.1.1 Lagrangian minimal surfaces in CP2

Consider first the Lagrangian minimal surfaces in CP2

1. In CP2, a homologically trivial geodesic sphere is a minimal surface. Note that the geodesic
spheres obtained by isometries are regarded here as equivalent. Also a g = 1 minimal
Lagrangian surface (Clifford torus) in CP2 is known.

2. There are many other minimal Lagrangian surfaces and second order partial differential
equations for both Lagrangian and minimal Lagrangian surfaces are known (see this). In the
article ”A new look at equivariant minimal Lagrangian surfaces in CP2 by Dorfmeister and
Ma [A1] Lagrangian minimal surfaces in CP2 are discussed and general partial differential
equations for them are deduced.

(a) An essential role is played by the used of complex coordinates in which the induced
metric of X2 is of form ds2 = eudzdz and X2 corresponds to immersion f .

(b) The Lagrangian property makes it possible the lift of f and to an immersion defined to
unit sphere S5 ⊂ C3 and therefore of X2 to a surface in S5 ⊂ C3 defined by a complex
triplet F . This allows to combine F , Fz and Fz to an orthgonal Hermitian tripet which
can be can be replaced with a orthonormalized triplet F =(F, e−u/2Fz, e

−u/2Fz).

(c) At the next step minimal surface property is introduced. It translation to statement
that

Fz = FU , Fz̄ = FN .

Here one has

U =

 uz/2 0 eu

e−uψ −uz/2 0
0 −eu/2 0


N = U†

Here ψdz3 is so called Hopf differential with ψ given by

ψ = FzzFz .

Clearly, U is the negative of the hermitian conjugate of N . One can say that complex
differentiation corresponds to the action of SU(3) Lie algera generator so that F defines
an element of SU(3) loop group at X2.

(d) The condition of integrability (Fz)z = (Fz)z gives

Uz = −Nz ,

and the final equations

uzz̄ = e−2u|ψ|2 − eu , ψz = 0 .

The Hopf differential is therefore a holomorphic function.

https://wis.kuleuven.be/events/archive/padge2012/slides/ma.pdf
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Since any stable stable minimal submanifold in CPn is a complex submanifold, the Lagrangian
minimal surfaces cannot be stable under general variations.

2.1.2 Lagrangian minimal surfaces in M4

Consider next the situation in M4.

1. In M4, the plane M2 is an example of a minimal surface, which is a Lagrangian surface. Are
there others? Could Hamilton-Jacobi structures [L3] that also involve the symplectic form
and generalized Kähler structure (more precisely, their generalizations) define Lagrangian
surfaces in M4?

2. The Lagrangian surfaces, and as a special case Lagrangian minimal surfaces in R4 are dis-
cussed in [A2]. The result of the article can be phrased as follows.

Let L be a simply connected domain in C. Then for any smooth conformal Lagrangian
immersion f : L→ R4, there exist smooth functions β : L→ R/2πZ, which is the Lagrangian
angle, and s1, s2 : L→ C, not simultaneously vanishing, that satisfy the Dirac-type equation(

0 ∂z
−∂z 0

)(
s1

s2

)
=

(
U 0
0 −U

)(
s1

s2

)
.

with complex potential U = ∂zβ/2. Conversely, given β and any solution (s1, s2) to the Dirac
equation satisfying (|s1|2 + |s2|2 ≥ 0) gives rise to a conformal Lagrangian immersion given
by

f(z) = Re

∫ z
exp(βJ/2)


s1

s2

−is1

is2


 , J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

Here the 4× 4 matrix J defines the standard symplectic structure.

3. When the Lagrange angle is constant, one obtains minimal Lagrangian immersion. Note that
this in this case one has free massless Dirac equation.This suggests quantum classical corre-
spondence in which the solutions of massless Dirac equation in M4 correspond to Lagrangian
minimal surfaces.

4. This solution is defined for Euclidian E4 rather than M4 but the analytic continuation to
M4 case should be straightforward. This requires an appropriate modification of J . In TGD
one must consider the possibility, that Hamilton-Jacobi structures defines large number of
non-quivalent Kähler- and symplectic structures for M4. The naive guess is that J in the
exponential is replaced with the matrix Jklσ

kl in order to obtain a more general solution.

In the case considered now, the Lagrangian surfaces in H would be products X2×Y 2. Interest-
ingly, in the 2-D case the induced metric always defines a holomorphic structure. Now, however,
this holomorphic structure would not be the same as the one related to the holomorphic ansatz:
it is induced from H.

2.2 So What?

These findings raise several questions related to the detailed understanding of TGD. Should one
allow only non-vanishing values of Λ? This would allow minimal Langrangian surfaces X2 × Y 2

besides the holomorphic ansatz. The holomorphic structure due to the 2-dimensionality of X2 and
Y 2 means that holography=holomorphy principle generalizes.

If one allows Λ = 0, all Lagrangian surfaces X2×Y 2 are allowed but also would have a holomor-
phic structure due to the 2-dimensionality of X2 and Y 2 so that holography=holomorphy principle
would generalize also now! Minimal surface property is obtained as a special case. Classically the
extremals correspond to a vacuum sector and also in the fermionic sector modified Dirac equation
is trivial. Therefore there is no physics involved.
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Minimal Lagrangian surfaces are favored by the physical interpretation in terms of a geometric
analog of the field particle duality. The orbit of a particle as a geodesic line (minimal 1-surface)
generalizes to a minimal 4-surface and the field equations inside this surface generalizes massless
field equations.
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