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Abstract

This article was inspired by the article ”A note on Lagrangian submanifolds of twistor
spaces and their relation to superminimal surfaces” of Reinier Storm. For curiosity, I decided
to look at Lagrangian surfaces in the twistor space of H = M* x C'P,. The 6-D Kéhler action
of the twistor space existing only for H = M* x C'P, gives by a dimensional reduction rise
to 6-D analog of twistor space assitable to a space-time surface. In the dimensional reduction
the action reduces to 4-D Kaihler action plus a volume term characterized by a dynamically
determined cosmological constant A.

One can identify space-time surfaces, which are Lagrangian minimal surfaces and therefore
have a vanishing Kahler action. If the Kahler structure of M* is non-trivial as strongly
suggested by the notion of twistor space, these vacuum extremals are products X2 x Y? of
Lagrangian string world sheet X2 and 2-D Lagrangian surface Y2 of CP,, and are deterministic
so that they allow holography. As minimal surfaces they allow a generalization of holography=
holomorphy principle: now the holomorphy is not induced from that of H but by 2-D nature
of X? and Y?. Therefore holography=holomorphy principle generalizes.

A can vanish and in this case the dimensionally reduced action equals Kéahler action. In
this case, vacuum extremals are in question and symplectic transformations generate a huge
number of these surfaces, which in general are not minimal surfaces. Holography= holomorphy
principle is not however lost. A = 0 sector contains however only classical vacua and also the
modified gamma matrices appearing in the modified Dirac action vanish so that this sector
contributes nothing to physics.
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1 Introduction

I received from Tuomas Sorakivi a link to the article ” A note on Lagrangian submanifolds of twistor
spaces and their relation to superminimal surfaces” [A3] (see this). The author of the article is
Reinier Storm from Belgium.

The abstract of the article tells roughly what it is about.

In this paper a bijective correspondence between superminimal surfaces of an oriented Rieman-
nian 4-manifold and particular Lagrangian submanifolds of the twistor space over the 4-manifold
is proven. More explicitly, for every superminimal surface a submanifold of the twistor space is
constructed which is Lagrangian for all the natural almost Hermitian structures on the twistor
space. The twistor fibration restricted to the constructed Lagrangian gives a circle bundle over the
superminimal surface. Conversely, if a submanifold of the twistor space is Lagrangian for all the
natural almost Hermitian structures, then the Lagrangian projects to a superminimal surface and
s contained in the Lagrangian constructed from this surface. In particular this produces many La-
grangian submanifolds of the twistor spaces and with respect to both the Kdhler structure as well as
the nearly Kahler structure. Moreover, it is shown that these Lagrangian submanifolds are minimal
submanifolds.

The article examines 2-D minimal surfaces X2 in the 4-D space X* assumed to have twistor
space. From superminimality which looks somewhat peculiar assumption, it follows that in the
twistor space of X* (assuming that it exists) there is a Lagrangian surface, which is also a min-
imal surface. Superminimality means that the normal spaces of the 2-surface form a 1-D curve
in the space of all normal spaces, which for the Euclidian signature is the 4-D Grassmannian
SO(4)/50(2) x SO(2) = 82 x 82 (SO(1,3)/S0O(1,1) x SO(2) for M*). Superminimal surface is
therefore highly flattened. Of course, already the minimal surface property favours flatness.

It is interesting to examine the generalization of the result to TGD because the interpretation
for Lagrange manifolds, which are vacuum extremals for the Kéhler action with a vanishing induced
symplectic form, has remained open. Certainly, they do not fulfill the holomorphy=holography
assumption, i.e. they are not surfaces for which the generalized complex structure in H induces a
corresponding structure at 4-surface.

Superminimal surfaces look like the opposite of holomorphic minimal surfaces (this turned out
to be an illusion!). In TGD, they give a huge vacuum degeneracy and non-determinism for the
pure Kahler action, which has turned out to be mathematically undesirable. The cosmological
constant A, which follows from twistoralization, was thought to correct the situation.

I had not however notice that the Kéhler action, whose existence for T(H) = T(M*) x T(CP)
fixes the choice of H, gives a huge number of 6-D Lagrangian manifolds! Are they consistent with
dimensional reduction, so that they could be interpreted as induced twistor structures? Can a
complex structure be attached to them? Certainly not as an induced complex structure. Does the
Lagrangian problem of Kéhler action make a comeback? Furthermore, should one extend the very
promising looking holography=holomorphy picture by allowing also Lagrangian 6-surfaces T'(H)?

Do the Lagrangian surfaces of T'(H) have a physical interpretation, most naturally as vacuums?
The volume term of the 4-D action characterized by the cosmological constant A does not allow
vacuum extremals unless A vanishes. For the twistor lift A is however dynamic and can vanish!
Do Lagrangian 6-surfaces in T(H) correspond to 4-D minimal surfaces in H, which are vacuums
and have a vanishing A = 0?7 Would even the original formulation of TGD be an exact part of the
theory and not just a long-length-scale limit? And does one really avoid the original problem due
to the huge non-determinism spoiling holography!

The question is whether the result presented in the article could generalize to the TGD frame-
work even though the super-minimality assumption does not seem physically natural at first?

2 Lagrangian surfaces in the twistor space of H = M* x CP,

Let us consider the 12-D twistor space T'(H) = T(M*) x T(CP,) and its 6-D Lagrangian surfaces
having a local decomposition X6 = X* x §2. Assume a twistor lift with Kéhler action on T(H).
It exists only for H = M* x CP;, [L1 [L2)].

Let us first forget the requirement that these Lagrangian surfaces correspond to minimal sur-
faces in H. Consider the situation in which there is no generalized Kéhler and symplectic structure
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in M*4.
One can actually identify Lagrangian surfaces in 12-D twistor space T(H).

1. Since X% = X% x §? is Lagrangian, the symplectic form for it must vanish. This is also true
in S2. Fibers S? together with T'(M*) and T(CP,) are identified by an orientation-changing
isometry. The induced Kihler form S? in the subset X¢ = X% x S? is zero as the sum of
these two contributions of different signs. If this sum appears in the 6-D Kahler action, its
contribution to the 6-D Kihler action vanishes. A vanishes because the S? contribution to
the 4-D action vanishes.

2. The 6-D Kihler action reduces in X4 to the 4-D Kihler action plus, which was the original
guess for the 4-D action. The problem is that in its original form, involving only C' P, Kéhler
form, it involves a huge vacuum degeneracy. The C' P, projection is a Lagrangian surface or its
subset but the dynamics of M* projection is essentially arbitrary, in particular with respect
to time. One obtains a huge number of different vacuum extremals. Since the time evolution
is non-deterministic, the holography, and of course holography=holomorphy principle, is lost.
This option is not physically acceptable.

How the situation changes when also M* has a generalized Kihler form that the twistor space
picture strongly suggests, and actually requires.

1. Now the Lagrangian surfaces would be products X2 x Y2, where X2 and Y? are the La-
grangian surfaces of M* and CP,. The M* projections of these objects look like string world
sheets and in their basic state are vacuums.

Furthermore, the situation is deterministic! The point is that X? is Lagrangian and highly
fixed as such. In the previous case much more general surface M* projection, even 4-D,
was Lagrangian. There is no loss of holography! Neither is the holography = holomorphy
principle lost: by their 2-D character X? and Y2 have a holomorphic structure.

What is important is that these Lagrangian 4-surfaces of H are obtained also when A is
non-vanishing. In this case they must be minimal surfaces. Physically this option means
that one has Lagrangian strings.

2. For A = 0, the symplectic transformations of H produce new vacuum surfaces. If they are
allowed, one might talk of symplectic phase. J = 0 phase gives rise to both classical and
fermionic vacuum since the modified gamma matries vanish since they are propertional to
vanishing canonical momentum currents. So that Lagrangian phase does not contribute to
physics for A = 0. There are however non-vacuum extremals for which the induced Kéhler
field is non-vanishing (having induced complex structure).

For A # 0 Lagrangian surfaces which are non-vacuum extermals and only isometries are
allowed as symmetries. One can say that symplectic symmetr breaks down to isometries.
Irrespective of the value of A, the second phase with a induced complex structure would be
present and give rise to color interactions and hadrons and probably also elementary particles.
The interpretation of Lagrangian surfaces, which are string like entities, remains open.

3. In the Lagrangian phase induced Kéhler form J and the induced color gauge fields vanish
and it does not involve monopole fluxes. This phase might be called Maxwell phase. For
A # 0 one would have two kinds of non-vacuum string like objects with string tension to
which A contributes.

Could the Lagrangian phase for A # 0 correspond to the Coulomb phase as the perturbative
phase of the gauge theories, while the monopole flux tubes (large he s and dark matter) would
correspond to the non-perturbative phase in which magnetic monopole fluxes are present? If
so, there would be an analogy with the electric-magnetic duality of gauge theories although
the two phases does not look like two equivalent descriptions of one and the same thing unless
one restricts the consideration to fermions.
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2.1 Can Lagrangian 4-surfaces be minimal surfaces?

I have not yet considered the question whether the Lagrangian surfaces can be minimal surfaces.
For non-vanishing A they must be such but for A = 0 this need not be the case. One can of course
ask whether this does matter at all for A = 0. In this case, one has only vacuum extremals and
the modified gamma matrices are proportional to the canonical momentum currents, which vanish.
Both bosonic and fermionic dynamics are trivial for A = 0. Therefore A = 0 does not give any
physics.

In the theorem the minimal Lagrangian surfaces were superminimal surfaces. For super-minimal
surfaces, a unit vector in the normal direction defines a very specific curve in normal space.

For a non-vanishing cosmological constant, the field equations for the Kéhler action do not
force the Lagrangian surfaces to be minimal surfaces. For A # 0 there exists a lot of minimal
Lagrangian surfaces.

2.1.1 Lagrangian minimal surfaces in C'P,
Consider first the Lagrangian minimal surfaces in C' Py

1. In CP,, a homologically trivial geodesic sphere is a minimal surface. Note that the geodesic
spheres obtained by isometries are regarded here as equivalent. Also a ¢ = 1 minimal
Lagrangian surface (Clifford torus) in C'P; is known.

2. There are many other minimal Lagrangian surfaces and second order partial differential
equations for both Lagrangian and minimal Lagrangian surfaces are known (see this). In the
article ” A new look at equivariant minimal Lagrangian surfaces in C' P, by Dorfmeister and
Ma [AI] Lagrangian minimal surfaces in CP, are discussed and general partial differential
equations for them are deduced.

(a) An essential role is played by the used of complex coordinates in which the induced
metric of X? is of form ds? = e“dzdz and X? corresponds to immersion f.

(b) The Lagrangian property makes it possible the lift of f and to an immersion defined to
unit sphere S° C C? and therefore of X2 to a surface in S° C C? defined by a complex
triplet F. This allows to combine F', F, and Fs to an orthgonal Hermitian tripet which
can be can be replaced with a orthonormalized triplet F =(F,e~"“/2F,, e~ "/2F;).

(c) At the next step minimal surface property is introduced. It translation to statement
that
F.=FU , Fs=FN .

Here one has

uy/2 0 ev
U= e ™ —u,/2 0

0 —¢"/2 0
N=Ut

Here vdz? is so called Hopf differential with v given by
'(/) = FzzE .

Clearly, U is the negative of the hermitian conjugate of /. One can say that complex
differentiation corresponds to the action of SU(3) Lie algera generator so that F defines
an element of SU(3) loop group at X?2.

(d) The condition of integrability (F,)z = (Fz). gives

UZ: _Nz ;

and the final equations

Uzz = e [PPP —et Pz =0 .

The Hopf differential is therefore a holomorphic function.
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Since any stable stable minimal submanifold in C'P,, is a complex submanifold, the Lagrangian
minimal surfaces cannot be stable under general variations.

2.1.2 Lagrangian minimal surfaces in M*

Consider next the situation in M4,

1. In M*, the plane M? is an example of a minimal surface, which is a Lagrangian surface. Are
there others? Could Hamilton-Jacobi structures |[L3] that also involve the symplectic form
and generalized Kéhler structure (more precisely, their generalizations) define Lagrangian
surfaces in M*?

2. The Lagrangian surfaces, and as a special case Lagrangian minimal surfaces in R* are dis-
cussed in [A2]. The result of the article can be phrased as follows.

Let L be a simply connected domain in C. Then for any smooth conformal Lagrangian
immersion f : L — R*, there exist smooth functions 8 : L — R/27Z, which is the Lagrangian
angle, and s1, s : L — C, not simultaneously vanishing, that satisfy the Dirac-type equation

(% 0 )(2)=(0 %) ()

with complex potential U = 9,/2. Conversely, given 8 and any solution (s, s2) to the Dirac
equation satisfying (|s1]? + |s2|? > 0) gives rise to a conformal Lagrangian immersion given

by
$1 0 -1 0 0
B - S9 10 00
182 0 0 1 0

Here the 4 x 4 matrix J defines the standard symplectic structure.

3. When the Lagrange angle is constant, one obtains minimal Lagrangian immersion. Note that
this in this case one has free massless Dirac equation.This suggests quantum classical corre-
spondence in which the solutions of massless Dirac equation in M* correspond to Lagrangian
minimal surfaces.

4. This solution is defined for Euclidian E* rather than M* but the analytic continuation to
M* case should be straightforward. This requires an appropriate modification of J. In TGD
one must consider the possibility, that Hamilton-Jacobi structures defines large number of
non-quivalent Kéhler- and symplectic structures for M*. The naive guess is that J in the
exponential is replaced with the matrix Jy;0*! in order to obtain a more general solution.

In the case considered now, the Lagrangian surfaces in H would be products X2 x Y. Interest-
ingly, in the 2-D case the induced metric always defines a holomorphic structure. Now, however,
this holomorphic structure would not be the same as the one related to the holomorphic ansatz:
it is induced from H.

2.2 So What?

These findings raise several questions related to the detailed understanding of TGD. Should one
allow only non-vanishing values of A? This would allow minimal Langrangian surfaces X2 x Y2
besides the holomorphic ansatz. The holomorphic structure due to the 2-dimensionality of X? and
Y2 means that holography=holomorphy principle generalizes.

If one allows A = 0, all Lagrangian surfaces X2 x Y2 are allowed but also would have a holomor-
phic structure due to the 2-dimensionality of X2 and Y2 so that holography=holomorphy principle
would generalize also now! Minimal surface property is obtained as a special case. Classically the
extremals correspond to a vacuum sector and also in the fermionic sector modified Dirac equation
is trivial. Therefore there is no physics involved.
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Minimal Lagrangian surfaces are favored by the physical interpretation in terms of a geometric
analog of the field particle duality. The orbit of a particle as a geodesic line (minimal 1-surface)
generalizes to a minimal 4-surface and the field equations inside this surface generalizes massless
field equations.
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