
The vanishing of super-conformal charges as a
gauge conditions selecting preferred extremals of

Kähler action

M. Pitkänen
Email: matpitka6@gmail.com.
http://tgdtheory.com/.

June 20, 2019

Contents

1 Introduction 2

2 Field equations for Kähler action 3
2.1 The physical interpretation of the canonical momentum current . . . 3
2.2 The basic steps in the derivation of field equations . . . . . . . . . . . 4
2.3 Complex isometry charges and twistorialization . . . . . . . . . . . . 5

3 Boundary conditions at boundaries of CD 6
3.1 Do boundary conditions realize quantum classical correspondence? . . 7
3.2 Do boundary conditions realize preferred extremal property as a choice

of conformal gauge? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Boundary conditions at parton orbits 8
4.1 Conformal gauge choice, preferred extremal property, hierarchy of

Planck constants, and TGD as almost topological QFT . . . . . . . . 8
4.2 Fractal hierarchy of conformal symmetry breakings . . . . . . . . . . 9

Abstract

Quantum classical correspondence suggests that the generalized super-
conformal invariance should have concrete realization already at classical level
that is for the extremals of Kähler action. This indeed can be the case. The
realization is actually completely obvious: one requires that various classical
Noether charges associated with super-conformal invariance vanish at the ends
of space-time surfaces located at light-like boundaries of causal diamond. Sim-
ilar conditions would hold true at partonic orbits which are light-like 3-surfaces
at which the signature of the induced metric changes from Minkowskian to
Euclidian. These conditions can be regarded as fixing conformal gauge and are
natural if the Kähler metric of ”world of classical worlds” (WCW) has these
symmetries as isometries. These conditions define precisely also the notion
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of preferred extremal, Bohr orbitology in the framework of Zero Energy On-
tology (ZEO) and also realize concretely strong form of holography implied
by the strong form of General Coordinate Invariance. In TGD framework
classical isometry charges are complex: a fascinating possibility inspired by
twstor approach is that the states are massless in complex sense but massive
in the real sense.

1 Introduction

Classical TGD [K1] involves several key questions waiting for clearcut answers.

1. The notion of preferred extremal emerges naturally in positive energy ontology,
where Kähler metric assigns a unique (apart from gauge symmetries) preferred
extremal to given 3-surface at M4 time= constant section of imbedding space
H = M4×CP2. This would quantize the initial values of the time derivatives
of imbedding coordinates and this could correspond to the Bohr orbitology in
quantum mechanics.

2. In zero energy ontology (ZEO) initial conditions are replaced by boundary
conditions. One fixes only the 3-surfaces at the opposite boundaries of CD and
in an ideal situation there would exist a unique space-time surface connecting
them. One must however notice that the existence of light-like wormhole
throat orbits at which the signature of the induced metric changes (det(g4) =
0) its signature might change the situation. Does the attribute ”preferred”
become obsolete and does one lose the beautiful Bohr orbitology, which looks
intuitively compelling and would realize quantum classical correspondence?

3. Intuitively it has become clear that the generalization of super-conformal sym-
metries by replacing 2-D manifold with metrically 2-D but topologically 3-
D light-like boundary of causal diamond makes sense. Generalized super-
conformal symmetries should apply also to the wormhole throat orbits which
are also metrically 2-D and for which conformal symmetries respect detg(g4) =
0 condition. Quantum classical correspondence demands that the generalized
super-confornal invariance has a classical counterpart. How could this classical
counterpart be realized?

4. Holography is one key aspect of TGD and mean that 3-surfaces dictate ev-
erything. In positive energy ontology the content of this statement would be
rather obvious and reduce to Bohr orbitology but in ZEO situation is differ-
ent. On the other hand, TGD strongly suggests strong form of holography
based stating that partonic 2-surfaces (the ends of wormhole throat orbits at
boundaries of CD) and tangent space data at them code for quantum physics
of TGD. General coordinate invariance would be realized in strong sense: one
could formulate the theory either in terms of space-like 3-surfaces at the ends
of CD or in terms of light-like wormhole throat orbits. This would realize Bohr
orbitology also in ZEO by reducing the boundary conditions to those at par-
tonic 2-surfaces. How to realize this explicitly at the level of field equations?
This has been the challenge.
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Answering questions is extremely useful activity. During last years Hamed has
posed continually questions related to the basic TGD. At this time Hamed asked
about the derivation of field equations of TGD. In ”simple” field theories involv-
ing some polynomial non-linearities the deduction of field equations is of course
totally trivial process but in the extremely non-linear geometric framework of TGD
situation is quite different.

While answering the questions I made what I immediately dare to call a break-
through discovery in the mathematical understanding of TGD. To put it concisely:
one can assume that the variations at the light-like boundaries of CD vanish for
all conformal variations which are not isometries. For isometries the contributions
from the ends of CD cancel each other so that the corresponding variations need
not vanish separately at boundaries of CD! This is extremely simple and profound
fact. This would be nothing but the realisation of the analogs of conformal symme-
tries classically and give precise content for the notion of preferred external, Bohr
orbitology, and strong form of holography. And the condition makes sense only in
ZEO!

I attach below the answers to the questions of Hamed almost as such apart from
slight editing and little additions, re-organization, and correction of typos.

2 Field equations for Kähler action

Hamed made some questions relating to the derivation of field equations for the
extremals of Kähler action which led to the recent progress. I comment first these
questions since they lead naturally to the basic new idea.

2.1 The physical interpretation of the canonical momentum
current

Hamed asked about the physical meaning of T nk ≡ ∂L/∂(∂nh
k) - normal components

of canonical momentum labelled by the label k of imbedding space coordinates - it
is good to start from the physical meaning of a more general vector field

Tαk ≡
∂L

∂(∂αhk)

with both imbedding space indices k and space-time indices α - canonical momentum
currents. L refers to Kähler action.

1. One can start from the analogy with Newton’s equations derived from action
principle (Lagrangian). Now the analogs are the partial derivatives ∂L/∂(dxk/dt).
For a particle in potential one obtains just the momentum. Therefore the term
canonical momentum current/density: one has kind of momentum current for
each imbedding space coordinate.

2. By contracting with generators of imbedding space isometries (Poincare and
color) one indeed obtains conserved currents associated with isometries by
Noether’s theorem:
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jAα = Tαk j
Ak .

By field equations the divergences of these currents vanish and one obtains
conserved charged- classical four-momentum and color charges:

DαT
Aα = 0 .

3. The normal component of conserved current must vanish at boundaries with
one time-like direction if one has such:

TAn = 0.

Now one has wormhole throat orbits which are not genuine boundaries albeit
analogous to them and one must be very careful. The quantity T nk determines
the values of normal components of currents and must vanish at possible space-
like boundaries.

Note that in TGD field equations reduce to the conservation of isometry currents
as in hydrodynamics where basic equations are just conservation laws.

2.2 The basic steps in the derivation of field equations

First a general recipe for deriving field equations from Kähler action - or any action
as a matter of fact.

1. At the first step one writes an expression of the variation of the Kähler action
as sum of variations with respect to the induced metric g and induced Kähler
form J . The partial derivatives in question are energy momentum tensor and
contravariant Kähler form.

2. After this the variations of g and J are expressed in terms of variations of
imbedding space coordinates, which are the primary dynamical variables.

3. The integral defining the variation can be decomposed to a total divergence
plus a term vanishing for extremals for all variations: this gives the field
equations. Total divergence term gives a boundary term and it vanishes by
boundary conditions if the boundaries in question have time-like direction.

If the boundary is space-like, the situation is more delicate in TGD framework:
this will be considered in the sequel. In TGD situation is also delicate also
because the light-like 3-surfaces which are common boundaries of regions with
Minkowskian or Euclidian signature of the induced metric are not ordinary
topological boundaries. Therefore a careful treatment of both cases is required
in order to not to miss important physics.

Expressing this summary more explicitly, the variation of the Kähler action with
respect to the gradients of the imbedding space coordinates reduces to the integral
of
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Tαk ∂αδh
k +

∂K

∂hk
δhk .

The latter term comes only from the dependence of the imbedding space metric
and Kähler form on imbedding space coordinates. One can use a simple trick. As-
sume that they do not depend at all on imbedding space coordinates, derive field
equations, and replaced partial derivatives by covariant derivatives at the end. Co-
variant derivative means covariance with respect to both space-time and imbedding
space vector indices for the tensorial quantities involved. The trick works because
imbedding space metric and Kähler form are covariantly constant quantities.

The integral of the first term Tαk ∂αδh
k decomposes to two parts.

1. The first term, whose vanishing gives rise to field equations, is integral of

DαT
α
k δh

k .

2. The second term is integral of

∂α(Tαk δh
k) .

This term reduces as a total divergence to a 3-D surface integral over the
boundary of the region of fixed signature of the induced metric consisting of
the ends of CD and wormhole throat orbits (boundary of region with fixed
signature of induced metric). This term vanishes if the normal components
T nk of canonical momentum currents vanishes at the boundary like region.

In the sequel the boundary terms are discussed explicitly and it will be found
that their treatment indeed involves highly non-trivial physics.

2.3 Complex isometry charges and twistorialization

TGD space-time contains regions of both Minkowskian and Euclidian signature of
metric. This has some highly non-trivial consequences.

1. Should one assume that
√
det(g4) is imaginary in Minkowskian and real in Eu-

clidian region? For Kähler action this is sensible and Euclidian region would
give a real negative contribution giving rise to exponent of Kähler function
of WCW (”world of classical worlds”) making the functional integral conver-
gent. Minkowskian regions would give imaginary contribution to the exponent
causing interference effects absolutely essential in quantum field theory. This
contribution would correspond to Morse function for WCW.

The implication would be that the classical four-momenta in Euclidian/Minkowskian
regions are imaginary/real. What could the interpretation be? Should one ac-
cept as a fact that four-momenta are complex.
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2. Twistor approach to TGD is now in quite good shape [?, K5]. M4 × CP2 is
the unique choice is one requires that the Cartesian factors allow twistor space
with Kähler structure and classical TGD allows twistor formulation.

In the recent formulation the fundamental fermions are assumed to propagate
with light-like momenta along wormhole throats. At gauge theory limit par-
ticles must have massless or massive four-momenta. One can however also
consider the possibility of complex massless momenta and in the standard
twistor approach on mass shell massless particles appearing in graphs indeed
have complex momenta. These complex momenta should by quantum classical
correspondence correspond directly to classical complex momenta.

3. A funny question popping in mind is whether the massivation of particles could
be such that the momenta remain massless in complex sense! The complex
variant of light-likeness condition would be

p2re = p2Im , pre · pIm = 0 .

Could one interpret p2Im as the mass squared of the particle? Or could p2Im
code for the decay width of an unstable particle? This option does not look
feasible.

4. The complex momenta could provide an elegant 4-D space-time level repre-
sentation for the isometry quantum numbers at the level of imbedding space.
The ground states of the super-conformal representations have as building
bricks the spinor harmonics of the imbedding space which correspond to the
analogs of massless particles in 8-D sense [K3]. Indeed, the condition giving
mass squared eigenvalues for the spinor harmonics is just massless condition
in M4 × CP2.

At the space-time level these conditions must be replaced by 4-D conditions
and complex masslessness would be the elegant manner to realizes this. Also
the massivation of massless states by p-adic thermodynamics could have sim-
ilar description.

This interpretation would also conform with M8 −M4 × CP2 duality [K4] at
the level of momentum space.

3 Boundary conditions at boundaries of CD

In positive energy ontology one would formulate boundary conditions as initial con-
ditions by fixing both the 3-surface and associated canonical momentum densities
at either end of CD (positions and momenta of particles in mechanics). This would
bring asymmetry between boundaries of CD. In ZEO the basic boundary condition
is that space-time surfaces have as their ends the members of pairs of surfaces at
the ends of CD. Besides this one can have additional boundary conditions and the
notion of preferred extremal suggests this.
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3.1 Do boundary conditions realize quantum classical cor-
respondence?

In TGD framework one must carefully consider the boundary conditions at the
boundaries of CDs. What is clear that the time-like boundary contributions from
the boundaries of CD to the variation must vanish.

1. This is true if the variations are assumed to vanish at the ends of CD. This
might be however too strong a condition.

2. One cannot demand the vanishing of T tk (t refers to time coordinate as normal
coordinate) since this would give only vacuum extremals. One could how-
ever require quantum classical correspondence for any Cartan sub-algebra of
isometries whose elements define maximal set of isometry generators. The
eigenvalues of quantal variants of isometry charge assignable to second quan-
tized induced spinors at the ends of space-time surface are equal to the classical
charges. Is this actually a formulation of Equivalence Principle, is not quite
clear to me.

3.2 Do boundary conditions realize preferred extremal prop-
erty as a choice of conformal gauge?

While writing this a completely new idea popped to my mind. What if one poses the
vanishing of the boundary terms at boundaries of CDs as additional boundary con-
ditions for all variations except isometries? Of perhaps for all conformal variations
(conformal in TGD sense)? This would not imply vanishing of isometry charges
since the variations coming from the opposite ends of CD cancel each other! It soon
became clear that this would allow to meet all the challenges listed in the beginning!

1. These conditions would realize Bohr orbitology also to ZEO approach and
define what ”preferred extremal” means.

2. The conditions would be very much like super-Virasoro conditions stating that
the superconformal generators with non-vanishing conformal weight annihilate
states or create zero norm states but no conditions are posed on generators
with vanishing conformal weight (now isometries). One could indeed assume
only deformations, which are local isometries assignable to the generalised
conformal algebra of the δM4

+/ − ×CP2. For arbitrary variations one would
not require the vanishing. This could be the long sought for precise formulation
of super-conformal invariance at the level of classical field equations!

It is enough co consider the weaker conditions that the conformal charges de-
fined as integrals of corresponding Noether currents vanish. These conditions
would be direct equivalents of quantal conditions.

3. The natural interpretation would be as a fixing of conformal gauge. This
fixing would be motivated by the fact that WCW Kähler metric must possess
isometries associated with the conformal algebra and can depend only on the
tangent data at partonic 2-surfaces as became clear already for more than



4. Boundary conditions at parton orbits 8

two decades ago. An alternative, non-practical option would be to allow all
3-surfaces at the ends of CD: this would lead to the problem of eliminating
the analog of the volume of gauge group from the functional integral.

4. The conditions would also define precisely the notion of holography and its
reduction to strong form of holography in which partonic 2-surfaces and their
tangent space data code for the dynamics.

Needless to say, the modification of this approach could make sense also at
partonic orbits.

4 Boundary conditions at parton orbits

The contributions from the orbits of wormhole throats are singular since the con-
travariant form of the induced metric develops components which are infinite (det(g4) =
0). The contributions are real at Euclidian side of throat orbit and imaginary at the
Minkowskian side so that they must be treated as independently.

4.1 Conformal gauge choice, preferred extremal property,
hierarchy of Planck constants, and TGD as almost topo-
logical QFT

The generalization of the boundary conditions as a classical realization conformal
gauge invariance is natural.

1. One can consider the possibility that under rather general conditions the nor-
mal components T nk

√
det(g4) approach to zero at partonic orbits since det(g4)

is vanishing. Note however the appearance of contravariant appearing twice
as index raising operator in Kähler action. If so, the vanishing of T nk

√
det(g4)

need not fix completely the ”boundary” conditions. In fact, I assign to the
wormhole throat orbits conformal gauge symmetries so that just this is ex-
pected on physical grounds.

2. Generalized conformal invariance would suggest that the variations defined as
integrals of T nk

√
det(g4)δh

k vanish in a non-trivial manner for the conformal
algebra associated with the light-like wormhole throats with deformations re-
specting det(g4) = 0 condition. Also the variations defined by infinitesimal
isometries (zero conformal weight sector) should vanish since otherwise one
would lose the conservation laws for isometry charges. The conditions for
isometries might reduce to T nk

√
det(g4)→ 0 at partonic orbits. Also now the

interpretation would be in terms of fixing of conformal gauge.

3. Even T nk
√
g = 0 condition need not fix the partonic orbit completely. The

Gribov ambiguity meaning that gauge conditions do not fix uniquely the gauge
potential could have counterpart in TGD framework. It could be that there are
several conformally non-equivalent space-time surfaces connecting 3-surfaces
at the opposite ends of CD.
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If so, the boundary values at wormhole throats orbits could matter to some
degree: very natural in boundary value problem thinking but new in initial
value thinking. This would conform with the non-determinism of Kähler action
implying criticality and the possibility that the 3-surfaces at the ends of CD are
connected by several space-time surfaces which are physically non-equivalent.

4. The hierarchy of Planck [K2] constants assigned to dark matter, quantum
criticality and even criticality indeed relies on the assumption that heff = n×h
corresponds to n-fold coverings having n space-time sheets which coincide at
the ends of CD and that conformal symmetries act on the sheets as gauge
symmetries. One would have as Gribov copies n conformal equivalence classes
of wormhole throat orbits and corresponding space-time surfaces. Depending
on whether one fixes the conformal gauge one has n equivalence classes of
space-time surfaces or just one representative from each conformal equivalent
class.

5. There is also the question about the correspondence with the weak form of
electric magnetic duality [K1]. This duality plus the condition that jαAα = 0
in the interior of space-time surface imply the reduction of Kähler action to
Chern-Simons terms. This would suggest that the boundary variation of the
Kähler action reduces to that for Chern-Simons action which is indeed well-
defined for light-like 3-surfaces.

If so, the gauge fixing would reduce to variational equations for Chern-Simons
action! A weaker condition is that classical conformal charges vanish. This
would give a nice connection to the vision about TGD as almost topological
QFT. In TGD framework these conditions do not imply the vanishing of Kähler
form at boundaries. The conditions are satisfied if the CP2 projection of the
partonic orbit is 2-D: the reason is that Chern-Simons term vanishes identically
in this case.

4.2 Fractal hierarchy of conformal symmetry breakings

A further intuitively natural hypothesis is that there is a fractal hierarchy of break-
ings of conformal symmetry.

1. Only the generators of conformal sub-algebra with conformal weight multiple
of n act as gauge symmetries. This would give infinite hierarchies of breakings
of conformal symmetry interpreted in terms of criticality: in the hierarchy ni
divides ni+1.

Similar degeneracy would be associated with both the parton orbits and the
space-like ends at CD boundaries and I have considered the possibility that
the integer n appearing in heff has decomposition n = n1n2 corresponding to
the degeneracies associated with the two kinds of boundaries. Alternatively,
one could have just n = n1 = n2 from the condition that the two conformal
symmetries are 3-dimensional manifestations of single 4-D analog of conformal
symmetry.
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2. In the symmetry breaking ni → ni+1 the conformal charges, which vanished
earlier, would become non-vanishing. Could one require that they are con-
served that is the contributions of the boundary terms at the ends of CD
cancel each other? If so, one would have dynamical conformal symmetry.

What could the proper interpretation of the conformal hierarchies ni → ni+1?

1. Could one interpret the hierarchy in terms of increasing measurement resolu-
tion? Conformal degrees of freedom below measurement resolution would be
gauge degrees of freedom and the conformal hierarchies would correspond to
an inclusion hierarchies for hyper-finite factors of type II1 [?]. If heff = n× h
defines the conformal gauge sub-algebra, the improvement of the resolution
would scale up the Compton scales and would quite concretely correspond to
a zoom analogous to that done for Mandelbrot fractal to get new details vis-
ible. From the point of view of cognition the improving resolution would fit
nicely with the recent view about heff/h as a kind of intelligence quotient.

This interpretation might make sense for the symplectic algebra of δM4
±×CP2

for which the light-like radial coordinate rM of light-cone boundary takes the
role of complex coordinate. The reason is that symplectic algebra acts as
isometries.

2. Suppose that the Kähler action has vanishing variation under deformations
defined by the broken conformal symmetries sot that the corresponding con-
formal charges are conserve. As a consequence, Kähler function would be crit-
ical with respect to the corresponding variations. The components of WCW
Kähler metric expressible in terms of second derivatives of Kähler function
can be however non-vanishing and have also components, which correspond to
WCW coordinates associated with different partonic 2-surfaces. This conforms
with the idea that conformal algebras extend to Yangian algebras generalizing
the Yangian symmetry of N = 4 symmetric gauge theories.

In this kind of situation one could consider the interpretation in terms of crit-
icality: the higher the criticality, the larger then value of heff and h and the
better the resolution. The naive alternative view ”the higher the conformal
symmetry, the higher the criticality” does not conform with this view. If
conformal gauge symmetry tells that the degrees of freedom are below mea-
surement resolution, the situation of course changes.

3. n gives also the number of space-time sheets in the singular covering. Could
the interpretation be in terms measurement resolution for counting the number
of space-time sheets. Our recent quantum physics would only see single space-
time sheet representing visible manner and dark matter would become visible
only for n > 1.

As should have become clear, the derivation of field equations in TGD framework
is not just an application of a formal recipe as in field theories and a lot of non-trivial
physics is involved!
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