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4.1 Van der Waalsin tilan yhtälö . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Van der Waalsin ongelmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1 Johdanto

Jutustelu voimakoneesta rupesi vaivaamaan ja alkoi kiusata teoreetikon turhamaisuuttani. En ole
hydrotermodynaamikko ja olisi siis viisainta pitää turhamaisuutensa kurissa. Päätin kuitenkin kat-
soa tilannetta uudelleen ja päädyin aluksi hydrodynaamiseen virtapiirimalliin. Alkuperäinen toive
oli, että hyötysuhde voitaisiin johtaa minimaalisella määrällä sisäänsyötettävää informaatiota.

1. Jatkossa käyn ensin läpi yrityksen, jossa ei huomioida sitä että systeemissä neste kiertää:
tämä parantaa hyötysuhdetta. On vain kyse yrityksistä hahmottaa tilannetta teoreettiseti
käyttäen piiriteoreettista analogiaa ja termodynamiikkaa.
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Selvisi, ettei selvitä ilman yksityiskohtaisempaa mallia sille mitä tapahtuu roottorissa. Ti-
etysti voidaan käyttää taulukkoja, joista todennäköiseesti löytyy roottorin kuvailu virtausvas-
tuksena. Hydrodynaaminen tarkastelu tukee kuvaa, että syötettävä lämpöenergia varastoituu
paineeseen nesteen termiseksi energiaksi - vapaaksi energiaksi - ja tämä edelleen muuntuu
roottorissa kokonaan tai osittain työksi. Vapaan energian määritelmä F = E − TS = PV
viittaa siihen, että ∆F se menee kokonaan työksi. Tämä vastaisi sitä, että ei-maksimaalinen
∆F merkitsisi sitä, että osa energiasta jää lämpöenergiaksi virtaukseen: paineen pienene-
minen ei ole maksimaalinen ja tämä pienentää hyötysuhdetta. Jos näin ei ole, tarvitaan
erillinen hyötysuhde roottorin ja laitteeen kytkentää kuvaamaan ja päädyttäisiin Carnotin
konemalliin.

Mukana on myös van der Waalsiin perustuva yritys selventää ajattelua. Van der Waals antaa
jonkinlaisen ensimmäisen yrityksen nesteen kuvailuksi ja sallii johtaa eksplisiittiset kaavat es-
imerkiksi jos prosessi roottorissa on adiabaattinen kuten ideaalisessa Carnotin lämpövoimakoneessa.

2. Seuraavaksi otan huomioon kierrätyksen ja johdan hyötysuhteelle arvion aineparametrien
(lämpölaajenemis-kerroin, bulk modulus, ja ominaislämpökapasiteetti) ja lämpötilaerojen
suhteen avulla. Sitten mallinnan kierrätys-systeemiä virtaustasapainona ja päädyn samoihin
kaavoihin.

Kierrätyksen malli, joka tietysti voi olla väärä, ennustaa, että hyötysuhde luokkaa muutamia
kymmeniä prosentteja edellyttäen, että hyötysuhde roottorille ilman kierrätystä on samaa lu-
okkaa kuin se osuus energiasta, joka menetetään yhdellä kierroksella lämpöhäviöinä, esimerkiksi
lämmönvaihtimissa. Vaadittaisiin muutaman asteen lämpötilan lasku roottorissa. Kannattaa
kuitenkin muistaa, että teoreetikko rakentaa mallin, jonka kokeilija osoittaa vääräksi, jonka jälkeen
teoreettikko esittää parannetun mallin, jonka...., jonka jälkeen... Joskus harvoin saattaa käydä ni-
inkin, että tärppää.

2 Piiriteoreettisia ja termodynaamisia pohdintoja

Seuraavassa piiriteoreettisia ja termodynaamisia pohdintoja.

2.1 Strategia

Tärkeää on huomatta, että termodynamiikka Carnotissa on idealisoitu. Lämpökylpy ja systeemi
ovat vakiolämpötiloissa. Ulkoinen lämmitys on lämpökylpy. Nyt on kyseessä systeemi, jossa
neste virtaa ja laajenee eikä lämpötila ole vakio kaikkialla. Tarvitaan hydrodynamiikkaa. Yk-
sityiskohtaisemmalla tasolla täytyy kuvata miten nesteen lämpötila, nesteen ominaistilavuus, ja
virtausnopeus varioivat lämmitettävässä putken pätkässä. Voisi toivoa, että selvitään virtapiiri-
analogialla jos ollaan kiinnostuneita vain hyötysuhteesta ja sen arvioinnista mittauksin. Valite-
tavasti näin ei kuitenkaan ole. Virtapiirianalogia on kuitenkin hyvin hyödyllinen kun halutaan
ymmärtää miten paine käyttäytyy systeemissä.

Miten systeemiä pitäisi mallintaa? Ensin kysymyksiä ja yleisiä ideoita.

1. Mikä on systeemi, johon syötetään lämpöä? Ilmeisesti se olisi se alue putkea, jota lämmitetään.
Tässä on lämpötilaero koska lämpöä täytyy virrata sisään. Tästä Carnot antaa ylärajan
lämpötilaerosta putken pätkän ja lämmittävän systeemin välillä. Nyt ei kuitenkaan lämpötila
on vakio putken pätkää pitkin ja tässä tulee ensimmäinen ongelma siitä että Carnot perustuu
idelisaatioon. Voisi ajatella, että lämpötilaero keskilämpötila putken pätkälle.

2. Carnot on täysin riippumaton siitä mikä neste systeemissä virtaa. Se antaa vain tehon
ylärajan. Olisi luontevaa rakentaa konkreettisempi malli, joka edelleenkään ei riippuisi siitä
minkälainen neste siinä virtaa ja perustuisi mitattavissa oleviin suureisiin. Hydrodynamiikka
on luonteva lähtökohta.

3. Hydrodynaamisessa mallintamisessa pitäisi periaatteessa mallintaa esimerkiksi putken pätkä
niin, että johdetaan nesteen ominaistilavuuden, lämpötilan, paineen käyttäytyminen pitkin
putken pätkää tasa-painotilassa kun ulkoinen tehonsyöttö (lämpötilaero putken ja lämpölahteen
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välillä) tunnetaan. Tässä mallissa tulevan mukaan tilanyhtälöt nesteelle. Kokoonpuristuvuus
ja lämpölaajenemiskerroin erityisesti.

4. Voidaan tyytyä kuitenkin karkeampaan virtapiirimalliin, jossa systeemi jaetaan komponent-
teihin kuten piiriteoriassa: vastuksia, jännitelähteitä, virtalähteitä,... Nyt ne olisivat virtaus-
vastuksia kuten roottorit ja lämmitetty putken pätkä, keinotekoisesti ylläpidettyjä paine-
eroja, joita nyt ei ole mukana, virtausta ylläpitävä lämmitys-systeemi. Ohmin lakien yleistys
on suoraviivainen.

Voidaan siis katsoa mitä tämä lähestymistapa tuottaa ja mitkä ovat sen rajoitukset jotta
päästään parempaan kuvaan.

2.2 Fysikaalinen kuva voimakoneesta

Tarvitaan kuva siitä mitä voimakoneessa tapahtuu. Järjestyneen energian (työn) tuoton mekanismi
voisi olla seuraava.

1. Kasvatetaan painetta lämmitetyllä putken pätkällä ja sitten palautetaan se alkuperäiseen
arvoonsa takaisin roottorissa, jolloin syötetty paineesen latautunut terminen energia muuttuu
työksi jollain hyötysuhteella, jonka määrä se mitä roottorissa tapahtuu.

Energiaa menee myös viskositeetin voittamiseen. Tämä energia pienentää sitä energiaa joka
saadaan nesteen termiseksi energiaksi paineena. Matala viskositeetti ts. pienet kitkahäviöt
tarvitaan niin että paineen kasvatukseen menevät energia on suurempi kuin kitkahäviöiden
peittämiseen menevä osuus. Tämä täytyy arvioida numeerisesti. Osoittautuu , että viskosi-
teetin osuus on merkityksetön energian syötön kannalta. Lähes kaikki energia menee paineen
kasvattamiseen.

2. Toinen askel liittyy roottoriin: paineeseen mennyttä energiaa ei saada kokonaan ulos järjestyneenä
liikkeenä. Tästä tulee toinen hyötysuhteen pienemä. Hyötysuhde on tulo η = η1×η2. η1 ker-
too mikä osa paineeseen varastoidusta lämpöenergiasta saadaan ulos. Ideaalinen lämmönsiirto
merkitsisi η1 = 1. η2 kertoo mikä osa tästä energiasta muuntuu työksi. Ongelma palautuu
tämän parametrin arvioimiseen. Tätä askelta voitaisiin mallintaa Carnotin koneena.

3. Paineeseen menevä energia ∆p ∼ ρ∆T dominoi nesteen järjestäytyneeseen liikkeeseen menevään
energiaan ∆(ρv2)/2 verrattuna jos nesteen virtausnopeus v on vaikkapa luokkaa 10 m/s.
Tässä lienee ρ vakio hyvänä approksimaationa (kokoonpuristumaton virtaus) joten ∆(ρv2)/2) =
ρ∆(v2)/2). Terminen nopeus

√
T/M , M massaon monta kertalukua suurempi huoneen

lämpötilassa joten ∆p näyttäisi dominoivan. Siis pätee

∆p >> ∆(
ρv2

2
) .

Myös viskositeetin kontribuutio stresitensoriin on mitätön verrattuna paineen osuuteen.

4. Tulos merkitsee sitä, että lämmönsyöttö toimii ideaalisena akkuna. Lämpöenergia siirtyy
paineeseen nesteen termiseksi energiaksi ja roottoreissa muuntuu kokonaan tai osin työksi.
Houkutteleva ajatus on että vapaan energia muutos menee kokonaan työksi.

Tämä on tietysti approksimaatio. On tietysti muitakin vapausasteita, joihin lämmitysenergiaa
katoaa. Esimerkiksi molekyylien rotaatio- ja värähtelyvapausasteet. Niihin energiaa ei
pitäisi tuhlata. Tässä nesteen valinta saattaa auttaa. Siis matala-viskoosinen neste, jolla
rotaatio- ja värähtelyvapausasteet eivät niele paljon energiaa. Kriittisyyden alapuolella (ja
sen yläpuolellakin ylikriittisyydessä, jos ei päästetä nestettä laajenemaan vapaasti, jolloin
höyrystymistä ei tapahdu), viskositeetti olisi pieni.

Tämän hetkinen kuva olisi, että nestevirtaus toimii paineeseen talletetunvapaan energian si-
irtäjänä. Roottorissa osa saadusta vapaasta energiasta muuntuisi työksi osittain - tai kokonaan
kuten vapaan energian käsite rohkaisee ajattelemaan. Mukana on virtaava neste joka toimii ener-
gian siirtäjänä roottoriin. Prosessi on Carnot prosessin yleistys ja tähän energiaan siirtoon liittyy
hyötysuhde, joka riippuu sekä roottorin ja virtaavan nesteen vuorovaikutuksesta että roottorin ja
vastaanottavan systeemin välisestä kytkennästä.



2.3 Miten johtaa hyötysuhde? 4

2.3 Miten johtaa hyötysuhde?

Tehtävänä on johtaa arvio hyötysuhteelle η ja myös Carnotia vastaava yläraja hyötysuhteelle.
Koska Carnot liittyy staattiseen tilanteeseen, jossa ei ole virtauksia eikä merkittäviä ämpötilan
muutoksia, ei se sellaisenaan sovellu ja voi se antaa vain karkean arvion hyötysuhteen ylärajalle jos
onnistutaan identifioimaan vastineet siinä esiintyville lämpötiloille. On esimerkiksi vaikea jakaa
tarkastelua systeemiä kahteen osaan, jotka vastaisivat lämpökylpyä ja systeemiä.

Perusoivallus johon, johon laskeskelut lopulta johtivat on, että työ tehdään prosessissa jossa on
edellä kuvatut kaksi askelta: vapaan energia siirto ja sen muuntaminen työksi roottorissa osittain
tai kokonaan.

On korvattava Carnotin staattinen tilanne adiabaattiselle prosessilla, jossa alkutilan ja lopputi-
lan lämpötilat (Tin, Tout) korvaavat systeemin ja lämpökylvyn lämpötilat (T1, T2). Prosessi on nyt
pienen nestevoluumin eteneminen putkessa jolloin sen termodynaaminen tila muuttuu.

1. Ensimmäinen kysymys olisi mitä ovat systeemi ja lämpökylpy ja näihin liittyvät lämpötilat
T1 ja T2. Varmastikin roottori, jossa tehoa otetaan ulos olisi tarkastelevat systeemi. Adia-
baattinen entropiaa kasvattamaton prosessi vastaa ideaalitilannetta jossa tehty työ on mak-
simaalinen.

Voisi ajatella että pienen nestetilavuuden läpikulku sen läpi olisi kyseinen prosessi. Sen tilaa
karakterisoivat 3-muuttujaa n, p, T ja tilan yhtälö

F (n, p, T ) = 0

joka määrittelee 2-pinnan S ko. 3:n muuttujan avaruudessa.

2. Carnotin hyötysuhde vastaa adiabaattista prosessia, jossa entropia S ei kasva: S = vakio.
Adiabaattisuus-ehto plus tilayhtälö

F (n, p, T ) = 0 , S = vakio = S0

valitsevat 2-pinnalta käyrän käyrän L, jota pitkin nestetilavuus vaeltaa mennessään roottorin
läpi. Käyrä toteuttaa yhtälön muotoa

n = n(T ) , p = p(T )

n-p-tasossa. Käyrän alkupäissä ovat paineen arvot pin ja pout kiinnitetty. Tästä määräytyvät
(nin, Tin) samoin kuin (nout, Tout). Myös S0 määräytyy alkuehdoista ja jokainen S0:n arvo
määrää oman käyränsä.

3. Tilan yhtälöstä saadaan myös vapaan energian tiheydet fin ja fout ja kokonaisenergiat Fin
ja Fout. Läpivirtaukseen kulunut aika olisi t = L/v, jos virtaus nopeus on vakio. Jos v ei ole
vakio (n muuttuu) niin t =

∫
dl/v(l) pitkin virtausviivaa. Työnä vapautunut maksimaalinen

energia on siis W = Fout − Fin. Hyötysuhde olisi

η = W
∆Fin

= W
Pint

, t =
∫

dl
v(l) '

L
v .

Todellinen hyötysuhde olisi tämän alapuolella.

4. Konkreettinen malli saadaan kun oletetaan esimerkiksi van der Waalsin tilayhtälöä (http:
//tinyurl.com/yaryx7mx) käyttämällä. Osoittautuu, että tulos on eksplisiittisesti lasket-
tavissa ja yllättävän yksinkertainen.

η =
∆p1

∆pH
,

missä ∆pH on lämmittämällä tuotettu paineen kasvu ja ∆p1 paineen pienentyminen root-
torissa R1, joka tekee työtä. Lauseke voidaan myös kirjoittaa Carnotin kanssa analogiseen
muotoon mutta nyt mukana esiintyvät lämpötila erot lämpötilojen sijasta. Tämä on sopu-
soinnussa sen kanssa että tarkastellaan prosessia eikä stationaarista tilannetta.

http://tinyurl.com/yaryx7mx
http://tinyurl.com/yaryx7mx
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Tässä kannattaa kuitenkin olla hyvin itsekriittinen. Termodynamiikan ymmärrykseni on hyvin
rajallinen. Vapaata energiaa vapautettaan, mutta mikä osa siitä menee työksi? Onko kyseessä
vain hyötysuhde, joka liittyy siihen miten energiaa siirretään nestevirtauksessa lämmitettävästä
alueesta paineen sisältävänä lämpöenergiana roottoriin? Vai meneekö koko ∆f työksi? Voisiko
väittää että vapaan energian määritelmä F = E − TS = PV itse asiassa vähentää energiasta
sen osan, joka vastaa lämmöntuottoa: on todellakin kyseessä tehty työ kuten F = PV rohkaisee
ajattelemaan.

Jos lämmöksi jäävä osa jää virtaukseen niin voisi optimisesti väittää, että hyötysuhde on 1 tälle
askelelle. Jos ei niin tulee lisäksi mukaan Carnotia vastaava hyötysuhde, jonka yläraja määräytyisi
lämpötilaerosta roottorin ja vastaanottavan systeemin välillä.

3 Malli hydrodynaamisena virtapiirinä

Tässä mallissa eivät näy millään tavalla nesteen ominaisuudet muuten kuin virtausvastusten kautta.
Pelkästään hydrodynamiikka idealisoituna virtapiirianalogiaa käyttäen. Mitattuja parametreja
ovat virtausvastukset ja paine-erot. Kuten jo todettiin, tämä malli ei riitä hyötysuhteen arvioimiseen.

3.1 Piirimalli

Tarvitaan piiriteoreettinen malli roottorin ja nesteen vuorovaikutukselle.

1. Systeemin voisi mallintaa käyttäen virtapiirianalogiaa. Systeemissä on kolme yksikköä:
putkenpätkä jota lämmitetään ja joka toimii akkuna, roottori R1 josta otetaan tehoa ulos ja
joka on ikäänkuin sisäinen vastus rinnan kuormaa esittävän vastuksen kanssa ja roottori R2

josta ei oteta tehoa ulos ja joka toimii sisäisenä vastuksena. Lisäksi R1 ja R2 voidaan kytkeä
akselilla yhteen niin, että ne pyörivät samalla nopeudella.

2. Tilavuusvirta IV = dV/dt↔ I ja ∆P ↔ U .

Hiukkasvirta dN/dt = nSv säilyy. Säilyminen merkitsisi nestepartikkeleiden lukumäärän
säilymistä. Vain jos nestettä alkaa kertyä johonkin paikkaan tai karkaa systeemista, hiukkasvirta
ei säily. Näin ei tapahdu. Jos virtaus on kokoonpuristumaton pätee n = vakio ja tilavuusvirta
IV = Sv, säilyy ja v on vakio putkessa. Tämä approksimaatio voi olla hyvä lähtökohta.

Käsitellään ensin roottoreita R1 ja R2 ottamatta huomioon kytkentää. Jos se on mukana niin
R1 +R2 toimii kuten yksi ainoa roottori.

1. Ulosmenevä teho roottorissa R1 on

P1 = UI → IV ∆P .

2. Mukana on myös roottori R2, jonka läpi neste virtaa. Siihen liittyy ∆P2 ja pyörittämiseksi
tehty työ P2 = IV ∆P2.

Vain osa P1:stä ja P2:sta menee työksi. Loput menee lämmöksi. R1 + R2:lle kytkettynä
toisiinsa pätisi

P12 = P1 + P2 = IV (∆P1 + ∆P2 = IV ∆P ,

missä ∆P ulkoisen lämpösyötteeen tuotttama ja vastaa akkujännitettä.

3. Vastuksen analogia olisi virtausvastus. Virtausvastuksen tuottaisi viskositeetti ja pätisi
Ohmin lain analogia.

IV =
∆P

RV
.

Virtausvastus esimerkiksi roottorin yli voidaan määrittää mittaamalla mikä paine-ero tarvi-
taan tuottamaan annettu tilavuusvirta nesteelle sen läpi.
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4. Roottorin sisäinen virtausvastus

RV =
∆P

IV

on mitattavissa mittaamalla ∆P annetulla tilavuusvirtaukselle IV .

5. Mukana R1:ssä on myös ulkoinen kuorma. Ainakin muodollisesti voitaisiin ajatella, että ulos
menevän tehon ottava systeemi on ikäänkuin ulkoinen vastus. P voidaan ainakin muodollis-
esti ilmaista myös muodossa

P = I2
VRtot , Rtot = RKRrot

Rk+Rrot
.

Rtot vastaa kuormavastuksen ja virtaus vastusta rinnakkain. Kuormaan tulee mukaan root-
torin pyöritys. Joka tapauksessa ∆PIV tai ulos tuleva energia pitäisi pystyä mittaamaan.

Pitää pystyä arvioimaan mikä osa tästä energiasta menee työksi ja mikä lämmöksi. Roottori
on analoginen Carnotin koneelle: paineeseen liittyvää termistä energiaa muuttuu osin työksi,
osin lämmöksi. Tässä saattaa Carnotin laki antaa ylärajan. Onko lämpötilaero ulkoiseen
laitteen ja putken välillä Carnotissa esiintyvä ∆T , jolloin saataisiin η < ∆T/T?

Jos tilanne käsitellään virtapiirinä käyttäen Ohmin lakeja niin saadaan

1. IV = nSv on vakio. Jos virtaus on kokoonpuristumaton on Sv vakion joten v = vakio.

2. Kokonais-”jännite-ero” piirin yli on nolla:

∆P1 + ∆P2 + ∆Pin = 0 .

Jos ∆P2 = 0 niin ∆P1 = −∆Pin. Kuumennus kasvattaa painetta ja roottori taas pienentää
sen takaisin alkuperäiseen arvoonsa. Todellisuudessa myös ∆P2 on mukana joten ∆P1 ei ole
suuruudeltaan maksimaalinen. Voidaan käsitellä R1 ja R2 yhtenä roottorina.

On rakennettava malli myös ”akulle”. Lämpösyöttö putkenpätkään antaa energiaa. Tämä
vaatii yksinkertaisen hydrodynaamisen mallin putkessa olevalle virtaukselle. Lämpösyötettä voidaan
akun analogiana, joka kasvattaa painetta. Paineen kasvu ∆P on analoginen akkujännitteeseen. ∆P
voidaan arvioida laatimalla malli sille mitä hydrodynaamiselle virtaukselle lämmitetyssä putkessa
tapahtuu. Mukana on myös viskositeetin aiheuttama energian menetys ja häviöt molekyylien
värähtely- ja rotaatiovapausasteisiin. Viskositeetin osuus on mitätön ja voi sanoa, että ”akku” on
ideaalinen. ”Akkuun” liittyy siis hyösuhde η1 ' 1, joka kertoo mikä osa syötetystä lämpöenergiasta
menee paineen kasvatukseen. Ongelma palautuu sen ymmärtämiseen mitä tapahtuu roottorissa,
sen hyötysuhteen ymmärtämiseen koska neste toimii olennaisesta lämpöenergian siirtäjänä.

3.2 Viskositeetin tuottama virtausvastus

Parannettu versio mallille perustuisi hydrodynaamiseen malliin, jossa viskositeetin tuottama vir-
tausvastus voidaan lausua putken geometrian ja viskositeetin avulla. Tämä osuus virtausvastuk-
sesta osoittautui kuitenkin hyvin pieneksi. Roottori voidaan kuvata virtausvastuksena - ulkoisena
kuormana ja tämä dominoi. Sisällytän kuitenkin tämän pohdinnan.

Mallissa virtaus olisi hyvänä approksimaatiota 1-dimensioinen sylinterivirtaus. Täytyy kuitenkin
sallia virtausnopeuden ja paineen variaatio radiaalisuunnassa jos halutaan johtaa virtausvastus
viskositeetista η nesteelle. Tämän jälkeen riittäisi vain mitata paine erot ∆P lämmitettävän putken
osan ja roottorien läpi sekä lämmitysteho.

Viskositeen tuottama virtausvastus RV haluttaisiin siis johtaa. Piiriteoriassa tämä vastaisi sitä
että lausutaan vastus komponentille geometristen parametrienja johtavuuden avulla. R = σS/L,
S poikkipinta-ala ja L pituus. Perusyhtälö olisi j = σE sähkövirralle josta I = U/R seuraa.

Yksinkertainen malli stationaarisille virtaukselle putkessa on tilanne, jossa paine-gradientti
kumoaa viskositeetin aiheuttaman kitkavoiman antaa arvion virtausvastukselle viskositeetin avulla.
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1. Navier-Stokes yhtälöt löytyvät netistä ( https://en.wikipedia.org/wiki/NavierStokes_
equations). Nyt tilanne on hyvin stationaarinen koska nopeus on sylinterin suuntainen ja
riippuu vain radiaali-koordinaatista ρ. Paine riippuu sekä pitkittäisestä koordinaatista z,
että koordinaatista ρ mutta riippuvuus on separoituvaa muoto p = p1(z)p2(ρ)

2. Ehto, että paine-gradientti kumoaa viskositeetin virtaukselle v = v(ρ) ja painejakaumalle
p = p1(z)p2(ρ) on

∂zp = η(∂2
ρ + 1

ρ∂ρ)v .

3. Painegradientti on vakio putken suunnassa ja analogia vakiosähkö-kentälle. Saadaan

∆p(ρ)
L = η(∂2

ρ + 1
ρ∂ρ)v .

Tästä saadaan kertomalla molemmat puolet ρ:lla ja integroimalla ρ = 0:sta ρ = R, R putken
säde, ja jakamalla R2:lls, jolloin saadaan paine-eron keskiarvo vasemmalle puolelle

Osittais-integroimalla nähdään että oikean puolen integraali on ηR∂ρv(R)

2
∫ R
0

∆p(ρ)ρdρ

R2
1
L = 〈∆p〉

L ≡ ∆P
L = 2ηR∂ρv(R) .

4. Yksinkertaisin ratkaisu jolle reunaehto v(R) = 0 on voimassa on

v(ρ) = vmax(1− ρ

R
) .

Tälle ratkaisulle saadaan R∂ρv(R) = vmax ja saadaan

∆P
L = 2η

R2 vmax .

Tästä saadaan

IV = Svmax = ∆P
RV

, RV = 2ηL
R2S = 2ρνL

R2S .

Virtausvastus voidaan myös ilmaista putken sisältämän kokonaismassan avulla

RV = 2M
π2R6 ν , ρ = M

SL .
.

ν on kinemaattinen viskositeetti, joka on dimensioltaan pituus kertaa nopeus. Reynoldsin
luku Re = ν/l, missä L on jokin systeemiä karakterisoiva pituus-skaala, on dimensioltaan
nopeus. Nyt kyseeseen tulee l = L tai l = R. Ehkä luonnollisemmin Re = ν/R. Tällöin
saadaan

IV = Svmax = ∆P
RV

, RV = 2ηL
R2S = 2ρL

RS Re .

3.3 Malli lämmönsyötölle (”akulle”)

Malli lämmönsyötölle on modifikaatio edellisestä mallista: lisätään ulkoinen energia-syöte putkivir-
taukseen. Ensimmäinen tehtävä on arvioida mikä osuus syötetystä energiasta menee kitkan voit-
tamiseen ja mikä paineen tuottamiseen.

Stressi-tensorissa viskositeetti vastaa termiä Tvisc = η∇v, missä η on viskositeetti. Olennaisesti
on kyseessä energiatiheys. Tämän termin suhde paineen muutokseen ∆p, joka on olennaisesti
termisen energian energian tiheys translaatio-vapausasteissa, antaa arvion sen tärkeydelle. Nyt
tarkasteltavassa tapauksessa pätee

∆Tzρ = η∂ρv = ρRe× vmax , Re = ν
R .

https://en.wikipedia.org/wiki/Navier–Stokes_equations
https://en.wikipedia.org/wiki/Navier–Stokes_equations
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Paineen muutos termi on kertalukua paine ja olennaisesta termisen energian tiheytenä kertalukua
ρv2
th/2. Tästä saadaan viskositeettitermin ja paineen suhteelle r

r ∼ Re× vmax
v2
th

.

Vedelle kinemaattinen viskosisteetti 20 Celcius asteess on noin 10−6 m2/s. Jos putken säde on
R = .3 m, Reynoldsin luku on Re = ν/R = 10−5 m/s= 10−13c. Samassa lämpötilassa pätee
v2
th = (2/3)T/18mp. Terminen energia on T ∼ 3 × 10−2 eV ja protonin massa on mp = 109 eV.

Saadaan v2
th ∼ 2 × 10−12c2. vmax = 10−7c antaisi suhteelle karkean arvio r ∼ 10−8 joten lämpö

energia menisi erinomaisena approsimaatio paineen tuottamiseen.
Voi sanoa, että lämmönsyöttö toimii lähes ideaalisena akkuna ja ongelma redusoituu yri-

tykseen ymmärtää hyötysuhde η paineeseen liittyvän termisen energian muuntumiselle työksi.
Tämä yksinkertaistaa tilanteen käsittelyä koska viskositeetti voidaan jättää huomiotta systeemin
lämmityksessä

Voidaan yrittää ymmärtää yksityiskohtaisemmin mitä ”akussa” tapahtuu.

1. Voi ajatella, että ulkoinen syöttöteho Pin korvautuu teholla per tilavuusyksikkö

Pin →
dPin
dV

.

Jos tehotiheys on sama koko putkella saadaan

dPin
dV

=
Pin
SL

.

Sylinteri-symmetrian perusteella on käytännöllisempää puhua tehosta per pituus-yksikkö

dP

dx
=
Pin
L

.

2. On muunnettva tehon syöttö energiana per aikayksikkö energiaksi jonka nestehiukkanen saa
kulkiessaan putken läpi. Hiukkanen käyttää tähän matkaan ajan T = L/v. Syötetty energia
on

E =
dPin
dV

V T = Pin
L

v
.

3. Esitetyn arvion perusteella voidaan viskositeettin rooli unohtaa energian syötössä. Ehto, että
lämpösyöttö tuottaan paineen kasvun painejakaumalle p = p1(z)p2(ρ) on

∂zp = Pin

V
1
v .

Oikea puoli on räätälöity siten, että integroitaessa putkin pätkän yli (tämä vastaa aikaa
T = L/v) se antaa syötetyn energia per tilavuusyksikkö.

4. Vakion paine-gradientti ts. paineen kasvu putkea pitkin (eikä pienemistä kuten ilman ener-
giasyötettä) antaa

p1(z) = p1,in + ∆p1z , ∆p1 = p1,out − p1,in > 0 ,

Ottamalla keskiarvo radiaalikoordinaatin yli ja olettaen kokoonpuristumaton virtaus saadaan

〈∆p〉 ≡ ∆P = Pin

vS = Pin

LS T , T = L
v .

Paineen kasvu on kääntäen verrannollien virtausnopeuteen mikä on luonnollista koska putkessa
vietetty aika on T = L/v.
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4 Yritys rakentaa malli hyötysuhteelle van der Waalsin tilan
yhtälöä käyttäen

Hyötysuhde määräytyy siitä mikä osa paineeksi syötetystä lämpöenergiasta kyetään ottamaan
käyttöön roottorisssa sekä siitä mikä osa tästä lämpöenergiasta voidaan muuntaa työksi. Proses-
sissa on 2 askelta.

1. Lämpöenergian siirto lämmistysalueesta roottoriin ja sen osittainen uuttaminen ulos. Siir-
toon liittyvän hyötysuhteen määrää se mikä osa tuotetusta lisäpaineesta voidaan pienentää.

2. Tämän lämpöenergian muuntaminen työksi. Jos vapaa energia menee kokonaan työksi niin
hyötysuhteen määrää paineen alenema suhteessa paineen kasvuun lämmitysyksikössä. Jos
vain osa menee työksi, niin Carnotin lämpökone voisi toimia mallina ja relevantit lämpötilat
olisivat vastaanottavan systeemin lämpötila ja roottorin lämpötila. Voisi väittää, että tämä
kuva ei ole oikea koska lämmöksi menevä osuus jää virtaukseen.

Konkreettinen malli saadaan kun oletetaan esimerkiksi van der Waalsin tilayhtälöä käyttämällä
(katso esim. Wikipedia artikkeli http://tinyurl.com/yayjgehm). Van der Waals on vain ped-
agoginen malli. Itse asiassa sekä termodynamiikka että tilastollinen fysiikka on vaikeuksissa kri-
ittisessä alueessa jossa on mukana kahta faasia. Mallin soveltaminen kuitenkin auttoi tajuamaan
ylläesitetyn prosessin jaon kahteen osaan.

4.1 Van der Waalsin tilan yhtälö

Summeerataan aluksi van der Waalsin tilan yhtälö lyhyesti. Muuttujat ovat (T, V ) tai ekvivalentisti
(T, n), n = N/V , koska hiukkaslukumäärä N on vakioparametri. Luonnollinen termodynaaminen
funktio on vapaa enertia F (T, n) = E − TS (termodynaamisista funktioista löytyy lyhyt lista
osoitteessa http://tinyurl.com/yb765vw7).

1. Van der Waalsin tilan yhtälö on muotoa

P = ( ∂F∂V )T = n
1−nb1T − a1n

2 .

Tässä n = N/V , missä N on hiukkaslukumääränä vakioparametri. (b1 = 0, a1 = 0) antaa
ideaalikaasun tilan yhtälön.

Van deer Waals on epätäydellinen kuvailu, sillä se antaa vain paineen p(n, T ) hiukkas-
tiheyden funktiona, mutta ei entropiaa S. Teknisemmin: pitäisi tuntea vapaa energia F (T, V ):
paineelle pätee p = (∂F/∂V )T ja S = (∂F/∂T )V .

Tarvittaisiin myös

S = (∂F∂T )V ,

jotta dF = SdT − pdV voitaisiin integroida. Tarvitaan informaatiota entropiasta, joka ei
sisälly van der Waalsiin. Jollain tavalla sisään pitää syöttää tämä informaatio.

2. Sekä energian että entropian lausekeet voidaan kiinnittää olettamalla, että energia E on
homogeeninen funktion (S,T,P,V):n suhteen (dE = TdS − PdV ):

E = TS − PV .

Tämä on lisäoletus, joka voi olla vääräkin (oletusta on pohdittu Naparin ja Vehkamäen (en-
tinen oppilaani!) kirjoittamassa termodynamiikan kurssikirjassa ”Termofysiikan perusteet”
http://tinyurl.com/y8gd9r5l).

http://tinyurl.com/yayjgehm
http://tinyurl.com/yb765vw7
http://tinyurl.com/y8gd9r5l
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(a) Tällöin saataisiin vapaalle energialle per partikkeli

f =
F

N
=
E − TS
N

=
PV

N
=
P

n

Van der Waalsille saadaan käyttämällä ylläolevaa paineen kaavaa:

f = P
n = T

1−nb1 − a1n .

(b) Entropialle per partikkeli saadaan

s = S
N =

( ∂p
∂T )V
n = 1

1−nb1 .

s = S/N ei siis riipu lämpötilasta lainkaan.

(c) Yksihiukkasenergialle e = E/N saadaan

e = TS−PV
N = a1n .

Myös e riippuu vain n:stä.

Van der Waals todellakin sallii 2 faasia. Tilan yhtälö paineelle voidaan kirjoittaa häviämisehtona
3:nnen asteen polynomille P3(n, T ) n:n funktiona:

P3(n, t) =
∑3
k=0 pkn

k = 0 p3 = 1 , p2 = − 1
b1

, p1 = P
a1b1

+ T
a1b1

, p0 = − P
a1b1

.

Yhtälön realijuurien määrä on pariton. Kriittisessä alueessa, joka vastaa cusp catastrofia on
kolme reaali-juurta nmax, n0, nmin. Suurin juuri nmax ja pienin juuri nmin vastaavat nestettä
ja kaasua, keskimmäinen juuri on epästabiili eikä sille ole fysikaalista identifikaatiota.

Cuspin projektio (p, T ) tasoon on kaarevan V:n muotoinen. Kärki vastaa kriittistä pistettä
V:n sivuilla tapahtuu faasitransitio kriittiseen alueseen. Kärjen yläpuolella ei voi sanoa, onko
kyse nesteestä vai kaasusta. V:n toisesta sivusta ulospäin on yksi reaalijuuri nG, joka vastaa
kaasufaasia ja toisesta sivusta ulospäin samoin reaalijuuri nL vastaten nestefaasia (nL >
nG) on suurempi kuin kaasufaasissa). Ylläolevassa yhtälössä e:lle täytyy valita suurempi
yksinkertainen juuri nL.

4.2 Van der Waalsin ongelmat

Van der Waalsiin liittyy ongelmia joista ei päästä eroon myöskään tilastollisen mekaniikan ku-
vailussa.

1. Van der Waals sallii kaasufaasin lisäksi nestefaasiin, mutta malli toimii kuitenkin huonosti.
Reaalimaailmassa (n, p, T ) avaruuden 2-D pinnalla kriittisessä alueessa, jossa neste ja kaasu
ovat mahdollisia, p on riippumaton V :stä kun T on vakio: p(V, T ) = p(T ) - toisin kuin van
der Waals ennustaa. Tulkinta on, että olemmat faasit ovat läsnä ja vain niiden osuudet
vaihtelevat kun V muuttuu. p(V, T ) = p(T ) ehto sanoo, että nesteelle ja kaasulle ovat
paineeet samat kriittisyydessä. Tämä tulkittavissa tasapaino-ehtona.

2. Jo Maxwell esitti modifikaation van der Waalsille: pinta-alasääntö kertoo miten van der
Waalsin ennustama vakio-T käyrä, joka yhdistää kahta faasia korvataan suoralla, jolle p on
vakio. Van der Waalsin käyrän määräämä pinta-ala on sama kuin suoran määräämä.

”Vipusääntö” (http://tinyurl.com/ybuq7aye) kertoo kuinka faasien osuudet. Tarkastel-
laan kahta faasia α ja β. Faasit sisältävät kahta elementtiä (kuten termi kuuluu) A ja B ja
vipusääntö perustuu elementin B osuuteen puhtaissa faaseissa ja komposiitissa. Olkoon B:n
osuus faasissa α a, faasissa β b sekä sekoituksessa c. Vipusääntö

Xα =
c− b
a− b

http://tinyurl.com/ybuq7aye
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seuraa trivaalisti siitä, että sekoitusfaasissa on c = Xαa+ (1−Xαb = Xα(a− b) + b.

Mitä A ja B olisivat esimerkiksi veden tapauksessa jos vesimolekyyli on peryksikkö, ei ole it-
selleni kuitenkaan selvää. Onko vesimolekyyleillä kaksi erilaista tilaa A ja B vai onko mukana
jotain muutakin kuin vesimolekyylit? Toimivat mallit ovat numeerisia koska analyyttiseet
mallit eivät voi selittää vipusääntöä ilman ad hoc modifikaatioita.

TGD-tulkinta voisi olla seuraava.

1. Nestefaasissa molekyylejä yhdistäisivät vuoputket ja syntyisi yhtenäisiä vuoputkiverkostoja.
Kriittisessä alueessa on alueita, joissa molekyylit ovat joko verkostoituneet tai eivät ja tilavuus
riippuu siitä mikä on näiden alueiden tilavuuksien suhde. Suuri määrä verkoistuneita molekyylejä
antaa pienemmän tilavuuden. Paine on kuitenkin sama molemmissa alueissa, koska on ky-
seessä tasapainotila. Verkostoitumisen aste olisi se mikä erottaisi kahta faasia toisistaan.

2. Mitä olisivat vastineet elementeille A ja B? Vastaisivatko elementit A ja B molekyylejä ja
vuoputkia. Tällöin vuoputkien osuus erottelisi faaseja toisistaan kriittisyydessään. Vuop-
utkien osuus voi vaihdella kriittisyydessä ja niitä on kaasufaasissakin, ellei päde b = 0, jol-
loin a:n pitäisi kuitenkin varioida. Puhtaassa kaasufaasissa niitä ei ole mukana lainkaan.
Nestefaasissa kriittisyyden ulkopuolella a olisi maksimi-arvossaan. Kriittisyys vastaisi siis
nestefaasille sitä että nestemäisyysaste varioisi.

Entä tulkintaongelma, joka koituu siitä että neste- ja kaasufaaseja ei voi erottaa toisistaan
cuspin V:n kärjen alapuolella? Olisiko niin, että kummallekin faasille B:n osuudet a ja b V:n
kärjen alapuolellakin riippuvat tilasta ja että kierrettäessä V:n kärjen ympäri toiselle puolelle
osuus b muuttuu jatkuvalla tavalla osuudeksi a ja samoin faasit.

Näyttäisi, että kun the vuoputkien määrä per nestepartikkeli on kriittisen arvon yläpuolella,
transitio nestefaasiin tapahtuu ja tiheys pienenee nesteen tiheyteen. V:n kärjen alapuolella
ja vasemmalle V:stä, tämä faasitransitio ei tapahdu. Oikealla V:stä se tapahtuisi. Kriittisen
alueen sisällä on alueita, joissa se tapahtuu ja alueita joissa näin ei käy. tapahdu.

Näyttäisi siis, että vuoputkikäsite selittäisi vipusäännön, joka toimii mutta jota ei voida ymmärtää
tavallisessa termodynamiikassa ja tilastollisessa fysiikassa.

4.3 Arvio hyötysuhteelle van der Waalsista

Seuraavaksi voidaan arvioida hyötysuhdetta, jossa adiabaattisuusehdosta seuraa yläraja.

1. Näillä tiedoilla voidaan lausua adiabaattisuusehto S = S0:

1
1−nb1 = S0 .

Hiukkastiheys n on siis vakio kuten kokoonpuristumattomalle virtaukselle, joten myös energia
e on vakio pitkin virtaviivaa: ∆e = 0.

2. Vapaan energia muutos on se, mikä vastaa systeemistä työnä saatavaa energiaa (kuten nim-
ityskin ilmaisee). Saadaan

∆f = ∆T
1−nb1 − a1n ,

∆p = n∆T
1−nb1 − a1n

2 = n∆f .

Paineen muutos on siis nollasta poikkeava kuten pitääkin. Lämpötilan muutos ∆T pitkin
käyrää määrää systeemistä saatavan maksimaalisen energian per hiukkanen.

3. Hyötysuhteelle saadaan

η =
N∆f

Pin

v

L
=
N

n

∆p

Pin

v

L
= N

( ∆T
1−nb1 − a1n)

Pin

v

L
.
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Hyötysuhde menee nollaan, kun v menee nollaan (nestepartikkeli viettää hyvin pitkän ajan
lämmitysputkessa ja siis myös roottorissa). Virtausnopeuden pitäisi siis olla mahdollisim-
man suuri ja putken pätkän pituuden mahdollisimman pieni mikä vaatii suurta tehoa per
pituusyksikkö.

a1 ja b1 ovat aineparametreja ja ne spesifioimalla voidaan johtaa hyötysuhde. Jotta saataisiin
riittävän suuri hyötysuhde on kyettävä saamaan suuri arvo ∆T :lle. ∆T määräytyy lämmönsyötöstä
joka tuottaa ∆pH :n. Aiemmasta kaavasta saadaan paineen kasvulle ∆pH lämmitysputkessa

∆pH = Pin

vS = Pin

LS t , t = L
v .

4. Jos paineen lasku roottorissa on maksimaalinen ts. ∆p = ∆pH niin hyötysuhde on η = 1!
Ilmeisesti siis lasku on virheetön.

5. Todellisuudessa paineen lasku ei ole maksimaalinen ja pätee

∆p = ε∆pH , ε < 1 .

Tällöin saadaan hyötysuhteeksi

η = ε =
∆p

∆pH
=

n∆T
1−nb1
∆pH

.

Koska ollaan nestefaasissa täytyy n:n arvoksi sijoittaa suurempi yksinkertaisista juurista
paineen antamalle 3:n asteen polynomin häviämisehdolle. Hyötysuhteen määrää se kuinka
täydellisesti paineen voidaan palauttaa roottorissa arvoon mikä sillä on ennen lämmitys-
yksikköä. Paineen muutos roottorin ja lämmitys-yksikön välillä pienentää hyötysuhdetta ja
pitäisi minimoida.

Huom: Mikä vaikutus on roottorien kytkennällä.

Huom: Muuttuko osa roottorista siirretystä vapaasta energiasta lämpöenergiaksi vai me-
neekö se kokonaan työksi?

Carnotin vastine olisi se, että vain osa tuotetusta paineesta (ts. nesteen termisestä energiasta,
joksi sisäänsyötetty terminen energia muunnetaan) voidaan työksi. Valitettavasti malli ei
kerro mitään siitä mikä parametrin ε arvo on.

6. Arvaus Carnotin η ≤ ∆T/T1 yleistykseksi voisi olla seuraava. Koska ∆p häviää koko syklin
yli voidaan η lausua myös seuraavasti:

η =
∆pH −∆p2

∆pH
.

Tässä ∆p2 on paine-eroR1:n ja lämmitys-systeemin alapään välillä. Lämpötilan lämpökylvylle
korvaa ∆pH ja ∆T :n korvaa erotus ∆pH − ∆p2. Jos virtaus on kokoonpuristumaton niin
∆p:t ovat verrannollisia ∆T :n ja saadaan

η =
∆TH −∆T2

∆TH
.

Se, että lämpötilat korvautuisivat niiden muutoksilla seuraa siitä, että tarkastellaan prosessia
eikä stationaarista tilannetta. Tämä sopii myös nolla-energia-ontologian henkeen.

7. Miksi sitten olisi ∆pR < ∆pH? Perushavainto on, että on vietettävä roottorissa tietty
minimi-aika ∆tmin, jotta ∆pR = ∆pH saavutetaan. Jos roottorin dimension on pitkittäis-
suunnassa pienempi kuin lämmitettävän putken-osan pituus, tätä päämäärää ei saavuteta
jos virtausnopeus on sama. ∆tR riippuu kuitenkin virtausnopeudesta roottorin sisällä. Muu-
tamia huomioita.

(a) Aikaa ∆tR voidaan pidentää, jos putkea paksunnetaan ennen roottoria, koska hiukkasvirta
nSv säilyy ja poikkipinta-alan kasvattaminen pienentää nopeutta v.
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(b) Hidastumista voisi aiheuttaa myös roottorin pyörimiseen liittyvä kitka. Pyörimiseen
menisi osa virtauksen energiasta ja nesteen liike hidastuisi, tulisi ”ruuhka”. Tällöin
pienen neste-alueen kuluttama aika ∆tR sen kulkiessa roottorin läpi kuitenkin kasvaisi
ja ∆pR voisi kasvaa. Tämä siis parantaisi hyötysuhdetta.

(c) Osa energiasta menisi roottorin pyörimiseen liittyvään kitkaan. Koska on kyse jonkin-
laisesta dissipaatiosta: voisi ehkä ajatella kavitaatiota, jolloin syntyy kuplia ja keskimääräinen
n pienenee. Tämä merkitsisi nopeuden kasvamista ja roottorissa vietetty aika ∆tR
toteuttaisi ∆tR < ∆tmin eikä saavutettaisi maksimaalista arvoa ∆pR:lle. Saataisiin
∆pR = ε1∆pH , tR = ε2∆tmin ja η = ε = ε1ε2. ε määräytyisi roottorin ja nesteen
vuorovaikutuksen detaljeista.

Malli tietysti heijastaa vain omaa hataraa ymmärystäni tarkastellusta systeemistä ja hydroter-
modynamiikasta. Koska on kyseessä uudenlainen tapa tuottaa energiaa, on yritettävä löytää kaikki
mahdolliset vasta-argumentit sekä ideaa ja vieläkin tärkeämpää, mallia kohtaan!

1. Jos edellä esitetty kuva on suurin piirtein oikea niin paineeseen varastoitua termistä energiaa-
vapaata energiaa - muutetaan työksi.

2. Optimisti arvelisi, että kaikki paineen pienenemisessä vapautuva vapaa energia ∆f menee
työksi. Yksinkertaisin kuva olisi, että paineen pieneneminen on todellakin pienempi kuin
ideaalitapauksessa, mikä antaa ideaalisen hyötysuhteen 1 jos roottorissa vietetty aika on
tarpeeksi pitkä). Lämmöksi menevä osa vastasi jäljelle jäävää vapaata energiaa.

3. Pessimisti taas väittäisi, että vain osaa vapaasta energiasta ∆f menee työksi. Tuleeko
tästä hyötysuhteeseen lisää standardi tekijä η < ∆T/Trot, missä ∆T on lämpötilojen erotus
roottorille ja vastaanottavalle systeemille? Jos näin on niin, virtaus-systeemi toimisi vain
lämpöenergian siirtäjänä varsinaiseen kohteeseen ja siirtoon liittyvät tappiot huonontaisivat
hyötysuhdetta η, jonka voi mallintaa Carnotin koneena.

5 Nesteen kierrätyksen huomioon ottaminen

Keskustelussa Sampan kanssa tajusin, että ylläoleva lähestymistapa on sinänsä oikea mutta keskit-
tyy vain hyötysuhteeseen joka kuvaa sitä mitä tapahtuu jos neste menee roottorin läpi vain ker-
ran. Neste kuitenkin palaa takaisin. Mukana ovat lämmönvaihtimet jotka keräävät roottorin läpi
päässeen lämmön ja palauttavat sen uudestaan. Tämä parantaa hyötysuhdetta koska samasta
sisääntuleva lämpöpaketti menee roottorin läpi monta kertaa - äärettömän monta kertaa rajalla
jolla systeemi on toimminassa äärettömän kauna..

Jonkinlaisen kuvan siitä mitä tapahtuu voi saada seuraavasti. Ajatellaan että systeemiin
syötetään lämpömäärä Q. Se alkaa kiertää.

1. Ensimmäisellä kierroksella roottori ottaa siitä osuuden W1 = ηQ ja jäljelle jää Q1 = (1−η)Q.
Matkalla tapahtuu myös lämpö-energian menetystä. Lämmmönvaihtimien hyötysuhde ei
ole ideaalinen, lämpöä johtuu ulkomaailmaan, tulee säteilytappioita, nesteen kitkakin syö
energiaa. Jäljelle jääneestä lämpöenergiasta Q1 menetään xQ1 tällä tavalla: parametri x on
kuitenkin pieni.

2. Kierroksen jälkeen roottoriin palaava lämpömäärä on

Q1,t = (1− x)Q1 = (1− x)(1− η)Q ≡ kQ ,

missä

k = (1− x)(1− η) .

kertoo mikä osuus lämmöstä kaikkiaan menetetään roottorissa ja sen jälkeen lämpötappioina.
k on kätevä parametri ja kuvaa koko laitteen.

Tästä saadaan työtä W2 = ηQ1,t = η(1 − x)(1 − η)Q = ηkQ. Jäljelle jää lämpömäärä
on Q2 = (1 − eta)Q1,t = (1 − η)(1 − x)(1 − η)Q. Seuraavalla kierroksella tulee roottoriin
Q2,t = (1− x)Q2 = (1− x)2(1− η)2Q = k2Q.
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3. Jatko menee samaan tapaan. n:nnellä kierroksella saadaan ulos työ Wn = ηkn−1.

4. Kaikkiaan saadaan ulos työtä summa W = W1 +W2 +W3 + ... eli

W = η(1 + k + k2 + k3 + ...)Q =
η

1− k)
Q .

Tästä kokonais-hyötysuhde on

ηtot =
W

Q
=

η

1− k)
=

1

1− (1− η)(1− x)
=

1

1 + x 1−η
η

. (5.1)

Jos matkalla ei ole häviöitä (ideaaliset lämmönvaihtimet, jne...) niin pätee x = 0 ja hyötysuhde
on ηtot = 1. Jos x = 1, eli takaisin ei tule kierroksen jälkeen lämpöä lainkaan, niin hyötysuhde
on ηtot = η eli se mitä saataisiin jos neste ei palaisi takaisin lainkaan. Jos x on paljon pienempi
kuin η

x << η ,

niin hyötysuhteeksi saadaan hyvänä approksimaationa

ηtot ' 1− x1− η
η

Joka on lähellä ykköstä.

Kaiken kaikkiaan: on kyseessä Carnotin kone jossa on mukana kierrätys. Se parantaa hyötysuhdetta
jolle tulee kuitenkin raja lämmönmenetyksesta jokaisen kierroksen aikana. Tämä mallin on tietysti
yksinkertaistus mutta se saattaa olla hyvä approksimaatio tilanteessa jossa lämpöä syötetään jatku-
vasti koska voidaan ajatella, että se koostuu peräkkäistä paketeista jotka jäävät kiertämään.

Arvion η:lle saisi ehkä seuraavasti.

1. Roottoriin tehty työ per aikayksikkö on voima F kertaa virtausnopeus v (dW/dt = Fv) ja
voima on F = ∆pS:

P =
dW

dt
= ∆p× Sv = ∆p× dV

dt
.

Tässä dV/dT on tilavuusvirtaus, jonka voinet arvioida. Hyötysuhde η olisi

η =
P

Pin
= ∆p

dV/dt

Pin
.

Pitäisi tietää paine-ero ∆p, tilavuusvirtaus dV
dt ja sisään syötetty lämpöteho Pin. η:n pitäisi

olla vähintään samaa luokkaa kuin parametri x.

5.1 Alustavia arvioita tehoille Pin ja Prot, ∆p ja η

Jos tunnetaan η niin voidaan arvioida ηtot.

1. Jos tilanne kuvataanvirtapiirianalogiaa käyttäen niin työksi menevä teho voidaan lausua
muodossa

Prot =
dV

dt
×∆p =

∆p2

R
,

missä R on roottorin virtausvastus: johdin sille arvion putkessa virtaavalle nesteelle mutta
tämä ei riitä roottorin tapauksesssa koska ainoa häviä tulee kitkasta.

Uskallan arvata että tällainen parametri voisi luonnehtia roottoria ja ettkä arvo
R:lle löytyy taulukoista.

Tarvitsisi tietää vain ∆p ja sille voi tehdä kertalukuarvio. Ainakin se on pienempi kuin p.
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2. Jos tunnetaan lämpökapasiteetti C voidaan arvioida arvioida sisään syötetty energia Pin

∆E = C∆T .

Lämmitetyn putkenosan läpi virtaavan neste kuluttuaa tähän ajan τ = L/v, L lämmitetyn
osan pituus ja v virtausnopeus. Tässä ajassa neste-elementti saa yllä olevan energian ja
lämpenee ∆T :n verran (esimerkiksi 80 K). Tästä saadaan

Pin =
C∆T

τ
=
C∆T

L
× v .

3. Tästä saataisiin

η =
Prot
Pin

,

ja

ηtot =
1

[1 + x(1−η)
η ]

.

x olisi osuus lämmöstä, joka menee kierroksen aikana hukkaan. Muutamia prosentteja oman
arviosi mukaan. η:n pitäisi olla muutamia prosentteja.

∆p:lle roottorissa voisi saada ainakin kertalukuarvio seuraavasti.

1. Johdetaan ∆V lämpölaajenemimesta.

∆V = α× V∆T ,

missä α

α =
1

V
× ∂V

∂T
.

on lämpölaajenemiskerroin.

2. Johdetaan tästä ∆p ∆T :n avulla käyttäen bulk modusta:

∆p =
∂p

∂V
∆V = −K∆V

V
.

Tässä K = −V (∂p/∂V ) on bulk modulus. Dimensioltaan siis paine.

Bulk modulus pitäisi maksimoida koska tehty työ on verrannollinen ∆p:hen ja siis K:n.

3. Katsoin bulk modulukselle tyypillistä arvoa Wikipediasta. Arvo

K = 2.1× 109 Pa

tarttui hyppysiin. Pätee esimerkiksi vedelle ja ilmeisesti öljyille myös kertalukuna ainakin.

Tehdään ∆p:lle arvio antamillasi tiedoilla.

1. V = 100 l ja ∆V ∼ 9 l oman arvioisi mukaan eli ∆V/V ∼ .1. Pitäisi tulla ∆p = 200
bar=2× 107 Pa.

∆T = .01 C on oma arviosi myös. Kokeillaan sitä.

Oletetaan arviosi paineelle: p = 201 bar = 2.01× 107 Pa.
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2. Kun tästä laittaa luvut sisään saa

∆p = 2 bar . Todellisuudessa olisi ∆p = 200 bar. Oltava ∆T ∼ 1 C, jos tämä halutaan.

Tämä arvio ei ole aivan oikea niinkuin selviää. Paine riippuu tilanyhtälöiden kautta sekä T :stä
että V :stä: p = p(T, V ) ja (T,V)-tason käyrällä, jota pitkin neste-elementti liikkuu roottorissa,
täytyy ottaa mukaan myös suora osuus ∆p = ∂p/∂T T :n muutoksesta. Osoittautuu, että arvio sille
on samaa kertalukua, mutta pienempi kuin ylläesitetty arvio osuudelle joka tulee V :n muutoksesta,
∆V , jonka indusoi ∆T .

5.2 Yritys arvioida hyötysuhdetta η

Kaava roottori tekemän työn teholle olettaen suora putki

Prot =
dV

dt
×∆p = Sv ×∆p .

S poikki-pinta-ala ja v virtaus nopeus.

5.2.1 Arvio ∆p:lle

Perustehtävänä on arvioida ∆p. Tästä päästään hyötysuhteeseen.

1. Tilanyhtälö

p = p(T, V )

määrittelee 2-ulotteisen pinnan 3-ulotteisessa (p,V,T) -avaruudessa. Tämä geometrinen kuva
on hyödyllinen kun yrittää ymmärtää mitä tapahtuu.

2. Hyötysuhteen η arvioinnissa täytyy spesifioida tarkkaan mitä tapahtuu kun pieni nestealue
menee roottorin läpi. Sitä ei oikeastaan tarkkaan tiedetä, mutta yläraja hyötysuhteelle
saadaan kun oletetaan adiabaattisuus ts. entropia ei kasva. Tämä tapaus vastaa Carnotin
kaavan antamaa ylärajaa.

3. Kirjoitetaan ensin ∆p yleiselle muutokselle (T, V )→ (T + ∆T, V∆V ).

∆p = (
∂p

∂V
)T∆V + (

∂p

∂T
)V ∆T .

4. Rajoitutaan sitten adiabaattiseen prosessiin (S = vakio), jota vastaa käyrä (V,T)-tasossa
jolle voidaan lausua V = V (T ).

∆p = ∆p1 + ∆p2 = [(
∂p

∂V
)T (

dV

dT
)S + (

∂p

∂T
)V ]∆T .

5. ∆p:n ensimmäinen termi voidaan kirjoittaa muotoon

∆p1 = V (
∂p

∂V
)T ×

1

V
(
dV

dT
)S∆T = KαS∆T .

Tässä K on bulk modulus ja αS on adiabaattinen lämpölaajenemiskerroin. Toinen termi
voidaan taas kirjoittaa muotoon. Näiden määritelmät voi poimia kaavasta.

Arviot tälle termille viittaavat siihen, että sen osuus ei ole riittävän iso, ellei vaadita ti-
ittävävän isoa ∆Trot. Vaaditut arvot näyttävät epärealistisen suurilta (muutama aste).
Tässä kannattaa olla hyvin varovainen.
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6. ∆p:n ensimmäinen termi voidaan kirjoittaa muotoon

∆p2 = (
∂p

∂T
)V ∆T .

Tiedetään, että esimerkiksi vesi lämpenee hyvin vähän kasvatettaessa painetta ainakin jois-
sain tilanteissa (vesileikkuri Sampan mainitsemana esimerkkinä). Kääntäen, paine kasvaa
hyvin vahvasti kun kasvatetaaan lämpötilaa. Tämä antaa ainakin toiveita, että saadaan
riittävän iso ∆p2 varsin pienellä arvolla ∆Trot:lle.

5.2.2 Hyötysuhteen kaava

Johdetaan ensin hyötysuhteen kaava yleisessä tapauksessa.

1. Sisään syötetty teho on aiemman arvion perusteella

Pin = C ×∆Tin
v

L
.

C on lämpökapasiteetti, v virtausnopeus, ja L putken pätkän pituus.

2. Roottorin hyötysuhde yhdelle kierrokselle on kahden termin summa:

η = η1 + η2 ,

η1 = Sv∆p1
Pin

,

η2 = Sv∆p2
Pin

.

5.2.3 η1:n arviointi

Katsotaan ensin η1:n arviointia.

1. ∆p1 voidaan arvioida

∆p1 = KαS ×∆Trot.

K on bulk modulus ja α lämpölaajenmiskerroin.

2. Tästä hyötysuhde η1 yhdelle kierrokselle on

η1 =
Kα

c
× ∆Trot

∆Tin

Virtausnopeus v katoaa kaavasta kokonaan kuten myös tilavuus V ! Putkenpätkän ainevakiot
ja termodynamiikka separoituvat siististi kahden termin tuloksi. Kα/C on ainevakioiden
yhdistelmä. ∆Trot/∆Tin vastaa termodynamiikkaa. ∆Tin on lämpötilan muutos lämmitettäessä.
∆Trot on lämpötilan lasku roottorissa. Tämä pitäisi pystyä johtamaan teoreettisesti mutta
se edellyttää mallia roottorille.

On huomattava, että lämpötilan muutosten suhde tulee mukaan. Joskus aiemmin johdin
kaavan jossa paineen muutosten suhde esiintyi.∆Trot siis pitäisi tietää.
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5.2.4 η2:n arviointi

Katsotaan sitten η2:sta.

1. ∆p2 voidaan arvioida

∆p2 = (
∂p

∂T
)V ∆T ≡M∆T.

M :n nimitystä ja virallista merkintää en tiedä.

2. Pikku laskulla saadaan tästä hyötysuhde η2 yhdelle kierrokselle on

η2 =
M

c
× ∆Trot

∆Tin

3. Van der Waalsin on kohtalainen mallin myös nesteelle ja sekina antaa toivoa siitä, että η2

saattaisi olla paljon isompi kuin η1. Van der Waalsin tilanyhtälö on muotoa

P =
nT

1− n
n0

+ p0 .

Kun n0 = ∞ ja p0 = 0 saadaan ideaalikaasun tilanyhtälö. Voi ajatella että n0 on kriittinen
lukumäärätiheys molekyyleille jossa paine menee äärettömäksi ellei lämpötila ole T = 0. n =
N/V , missä N on kokonaislukumäärä partikkeleille joka on vakio. n ja V ovat vaihtoehtoisia
muuttujia.

Tästä saadaan kertoimelle M :

M = (
∂p

∂T
)n =

n

1− n
n0

.

Kun lukumäärätiheys n on riittävän lähellä n0 on M hyvin iso ja η2 on suuri.

4. η voidaan kirjoittaa muodossa

η = η1 + η2 =
KαS +M

c
× ∆Trot

∆Tin
.

5.2.5 Fysikaalisesta tulkinnasta

Jo tässä vaiheessa voi katsoa fysikaalista tulkintaa.

1. η1:n kaavasta näkee, että aineparametrit K ja α pitäisi saada mahdollisimman suureksi.
Tosin odotetaan että η2 dominoi.

2. c:n minimointi parantaa hyötysuhdetta mutta toisaalta se pienentää sisälle menevää energiaa
annetulle ∆Tin, joten minimointi ei vaikuta hyvältä idealta.

Katsotaan konkreettinen esimerkki.

1. η1:n tapauksessa parametrin y=αK/c arvo suhteen z = ∆Trot/∆Tin arvot ratkaisevat.

(a) Arvioidaan parametrin y arvo antamillesi parametriarvoille. α = 9 × 10−4 on sinun
anatamasi arvo. K = 2 × 109 GPa on tyypillinen arvo netin perusteella. c = 2.1
MJ/m3K, jos oletan antamasi arvon c:lle kilogrammaa kohti ja oletan etta litra painaa
kilon. Tuloksena on y1 = .85.

(b) ∆Tin = 80 K. Jos halutaan η ∼ .05, joka voisi olla parametrin x arvon kertaluku, niin
saadaan ∆Trot = 4.7 K. η ∼ .02 antaisi ∆Trot = 1.9 K .

Eli muutamia asteita lämpötilan laskun roottorissa pitäisi olla. Jos tämä on liikaa vaadittu
niin η2:n pitäisi antaa dominoiva termi.



5.3 Tilanteen tulkinta virtaustasapainona 19

2. η2:n tapauksessa parametrin y2 = M/c arvo on ratkaiseva.

Löysin netistä taulukon ( katso http://tinyurl.com/yaynhypm), jossa annetaan vedelle
vakio-paineita vastaavat käyrät (T, ρ)-tasossa. Lämpötila-alue 0-30 C. Tiheydet ovat ku-
takuinkin normaalitiheyden ympärillä. Paineen muutos naapurikäyrien välillä on 25 baria.
Horisontaaliset viivat vastaava vakio tilavuutta/tiheyttä. Horisontaalinen etäisyys ∆T kah-
den vakiopaine-käyrän paine-erolla ∆p = 25 bar ja horisontaalisen viivan välillä on noin 5
K. Tästä M ∼ ∆p2/∆T ∼ 5 × 105 Pa/K. Kun sijoitan c = 2.1 MJ/Km3 (tiheys oletettu
kg/litra) saan y2 = M/c = .25. Tämä on pienempi kuin y1 joten toive ei näytä toteutuvan.

5.2.6 Lämpötilaerojen suhde annetulle ηtot:n arvolle

Oletetaan, että halutaan tietty ηtot (kierrätys mukana). Mikä on tarvittava ∆Trot/∆Tin?

1. Ensin ηtot:n lauseke.

ηtot = 1
1+X ,

X = x(1−η)
η .

x on kierroksella menetty osa lämpäenergiaa.

2. Tästä voidaan ratkaista X:

X =
1− ηtot
ηtot

.

3. Tästä edellen voidaan ratkaista η:

η = U
1−U , U = x ηtot

1−ηtot .

4. Tästä edelleen ∆Trot/∆Tin :

∆Trot

∆Tin
= c

KαS+M ×
U

1−U ,

U = x ηtot
1−ηtot

Tästä saadaan haluttua ηtot vastaava lämpötilojen suhde ∆Trot/∆Tin .

5.3 Tilanteen tulkinta virtaustasapainona

Esitettyä mallia voi kritisoida koska siinä otetaan sisään syötetty teho annettuna. Jos teho on
kuitenkin liian iso niin roottori ja lämpöhäviöt eivät ehdi ”syödä” sitä vaan energiaa alkaa kertyä
systeemiin ja lämpötila nousta. Olisi saavutettava virtaustasapaino jossa syöttö kompensoi root-
torin tekemän työn ja lämpöhäviöt. Osoittautuu kuitenkin, että tämä lähestymistapa antaa samat
tulokset kuin ylläkuvattu.

Voitaisiin siis lähteä siitä, että roottoriin saapuu tietty teho lämpöenergiavirtana: P = Sve,
missä e on lämpöenergian tiheys. Siitä roottori saa osan Prot = ηP ja jäljelle jää (1 − η)P josta
matkalla energiansyöttöön menetetään osa x(1− η)P , joten energian syöttöön saapuu (1− x)(1−
η)P . Tasapainossa energiasyöttö kompensoi tämän ja saadaan

Pin = [1− (1− x)(1− η)]P = [η + x(1− η)]P ,

P = 1
η+x(1−η)Pin .

Tästä tavanomainen hyötysuhde - kutsutaan sitä ηtot:ksi olisi

ηtot =
Prot
Pin

=
η

η + x(1− η)
=

1

1 + x(1−η)
η

.

http://tinyurl.com/yaynhypm
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Tulos on muodollisesti sama kuin aiemmalla argumentilla saatu.
Mutta η:n ei tarvitse olla sama nyt.

η =
Prot
P

.

Prot:lle pätee sama kaava kuin ennenkin.
Mitä on roottoriin sisääntuleva energiavirta P = Sve? Onko se energiatiheys mikä nesteeseen

on siirretty, kun se on lämmitetty lämpötilaan, jossa virtaus on lähtiessään lämmitysyksiköstä.
Esimerkkitapauksessa lämpötila olisi noin 100 astetta ja lämmitys oli aloitettu 20 asteesta jolloin
∆Tin = 80 K.

Huom: On tärkeää erottaa ∆Tin lämpötilan muutoksesta T , jonka lämmitys aiheuttaa neste-
virtaukselle sen kulkiessa lämmitysyksikön läpi: ∆T on huomattavasti pienempi kuin ∆Tin. Tässä
voisi kysyä pitäisikö ∆T olla se mikä esiintyy energiavirrassa, jolloin se pienenisi ja hyötysuhde
kasvaisi. Oma näkemykseni on, että se ei sovi yhteen kierrätysidean kanssa.

Tällöin pätisi

∆E = cV∆Tin .

Lämpöenergiatiheys olisi

e = c∆Tin .

Tämä antaisi saman tuloksen hyötysuhteelle kuin aiempi kuva.

5.4 Arvio virtausnopeudelle

Hyötysuhteen arviointi ei edellytä virtausnopeuden v tuntemaista toisin kuin ehdin hetken ku-
vitella. Virtausnopeuden arvioita voidaan kuitenkin tarvita muihin tarkoituksiin, joten yritetään.

Voi ajatella argumenttia joka perustuu energian säilymiseen ja partikkeliluvun säilymiseen.

5.4.1 a) Energian säilyminen

Oletetaan, että virtauksessa pätee energian säilyminen jokaista virtaviivaa pitkin

ρv2

2
+ p = vakio . (5.2)

Ainakaan turbulenssia ei saisi olla, jotta tämä pätisi.

5.4.2 b) Partikkelien lukumäärän säilyminen

Partikkelien lukumäärä säilyy ts.

ρS × v = vakio ,

eli myös

ρv = vakio . (5.3)

Tämä kertaa sen, että ainetta ei häviä. Tämä kaava varmastikin pätee.
Tarkastellaan näissä kaavoissa muutoksia jotka siis ovat nollia. Tämä edellyttää differenti-

aalilaskentaa: peruskaava josta saamme kiittää Newtonia ja Leibnizia on

∆(XY ) = (∆X)Y +X∆Y .
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1. Tarkastellaan ensin tapausta a). Saadaan kaavasta 5.2 ∆(rhov2/2 + p) = 0 eli

∆(ρv2) = −∆p .

Tästä saadaan

1

2
∆(ρv2) =

1

2
[∆(ρv)v + ρv∆v] =

1

2
ρv∆v ,

koska ∆(ρv) = 0 kaavan 5.3 perusteella.

2. Pitäisi saada lauseke ylläolevassa kaavassa esiintyvälle ∆v:lle. Tarkastellaan hiukkasmäärän
säilymisen lausuvaa yhtälöä 5.3. Tästä saadaan

∆(ρv) = 0 = (∆ρ)v + ρ∆v = 0 ,

mistä

∆v = −∆ρ

ρ
v =

∆V

V
v .

(ρ = Nm/V , mistä ∆ρ/ρ = −∆V/V ). Sijoitetaan ∆v kaavan

1

2
∆(ρv2) =

1

2
ρv∆v

oikealle puolelle, jolloin saadaan

1

2
ρv2 ∆V

V
= −∆p = K

∆V

V
.

∆V/V :t supistuvat ja saadaan v arvioiduksi:

v =

√
2K

ρ
.

Siinä se on!

Toisin kuin ensin arvelin v:tä ei tarvita hyötysuhteen arvioimiseen. Sitä voidaan kuitenkin
tarvita muihin tarkoituksiin. On tietysti huomattava että v:n arviossa oletettu energian säilyminen
virtaviivaa pitkin on vain approximatiivinen.
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