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Abstract

The view of the symmetries of the TGD Universe has remained unclear for decades. The
notion of ”World of Classical Worlds” (WCW) emerged around 1985 but found its basic
form around 1990. Holography forced by the realization of General Coordinate Invariance
forced/allowed to give up the attempts to make sense of the path integral.

A more concrete way to express this view is that WCW does not consist of 3-surfaces
as particle-like entities but almost deterministic Bohr orbits assignable to them as preferred
extremals of Kähler action so that quantum TGD becomes wave mechanics in WCW combined
with Bohr orbitology. This view has profound implications, which can be formulated in terms
of zero energy ontology (ZEO), solving among other things the basic paradox of quantum
measurement theory. ZEO forms also the backbone of TGD inspired theory of consciousness
and quantum biology.

After the developments towards the end of 2023 leading to a discovery of explicit solution
of field equations based on the 4-D geneneralization of holomorphy realizing holography, it
seems that the extension of conformal and Kac-Moody symmetries of string models to the
TGD framework is understood. What about symplectic symmetries, which were originally
proposed as isometries of WCW? In this article this question is discussed in detail and it will
be found that these symmetries act naturally on 3-D holographic data and one can identify
conserved charges. By holography this is in principle enough and might imply that the ac-
tions of holomorphic and symplectic symmetry algebras are dual. Holography=holomorphy
principle generalizes also to the construction of the solutions of the modified Dirac action.
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1 Introduction

The view of the symmetries of the TGD Universe has remained unclear for decades. The notion of
”World of Classical Worlds” (WCW) emerged around 1985 but found its basic form around 1990.
Holography forced by the realization of General Coordinate Invariance forced/allowed to give up
the attempts to make sense of the path integral.

A more concrete way to express this view is that WCW does not consist of 3-surfaces as
particle-like entities but almost deterministic Bohr orbits assignable to them as preferred extremals
of Kähler action so that quantum TGD becomes wave mechanics in WCW combined with Bohr
orbitology. This view has profound implications, which can be formulated in terms of zero energy
ontology (ZEO), solving among other things the basic paradox of quantum measurement theory.
ZEO forms also the backbone of TGD inspired theory of consciousness and quantum biology.

WCW geometry exists only if it has maximal isometries: this statement is a generalization of
the discovery of Freed for loop space geometries [A2]. I have proposed [K2, K1, K5, K3] that WCW
could be regarded as a union of generalized symmetric spaces labelled by zero modes which do not
contribute to the metric. The induced Kähler field is invariant under symplectic transformations
of CP2 and would therefore define zero mode degrees of freedom if one assumes that WCW metric
has symplectic transformations as isometries. In particular, Kähler magnetic fluxes would define
zero modes and are quantized closed 2-surfaces. The induced metric appearing in Kähler action
is however not zero mode degree of freedom. If the action contains volume term, the assumption
about union of symmetric spaces is not well-motivated.

Symplectic transformations are not the only candidates for the isometries of WCW. The basic
picture about what these maximal isometries could be, is partially inspired by string models.

1. A weaker proposal is that the symplectomorphisms of H define only symplectomorphisms of
WCW. Extended conformal symmetries define also a candidate for isometry group. Re-
markably, light-like boundary has an infinite-dimensional group of isometries which are in
1-1 correspondence with conformal symmetries of S2 ⊂ S2 ×R+ = δM4

+.

2. Extended Kac Moody symmetries induced by isometries of δM4
+ are also natural candidates

for isometries. The motivation for the proposal comes from physical intuition deriving from
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string models. Note they do not include Poincare symmetries, which act naturally as isome-
tries in the moduli space of causal diamonds (CDs) forming the ”spine” of WCW.

3. The light-like orbits of partonic 2-surfaces might allow separate symmetry algebras. One
must however notice that there is exchange of charges between interior degrees of freedom
and partonic 2-surfaces. The essential point is that one can assign to these surface conserved
charges when the dual light-like coordinate defines time coordinate. This picture also assumes
a slicing of space-time surface by by the partonic orbits for which partonic orbits associated
with wormrhole throats and boundaries of the space-time surface would be special. This
slicing would correspond to Hamilton-Jacobi structure.

4. Fractal hierarchy of symmetry algebras with conformal weights, which are non-negative in-
teger multiples of fundamental conformal weights, is essential and distinguishes TGD from
string models. Gauge conditions are true only the isomorphic subalgebra and its commu-
tator with the entire algebra and the maximal gauge symmetry to a dynamical symmetry
with generators having conformal weights below maximal value. This view also conforms
with p-adic mass calculations.

5. The realization of the symmetries for 3-surfaces at the boundaries of CD and for light-like
orbits of partonic 2-surfaces is known. The problem is how to extend the symmetries to the
interior of the space-time surface. It is natural to expect that the symmetries at partonic
orbits and light-cone boundary extend to the same symmetries.

After the developments towards the end of 2023, it seems that the extension of conformal
and Kac-Moody symmetries of string models to the TGD framework is understood. What about
symplectic symmetries, which were originally proposed as isometries of WCW? In this article
this question is discussed in detail and it will be found that these symmetries act naturally on
3-D holographic data and one can identify conserved charges. By holography this is in principle
enough and might imply that the actions of holomorphic and symplectic symmetry algebras are
dual. Holography=holomorphy hypothesis is discussed also in the case of the modified Dirac
equation.

2 The reduction of holography to a generalized holomorphy

The reduction of holography to generalized holomorphy reduced field equations to a ridiculously
simple form. Field equations are satisfied because contractions of holomorphic tensors of type
(1,1) with tensors of type (2,0)+(0,2) are identically vanishing. This ansatz works already for
string sheets as minimal surfaces.

Preferred extremals as analogs of Bohr orbits are minimal surfaces irrespective of the action as
long as it is a general coordinate invariant constructed using induced geometry and the minimal
surface property fails only at lower-dimensional singularities analogous to the frames of a soap film.

At singularities the other parts of the action become visible by boundary conditions guarantee-
ing that conservation laws expressed by field equations are not violated. The other parts of action
are visible only via the classical conservation laws and at interaction vertices [L4].

Twistor lift fixes the 4-D action to a sum of Kähler action and volume term emerging as a
dimensional reduction of 6-surface in the Cartesian product of twistor spaces of M4 and CP2 to
6-D twistor space to twistor space as S2 bundle over space-time surface. Only M4 and CP2 allow
twistor space with Kähler structure so that TGD is unique from its mathematical existence [A3].

2.1 The conserved charges associated with holomorphies

Generalized holomorphy not only solves explicitly the equations of motion but, as found quite
recently, also gives corresponding conserved Noether currents and charges.

1. Generalized holomorphy algebra generalizes the Super-Virasoro algebra and the Super-Kac-
Moody algebra related to the conformal invariance of the string model. The corresponding
Noether charges are conserved. Modified Dirac action allows to construct the supercharges
having interpretation as WCW gamma matrices. This suggests an answer to a longstanding
question related to the isometries of the ”world of the classical worlds” (WCW).
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2. Either the generalized holomorphies or the symplectic symmetries of H = M4 × CP2 or
both together define WCW isometries and corresponding super algebra. It would seem that
symplectic symmetries induced from H are not necessarily needed and might correspond to
symplectic symmetries of WCW. One would obtain a close similarity with the string model,
except that one has half-algebra for which conformal weights are proportional to non-negative
integers and gauge conditions only apply to an isomorphic subalgebra. These are labeled by
positive integers and one obtains a hierarchy.

3. By their light-likeness, the light cone boundary and orbits of partonic 2-surfaces allow an
infinite-dimensional isometry group. This is possible only in dimension four. Its transforma-
tions are generalized conformal transformations of 2-sphere (partonic 2-surface) depending
on light-like radial coordinate such that the radial scaling compensates for the usual con-
formal scaling of the metric. The WCW isometries would thus correspond to the isometries
of the parton orbit and of the boundary of the light cone! These two representations could
provide alternative representations for the charges if the strong form of holography holds
true and would realize a strong form of holography. Perhaps these realizations deserve to be
called inertial and gravitational charges.

Can these transformations leave the action invariant? For the light-cone boundary, this
looks obvious if the light-cone is sliced by a surface parallel to the light-cone boundary.
Note however that the tip of this surface might produce problems. A slicing defined by the
Hamilton-Jacobi structure would be naturally associated with partonic orbits.

4. What about Poincare symmetries? They would act on the center of mass coordinates of
causal diamonds (CDs) as found already earlier [L7]. CDs form the ”spine” of WCW, which
can be regarded as fiber space with fiber for a given CD containing as a fiber the space-time
surfaces inside it.

The super-symmetric counterparts of holomorphic charges for the modified Dirac action and
bilinear in fermionic oscillator operators associated with the second quantization of free spinor
fields in H, define gamma matrices of WCW. Their anticommutators define the Kähler metric
of WCW. There is no need to calculate either the action defining the classical Kähler action
defining the Kähler function or its derivatives with respect to WCW complex coordinates and
their conjugates. What is important is that this makes it possible to speak about WCW metric
also for number theoretical discretization of WCW with space-time surfaces replaced with their
number theoretic discretizations.

2.2 Could generalized holomorphy allow to sharpen the existing views?

This picture is rather speculative, allows several variants, and is not proven. There is now however
a rather convincing ansatz for the general form of preferred extremals. Could it help to make the
picture more precise?

1. As explained, the explicit solution of field equations in terms of the generalized holomorphy
is now known. The solution ansatz is independent of action as long it is general coordinate
invariance depending only on the induced geometric structures.

Space-time surfaces would be minimal surfaces apart from lower-dimensional singular surfaces
at which the field equations involve the entire action. Only the singularities, classical charges
and positions of topological interaction vertices depend on the choice of the action [L4].
Kähler action plus volume term is the choice of action forced by twistor lift making the
choice of H unique.

2. The universality has a very intriguing implication. One can assign to any action of this kind
conserved Noether currents and their fermionic counterparts (also super counterparts). One
would have a huge algebra of conserved currents characterizing the space-time geometry. The
corresponding charges can be made conserved by suitably modifying the form of holomorphic
functions of the ansatz and therefore the time derivatives ∂th

k at the 3-D end of space-time
surface at the boundary CD. This need not be the case for all deformations of partonic orbits.
In any case, the 3-D holographic data seem to be dual as the strong form of holography

https://tgdtheory.fi/public_html/articles/CDconformal
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suggests. The discussion of the symplectic symmetries leads to the conclusion that they give
rise to conserved charges at the partonic 3-surfaces obeying Chern-Simons-Kähler dynamics,
which is non-deterministic.

3. Hamilton-Jacobi structures emerge naturally as generalized conformal structures of space-
time surfaces and M4 [L6]. This inspires a proposal for a generalization of modular invariance
and of moduli spaces as subspaces of Teichmüller spaces.

4. One can assign to holomorphy conserved Noether charges. The conservation reduces to the
algebraic conditions satisfied for the same reason as field equations, i.e. the conservation
conditions involving contractions of complex tensors of type (1,1) with tensors of type (2,0)
and (0,2). The charges have the same form as Noether charges but it is not completely clear
whether the action remains invariant under these transformations. This point is non-trivial
since Noether theorem says that invariance of the action implies the existence of conserved
charges but not vice versa. Could TGD represent a situation in which the equivalence between
symmetries of action and conservation laws fails?

Also string models have conformal symmetries but in this case 2-D area form suffers conformal
scaling. Also the fact that holomorphic ansatz is satisfied for such a large class of actions
apart from singularities suggests that the action is not invariant.

5. The action should define Kähler function for WCW identified as the space of Bohr orbits.
WCW Kähler metric is defined in terms of the second derivatives of the Kähler action of
type (1,1) with respect to complex coordinates of WCW. Does the invariance of the action
under holomorphies imply a trivial Kähler metric and constant Kähler function?

Here one must be very cautious since by holography the variations of the space-time surface
are induced by those of 3-surface defining holographic data so that the entire space-time
surface is modified and the action can change. The presence of singularities, analogous to
poles and cuts of an analytic function and representing particles, suggests that the action
represents the interactions of particles and must change. Therefore the action might not
be invariant under holomorphies. The parameters characterizing the singularities should
affect the value of the action just as the positions of these singularities in 2-D electrostatistics
affect the Coulomb energy.

Generalized conformal charges and supercharges define a generalization of Super Virasoro
algebra of string models. Also Kac-Moody algebra assignable to the isometries of δM4

+ ×
CP2 and light H generalizes trivially.

6. An absolutely essential point is that generalized holomorphisms are not symmetries of
Kähler function since otherwise Kähler metric involving second derivatives of type (1,1)
with respect to complex coordinates of WCW is non-trivial if defined by these symmetry
generators as differential operators. If Kähler function is equal to Kähler action, as it
seems, Kähler action cannot be invariant under generalized holomorphies.

Noether’s theorem states that the invariance of the action under a symmetry implies the
conservation of corresponding charge but does not claim that the existence of conserved
Noether currents implies invariance of the action. Since Noether currents are conserved now,
one would have a concrete example about the situation in which the inverse of Noether’s
theorem does not hold true. In a string model based on area action, conformal transfor-
mations of complex string coordinates give rise to conserved Noether currents as one easily
checks. The area element defined by the induced metric suffers a conformal scaling so that
the action is not invariant in this case.

There are several questions to be answered. Could also the symplectic symmetries act as
isometries of WCW geometry? Could symplectic transformations act on 3-D holographic data
without any continuation to the space-time interior and allow to assign conserved quantum charges
with the 3-D data? Holographic generators act on 4-D space-time surfaces and can be associated
with the boundary data at the space-like 3-surfaces at the boundaries of CD (at least). Could
symplectomorphisms and generalized holomorphisms define algebras, which by holography are
dual in some sense? This is possible since the quantum realizations of both algebras rely on second
quantized free Dirac fields in H.
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3 The twistor space of H = M 4 × CP2 allows Lagrangian
6-surfaces: what does this mean physically?

I received from Tuomas Sorakivi a link to the article ”A note on Lagrangian submanifolds of twistor
spaces and their relation to superminimal surfaces” [L13] (see this). The author of the article is
Reinier Storm from Belgium.

The abstract of the article tells roughly what it is about.
In this paper a bijective correspondence between superminimal surfaces of an oriented Rieman-

nian 4-manifold and particular Lagrangian submanifolds of the twistor space over the 4-manifold
is proven. More explicitly, for every superminimal surface a submanifold of the twistor space is
constructed which is Lagrangian for all the natural almost Hermitian structures on the twistor
space. The twistor fibration restricted to the constructed Lagrangian gives a circle bundle over the
superminimal surface. Conversely, if a submanifold of the twistor space is Lagrangian for all the
natural almost Hermitian structures, then the Lagrangian projects to a superminimal surface and
is contained in the Lagrangian constructed from this surface. In particular this produces many La-
grangian submanifolds of the twistor spaces and with respect to both the Kähler structure as well as
the nearly Kähler structure. Moreover, it is shown that these Lagrangian submanifolds are minimal
submanifolds.

The article examines 2-D minimal surfaces X2 in the 4-D space X4 assumed to have twistor
space. From superminimality which looks somewhat peculiar assumption, it follows that in the
twistor space of X4 (assuming that it exists) there is a Lagrangian surface, which is also a min-
imal surface. Superminimality means that the normal spaces of the 2-surface form a 1-D curve
in the space of all normal spaces, which for the Euclidian signature is the 4-D Grassmannian
SO(4)/SO(2) × SO(2) = S2 × S2 (SO(1, 3)/SO(1, 1) × SO(2) for M4). Superminimal surface is
therefore highly flattened. Of course, already the minimal surface property favours flatness. It
is interesting to examine the generalization of the result to TGD because the interpretation for
Lagrange manifolds, which are vacuum extremals for the Kähler action with a vanishing induced
symplectic form, has remained open. Certainly, they do not fulfill the holomorphy=holography
assumption, i.e. they are not surfaces for which the generalized complex structure in H induces a
corresponding structure at 4-surface.

Superminimal surfaces look like the opposite of holomorphic minimal surfaces (this turned out
to be an illusion!). In TGD, they give a huge vacuum degeneracy and non-determinism for the
pure Kähler action, which has turned out to be mathematically undesirable. The cosmological
constant Λ, which follows from twistoralization, was thought to correct the situation.

I had not however notice that the Kähler action, whose existence for T (H) = T (M4)×T (CP2)
fixes the choice of H, gives a huge number of 6-D Lagrangian manifolds! Are they consistent with
dimensional reduction, so that they could be interpreted as induced twistor structures? Can a
complex structure be attached to them? Certainly not as an induced complex structure. Does the
Lagrangian problem of Kähler action make a comeback? Furthermore, should one extend the very
promising looking holography=holomorphy picture by allowing also Lagrangian 6-surfaces T (H)?

Do the Lagrangian surfaces of T (H) have a physical interpretation, most naturally as vacuums?
The volume term of the 4-D action characterized by the cosmological constant Λ does not allow
vacuum extremals unless Λ vanishes. For the twistor lift Λ is however dynamic and can vanish!
Do Lagrangian 6-surfaces in T (H) correspond to 4-D minimal surfaces in H, which are vacuums
and have a vanishing Λ = 0? Would even the original formulation of TGD be an exact part of the
theory and not just a long-length-scale limit? And does one really avoid the original problem due
to the huge non-determinism spoiling holography!

The question is whether the result presented in the article could generalize to the TGD frame-
work even though the super-minimality assumption does not seem physically natural at first?

3.1 Lagrangian surfaces in the twistor space of H = M4 × CP2

Let us consider the 12-D twistor space T (H) = T (M4)× T (CP2) and its 6-D Lagrangian surfaces
having a local decomposition X6 = X4 × S2. Assume a twistor lift with Kähler action on T (H).
It exists only for H = M4 × CP2 [L1, L2].

https://www.sciencedirect.com/science/article/abs/pii/S0926224520300784


3.1 Lagrangian surfaces in the twistor space of H = M4 × CP2 7

Let us first forget the requirement that these Lagrangian surfaces correspond to minimal sur-
faces in H. Consider the situation in which there is no generalized Kähler and symplectic structure
in M4.

One can actually identify Lagrangian surfaces in 12-D twistor space T (H).

1. Since X6 = X4 × S2 is Lagrangian, the symplectic form for it must vanish. This is also true
in S2. Fibers S2 together with T (M4) and T (CP2) are identified by an orientation-changing
isometry. The induced Kähler form S2 in the subset X6 = X4 × S2 is zero as the sum of
these two contributions of different signs. If this sum appears in the 6-D Kähler action, its
contribution to the 6-D Kähler action vanishes. Λ vanishes because the S2 contribution to
the 4-D action vanishes.

2. The 6-D Kähler action reduces in X4 to the 4-D Kähler action plus, which was the original
guess for the 4-D action. The problem is that in its original form, involving only CP2 Kähler
form, it involves a huge vacuum degeneracy. The CP2 projection is a Lagrangian surface or its
subset but the dynamics of M4 projection is essentially arbitrary, in particular with respect
to time. One obtains a huge number of different vacuum extremals. Since the time evolution
is non-deterministic, the holography, and of course holography=holomorphy principle, is lost.
This option is not physically acceptable.

How the situation changes when also M4 has a generalized Kähler form that the twistor space
picture strongly suggests, and actually requires.

1. Now the Lagrangian surfaces would be products X2 × Y 2, where X2 and Y 2 are the La-
grangian surfaces of M4 and CP2. The M4 projections of these objects look like string world
sheets and in their basic state are vacuums.

Furthermore, the situation is deterministic! The point is that X2 is Lagrangian and highly
fixed as such. In the previous case much more general surface M4 projection, even 4-D, was
Lagrangian. There is no loss of holography! Neither is the holography=holomorphy principle
lost: by their 2-D character X2 and Y 2 have a holomorphic structure.

What is important is that these Lagrangian 4-surfaces of H are obtained also when Λ is
non-vanishing. In this case they must be minimal surfaces. Physically this option means
that one has Lagrangian strings.

2. For Λ = 0, the symplectic transformations of H produce new vacuum surfaces. If they are
allowed, one might talk of symplectic phase. J = 0 phase gives rise to both classical and
fermionic vacuum since the modified gamma matries vanish since they are propertional to
vanishing canonical momentum currents. So that Lagrangian phase does not contribute to
physics for Λ = 0. There are however non-vacuum extremals for which the induced Kähler
field is non-vanishing (having induced complex structure).

For Λ 6= 0 Lagrangian surfaces which are non-vacuum extermals and only isometries are
allowed as symmetries. One can say that symplectic symmetr breaks down to isometries.
Irrespective of the value of Λ, the second phase with a induced complex structure would be
present and give rise to color interactions and hadrons and probably also elementary particles.
The interpretation of Lagrangian surfaces, which are string like entities, remains open.

3. In the Lagrangian phase induced Kähler form J and the induced color gauge fields vanish
and it does not involve monopole fluxes. This phase might be called Maxwell phase. For
Λ 6= 0 one would have two kinds of non-vacuum string like objects with string tension to
which Λ contributes.

Could the Lagrangian phase for Λ 6= 0 correspond to the Coulomb phase as the perturbative
phase of the gauge theories, while the monopole flux tubes (large heff and dark matter) would
correspond to the non-perturbative phase in which magnetic monopole fluxes are present? If
so, there would be an analogy with the electric-magnetic duality of gauge theories although
the two phases does not look like two equivalent descriptions of one and the same thing unless
one restricts the consideration to fermions.
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3.1.1 Can Lagrangian 4-surfaces be minimal surfaces?

I have not yet considered the question whether the Lagrangian surfaces can be minimal surfaces.
For non-vanishing Λ they must be such but for Λ = 0 this need not be the case. One can of course
ask whether this does matter at all for Λ = 0. In this case, one has only vacuum extremals and
the modified gamma matrices are proportional to the canonical momentum currents, which vanish.
Both bosonic and fermionic dynamics are trivial for Λ = 0. Therefore Λ = 0 does not give any
physics.

In the theorem the minimal Lagrangian surfaces were superminimal surfaces. For super-minimal
surfaces, a unit vector in the normal direction defines a very specific curve in normal space.

For a non-vanishing cosmological constant, the field equations for the Kähler action do not
force the Lagrangian surfaces to be minimal surfaces. For Λ 6= 0 there exists a lot of minimal
Lagrangian surfaces.

3.1.2 Lagrangian minimal surfaces in CP2

Consider first the Lagrangian minimal surfaces in CP2

1. In CP2, a homologically trivial geodesic sphere is a minimal surface. Note that the geodesic
spheres obtained by isometries are regarded here as equivalent. Also a g = 1 minimal
Lagrangian surface (Clifford torus) in CP2 is known.

2. There are many other minimal Lagrangian surfaces and second order partial differential
equations for both Lagrangian and minimal Lagrangian surfaces are known (see this). In the
article ”A new look at equivariant minimal Lagrangian surfaces in CP2 by Dorfmeister and
Ma [A1] Lagrangian minimal surfaces in CP2 are discussed and general partial differential
equations for them are deduced.

(a) An essential role is played by the used of complex coordinates in which the induced
metric of X2 is of form ds2 = eudzdz and X2 corresponds to immersion f .

(b) The Lagrangian property makes it possible the lift of f and to an immersion defined to
unit sphere S5 ⊂ C3 and therefore of X2 to a surface in S5 ⊂ C3 defined by a complex
triplet F . This allows to combine F , Fz and Fz to an orthgonal Hermitian tripet which
can be can be replaced with a orthonormalized triplet F =(F, e−u/2Fz, e

−u/2Fz).

(c) At the next step minimal surface property is introduced. It translation to statement
that

Fz = FU , Fz̄ = FN .

Here one has

U =

 uz/2 0 eu

e−uψ −uz/2 0
0 −eu/2 0


N = U†

Here ψdz3 is so called Hopf differential with ψ given by

ψ = FzzFz .

Clearly, U is the negative of the hermitian conjugate of N . One can say that complex
differentiation corresponds to the action of SU(3) Lie algebra generator so that F defines
an element of SU(3) loop group at X2.

(d) The condition of integrability (Fz)z = (Fz)z gives

Uz = −Nz .

and the final equations

uzz̄ = e−2u|ψ|2 − eu , ψz = 0 .

The Hopf differential is therefore a holomorphic function.

https://wis.kuleuven.be/events/archive/padge2012/slides/ma.pdf
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Since any stable stable minimal submanifold in CPn is a complex submanifold, the Lagrangian
minimal surfaces cannot be stable under general variations.

3.1.3 Lagrangian minimal surfaces in M4

Consider next the situation in M4.

1. In M4, the plane M2 is an example of a minimal surface, which is a Lagrangian surface. Are
there others? Could Hamilton-Jacobi structures [L6] that also involve the symplectic form
and generalized Kähler structure (more precisely, their generalizations) define Lagrangian
surfaces in M4?

2. The Lagrangian surfaces, and as a special case Lagrangian minimal surfaces in R4 are dis-
cussed in [A4]. The result of the article can be phrased as follows.

Let L be a simply connected domain in C. Then for any smooth conformal Lagrangian
immersion f : L→ R4, there exist smooth functions β : L→ R/2πZ, which is the Lagrangian
angle, and s1, s2 : L→ C, not simultaneously vanishing, that satisfy the Dirac-type equation(

0 ∂z
−∂z 0

)(
s1

s2

)
=

(
U 0
0 −U

)(
s1

s2

)
.

with complex potential U = ∂zβ/2. Conversely, given β and any solution (s1, s2) to the Dirac
equation satisfying (|s1|2 + |s2|2 ≥ 0) gives rise to a conformal Lagrangian immersion given
by

f(z) = Re

∫ z exp(βJ/2)


s1

s2

−is1

is2


 , J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

Here the 4× 4 matrix J defines the standard symplectic structure.

3. When the Lagrange angle is constant, one obtains minimal Lagrangian immersion. Note that
this in this case one has free massless Dirac equation.This suggests quantum classical corre-
spondence in which the solutions of massless Dirac equation in M4 correspond to Lagrangian
minimal surfaces.

4. This solution is defined for Euclidian E4 rather than M4 but the analytic continuation to
M4 case should be straightforward. This requires an appropriate modification of J . In TGD
one must consider the possibility, that Hamilton-Jacobi structures defines large number of
non-quivalent Kähler- and symplectic structures for M4. The naive guess is that J in the
exponential is replaced with the matrix Jklσ

kl in order to obtain a more general solution.

In the case considered now, the Lagrangian surfaces in H would be products X2×Y 2. Interest-
ingly, in the 2-D case the induced metric always defines a holomorphic structure. Now, however,
this holomorphic structure would not be the same as the one related to the holomorphic ansatz:
it is induced from H.

3.1.4 So What?

These findings raise several questions related to the detailed understanding of TGD. Should one
allow only non-vanishing values of Λ? This would allow minimal Langrangian surfaces X2 × Y 2

besides the holomorphic ansatz. The holomorphic structure due to the 2-dimensionality of X2 and
Y 2 means that holography=holomorphy principle generalizes.

If one allows Λ = 0, all Lagrangian surfaces X2×Y 2 are allowed but also would have a holomor-
phic structure due to the 2-dimensionality of X2 and Y 2 so that holography=holomorphy principle
would generalize also now! Minimal surface property is obtained as a special case. Classically the
extremals correspond to a vacuum sector and also in the fermionic sector modified Dirac equation
is trivial. Therefore there is no physics involved.
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Minimal Lagrangian surfaces are favored by the physical interpretation in terms of a geometric
analog of the field particle duality. The orbit of a particle as a geodesic line (minimal 1-surface)
generalizes to a minimal 4-surface and the field equations inside this surface generalizes massless
field equations.

4 Modified Dirac equation and the holography=holomorphy
hypothesis

The understanding of the modified equation as a generalization of the massless Dirac equation for
the induced spinors of the space-time surface X4 [K5, ?] is far from complete. It is however clear
that the modified Dirac equation is necessary [L4] and its failure at singularities, analogous to the
failure of minimal surface property at them, leads to an identification of fundamental interaction
vertices as 2-vertices for the creation of fermion pair in the induced classical electroweak gauge
fields.

These singularities are lower-dimensional surfaces are related to the 4-D exotic diffeomorphic
structures [A6, A7] and are discussed from the point of view of TGD in [L3]. They can be
interpreted as defects of the standard diffeomorphic structure and mean that in the TGD framework
particle creation is possible only in dimension D = 4.

A fermion-antifermion pair as a topological object can be said to be created at these singu-
larities. The creation of particles, in the sense that the fermion and antifermion numbers (boson
are identified as fermion-antifermion bound states in TGD) are not preserved separately, is only
possible in dimension 4, where exotic differentiable structures are possible.

Two problems should be solved.

1. It is necessary to find out whether the modified Dirac equation follows from the generalized
holomorphy alone. The dynamics of the space-time surface is trivialized into the dynamics of
the minimal surface thanks to the generalized holomorphy and is universal in the sense that
the details of the action are only visible at singularities which define the topological particle
vertices. Could holomorphy solve also the modified Dirac equation? The modified gamma
matrices depend on the action: could the modified Dirac equation fix the modified gamma
matrices and thus also the action or does not universality hold true also for the modified
Dirac action?

(a) Let us consider Dirac’s equation in M2 as a simplified example. Denote the light like
coordinates (u, v) by (z, z). The massless Dirac equation reduces to an algebraic condi-
tion if the modes are proportional to zn or zn. γz∂z resp. γz∂z annihilates such a mode
if γz resp. γz annihilates the mode.

(b) These conditions must be generalized to the case of a 4-D space-time surface X4. Now
the complex and Kähler structure are 4-dimensional and holomorphy generalizes. γz is
generalized to modified gammas Γzi , determined by the action principle, which is general
coordinate invariant and constructible in terms of the induced geometry. Modified
gamma matrices Γα = γkTαk , Tαk = ∂L/∂(∂αh

k) are contractions of the gamma matrices
of H with the canonical impulse currents Tαk determined by the action density L.

Irrespective of action, field equations for the space-time surface reduce to the equations
of a minimal surface, and are solved by the generalized holomorphy [L8]. The lower-
dimensional singularities, at which the minimal surface equations fail, correspond to
defects of the standard diffeomorphic structure and are analogs of poles and cuts to
analytic functions [L3].

2. The induction of the second quantized spinor field of H on the space-time surface means only
the restriction of the induced spinor field to X4. This determines the fermionic propagators as
H-propagators restricted to X4. The induced spinor field can be expressed as a superposition
of the modes associated with X4. The modes should satisfy the modified Dirac equation,
which should reduce by the generalized holomorphy to purely algebraic conditions as in the
2-D case. Is this possible without additional conditions that might fix the action principle?
Or is this possible only at lower-dimensional surfaces such as string world sheets?
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4.1 How to meet the challenges?

This section begins with an optimistic view of the solution of the problems followed by a critical
discussion and detailed proposal for how the generalized holography would solve the modified Dirac
equation.

4.1.1 Optimistic view of how holomorphy solves the modified Dirac equation

Consider first the notations: the coordinates for the 4-surface X4 are the light-like coordinate
pair (u, v) and the complex coordinate pair (z, z). To simplify the notation, we take the notation
(u, v) ≡ (z1, z1) for the light-like coordinate pair (u, v), so that the coordinates of the space-time
surface can be denoted by (z1, z2) and (z1, z2). As far as algebra is considered, one can consider
E4 instead of M4, from which Minkowski’s version is obtained by continuing analytically.

1. Let us optimistically assume that the H spinor modes can be expressed as superpositions
of conformal X4 spinor modes, which in their simplest form are products of powers of two
”complex” variables znii or znii . Only four different types of modes: zn1

1 zn2
2 , zn1

1 zn2
2 , zn1

1 zn2
2

and zn1
1 z2

n2 should appear.

The spinor modes of H are plane waves if M4 has no Kähler structure. Could this mean that
the modes can be expressed as products of exponentials exp(ikizi), exp(ikizi), i = 1, 2. More
general analytical functions and their complex conjugates can also be thought of as building
blocks of modes. In some cases, the complex coordinate of CP2 comes into question as well
as the complex coordinate of the homologous geodesic sphere.

2. The fermionic oscillator operators associated withX4 are linear combinations of contributions
from different H modes. They satisfy anticommutation relations. It is not clear whether the
creation (annihilation) operators for X4 spinor modes are sums of only creation (annihilation)
operators for H spinor modes or wheter for instance sums of the fermion creation operator
and the antifermion annihilation operator apppear.

4.1.2 Objections

Consider now the objections against the optimistic view.

1. Also non-holomorphic modes involving zn1
i zi

n2 could be present and in this case both Γzi

and Γzi should annihilate the mode. This is not possible unless the metric is degenerate.

2. The spinor modes of CP2 could make the 4-D holomorphy impossible in the proposed sense.
The spinor modes of CP2 are not holomorphic with respect to the complex coordinates of
CP2 and only the covariantly constant right-handed neutrino satisfies massless Dirac equation
in CP2. Could this imply the presence of X4 spinor modes, which are not holomorphic
(antiholomorphic) with respect to the given coordinate zi (zi) so that the modes involving
zmi z

n
i are possible?

3. The general plane wave basis for M4 without Kähler form in the transversal degrees of
freedom is not consistent with the conformal invariance. Here the sum over this kind of
modes should give vanishing non-holomorphic modes.

Note that the Kähler structure for M4 adds to the M4 Dirac equation of H a coupling to the
Kähler gauge potential of M4 and implies a transversal mass squared so that the transversal
basis does not consist of plane waves but is an analog of harmonic oscillator basis. Also now
the failure of holomorphy takes place.

4. For the massive modes of CP2 spinors, massivation takes place in M4 degrees of freedom.
This would suggest that the plane waves in longitudinal M4 degrees of freedom cannot be
massless.

However, M8 −H duality implies an important difference between TGD and ordinary field
theories. The choice of M4 ⊂ M8 is not unique and since particles are massless at the level
of H one can always choose M4 ⊃ CD in such a way that the momentum has only M4

component and is massless in M4 sense. Could the holomorphy at the space-time level be
seen as the M8 −H dual of this at the space-time level?
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4.1.3 How could one overcome the objections?

One can consider two ways to overcome these objections.

1. The sum of the contributions of products of M4 plane waves and CP2 spinor harmonics is
involved and could simply vanish for the non-holomorphic modes. This would look like a
mathematical miracle transforming the symmetry under the isometries of H to a conformal
symmetry at the level of X4. This mechanism would not depend on the choice of action
although the modified Dirac equation might hold only for a unique action.

2. The 4-D conformal invariance for fermions could degenerate to its 2-D version so that only the
modified Dirac equation at 2-D string world sheets would allow conformal modes. Indeed, a
longstanding question has been whether this is the case for physical reasons. The restriction of
the induced spinors to 2-D string world sheets is consistent with the recent view of scattering
amplitudes in which the boundaries of string world sheets at the light-like orbits of partonic
2-surfaces, which are metrically 2-dimensional, carry point-like fermions. If this is really true,
then the 4-D conformal invariance would effectively reduce to ordinary conformal invariance.

4.1.4 Solution of the modified Dirac equation assuming the generalized holomorphy

Consider now the solution of the modified Dirac equation assuming that only holomorphic modes
are present.

1. The modified Dirac equation reads a

(ΓziDzi + ΓziDzi)Ψ = 0 .

Γ matrices are modified gamma matrices. Dzi denotes covariant derivative. Generalized
conformal invariance produces the equations of the minimal surface almost independently
of the action. It is however not clear whether in the modified Dirac equation the modified
gammas can be replaced by the induced gamma matrices Γα = γk∂αh

k (action as 4-volume).
At least at the singularities that determine the vertices, this does not apply [L4].

2. The solution of the modified Dirac equation should reduce to the generalized holomorphy.
This is achieved if one of the operators Dzi , Dzi , Γzi , Γzi annihilates the given mode on the
space-time surface. It follows that ΓziDzi and ΓziDzi for each index separately annihilate
the spinor modes. Either Γzi (Γzi) or Dzi (Dzi) would do this.

Two gamma matrices in the set {Γzi ,Γzi |i = 1, 2} must eliminate a given X4 spinor mode.
Since modified gammas depend on the action, this condition might fix the action.

3. There are two cases to consider. The generalized complex structure of the 4-surface X4 is
induced from that of H [L8] or if the space-time surface is a product of Lagrange manifolds
X2 × Y 2 ⊂M4 ×CP2, is induced from the complex structures of the 2-D factors associated
with their induced metrics [L13].

4. I have proposed that M4 allows several generalized Kähler structures, which I have called
Hamilton-Jacobi structures [L6]. The 4-surface could fix the Hamilton-Jacobi structure from
the condition that the modified Dirac equation is valid. Since the modified gammas depend
on the action, the annihilation conditions for the modified gamma matrices might fix the
choice of the action, and this choice could correlate with the generalized complex structure
of X4.

To sum up, the above considerations are only an attempt to clarify the situation and it is not
at all obvious that the generalized holomorphy trivializes the solution of the modified Dirac action.
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4.2 Fermionic oscillator operators in X4 as fermionic supersymmetry
generators acting as gamma matrices of the ”world of classical worlds”
(WCW)

The challenge is to construct the fermionic oscillator operators in X4 assignable to the modes of
the induced spinor field in X4.

1. By holography and the experience with quantum field theories one expects that the oscillator
operators are expressible in terms of data at t = constant surface and do not depend on the
value of t chosen. Therefore the X4 oscillator operators should be conserved quantities and
the identification as supercharges is natural. These supercharges in turn would define the
gamma matrices of ”world of classical worlds” (WCW).

2. Modified Dirac equation indeed is constructed so that it has supersymmetry in the sense that
conserved fermionic Noether charges associated with the isometries of H and generalized
conformal transformations of H appearing as symmetries in the holography= holomorphy
ansatz gave super counterparts.

If the conserved Noether current associated with this kind of symmetry is of form ΨOαΨ,
the corresponding conserved supercurrent associated with the c-number valued mode Ψn of
the modified Dirac equation is ΨnOΨ. The form of O can be deduced from the change of
the modified Dirac action under the symmetry.

4.2.1 The Noether currents and their super counterparts associated with the modi-
fied Dirac action

The challenge is to construct the fermionic oscillator operators in X4 assignable to the modes of
the induced spinor field in X4.

1. By holography and the experience with quantum field theories one expects that the oscillator
operators are expressible in terms of data at t = constant surface and do not depend on the
value of t chosen. Therefore the X4 oscillator operators should be conserved quantities and
the identification as supercharges is natural. These supercharges in turn would define the
gamma matrices of ”world of classical worlds” (WCW).

2. Modified Dirac equation indeed is constructed so that it has supersymmetry in the sense that
conserved fermionic Noether charges associated with the isometries of H and generalized
conformal transformations of H appearing as symmetries in the holography= holomorphy
ansatz gave super counterparts.

If the conserved Noether current associated with this kind of symmetry is of form ΨOαΨ,
the corresponding conserved supercurrent associated with the c-number valued mode Ψn of
the modified Dirac equation is ΨnOΨ. The form of O can be deduced from the change of
the modified Dirac action under the symmetry.

3. The action density associated with the modified Dirac action is given by

LD = ΨDΨ
√
g , D = D→ −D← ,

D→ = ΓαD→α D← = D←α Γα ,

Γα = γkTαk Tαk = ∂
∂(∂αhk)

LB .

(4.1)

Here LB denotes the bosonic action density defining space-time surfaces as preferred ex-
tremals satisfying holography (analogs of Bohr orbits). The replacement of the ordinary
induced gamma matrices as projections of the gamma matrices of H with the modified
gamma matrices guarantees the hermicity of the modified Dirac operator and implies super-
symmetry so that the conserved Noether currents for LD are accompanied by the fermionic
super counterparts.
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4. The conserved Noether current associated with the symmetry hk → hk + εjk can be deduced
from the variation of LD

Jαj = (Xα
1 +Xα

2 +Xα
3 +Xα

4 )
√
g4 , Xα

1 = dεδΨΓαΨ−ΨΓαdεδΨ ,

Xα
2 = Ψ(jkAT

αβ
kl (γlD→β −D←γl)T

αβ
kl j

k
AΨ , Tαβkl = ∂

∂(∂αhk)
T βl = ∂

∂(∂αhk)
∂

∂(∂βhl)
LB

Xα
3 = 2ΨΓαAkj

k
AΨ , Xα

4 = LDg
αβ∂βh

khklj
l
A .

(4.2)

5. The super current associated with Jαj is obtained by replacing in the above currents either

Ψ (or Ψ) with its c-number valued mode Ψn (Ψn).

∆Ψ and δΨ can be deduced from the action of the symmetry transformation on spin degrees
of freedom. For instance, rotations and Lorentz transformations induce spin rotation. Only
the operator D has a direct dependence on hk and ∂αh

k.

6. The conserved supercharges

Qj =

∫
X3

X3Jjd
3x (4.3)

defines the fermionic oscillator operators forX4. Note that Jj contains the
√
g4 factor defining

the integration measures. By general coordinate invariance and conservation of these charges
it is enough that X3 is deformable to a section of causal diamond with constant M4 time or
light-cone proper time.

associated with Jαj defines a gamma matrix for WCW and a fermionic oscillator operator
for the space-time surface. The oscillator operators of H spinor modes can in this way be
transformed to oscillator operators of the induced spinor modes.

The modes of CP2 Dirac operator without M4 Kähler form have mass scale of order CP2 mass
with one exception: covariantly constant right-handed neutrino. In the presence of M4 Kähler
form also this state has mass of order CP2 mass. Both the color quantum numbers and mass
squared depend on the electroweak spin.

Unless the M4 plane corresponds to a state, which is nearly at rest in the the rest frame of CD,
its large spatial momentum implies very rapid wiggling and the contribution to the super charge as
analog of Fourier component of Ψ is expected to be very small. If the state is at rest, the restriction
to t = constant surface guarantees that the contribution to the super charge is non-vanishing and
does not depend on time t.

It should be noticed that the Feynmann propagator for an arbitrary massive fermion between
a pair of points of M4 becomes independent of the mass as the distance becomes light-like [K6] so
that H spinor modes with arbitrarily high mass behave like massless particles at the boundaries
of the string world sheets located at light-like partonic orbits. This would correspond to the
assignment Chern-Simons-Kähler (CSK) action to the partonic orbits. The presence of M4 part
in the CSK action would allow nonvanishing light-like M4 momenta.

4.3 About the relationship between supercharges and spinor modes of
H

What can one say about the behavior of the modes of the induced spinor field? The most natural
choice for the basis for holomorphic modes is such that it is of the same form as the planewave modes
for H. Therefore the products of imaginary exponentials exp(ihizi) of ”complex” coordinates
τi = exp(zi) and their complex conjugates assignable to the Hamilton-Jacobi structure looks like
a natural choice.

The conformal weights hi could be analogous to conformal weights. M4 momenta would be
replaced with a pair of conformal weights h1 and h2. For single conformal weight the natural
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interpretation is as mass squared and the challenge is to generalize this picture. Physical intuition
would suggest hi are real for the physical states whereas for ”virtual” states hi would be (possi-
bly) complex algebraic numbers (I have talked about conformal confinement as a consequence of
Galois confinement). If this is the case, there would be only 2 real conformal weights as opposed
to 4 components for M4 momenta (restricted by mass shell conditions).

The quantum numbers of H spinors are mapped to those of X4. Could the conformal weights
hi correspond to the contributions of M4 and CP2 to the 8-momentum of M8 and be identifiable
as mass squared values for M4 and CP2? One cannot however assume that the M4 and CP2 mass
squared values of H-spinors are mapped as such to hi.

The identification h1 = m2(M4) and h2 = m2(CP2) combined with m2 = h1 − h2 = 0 allows
only massless states. m2 = h1 − h2 ≥ 0 for the physical mass squared is more plausible. p-
Adic thermodynamics would give the physical mass as a thermodynamic expectation value so that
positive values of m2 = h1 − h2 are needed.

4.3.1 Does the presence of two conformal weights solve the tachyon problem of p-adic
mass calculations

In p-adic mass calculations one assumes that physical fermion is created by the oscillator operator
of H spinor mode. To this state super-Kac-Moody - or super-symplectic generator is applied to
give a state with physical color quantum numbers.

One must also assume that the ground state is tachyonic with conformal weight h = −3/2 or
h = −5/2. The action of Kac-Moody-/symplectic generators would compensate for the tachyonic
conformal weight and give massless states as ground states. Their thermal excitations would give
the physical mass as thermal mass squared. The challenge is to understand the origin of the
tachyonic conformal weight.

1. For the 4-D generalization of conformal invariance, there would be two conformal weights
h1 and h2 associated with longitudinal and transversal degrees of freedom of M4 Hamilton-
Jacobi structure [L6]. The conformal weights correspond physically to the mass squared and
the identification m2 = h1 − h2 ≥ 0 for the physical mass squared could make sense. p-Adic
thermodynamics would give the physical mass as a thermodynamic expectation value so that
non-negative values of m2 = h1 − h2 are needed. This would be the space-time analog for
positive values of M4 mass squared.

Note that in the case of hadrons, longitudinal momenta of quarks are nearly massless but
the transverse confinement gives rise to transversal momentum squared. The interpretation
could be that the (dominating) contribution of the color magnetic body of the hadron mass
makes the momentum of the state non-tachyonic.

2. In this framework, one could understand the construction of the physical states in the follow-
ing way. The tachyonic ground state would correspond to a state having only the transversal
contribution −h2 to the mass squared and the action by Kac-Moody-/symplectic generators
would add excitations with a nonvanishing h1 and give a massless state as well as its exci-
tations with positive mass squared. The replacement of 2-D string worlds sheets with 4-D
space-time surface would solve the tachyon problem.

I have also considered an alternative approach to the tachyon problem and one can wonder if
it is consistent with the proposed one.

1. As noticed, M8−H duality involves a selection of M4 ⊂M8
c . The octonionic automorphism

group G2 generates different choices of M4. What could this freedom to choose M4 ⊂ M8
c

mean? How is it visible at the level of H? Since G2 is an automorphism group, the states
would be analogous to states differing by Lorentz boosts. Since these states are massless in
M8, it should be possible to find a choice of M4 ⊂ M8

c for which the states are massless
and thus also in M4 ⊂ H. This choice is like going to the rest frame of a moving system in
special relativity. How are these two states related at the level of H?

2. The natural proposal is that in M4 ⊂ M8
c it is always possible to transform a given state

with m2 ≥ 0 to a state with m2 = 0. In the padic mass calculations this choice corresponds
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to a construction of a massless state from a state which in absence of tachyons would have
mass of order CP2 mass.

The massless state would be obtained by an addition to the state of a transverse tachyonic
contribution with a non-vanishing weight h2 to give h1 = h2. The notion of mass defined as
m2 = h1−h2 would be a relative notion like four-momentum in special relativity. Application
of conformal generators would make it possible to generate states with different rest frames.

3. SO(1, 7) contains G2 as a subgroup of the rotation group SO(6) ⊂ SO(1, 7). More gen-
eral transformation of SO(1, 7) analogous to Lorentz boosts would not be allowed number-
theoretically. The integer valued spectrum for m2 allows only a discrete subgroup of G2. In
special relativity this would correspond to a discrete subgroup of the Lorentz group.

To sum up, the tachyon problem of the superstring models could be seen as the compelling
reason for replacing string world sheets with 4-D space-time surfaces. The predicted two conformal
weights would allow to get rid of tachyons, which also appeared in the p-adic mass calculations
based on ordinary conformal invariance.

5 Challenging the existing view of symplectic symmetries
in relation to WCW geometry

I have considered the possibility that also the symplectomorphisms of δM4 +×CP2 could define
WCW isometries. This actually the original proposal. One can imagine two options.

1. The continuation of symplectic transformations to transformations of the space-time surface
from the boundary of light-cone or from the orbits partonic 2-surfaces should give rise to
conserved Noether currents but it is not at all obvious whether this is the case.

2. One can assign conserved charges to the time evolution of the 3-D boundary data defining
the holographic data: the time coordinate for the evolution would correspond to the light-
like coordinate of light-cone boundary or partonic orbit. This option I have not considered
hitherto. It turns out that this option works!

The conclusion would be that generalized holomorphies give rise to conserved charges for 4-D
time evolution and symplectic transformations give rise to conserved charged for 3-D time evolution
associated with the holographic data.

5.1 About extremals of Chern-Simons-Kähler action

Let us look first the general nature of the solutions to the extremization of Chern-Simons-Kähler
action.

1. The light-likeness of the partonic orbits requires Chern-Simons action, which is equivalent to
the topological action J∧J , which is total divergence and is a symplectic in variant. The field
equations at the boundary cannot involve induced metric so that only induced symplectic
structure remains. The 3-D holographic data at partonic orbits would extremize Cherns-
Simons-Kähler action. Note that at the ends of the space-time surface about boundaries of
CD one cannot pose any dynamics.

2. If the induced Kähler form has only the CP2 part, the variation of Chern-Simons-Kähler
form would give equations satisfied if the CP2 projection is at most 2-dimensional and
Chern-Simons action would vanish and imply that instanton number vanishes.

3. If the action is the sum of M4 and CP2 parts, the field equations in M4 and CP2 degrees
of freedom would give the same result. If the induced Kähler form is identified as the sum
of the M4 and CP2 parts, the equations also allow solutions for which the induced M4 and
CP2 Kähler forms sum up to zero. This phase would involve a map identifying M4 and CP2

projections and force induce Kähler forms to be identical. This would force magnetic charge
in M4 and the question is whether the line connecting the tips of the CD makes non-trivial
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homology possible. The homology charges and the 2-D ends of the partonic orbit cancel
each other so that partonic surfaces can have monopole charge.

The conditions at the partonic orbits do not pose conditions on the interior and should allow
generalized holomorphy. The following considerations show that besides homology charges
as Kähler magnetic fluxes also Hamiltonian fluxes are conserved in Chern-Simons-Kähler
dynamics.

5.2 Can one assign conserved charges with symplectic transformations
or partonic orbits and 3-surfaces at light-cone boundary?

The geometric picture is that symplectic symmetries are Hamiltonian flows along the light-like
partonic orbits generated by the projection At of the Kähler gauge potential in the direction of
the light-like time coordinate. The physical picture is that the partonic 2-surface is a Kähler
charged particle that couples to the Hamilton H = At. The Hamiltonians HA are conserved
in this time evolution and give rise to conserved Noether currents. The corresponding conserved
charge is integral over the 2-surface defined by the area form defined by the induced Kähler form.

Let’s examine the change of the Chern-Simons-Kähler action in a deformation that corresponds,
for example, to the CP2 symplectic transformation generated by Hamilton HA. M4 symplectic
transformations can be treated in the same way:here however M4 Kähler form would be involved,
assumed to accompany Hamilton-Jacobi structure as a dynamically generated structure.

1. Instanton density for the induced Kähler form reduces to a total divergence and gives
Chern-Simons-Kähler action, which is TGD analog of topological action. This action should
change in infinitesimal symplectic transformations by a total divergence, which should vanish
for extremals and give rise to a conserved current. The integral of the divergence gives
a vanishing charge difference between the ends of the partonic orbit. If the symplectic
transformations define symmetries, it should be possible to assign to each Hamiltonian HA a
conserved charge. The corresponding quantal charge would be associated with the modified
Dirac action.

2. The conserved charge would be an integral over X2. The surface element is not given by the
metric but by the symplectic structure, so that it is preserved in symplectic transformations.
The 2-surface of the time evolution should correspond to the Hamiltonian time transformation
generated by the projection Aα = Ak∂αs

k of the Kähler gauge potential Ak to the direction
of light-like time coordinate xα ≡ t.

3. The effect of the generator jkA = Jkl∂lHA on the Kähler potential Al is given by jkA∂kAl.
This can be written as ∂kAl = Jkl + ∂lAk. The first term gives the desired total divergence
∂α(εαβγJβγHA).

The second term is proportional to the term ∂αHA − {Aα, H}. Suppose that the induced
Kähler form is transversal to the light-like time coordinate t, i.e. the induced Kähler form
does not have components of form Jtµ. In this kind of situation the only possible choice for
α corresponds to the time coordinate t. In this situation one can perform the replacement
∂αHA−{Aα, H} → dHA/dt−{At, H} This corresponds to a Hamiltonian time evolution
generated by the projection At acting as a Hamiltonian. If this is really a Hamiltonian
time evolution, one has dHA/dt − {A,H} = 0. Because the Poisson bracket represents
a commutator, the Hamiltonian time evolution equation is analogous to the vanishing of
a covariant derivative of HA along light-like curves: ∂tHA + [A,HA] = 0. The physical
interpretation is that the partonic surface develops like a particle with a Kähler charge. As
a consequence the change of the action reduces to a total divergence.

An explicit expression for the conserved current JαA = HAε
αβγJβγ can be derived from

the vanishing of the total divergence. Symplectic transformations on X2 generate an
infinite-dimensional symplectic algebra. The charge is given by the Hamiltonian flux QA =∫
HAJβγdx

α ∧ dxβ .

4. If the projection of the partonic path CP2 or M4 is 2-D, then the light-like geodesic line
corresponds to the path of the parton surface. If Al can be chosen parallel to the surface, its
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projection in the direction of time disappears and one has At = 0. In the more general case,
X2 could, for example, rotate in CP2. In this case At is nonvanishing. If J is transversal
(no Kähler electric field), charge conservation is obtained.

Do the above observations apply at the boundary of the light-cone?

1. Now the 3-surface is space-like and Chern-Simons-Kähler action makes sense. It is not
necessary but emerges from the ”instanton density” for the Kähler form. The symplectic
transformations of δM4

+×CP2 are the symmetries. The most time evolution associated
with the radial light-like coordinate would be from the tip of the light-cone boundary to
the boundary of CD. Conserved charges as homological invariants defining symplectic
algebra would be associated with the 2-D slices of 3-surfaces. For closed 3-surfaces the total
charges from the sheets of 3-space as covering of δM4

+ must sum up to zero.

2. Interestingly, the original proposal for the isometries of WCW was that the Hamiltonian
fluxes assignable to M4 and CP2 degrees of freedom at light-like boundary act define the
charges associated with the WCW isometries as symplectic transformations so that a strong
form of holography would have been be realized and space-time surface would have been
effectively 2-dimensional. The recent view is that these symmetries pose conditions only on
the 3-D holographic data. The holographic charges would correspond to additional isometries
of WCW and would be well-defined for the 3-surfaces at the light-cone boundary.

To sum up, one can imagine many options but the following picture is perhaps the simplest
one and is supported by mathematical facts. The isometry algebra of δM4

+ × CP2 consists of
generalized conformal and KM algebras at 3-surfaces in δM4

+ ×CP2 and symplectic algebras at
the light cone boundary and 3-D light-like partonic orbits. The latter symmetries give constraints
on the 3-D holographic data. It is still unclear whether one can assign generalized conformal
and Kac-Moody charges to Chern-Simons-Kähler action. The isomorphic subalgebras labelled by a
positive integer and their commutators with the entire algebra would annihilate the physical states.
The isomorphic subalgebras labelled by a positive integer and their commutators with the entire
algebra would annihilate the physical states. These two representations would generalize the
notions of inertial and gravitational mass and their equivalence would generalize the Equivalence
Principle.

5.2.1 Objection against the idea about theoretician friendly Mother Nature

One of the key ideas behind the TGD view of dark matter is that Nature is theoretician friendly [L5].
When the coupling strength proportional to ~eff becomes so large that perturbation series ceases
to converge, a phase transition increasing the value of heff takes place so that the perturbation
series converges.

One can however argue that this argument is quantum field-theoretic and does not apply in
TGD since holography changes the very concept of perturbation theory. There is no path integral to
worry about. Path integral is indeed such a fundamental concept that one expects it to have some
approximate counterpart also in the TGD Universe. Bohr orbits are not completely deterministic:
could the sum over the Bohr orbits however translate to an approximate description as a path
integral at the QFT limit? The dynamics of light-like partonic orbits is indeed non-deterministic
and could give rise to an analog of path integral as a finite sum.

1. The dynamics implied by Chern-Simons-Kähler action assignable to the partonic 3-surface
with light-one coordinate in the role of time, is very topological in that the partonic orbits
is light-like 3-surface and has 2-D CP2 and M4 projections unless the induced M4 and CP2

Kähler forms sum up to zero. The light-likeness of the projection is a very loose condition and
and the sum over partonic orbits as possible representation of holographic data analogous to
initial values (light-likeness!) is therefore analogous to the sum over all paths appearing as a
representation of Schrödinger equation in wave mechanics.

One would have an analog of 1-D QFT. This means that the infinities of quantum field
theories are absent but for a large enough coupling strength g2/4π~ the perturbation series
fails to converge. The increase of heff would resolve the problem. For instance, Dirac
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equation in atomic physics makes unphysical predictions when the value of nucler charge is
larger than Z ∼ 137.

2. I have also considered a discrete variant of this picture motivated by the fact that the presence
of the volume term in the action implies that the M4 projection of the CP2 type extremal is
a light-like geodesic line. The light-like orbits would consist of pieces of light-like geodesics
implying that the average velocity would be smaller than c: this could be seen as a correlate
for massivation.

The points at which the direction of segment changes would correspond to points at which
energy and momentum transfer between the partonic orbit and environment takes place. This
kind of quantum number transfer might occur at least for the fermionic lines as boundaries
of string world sheets. They could be described quantum mechanically as interactions with
classical fields in the same way as the creation of fermion pairs as a fundamental vertex [L4].
The same universal 2-vertex would be in question.

At these points the minimal surface property would fail and the trace of the second funda-
mental form would not vanish but would have a delta function-like singularity. The CP2 part
of the second fundamental form has quantum numbers of Higgs so that there would be an
analogy with the standard description of massivation by the Higgs mechanism. Higgs would
be only where the vertices are.

3. What is intriguing, that the light-likeness of the projection of the CP2 type extremals in
M4 leads to Virasoro conditions assignable to M4 coordinates and this eventually led to the
idea of conformal symmetries as isometries as WCW. In the case of the partonic orbits, the
light-like curve would be in M4×CP2 but it would not be surprising if the generalization of
the Virasoro conditions would emerge also now.

One can write M4 and CP2 coordinates for the light-like curve as Fourier expansion in powers
of exp(it), where t is the light-like coordinate. This gives hk =

∑
hknexp(int). If the CP2

projection of the orbits of the partonic 2-surface is geodesic circle, CP2 metric skl is constant,

the light-likeness condition hkl∂th
k∂th

l = 0 gives Re[hkl
∑
m h

k
n−mh

l

m] = 0. This does not
give Virasoro conditions.

The condition d/dt(hkl∂th
k∂th

l = 0) = 0 however gives the standard Virasoro condition in
quantization condition stating that the operator counterparts of quantities Ln = Re[hkl

∑
m(n−

m)hkn−mh
l

m] annihilate the physical states. What is interesting is that the latter condition
also allows time-like (and even space-like) geodesics.

Could massivation mean a failure of light-likeness? For piecewise light-like geodesics the
light-likeness condition would be true only inside the segments. By taking Fourier transform
one expects to obtain Virasoro conditions with a cutoff analogous to the momentum cutoff
in condensed matter physics for crystals.

4. In TGD the Virasoro, Kac-Moody algebras and symplectic algebras are replaced by half-
algebras and the gauge conditions are satisfied for conformal weights which are n-multiples
of fundamentals with with n larger than some minimal value. This would dramatically reduce
the effects of the non-determinism and could make the sum over all paths allowed by the
light-likeness manifestly finite and reduce it to a sum with a finite number of terms. This
cutoff in degrees of freedom would correspond to a genuinely physical cutoff due to the finite
measurement resolution coded to the number theoretical anatomy of the space-time surfaces.
This cutoff is analogous to momentum cutoff and could at the space-time picture correspond
to finite minimum length for the light-like segments of the orbit of the partoic 2-surface.

5.2.2 Boundary conditions at partonic orbits and holography

TGD reduces coupling constant evolution to a number theoretical evolution of the coupling pa-
rameters of the action identified as Kähler function for WCW. An interesting question is how the
3-D holographic data at the partonic orbits relates to the corresponding 3-D data at the ends of
space-time surfaces at the boundary of CD, and how it relates to coupling constant evolution.
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1. The twistor lift of TGD strongly favours 6-D Kähler action, which dimensionally reduces to
Kähler action plus volume term plus topological

∫
J ∧ J term reducing to Chern Simons-

Kähler action. The coefficients of these terms are proposed to be expressible in terms of
number theoretical invariants characterizing the algebraic extensions of rationals and poly-
nomials determining the space-time surfaces by M8 −H duality.

Number theoretical coupling constant evolution would be discrete. Each extension of ra-
tionals would give rise to its own coupling parameters involving also the ramified primes
characterizing the polynomials involved and identified as p-adic length scales.

2. The time evolution of the partonic orbit would be non-deterministic but subject to the light-
likeness constraint and boundary conditions guaranteeing conservation laws. The natural
expectation is that the boundary/interface conditions for a given action cannot be satisfied for
all partonic orbits (and other singularities). The deformation of the partonic orbit requiring
that boundary conditions are satisfied, does not affect X3 but the time derivatives ∂th

k at
X3 are affected since the form of the holomorphic functions defining the space-time surface
would change. The interpretation would be in terms of duality of the holographic data
associated with the partonic orbits resp. X3.

There can of course exist deformations, which require the change of the coupling parameters
of the action to satisfy the boundary conditions. One can consider an analog of renor-
malization group equations in which the deformation corresponds to a modification of the
coupling parameters of the action, most plausibly determined by the twistor lift. Coupling
parameters would label different regions of WCW and the space-time surfaces possible for
two different sets of coupling parameters would define interfaces between these regions.

In order to build a more detailed view one must fix the details related to the action whose
value defines the WCW Kähler function.

1. If Kähler action is identified as Kähler action, the identification is unique. There is however
the possibility that the imaginary exponent of the instanton term or the contribution from the
Euclidean region is not included in the definition of Kähler function. For instance instanton
term could be interpreted as a phase of quantum state and would not contribute.

2. Both Minkowskian and Euclidean regions are involved and the Euclidean signature poses
problems. The definition of the determinant as

√
−g4 is natural in Minkowskian regions but

gives an imaginary contribution in Euclidean regions.
√
|g4| is real in both regions. i

√
g4 is

real in Minkowskian regions but imaginary in the Euclidean regions.

There is also a problem related to the instanton term, which does not depend on the metric
determinant at all. In QFT context the instanton term is imaginary and this is important
for instance in QCD in the definition of CP breaking vacuum functional. Should one include
only the 4-D or possibly only Minkowskian contribution to the Kähler function imaginary
coefficient for the instanton/Euclidian term would be possible?

3. Boundary conditions guaranteeing the conservation laws at the partonic orbits must be
satisfied. Consider the

√
|g4| case. Charge transfer between Euclidean and Minkowskian

regions. If the C-S-K term is real, also the charge transfer between partonic orbit and 4-D
regions is possible. The boundary conditions at the partonic orbit fix it to a high degree and
also affect the time derivatives ∂th

k at X3. This option looks physically rather attractive
because classical conserved charges would be real.

If the C-S-K term is imaginary it behaves like a free particle since charge exchange with
Minkowskian and Euclidean regions is not possible. A possible interpretation of the possible
M4 contribution to momentum could be in terms of decay width. The symplectic charges do
not however involve momentum. The imaginary contribution to momentum could therefore
come only from the Euclidean region.

4. If the Euclidean contribution is imaginary, it seems that it cannot be included in the Kähler
function. Since in M8 picture the momenta of virtual fermions are in general complex, one
could consider the possibility that Euclidean contribution to the momentum is imaginary
and allows an interpretation as a decay width.
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5.3 The TGD counterparts of the gauge conditions of string models

The string model picture forces to ask whether the symplectic algebras and the generalized
conformal and Kac-Moody algebras could act as gauge symmetries.

1. In string model picture conformal invariance would suggest that the generators of the gener-
alized conformal and KM symmetries act as gauge transformations annihilate the physical
states. In the TGD framework, this does not however make sense physically. This also sug-
gests that the components of the metric defined by supergenerators of generalized conformal
and Kac Moody transformations vanish. If so, the symplectomorphisms δM4

+ ×CP2 local-
ized with respect to the light-like radial coordinate acting as isometries would be needed.
The half-algebras of both symplectic and conformal generators are labelled by a non-negative
integer defining an analog of conformal weight so there is a fractal hierarchy of isomorphic
subalgebras in both cases.

2. TGD forces to ask whether only subalgebras of both conformal and Kac-Moody half
algebras, isomorphic to the full algebras, act as gauge algebras. This applies also to the
symplectic case. Here it is essential that only the half algebra with non-negative multiples
of the fundamental conformal weights is allowed. For the subalgebra annihilating the states
the conformal weights would be fixed integer multiples of those for the full algebra. The
gauge property would be true for all algebras involved. The remaining symmetries would
be genuine dynamical symmetries of the reduced WCW and this would reflect the number
theoretically realized finite measurement resolution. The reduction of degrees of freedom
would also be analogous to the basic property of hyperfinite factors assumed to play a key
role in thee definition of finite measurement resolution.

3. For strong holography, the orbits of partonic 2-surfaces and boundaries of the spacetime
surface at δM4

+ would be dual in the information theoretic sense. Either would be enough
to determine the space-time surface.

5.4 Could space-time or the space of space-time surfaces be a Lagrangian
manifold in some sense?

Gary Ehlenberg sent a link to a tweet to X (see this) by Curt Jainmungal. The tweet has title
”Everything is a Lagrangian submanifold”. The title expresses the idea of Alan Weinstein (see this),
which states that space-time is a Lagrangian submanifold (see this) of some symplectic manifold.
Note that the phase space of classical mechanics represents a basic example of symplectic manifold.

Lagrangian manifolds emerge naturally in canonical quantization. They reduce one half of
the degrees of freedom of the phase space. This realizes the Uncertainty Principle geometrically.
Also holography= holomorphy principle realizes Uncertainty Principle by reducing the degrees of
freedom by one half.

What about the situation in TGD [L11, L12, L9]. Does the proposal of Alan Weinstein have
some analog in the TGD framework?

Consider first the formulation of Quantum TGD.

1. The original approach of TGD relied on the notion of Kähler action [K2, K3]. The reason was
that it had exceptional properties. The Lagrangian manifolds L of CP2 give rise to vacuum
extremals for Kähler action: any 4-surface of M4×L ⊂ H = M4×CP2 with M4 is a vacuum
extremal for this action. At these space-time surfaces, the induced Kähler form vanishes as
also Kähler action as a non-linear analog of Maxwell action.

The small variations of the Kähler action vanish in order higher than two so that the action
would not have a kinetic term and the ordinary perturbation theory in QFT sense (based on
path integral) would completely fail. The addition of a volume term to the action cures the
situation and in the twistorialization of TGD it emerges naturally and does not bring in the
analog of cosmological constant as a fundamental constant but as a dynamically generated
parameter. Therefore scale invariance would not be broken at the level of action.

2. This was however not the only problem. The usual perturbation theory would be plagued
by an infinite hierarchy of infinities much worse than those of ordinary QFTs: they would

https://x.com/TOEwithCurt/status/1878499522961096912
https://en.wikipedia.org/wiki/Alan_Weinstein
https://ncatlab.org/nlab/show/lagrangian+submanifold
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be due to the extreme non-linearity of any general coordinate invariant action density as
function of H coordinates and their partial derivatives.

These problems eventually led to the notion of the ”world of classical worlds” (WCW) as an
arena of dynamics identified as the space of 4-surfaces obeying what I call now holography and
realized in some sense [K2, K1, K3, L8]. It took decades to understand in what sense the holography
is realized.

1. The 4-D general coordinate invariance would be realized in terms of holography. The defi-
nition of WCW geometry assigns to a given 3-surface a unique or almost unique space-time
surface at which general coordinate transformations can act. The space-time surfaces are
therefore analogs of Bohr orbits so that the path integral disappears or reduces to a sum in
the case that the classical dynamics is not completely deterministic. The counterparts of the
usual QFT divergences disappear completely and Kähler geometry of WCW takes care of
the remaining diverges.

It should be noticed in passing, that year or two ago, I discussed space-times surfaces, which
are Lagrangian manifolds of H with M4 endowed with a generalization of the Kähler metric.
This generalization was motivated by twistorialization.

2. Eventually emerged the realization of holography in terms of generalized holomorphy based on
the idea that space-time surfaces are generalized complex surfaces of H having a generalized
holomorphic structure based on 3 complex coordinates and one hyper complex coordinate
associated which I call Hamilton-Jacobi structure.

These 4-surfaces are universal extremals of any general coordinate invariant action con-
structible in terms of the induced geometry since the field equations reduce to a contraction
of two complex tensors of different type having no common index pairs. Space-time surfaces
are minimal surfaces and analogs of solutions of both massless field equations and of massless
particles extended from point-like particles to 3-surfaces. Field particle duality is realized
geometrically.

It is now clear that the generalized 4-D complex submanifolds of H are the correct choice to
realize holography [L9].

3. The universality realized as action independence, in turn leads to the view that the number
theoretic view of TGD in principle could make possible purely number theoretic formulation
of TGD [L10] There would be a duality between geometric and number theoretic views [L9],
which is analogous to Langlands duality. The number theoretic view is extremely predictive:
for instance, it allows to deduce the spectrum for the exponential of action defining vacuum
functional for Bohr orbits does not depend on the action principle.

The universality means enormous computational simplification as also does the possibility to
construct space-time surfaces as roots for a pair of (f1, f2) of generalized analytic functions
of generalized complex coordinates of H. The field equations, which are usually partial
differential equations, reduce to algebraic equations. The function pairs form a hierarchy with
an increasing complexity starting with polynomials and continuing with analytic functions:
both have coefficients in some extension of rationals and even more general coefficients can
be considered.

So, could Lagrangian manifolds appear in TGD in some sense?

1. The proposal that the WCW as the space of 4-surfaces obeying holography in some sense
has symplectomorphisms of H as isometries, has been a basic idea from the beginning. If
holography= holomorphy principle is realized, both generalized conformal transformations
and generalized symplectic transformations of H would act as isometries of WCW [L8]. This
infinite-dimensional group of isometries must be maximal possible to guarantee the existence
of Riemann connection: this was already observed for loop spaces by Freed. In the case of
loop spaces the isometries would be generated by a Kac-Moody algebra.
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2. Holography, realized as Bohr orbit property of the space-time surfaces, suggests that one
could regard WCW as an analog of a Lagrangian manifold of a larger symplectic manifold
WCWext consisting of 4-surfaces of H appearing as extremals of some action principle. The
Bohr orbit property defined by the holomorphy would not hold true anymore.

If WCW can be regarded as a Lagrangian manifold of WCWext, then the group of Sp(WCW)
of symplectic transformations of WCWext would indeed act in WCW . The group Sp(H) of
symplectic transformations of H, a much smaller group, could define symplectic isometries
of WCWext acting in WCW just as color rotations give rise to isometries of CP2.
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