What's new in

Quantum Hardware of Living Matter

Note: Newest contributions are at the top!



Year 2016



How the transition to superconductive state could be induced by classical radiation?

Blog and Facebook discussions have turned out to be extremely useful and quite often new details to the existing picture emerge from them. We have had interesting exchanges with Christoffer Heck in the comment section to the posting Are microtubules macroscopic quantum systems? and this pleasant surprise occurred also now thanks to a question by Christoffer.

Recall that Bandyopadhyay's team claims to have detected the analog of superconductivity, when microtubules are subjected to AC voltage (see this). The transition to superconductivity would occur at certain critical frequencies. For references and the TGD inspired model see the article.

The TGD proposal for bio-superconductivity - in particular that appearing in microtubules - is same as that for high Tc superconductivity. Quantum criticality,large heff/h=n phases of of Cooper pairs of electrons and parallel magnetic flux tube pairs carrying the members of Cooper pairs for the essential parts of the mechanism. S=0 (S=1) Cooper pairs appear when the magnetic fields at parallel flux tubes have opposite (same) direction.

Cooper pairs would be present already below the gap temperature but possible super-currents could flow in short loops formed by magnetic flux tubes in ferromagnetic system. AC voltage at critical frequency would somehow induce transition to superconductivity in long length scales by inducing a phase transition of microtubules without helical symmetry to those with helical symmetry and fusing the conduction pathways with length of 13 tubulins to much longer ones by reconnection of magnetic flux tubes parallel to the conduction pathways.

The phonon mechanism for the formation of Cooper pair in ordinary superconductivity cannot be however involved with high Tc superconductivity nor bio-superconductivity. There is upper bound of about 30 K for the critical temperature of BCS superconductors. Few days ago I learned about high Tc superconductivity around 500 K for n-alkanes (see the blog posting) so that the mechanism for high Tc is certainly different .

The question of Christoffer was following. Could microwave radiation for which photon energies are around 10-5 eV for ordinary value of Planck constant and correspond to the gap energy of BCS superconductivity induce phase transition to BCS super-conductivity and maybe to micro-tubular superconductivity (if it exists at all)?

This inspires the question about how precisely the AC voltage at critical frequencies could induce the transition to high Tc- and bio-super-conductivity. Consider first what could happen in the transition to high Tc super-conductivity.

  1. In high Tc super conductors such as copper-oxides the anti-ferromagnetism is known to be essential as also 2-D sub-lattice structures. Anti-ferromagnetism suggests that closed flux tubes form of squares with opposite directions of magnetic field at the opposite sides of square. The opposite sides of the square would carry the members of Cooper pair.
  2. At quantum criticality these squares would reconnect to very long flattened squares by reconnection. The members of Cooper pairs would reside at parallel flux tubes forming the sides of the flattened square. Gap energy would consists interaction energies with the magnetic fields and the mutual interaction energy of magnetic moments.

    This mechanism does not work in standard QM since the energies involved are quite too low as compared to thermal energy. Large heff/h=n would however scale up the magnetic energies by n. Note that the notion of gap energy should be perhaps replaced with collective binding energy per Cooper pair obtained from the difference of total energies for gap phase formed at higher temperature and for superconducting phase formed at Tc by dividing with the number of Cooper pairs.

    Another important distinction to BCS is that Cooper pairs would be present already below gap temperature. At quantum criticality the conduction pathways would become much longer by reconnection. This would be represent an example about "topological" condensed matter physics. Now hover space-time topology would be in question.

  3. The analogs of phonons could be present as transversal oscillations of magnetic flux tubes: at quantum criticality long wave length "magneto-phonons" would be present. The transverse oscillations of flux tube squares would give rise to reconnection and formation of
If the irradiation or its generalization to high Tc works the energy of photon should be around gap energy or more precisely around energy difference per Cooper pair for the phases with long flux tubes pairs and short square like flux tubes.
  1. To induce superconductivity one should induce formation of Cooper pairs in BCS superconductivity. In high Tc super-conductivity it should induce a phase transition in which small square shaped flux tube reconnect to long flux tubes forming the conducting pathways. The system should radiate away the energy difference for these phases: the counterpart of binding energy could be defined as the radiated energy per Cooper pair.
  2. One could think the analog of stimulated emission. Assume that Cooper pairs have two states: the genuine Cooper pair and the non-superconducting Cooper pair. This is the case in high Tc superconductivity but not in BCS superconductivity, where the emergence of superconductivity creates the Cooper pairs. One can of course ask whether one could speak about the analog of stimulated emission also in this case.
  3. Above Tc but below gap temperature one has the analog of inverted population: all pairs are in higher energy state. The irradiation with photon beam with energy corresponding to energy difference gives rise to stimulated emission and the system goes to superconducting state with a lower energy state with a lower energy.
This mechanism could explain the finding of Bandyopadhyay's team that AC perturbation at certain critical frequencies gave rise to a ballistic state (no dependence of the resistance on the length of the wire so that the resistance must be located at its ends). The team used photons with frequency scales of MHz, GHz, and THz. The corresponding photon energy scales are about 10-8 eV, 10-5, 10-2 eV for the ordinary value of Planck constant and are below thermal energies.

In TGD classical radiation should have also large heff/h=n photonic counterparts with much larger energies E=heff×f to explain the quantal effects of ELF radiation at EEG frequency range on brain (see this). The general proposal is that heff equals to what I have called gravitational Planck constant hbargr=GMm/v0 (see this or this). This implies that dark cyclotron photons have universal energy range having no dependence on the mass of the charged particle. Bio-photons have energies in visible and UV range much above thermal energy and would result in the transition transforming dark photons with large heff = hgr to ordinary photons.

One could argue that AC field does not correspond to radiation. In TGD framework this kind of electric fields can be interpreted as analogs of standing waves generated when charged particle has contacts to parallel "massless extremals" representing classical radiation with same frequency propagating in opposite directions. The net force experienced by the particle corresponds to a standing wave.

Irradiation using classical fields would be a general mechanism for inducing bio-superconductivity. Superconductivity would be generated when it is needed. The findings of Blackman and other pioneers of bio-electromagnetism about quantal effects of ELF em fields on vertebrate brain stimulated the idea about dark matter as phases with non-standard value of Planck constant. Also these finding could be interpreted as a generation of superconducting phase by this phase transition.

For background see the chapter Bio-Systems as Super-Conductors: Part I .



Room temperature superconductivity for alkanes

Super conductivity with critical temperature of 231 C for n-alkanes containing n=16 or more carbon atoms in presence of graphite has been reported (see this).

Alkanes (see this) can be linear (CnH2n+2) with carbon backbone forming a snake like structure, branched (CnH2n+2, n > 2) in which carbon backbone splits in one, or more directions or cyclic (CnH2n) with carbon backbone forming a loop. Methane CH4 is the simplest alkane.

What makes the finding so remarkable is that alkanes serve as basic building bricks of organic molecules. For instance, cyclic alkanes modified by replacing some carbon and hydrogen atoms by other atoms or groups form aromatic 5-cycles and 6-cycles as basic building bricks of DNA. I have proposed that aromatic cycles are superconducting and define fundamental and kind of basic units of molecular consciousness and in case of DNA combine to a larger linear structure.

Organic high Tc superconductivity is one of the basic predictions of quantum TGD. The mechanism of super-conductivity would be based on Cooper pairs of dark electrons with non-standard value of Planck constant heff=n×h implying quantum coherence is length scales scaled up by n (also bosonic ions and Cooper pairs of fermionic ions can be considered).

The members of dark Cooper pair would reside at parallel magnetic flux tubes carrying magnetic fields with same or opposite direction: for opposite directions one would have S=0 and for the same direction S=1. The cyclotron energy of electrons proportional to heff would be scaled up and this would scale up the binding energy of the Cooper pair and make super-conductivity possible at temperatures even higher than room temperature (see this).

This mechanism would explain the basic qualitative features of high Tc superconductivity in terms of quantum criticality. Between gap temperature and Tc one one would have superconductivity in short scales and below Tc superconductivity in long length scales. These temperatures would correspond to quantum criticality at which large heff phases would emerge.

What could be the role of graphite? The 2-D hexagonal structure of graphite is expected to be important as it is also in the ordinary super-conductivity: perhaps graphite provides long flux tubes and n-alkanes provide the Cooper pairs at them. Either graphite, n-alkane as organic compound, or both together could induce quantum criticality. In living matter quantum criticality would be induced by different mechanism. For instance, in microtubules it would be induced by AC current at critical frequencies.

See chapter Bio-systems as superconductors: part I and the article New findings about high-temperature super-conductors.



Nematics and superconductors

Waterloo physicists discover new properties of superconductivity is the title of article popurazing the article of David Hawthorn, Canada Research Chair Michel Gingras, doctoral student Andrew Achkar and post-doctoral student Zhihao Hao published in Science.

There is a dose of hype involved. As a matter of fact, it has been known for years that electrons flow along stripes, kind of highways in high Tc superconductors: I know this quite well since I have proposed TGD inspired model explaining this (see this and this )!

The effect is known as nematicity and means that electron orbitals break lattice symmetries and align themselves like a series of rods. Nematicity in long length scales occurs a temperatures below the critical point for super-conductivity. In above mentioned cuprate CuO2 is studied. For non-optimal doping the critical temperature for transition to macroscopic superconductivity is below the maximal critical temperature. Long length scale nematicity is observed in these phases.

In second article it is however reported that nematicity is in fact preserved above critical temperature as a local order -at least up to the upper critical temperature, which is not easy to understand in the BCS theory of superconductivity. One can say that the stripes are short and short-lived so that genuine super-conductivity cannot take place.

These two observations yield further support for TGD inspired model of high Tc superconductivity and bio-superconductivity. It is known that antiferromagnetism is essential for the phase transition to superconductivity but Maxwellian view about electromagnetism and standard quantum theory do not make it easy to understand how. Magnetic flux tube is the first basic new notion provided by TGD. Flux tubes carry dark electrons with scaled up Planck constant heff =n×h: this is second new notion. This implies scaling up of quantal length scales and in this manner makes also super-conductivity possible.

Magnetic flux tubes in antiferromagnetic materials form short loops. At the upper critical point they however reconnect with some probability to form loops with look locally like parallel flux tubes carrying magnetic fields in opposite directions. The probability of reverse phase transition is so large than there is a competion. The members of Cooper pairs are at parallel flux tubes and have opposite spins so that the net spin of pair vanishes: S=0. At the first critical temperature the average length and lifetime of flux tube highways are too short for macroscopic super-conductivity. At lower critical temperature all flux tubes re-connect permantently average length of pathways becomes long enough.

This phase transition is mathematically analogous to percolation in which water seeping through sand layer wets it completely. The competion between the phases between these two temperatures corresponds to quantum criticality in which phase transitions heff/h=n1 ←→n2 take place in both directions (n1 =1 is the most plausible first guess). Earlier I did not fully realize that Zero Energy Ontology provides an elegant description for the situation (see this and this). The reason was that I though that quantum criticality occurs at single critical temperature rather than temperature interval. Nematicity is detected locally below upper critical temperature and in long length scales below lower critical temperature.

During last years it has become clear that condensed matter physicists are discovering with increasing pace the physics predicted by TGD . Same happens in biology. It is a pity that particle physicists have missed the train so badly. They are still trying to cook up something from super string models which have been dead for years. The first reason is essentially sociological: the fight for funding has led to what might be politely called "aggressive competion". Being the best is not enough and there is a temptation to use tricks, which prevent others showing publicly that they have something interesting to say. ArXiv censorship is excellent tool in this respect. Second problem is hopelessly narrow specialization and technicalization: colleague can be defined by telling the algorithms that he is applying. Colleagues do not see physics for particle physics - or even worse, for "physics" or superstrings and branes in 10,11, or 12 dimensions.

See the chapter Bio-Systems as Super-Conductors: part I.



To the index page