What's new in

Magnetospheric Consciousness

Note: Newest contributions are at the top!

Year 2010



Could high energy phosphate bond be negentropic bond with negative binding energy?

Most people assign the word "love" to the word "life" as their first association. There is a notable exception to this: scientists including biologists. Un-educated layman might however wonder whether one can understand life without identifying any physical counterpart for this notion (, which could be replaced with that of compassion, sex, or ability to act synergetically or just X if some of these notions sounds less un-scientific). Certainly the word "love" stimulates a deep feeling of disgust in a reductionistically conditioned scientist. But isn't the duty of scientist to win this kind of feelings and try to see whether this identification might be possible after all? The prize could be high: the understanding of what distinguishes between living and dead matter could change the entire culture. Who knows, maybe it could be possible to identify some poorly understood fundamental biological process allowing a quantitative model using a guess for what this physical correlate could be. The basic step of metabolism is at the core of life and indeed poorly understood, and I shall argue that the identification of the negentropic entanglement as the counterpart for the notion of love could allow to model quantititatively what happens in this process.

Before continuing general motivating comments about implications of negentropic entanglement are in order.

  1. Ordinary bound states are stable because they have positive binding energy. One can visualize this kind of binding as a jail: the second particle resides near the bottom of a potential well. Organized marriage is a social analogy for this situation. Negentropic entanglement makes possible bound states for which binding energy can have and perhaps even has always a wrong sign. The state is not prevented from decaying to free p"../articles/ in state function reduction by energy conservation: Negentropy Maximization Principle (NMP) takes care that they remain correlated. The social analogy would be a voluntary marriage based on love. Partners are competely free to leave but want to stay together. One implication could be explanation for the stability of highly charged basic molecules of life such as DNA and ATP.

  2. The presence of the negentropic entanglement implies the directedness of the biological processes since the outcome of the state function reduction would be far from random since the behavior of negentropic bonds could be almost deterministic. In the case of time-like entanglement this would select only particular initial final state pairs so that determinism would emerge also in this sense and could lead to almost deterministic irreversible cellular automaton behavior characteristic for the living matter very different from the reversible determinism of classical physics and very difficult to understand in quantum context.

  3. The determinism would of course be only partial and would allow volition not spoiled by randomness of quantum jump. This would provide a general explanation for the ability of the living matter to overcome the second law basically implied by quantum randomness predicted by the standard quantum theory. This would happen in time scales shorter than the time scale of the appropriate causal diamond (CD) only but one would have hierarchy of CD meaning that in arbitrary long time scales there are levels of hierarchy at which second law is broken. The hierarchy of Planck constants would be also crucial since it would allow zooming up to arbitrarily long time scale. Non-equilibrium thermodynamics and cellular automaton models could be seen as phenomenological descriptions for the actual breaking of second law in the intersection of real and p-adic worlds.

I do not bother to do the painful transformation of the the tex file to html so that the reader interested in details can just click the six page article Could high energy phosphate bond be negentropic bond with negative binding energy?.

For background see chapter Evolution in Many-Sheeted Space-time.



To the index page