
CONTENTS 1

Physics as Generalized Number Theory

M. Pitkänen,

February 14, 2018

Email: matpitka6@gmail.com.
http://tgdtheory.com/public_html/.

Recent postal address: Rinnekatu 2-4 A 8, 03620, Karkkila, Finland.

Contents

1 Introduction 5
1.1 P-Adic Physics And Unification Of Real And P-Adic Physics . . . . . . . . . . . . 5

1.1.1 Real and p-adic regions of the space-time as geometric correlates of matter
and mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 The generalization of the notion of number . . . . . . . . . . . . . . . . . . 6
1.1.3 Zero energy ontology, cognition, and intentionality . . . . . . . . . . . . . . 6
1.1.4 What number theoretical universality might mean? . . . . . . . . . . . . . . 8
1.1.5 p-Adicization by algebraic continuation . . . . . . . . . . . . . . . . . . . . 8

1.2 TGD And Classical Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Hyper-octonions and hyper-quaternions . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Number theoretical compactification and M8 −H duality . . . . . . . . . . 11

1.3 Infinite Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 The notion of infinite prime . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Infinite primes and physics in TGD Universe . . . . . . . . . . . . . . . . . 13
1.3.3 Generalization of ordinary number fields: infinite primes and cognition . . . 15

2 P-Adic Physics And The Fusion Of Real And P-Adic Physics To A Single Co-
herent Whole 16
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Summary Of The Basic Physical Ideas . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 p-Adic mass calculations briefly . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 p-Adic length scale hypothesis, ZEO, and hierarchy of Planck con-

stants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

http://tgdtheory.com/public_html/


CONTENTS 2

2.2.3 The origin of the preferred p-adic length scales . . . . . . . . . . . . 23
2.2.4 p-Adic physics and the notion of finite measurement resolution . 24
2.2.5 p-Adic numbers and the analogy of TGD with spin-glass . . . . . . 24
2.2.6 Life as islands of rational/algebraic numbers in the seas of real

and p-adic continua? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.7 p-Adic physics as physics of cognition . . . . . . . . . . . . . . . . . . 27

2.3 What Is The Correspondence Between P-Adic And Real Numbers? . . . . . . . . . 28
2.3.1 Generalization of the number concept . . . . . . . . . . . . . . . . . . 28
2.3.2 Canonical identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 P-Adic Variants Of The Basic Mathematical Structures Relevant To Physics . . . 33
2.4.1 p-Adic probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 How to define integration and p-adic Fourier analysis, integral

calculus, and p-adic counterparts of geometric objects? . . . . . . . 40
2.4.3 p-Adic imbedding space . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 What Could Be The Origin Of Preferred P-Adic Primes And P-Adic Length Scale
Hypothesis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.1 Earlier attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.2 Could preferred primes characterize algebraic extensions of ratio-

nals? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.3 A connection with Langlands program? . . . . . . . . . . . . . . . . . 52
2.5.4 What could be the origin of p-adic length scale hypothesis? . . . . 53
2.5.5 A connection with infinite primes? . . . . . . . . . . . . . . . . . . . . 54

3 TGD And Classical Number Fields 56
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Quaternion And Octonion Structures And Their Hyper Counterparts . . . . . . . . 57

3.2.1 Octonions and quaternions . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Hyper-octonions and hyper-quaternions . . . . . . . . . . . . . . . . . 59
3.2.3 Basic constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.4 How to define hyper-quaternionic and hyper-octonionic structures? 60
3.2.5 How to end up to quantum TGD from number theory? . . . . . . . 61

3.3 Number Theoretic Compactification And M8 −H Duality . . . . . . . . . . . . . . 62
3.3.1 The basic ideas in nutshell . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Is Kähler action needed also at the level of M8 . . . . . . . . . . . . 63
3.3.3 Definition of complexified octonions and quaternions . . . . . . . . 64
3.3.4 Basic formulation of M8 −H duality . . . . . . . . . . . . . . . . . . . 65
3.3.5 Basic mathematical facts . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.6 Hyper-octonionic Pauli “matrices” and the definition of associa-

tivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.7 Are Kähler and spinor structures necessary in M8? . . . . . . . . . 68
3.3.8 How could one solve associativity/co-associativity conditions? . . 70
3.3.9 Quaternionicity at the level of imbedding space quantum numbers 72
3.3.10 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Infinite Primes 75
4.1 Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 The notion of infinite prime . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Infinite primes and physics in TGD Universe . . . . . . . . . . . . . 76
4.1.3 Infinite primes and cognition . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Infinite Primes, Integers, And Rationals . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 The first level of hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Infinite primes form a hierarchy . . . . . . . . . . . . . . . . . . . . . 81
4.2.3 Construction of infinite primes as a repeated quantization of a

super-symmetric arithmetic quantum field theory . . . . . . . . . . . 82
4.2.4 Construction in the case of an arbitrary commutative number field 84
4.2.5 Mapping of infinite primes to polynomials and geometric objects 84



CONTENTS 3

4.2.6 How to order infinite primes? . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.7 What is the cardinality of infinite primes at given level? . . . . . . 85
4.2.8 How to generalize the concepts of infinite integer, rational and real? 86
4.2.9 Comparison with the approach of Cantor . . . . . . . . . . . . . . . . 89

4.3 How To Interpret The Infinite Hierarchy Of Infinite Primes? . . . . . . . . . . . . . 89
4.3.1 Infinite primes and hierarchy of super-symmetric arithmetic quan-

tum field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.2 Infinite primes, the structure of many-sheeted space-time, and the

notion of finite measurement resolution . . . . . . . . . . . . . . . . . 91
4.3.3 How the hierarchy of Planck constants could relate to infinite

primes and p-adic hierarchy? . . . . . . . . . . . . . . . . . . . . . . . 94



CONTENTS 4

Abstract

There are two basic approaches to the construction of quantum TGD. The first approach
relies on the vision of quantum physics as infinite-dimensional Kähler geometry for the “world
of classical worlds” identified as the space of 3-surfaces in in certain 8-dimensional space.
Essentially a generalization of the Einstein’s geometrization of physics program is in question.

The second vision identifies physics as a generalized number theory and involves three
threads: various p-adic physics and their fusion together with real number based physics
to a larger structure, the attempt to understand basic physics in terms of classical number
fields (in particular, identifying associativity condition as the basic dynamical principle), and
infinite primes whose construction is formally analogous to a repeated second quantization of
an arithmetic quantum field theory.

1. p-Adic physics and their fusion with real physics

The basic technical problems of the fusion of real physics and various p-adic physics to single
coherent whole relate to the notion of definite integral both at space-time level, imbedding
space level and the level of WCW (the “world of classical worlds”). The expressibility of WCW
as a union of symmetric spacesleads to a proposal that harmonic analysis of symmetric spaces
can be used to define various integrals as sums over Fourier components. This leads to the
proposal the p-adic variant of symmetric space is obtained by a algebraic continuation through
a common intersection of these spaces, which basically reduces to an algebraic variant of coset
space involving algebraic extension of rationals by roots of unity. This brings in the notion
of angle measurement resolution coming as ∆φ = 2π/pn for given p-adic prime p. Also a
proposal how one can complete the discrete version of symmetric space to a continuous p-adic
versions emerges and means that each point is effectively replaced with the p-adic variant of
the symmetric space identifiable as a p-adic counterpart of the real discretization volume so
that a fractal p-adic variant of symmetric space results.

If the Kähler geometry of WCW is expressible in terms of rational or algebraic functions,
it can in principle be continued the p-adic context. One can however consider the possibility
that that the integrals over partonic 2-surfaces defining flux Hamiltonians exist p-adically
as Riemann sums. This requires that the geometries of the partonic 2-surfaces effectively
reduce to finite sub-manifold geometries in the discretized version of δM4

+ × CP2. If Kähler
action is required to exist p-adically same kind of condition applies to the space-time surfaces
themselves. These strong conditions might make sense in the intersection of the real and
p-adic worlds assumed to characterized living matter.

2. TGD and classical number fields

The basis vision is that the geometry of the infinite-dimensional WCW (“world of classical
worlds”) is unique from its mere existence. This leads to its identification as union of symmetric
spaces whose Kähler geometries are fixed by generalized conformal symmetries. This fixes
space-time dimension and the decomposition M4 × S and the idea is that the symmetries of
the Kähler manifold S make it somehow unique. The motivating observations are that the
dimensions of classical number fields are the dimensions of partonic 2-surfaces, space-time
surfaces, and imbedding space and M8 can be identified as hyper-octonions- a sub-space of
complexified octonions obtained by adding a commuting imaginary unit. This stimulates some
questions.

Could one understand S = CP2 number theoretically in the sense that M8 and H =
M4×CP2 be in some deep sense equivalent (“number theoretical compactification” or M8−H
duality)? Could associativity define the fundamental dynamical principle so that space-time
surfaces could be regarded as associative or co-associative (defined properly) sub-manifolds of
M8 or equivalently of H.

One can indeed define the associative (co-associative) 4-surfaces using octonionic repre-
sentation of gamma matrices of 8-D spaces as surfaces for which the Kähler-Dirac gamma
matrices span an associate (co-associative) sub-space at each point of space-time surface. In
fact, only octonionic structure is needed. Also M8 − H duality holds true if one assumes
that this associative sub-space at each point contains preferred plane of M8 identifiable as
a preferred commutative or co-commutative plane (this condition generalizes to an integral
distribution of commutative planes in M8). These planes are parametrized by CP2 and this
leads to M8 −H duality.

WCW itself can be identified as the space of 4-D local sub-algebras of the local Clifford
algebra of M8 or H which are associative or co-associative. An open conjecture is that this
characterization of the space-time surfaces is equivalent with the preferred extremal property
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of Kähler action with preferred extremal identified as a critical extremal allowing infinite-
dimensional algebra of vanishing second variations.

3. Infinite primes

The construction of infinite primes is formally analogous to a repeated second quantization
of an arithmetic quantum field theory by taking the many particle states of previous level
elementary particles at the new level. Besides free many particle states also the analogs of
bound states appear. In the representation in terms of polynomials the free states correspond
to products of first order polynomials with rational zeros. Bound states correspond to nth

order polynomials with non-rational but algebraic zeros at the lowest level. At higher levels
polynomials depend on several variables.

The construction might allow a generalization to algebraic extensions of rational numbers,
and also to classical number fields and their complexifications obtained by adding a commuting
imaginary unit. Special class corresponds to hyper-octonionic primes for which the imaginary
part of ordinary octonion is multiplied by the commuting imaginary unit so that one obtains
a sub-space M8 with Minkowski signature of metric. Also in this case the basic construction
reduces to that for rational or complex rational primes and more complex primes are obtained
by acting using elements of the octonionic automorphism group which preserve the complex
octonionic integer property.

Can one map infinite primes/integers/rationals to quantum states? Do they have space-
time surfaces as correlates? Quantum classical correspondence suggests that if infinite rationals
can be mapped to quantum states then the mapping of quantum states to space-time surfaces
automatically gives the map to space-time surfaces. The question is therefore whether the
mapping to quantum states defined by WCW spinor fields is possible. A natural hypothesis is
that number theoretic fermions can be mapped to real fermions and number theoretic bosons
to WCW (“world of classical worlds”) Hamiltonians.

The crucial observation is that one can construct infinite hierarchy of rational units by
forming ratios of infinite integers such that their ratio equals to one in real sense: the integers
have interpretation as positive and negative energy parts of zero energy states. One can
generalize the construction to quaternionic and octonionic units. One can construct also sums
of these units with complex coefficients using commuting imaginary unit and these sums can
be normalized to unity and have interpretation as states in Hilbert space. These units can be
assumed to possess well defined standard model quantum numbers. It is possible to map the
quantum number combinations of WCW spinor fields to these states. Hence the points of M8

can be said to have infinitely complex number theoretic anatomy so that quantum states of
the universe can be mapped to this anatomy. One could talk about algebraic holography or
number theoretic Brahman=Atman identity.

Also the question how infinite primes might relate to the p-adicization program and to the
hierarchy of Planck constants is discussed.

1 Introduction

Physics as a generalized number theory program involves three threads: various p-adic physics and
their fusion together with real number based physics to a larger structure [K24]. the attempt to
understand basic physics in terms of classical number fields [K25]. and infinite primes [K23] whose
construction is formally analogous to a repeated second quantization of an arithmetic quantum
field theory. A common denominator of these approaches is a precise mathematical formulation
for the notion of finite measurement resolution, which could be taken as one of the basic guiding
principles of quantum TGD and is at quantum level realized in terms of inclusions of hyper-finite
factors about which configuration space spinor fields provide an example [K31]. In the following
these threads are described briefly. More detailed summaries will be given in separate articles.

1.1 P-Adic Physics And Unification Of Real And P-Adic Physics

p-Adic numbers [A32, A23, A24] became a part of TGD through the successes of p-adic thermo-
dynamics in the description of elementary particle massivation [K17]. The p-adicization program
attempts to construct physics in various number fields as an algebraic continuation of physics in
the field of rationals (or appropriate extension of rationals). The program involves in an essential
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manner the generalization of number concept obtained by fusing reals and p-adic number fields to
a larger structure by gluing them together along common rationals.

The program involves in an essential manner the generalization of number concept obtained by
fusing reals and p-adic number fields to a larger structure by gluing them together along common
rationals or their algebraic extension. The resulting structure is a generalization of adeles by
fusing reals and various p-adic number fields to a book-like structure with pages defined by the
number fields glued together along rationals or their algebraic extension in which case the extension
induces the extension of p-adic number fields. This structure in turn induces similar structure for
imbedding spaces, space-time surfaces, and even WCW.

1.1.1 Real and p-adic regions of the space-time as geometric correlates of matter
and mind

One could end up with p-adic space-time sheets via field equations. The solutions of the equations
determining space-time surfaces are restricted by the requirement that the coordinates are real.
When this is not the case, one might apply instead of a real completion with some p-adic com-
pletion. It however seems that p-adicity is present at deeper level and automatically present via
the generalization of the number concept obtained by fusing reals and p-adics along rationals and
common algebraics.

p-Adic non-determinism due to the presence of non-constant functions with a vanishing deriva-
tive implies extreme flexibility and therefore suggests the identification of the p-adic regions as
seats of cognitive representations. Unlike the completion of reals to complex numbers, the com-
pletions of p-adic numbers preserve the information about the algebraic extension of rationals and
algebraic coding of quantum numbers must be associated with “mind like” regions of space-time.
p-Adics and reals would be in the same relationship as map and territory.

The implications are far-reaching and consistent with TGD inspired theory of consciousness:
p-adic regions are present even at elementary particle level and provide some kind of model of
“self” and of external world. In fact, p-adic physics would model the p-adic cognitive regions
representing real elementary particle regions rather than elementary particles themselves! p-Adic
mass calculations would be a model of a model!

1.1.2 The generalization of the notion of number

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields
are glued along their common rationals (and common algebraic numbers too) to form a fractal
book like structure. Allowing all possible finite-dimensional extensions of p-adic numbers brings
additional pages to this “Big Book”.

At space-time level the book like structure corresponds to the decomposition of space-time
surface to real and p-adic space-time sheets glued together along the common back. What this
back means is however not what comes first in mind: a subset of space-time points for which
preferred imbedding space coordinates in an algebraic extension or rationals. This would lead to
serious problems with GCI. One must define the intersection of realities and p-adicities at the level
of WCW, and demand that the intersection corresponds to space-time surfaces with parameters
(WCW coordinats) in the algebraic extension of rationals. The strong form of holography allows
to construct space-time surface from string world sheets and partonic 2-surfaces serving as “space-
time genes”, and the parameters correspond by conformal invariance to general coordinate invariant
conformal moduli for these 2-surfaces. The adelization of TGD reduces to an algebraic continuation
of the moduli and various quantum numbers to various number fields.

This has deep implications for the view about cognition. For instance, two points infinitesimally
near p-adically are infinitely distant in real sense so that cognition becomes a cosmic phenomenon.

1.1.3 Zero energy ontology, cognition, and intentionality

One could argue that conservation laws forbid p-adic-real phase transitions in practice so that
cognitions (intentions) realized as real-to-padic (p-adic-to-real) transitions would not be possible.
The situation changes if one accepts zero energy ontology [K5, K4].
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1. Zero energy ontology classically

In TGD inspired cosmology [K22] the imbeddings of Robertson-Walker cosmologies are vac-
uum extremals. Same applies to the imbeddings of Reissner-Nordström solution [K28] and in
practice to all solutions of Einstein’s equations imbeddable as extremals of Kähler action. Since
four-momentum currents define a collection of vector fields rather than a tensor in TGD, both
positive and negative signs for energy corresponding to two possible assignments of the arrow of
the geometric time to a given space-time surface are possible. This leads to the view that all
physical states have vanishing net energy classically and that physically acceptable universes are
creatable from vacuum.

The result is highly desirable since one can avoid unpleasant questions such as “What are
the net values of conserved quantities like rest mass, baryon number, lepton number, and electric
charge for the entire universe?”, “What were the initial conditions in the big bang?”, “If only
single solution of field equations is selected, isn’t the notion of physical theory meaningless since in
principle it is not possible to compare solutions of the theory?”. This picture fits also nicely with
the view that entire universe understood as quantum counterpart 4-D space-time is recreated in
each quantum jump and allows to understand evolution as a process of continual re-creation.

2. Zero energy ontology at quantum level

The construction of S-matrix [K33, K4] leads to the conclusion that all physical states identified
as zero energy states in ZEO possess vanishing conserved quantum numbers but that for a given
zero energy state one can identify opposite quantum numbers to the opposite boundaries of causal
diamond (CD). Note that ZEO also superposition of states with different conserved quantum
numbers at given boundary: this would allow a more natural understanding of Bose-Einstein
condensate of Cooper pairs.

Furthermore, the entanglement coefficients between positive and negative energy components
of the state have interpretation as M -matrix identifiable as a “complex square root” of density
matrix expressible as a product of positive diagonal square root of the density matrix and of a
unitary S-matrix. S-matrix thus becomes a property of the zero energy state and physical states
code by their structure what is usually identified as quantum dynamics.

The collection of M -matrices defines an orthonormal state basis for zero energy states and
together they define unitary U -matrix charactering transition amplitudes between zero energy
states. This matrix would not be however the counterpart of the usual S-matrix. Rather the
unitary matrix phase of a given M -matrix would define the S-matrix measured in laboratory.

At space-time level this would mean that positive energy component and negative energy com-
ponent are at a temporal distance characterized by the time scale of the causal diamond (CD) and
the rational (perhaps integer) characterizing the value of Planck constant for the state in question.
The interpretation in terms of a mini bang followed by a mini crunch suggests itself also. CDs are
indeed important also in TGD inspired cosmology [K22].

3. Hyper-finite factors of type II1 and new view about S-matrix

The representation of S-matrix as unitary entanglement coefficients would not make sense in
ordinary quantum theory but in TGD the von Neumann algebra in question is not a type I factor
as for quantum mechanics or a type III factor as for quantum field theories, but what is called
hyper-finite factor of type II1 [K31]. This algebra is an infinite-dimensional algebra with the almost
defining, and at the first look very strange, property that the infinite-dimensional unit matrix has
unit trace. The infinite dimensional Clifford algebra spanned by the configuration space gamma
matrices (configuration space understood as the space of 3-surfaces, the “ of classical worlds”) is
indeed very naturally algebra of this kind since infinite-dimensional Clifford algebras provide a
canonical representations for hyper-finite factors of type II1.

It has turned out that the fractal structure of HFFs implying hierarchies of Jones inclusions has
the hierarchy of quantum criticalities and associated hierarchy of Planck constants heff = n × h
as counterparts. Also the hierarchy of algebraic extensions of rationals partially labelled by the
integer n defined by the product of the ramified primes of the extension seems to be closely related
to these hierarchies.

4. The new view about quantum measurement theory
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This mathematical framework leads to a new kind of quantum measurement theory. The basic
assumption is that only a finite number of degrees of freedom can be quantum measured in a given
measurement and the rest remain untouched. What is known as Jones inclusions N ⊂ M of von
Neumann algebras allow to realize mathematically this idea [K31]. N characterizes measurement
resolution and quantum measurement reduces the entanglement in the non-commutative quantum
spaceM/N . The outcome of the quantum measurement is still represented by a unitary S-matrix
but in the space characterized by N . It is not possible to end up with a pure state with a finite
sequence of quantum measurements.

The obvious objection is that the replacement of a universal S-matrix coding entire physics with
a state dependent unitary entanglement matrix is too heavy a price to be paid for the resolution of
the above mentioned paradoxes. Situation could be saved if the S-matrices have fractal structure.
The quantum criticality of TGD Universe indeed implies fractality. The possibility of an infinite
sequence of Jones inclusions for hyperfinite type II1 factors isomorphic as von Neumann algebras
expresses this fractal character algebraically. Thus one can hope that the S-matrix appearing as
entanglement coefficients is more or less universal in the same manner as Mandelbrot fractal looks
more or less the same in all length scales and for all resolutions. Whether this kind of univer-
sality must be posed as an additional condition on entanglement coefficients or is an automatic
consequence of unitarity in type II1 sense is an open question.

1.1.4 What number theoretical universality might mean?

Number theoretic universality has been one of the basic guide lines in the construction of quantum
TGD. There are two forms of the principle.

1. The strong form of number theoretical universality states that physics for any system should
effectively reduce to a physics in algebraic extension of rational numbers at the level of M -
matrix so that an interpretation in both real and p-adic sense (allowing a suitable algebraic
extension of p-adics) is possible. One can however worry whether this principle only means
that physics is algebraic so that there would be no need to talk about real and p-adic physics
at the level of M -matrix elements. It is not possible to get rid of real and p-adic numbers at
the level of classical physics since calculus is a prerequisite for the basic variational principles
used to formulate the theory. For this option the possibility of completion is what poses
conditions on M -matrix.

2. The weak form of principle requires only that both real and p-adic variants of physics make
sense and that the intersection of these physics consist of physics associated with various
algebraic extensions of rational numbers. In this rational physics would be like rational num-
bers allowing infinite number of algebraic extensions and real numbers and p-adic number
fields as its completions. Real and p-adic physics would be completions of rational physics.
In this framework criticality with respect to phase transitions changing number field be-
comes a viable concept. This form of principle allows also purely p-adic phenomena such
as p-adic pseudo non-determinism assigned to imagination and cognition. Genuinely p-adic
physics does not however allow definition of notions like conserved quantities since the no-
tion of definite integral is lacking and only the purely local form of real physics allows p-adic
counterpart.

Strong form of holography suggests a rather elegant and concrete realization of this vision
based on string world sheets and partonic 2-surfaces as “space-time genes” and having con-
formal moduli in an algebraic extension of rationals.

Experience has taught that it is better to avoid too strong statements and perhaps the weak
form of the principle is enough. It is however clear that number theoretical criticality could provide
important insights to quantum TGD. p-Adic thermodynamics [K37] is an excellent example of this.
Needless to say, zero energy ontology is absolutely essential: otherwise this kind of transitions would
not make sense.

1.1.5 p-Adicization by algebraic continuation

The basic challenges of the p-adicization program are following.
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1. The first problem -the conceptual one- is the identification of preferred coordinates in which
functions are algebraic and for which algebraic values of coordinates are in preferred position.
This problem is encountered both at the level of space-time, imbedding space, and configu-
ration space. Here the group theoretical considerations play decisive role and the selection
of preferred coordinates relates closely to the selection of quantization axes. This selection
has direct physical correlates at the level of imbedding space and the hierarchy of Planck
constants has interpretation as a correlate for the selection of quantization axes [K9].

Algebraization does not necessarily mean discretization at space-time level: for instance, the
coordinates characterizing partonic 2-surface can be algebraic so that algebraic point of the
configuration space results and surface is not discretized. If this kind of function spaces are
finite-dimensional, it is possible to fix X2 completely data for a finite number of points only.

2. Local physics generalizes as such to p-adic context (field equations, etc...). The basic stum-
bling block of this program is integration already at space-time (Kähler action, flux Hamilto-
nians, etc..). The problem becomes really horrible looking at configuration space level (func-
tional integral). Algebraic continuation could allow to circumvent this difficulty. Needless
to say, the requirement that the continuation exists must pose immensely tight constraints
on the physics. Also the existence of the Kähler geometry does this and the solution to the
constraint is that WCW is a union of symmetric spaces.

In the case of symmetric spaces Fourier analysis generalizes to harmonics analysis and one
can reduce integration to summation for functions allowing Fourier decomposition. In p-adic
context the existence of plane waves requires an algebraic extension allowing roots of unity
characterizing the measurement accuracy for angle like variables. This leads in the case of
symmetric spaces to a general p-adicization recipe. One starts from a discrete variant of the
symmetric space for which points correspond to roots of unity and replaces each discrete
point with is p-adic completion representing the p-adic variant of the symmetric space so
that kind of fractal variant of the symmetric space is obtained. There is an infinite hierarchy
of p-adicizations corresponding to measurement resolutions and to the choice of preferred
coordinates and the interpretation is in terms of cognitive representations. This requires a
refined view about General Coordinate Invariance taking into account the fact that cognition
is also part of the quantum state.

One general idea which results as an outcome of the generalized notion of number is the idea
of a universal function continuable from a function mapping rationals to rationals or to a finite
extension of rationals to a function in any number field. This algebraic continuation is analogous
to the analytical continuation of a real analytic function to the complex plane.

1. Rational functions with rational coefficients are obviously functions satisfying this constraint.
Algebraic functions with rational coefficients satisfy this requirement if appropriate finite-
dimensional algebraic extensions of p-adic numbers are allowed. Exponent function is such
a function.

2. For instance, residue calculus essential in the construction of N-point functions of conformal
field theory might be generalized so that the value of an integral along the real axis could be
calculated by continuing it instead of the complex plane to any number field via its values
in the subset of rational numbers forming the rim of the book like structure having number
fields as its pages. If the poles of the continued function in the finitely extended number field
allow interpretation as real numbers it might be possible to generalize the residue formula.
One can also imagine of extending residue calculus to any algebraic extension. An interesting
situation arises when the poles correspond to extended p-adic rationals common to different
pages of the “great book”. Could this mean that the integral could be calculated at any
page having the pole common. In particular, could a p-adic residue integral be calculated in
the ordinary complex plane by utilizing the fact that in this case numerical approach makes
sense.

3. Algebraic continuation is the basic tool of p-adicization program. Entire physics of the TGD
Universe should be algebraically continuable to various number fields. Real number based
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physics would define the physics of matter and p-adic physics would describe correlates of
cognition.

4. For instance, the idea that number theoretically critical partonic 2-surfaces are expressible in
terms of rational functions with rational or algebraic coefficients so that also p-adic variants
of these surfaces make sense, is very attractive.

5. Finite sums and products respect algebraic number property and the condition of finiteness
is coded naturally by the notion of finite measurement resolution in terms of the notion
of (number theoretic) braid. This simplifies dramatically the algebraic continuation since
configuration space reduces to a finite-dimensional space and the space of configuration space
spinor fields reduces to finite-dimensional function space.

The real configuration space can well contain sectors for which p-adicization does not make
sense. For instance, if the exponent of Kähler function and Kähler are not expressible in terms of
algebraic functions with rational or at most algebraic functions or more general functions making
sense p-adically, the continuation is not possible. p-Adic non-determinism in p-adic sectors makes
also impossible the continuation to real sector. All this is consistent with vision about rational and
algebraic physics as as analog of rational and algebraic numbers allowing completion to various
continuous number fields.

Due to the fact that real and p-adic topologies are fundamentally different, ultraviolet and
infrared cutoffs in the set of rationals are unavoidable notions and correspond to a hierarchy of dif-
ferent physical phases on one hand and different levels of cognition on the other hand. For instance,
most points p-adic space-time sheets reside at infinity in real sense and p-adically infinitesimal is
infinite in real sense. Two types of cutoffs are predictedp-adic length scale cutoff and a cutoff due
to phase resolution related to the hierarchy of Planck constants. Zero energy ontology provides
natural realization for the p-adic length scale cutoff. The latter cutoff seems to correspond natu-
rally to the hierarchy of algebraic extensions of p-adic numbers and quantum phases exp(i2π/n),
n ≥ 3, coming as roots of unity and defining extensions of rationals and p-adics allowing to define
p-adically sensible trigonometric functions These phases relate closely to the hierarchy of quantum
groups, braid groups, and II1 factors of von Neumann algebra.

1.2 TGD And Classical Number Fields

This chapter is second one in a multi-chapter devoted to the vision about TGD as a generalized
number theory. The basic theme is the role of classical number fields in quantum TGD. A central
notion is M8 − H duality which might be also called number theoretic compactification. This
duality allows to identify imbedding space equivalently either as M8 or M4×CP2 and explains the
symmetries of standard model number theoretically. These number theoretical symmetries induce
also the symmetries dictaging the geometry of the “world of classical worlds” (WCW) as a union of
symmetric spaces. This infinite-dimensional Kähler geometry is expected to be highly unique from
the mere requirement of its existence requiring infinite-dimensional symmetries provided by the
generalized conformal symmetries of the light-cone boundary δM4

+ × S and of light-like 3-surfaces
and the answer to the question what makes 8-D imbedding space and S = CP2 so unique would
be the reduction of these symmetries to number theory.

Zero energy ontology has become the corner stone of both quantum TGD and number theoret-
ical vision. In zero energy ontology either light-like or space-like 3-surfaces can be identified as the
fundamental dynamical objects, and the extension of general coordinate invariance leads to effective
2-dimensionality (strong form of holography) in the sense that the data associated with partonic
2-surfaces and the distribution of 4-D tangent spaces at them located at the light-like boundaries
of causal diamonds (CDs) defined as intersections of future and past directed light-cones code for
quantum physics and the geometry of WCW.

The basic number theoretical structures are complex numbers, quaternions and octonions,
and their complexifications obtained by introducing additional commuting imaginary unit

√
−1.

Hyper-octonionic (-quaternionic,-complex) sub-spaces for which octonionic imaginary units are
multiplied by commuting

√
−1 have naturally Minkowskian signature of metric. The question

is whether and how the hyper-structures could allow to understand quantum TGD in terms of
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classical number fields. The answer which looks the most convincing one relies on the existence of
octonionic representation of 8-D gamma matrix algebra.

1. The first guess is that associativity condition for the sub-algebras of the local Clifford algebra
defined in this manner could select 4-D surfaces as associative (hyper-quaternionic) sub-spaces
of this algebra and define WCW purely number theoretically. The associative sub-spaces in
question would be spanned by the modified gamma matrices defined by the Kähler-Dirac
action fixed by the variational principle (Kähler action) selecting space-time surfaces as
preferred extremals [K10].

2. This condition is quite not enough: one must strengthen it with the condition that a preferred
commutative and thus hyper-complex sub-space is contained in the tangent space of the
space-time surface. This condition actually generalizes somewhat since one can introduce a
family of so called Hamilton-Jacobi coordinates for M4 allowing an integrable distribution of
decompositions of tangent space to the space of non-physical and physical polarizations [K1].
The physical interpretation is as a number theoretic realization of gauge invariance selecting
a preferred local commutative plane of non-physical polarizations.

3. Even this is not yet the whole story: one can define also the notions of co-associativity and
co-commutativity applying in the regions of space-time surface with Euclidian signature of
the induced metric. The basic unproven conjecture is that the decomposition of space-time
surfaces to associative and co-associative regions containing preferred commutative resp. co-
commutative 2-plane in the 4-D tangent plane is equivalent with the preferred extremal
property of Kähler action and the hypothesis that space-time surface allows a slicing by
string world sheets and by partonic 2-surfaces [K10].

1.2.1 Hyper-octonions and hyper-quaternions

The discussions for years ago with Tony Smith [A39] stimulated very general ideas about space-time
surface as an associative, quaternionic sub-manifold of octonionic 8-space (for octonions see [A10].
Also the observation that quaternionic and octonionic primes have norm squared equal to prime in
complete accordance with p-adic length scale hypothesis, led to suspect that the notion of primeness
for quaternions, and perhaps even for octonions, might be fundamental for the formulation of
quantum TGD. The original idea was that space-time surfaces could be regarded as four-surfaces
in 8-D imbedding space with the property that the tangent spaces of these spaces can be locally
regarded as 4- resp. 8-dimensional quaternions and octonions.

It took some years to realize that the difficulties related to the realization of Lorentz invariance
might be overcome by replacing quaternions and octonions with hyper-quaternions and hyper-
octonions. Hyper-quaternions resp. -octonions is obtained from the algebra of ordinary quaternions
and octonions by multiplying the imaginary part with

√
−1 and can be regarded as a sub-space

of complexified quaternions resp. octonions. The transition is the number theoretical counterpart
of the transition from Riemannian to pseudo-Riemannin geometry performed already in Special
Relativity. The loss of number field and even sub-algebra property is not fatal and has a clear
physical meaning. The notion of primeness is inherited from that for complexified quaternions
resp. octonions.

Note that hyper-variants of number fields make also sense p-adically unlike the notions of
number fields themselves unless restricted to be algebraic extensions of rational variants of number
fields. What deserves separate emphasis is that the basic structure of the standard model would
reduce to number theory.

1.2.2 Number theoretical compactification and M8 −H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-
complex subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2.
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Hence each hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of
M4×CP2. One can loosely say that the number-theoretic analog of spontaneous compactification
occurs: this of course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kähler
action contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces
X3
l (wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-

quaternionic and contain fixed M2 or its light-like line in their tangent space. Hyper-
quaternionic regions would naturally correspond to space-time regions with Minkowskian
signature of the induced metric and their co-counterparts to the regions for which the signa-
ture is Euclidian. What is of special importance is that this assumption solves the problem
of identifying the boundary conditions fixing the preferred extremals of Kähler action since
in the generic case the intersection of M2 with the 3-D tangent space of X3

l is 1-dimensional.
The surfaces X4(X3

l ) ⊂M8 would be hyper-quaternionic or co-hyper-quaternionic but would
not allow a local mapping between the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes
the local choice of M2 in the interior of X4. This leads to a quite nice view about strong
geometric form of M8 − H duality in which M8 is interpreted as tangent space of H and
X4(X3

l ) ⊂ M8 has interpretation as tangent for a curve defined by light-like 3-surfaces at
X3
l and represented by X4(X3

l ) ⊂ H. Space-time surfaces X4(X3
l ) ⊂ M8 consisting of

hyper-quaternionic and co-hyper-quaternionic regions would naturally represent a preferred
extremal of E4 Kähler action. The value of the action would be same as CP2 Kähler action.
M8−H duality would apply also at the induced spinor field and at the level of configuration
space.

3. Strong form of M8 − H duality satisfies all the needed constraints if it represents Kähler
isometry between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is

mapped to light-like 3-surface and induced metrics and Kähler forms are identical so that
also Kähler action and field equations are identical. The only differences appear at the level
of induced spinor fields at the light-like boundaries since due to the fact that gauge potentials
are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂ M8 would be crucial for the realization of the number theo-
retical universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates
in which the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is
algebraic if it is mapped to algebraic point of M8 in number theoretic compactification. This
of course restricts the symmetry groups to their rational/algebraic variants but this does not
have practical meaning. Number theoretical compactification could thus be motivated by
the number theoretical universality.

5. The possibility to use either M8 or H picture might be extremely useful for calculational
purposes. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could
perturbative description of low energy hadron physics. The strong SO(4) symmetry of low
energy hadron physics can be indeed seen direct experimental support for the M8−H duality.

1.3 Infinite Primes

The notion of prime seems to capture something very essential about what it is to be elementary
building block of matter and has become a fundamental conceptual element of TGD. The notion
of prime gains it generality from its reducibility to the notion of prime ideal of an algebra. Thus
the notion of prime is well-defined, not only in case of quaternions and octonions, but also in the
case of hyper-quaternions and -octonions, which are especially natural physically and for which
numbers having zero norm correspond physically to light-like 8-vectors. Many interpretations for
infinite primes have been competing for survival but it seems that the recent state of TGD allows
to exclude some of them from consideration.
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1.3.1 The notion of infinite prime

Simple arguments show that the p-adic prime characterizing the 3-surface representing the entire
universe increases in a statistical sense in the sequence of quantum jumps: the reason is simply
that the size of primes is bounded below. This leads to a peculiar paradox: if the number of
quantum jumps already occurred is infinite, this prime is most naturally infinite. On the other
hand, if one assumes that only finite number of quantum jumps have occurred, one encounters the
problem of understanding why the initial quantum history was what it was. Furthermore, since
the size of the 3-surface representing the entire Universe is infinite, p-adic length scale hypothesis
suggest also that the p-adic prime associated with the entire universe is infinite.

These arguments motivate the attempt to construct a theory of infinite primes and to extend
quantum TGD so that also infinite primes are possible. Rather surprisingly, one can construct infi-
nite primes by repeating a procedure analogous to a quantization of a super symmetric arithmetic
quantum field theory. At given level of hierarchy one can identify the decomposition of space-time
surface to p-adic regions with the corresponding decomposition of the infinite prime to primes at
lower level of infinity: at the basic level are finite primes for which one cannot find any formula.

This and other observations suggest that the Universe of quantum TGD might basically provide
a physical representation of number theory allowing also infinite primes. The proposal suggests
also a possible generalization of real numbers to a number system akin to hyper-reals introduced by
Robinson in his non-standard calculus [A20] providing rigorous mathematical basis for calculus. In
fact, some rather natural requirements lead to a unique generalization for the concepts of integer,
rational and real. Somewhat surprisingly, infinite integers and reals can be regarded as infinite-
dimensional vector spaces with integer and real valued coefficients respectively and this raises the
question whether the tangent space for the configuration space of 3-surfaces could be regarded as
the space of generalized 8-D hyper-octonionic numbers.

1.3.2 Infinite primes and physics in TGD Universe

Several different views about how infinite primes, integers, and rationals might be relevant in TGD
Universe have emerged.

1. Infinite primes, cognition, and intentionality

The correlation of infinite primes with cognition is the first fascinating possibility and this
possibility has stimulated several ideas.

1. The hierarchy of infinite primes associated with algebraic extensions of rationals leading
gradually towards algebraic closure of rationals would in turn define cognitive hierarchy
corresponding to algebraic extensions of p-adic numbers.

2. Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space
can be seen as infinitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point -or more generally wave functions in
the space of the units associated with the point- might be even capable of representing the
quantum state of the entire physical Universe in its structure. For instance, in the real sense
surfaces in the space of units correspond to the same real number 1, and single point, which is
structure-less in the real sense could represent arbitrarily high-dimensional spaces as unions
of real units. For real physics this structure is completely invisible and is relevant only for
the physics of cognition. One can say that Universe is an algebraic hologram, and there
is an obvious connection both with Brahman=Atman identity of Eastern philosophies and
Leibniz’s notion of monad.

3. One can assign to infinite primes at nth level of hierarchy rational functions of n rational
arguments which form a natural hierarchical structure in that highest level corresponds to
a polynomial with coefficients which are rational functions of the arguments at the lower
level. One can solve one of the arguments in terms of lower ones to get a hierarchy of
algebraic extensions. At the lowest level algebraic extensions of rationals emerge, at the
next level algebraic extensions of space of rational functions of single variable, etc... This
would suggest that infinite primes code for the correlation between quantum states and the
algebraic extensions appearing in their their physical description and characterizing their
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cognitive correlates. The hierarchy of infinite primes would also correlate with a hierarchy of
logics of various orders (hierarchy of statements about statements about...).

2. Infinite primes and super-symmetric quantum field theory

Consider next the physical interpretation.

1. The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization
of a super-symmetric arithmetic quantum field theory. This suggests that configuration space
spinor fields or at least the ground states of associated super-conformal representations could
be mapped to infinite primes in both bosonic and fermionic degrees of freedom. The process
might generalize so that it applies in the case of quaternionic and octonionic primes and their
hyper counterparts. This hierarchy of second quantizations means enormous generalization
of physics to what might be regarded a physical counterpart for a hierarchy of abstractions
about abstractions about.... The ordinary second quantized quantum physics corresponds
only to the lowest level infinite primes.

2. The ordinary primes appearing as building blocks of infinite primes at the first level of the
hierarchy could be identified as coding for p-adic primes assignable to fermionic and bosonic
partons identified as 2-surfaces of a given space-time sheet. The hierarchy of infinite primes
would correspond to hierarchy of space-time sheets defined by the topological condensate.
This leads also to a precise identification of p-adic and real variants of bosonic partonic 2-
surfaces as correlates of intention and action and pairs of p-adic and real fermionic partons
as correlates for cognitive representations.

3. The idea that infinite primes characterize quantum states of the entire Universe, perhaps
ground states of super-conformal representations, if not all states, could be taken further. It
turns out that this idea makes sense when one considers discrete wave functions in the space
of infinite primes and that one can indeed represent standard model quantum numbers in
this manner.

4. The number theoretical supersymmetry suggests also space-time supersymmetry TGD frame-
work. Space-time super-symmetry in its standard form is not possible in TGD Universe and
this cheated me to believe that this supersymmetry is completely absent in TGD Universe.
The progress in the understanding of the properties of the modified Dirac action however led
to a generalization of the space-time super-symmetry as a dynamical and broken symmetry
of quantum TGD [K11].

Here however emerges the idea about the number theoretic analog of color confinement. Ra-
tional (infinite) primes allow not only a decomposition to (infinite) primes of algebraic extensions
of rationals but also to algebraic extensions of quaternionic and octonionic (infinite) primes. The
physical analog is the decomposition of a particle to its more elementary constituents. This fits
nicely with the idea about number theoretic resolution represented as a hierarchy of Galois groups
defined by the extensions of rationals and realized at the level of physics in terms of Jones inclu-
sions [K31] defined by these groups having a natural action on space-time surfaces, induced spinor
fields, and on configuration space spinor fields representing physical states [K5].

3. Infinite primes and physics as number theory

The hierarchy of algebraic extensions of rationals implying corresponding extensions of p-adic
numbers suggests that Galois groups, which are the basic symmetry groups of number theory,
should have concrete physical representations using induced spinor fields and configuration space
spinor fields and also infinite primes and real units formed as infinite rationals. These groups
permute zeros of polynomials and thus have a concrete physical interpretation both at the level of
partonic 2-surfaces dictated by algebraic equations and at the level of braid hierarchy. The vision
about the role of hyperfinite factors of II1 and of Jones inclusions as descriptions of quantum
measurements with finite measurement resolution leads to concrete ideas about how these groups
are realized.
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G2 acts as automorphisms of hyper-octonions and SU(3) as its subgroup respecting the choice
of a preferred imaginary unit. The discrete subgroups of SU(3) permuting to each other hyper-
octonionic primes are analogous to Galois group and turned out to play a crucial role in the
understanding of the correspondence between infinite hyper-octonionic primes and quantum states
predicted by quantum TGD.

4. The notion of finite measurement resolution as the key concept

TGD predicts several hierarchies: the hierarchy of space-time sheets, the hierarchy of infinite
primes, the hierarchy of Jones inclusions identifiable in terms of finite measurement resolution
[K31]. the dark matter hierarchy characterized by increasing values of ~ [K9]. the hierarchy of
extensions of a given p-adic number field. TGD inspired theory of consciousness predicts the
hierarchy of selves and quantum jumps with increasing duration with respect to geometric time.
These hierarchies should be closely related.

The notion of finite measurement resolution turns out to be the key concept: the p-adic norm of
the rational defined by the infinite prime characterizes the angle measurement resolution for given
p-adic prime p. It is essential that one has what might be called a state function reduction selecting
a fixed p-adic prime which could be also infinite. This gives direct connections with cognition and
with the p-adicization program relying also on angle measurement resolution. Also the value the
integers characterizing the singular coverings of CD and CP2 defining as their product Planck
constant characterize the measurement resolution for a given p-adic prime in CD and CP2 degrees
of freedom. This conforms with the fact that elementary particles are characterized by two infinite
primes. Hence finite measurement resolution ties tightly together the three threads of the number
theoretic vision. Finite measurement resolution relates also closely to the inclusions of hyper-finite
factors central for TGD inspired quantum measurement theory so that the characterization of the
finite measurement resolution, which has been the ugly duckling of theoretical physics, transforms
to a beautiful swan.

5. Space-time correlates of infinite primes

Infinite primes code naturally for Fock states in a hierarchy of super-symmetric arithmetic
quantum field theories. Quantum classical correspondence leads to ask whether infinite primes
could also code for the space-time surfaces serving as symbolic representations of quantum states.
This would a generalization of algebraic geometry would emerge and could reduce the dynamics
of Kähler action to algebraic geometry and organize 4-surfaces to a physical hierarchy according
to their algebraic complexity. Note that this conjecture should be consistent with two other
conjectures about the dynamics of space-time surfaces (space-time surfaces as preferred extrema
of Kähler action and space-time surfaces as quaternionic or co-quaternionic (as associative or co-
associative) 4-surfaces of hyper-octonion space M8).

The representation of space-time surfaces as algebraic surfaces in M8 is however too naive idea
and the attempt to map hyper-octonionic infinite primes to algebraic surfaces has not led to any
concrete progress.

The solution came from quantum classical correspondence, which requires the map of the
quantum numbers of configuration space spinor fields to space-time geometry. The Kähler-Dirac
equation with measurement interaction term realizes this requirement. Therefore, if one wants
to map infinite rationals to space-time geometry it is enough to map infinite primes to quantum
numbers. This map can be indeed achieved thanks to the detailed picture about the interpretation
of the symmetries of infinite primes in terms of standard model symmetries.

1.3.3 Generalization of ordinary number fields: infinite primes and cognition

Both fermions and p-adic space-time sheets are identified as correlates of cognition in TGD Uni-
verse. The attempt to relate these two identifications leads to a rather concrete model for how
bosonic generators of super-algebras correspond to either real or p-adic space-time sheets (actions
and intentions) and fermionic generators to pairs of real space-time sheets and their p-adic variants
obtained by algebraic continuation (note the analogy with fermion hole pairs).

The introduction of infinite primes, integers, and rationals leads also to a generalization of clas-
sical number fields since an infinite algebra of real (complex, etc...) units defined by finite ratios of
infinite rationals multiplied by ordinary rationals which are their inverses becomes possible. These
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units are not units in the p-adic sense and have a finite p-adic norm which can be differ from
one. This construction generalizes also to the case of hyper- quaternions and -octonions although
non-commutativity and in case of octonions also non-associativity pose technical problems. Obvi-
ously this approach differs from the standard introduction of infinitesimals in the sense that sum
is replaced by multiplication meaning that the set of real and also more general units becomes
infinitely degenerate.

Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space
can be seen as infinitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point is even capable of representing the quantum
state of the entire physical Universe in its structure. For instance, in the real sense surfaces in the
space of units correspond to the same real number 1, and single point, which is structure-less in
the real sense could represent arbitrarily high-dimensional spaces as unions of real units.

One might argue that for the real physics this structure is invisible and is relevant only for
the physics of cognition. On the other hand, one can consider the possibility of mapping the
configuration space and configuration space spinor fields to the number theoretical anatomies of
a single point of imbedding space so that the structure of this point would code for the world of
classical worlds and for the quantum states of the Universe. Quantum jumps would induce changes
of configuration space spinor fields interpreted as wave functions in the set of number theoretical
anatomies of single point of imbedding space in the ordinary sense of the word, and evolution would
reduce to the evolution of the structure of a typical space-time point in the system. Physics would
reduce to space-time level but in a generalized sense. Universe would be an algebraic hologram,
and there is an obvious connection both with Brahman=Atman identity of Eastern philosophies
and Leibniz’s notion of monad.

Infinite rationals are in one-one correspondence with quantum states and in zero energy on-
tology hyper-octonionic units identified as ratios of the infinite integers associated with the pos-
itive and negative energy parts of the zero energy state define a representation of WCW spinor
fields. The action of subgroups of SU(3) and rotation group SU(2) preserving hyper-octonionic and
hyper-quaternionic primeness and identification of momentum and electro-weak charges in terms of
components of hyper-octonionic primes makes this representation unique. Hence Brahman-Atman
identity has a completely concrete realization and fixes completely the quantum number spectrum
including particle masses and correlations between various quantum numbers.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L2].

2 P-Adic Physics And The Fusion Of Real And P-Adic
Physics To A Single Coherent Whole

In this section basic facts about p-adic numbers [A32, A23, A24] and the question about their
relation to real numbers are discussed. Also the basic technicalities related to the notion of p-adic
physics are discussed. Also included is a section about the physics in the intersection of real and
p-adic worlds relevant to living systems in TGD Universe.

2.1 Background

It is good to start with a summary of the basic mathematical problems related to the p-adicization
of physics and a rough formulation for how one might resolve these problems.

2.1.1 Problems

It is far from obvious what the p-adic counterpart of real physics could mean and how one could
fuse together real and p-adic physics. Therefore it is good to list the basic problems and proposals
for their solution.

The first problem concerns the correspondence between real and p-adic numbers.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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1. The success of p-adic mass calculations involves the notions of p-adic probability, thermody-
namics, and the mapping of p-adic probabilities to the real ones by a continuous correspon-
dence x =

∑
xnp

n → Id(x) =
∑
xnp

−n that I have christened canonical identification.

The naive guess is that canonical identification in some form could relate also real and p-adic
preferred extremals and define cognitive representations at space-time level. The problem
is that I n does not respect symmetries defined by isometries and also general coordinate
invariance is possible only if one can identify preferred imbedding space coordinates. The
reason is that I does not commute with the basic arithmetic operations. I allows several
variants and it is possible to have correspondence which respects symmetries in arbitrary
accuracy in preferred coordinates. Thus I can play a role at space-time level only if one
defines symmetries modulo measurement resolution. I would make sense only in the interval
defining the measurement resolution for a given coordinate variable and the p-adic effective
topology would make sense just because the finite measurement resolution does not allow to
well-order the points.

2. The identification of real and p-adic numbers via rationals common to all number fields -
or more generally along algebraic extension of rationals- respects symmetries and algebra
but is not continuous. At the imbedding space level preferred coordinates are required also
now. The maximal symmetries of the imbedding space allow identification of this kind of
coordinates. They are not unique. For instance, M4 linear coordinates look very natural
but for CP2 trigonometric functions of angle like coordinates look more suitablel and Fourier
analysis suggests strongly the introduction of algebraic extensions involving roots of unity.
Partly the non-uniqueness has an interpretation as an imbedding space correlate for the
selection of the quantization axes. The symmetric space [A16] property of WCW gives hopes
that general coordinate invariance in quantal sense can be realized. The existence of p-adic
harmonic analysis suggests a discretization of the p-adic variant of imbedding space and
WCW based on roots of unity.

3. One can consider a compromise between the two correspondences. Discretization via com-
mon algebraic points can be completed to a p-adic continuum by assigning to each real
discretization interval (say angle increment 2π/N) p-adic numbers with norm smaller than
one.

4. It however turned out that more imaginative approach is needed [K41]. Strong from of
holography allows to identify string world sheets and partonic 2-surfaces as space-time genes.
One can transcend the discretization in an algebraic extension of rationals from space-time
level to the level of WCW by demanding that the parameters characterizing these surfaces
are in an algebraic extension of rationals. Also cutoffs can be introduced at this level. The
outcome is general coordinate invariant (GCI) and problems with symmetries and GCI are
avoided. Besides this answers to the basic questions of p-adicization emerge. One can assign
to string world sheets purely number theoretically preferred primes and even generalize the
p-adic length scale hypothesis using Negentropy Maximization Principle (NMP) [K15].

Second problem relates to integration and Fourier analysis. Both these procedures are funda-
mental for physics - be it classical or quantum. The p-adic variant of definite integral does not
exist in the sense required by the action principles of physics although classical partial differential
equations assigned to a particular variational principle make perfect sense. Fourier analysis is also
possible only if one allows algebraic extension of p-adic numbers allowing a sufficient number of
roots of unity correlating with the measurement resolution of angle. The finite number of them
has interpretation in terms of finite angle resolution. Fourier analysis provides also an algebraic
realization of definite integral when one integrates over the entire manifold as one indeed does in
the case of WCW. If the space in question allows maximal symmetries as WCW and imbedding
space do, there are excellent hopes of having p-adic variants of both integration and harmonic
analysis and the above described procedure allows a precise completion of the discretized variant
of real manifold to its continuous p-adic variant.

The third problem relates to the definitions of the p-adic variants of Riemannian, symplec-
tic [A27, A18, A17], and Kähler [A8] geometries. It is possible to generalize formally the notion of
Riemann metric although non-local quantities like areas and total curvatures do not make sense if
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defined in terms of integrals. If all relevant quantities assignable to the geometry (family of Hamil-
tonians defining isometries, Killing vector fields, components of metric and Kähler form, Kähler
function, etc...) are expressible in terms of rational functions involving only rational numbers as
coefficients of polynomials, they allow an algebraic continuation to the p-adic context and the
p-adic variant of the geometry makes sense.

The fourth problem relates to the question what one means with p-adic quantum mechanics.
In TGD framework p-adic quantum theory utilizes p-adic Hilbert space. The motivation is that
the notions of p-adic probability and unitarity are well defined. From the beginning it was clear
that the straightforward generalization of Schrödinger equation is not very interesting physically
and gradually the conviction has developed that the most realistic approach must rely on the
attempt to find the p-adic variant of the TGD inspired quantum physics in all its complexity. The
recent approach starts from a rather concrete view about generalized Feynman diagrams defining
the points of WCW and leads to a rather detailed view about what the p-adic variants of QM
could be and how they could be fused with real QM to a larger structure. Even more, just the
requirement that this p-adicization exists, gives very powerful constraints on the real variant of the
quantum TGD. Very briefly, algebraic continuation of the scattering amplitudes expressible using
data associated with string world sheets and partonic 2-surfaces to various number fields allows to
achieve number theoretical universality.

The fifth problem relates to the notion of information in p-adic context. p-Adic thermodynamics
leads naturally to the question what p-adic entropy might mean and this in turn leads to the
realization that for rational or even algebraic probabilities p-adic variant of Shannon entropy
can be negative and has minimum for a unique prime. One can say that the entanglement in
the intersection of real and p-adic worlds is negentropic. This leads to rather fascinating vision
about how negentropic entanglement (see Fig. ?? in the Appendix) makes it possible for living
systems to overcome the second law of thermodynamics. The formulation of quantum theory in
the intersection of real and living worlds becomes the basic challenge.

The proposed solutions to the technical problems could be rephrased in terms of the notion of
algebraic universality. Various p-adic physics are obtained as algebraic continuation of real physics
through the common algebraic points of real and p-adic worlds and by performing completion
in the sense that the interval corresponding to finite measurement resolution are replaced with
their p-adic counterpart via canonical identification. This allows to have exact symmetries as their
discrete variants and also a continuous correspondence if desired.

2.1.2 Program

These ideas lead to a reasonably well defined p-adicization program. Try to define precisely the
concepts of the p-adic space-time and “world of classical worlds” (WCW), formulate the finite-p
p-adic versions of quantum TGD. Try to fuse together real and various p-adic quantum TGDs are
to form a full theory of physics and cognition.

The construction of the p-adic TGD necessitates the generalization of the basic tools of stan-
dard physics such as differential and integral calculus, the concept of Hilbert space, Riemannian
geometry, group theory, action principles, and the notions of probability and unitarity to the p-
adic context. Also new physical thinking and philosophy is needed. The notions of Zero Energy
Ontology (ZEO) , hierarchy of Planck constants reducible to a hierarchy of quantum criticalities,
Negentropy Maximization Principle (NMP), strong form of holography, etc.. are essential but not
discussed in detail in the following.

Quite recently it has become clear that strong holography implied by strong form of general
coordinate invariance (GCI) is the crux of the construction. WCW has a book-like adelic structure.
String world sheets and partonic 2-surfaces serve as number theoretically universal “space-time
genes” and induced by algebraic extensions of rationals shared by reals and appropriate extensions
of p-adic numbers. This core structure could be called intersection of reality and various p-adicities,
the back of the Big Book. What can be said about quantum physics utilizes information about
this structure continued algebraically to various real and p-adic sectors.

In the following I try to describe the most central problems and ideas of the p-adicization
program. Page number of a readable article must be finite and this has forced to leave away a lot
of topics. p-Adic mass calculations [K37], which form the corner stone of the entire approach would
require entire article series. The vision about how to define generalized Feynman diagrams and their



2.2 Summary Of The Basic Physical Ideas 19

p-adic variants by utilizing the assumption that WCW is symmetric space allowing algebraization
of functional integral crucial for the entire approach is discussed [L1]. Here huge symmetries
of WCW, which include super-symplectic symmetry and generalize the conformal symmetries of
string models, are in key role [K12, K6]. Negentropy Maximization Principle [K15] relevant for
understanding the profound implications of the negentropic entanglement, in particular how the
preferred p-adic primes emerge [K41] is not discussed. The applications of p-adic length scale
hypothesis to the physics of living matter [K36] and the model of cognition [K2, K19] would
provide additional insights and motivations but have been also left out.

2.2 Summary Of The Basic Physical Ideas

In the following various manners to end up with p-adic physic sand with the idea about p-adic
physics as physics of cognition are discussed. There is also the idea about p-adic topology as an ef-
fective topology of real space-time surfaces in finite measurement resolution implying discretization
but this idea is not so compelling.

2.2.1 p-Adic mass calculations briefly

p-Adic mass calculations based on p-adic thermodynamics with energy replaced with the generator
L0 = zd/dz of infinitesimal scaling are described in the first part of [K37] .

1. p-Adic thermodynamics could be justified by the randomness of the motion of partonic 2-
surfaces restricted only by the light-likeness of the orbit.

2. It is essential that the conformal symmetries associated with the light-like coordinates of
parton and light-cone boundary are not gauge symmetries but dynamical symmetries. The
point is that there are two kinds of super-conformal symmetries [A14, A15] : the super-
symplectic conformal symmetries assignable to the light-like boundaries of CD × CP2 and
super Kac-Moody symmetries [A7] assignable to light-like 3-surfaces defining fundamental
dynamical objects. In so called coset construction [A34] the differences of super-conformal
generators of these algebras annihilate the physical states. This leads to a generalization of
Equivalence Principle since one can assign four-momentum to the generators of both algebras
identifiable as inertial resp. gravitational four-momentum. A second important consequence
is that the generators of either algebra do not act like gauge transformations so that it makes
sense to construct p-adic thermodynamics for them.

3. In p-adic thermodynamics scaling generator L0 having conformal weights as its eigen values
replaces energy and Boltzmann weight exp(H/T ) is replaced by pL0/Tp . The quantization
Tp = 1/n of conformal temperature and thus quantization of mass squared scale is implied
by number theoretical existence of Boltzmann weights. p-Adic length scale hypothesis states
that primes p ' 2k, k integer. A stronger hypothesis is that k is prime (in particular Mersenne
prime or Gaussian Mersenne) makes the model very predictive and fine tuning is not possible.

Mersenne primes are very special number theoretically because bit as the unit of information
unit corresponds to log(2) and can be said to exists for Mn-adic topology. The reason is that
log(1+p) existing always p-adically corresponds for Mn = 2n−1 to log(2n) ≡ nlog(2) so that
one has log(2 ≡ log(1+Mn)/n. Since the powers of 2 modulo p give all integers n ∈ {1, p−1}
by Fermat’s theorem, one can say that the logarithms of all integers modulo Mn exist in this
sense and therefore the logarithms of all p-adic integers not divisible by p exist. For other
primes one must introduce a transcendental extension containing log(a) where are is so called
primitive root. One could criticize the identification since log(1 +Mn) corresponding in the
real sense to n bits corresponds in p-adic sense to to a very small information content since
the p-adic norm of the p-adic bit is 1/Mn.

The basic mystery number of elementary particle physics defined by the ratio of Planck mass
and proton mass follows thus from number theory once CP2 radius is fixed to about 104 Planck
lengths. Mass scale becomes additional discrete variable of particle physics so that there is not
more need to force top quark and neutrinos with mass scales differing by 12 orders of magnitude to
the same multiplet of gauge group. Electron, muon, and τ correspond to Mersenne prime k = 127
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(the largest non-super-astrophysical Mersenne), and Mersenne primes k = 113, 107. Intermediate
gauge bosons and photon correspond to Mersenne M89, and graviton to M127.

The value of k for quark can depend on hadronic environment [K18] and this would produce
precise mass formulas for low energy hadrons. This kind of dependence conforms also with the
indications that neutrino mass scale depends on environment [C1]. Amazingly, the biologically
most relevant length scale range between 10 nm and 4 µm contains four Gaussian Mersennes
(1 + i)n − 1, n = 151, 157, 163, 167 and scaled copies of standard model physics in cell length scale
could be an essential aspect of macroscopic quantum coherence prevailing in cell length scale.

p-Adic mass thermodynamics is not quite enough: also Higgs boson is needed and wormhole
contact carrying fermion and anti-fermion quantum numbers at the light-like wormhole throats is
excellent candidate for Higgs [K14] . The coupling of Higgs to fermions can be small and induce
only a small shift of fermion mass: this could explain why Higgs has not been observed. Also the
Higgs contribution to mass squared can be understood thermodynamically if identified as absolute
value for the thermal expectation value of the eigenvalues of the Kähler-Dirac operator having
interpretation as complex square root of conformal weight.

The original belief was that only Higgs corresponds to wormhole contact. The assumption
that fermion fields are free in the conformal field theory applying at parton level forces to identify
all gauge bosons as wormhole contacts connecting positive and negative energy space-time sheets
[K14] . Fermions correspond to topologically condensed CP2 type extremals with single light-like
wormhole throat. Gravitons are identified as string like structures involving pair of fermions or
gauge bosons connected by a flux tube. Partonic 2-surfaces are characterized by genus which
explains family replication phenomenon and an explanation for why their number is three emerges
[K3] . Gauge bosons are labeled by pairs (g1, g2) of handle numbers and can be arranged to octet
and singlet representations of the resulting dynamical SU(3) symmetry. Ordinary gauge bosons are
SU(3) singlets and the heaviness of octet bosons explains why higher boson families are effectively
absent. The different character of bosons could also explain why the p-adic temperature for bosons
is Tp = 1/n < 1 so that Higgs contribution to the mass dominates.

The basis challenge is to understand why elementary particles seem to be characterized by
preferred p-adic primes and why these primes seem to obey p-adic length scale hyptohesis- that is
be near but below powers of two.

2.2.2 p-Adic length scale hypothesis, ZEO, and hierarchy of Planck constants

ZEO and the hierarchy of Planck constants realized in terms of the generalization of the imbedding
space lead to a deeper understanding of the origin of the p-adic length scale hypothesis.

1. ZEO

In ZEO one replaces positive energy states with zero energy states with positive and negative
energy parts of the state at the light-like boundaries of CD. All conserved quantum numbers of the
positive and negative energy states are of opposite sign so that these states can be created from
vacuum. “Any physical state is creatable from vacuum” becomes thus a basic principle of quantum
TGD and together with the notion of quantum jump resolves several philosophical problems (What
was the initial state of universe?, What are the values of conserved quantities for Universe?, Is
theory building completely useless if only single solution of field equations is realized?). At the
level of elementary particle physics positive and negative energy parts of zero energy state are
interpreted as initial and final states of a particle reaction so that quantum states become physical
events.

At the level of WCW ZEO means that pairs of 3-surfaces residing at opposite boundaries of
CD become basis objects or equivalent preferred extremals of Kähler acting [K42] having these
3-surfaces at ends replaced space-like 3-surfaces as basic objects. Preferred extremal property
means that these space-time surfaces become archetypal spatiotemporal patterns: biologist would
talk about behaviors, functions, or self-organization patterns [K34]. Self-organization is however
understood in 4-D sense.

2. Does the finiteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere finiteness of measurement resolution could determine the laws of
quantum physics [K4] completely belongs to the category of not at all obvious first principles. The
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basic observation is that the Clifford algebra [A2] spanned by the gamma matrices of the “world of
classical worlds” represents a von Neumann algebra [A35] known as hyperfinite factor of type II1

(HFF) [K4, K31, K9] . HFF [A26, A33] is an algebraic fractal having infinite hierarchy of included
sub-algebras isomorphic to the algebra itself [A1] . The structure of HFF is closely related to
several notions of modern theoretical physics such as integrable statistical physical systems [A40]
, anyons [D1] , quantum groups and conformal field theories [A25] , and knots and topological
quantum field theories [A37, A30] .

ZEO is second key element. In ZEO these inclusions allow an interpretation in terms of a
finite measurement resolution: in the standard positive energy ontology this interpretation is not
possible. Inclusion hierarchy defines in a natural manner the notion of coupling constant evolution
and p-adic length scale hypothesis follows as a prediction. In this framework the extremely heavy
machinery of renormalized quantum field theory involving the elimination of infinities is replaced
by a precisely defined mathematical framework. More concretely, the included algebra creates
states which are equivalent in the measurement resolution used. Zero energy state can be modified
in a time scale shorter than the time scale of the zero energy state itself.

One can imagine two kinds of measurement resolutions. The element of the included algebra
can leave the quantum numbers of the positive and negative energy parts of the state invariant,
which means that the action of subalgebra leaves M-matrix invariant. The action of the included
algebra can also modify the quantum numbers of the positive and negative energy parts of the state
such that the zero energy property is respected. In this case the Hermitian operators subalgebra
must commute with M -matrix.

The temporal distance between the tips of CD corresponds to the secondary p-adic time scale
Tp,2 =

√
pTp by a simple argument based on the observation that light-like randomness of light-like

3-surface is analogous to Brownian motion. This gives the relationship Tp = L2
p/Rc, where R is

CP2 size. The action of the included algebra corresponds to an addition of zero energy parts to
either positive or negative energy part of the state and is like addition of quantum fluctuation below
the time scale of the measurement resolution. The natural hierarchy of time scales is obtained as
Tn = 2−nT since these insertions must belong to either upper or lower half of the causal diamond.
This implies that preferred p-adic primes are near powers of 2. For electron the time scale in
question is .1 seconds defining the fundamental biorhythm of 10 Hz.

M-matrix representing a generalization of S-matrix and expressible as a product of a positive
square root of the density matrix and unitary S-matrix would define the dynamics of quantum
theory [K4] . The notion of thermodynamical state would cease to be a theoretical fiction and in a
well-defined sense quantum theory could be regarded as a square root of thermodynamics. Connes
tensor product [A26] provides a mathematical description of the finite measurement resolution but
does not fix the M -matrix as was the original hope. The remaining challenge is the calculation of
M-matrix and the progress induced by ZEO during last years has led to rather concrete proposal
for the construction of M -matrix.

It turns out however that the mathematical representation for the notion of finite resolution for
angle measurement serves as a common denominator for all basic approaches to quantum TGD:
the Kähler geometry [A8] of WCW identified as a union of infinite-dimensional symmetric spaces,
inclusions of hyper finite factors as representation of finite measurement resolution, p-adicization
program, the role of classical number fields [A10, A4, A13] , and infinite primes so that it is fair
to say that all approaches to TGD which originally seemed almost independent, converge to a
coherent mathematical structure.

3. How do p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

In zero energy ontology zero energy states have as imbedding space correlates causal diamonds
for which the distance between the tips of the intersecting future and past directed light-cones
comes as integer multiples of a fundamental time scale: Tn = n×T0. p-Adic length scale hypothesis
allows to consider a stronger hypothesis Tn = 2nT0 and its generalization a slightly more general
hypothesis Tn = pnT0, p prime. It however seems that these scales are dynamically favored but
that also other scales are possible.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0

(or Tp = pT0) induce p-adic coupling constant evolution and explain why p-adic length scales
correspond to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks attractive but there is a
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problem. p-Adic length scales come as powers of
√

2 rather than 2 and the strongly favored values
of k are primes and thus odd so that n = k/2 would be half odd integer. This problem can be
solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because the
partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their
orbit. For CP2 type vacuum extremals the situation reduces to that for a one-dimensional
random light-like curve in M4. The orbits of Brownian particle would now correspond to
light-like geodesics γ3 at X3. The projection of γ3 to a time=constant section X2 ⊂ X3

would define the 2-D path γ2 of the Brownian particle. The M4 distance r between the end
points of γ2 would be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0

(the full light-like geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0

for D = R2/T0. Since only CP2 scale is available as a fundamental scale, one would have
T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via
Tp = L2

p/R0 =
√
pLp, which corresponds to secondary p-adic length scale. For instance,

in the case of electron with p = M127 one would have T127 = .1 second which defines a
fundamental biological rhythm. Neutrinos with mass around .1 eV would correspond to
L(169) ' 5 µm (size of a small cell) and T (169) ' 1.×104 years. A deep connection between
elementary particle physics and biology becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics
of the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be
an inherent property of X3. For Tp = pT0 the above argument is not enough for p-adic
length scale hypothesis and p-adic length scale hypothesis might be seen as an outcome of a
process analogous to natural selection. Resonance like effect favoring octaves of a fundamental
frequency might be in question. In this case, p would a property of CD and all light-like 3-
surfaces inside it and also that corresponding sector of WCW.

The above proposal involves of course ad hoc elements and can be seen only as a first attempt
to understand what is involved. Later a more refined approach will be discussed.

4. Mersenne primes and Gaussian Mersennes

The generalization of the imbedding space required by the postulated hierarchy of Planck
constants [K9] means a book like structure for which the pages are products of singular coverings
or factor spaces of CD (causal diamond defined as intersection of future and past directed light-
cones) and of CP2 [K9] . This predicts that Planck constants are rationals and that a given value of
Planck constant corresponds to an infinite number of different pages of the Big Book, which might
be seen as a drawback. If only singular covering spaces are allowed the values of Planck constant
are products of integers and given value of Planck constant corresponds to a finite number of pages
given by the number of decompositions of the integer to two different integers. The definition of
the book like structure assigns to a given CD preferred quantization axes and so that quantum
measurement has direct correlate at the level of moduli space of CDs.

TGD inspired quantum biology and number theoretical considerations suggest preferred values
heff/h = n, n as integer. Ruler and compass integers defined by the products of distinct Fermat
primes and power of two are number theoretically favored values for these integers because the
phases exp(i2π/n) in this case are number theoretically very simple and should have emerged first
in the number theoretical evolution via algebraic extensions of p-adics and of rationals. p-Adic
length scale hypothesis favors powers of two as values of n.

One can however ask whether a more precise characterization of preferred Mersennes could exist
and whether there could exists a stronger correlation between hierarchies of p-adic length scales
and Planck constants. Mersenne primes Mk = 2k − 1, k ∈ {89, 107, 127}, and Gaussian Mersennes
MG,k = (1 + i)k − 1, k ∈ {113, 151, 157, 163, 167, 239, 241..} are expected to be physically highly
interesting and up to k = 127 indeed correspond to elementary particles. The number theoretical
miracle is that all the four p-adic length scales with k ∈ {151, 157, 163, 167} are in the biologically



2.2 Summary Of The Basic Physical Ideas 23

highly interesting range 10 nm-2.5 µm). The question has been whether these define scaled up
copies of electro-weak and QCD type physics with ordinary value of heff . The proposal that this
is the case and that these physics are in a well-defined sense induced by the dark scaled up variants
of corresponding lower level physics leads to a prediction for the preferred values of r = 2kd ,
kd = ki − kj .

Dark variant of exotic nuclear physics implies exotic physics with ordinary value of Planck
constant in the new scale in a resonant manner: dark gauge bosons transform to their ordinary
variants with the same Compton length. This transformation is natural since in length scales below
the Compton length the gauge bosons behave as massless and free particles. As a consequence,
lighter variants of weak bosons emerge and QCD confinement scale becomes longer.

This proposal will be referred to as Mersenne hypothesis. It leads to strong predictions about
EEG [K7] since it predicts a spectrum of preferred Josephson frequencies for a given value of
membrane potential and also assigns to a given value of heff a fixed size scale having interpretation
as the size scale of the body part or magnetic body. Also a vision about evolution of life emerges.
Mersenne hypothesis is especially interesting as far as new physics in condensed matter length
scales is considered: this includes exotic scaled up variants of the ordinary nuclear physics and
their dark variants. Even dark nucleons are possible and this gives justification for the model
of dark nucleons predicting the counterparts of DNA,RNA, tRNa, and amino-acids as well as
realization of vertebrate genetic code [K29] .

These exotic nuclear physics with ordinary value of Planck constant could correspond to ground
states that are almost vacuum extremals corresponding to homologically trivial geodesic sphere of
CP2 near criticality to a phase transition changing Planck constant. Ordinary nuclear physics
would correspond to homologically non-trivial geodesic sphere and far from vacuum extremal
property. For vacuum extremals of this kind classical Z0 field proportional to electromagnetic field
is present and this modifies dramatically the view about cell membrane as Josephson junction. The
model for cell membrane as almost vacuum extremal indeed led to a quantitative breakthrough in
TGD inspired model of EEG and is therefore something to be taken seriously. The safest option
concerning empirical facts is that the copies of electro-weak and color physics with ordinary value
of Planck constant are possible only for almost vacuum extremals - that is at criticality against
phase transition changing Planck constant.

2.2.3 The origin of the preferred p-adic length scales

This question was posed already for two decades ago has but remained without a convincing
answer. Quite recently however the number theoretical vision allowed to understand both the
origin of preferred p-adic number fields and the emergence of p-adic length scale hypothesis in a
generalized form. Preferred primes are near but below powers prime which can be also larger that
p = 2.

The preferred primes correspond to so called ramified rational primes, which split in to prod-
ucts of the primes of the extension. If some prime appears as higher than first power, one has
ramification. The number of ramified primes is finite.

In strong form of holography p-adic continuations of 2-surfaces to preferred extrmals identifiable
as imaginations would be easy due to the existence of p-adic pseudo-constants. The continuation
could fail for most configurations of partonic 2-surfaces and string world sheets in the real sector:
the interpretation would be that some space-time surfaces can be imagined but not realized [K19].
For certain extensions the number of realizable imaginations could be exceptionally large. These
extensions would be winners in the number theoretic fight for survivalandcorresponding ramified
primes would be preferred p-adic primes. Whether the preferred primes satisfy p-adic length scale
hypothesis or its generalization from p = 2 to to small primes remains an open question.

The value of effective Planck constant heff/h = n corresponds to the number of sheets of
some kind of covering space defined by the space-time surface. The discretization of the space-
time surface identified as a monadic manifold [?] with imbedding space preferred coordinates in
extension of rationals defining the adele has Galois group of extension as a group of symmetries
permuting the sheets of the covering group. Therefore n = heff/h would naturally correspond to
the dimension of the extension dividing the order of its Galois group.

Weak form of NMP allows to understand the emergence of preferred p-adic length scales. NMP
favors ramified primes, for which the integer n is power of single prime p. If n is a prime slightly
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below nmax = pn defining the dimension of the sub-space corresponding to maximal negentropy
gain, weak form of NMP favors its selection since the p-adic topology is farthest from the discrete
topology assignable to formal p-adic topology characterized by p = 1 [K41].

2.2.4 p-Adic physics and the notion of finite measurement resolution

Canonical identification mapping p-adic numbers to reals in a continuous manner plays a key role
in some applications of TGD and together with the discretization necessary to define the p-adic
variants of integration and harmonic analysis suggests that p-adic topology identified as an effective
topology could provide an elegant manner to characterize finite measurement resolution.

1. Finite measurement resolution can be characterized as an interval of minimum length. Below
this length scale one cannot distinguish points from each other. A natural definition for this
inability could be as an inability to well-order the points. The real topology is too strong
in the modelling in kind of situation since it brings in large amount of processing of pseudo
information whereas p-adic topology which lacks the notion of well-ordering could be more
appropriate as effective topology and together with a pinary cutoff could allow to get rid of
the irrelevant information.

2. This suggest that canonical identification applies only inside the intervals defining finite
measurement resolution in a given discretization of the space considered by say small cubes.
The canonical identification is unique only modulo diffeomorphism applied on both real and
p-adic side but this is not a problem since this would only reflect the absence of the well-
ordering lost by finite measurement resolution. Also the fact that the map makes sense only
at positive real axis would be natural if one accepts this identification.

This interpretation would suggest that there is an infinite hierarchy of measurement resolutions
characterized by the value of the p-adic prime. This would mean quite interesting refinement of
the notion of finite measurement resolution. At the level of quantum theory it could be interpreted
as a maximization of p-adic entanglement negentropy as a function of the p-adic prime. Perhaps
one might say that there is a unique p-adic effective topology allowing to maximize the information
content of the theory relying on finite measurement resolution.

2.2.5 p-Adic numbers and the analogy of TGD with spin-glass

The vacuum degeneracy of the Kähler action leads to a precise spin glass analogy at the level of
the WCW geometry and the generalization of the energy landscape concept to TGD context leads
to the hypothesis about how p-adicity could be realized at the level of WCW. Also the concept of
p-adic space-time surface emerges rather naturally.

1. Spin glass briefly

The basic characteristic of the spin glass phase [B1] is that the direction of the magnetization
varies spatially, being constant inside a given spatial region, but does not depend on time. In the
real context this usually leads to large surface energies on the surfaces at which the magnetization
direction changes. Regions with different direction of magnetization clearly correspond non-vacuum
regions separated by almost vacuum regions. Amusingly, if 3-space is effectively p-adic and if
magnetization direction is p-adic pseudo constant, no surface energies are generated so that p-
adics might be useful even in the context of the ordinary spin glasses.

Spin glass phase allows a great number of different ground states minimizing the free energy.
For the ordinary spin glass, the partition function is the average over a probability distribution
of the coupling constants for the partition function with Hamiltonian depending on the coupling
constants. Free energy as a function of the coupling constants defines “energy landscape” and the
set of free energy minima can be endowed with an ultra-metric distance function using a standard
construction [A38] .

2. Vacuum degeneracy of Kähler action

The Kähler action defining WCW geometry allows enormous vacuum degeneracy: any four-
surface for which the induced Kähler form vanishes, is an extremal of the Kähler action. Induced
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Kähler form vanishes if the CP2 projection of the space-time surface is Lagrangian manifold [A9] of
CP2: these manifolds are at most two-dimensional and any canonical transformation of CP2 creates
a new Lagrangian sub-manifold [A9] . An explicit representation for Lagrangian sub-manifolds is
obtained using some canonical coordinates Pi, Qi for CP2: by assuming

Pi = ∂if(Q1, Q2) , i = 1, 2 ,

where f arbitrary function of its arguments. One obtains a 2-dimensional sub-manifold of CP2 for
which the induced Kähler form proportional to dPi ∧ dQi vanishes. The roles of Pi and Qi can
obviously be interchanged. A familiar example of Lagrange manifolds are pi = constant surfaces
of the ordinary (pi, qi) phase space.

Since vacuum degeneracy is removed only by the classical gravitational interaction there are
good reasons to expect large ground state degeneracy, when the system corresponds to a small
deformation of a vacuum extremal. This degeneracy is very much analogous to the ground state
degeneracy of spin glass but is 4-dimensional.

3. Vacuum degeneracy of the Kähler action and physical spin glass analogy

Quite generally, the dynamical reason for the physical spin glass degeneracy is the fact that
Kähler action has a huge vacuum degeneracy. Any 4-surface with CP2 projection, which is a
Lagrangian sub-manifold (generically two-dimensional), is vacuum extremal. This implies that
space-time decomposes into non-vacuum regions characterized by non-vanishing Kähler magnetic
and electric fields such that the (presumably thin) regions between the the non-vacuum regions are
vacuum extremals. Therefore no surface energies are generated. Also the fact that various charges
and momentum and energy can flow to larger space-time sheets via wormholes is an important
factor making possible strong field gradients without introducing large surfaces energies. From a
given preferred extremal of Kähler action one obtains a new one by adding arbitrary space-time
surfaces which is vacuum extremal and deforming them.

The symplectic invariance of the Kähler action for vacuum extremals allows a further under-
standing of the vacuum degeneracy. The presence of the classical gravitational interaction spoils
the canonical group Can(CP2) as gauge symmetries of the action and transforms it to the isometry
group of CH. As a consequence, the U(1) gauge degeneracy is transformed to a spin glass type
degeneracy and several, perhaps even infinite number of maxima of Kähler function become possi-
ble. Given sheet has naturally as its boundary the 3-surfaces for which two maxima of the Kähler
function coalesce or are created from single maximum by a cusp catastrophe [A31] . In catastrophe
regions there are several sheets and the value of the maximum Kähler function determines which
give a measure for the importance of various sheets. The quantum jumps selecting one of these
sheets can be regarded as phase transitions.

In TGD framework classical non-determinism forces to generalize the notion of the 3-surface
by replacing it with a sequence of space like 3-surfaces having time like separations such that the
sequence characterizes uniquely one branch of multi-furcation. This characterization works when
non-determinism has discrete nature. For CP2 type extremals which are bosonic vacua, basic
objects are essentially four-dimensional since M4

+ projection of CP2 type extremal is random light
like curve. This effective four-dimensionality of the basic objects makes it possible to topologize
Feynman diagrammatics of quantum field theories by replacing the lines of Feynman diagrams
with CP2 type extremals.

In TGD framework spin glass analogy holds true also in the time direction, which reflects
the fact that the vacuum extremals are non-deterministic. For instance, by gluing vacuum ex-
tremals with a finite space-time extension (also in time direction!) to a non-vacuum extremal and
deforming slightly, one obtains good candidates for the degenerate preferred extremals. This non-
determinism is expected to make the preferred extremals of the Kähler action highly degenerate.
The construction of S-matrix at the high energy limit suggests that since a localization selecting
one degenerate maximum occurs, one must accept as a fact that each choice of the parameters
corresponds to a particular S-matrix and one must average over these choices to get scattering
rates. This averaging for scattering rates corresponds to the averaging over the thermodynamical
partition functions for spin glass. A more general is that one allows final state wave functions to
depend on the zero modes which affect S-matrix elements: in the limit that wave functions are
completely localized, one ends up with the simpler scenario.
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4. p-Adic non-determinism and spin glass analogy

One must carefully distinguish between cognitive and physical spin-glass analogy. Cognitive
spin-glass analogy is due to the p-adic non-determinism. p-Adic pseudo constants induce a non-
determinism which essentially means that p-adic extrema depend on the p-adic pseudo constants
which depend on a finite number of positive pinary digits of their arguments only. Thus p-adic
extremals are glued from pieces for which the values of the integration constants are genuine
constants. Obviously, an optimal cognitive representation is achieved if pseudo constants reduce
to ordinary constants.

More precisely, any function

f(x) = f(xN ) ,

xN =
∑
k≤N

xkp
k , (2.1)

which does not depend on the pinary digits xn, n > N has a vanishing p-adic derivative and is
thus a pseudo constant. These functions are piecewise constant below some length scale, which
in principle can be arbitrary small but finite. The result means that the constants appearing in
the solutions the p-adic field equations are constants functions only below some length scale. For
instance, for linear differential equations integration constants are arbitrary pseudo constants. In
particular, the p-adic counterparts of the preferred extremals are highly degenerate because of the
presence of the pseudo constants. This in turn means a characteristic randomness of the spin glass
also in the time direction since the surfaces at which the pseudo constants change their values do
not give rise to infinite surface energy densities as they would do in the real context.

The basic character of cognition would be spin glass like nature making possible “engineering”
at the level of thoughts (planning) whereas classical non-determinism of the Kähler action would
make possible “engineering” at the level of the real world.

2.2.6 Life as islands of rational/algebraic numbers in the seas of real and p-adic
continua?

The possibility to define entropy differently for rational/algebraic entanglement and the fact that
number theoretic entanglement entropy can be negative raises the question about which kind of
systems can possess this kind of entanglement. I have considered several identifications but the
most elegant interpretation is based on the idea that living matter resides in the intersection of
real and p-adic worlds, somewhat like rational numbers live in the intersection of real and p-adic
number fields. This intersection would be number theoretically universal in the sense that algebraic
extension of rationals would be the number field but in rather abstract sense: for the parameters
defining the WCW coordinates characterizing space-time surface rather than points of space-time
surface.

The observation that Shannon entropy allows an infinite number of number theoretic variants
for which the entropy can be negative in the case that probabilities are algebraic numbers leads
to the idea that living matter in a well-defined sense corresponds to the intersection of real and
p-adic worlds. This would mean that the mathematical expressions for the space-time surfaces
(or at least 3-surfaces or partonic 2-surfaces and their 4-D tangent planes) make sense in both
real and p-adic sense for some primes p. Same would apply to the expressions defining quantum
states. In particular, entanglement probabilities would be rationals or algebraic numbers so that
entanglement can be negentropic and the formation of bound states in the intersection of real and
p-adic worlds generates information and is thus favored by NMP.

This picture has also a direct connection with consciousness.

1. The generation of non-rational (non-algebraic) bound state entanglement between the system
and external world means that the system loses consciousness during the state function
reduction process following the U -process generating the entanglement. What happens that
the Universe corresponding to given CD decomposes to two un-entangled subsystems, which
in turn decompose, and the process continues until all subsystems have only entropic bound
state entanglement or negentropic algebraic entanglement with the external world.
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2. If the sub-system generates entropic bound state entanglement in the process, it loses con-
sciousness. Note that the entanglement entropy of the sub-system is a sum over entanglement
entropies over all subsystems involved. This hierarchy of subsystems corresponds to the hi-
erarchy if sub-CDs so that the survival without a loss of consciousness depends on what
happens at all levels below the highest level for a given self. In more concrete terms, ability
to stay conscious depends on what happens at cellular level too. The stable evolution of
systems having algebraic entanglement is expected to be a process proceeding from short to
long length scales as the evolution of life indeed is.

3. U -process generates a superposition of states in which any sub-system can have both real
and algebraic entanglement with the external world. This would suggest that the choice of
the type of entanglement is a volitional selection. A possible interpretation is as a choice be-
tween good and evil. The hedonistic complete freedom resulting as the entanglement entropy
is reduced to zero on one hand, and the algebraic bound state entanglement implying correla-
tions with the external world and meaning giving up the maximal freedom on the other hand.
The hedonistic option is risky since it can lead to non-algebraic bound state entanglement
implying a loss of consciousness. The second option means expansion of consciousness - a
fusion to the ocean of consciousness as described by spiritual practices.

4. This formulation means a sharpening of the earlier statement “Everything is conscious and
consciousness can be only lost” with the additional statement “This happens when non-
algebraic bound state entanglement is generated and the system does not remain in the
intersection of real and p-adic worlds anymore”. Clearly, the quantum criticality of TGD
Universe seems has very many aspects and life as a critical phenomenon in the number
theoretical sense is only one of them besides the criticality of the space-time dynamics and the
criticality with respect to phase transitions changing the value of Planck constant and other
more familiar criticalities. How closely these criticalities relate remains an open question.

A good guess is that algebraic entanglement is essential for quantum computation, which there-
fore might correspond to a conscious process. Hence cognition could be seen as a quantum com-
putation like process, a more appropriate term being quantum problem solving. Living-dead
dichotomy could correspond to rational-irrational or to algebraic-transcendental dichotomy: this
at least when life is interpreted as intelligent life. Life would in a well defined sense correspond to
islands of rationality/algebraicity in the seas of real and p-adic continua.

The view about the crucial role of rational and algebraic numbers as far as intelligent life is
considered, could have been guessed on very general grounds from the analogy with the orbits of a
dynamical system. Rational numbers allow a predictable periodic decimal/pinary expansion and
are analogous to one-dimensional periodic orbits. Algebraic numbers are related to rationals by
a finite number of algebraic operations and are intermediate between periodic and chaotic orbits
allowing an interpretation as an element in an algebraic extension of any p-adic number field.
The projections of the orbit to various coordinate directions of the algebraic extension represent
now periodic orbits. The decimal/pinary expansions of transcendentals are un-predictable being
analogous to chaotic orbits. The special role of rational and algebraic numbers was realized already
by Pythagoras, and the fact that the ratios for the frequencies of the musical scale are rationals
supports the special nature of rational and algebraic numbers. The special nature of the Golden
Mean, which involves

√
5, conforms the view that algebraic numbers rather than only rationals are

essential for life.

2.2.7 p-Adic physics as physics of cognition

The vision about p-adic physics as physics of cognition has gradually established itself as one of
the key idea of TGD inspired theory of consciousness. There are several motivations for this idea.

The strongest motivation is the vision about living matter as something residing in the in-
tersection of real and p-adic worlds. One of the earliest motivations was p-adic non-determinism
identified tentatively as a space-time correlate for the non-determinism of imagination. p-Adic
non-determinism follows from the fact that functions with vanishing derivatives are piecewise con-
stant functions in the p-adic context. More precisely, p-adic pseudo constants depend on the pinary
cutoff of their arguments and replace integration constants in p-adic differential equations. In the
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case of field equations this means roughly that the initial data are replaced with initial data given
for a discrete set of time values chosen in such a manner that unique solution of field equations
results. Solution can be fixed also in a discrete subset of rational points of the imbedding space.
Presumably the uniqueness requirement implies some unique pinary cutoff. Thus the space-time
surfaces representing solutions of p-adic field equations are analogous to space-time surfaces con-
sisting of pieces of solutions of the real field equations. p-Adic reality is much like the dream reality
consisting of rational fragments glued together in illogical manner or pieces of child’s drawing of
body containing body parts in more or less chaotic order.

The obvious looking interpretation for the solutions of the p-adic field equations is as a geometric
correlate of imagination. Plans, intentions, expectations, dreams, and cognition in general are
expected to have p-adic space-time sheets as their geometric correlates. This in the sense that p-
adic space-time sheets somehow initiate the real neural processes providing symbolic counterparts
for the cognitive representations provided by p-adic space-time sheets and p-adic fermions. A deep
principle seems to be involved: incompleteness is characteristic feature of p-adic physics but the
flexibility made possible by this incompleteness is absolutely essential for imagination and cognitive
consciousness in general.

Although p-adic space-time sheets as such are not conscious, p-adic physics would provide
beautiful mathematical realization for the intuitions of Descartes. The formidable challenge is to
develop experimental tests for p-adic physics. The basic problem is that we can perceive p-adic
reality only as “thoughts” unlike the “real” reality which represents itself to us as sensory experi-
ences. Thus it would seem that we should be able generalize the physics of sensory experiences to
physics of cognitive experiences.

2.3 What Is The Correspondence Between P-Adic And Real Numbers?

There must be some kind of correspondence between reals and p-adic numbers. This correspon-
dence can depend on context. In p-adic mass calculations one must map p-adic mass squared
values to real numbers in a continuous manner and canonical identification x =

∑
xnp

n → Id(x) =∑
xnp

−n is a natural first guess. Also p-adic probabilities could be mapped to their real coun-
terparts by a suitable normalization. The minimalistic interpretation is that real and p-adic mass
calculations must give same results- physics must be consistent with the existence of cognitive
representations of it. In this case p-adic thermodynamics would constrain the temperature and
scale parameters of real thermodynamics.

The possible existence and the nature of the correspondence at the level of imbedding space and
space-time surfaces is much more questionable and it is far from clear whether it is needed as a naive
map of real space-time points to p-adic space-time points by - say - canonical identification: the
problem would be that symmetries are not respected if one demands continuity. One would like to
various symmetries in real and p-adic variants and the correspondence should respect symmetries.

One can wonder whether p-adic valued S-matrices have any physical meaning and whether
they could be obtained as algebraic continuation from a number theoretically universal S-matrix
whose matrix elements are algebraic numbers allowing an interpretation as real or p-adic numbers
in suitable algebraic extension: this would pose extremely strong constraints on S-matrix. If one
wants to introduce p-adic physics at space-time level one must be able to relate p-adic and real
space-time regions to each other. The identification along common rational points of real and
various p-adic variants of the imbedding space produces however problems with symmetries.

In the following these questions are discussed as I did them before the recent steps of progress
summarized in the last subsection. I hope that the reader can forgive certain naivete of the
discussion: pioneering work is in question.

2.3.1 Generalization of the number concept

The recent view about the unification of real and p-adic physics is based on the generalization of
number concept obtained by fusing together real and p-adic number fields along common rationals
(see Fig. ??in the Appendix.

1. Rational numbers as numbers common to all number fields

The unification of real physics of material work and p-adic physics of cognition leads to the



2.3 What Is The Correspondence Between P-Adic And Real Numbers? 29

generalization of the notion of number field. Reals and various p-adic number fields are glued
along common algebraic numbers defining an extension of p-adic numbers to form a fractal book
like structure. Allowing all possible finite-dimensional algebraic and perhaps even transcendental
extensions of rationals inducing those of p-adic numbers adds additional pages to this “Big Book”.

This suggests a generalization of the notion of manifold as real manifold and its p-adic variants
glued together along common points. This generalization might make sense under very high sym-
metries and that it is safest to lean strongly on the physical picture provided by quantum TGD.
This construction is discussed in [K38] and one must make clear that it is plagued difficulties with
symmetries.

1. The most natural guess is that the coordinates of common points are rational or in some
algebraic extension of rational numbers. General coordinate invariance and preservation of
symmetries require preferred coordinates existing when the manifold has maximal number
of isometries. This approach might make sense in the case of linear spaces- in particular
Minkowski space M4. The natural coordinates are in this case linear Minkowski coordinates.
The choice of coordinates is however not completely unique and has interpretation as a
geometric correlate for the choice of quantization axes for a given CD. Different choices are
not equivalent.

2. As will be found, the need to have a well-defined integration based on Fourier analysis (or its
generalization to harmonic analysis [A5] in symmetric spaces) poses very strong constraints
and allows p-adicization only if the space has maximal symmetries. Fourier analysis requires
the introduction of an algebraic extension of p-adic numbers containing sufficiently many
roots of unity.

(a) This approach is especially natural in the case of compact symmetric spaces such as
CP2 [A3] .

(b) Also symmetric spaces such the 3-D proper time a = constant hyperboloid of M4-
call it H(a) -allowing Lorentz group as isometries allows a p-adic variant utilizing the
hyperbolic counterparts for the roots of unity. M4 ×H(a = 2na0) appears as a part of
the moduli space of CDs.

(c) For light-cone boundaries associated with CDs SO(3) invariant radial coordinate rM
defining the radius of sphere S2 defines the hyperbolic coordinate and angle coordinates
of S2 would correspond to phase angles and M4

± projections for the common points
of real and p-adic variants of partonic 2-surfaces would be this kind of points. Same
applies to CP2 projections.

In the “intersection of real and p-adic worlds” real and p-adic partonic 2-surfaces would
obey same algebraic equations and would be obtained by an algebraic continuation from
the corresponding equations making sense in the discrete variant of M4

± × CP2. This
connection with discrete sub-manifold geometries means very powerful constraints on
the partonic 2-surfaces in the intersection.

3. The common algebraic points of real and p-adic variant of the manifold form a discrete space
but one could identify the p-adic counterpart of the real discretization intervals (0, 2π/N) for
angle like variables as p-adic numbers of norm smaller than 1 using canonical identification
or some variant of it. Same applies to the the hyperbolic counterpart of this interval. The
non-uniqueness of this map could be interpreted in terms of a finite measurement resolution.
In particular, the condition that WCW allows Kähler geometry requires a decomposition to a
union of symmetric spaces so that there are good hopes that p-adic counterpart is analogous
to that assigned to CP2.

This approach works for probabilities but has serious problems with symmetries. The only
manner to circumvent the problems is based on strong form of holography and abstraction of the
real-p-adic correspondence so that it is not anymore local but maps entire surfaces to each other.
One must have also now discretization and co-dimension two rule holds true. For instance, space-
time surfaces are replaced with a collection of 2-D objects and partonic 2-surfaces by a discrete set
of points. This rule is equivalent with strong from of holography.
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The correspondence would be at the level of parameters defining WCW coordinates and inter-
section of reality and p-adicities would consist of discrete set of 2-surfaces. As already explained,
strong form of holography suggests that real and p-adic space-time sheets are obtained by con-
tinuation of the 2-surfaces to preferred extremals by assuming that the classical Noether charges
associated with super-symplectic algebra vanish for the 3-surfaces at the ends of space-time surface.
By conformal invariance the parameters would be naturally general coordinate invariant confor-
mal moduli for the 2-surfaces involved, and belong to the algebraic extension of rationals in the
intersection. Their continuation to various number fields would give real and p-adic space-time
sheets. Also scattering amplitudes could be constructed using the data assigned with 2-surfaces in
the intersection and continued algebraically to various number fields. This picture conforms also
with the recipe for constructing scattering amplitudes in twistor approach [L1].

2. How large p-adic space-time sheets can be?

Space-time region having finite size in the real sense can have arbitrarily large size in p-adic
sense and vice versa. This raises a rather thought provoking questions. Could the p-adic space-
time sheets have cosmological or even infinite size with respect to the real metric but have be
p-adically finite? How large space-time surface is responsible for the p-adic representation of my
body? Could the large or even infinite size of the cognitive space-time sheets explain why creatures
of a finite physical size can invent the notion of infinity and construct cosmological theories? Could
it be that pinary cutoff O(pn) defining the resolution of a p-adic cognitive representation would
define the size of the space-time region needed to realize the cognitive representation?

These questions make sense if the real-padic correspondence is local - that is defined by the
intersection real and p-adic space-time surfaces. In the more abstract approach it does not make
sense.

In fact, the mere requirement that the neighborhood of a point of the p-adic space-time sheet
contains points, which are p-adically infinitesimally near to it can mean that points infinitely
distant from this point in the real sense are involved. A good example is provided by an integer
valued point x = n < p and the point y = x+pm, m > 0: the p-adic distance of these points is p−m

whereas at the limit m→∞ the real distance goes as pm and becomes infinite for infinitesimally
near points. The points n+ y, y =

∑
k>0 xkp

k, 0 < n < p, form a p-adically continuous set around
x = n. In the real topology this point set is discrete set with a minimum distance ∆x = p between
neighboring points whereas in the p-adic topology every point has arbitrary nearby points. There
are also rationals, which are arbitrarily near to each other both p-adically and in the real sense.
Consider points x = m/n, m and n not divisible by p, and y = (m/n) × (1 + pkr)/(1 + pks),
s = r + 1 such that neither r or s is divisible by p and k >> 1 and r >> p. The p-adic and real
distances are |x− y|p = p−k and |x− y| ' (m/n)/(r + 1) respectively. By choosing k and r large
enough the points can be made arbitrarily close to each other both in the real and p-adic senses.

The idea about astrophysical size of the p-adic cognitive space-time sheets providing represen-
tation of body and brain is consistent with TGD inspired theory of consciousness, which forces to
take very seriously the idea that even human consciousness involves astrophysical length scales.
It must be however emphasized that this kind of concretization seems to be un-necessary if the
correspondence is at the level of WCW.

3. Generalization of complex analysis

One general idea which results as an outcome of the generalized notion of number is the idea
of a universal function continuable from a function mapping rationals to rationals or to a finite
extension of rationals to a function in any number field. This algebraic continuation is analogous
to the analytical continuation of a real analytic function to the complex plane. Rational functions
for which polynomials have rational coefficients are obviously functions satisfying this constraint.
Algebraic functions for which polynomials have rational coefficients satisfy this requirement if
appropriate finite-dimensional algebraic extensions of p-adic numbers are allowed.

For instance, one can ask whether residue calculus might be generalized so that the value of
an integral along the real axis could be calculated by continuing it instead of the complex plane
to any number field via its values in the subset of rational numbers forming the back of the book
like structure (in very metaphorical sense) having number fields as its pages. If the poles of the
continued function in the finitely extended number field allow interpretation as real numbers it
might be possible to generalize the residue formula. One can also imagine of extending residue
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calculus to any algebraic extension. An interesting situation arises when the poles correspond to
extended p-adic rationals common to different pages of the “Big Book”. Could this mean that the
integral could be calculated at any page having the pole common. In particular, could a p-adic
residue integral be calculated in the ordinary complex plane by utilizing the fact that in this case
numerical approach makes sense. Contrary to the first expectations the algebraically continued
residue calculus does not seem to have obvious applications in quantum TGD.

2.3.2 Canonical identification

Canonical There exists a natural continuous map Id : Rp → R+ from p-adic numbers to non-
negative real numbers given by the “pinary” expansion of the real number for x ∈ R and y ∈ Rp
this correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (2.2)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also desimal expansion is not
unique (1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of
pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(2.3)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (2.4)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite number
of pinary digits or single valued and discontinuous and non-surjective if one makes pinary expansion
unique by choosing the one with finite number of pinary digits. The finite number of pinary digits
expansion is a natural choice since in the numerical work one always must use a pinary cutoff on
the real axis.

1. Canonical identification is a continuous map of non-negative reals to p-adics

The topology induced by the inverse of the canonical identification map in the set of positive
real numbers differs from the ordinary topology. The difference is easily understood by interpreting
the p-adic norm as a norm in the set of the real numbers. The norm is constant in each interval
[pk, pk+1) (see Fig. ??) and is equal to the usual real norm at the points x = pk: the usual linear
norm is replaced with a piecewise constant norm. This means that p-adic topology is coarser than
the usual real topology and the higher the value of p is, the coarser the resulting topology is above
a given length scale. This hierarchical ordering of the p-adic topologies will be a central feature as
far as the proposed applications of the p-adic numbers are considered.
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Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology
is rougher than the ordinary norm. This allows two alternative interpretations. Either p-adic
image of a physical systems provides a good representation of the system above some pinary
cutoff or the physical system can be genuinely p-adic below certain length scale Lp and become
in good approximation real, when a length scale resolution Lp is used in its description. The
first interpretation is correct if canonical identification is interpreted as a cognitive map. p-Adic
continuity implies ordinary continuity from right as is clear already from the properties of the
p-adic norm (the graph of the norm is indeed continuous from right, see Fig. ?? of Appendix).
This feature is one clear signature of the p-adic topology.

If one considers seriously the application of canonical identification to basic quantum TGD one
cannot avoid the question about the p-adic counterparts of the negative real numbers. There is no
satisfactory manner to circumvent the fact that canonical images of p-adic numbers are naturally
non-negative. This is not a problem if canonical identification applies only to the coordinate interval
(0, 2π/N) or its hyperbolic variant defining the finite measurement resolution. That p-adicization
program works only for highly symmetric spaces is not a problem from the point of view of TGD.

2. Canonical identification relates p-adic and real statistical physics

p-Adic mass calculations based on p-adic thermodynamics were the first and rather successful
application of the p-adic physics (see the four chapters in [K37] . The essential element of the
approach was the replacement of the Boltzmann weight e−E/T with its p-adic generalization pL0/Tp ,
where L0 is the Virasoro generator corresponding to scaling and representing essentially mass
squared operator instead of energy. Tp is inverse integer valued p-adic temperature. The predicted
mass squared averages were mapped to real numbers by canonical identification.

One could also construct a real variant of this approach by considering instead of the ordinary
Boltzmann weights the weights p−L0/Tp . The quantization of temperature to Tp = log(p)/n would
be a completely ad hoc assumption. In the case of real thermodynamics all particles are predicted
to be light whereas in case of p-adic thermodynamics particle is light only if the ratio for the
degeneracy of the lowest massive state to the degeneracy of the ground state is integer. Immense
number of particles disappear from the spectrum of light particles by this criterion. For light
particles the predictions are same as of p-adic thermodynamics in the lowest non-trivial order but
in the next order deviations are possible.

Also p-adic probabilities and the p-adic entropy can be mapped to real numbers by canonical
identification. The general idea is that a faithful enough cognitive representation of the real physics
can by the number theoretical constraints involved make predictions, which would be extremely
difficult to deduce from real physics.

3. Variant of canonical identification commuting with division of integers

The basic problems of canonical identification is that it does not respect unitarity. For this
reason it is not well suited for relating p-adic and real scattering amplitudes. The problem of the
correspondence via direct rationals or roots of unity is that it does not respect continuity. The
restriction of S-matrix to a discrete intersection of real and p-adic worlds is one manner to solve
this difficulty.

One can also consider alternative approach to achieve a compromise between algebra and
topology achieved by using a modification of canonical identification IRp→R defined as I1(r/s) =
I(r)/I(s). If the conditions r � p and s � p hold true, the map respects algebraic operations
and also unitarity and various symmetries. It seems that this option must be used to relate p-adic
transition amplitudes to real ones and vice versa [K16] . In particular, real and p-adic coupling
constants are related by this map. Also some problems related to p-adic mass calculations find a
nice resolution when I1 is used.

This variant of canonical identification is not equivalent with the original one using the infinite
expansion of q in powers of p since canonical identification does not commute with product and
division. The variant is however unique in the recent context when r and s in q = r/s have no
common factors. For integers n < p it reduces to direct correspondence.

Generalized numbers would be regarded in this picture as a generalized manifold obtained
by gluing different number fields together along rationals. Instead of a direct identification of
real and p-adic rationals, the p-adic rationals in Rp are mapped to real rationals (or vice versa)
using a variant of the canonical identification IR→Rp in which the expansion of rational number



2.4 P-Adic Variants Of The Basic Mathematical Structures Relevant To Physics 33

q = r/s =
∑
rnp

n/
∑
snp

n is replaced with the rational number q1 = r1/s1 =
∑
rnp
−n/

∑
snp
−n

interpreted as a p-adic number:

q =
r

s
=

∑
n rnp

n∑
m snp

n
→ q1 =

∑
n rnp

−n∑
m snp

−n . (2.5)

Rp1 and Rp2 are glued together along common rationals by an the composite map IR→Rp2 IRp1→R.
This variant of canonical identification seems to be an excellent candidate for mapping the pre-

dictions of p-adic mass calculations to real numbers and also for relating p-adic and real scattering
amplitudes to each other [K16] . The deviations of predictions from those for standard form of
canonical identification are however small.

The cautious conclusion of this section is that symmetric space approach involving both the
identification along common rationals of roots of unity in large and canonical identification below
the measurement resolution provide the safest approach to the p-adicization of quantum TGD. The
impossibility to well-order the points below measurement resolution explains why effective p-adic
topology works in real context. The discussion of integration and Fourier analysis will provide
further support for the conclusion.

2.4 P-Adic Variants Of The Basic Mathematical Structures Relevant To
Physics

The basic existential questions worrying a person planning to become a p-adic quantum physicist
are rather obvious. How to define p-adic probabilities, p-adic thermodynamics, and p-adic unitarity
and perhaps even p-adic Hilbert space? Is it possible to define the p-adic variant of the manifold
concept? As already noticed for symmetric spaces p-adic variants might exist but what about
space-time surfaces: could it be enough to consider only the p-adic variants of the partonic 2-
surfaces in the manner already discussed? Can one somehow circumvent the difficulties related to
the definition of the p-adic variant of definite integral? Perhaps by using Fourier analysis? How
can one circumvent the fact that the basic variational principle involves integral over space-time
surface which is p-adically notoriously difficult to define? Is all this just a waste of time or could it
be that the enormous constraints from p-adicization could provide information about real physics
not achievable otherwise (as in the case of p-adic mass calculations)?

2.4.1 p-Adic probabilities

p-Adic super conformal representations necessitate p-adic QM based on the p-adic unitarity and p-
adic probability concepts. The concept of a p-adic probability indeed makes sense as shown by [A22]
. p-Adic probabilities can be defined as relative frequencies Ni/N in a long series consisting of
total number N of observations and Ni outcomes of type i. Probability conservation corresponds
to

∑
i

Ni = N , (2.6)

and the only difference as compared to the usual probability is that the frequencies are interpreted
as p-adic numbers.

The interpretation as p-adic numbers means that the relative frequencies converge to proba-
bilities in a p-adic rather than real sense in the limit of a large number N of observations. If one
requires that probabilities are limiting values of the frequency ratios in p-adic sense one must pose
restrictions on the possible numbers of the observations N if N is larger than p. For N smaller
than p, the situation is similar to the real case. This means that for p = M127 ' 1038, appropriate
for the particle physics experiments, p-adic probability differs in no observable manner from the
ordinary probability.

If the number of observations is larger than p, the situation changes. If N1 and N2 are two
numbers of observations they are near to each other in the p-adic sense if they differ by a large
power of p. A possible interpretation of this restriction is that the observer at the p:th level of
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the condensate cannot choose the number of the observations freely. The restrictions to this free-
dom come from the requirement that the sensible statistical questions in a p-adically conformally
invariant world must respect p-adic conformal invariance [A14] .

The most important application of the p-adic probability is the description of the particle
massivation based on p-adic thermodynamics. Instead of energy, Virasoro generator l is thermalized
and in the low temperature phase temperature is quantized in the sense that the counterpart of
the Boltzmann weight exp(H/T ) is pL0/T , where T = 1/n from the requirement that Boltzmann
weight exists (L0 has integer spectrum). The surprising success of the mass calculations shows
that p-adic probability theory is much more than a formal possibility.

In particle physics context coupling constant evolution is replaced with a discrete p-adic cou-
pling constant evolution and the renormalization is related to the change of the reduction of the
p-adic length scale Lp in the length scale hierarchy rather than p-adic fractality for a fixed value
of p. In ZEO the evolution corresponds to the hierarchy of CDs with scales coming as powers of 2
in accordance with p-adic length scale hypothesis.

1. p-Adic probabilities and p-adic fractals

p-Adic probabilities are natural in the statistical description of the fractal structures, which
can contain same structural detail with all possible sizes.

1. The concept of a structural detail in a fractal seems to be reasonably well defined concept.
The structural detail is clearly fixed by its topology and p-adic conformal invariants associated
with it. Clearly, a finite resolution defined by some power of p of the p-adic cutoff scale must
be present in the definition. For example, p-adic angles are conformal invariants in the p-adic
case, too. The overall size of the detail doesn’t matter. Let us therefore assume that it is
possible to make a list, possibly infinite, of the structural details appearing in the p-adic
fractal.

2. What kind of questions related to the structural details of the p-adic fractal one can ask?
The first thing one can ask is how many times i:th structural detail appears in a finite region
of the fractal structure: although this number is infinite as a real number it might possess
(and probably does so!) finite norm as a p-adic number and provides a useful p-adic invariant
of the fractal. If a complete list about the structural details of the fractal is at use one can
calculate also the total number of structural details defined as N =

∑
iNi. This means that

one can also define p-adic probability for the appearance of i:th structural detail as a relative
frequency pi = Ni/N .

3. One can consider conditional probabilities, too. It is natural to ask what is the probability
for the occurrence of the structural detail subject to the condition that part of the struc-
tural detail is fixed (apart from the p-adic conformal transformations). In order to evaluate
these probabilities as relative frequencies one needs to look only for those structural details
containing the substructure in question.

4. The evaluation of the p-adic probabilities of occurrence can be done by evaluating the required
numbers Ni and N in a given resolution. A better estimate is obtained by increasing the
resolution and counting the numbers of the hitherto unobserved structural details. The
increase in the resolution greatly increases the number of the observations in case of p-adic
fractal and the fluctuations in the values of Ni and N increase with the resolution so that
Ni/N has no well defined limit as a real number although one can define the probabilities of
occurrence as a resolution dependent concept. In the p-adic sense the increase in the values
of Ni and fluctuations are small and the procedure should converge rapidly so that reliable
estimates should result with quite a reasonable resolution. Notice that the increase of the
fluctuations in the real sense, when resolution is increased is in accordance with the criticality
of the system.

5. p-Adic frequencies and probabilities define via the canonical correspondence real valued in-
variants of the fractal structure.

p-Adic fractality in this sense could have practical applications only for small values of p. They
could be important in the macroscopic length scales if the hierarchy of Planck constants meaning
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scaling up Lp →
√
rLp, r = heff/h, of the p-adic length scales. In elementary particle physics Lp

is of the order of the Compton length associated with the particle for r = 1 and already in the
first downward step CP2 length scale R is achieved whereas upward step gives astrophysical length
scale in the case of electron (p = M127 = 2127 − 1) for instance. For large enough values of Planck
constant and for small p-adic primes p the situation changes.

2. Relationship between p-adic and real probabilities

There are uniqueness problems related to the mapping of p-adic probabilities to real ones.
These problems find a nice resolution from the requirement that the map respects probability
conservation. The implied modification of the original mapping does not change measurably the
predictions for the masses of light particles.

a) How unique the map of p-adic probabilities and mass squared values are mapped to real
numbers is?

The mapping of p-adic thermodynamical probabilities and mass squared values to real numbers
is not completely unique.

1. The canonical identification Id :
∑
xnp

n →
∑
xnp

−n takes care of this mapping but does
not respect the sum of probabilities so that the real images I(pn) of the probabilities must
be normalized. This is a somewhat alarming feature.

2. The modification of the canonical identification mapping rationals by the formula I(r/s) =
I(r)/I(s) has appeared naturally in various applications, in particular because it respects
unitarity of unitary matrices with rational elements with r < p, s < p. In the case of p-adic
thermodynamic the formula I(g(n)pn/Z)→ I(g(n)pn)/I(Z) would be very natural although
Z need not be rational anymore. For g(n) < p the real counterparts of the p-adic probabilities
would sum up to one automatically for this option. One cannot deny that this option is more
convincing than the original one. The generalization of this formula to map p-adic mass
squared to a real one is obvious.

3. Options 1) and 2) differ dramatically when the n = 0 massless ground state has ground state
degeneracy D > 1. For option 1) the real mass is predicted to be of order CP2 mass whereas
for option 2) it would be by a factor 1/D smaller than the minimum mass predicted by the
option 1). Thus option 2) would predict a large number of additional exotic states. For those
states which are light for option 1), the two options make identical predictions as far as the
significant two lowest order terms are considered. Hence this interpretation would not change
the predictions of the p-adic mass calculations in this respect. Option 2) is definitely more
in accord with the real physics based intuitions and the main role of p-adic thermodynamics
would be to guarantee the quantization of the temperature and fix practically uniquely the
spectrum of the “Hamiltonian”.

b) Under what conditions the mapping of p-adic ensemble probabilities to real probabilities re-
spects probability conservation?

One can consider also a more general situation. Assume that one has an ensemble consisting of
independent elementary events such that the number of events of type i is Ni. The probabilities
are given by pi = Ni/N and N =

∑
Ni is the total number of elementary events. Even in the

case that N is infinite as a real number it is natural to map the p-adic probabilities to their real
counterparts using the rational canonical identification I(pi) = I(Ni)/I(N). Of course, Ni and N
exist as well defined p-adic numbers under very stringent conditions only.

The question is under what conditions this map respects probability conservation. The answer
becomes obvious by looking at the pinary expansions of Ni and N . If the integers Ni (possibly
infinite as real integers) have pinary expansions having no common pinary digits, the sum of
probabilities is conserved in the map. Note that this condition can assign also to a finite ensemble
with finite number of a unique value of p.

This means that the selection of a basis for independent events corresponds to a decomposition
of the set of integers labelling pinary digits to disjoint sets and brings in mind the selection of
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orthonormalized basis of quantum states in quantum theory. What is physically highly non-
trivial that this “orthogonalization” alone puts strong constraints on probabilities of the allowed
elementary events. One can say that the probabilities define distributions of pinary digits analogous
to non-negative probability amplitudes in the space of integers labelling pinary digits, and the
probabilities of independent events must be orthogonal with respect to the inner product defined
by point-wise multiplication in the space of pinary digits.

p-Adic thermodynamics for which Boltzmann weights g(E)exp(−E/T ) are replaced by g(E)pE/T

such that one has g(E) < p and E/T is integer valued, satisfies this constraint. The quantization
of E/T to integer values implies quantization of both T and “energy” spectrum and forces so called
super conformal invariance [A14, A15] in TGD applications, which is indeed a basic symmetry of
the theory.

There are infinitely many ways to choose the elementary events and each choice corresponds
to a decomposition of the infinite set of integers n labelling the powers of p to disjoint subsets.
These subsets can be also infinite. One can assign to this kind of decomposition a resolution which
is the poorer the larger the subsets involved are. p-Adic thermodynamics would represent the
situation in which the resolution is maximal since each set contains only single pinary digit. Note
the analogy with the basis of completely localized wave functions in a lattice.

c) How to map p-adic transition probabilities to real ones?
p-Adic variants of TGD, if they exist, give rise to S-matrices and transition probabilities Pij ,

which are p-adic numbers.

1. The p-adic probabilities defined by rows of S-matrix mapped to real numbers using canonical
identification respecting the q = r/s decomposition of rational number or its appropriate
generalization should define real probabilities.

2. The simplest example would simple renormalization for the real counterparts of the p-adic
probabilities (Pij)R obtained by canonical identification (or more probably its appropriate
modification).

Pij =
∑
k≥0

P kijp
k ,

Pij →
∑
k≥0

P kijp
−k ≡ (Pij)R ,

(Pij)R → (Pij)R∑
j(Pij)R

≡ PRij .

(2.7)

The procedure converges rapidly in powers of p and resembles renormalization procedure of
quantum field theories. The procedure automatically divides away one four-momentum delta
function from the square of S-matrix element containing the square of delta function with no
well defined mathematical meaning. Usually one gets rid of the delta function interpreting
it as the inverse of the four-dimensional measurement volume so that transition rate instead
of transition probability is obtained. Of course, also now same procedure should work either
as a discrete or a continuous version.

3. Probability interpretation would suggest that the real counterparts of p-adic probabilities
sum up to unity. This condition is rather strong since it would hold separately for each row
and column of the S-matrix.

4. A further condition would be that the real counterparts of the p-adic probabilities for a
given prime p are identical with the transition probabilities defined by the real S-matrix
for real space-time sheets with effective p-adic topology characterized by p. This condition
might allow to deduce all relevant phase information about real and corresponding p-adic
S-matrices using as an input only the observable transition probabilities.
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d) What it means that p-adically independent events are not independent in real sense?

A further condition would be that p-adic quantum transitions represent also in the real sense
independent elementary events so that the real counterpart for a sum of the p-adic probabilities for
a finite number of transitions equals to the sum of corresponding real probabilities. This condition
is definitely too strong in the general case since only a single transition could correspond to a given
p-adic norm of transition probability Pij with i fixed. In p-adic thermodynamics it can be satisfied
if the degeneracy for an energy eigenstate for a given eigen value L0 = n is not larger than p. This
condition fails for large values of n for super Virasoro representations since the degeneracy grows
exponentially. This has not practical implications for the large values of p considered.

The crucial question concerns the physical difference between the real counterpart for the sum
of the p-adic transition probabilities and for the sum of the real counterparts of these probabilities,
which are in general different:

(
∑
j

Pij)R 6=
∑
j

(Pij)R . (2.8)

The suggestion is that p-adic sum of the transition probabilities corresponds to the experimental
situation, when one does not monitor individual transitions but using some common experimental
signature only looks whether the transition leads to this set of the final states or not. When one
looks each transition separately or effectively performs different experiment by considering only
one transition channel in each experiment one must use the sum of the real probabilities. More
precisely, the choice of the experimental signatures divides the set U of the final states to a disjoint
union U = ∪iUi and one must define the real counterparts for the transition probabilities PiUk as

PiUk =
∑
j∈Uk

Pij ,

PiUk → (PiUk)R ,

(PiUk)R → (PiUk)R∑
l(PiUl)R

≡ PRiUk .

(2.9)

The assumption means deep a departure from the ordinary probability theory. If p-adic physics
is the physics of cognitive systems, there need not be anything mysterious in the dependence of
the behavior of system on how it is monitored. At least half-jokingly one might argue that the
behavior of an intelligent system indeed depends strongly on whether the boss is nearby or not. The
precise definition for the monitoring could be based on the decomposition of the density matrix
representing the entangled subsystem into a direct sum over the subspaces associated with the
degenerate eigenvalues of the density matrix. This decomposition provides a natural definition for
the notions of the monitoring and resolution.

The renormalization procedure is in fact familiar from standard physics. Assume that the
labels j correspond to momenta. The division of momentum space to cells of a given size so
that the individual momenta inside cells are not monitored separately means that momentum
resolution is finite. Therefore one must perform p-adic summation over the cells and define the
real probabilities in the proposed manner. p-Adic effects resulting from the difference between
p-adic and real summations could be the counterpart of the renormalization effects in QFT. It
should be added that similar resolution can be defined also for the initial states by decomposing
them into a union of disjoint subsets.

An alternative interpretation for the degenerate eigenvalues has emerged years after writing
this. The sub-spaces corresponding to given eigenvalue of density matrix represent entangled
states resulting in state function reduction interpreted as measurement of density matrix. This
entanglement would be negentropic and represent a rule/concept, whose instances the superposed
state pairs are. The information measure would Shannon entropy based on the replacement of
the probability appearing as argument of logarithm with its p-adic norm. This entropy would be
negative and therefore measure the information associated with the entanglement. This number
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theoretic entropy characterizes two particle state rather than single particle state and has nothing
to do with the ordinary Shannon entropy.

Maybe one could say that finite measurement resolution implies automatically conceptualization
and rule building. Abstractions are indeed obtained by dropping out the details.

2. p-Adic thermodynamics

The p-adic field theory limit as such is not expected to give a realistic theory at elementary
particle physics level. The point is that particles are expected to be either massless or possess mass
of order 10−4 Planck mass. The p-adic description of particle massivation described in [K37] shows
that p-adic thermodynamics provides the proper formulation of the problem. What is thermalized
is Virasoro generator L0 (mass squared contribution is not included to L0 so that states do not
have a fixed conformal weight). Temperature is quantized purely number theoretically in low
temperature limit (exp(H/kT ) → pL0/T , T = 1/n): in fact, the partition function does not even
exist in high temperature phase. The extremely small mixing of massless states with Planck mass
states implies massivation and predictions of the p-adic thermodynamics for the fermionic masses
are in excellent agreement with experimental masses. Thermodynamic approach also explains
the emergence of the length scale Lp for a given p-adic condensation level and one can develop
arguments explaining why primes near prime powers of two are favored.

It should be noticed that rational p-adic temperatures 1/T = k/n are possible, if one poses
the restriction that thermal probabilities are non-vanishing only for some subalgebra of the Super
Virasoro algebra isomorphic to the Super Virasoro algebra itself. The generators Lkn,Gkn, where
k is a positive integer, indeed span this kind of a subalgebra by the fractality of the Super Virasoro
algebra and pL0/T is integer valued with this restriction.

One might apply thermodynamics approach should also in the calculation of S-matrix. What is
is needed is thermodynamical expectation value for the transition amplitudes squared over incoming
and outgoing states. In this expectation value 3-momenta are fixed and only mass squared varies.

3. Generalization of the notion of information

TGD inspired theory of consciousness, in particular the formulation of Negentropy Maximiza-
tion Principle (NMP) in p-adic context, has forced to rethink the notion of the information con-
cept. In TGD state preparation process is realized as a sequence of self measurements. Each self
measurement means a decomposition of the sub-system involved to two unentangled parts. The
decomposition is fixed highly uniquely from the requirement that the reduction of the entanglement
entropy is maximal.

The additional assumption is that bound state entanglement is stable against self measure-
ment. This assumption is somewhat ad hoc and it would be nice to get rid of it. The only manner
to achieve this seems to be a generalized definition of entanglement entropy allowing to assign
a negative value of entanglement entropy to the bound state entanglement, so that bound state
entanglement would actually carry information, in fact conscious information (experience of un-
derstanding). This would be very natural since macro-temporal quantum coherence corresponds
to a generation of bound state entanglement, and is indeed crucial for ability to have long lasting
non-entropic mental images.

The generalization of the notion of number concept leads immediately to the basic problem.
How to generalize the notion of entanglement entropy that it makes sense for a genuinely p-adic
entanglement? What about the number-theoretically universal entanglement with entanglement
probabilities, which correspond to finite extension of rational numbers? One can also ask whether
the generalized notion of information could make sense at the level of the space-time as suggested
by quantum-classical correspondence.

In the real context Shannon entropy is defined for an ensemble with probabilities pn as

S = −
∑
n

pnlog(pn) . (2.10)

As far as theory of consciousness is considered, the basic problem is that Shannon entropy is always
non-negative so that as such it does not define a genuine information measure. One could define
information as a change of Shannon entropy and this definition is indeed attractive in the sense that
quantum jump is the basic element of conscious experience and involves a change. One can however
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argue that the mere ability to transfer entropy to environment (say by aggressive behavior) is not all
that is involved with conscious information, and even less so with the experience of understanding
or moment of heureka. One should somehow generalize the Shannon entropy without losing the
fundamental additivity property.

a) p-Adic entropies

The key observation is that in the p-adic context the logarithm function log(x) appearing in
the Shannon entropy is not defined if the argument of logarithm has p-adic norm different from 1.
Situation changes if one uses an extension of p-adic numbers containing log(p): the conjecture is
that this extension is finite-dimensional. One might however argue that Shannon entropy should
be well defined even without the extension.

p-Adic thermodynamics inspires a manner to achieve this. One can replace log(x) with the
logarithm logp(|x|p) of the p-adic norm of x, where logp denotes p-based logarithm. This logarithm
is integer valued (logp(p

n) = n), and is interpreted as a p-adic integer. The resulting p-adic entropy

Sp =
∑
n

pnk(pn) ,

k(pn) = −logp(|pn|) . (2.11)

is additive: that is the entropy for two non-interacting systems is the sum of the entropies of
composites. Note that this definition differs from Shannon’s entropy by the factor log(p). This
entropy vanishes identically in the case that the p-adic norms of the probabilities are equal to one.
This means that it is possible to have non-entropic entanglement for this entropy.

One can consider a modification of Sp using p-adic logarithm if the extension of the p-adic
numbers contains log(p). In this case the entropy is formally identical with the Shannon entropy:

Sp = −
∑
n

pnlog(pn) = −
∑
n

pn
[
−k(pn)log(p) + pkn log(pn/p

kn
]
. (2.12)

It seems that this entropy cannot vanish.
One must map the p-adic value entropy to a real number and here canonical identification can

be used:

Sp,R = (Sp)R × log(p)) ,

(
∑
n

xnp
n)R =

∑
n

xnp
−n . (2.13)

The real counterpart of the p-adic entropy is non-negative.

b) Number theoretic entropies and metabolic energy

In the case that the probabilities are rational or belong to a finite-dimensional extension of
rationals, it is possible to regard them as real numbers or p-adic numbers in some extension of
p-adic numbers for any p. The visions that rationals and their finite extensions correspond to
islands of order in the seas of chaos of real and p-adic transcendentals suggests that states having
entanglement coefficients in finite-dimensional extensions of rational numbers are somehow very
special. This is indeed the case. The p-adic entropy entropy Sp = −

∑
n pnlogp(|pn|)log(p) can be

interpreted in this case as an ordinary rational number in an extension containing log(p).
What makes this entropy so interesting is that it can have also negative values in which case

the interpretation as an information measure is natural. In the real context one can fix the value
of the value of the prime p by requiring that Sp is maximally negative, so that the information
content of the ensemble could be defined as

I ≡ Max{−Sp, p prime} . (2.14)
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This information measure is positive when the entanglement probabilities belong to a finite-
dimensional extension of rational numbers. Thus kind of entanglement is stable against NMP [K15]
, and has a natural interpretation as a negentropic entanglement.

There is no need to interpret negentropic entanglement as bound state entanglement as was the
original proposal. This together with the vision about life as something in the intersection of the
real and p-adic worlds inspires the idea about a connection between information and metabolism
in living matter. Metabolic energy could be carried by negentropic entanglement and the feed
of metabolic energy would be also feed of negentropy. In particular, the poorly understood high
energy phosphate bond could be identified as a bond involving negentropic entanglement [K8] . The
prediction would be that the negentropic states of real systems form a number theoretical hierarchy
according to the prime panddimension of algebraic extension characterizing the entanglement.

Number theoretically state function reduction and state preparation could be seen as informa-
tion generating processes in the intersection of real and p-adic worlds.

2.4.2 How to define integration and p-adic Fourier analysis, integral calculus, and
p-adic counterparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differential
calculus. The only difference from real context is the existence of p-adic pseudo constants: any
function which depends on finite number of pinary digits has vanishing p-adic derivative. This
implies non-determinism of p-adic differential equations. One can defined p-adic integral functions
using the fact that indefinite integral is the inverse of differentiation. The basis problem with the
definite integrals is that p-adic numbers are not well-ordered so that the crucial ordering of the
points of real axis in definite integral is not unique. Also p-adic Fourier analysis is problematic
since direct counterparts of ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails
to converse exponentially since it has p-adic norm equal to 1. Note also that these functions exists
only when the p-adic norm of x is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geo-
metric objects such as symmetric spaces. This is wellcome news from the point of view of physics.
At the level of space-time surfaces this is problematic. The field equations associated with Kähler
action and Kähler-Dirac equation make sense. Kähler action defined as integral over p-adic space-
time surface fails to exist. If however the Kähler function identified as Kähler for a preferred
extremal of Kähler action is rational or algebraic function of preferred complex coordinates of
WCW with ratonal coefficients, its p-adic continuation is expected to exist.

1. Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense
as such p-adically and one must consider either trigonometric functions or the phase exp(iφ)
instead. If one wants to do Fourier analysis on circle one must introduce roots Un,N =
exp(in2π/N) of unity. This means discretization of the circle. Introducing all roots Un,p =
exp(i2πn/p), such that p divides N , one can represent all Uk,n up to n = N . Integration is
naturally replaced with sum by using discrete Fourier analysis on circle. Note that the roots
of unity can be expressed as products of powers of roots of unity exp(in2π/pk), where pk

divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p− 1 for a given p-adic prime so that for any integer M divisible by a factor of p− 1
the M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these
values of M are excluded from the discretization for a given value of the p-adic prime. The
manner to achieve this is to assume that N contains no divisors of p−1 and is consistent with
the notion of finite measurement resolution. For instance, N = pn is an especially natural
choice guaranteeing this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
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k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to
zero as n increases. This guarantees the p-adic convergence of the discrete approximation of
the integral for large values of N as n increases. The map of p-adic Fourier coefficients to
real ones by canonical identification could be used to relate p-adic and real variants of the
function to each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of
CP2, are discrete. Variables which have the character of a radial coordinate are in natural manner
p-adically continuous whereas phase angles are naturally discrete and described in terms of alge-
braic extensions. The conclusion is disappointing since one can quite well argue that the discrete
structures can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides
representation of p-adic variant of circle as group U(1). One obtains actually a hierarchy
of groups U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of
phases as products Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and
exponent functions with an imaginary exponent. This would assign to each root of unity
p-adic continuum interpreted as the analog of the interval between two subsequent roots
of unity at circle. The hierarchies of measurement resolutions coming as 2π/pn would be
naturally accompanied by increasingly smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-
adic variant of discretization interval. The summation over the roots of unity implies that
the integral of

∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is,

it is compensated by a normalization factor guaranteeing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x+mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural.
If representations of translation group are considered the condition is natural and conforms
with the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group
in two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of
the coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm
when it exists so that it is not a suitable choice. The powers pn existing for p-adic integers however
approach to zero for large values of x = n. This forces discretization of η or rather the hyperbolic
phase as powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) =
pnexp(x) to achieve a p-adic continuum. Also now the integral over the discretization interval is
compensated by orthonormalization and can be forgotten. The integral of exponential function
would reduce to a sum

∫
Exppdx =

∑
k p

k = 1/(1− p). One can also introduce finite-dimensional
but non-algebraic extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-
adically.

2. Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively
reduce the plane to a box. As already noticed, in this case the quantization of wave vectors as
multiples of 1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =√
x2 + y2 with the Cartesian picture square root allowing extension is natural. Also the



2.4 P-Adic Variants Of The Basic Mathematical Structures Relevant To Physics 42

values of radial coordinate proportional to odd power of p are problematic since one should in-
troduce

√
p: is this extension internally consistent? Does this mean that the points ρ ∝ p2n+1

are excluded so that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of
unity and one could obtain continuum by allowing also phases defined by p-adic exponent
functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions
and they indeed might make sense by algebraic continuation if one consistently defines all
functions as Fourier expansions. Delta-function renormalization causes technical problems
for a continuum of radial wave vectors. One could avoid the problem by using exponentially
decaying variants of Bessel function in the regions far from origin, and here the already
proposed description of the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of
sphere this is achieved by introducing two coordinate patches with Cartesian coordinates.
Pythagorean phases are rational phases (orthogonal triangles for which all sides are integer
valued) and form a dense set on circle. Complex rationals (orthogonal triangles with integer
valued short sides) define a more general dense subset of circle. In both cases it is difficult
to imagine a discretized version of integration over angles since discretization with constant
angle increrement is not possible.

3. The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spher-
ical coordinates sin(θ) is analogous to the radial coordinate of plane. Legendre polynomials ex-
pressible as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration
measure sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also
p-adic continuum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar
cutoffs appear in the representations of quantum groups and there are good reasons to expect that
these phenomena are correlated.

Exponent of Kähler function appears in the integration over WCW. From the expression of
Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and Jθφ = sin(θ)
the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible in terms of
spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric
space- could be performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t+h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
exponential map has a p-adic generalization obtained by considering Lie algebra with coef-
ficients with p-adic norm smaller than one so that the p-adic exponent function exists. As
a matter fact, one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of
the p-adic norm coming as p−k and this hierarchy naturally corresponds to the hierarchy of
angle resolutions coming as 2π/pk. By introducing finite-dimensional transcendental exten-
sions containing roots of e one obtains also a hierarchy of p-adic Lie-algebras associated with
transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N − 1)M dis-
cretization volumes which is the number of points with non-vanishing t-coordinates. It would
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be nice if one could map the p-adic discretization volumes with non-vanishing t-coordinates
to their positive valued real counterparts by applying canonical identification. By group
invariance it is enough to show that this works for a discretization volume assignable to the
origin. Since the p-adic numbers with norm smaller than one are mapped to the real unit
interval, the p-adic Lie algebra is mapped to the unit cell of the discretization lattice of the
real variant of t. Hence by a proper normalization this mapping is possible.

The above considerations suggests that the hierarchies of measurement resolutions coming as
∆φ = 2π/pn are in a preferred role. One must be however cautious in order to avoid too strong
assumptions. The above considerations suggest that the hierarchies of measurement resolutions
coming as ∆φ = 2π/pn are in a preferred role. One must be however cautious in order to avoid
too strong assumptions. The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle mea-
surement in the most general case as ∆φ = 2πM/N , where M and N are positive integers
having no common factors. The powers of the phases exp(i2πM/N) define identical Fourier
basis irrespective of the value of M unless one allows only the powers exp(i2πkM/N) for
which kM < N holds true: in the latter case the measurement resolutions with different
values of M correspond to different numbers of Fourier components. Otherwise the measure-
ment resolution is just ∆φ = 2π/pn. If one regards N as an ordinary integer, one must have
N = pn by the p-adic continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects
one particular prime (no superposition of quantum states with different p-adic topologies).
For N = pnM , where M is not divisible by p, one can express 1/M as a p-adic integer
1/M =

∑
k≥0Mkp

k, which is infinite as a real integer but effectively reduces to a finite

integer K(p) =
∑N−1
k=0 Mkp

k. As a root of unity the entire phase exp(i2πM/N) is equivalent
with exp(i2πR/pn), R = K(p)M mod pn. The phase would non-trivial only for p-adic
primes appearing as factors in N . The corresponding measurement resolution would be
∆φ = R2π/N . One could assign to a given measurement resolution all the p-adic primes
appearing as factors in N so that the notion of multi-p p-adicity would make sense. One
can also consider the identification of the measurement resolution as ∆φ = |N/M |p = 2π/pk.
This interpretation is supported by the approach based on infinite primes [K23] .

4. What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface
could be p-adicized by using the proposed method of discretization. Consider first the p-adic
counterparts of the integrals over the partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function
of the preferred coordinates defined by the exponentials of the coordinates of the sub-space
t in the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar

and does not actually depend on the induced metric.

2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD×CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to
the homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral
would reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteeing that both HA and J are algebraic numbers at the points of discretiza-
tion (recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant
sphere. If the remaining preferred coordinates are functions of the preferred S2 coordinates
mapping phases to phases at discretization points, one obtains the desired outcome. These
conditions are rather strong and mean that the various angles defining CP2 coordinates -at
least the two cyclic angle coordinates- are integer multiples of those assignable to S2 at the
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points of discretization. This would be achieved if the preferred complex coordinates of CP2

are powers of the preferred complex coordinate of S2 at these points. One could say that X2

is algebraically continued from a rational surface in the discretized variant of δCD × CP2.
Furthermore, if the measurement resolutions come as 2π/pn as p-adic continuity actually
requires and if they correspond to the p-adic group Gp,n for which group parameters satisfy
|t|p ≤ p−n, one can precisely characterize how a p-adic prime characterizes the real partonic
2-surface. This would be a fulfilment of one of the oldest dreams related to the p-adic vision.

A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian
space-time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4 × CP2 by the translates of δM4

± × CP2 in the direction of the time-like vector
connecting the tips of CD. As space-time coordinates one could select four of the eight coordi-
nates defining this slicing. For instance, for the regions of the space-time sheet representable
as maps M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate
of δM4

+, and the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies
to the entire space-time surface it would effectively mean the discretization of the classical
physics to the level of finite geometries. This seems quite strong implication but is consistent
with the preferred extremal property implying the generalized Bohr rules.

5. Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident
since exponent functions play a fundamental role in group theory and p-adic variants of
real geometries exist only under symmetries- possibly maximal possible symmetries- since
otherwise the notion of Fourier analysis making possible integration does not exist. The
inner product defined in terms of integration reduce for functions representable in Fourier
basis to sums and can be carried out by using orthogonality conditions. Convolution involving
integration reduces to a product for Fourier components. In the case of imbedding space and
WCW these conditions are satisfied but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In
the case of plane one can consider either translations or rotations and this leads to different
p-adic variants of plane. Also the realization of the hierarchy of Planck constants leads to
the conclusion that the extended imbedding space and therefore also WCW contains sectors
corresponding to different choices of quantization axes meaning that quantum measurement
has a direct geometric correlate. One an imagine also other discretizations and choices of
preferred coordinates and the interpretation is that they correspond to different cognitive
representations and to to different p-adic physics. This means a refinement of General Co-
ordinate Invariance taking into account cognition.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and corre-
sponding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or non-compact coordinate. In both cases it is however possible to
define integration. For instance, in the case of CP2 one would have two canonically conjugate
pairs and one can define the p-adic counterparts of CP2 partial waves by generalizing the
procedure applied to spherical harmonics. Products of functions expressible using partial
waves can be decomposed by tensor product decomposition to spherical harmonics and can
be integrated. In particular inner products can be defined as integrals. The Hamiltonians
generating isometries are rational functions of phases: this inspires the hope that also WCW



2.4 P-Adic Variants Of The Basic Mathematical Structures Relevant To Physics 45

Hamiltonians also rational functions of preferred WCW coordinates and thus allow p-adic
variants.

4. Discretization by introducing algebraic extensions seems unavoidable in the p-adicization of
geometrical objects but one can have p-adic continuum as the analog of the discretization
interval and in the function basis expressible in terms of phase factors and p-adic counterparts
of exponent functions. As already described, the exponential map for Lie group provide an
elegant manner to realize this. This would give a precise meaning for the p-adic counterparts
of the imbedding space and WCW if the latter is a symmetric space allowing coordinatization
in terms of phase angles and conjugate coordinates. The intersection of p-adic and real worlds
in a given measurement resolution would be unique and correspond to the points defining
the discretization.

2.4.3 p-Adic imbedding space

The construction of both quantum TGD and p-adic QFT limit requires p-adicization of the imbed-
ding space geometry. Also the fact that p-adic Poincare invariance throws considerable light to the
p-adic length scale hypothesis suggests that p-adic geometry is really needed. The construction of
the p-adic version of the imbedding space geometry and spinor structure relies on the symmetry
arguments and to the generalization of the analytic formulas of the real case almost. The essential
element is the notion of finite measurement resolution leading to discretization in large and to
p-adicization below the resolution scale. This approach leads to a highly nontrivial generalization
of the symmetry concept and p-adic Poincare invariance throws light to the p-adic length scale
hypothesis. An important delicacy is related to the identification of the fundamental p-adic length
scale, which corresponds to the unit element of the p-adic number field and is mapped to the unit
element of the real number field in the canonical identification mapping p-adic mass squared to its
real counterpart.

1. p-Adic Riemannian geometry depends on cognitive representation

p-Adic Riemann geometry is a direct formal generalization of the ordinary Riemann geometry.
In the minimal purely algebraic generalization one does not try to define concepts like arch length
and volume involving definite integrals but simply defines the p-adic geometry via the metric
identified as a quadratic form in the tangent space of the p-adic manifold. Canonical identification
would make it possible to define p-adic variant of Riemann integral formally allowing to calculate
arc lengths and similar quantities but looks like a trick. The realization that the p-adic variant
of harmonic analysis makes it possible to define definite integrals in the case of symmetric space
became possible only after a detailed vision about what quantum TGD is [K32] had emerged.

Symmetry considerations dictate the p-adic counterpart of the Riemann geometry for M4
+×CP2

to a high degree but not uniquely. This non-uniqueness might relate to the distinction between
different cognitive representations. For instance, in the case of Euclidian plane one can introduce
linear or cylindrical coordinates and the manifest symmetries dictating the preferred coordinates
correspond to translational and rotational symmetries in these two cases and give rise to different p-
adic variants of the plane. Both linear and cylindrical coordinates are fixed only modulo the action
of group consisting of translations and rotations and the degeneracy of choices can be interpreted
in terms of a choice of quantization axies of angular momentum and momenta.

The most natural looking manner to define the p-adic counterpart of M4 is by using a p-adic
completion for a subset of rational points in coordinates which are preferred on physical basis.
In case of M4 linear Minkowski coordinates are an obvious choice but also the counterparts of
Robertson-Walker coordinates forM4

+ defined as [t, (z, x, y)] = a×[cosh(η), sinh(η)(cos(θ), sin(θ)cos(φ), sin(θ)sin(φ))]
expressible in terms of phases and their hyperbolic counterparts and transforming nicely under the
Cartan algebra of Lorentz group are possible. p-Adic variant is obtained by introducing finite
measurement resolution for angle and replacing angle range by finite number of roots of unity.
Same applies to hyperbolic angles.

Rational CP2 could be defined as a coset space SU(3, Q)/U(2, Q) associated with complex
rational unitary 3×3-matrices. CP2 could be defined as coset space of complex rational matrices by
choosing one point in each coset SU(3, Q)/U(2, Q) as a complex rational 3×3-matrix representable
in terms of Pythagorean phases [A11] and performing a completion for the elements of this matrix
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by multiplying the elements with the p-adic exponentials exp(iu), |u|p < 1 such that one obtains
p-adically unitary matrix.

This option is not very natural as far as integration is considered. CP2 however allows the analog
of spherical coordinates for S2 expressible in terms of angle variables alone and this suggests the
introduction of the variant of CP2 for which the coordinate values correspond to roots of unity.
Completion would be performed in the same manner as for rational CP2. This non-uniqueness
need not be a drawback but could reflect the fact that the p-adic cognitive representation of real
geometry are geometrically non-equivalent. This means a refinement of the principle of General
Coordinate Invariance taking into account the fact that the cognitive representation of the real
world affects the world with cognition included in a delicate manner.

2. The identification of the fundamental p-adic length scale

The fundamental p-adic length scale corresponds to the p-adic unit e = 1 and is mapped to
the unit of the real numbers in the canonical identification. The correct physical identification of
the fundamental p-adic length scale is of crucial importance since the predictions of the theory for
p-adic masses depend on the choice of this scale.

In TGD the “radius” R of CP2 is the fundamental length scale (2πR is by definition the length
of the CP2 geodesics). In accordance with the idea that p-adic QFT limit makes sense only above
length scales larger than the radius of CP2 R is of same order of magnitude as the p-adic length
scale defined as l = π/m0, where m0 is the fundamental mass scale and related to the “cosmological
constant” Λ (Rij = Λsij) of CP2 by

m2
0 = 2Λ . (2.15)

The relationship between R and l is uniquely fixed:

R2 =
3

m3
0

=
3

2Λ
=

3l2

π2
. (2.16)

Consider now the identification of the fundamental length scale.

1. One must use R2 or its integer multiple, rather than l2, as the fundamental p-adic length
scale squared in order to avoid the appearance of the p-adically ill defined π:s in various
formulas of CP2 geometry.

2. The identification for the fundamental length scale as 1/m0 leads to difficulties.

(a) The p-adic length for the CP2 geodesic is proportional to
√

3/m0. For the physically
most interesting p-adic primes satisfying p mod 4 = 3 so that

√
−1 does not exist as

an ordinary p-adic number,
√

3 = i
√
−3 belongs to the complex extension of the p-adic

numbers. Hence one has troubles in getting real length for the CP2 geodesic.

(b) Ifm2
0 is the fundamental mass squared scale then general quark states have mass squared,

which is integer multiple of 1/3 rather than integer valued as in string models.

3. These arguments suggest that the correct choice for the fundamental length scale is as 1/R
so that M2 = 3/R2 appearing in the mass squared formulas is p-adically real and all values
of the mass squared are integer multiples of 1/R2. This does not affect the real counterparts
of the thermal expectation values of the mass squared in the lowest p-adic order but the
effects, which are due to the modulo arithmetics, are seen in the higher order contributions
to the mass squared. As a consequence, one must identify the p-adic length scale l as

l ≡ πR ,

rather than l = π/m0. This is indeed a very natural identification. What is especially nice is
that this identification also leads to a solution of some longstanding problems related to the
p-adic mass calculations. It would be highly desirable to have the same p-adic temperature
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Tp = 1 for both the bosons and fermions rather than Tp = 1/2 for bosons and Tp = 1 for
fermions. For instance, black hole elementary particle analogy as well as the need to get rid
of light boson exotics suggests this strongly. It indeed turns out possible to achieve this with
the proposed identification of the fundamental mass squared scale.

3. p-Adic counterpart of M4
+

The construction of the p-adic counterpart of M4
+ seems a relatively straightforward task and

should reduce to the construction of the p-adic counterpart of the real axis with the standard metric.
As already noticed, linear Minkowski coordinates are physically and mathematically preferred
coordinates and it is natural to construct the metric in these coordinates.

There are some quite interesting delicacies related to the p-adic version of the Poincare invari-
ance. Consider first translations. In order to have imaginary unit needed in the construction of
the ordinary representations of the Poincare group one must have p mod 4 = 3 to guarantee that√
−1 does not exist as an ordinary p-adic number. It however seems that the construction of the

representations is at least formally possible by replacing imaginary unit with the square root of
some other p-adic number not existing as a p-adic number.

It seems that only the discrete group of translations allows representations consisting of or-
thogonal plane waves. p-Adic plane waves can be defined in the lattice consisting of the multiples
of x0 = m/n consisting of points with p-adic norm not larger that |x0|p and the points pnx0 de-
fine fractally scaled-down versions of this set. In canonical identification these sets corresponds to
volumes scaled by factors p−n.

A physically interesting question is whether the Lorentz group should contain only the elements
obtained by exponentiating the Lie-algebra generators of the Lorentz group or whether also large
Lorentz transformations, containing as a subgroup the group of the rational Lorentz transforma-
tions, should be allowed. If the group contains only small Lorentz transformations, the quantization
volume of M4

+ (say the points with coordinates mk having p-adic norm not larger than one) is also
invariant under Lorentz transformations. This means that the quantization of the theory in the
p-adic cube |mk| < pn is a Poincare invariant procedure unlike in the real case.

The appearance of the square root of p, rather than the naively expected p, in the expression of
the p-adic length scale can be undertood if the p-adic version of M4 metric contains p as a scaling
factor:

ds2 = pR2mkldm
kdml ,

R ↔ 1 , (2.17)

where mkl is the standard M4 metric (1,−1,−1,−1). The p-adic distance function is obtained by
integrating the line element using p-adic integral calculus and this gives for the distance along the
k:th coordinate axis the expression

s = R
√
pmk . (2.18)

The map from p-adic M4 to real M4 is canonical identification plus a scaling determined from the
requirement that the real counterpart of an infinitesimal p-adic geodesic segment is same as the
length of the corresponding real geodesic segment:

mk → π(mk)R . (2.19)

The p-adic distance along the k:th coordinate axis from the origin to the point mk = (p− 1)(1 +
p+p2 + ...) = −1 on the boundary of the set of the p-adic numbers with norm not larger than one,
corresponds to the fundamental p-adic length scale Lp =

√
pl =

√
pπR:

√
p((p− 1)(1 + p+ ...))R → πR

(p− 1)(1 + p−1 + p−2 + ...)
√
p

= Lp .

(2.20)
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What is remarkable is that the shortest distance in the range mk = 1, ..m − 1 is actually L/
√
p

rather than l so that p-adic numbers in range span the entire R+ at the limit p → ∞. Hence
p-adic topology approaches real topology in the limit p → ∞ in the sense that the length of the
discretization step approaches to zero.

4. The two variants of CP2

As noticed, CP2 allows two variants based on rational discretization and on the discretization
based on roots of unity. The root of unity option corresponds to the phases associated with
1/(1+r2) = tan2(u/2) = (1−cos(u))/(1+cos(u)) and implies that integrals of spherical harmonics
can be reduced to summations when angular resolution ∆u = 2π/N is introduced. In the p-adic
context, one can replace distances with trigonometric functions of distances along zig zag curves
connecting the points of the discretization. Physically this notion of distance is quite reasonable
since distances are often measured using interferometer.

In the case of rtional variant of CP2 one can proceed by defining the p-adic counterparts of
SU(3) and U(2) and using the identification CP2 = SU(3)/U(2). The p-adic counterpart of
SU(3) consists of all 3 × 3 unitary matrices satisfying p-adic unitarity conditions (rows/colums
are mutually orthogonal unit vectors) or its suitable subgroup: the minimal subgroup corresponds
to the exponentials of the Lie-algebra generators. If one allows algebraic extensions of the p-adic
numbers, one obtains several extensions of the group. The extension allowing the square root of a
p-adically real number is the most interesting one in this respect since the general solution of the
unitarity conditions involves square roots.

The subgroup of SU(3) obtained by exponentiating the Lie-algebra generators of SU(3) nor-
malized so that their non-vanishing elements have unit p-adic norm, is of the form

SU(3)0 = {x = exp(
∑
k

itkXk) ; |tk|p < 1} = {x = 1 + iy ; |y|p < 1} .

(2.21)

The diagonal elements of the matrices in this group are of the form 1 +O(p). In order O(p) these
matrices reduce to unit matrices.

Rational SU(3) matrices do not in general allow a representation as an exponential. In the real
case all SU(3) matrices can be obtained from diagonalized matrices of the form

h = diag{exp(iφ1), exp(iφ2), exp(exp(−i(φ1 + φ2)} . (2.22)

The exponentials are well defined provided that one has |φi|p < 1 and in this case the diagonal
elements are of form 1 + O(p). For p mod 4 = 3 one can however consider much more general
diagonal matrices

h = diag{z1, z2, z3} ,

for which the diagonal elements are rational complex numbers

zi =
(mi + ini)√
m2
i + n2

i

(2.23)

satisfying z1z2z3 = 1 such that the components of zi are integers in the range (0, p − 1) and the
square roots appearing in the denominators exist as ordinary p-adic numbers. These matrices
indeed form a group as is easy to see. By acting with SU(3)0 to each element of this group and by
applying all possible automorphisms h→ ghg−1 using rational SU(3) matrices one obtains entire
SU(3) as a union of an infinite number of disjoint components.

The simplest (unfortunately not physical) possibility is that the “physical” SU(3) corresponds
to the connected component of SU(3) represented by the matrices, which are unit matrices in order
O(p). In this case the construction of CP2 is relatively straightforward and the real formalism
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should generalize as such. In particular, for p mod 4 = 3 it is possible to introduce complex
coordinates ξ1, ξ2 using the complexification for the Lie-algebra complement of su(2)× u(1). The
real counterparts of these coordinates vary in the range [0, 1) and the end points correspond to the
values of ti equal to ti = 0 and ti = −p. The p-adic sphere S2 appearing in the definition of the
p-adic light cone is obtained as a geodesic sub-manifold of CP2 (ξ1 = ξ2 is one possibility). From
the requirement that real CP2 can be mapped to its p-adic counterpart it is clear that one must
allow all connected components of CP2 obtained by applying discrete unitary matrices having no
exponential representation to the basic connected component. In practice this corresponds to the
allowance of all possible values of the p-adic norm for the components of the complex coordinates
ξi of CP2.

The simplest approach to the definition of the CP2 metric is to replace the expression of the
Kähler function in the real context with its p-adic counterpart. In standard complex coordinates
for which the action of U(2) subgroup is linear, the expression of the Kähler function reads as

K = log(1 + r2) ,

r2 =
∑
i

ξ̄iξi . (2.24)

p-Adic logarithm exists provided r2 is of order O(p). This is the case when ξi is of order O(p).
The definition of the Kähler function in a more general case, when all possible values of the p-adic
norm are allowed for r, is based on the introduction of a p-adic pseudo constant C to the argument
of the Kähler function

K = log(
1 + r2

C
) .

(2.25)

C guarantees that the argument is of the form 1+r2

C = 1 + O(p) allowing a well-defined p-adic
logarithm. This modification of the Kähler function leaves the definition of Kähler metric, Kähler
form and spinor connection invariant.

A more elegant manner to avoid the difficulty is to use the exponent Ω = exp(K) = 1 + r2 of
the Kähler function instead of Kähler function, which indeed well defined for all coordinate values.
In terms of Ω one can express the Kähler metric as

gkl̄ =
∂k∂l̄Ω

Ω
− ∂kΩ∂l̄Ω

Ω2
. (2.26)

The p-adic metric can be defined as

sij̄ = R2∂i∂j̄K = R2 (δij̄r
2 − ξ̄iξj)

(1 + r2)2
.

(2.27)

The expression for the Kähler form is the same as in the real case and the components of the
Kähler form in the complex coordinates are numerically equal to those of the metric apart from
the factor of i. The components in arbitrary coordinates can be deduced from these by the standard
transformation formulas.

2.5 What Could Be The Origin Of Preferred P-Adic Primes And P-Adic
Length Scale Hypothesis?

p-Adic mass calculations [K37] allow to conclude that elementary particles correspond to one or
possible several preferred primes assigning p-adic effective topology to the real space-time sheets
in discretization in some length scale range. TGD inspired theory of consciousness leads to the
identification of p-adic physics as physics of cognition. Quite recent progress (2015) leads to the
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proposal that quantum TGD is adelic: all p-adic number fields are involved and each gives one
particular view about physics.

Adelic approach [K13, K35] plus the view about evolution as emergence of increasingly complex
extensions of rationals leads to a possible answer to th question of the title. The algebraic extensions
of rationals are characterized by preferred rational primes, namely those which are ramified when
expressed in terms of the primes of the extensions. These primes would be natural candidates for
preferred p-adic primes. An argument relying on what I call weak form of NMP in turn allows
to understand why primes near powers of 2 are preferred: as a matter of fact, also primes near
powers of other primes are predicted to be favoured.

2.5.1 Earlier attempts

How the preferred primes emerge in TGD framework? I have made several attempts to answer this
question. As a matter fact, the question has been slightly different: what determines the p-adic
prime assigned to elementary particle by p-adic mass calculations [K14]. The recent view assigns
to particle entire adele but some p-adic number fields in it are different.

1. Classical non-determinism at space-time level for real space-time sheets could in some length
scale range involving rational discretization for space-time surface itself or for parameters
characterizing it as a preferred extremal correspond to the non-determinism of p-adic dif-
ferential equations due to the presence of pseudo constants which have vanishing p-adic
derivative. Pseudo- constants are functions depend on finite number of pinary digits of its
arguments.

2. The quantum criticality of TGD [K39] is suggested to be realized in in terms of infinite
hierarchies of super-symplectic symmetry breakings in the sense that only a sub-algebra
with conformal weights which are n-ples of those for the entire algebra act as conformal
gauge symmetries [K40]. This might be true for all conformal algebras involved. One has
fractal hierarchy since the sub-algebras in question are isomorphic: only the scale of conformal
gauge symmetry increases in the phase transition increasing n. The hierarchies correspond to
sequences of integers n(i) such tht n(i) divides n(i+1). These hierarchies would very naturally
correspond to hierarchies of inclusions of hyper-finite factors and m(i) = n(i+ 1)/n(i) could
correspond to the integer n characterizing the index of inclusion, which has value n ≥ 3.
Possible problem is that m(i) = 2 would not correspond to Jones inclusion. Why the scaling
by power of two would be different? The natural question is whether the primes dividing
n(i) or m(i) could define the preferred primes.

3. Negentropic entanglement corresponds to entanglement for which density matrix is projec-
tor [K15]. For n-dimensional projector any prime p dividing n gives rise to negentropic
entanglement in the sense that the number theoretic entanglement entropy defined by Shan-
non formula by replacing pi in log(pi) = log(1/n) by its p-adic norm Np(1/n) is negative if p
divides n and maximal for the prime for which the dividing power of prime is largest power-
of-prime factor of n. The identification of p-adic primes as factors of n is highly attractive
idea. The obvious question is whether n corresponds to the integer characterizing a level in
the hierarchy of conformal symmetry breakings.

4. The adelic picture about TGD led to the question whether the notion of unitarity could be
generalized. S-matrix would be unitary in adelic sense in the sense that Pm = (SS†)mm = 1
would generalize to adelic context so that one would have product of real norm and p-adic
norms of Pm. In the intersection of the realities and p-adicities Pm for reals would be rational
and if real and p-adic Pm correspond to the same rational, the condition would be satisfied.
The condition that Pm ≤ 1 seems however natural and forces separate unitary in each sector
so that this options seems too tricky.

These are the basic ideas that I have discussed hitherto.

2.5.2 Could preferred primes characterize algebraic extensions of rationals?

The intuitive feeling is that the notion of preferred prime is something extremely deep and the
deepest thing I know is number theory. Does one end up with preferred primes in number theory?
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This question brought to my mind the notion of ramification of primes (see http://tinyurl.com/

hddljlf) (more precisely, of prime ideals of number field in its extension), which happens only for
special primes in a given extension of number field, say rationals. Could this be the mechanism
assigning preferred prime(s) to a given elementary system, such as elementary particle? I have not
considered their role earlier also their hierarchy is highly relevant in the number theoretical vision
about TGD.

1. Stating it very roughly (I hope that mathematicians tolerate this language): As one goes from
number field K, say rationals Q, to its algebraic extension L, the original prime ideals in the
so called integral closure (see http://tinyurl.com/js6fpvr) over integers of K decompose
to products of prime ideals of L (prime is a more rigorous manner to express primeness).

Integral closure for integers of number field K is defined as the set of elements of K, which
are roots of some monic polynomial with coefficients, which are integers of K and having
the form xn + an−1x

n−1 + ... + a0 . The integral closures of both K and L are considered.
For instance, integral closure of algebraic extension of K over K is the extension itself. The
integral closure of complex numbers over ordinary integers is the set of algebraic numbers.

2. There are two further basic notions related to ramification and characterizing it. Relative
discriminant is the ideal divided by all ramified ideals in K and relative different is the ideal
of L divided by all ramified Pi:s. Note that te general ideal is analog of integer and these
ideas represent the analogous of product of preferred primes P of K and primes Pi of L
dividing them.

3. A physical analogy is provided by decomposition of hadrons to valence quarks. Elementary
particles becomes composite of more elementary particles in the extension. The decomposi-

tion to these more elementary primes is of form P =
∏
P
e(i)
i , where ei is the ramification

index - the physical analog would be the number of elementary particles of type i in the state
(see http://tinyurl.com/h9528pl). Could the ramified rational primes could define the
physically preferred primes for a given elementary system?

In TGD framework the extensions of rationals (see http://tinyurl.com/h9528pl) and p-
adic number fields (see http://tinyurl.com/zq22tvb) are unavoidable and interpreted as an
evolutionary hierarchy physically and cosmological evolution would have gradually proceeded to
more and more complex extensions. One can say that string world sheets and partonic 2-surfaces
with parameters of defining functions in increasingly complex extensions of prime emerge during
evolution. Therefore ramifications and the preferred primes defined by them are unavoidable. For
p-adic number fields the number of extensions is much smaller for instance for p > 2 there are only
3 quadratic extensions.

1. In p-adic context a proper definition of counterparts of angle variables as phases allowing
definition of the analogs of trigonometric functions requires the introduction of algebraic
extension giving rise to some roots of unity. Their number depends on the angular reso-
lution. These roots allow to define the counterparts of ordinary trigonometric functions -
the naive generalization based on Taylors series is not periodic - and also allows to defined
the counterpart of definite integral in these degrees of freedom as discrete Fourier analysis.
For the simplest algebraic extensions defined by xn − 1 for which Galois group is abelian

are are unramified so that something else is needed. One has decomposition P =
∏
P
e(i)
i ,

e(i) = 1, analogous to n-fermion state so that simplest cyclic extension does not give rise to
a ramification and there are no preferred primes.

2. What kind of polynomials could define preferred algebraic extensions of rationals? Irreducible
polynomials are certainly an attractive candidate since any polynomial reduces to a product
of them. One can say that they define the elementary particles of number theory. Irreducible
polynomials have integer coefficients having the property that they do not decompose to
products of polynomials with rational coefficients. IT would be wrong to say that only these
algebraic extensions can appear but there is a temptation to say that one can reduce the
study of extensions to their study. One can even consider the possibility that string world
sheets associated with products of irreducible polynomials are unstable against decay to those
characterize irreducible polynomials.

http://tinyurl.com/hddljlf
http://tinyurl.com/hddljlf
http://tinyurl.com/js6fpvr
http://tinyurl.com/h9528pl
http://tinyurl.com/h9528pl
http://tinyurl.com/zq22tvb
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3. What can one say about irreducible polynomials? Eisenstein criterion (see http://tinyurl.
com/47kxjz states following. If Q(x) =

∑
k=0,..,n akx

k is n:th order polynomial with integer
coefficients and with the property that there exists at least one prime dividing all coefficients
ai except an and that p2 does not divide a0, then Q is irreducible. Thus one can assign one
or more preferred primes to the algebraic extension defined by an irreducible polynomial Q
of this kind - in fact any polynomial allowing ramification. There are also other kinds of
irreducible polynomials since Eisenstein’s condition is only sufficient but not necessary.

4. Furthermore, in the algebraic extension defined by Q, the prime ideals P having the above
mentioned characteristic property decompose to an n :th power of single prime ideal Pi:
P = Pni . The primes are maximally/completely ramified. The physical analog P = Pn0 is
Bose-Einstein condensate of n bosons. There is a strong temptation to identify the preferred
primes of irreducible polynomials as preferred p-adic primes.

A good illustration is provided by equations x2 + 1 = 0 allowing roots x± = ±i and equation
x2+2px+p = 0 allowing roots x± = −p±√pp− 1. In the first case the ideals associated with
±i are different. In the second case these ideals are one and the same since x+ == −x−+ p:
hence one indeed has ramification. Note that the first example represents also an example of
irreducible polynomial, which does not satisfy Eisenstein criterion. In more general case the
n conditions on defined by symmetric functions of roots imply that the ideals are one and
same when Eisenstein conditions are satisfied.

5. What does this mean in p-adic context? The identity of the ideals can be stated by saying
P = Pn0 for the ideals defined by the primes satisfying the Eisenstein condition. Very loosely
one can say that the algebraic extension defined by the root involves n:th root of p-adic prime
p. This does not work! Extension would have a number whose n:th power is zero modulo p.
On the other hand, the p-adic numbers of the extension modulo p should be finite field but
this would not be field anymore since there would exist a number whose n:th power vanishes.
The algebraic extension simply does not exist for preferred primes. The physical meaning of
this will be considered later.

6. What is so nice that one could readily construct polynomials giving rise to given preferred
primes. The complex roots of these polymials could correspond to the points of partonic
2-surfaces carrying fermions and defining the ends of boundaries of string world sheet. It
must be however emphasized that the form of the polynomial depends on the choices of the
complex coordinate. For instance, the shift x → x + 1 transforms (xn − 1)/(x − 1) to a
polynomial satisfying the Eisenstein criterion. One should be able to fix allowed coordinate
changes in such a manner that the extension remains irreducible for all allowed coordinate
changes.

Already the integral shift of the complex coordinate affects the situation. It would seem that
only the action of the allowed coordinate changes must reduce to the action of Galois group
permuting the roots of polynomials. A natural assumption is that the complex coordinate
corresponds to a complex coordinate transforming linearly under subgroup of isometries of
the imbedding space.

In the general situation one has P =
∏
P
e(i)
i , e(i) ≥ 1 so that aso now there are prefered primes

so that the appearance of preferred primes is completely general phenomenon.

2.5.3 A connection with Langlands program?

In Langlands program (see http://tinyurl.com/ycej7s43) [A29, A28] the great vision is that the
n-dimensional representations of Galois groups G characterizing algebraic extensions of rationals
or more general number fields define n-dimensional adelic representations of adelic Lie groups, in
particular the adelic linear group Gl(n,A). This would mean that it is possible to reduce these
representations to a number theory for adeles. This would be highly relevant in the vision about
TGD as a generalized number theory. I have speculated with this possibility earlier [K13] but the
mathematics is so horribly abstract that it takes decade before one can have even hope of building
a rough vision.

http://tinyurl.com/47kxjz
http://tinyurl.com/47kxjz
http://tinyurl.com/ycej7s43
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One can wonder whether the irreducible polynomials could define the preferred extensions K of
rationals such that the maximal abelian extensions of the fields K would in turn define the adeles
utilized in Langlands program. At least one might hope that everything reduces to the maximally
ramified extensions.

At the level of TGD string world sheets with parameters in an extension defined by an ir-
reducible polynomial would define an adele containing various p-adic number fields defined by
the primes of the extension. This would define a hierarchy in which the prime ideals of previous
level would decompose to those of the higher level. Each irreducible extension of rationals would
correspond to some physically preferred p-adic primes.

It should be possible to tell what the preferred character means in terms of the adelic repre-
sentations. What happens for these representations of Galois group in this case? This is known.

1. For Galois extensions ramification indices are constant: e(i) = e and Galois group acts
transitively on ideals Pi dividing P . One obtains an n-dimensional representation of Galois
group. Same applies to the subgroup of Galois group G/I where I is subgroup of G leaving
Pi invariant. This group is called inertia group. For the maximally ramified case G maps the
ideal P0 in P = Pn0 to itself so that G = I and the action of Galois group is trivial taking P0

to itself, and one obtains singlet representations.

2. The trivial action of Galois group looks like a technical problem for Langlands program and
also for TGD unless the singletness of Pi under G has some physical interpretation. One
possibility is that Galois group acts as like a gauge group and here the hierarchy of sub-
algebras of super-symplectic algebra labelled by integers n is highly suggestive. This raises
obvious questions. Could the integer n characterizing the sub-algebra of super-symplectic
algebra acting as conformal gauge transformations, define the integer defined by the product
of ramified primes? Pn0 brings in mind the n conformal equivalence classes which remain
invariant under the conformal transformations acting as gauge transformations. . Recalling
that relative discriminant is an of K ideal divisible by ramified prime ideals of K, this means
that n would correspond to the relative discriminant for K = Q. Are the preferred primes
those which are “physical” in the sense that one can assign to the states satisfying conformal
gauge conditions?

If the Galois group corresponds to gauge symmetries for these primes, it is physically natural
that the p-adic algebraic extension does not exists and that p-adic variant of the Galois group
is absent. Nothing is lost from cognition since there is nothing to cognize!

2.5.4 What could be the origin of p-adic length scale hypothesis?

The argument would explain the existence of preferred p-adic primes. It does not yet explain
p-adic length scale hypothesis [K20, K14] stating that p-adic primes near powers of 2 are favored.
A possible generalization of this hypothesis is that primes near powers of prime are favored. There
indeed exists evidence for the realization of 3-adic time scale hierarchies in living matter [I1] (see
http://tinyurl.com/jbh9m27) and in music both 2-adicity and 3-adicity could be present, this
is discussed in TGD inspired theory of music harmony and genetic code [K21].

The weak form of NMP might come in rescue here.

1. Entanglement negentropy for a negentropic entanglement [K15] characterized by n-dimensional
projection operator is the log(Np(n) for some p whose power divides n. The maximum ne-
gentropy is obtained if the power of p is the largest power of prime divisor of p, and this
can be taken as definition of number theoretic entanglement negentropy. If the largest di-
visor is pk, one has N = k × log(p). The entanglement negentropy per entangled state is
N/n = klog(p)/n and is maximal for n = pk. Hence powers of prime are favoured which
means that p-adic length scale hierarchies with scales coming as powers of p are negentrop-
ically favored and should be generated by NMP. Note that n = pk would define a hierarchy
of heff/h = pk. During the first years of heff hypothesis I believe that the preferred values
obey heff = rk, r integer not far from r = 211. It seems that this belief was not totally
wrong.

http://tinyurl.com/jbh9m27
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2. If one accepts this argument, the remaining challenge is to explain why primes near powers of
two (or more generally p) are favoured. n = 2k gives large entanglement negentropy for the
final state. Why primes p = n2 = 2k − r would be favored? The reason could be following.
n = 2k corresponds to p = 2, which corresponds to the lowest level in p-adic evolution since
it is the simplest p-adic topology and farthest from the real topology and therefore gives the
poorest cognitive representation of real preferred extremal as p-adic preferred extermal (Note
that p = 1 makes formally sense but for it the topology is discrete).

3. Weak form of NMP [K15, K30] suggests a more convincing explanation. The density matrix
of the state to be reduced is a direct sum over contributions proportional to projection
operators. Suppose that the projection operator with largest dimension has dimension n.
Strong form of NMP would say that final state is characterized by n-dimensional projection
operator. Weak form of NMP allows free will so that all dimensions n− k, k = 0, 1, ...n− 1
for final state projection operator are possible. 1-dimensional case corresponds to vanishing
entanglement negentropy and ordinary state function reduction isolating the measured system
from external world.

4. The negentropy of the final state per state depends on the value of k. It is maximal if
n − k is power of prime. For n = 2k = Mk + 1, where Mk is Mersenne prime n − 1 gives
the maximum negentropy and also maximal p-adic prime available so that this reduction is
favoured by NMP. Mersenne primes would be indeed special. Also the primes n = 2k − r
near 2k produce large entanglement negentropy and would be favored by NMP.

5. This argument suggests a generalization of p-adic length scale hypothesis so that p = 2 can
be replaced by any prime.

This argument together with the hypothesis that preferred prime is ramified would correlate
the character of the irreducible extension and character of super-conformal symmetry breaking.
The integer n characterizing super-symplectic conformal sub-algebra acting as gauge algebra would
depends on the irreducible algebraic extension of rational involved so that the hierarchy of quantum
criticalities would have number theoretical characterization. Ramified primes could appear as
divisors of n and n would be essentially a characteristic of ramification known as discriminant.
An interesting question is whether only the ramified primes allow the continuation of string world
sheet and partonic 2-surface to a 4-D space-time surface. If this is the case, the assumptions behind
p-adic mass calculations would have full first principle justification.

2.5.5 A connection with infinite primes?

Infinite primes are one of the mathematical outcomes of TGD [K23]. There are two kinds of
infinite primes. There are the analogs of free many particle states consisting of fermions and
bosons labelled by primes of the previous level in the hierarchy. They correspond to states of a
supersymmetric arithmetic quantum field theory or actually a hierarchy of them obtained by a
repeated second quantization of this theory. A connection between infinite primes representing
bound statesandirreducible polynomials is highly suggestive.

1. The infinite prime representing free many-particle state decomposes to a sum of infinite part
and finite part having no common finite prime divisors so that prime is obtained. The infinite
part is obtained from “fermionic vacuum” X =

∏
k pk by dividing away some fermionic primes

pi and adding their product so that one has X → X/m+m, where m is square free integer.
Also m = 1 is allowed and is analogous to fermionic vacuum interpreted as Dirac sea without
holes. X is infinite prime and pure many-fermion state physically. One can add bosons
by multiplying X with any integers having no common denominators with m and its prime
decomposition defines the bosonic contents of the state. One can also multiply m by any
integers whose prime factors are prime factors of m.

2. There are also infinite primes, which are analogs of bound states and at the lowest level of the
hierarchy they correspond to irreducible polynomials P (x) with integer coefficients. At the
second levels the bound states would naturally correspond to irreducible polynomials Pn(x)
with coefficients Qk(y), which are infinite integers at the previous level of the hierarchy.
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3. What is remarkable that bound state infinite primes at given level of hierarchy would define
maximally ramified algebraic extensions at previous level. One indeed has infinite hierarchy
of infinite primes since the infinite primes at given level are infinite primes in the sense
that they are not divisible by the primes of the previous level. The formal construction
works as such. Infinite primes correspond to polynomials of single variable at the first level,
polynomials of two variables at second level, and so on. Could the Langlands program could
be generalized from the extensions of rationals to polynomials of complex argument and that
one would obtain infinite hierarchy?

4. Infinite integers in turn could correspond to products of irreducible polynomials defining
more general extensions. This raises the conjecture that infinite primes for an extension K
of rationals could code for the algebraic extensions of K quite generally. If infinite primes
correspond to real quantum states they would thus correspond the extensions of rationals
to which the parameters appearing in the functions defining partonic 2-surfaces and string
world sheets.

This would support the view that partonic 2-surfaces associated with algebraic extensions
defined by infinite integers and thus not irreducible are unstable against decay to partonic
2-surfaces which corresponds to extensions assignable to infinite primes. Infinite composite
integer defining intermediate unstable state would decay to its composites. Basic particle
physics phenomenology would have number theoretic analog and even more.

5. According to Wikipedia, Eisenstein’s criterion (http://tinyurl.com/47kxjz) allows gen-
eralization and what comes in mind is that it applies in exactly the same form also at the
higher levels of the hierarchy. Primes would be only replaced with prime polynomials and
the there would be at least one prime polynomial Q(y) dividing the coefficients of Pn(x)
except the highest one such that its square would not divide P0. Infinite primes would give
rise to an infinite hierarchy of functions of many complex variables. At first level zeros of
function would give discrete points at partonic 2-surface. At second level one would obtain
2-D surface: partonic 2-surfaces or string world sheet. At the next level one would obtain
4-D surfaces. What about higher levels? Does one obtain higher dimensional objects or
something else. The union of n 2-surfaces can be interpreted also as 2n-dimensional surface
and one could think that the hierarchy describes a hierarchy of unions of correlated partonic
2-surfaces. The correlation would be due to the preferred extremal property of Kähler action.

One can ask whether this hierarchy could allow to generalize number theoretical Langlands
to the case of function fields using the notion of prime function assignable to infinite prime.
What this hierarchy of polynomials of arbitrary many complex arguments means physically is
unclear. Do these polynomials describe many-particle states consisting of partonic 2-surface
such that there is a correlation between them as sub-manifolds of the same space-time sheet
representing a preferred extremals of Kähler action?

This would suggest strongly the generalization of the notion of p-adicity so that it applies to
infinite primes.

1. This looks sensible and maybe even practical! Infinite primes can be mapped to prime poly-
nomials so that the generalized p-adic numbers would be power series in prime polynomial -
Taylor expansion in the coordinate variable defined by the infinite prime. Note that infinite
primes (irreducible polynomials) would give rise to a hierarchy of preferred coordinate vari-
ables. In terms of infinite primes this expansion would require that coefficients are smaller
than the infinite prime P used. Are the coefficients lower level primes? Or also infinite
integers at the same level smaller than the infinite prime in question? This criterion makes
sense since one can calculate the ratios of infinite primes as real numbers.

2. I would guess that the definition of infinite-P p-adicity is not a problem since mathematicians
have generalized the number theoretical notions to such a level of abstraction much above
of a layman like me. The basic question is how to define p-adic norm for the infinite primes
(infinite only in real sense, p-adically they have unit norm for all lower level primes) so that
it is finite.

http://tinyurl.com/47kxjz
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3. There exists an extremely general definition of generalized p-adic number fields (see http:

//tinyurl.com/y5zreeg). One considers Dedekind domain D, which is a generalization
of integers for ordinary number field having the property that ideals factorize uniquely to
prime ideals. Now D would contain infinite integers. One introduces the field Eof fractions
consisting of infinite rationals.

Consider element e of E and a general fractional ideal eD as counterpart of ordinary rational
and decompose it to a ratio of products of powers of ideals defined by prime ideals, now those
defined by infinite primes. The general expression for the p-adic norm of x is x−ord(P ), where
n defines the total number of ideals P appearing in the factorization of a fractional ideal in
E: this number can be also negative for rationals. When the residue field is finite (finite field
G(p,1) for p-adic numbers), one can take c to the number of its elements (c = p for p-adic
numbers.

Now it seems that this number is not finite since the number of ordinary primes smaller than
P is infinite! But this is not a problem since the topology for completion does not depend
on the value of c. The simple infinite primes at the first level (free many-particle states) can
be mapped to ordinary rationals and q-adic norm suggests itself: could it be that infinite-P
p-adicity corresponds to q-adicity discussed by Khrennikov [A19]. Note however that q-adic
numbers are not a field.

Finally a loosely related question. Could the transition from infinite primes of K to those of L
takes place just by replacing the finite primes appearing in infinite prime with the decompositions?
The resulting entity is infinite prime if the finite and infinite part contain no common prime divisors
in L. This is not the case generally if one can have primes P1 and P2 of K having common divisors
as primes of L: in this case one can include P1 to the infinite part of infinite prime and P2 to finite
part.

3 TGD And Classical Number Fields

This section is devoted to the vision about TGD as a generalized number theory. The basic
theme is the role of classical number fields [A10, A4, A13] in quantum TGD. A central notion is
M8−H duality which might be also called number theoretic compactification. This duality allows
to identify imbedding space equivalently either as M8 or M4×CP2 and explains the symmetries of
standard model number theoretically. These number theoretical symmetries induce also the sym-
metries dictaying the geometry of the “world of classical worlds” (WCW) as a union of symmetric
spaces [A16] . This infinite-dimensional Kähler geometry is expected to be highly unique from
the mere requirement of its existence requiring infinite-dimensional symmetries provided by the
generalized conformal symmetries of the light-cone boundary δM4

+ × S and of light-like 3-surfaces
and the answer to the question what makes 8-D imbedding space and S = CP2 so unique would
be the reduction of these symmetries to number theory.

ZEO has become the corner stone of also number theoretical vision. In ZEO either light-like or
space-like 3-surfaces can be identified as the fundamental dynamical objects, and the extension of
general coordinate invariance leads to effective 2-dimensionality (strong form of holography) in the
sense that the data associated with partonic 2-surfaces and the distribution of 4-D tangent spaces
at them located at the light-like boundaries of causal diamonds (CDs) defined as intersections of
future and past directed light-cones code for quantum physics and the geometry of WCW. Also
the hierarchy of Planck constants [K9] plays a role but not so important one.

The basic number theoretical structures are complex numbers, quaternions [A13] and octonions
[A10] , and their complexifications obtained by introducing additional commuting imaginary unit√
−1. Hyper-octonionic (-quaternionic,-complex) sub-spaces for which octonionic imaginary units

are multiplied by commuting
√
−1 have naturally Minkowskian signature of metric. The question

is whether and how the hyper-structures could allow to understand quantum TGD in terms of
classical number fields. The answer which looks the most convincing one relies on the existence of
octonionic representation of 8-D gamma matrix algebra.

1. The first guess is that associativity condition for the sub-algebras of the local Clifford algebra
defined in this manner could select 4-D surfaces as associative (hyper-quaternionic) sub-spaces

http://tinyurl.com/y5zreeg
http://tinyurl.com/y5zreeg
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of this algebra and define WCW purely number theoretically. The associative sub-spaces in
question would be spanned by the modified gamma matrices defined by the Kähler-Dirac
action fixed by the variational principle (Kähler action) selecting space-time surfaces as
preferred extremals [K32] .

2. This condition is quite not enough: one must strengthen it with the condition that a preferred
commutative and thus hyper-complex sub-algebra is contained in the tangent space of the
space-time surface. This condition actually generalizes somewhat since one can introduce a
family of so called Hamilton-Jacobi coordinates for M4 allowing an integrable distribution of
decompositions of tangent space to the space of non-physical and physical polarizations [K1] .
The physical interpretation is as a number theoretic realization of gauge invariance selecting
a preferred local commutative plane of non-physical polarizations.

3. Even this is not yet the whole story: one can define also the notions of co-associativity and
co-commutativity applying in the regions of space-time surface with Euclidian signature of
the induced metric. The basic unproven conjecture is that the decomposition of space-time
surfaces to associative and co-associative regions containing preferred commutative resp. co-
commutative 2-plane in the 4-D tangent plane is equivalent with the preferred extremal
property of Kähler action and the hypothesis that space-time surface allows a slicing by
string world sheets and by partonic 2-surfaces [K32] .

3.1 Notations

Some notational conventions are in order before continuing. The fields of quaternions resp. octo-
nions having dimension 4 resp. 8 and will be denoted by Q and O. Their complexified variants will
be denoted by QC and OC . The sub-spaces of hyper-quaternions HQ and hyper-octonions HO
are obtained by multiplying the quaternionic and octonionic imaginary units by

√
−1. These sub-

spaces are very intimately related with the corresponding algebras, and can be seen as Euclidian
and Minkowkian variants of the same basic structure. Also the Abelianized versions of the hyper-
quaternionic and -octonionic sub-spaces can be considered: these algebras have a representation
in the space of spinors of imbedding space H = M4 × CP2.

3.2 Quaternion And Octonion Structures And Their Hyper Counter-
parts

In this introductory section the notions of quaternion and octonion structures and their hyper coun-
terparts are introduced with strong emphasis on the physical interpretation. Literature contains
several variants of these structures (Hyper-Kähler structure [A6] and quaternion Kähler structure
possed also by CP2 [A21] ). The notion introduced here is inspired by the physical motivations
coming from TGD. As usual the first proposal based on the notions of (hyper-)quaternion and
(hyper-)octonion analyticity was not the correct one. Much later a local variant of the notion
based on tangent space emerged.

3.2.1 Octonions and quaternions

In the following only the basic definitions relating to octonions and quaterions are given (see Fig.
1). There is an excellent article by John Baez [A10] describing octonions and their relations to the
rest of mathematics and physics.

Octonions can be expressed as real linear combinations
∑
k x

kIk of the octonionic real unit
I0 = 1 (counterpart of the unit matrix) and imaginary units Ia, a = 1, ..., 7 satisfying

I2
0 = I0 ≡ 1 ,

I2
a = −I0 = −1 ,

I0Ia = Ia . (3.1)

Octonions are closed with respect to the ordinary sum of the 8-dimensional vector space and with
respect to the octonionic multiplication, which is neither commutative (ab 6= ba in general) nor
associative (a(bc) 6= (ab)c in general).
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Figure 1: Octonionic triangle: the six lines and one circle containing three vertices define the
seven associative triplets for which the multiplication rules of the ordinary quaternion imaginary
units hold true. The arrow defines the orientation for each associative triplet. Note that the
product for the units of each associative triplets equals to real unit apart from sign factor.

A concise manner to summarize octonionic multiplication is by using octonionic triangle. Each
line (6 altogether) containing 3 octonionic imaginary units forms an associative triple which to-
gether with I0 = 1 generate a division algebra of quaternions. Also the circle spanned by the 3
imaginary units at the middle of the sides of the triangle is associative triple. The multiplication
rules for each associative triple are simple:

IaIb = εabcIc , (3.2)

where εabc is 3-dimensional permutation symbol. εabc = 1 for the clockwise sequence of vertices
(the direction of the arrow along the circumference of the triangle and circle). As a special case
this rule gives the multiplication table of quaternions. A crucial observation for what follows is
that any pair of imaginary units belongs to one associative triple.

The non-vanishing structure constants d c
ab of the octonionic algebra can be read directly from

the octonionic triangle. For a given pair Ia, Ib one has

IaIb = d c
ab Ic ,

dab c = ε c
ab ,

I2
a = d 0

aa I0 = −I0 ,

I2
0 = d 0

00 I0 ,

I0Ia = d a
0a Ia = Ia . (3.3)

For εabc c belongs to the same associative triple as ab.
Non-associativity means that is not possible to represent octonions as matrices since matrix

product is associative. Quaternions can be represented and the structure constants provide the
defining representation as Ia → dabc, where b and c are regarded as matrix indices of 4 × 4
matrix. The algebra automorphisms of octonions form 14-dimensional group G2, one of the so
called exceptional Lie-groups. The isotropy group of imaginary octonion unit is the group SU(3).
The Euclidian inner product of the two octonions is defined as the real part of the product xy

(x, y) = Re(xy) =
∑

k=0,..7

xkyk ,

x = x0I0 −
∑

i=1,..,7

xkIk , (3.4)

and is just the Euclidian norm of the 8-dimensional space.
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3.2.2 Hyper-octonions and hyper-quaternions

The Euclidicity of the quaternion norm suggests that octonions are not a sensible concept in TGD
context. One can imagine two manners to circumvent this conclusion.

1. Minkowskian metric for octonions and quaternions is obtained by identifying Minkowski inner
product xy as the real counterpart of the product

x · y ≡ Re(xy) = x0y0 −
∑
k

xkyk . (3.5)

SO(1, 7) (SO(1, 3) in quaternionic case) Lorentz invariance appears completely naturally
as the symmetry of the real part of the octonion (quaternion) product and hence of oc-
tonions/quaternions and there is no need to perform the complexification of the octonion
algebra. Furthermore, only the signature (1, 7) ((1, 3) in the quaternionic case) is possible
and this would raise M4

+ × CP2 in a preferred position.

This norm does not give rise to a number theoretic norm defining a homomorphism to
real numbers. Indeed, the number theoretic norm defined by the determinant of the linear
mapping defined by the multiplication with quaternion or octonion, is inherently Euclidian.
This is in conflict with the idea that quaternionic and octonionic primes and their infinite
variants should have key role in TGD [K23] .

2. Hyper-octonions and hyper-quaternions provide a possible solution to these problems. These
are obtained by multiplying imaginary units by commutative and associative

√
−1. These

numbers form a sub-space of complexified octonions/quaternions and the cross product of
imaginary parts leads out from this sub-space. In this case number theoretic norm induced
from QC/OC gives the fourth/eighth power of Minkowski length and Lorentz group acts as
its symmetries. Light-like hyper-quaternions and -octonions causing the failure of the number
field property have also a clear physical interpretation.

A criticism against the notion of hyper-quaternionic and octonionic primeness is that the
tangent space as an algebra property is lost and the notion of primeness is inherited from
QC/OC . Also non-commutativity and non-associativity could cause difficulties.

ZEO leads to a possible physical interpretation of complexified octonions. The moduli space for
causal diamonds corresponds to a Cartesian product of M4 ×CP2 whose points label the position
of either tip of CD × CP2 and space I whose points label the relative positive of the second tip
with respect to the first one. p-Adic length scale hypothesis results if one assumes that the proper
time distance between the tips comes in powers of two so that one has union of hyperboloids
Hn×CP2, Hn = {m ∈M4

+|a = 2na0)}. A further quantization of hyperboloids Hn is obtained by
replacing it with a lattice like structure is highly suggestive and would correspond to an orbit of
a point of Hn under a subgroup of SL(2, QC) or SL(2, ZC) acting as Lorentz transformations in
standard manner. Also algebraic extensions of QC and ZC can be considered. Also in the case of
CP2 discretization is highly suggestive so that one would have an orbit of a point of CP2 under a
discrete subgroup of SU(3, Q).

The outcome could be interpreted by saying that the moduli space in question is H×I such that
H corresponds to hyper-octonions and I to a discretized version of

√
−1H and thus a subspace of

complexified octonions. An open question whether the quantization has some deeper mathematical
meaning.

3.2.3 Basic constraints

Before going to details it is useful to make clear the constraints on the concept of the hyper-
octonionic structure implied by TGD view about physics.

M4×CP2 cannot certainly be regarded as having any global octonionic structure (for instance
in the sense that it could be regarded as a coset space associated with some exceptional group).
There are however clear indications for the importance of the hyper-quaternionic and -octonionic
structures.
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1. SU(3) is the only simple 8-dimensional Lie-group and acts as the group of isometries of CP2:
if SU(3) had some kind of octonionic structure, CP2 would become unique candidate for
the space S. The decomposition SU(3) = h + t to U(2) subalgebra and its complement
corresponds rather closely to the decomposition of (hyper-)octonions to (hyper-)quaternionic
sub-space and its complement. The electro-weak U(2) algebra has a natural 1+3 decomposi-
tion and generators allow natural hyper-quaternionic structure. The components of the Weyl
tensor of CP2 behave with respect to multiplication like quaternionic imaginary units but
only one of them is covariantly constant so that hyper Kähler structure [A6] with three co-
variantly constant quaternionic imaginary units represented by Kähler forms is not possible.
These tensors and metric tensor however define quaternionic structure [A21] .

2. M4
+ has a natural 1+3 decomposition and a unique cosmic time coordinate defined as the light

cone proper time. Hyper-quaternionic structure is consistent with the Minkowskian signature
of the inner product and hyper quaternion units have a natural representation in terms of
covariantly constant self-dual symplectic forms [A27, A18, A17] and their contractions with
sigma matrices. It is not however clear whether this representation is physically interesting.

3.2.4 How to define hyper-quaternionic and hyper-octonionic structures?

I have considered several proposals for how to define quaternionic and octonionic structures and
their hyper-counterparts.

1. (Hyper-)octonionic manifolds would obtained by gluing together coordinate patches using
(hyper-)octonion analytic functions with real Laurent coefficients (this guarantees associa-
tivity and commutativity). This definition does not yet involve metric or any other structures
(such as Kähler structure). This approach does not seem to be physically realistic.

2. Second option is based on the idea of representing quaternionic and octonionic imaginary
units as antisymmetric tensors. This option makes sense for quaternionic manifolds [A12]
and CP2 indeed represents an example represents of this kind of manifold. The problem with
the octonionic structure is that antisymmetric tensors cannot define non-associative product.

3. If the manifold is endowed with metric, octonionic structure should be defined as a local
tangent space structure analogous to eight-bein structure and local gauge algebra structures.
This can be achieved by contracting octo-bein vectors with the standard octonionic basis
to get octonion form Ik. Each vector field ak defines naturally octonion field A = akIk.
The product of two vector fields can be defined by the octonionic multiplication and this
leads to the introduction of a tensor field dklm of these structure constants obtained as the
contraction of the octobein vectors with the octonionic structure constants dabc. Hyper-
octonion structure can defined in a completely analogous manner.

It is possible to induce octonionic structure to any 4-dimensional space-time surface by form-
ing the projection of Ik to the space-time surface and redefining the products of Ik:s by
dropping away that part of the product, which is orthogonal to the space-time surface.
This means that the structure constants of the new 4-dimensional algebra are the projec-
tions of dklm to the space-time surface. One can also define similar induced algebra in the
4-dimensional normal space of the space-time surface. The hypothesis would be that the
induced tangential is associative or hyper-quaternionic algebra. Also co-associativity defined
as associativity of the normal space algebra is possible. This property would give for the 4-
dimensionality of the space-time surface quite special algebraic meaning. The problem is now
that there is no direct connection with quantum TGD proper- in particular the connection
with the classical dynamics defined by Kähler action is lacking.

4. 8-dimensional gamma matrices allow a representation in terms of tensor products of octonions
and 2 × 2 matrices. Genuine matrices are of course not in question since the product of
the gamma matrices fails to be associative. An associative representation is obtained by
restricting the matrices to a quaternionic plane of complex octonions. If the space-time
surface is hyper-quaternionic in the sense that induced gamma matrices define a quaternionic
plane of complexified octonions at each point of space-time surface the resulting local Clifford
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algebra is associative and structure constants define a matrix representation for the induced
gamma matrices.

A more general definition allows gamma matrices to be Kähler-Dirac gamma matrices defined
by Kähler action appearing in the Kähler-Dirac action and forced both by internal consistency
and super-conformal symmetry [K32, K10] . The Kähler-Dirac gamma matrices associated
with Kähler action do not in general define tangent space of the space-time surface as the
induced gamma matrices do. Also co-associativity can be considered if one can identify a
preferred imaginary unit such that the multiplication of the Kähler-Dirac gamma matrices
with this unit gives a quaternionic basis. This condition makes sense only if the preferred
extremals of the action are hyper-quaternionic surfaces in the sense defined by the action.
That this is true for Kähler action at least is an is an unproven conjecture.

In the sequel only the fourh option will be considered.

3.2.5 How to end up to quantum TGD from number theory?

An interesting possibility is that quantum TGD could emerge from a condition that a local version
of hyper-finite factor of type II1 represented as a local version of infinite-dimensional Clifford
algebra exists. The conditions are that “center or mass” degrees of freedom characterizing the
position of CD separate uniquely from the “vibrational” degrees of freedom being represented in
terms of octonions and that for physical states associativity holds true. The resulting local Clifford
algebra would be identifiable as the local Clifford algebra of WCW (being an analog of local gauge
groups and conformal fields [A14] ).

The uniqueness of M8 and M4 × CP2 as well as the role of hyper-quaternionic space-time
surfaces as fundamental dynamical objects indeed follow from rather weak conditions if one restricts
the consideration to gamma matrices and spinors instead of assuming that M8 coordinates are
hyper-octonionic as was done in the first attempts.

1. The unique feature of M8 and any 8-dimensional space with Minkowski signature of metric
is that it is possible to have an octonionic representation of the complexified gamma matrices
[K32, K5] and of spinors. This does not require octonionic coordinates forM8. The restriction
to a quaternionic plane for both gamma matrices and spinors guarantees the associativity.

2. One can also consider a local variant of the octonionic Clifford algebra in M8. This algebra
contains associative subalgebras for which one can assign to each point of M8 a hyper-
quaternionic plane. It is natural to assume that this plane is either a tangent plane of
4-D manifold defined naturally by the induced gamma matrices defining a basis of tangent
space or more generally, by Kähler-Dirac gamma matrices defined by a variational principle
(these gamma matrices do not define tangent space in general). Kähler action defines a
unique candidate for the variational principle in question. Associativity condition would
automatically select sub-algebras associated with 4-D hyper-quaternionic space-time surfaces.

3. This vision bears a very concrete connection to quantum TGD. In [K5] the octonionic formu-
lation of the Kähler-Dirac equation is studied and shown to lead to a highly unique general
solution ansatz for the equation working also for the matrix representation of the Clifford
algebra. An open question is whether the resulting solution as such defined also solutions of
the Kähler-Dirac equation for the matrix representation of gammas. Also a possible iden-
tification for 8-dimensional counterparts of twistors as octo-twistors follows: associativity
implies that these twistors are very closely related to the ordinary twistors. In TGD frame-
work octo-twistors provide an attractive manner to get rid of the difficulties posed by massive
particles for the ordinary twistor formalism.

4. Associativity implies hyperquaternionic space-time surfaces (in a more general sense as usual)
and this leads naturally to the notion of WCW and local Clifford algebra in this space. Num-
ber theoretic arguments imply M8 − H duality. The resulting infinite-dimensional Clifford
algebra would differ from von Neumann algebras in that the Clifford algebra and spinors
assignable to the center of mass degrees of freedom of causal diamond CD would be ex-
pressed in terms of octonionic units although they are associative at space-time surfaces.
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One can therefore say that quantum TGD follows by assuming that the tangent space of the
imbedding space corresponds to a classical number field with maximal dimension.

5. The slicing of the Minkowskian space-time surface inside CD by stringy world sheets and
by partonic 2-surfaces inspires the question whether the Kähler-Dirac gamma matrices as-
sociated with the stringy world sheets resp. partonic 2-surfaces could be could commutative
resp. co-commutative. Commutativity would also be seen as the justification for why the
fundamental objects are effectively 2-dimensional.

This formulation is undeniably the most convincing one found hitherto since the notion of
hyper-quaternionic structure is local and has elegant formulation in terms of Kähler-Dirac gamma
matrices.

3.3 Number Theoretic Compactification And M8 −H Duality

This section summarizes the basic vision about number theoretic compactification reducing the
classical dynamics to associativity or co-associativity. Originally M8 −H duality was introduced
as a number theoretic explanation for H = M4×CP2. Much later it turned out that the completely
exceptional twistorial properties of M4 and CP2 are enough to justify X4 ⊂ H hypothesis. Skeptic
could therefore criticize the introduction of M8 (or even its complexification) as an un-necessary
mathematical complication producing only unproven conjectures and bundle of new statements to
be formulated precisely.

3.3.1 The basic ideas in nutshell

The vision about the physical role of the classical number fields relies on certain speculative ques-
tions and ideas.

1. Could space-time surfaces X4 be regarded as associative or co-associative (“quaternionic” is
equivalent with “associative”) surfaces of H endowed with octonionic structure in the sense
that tangent space of space-time surface would be associative (co-associative) sub-space of
octonions at each point of X4 [K25]. This is certainly possible and an interesting conjecture
is that the preferred extremals of Kähler action include associative and co-associative surfaces
of H. Signature of M8 could be a problem in M8: M8 can be regarded as linear sub-space
of complexified octonions and the product of M8 points does not belong to M8. For tangent
space this is not the case since one can complexify tangent space.

2. Could the notion of compactification generalize to that of number theoretic compactifica-
tion in the sense that one can map associative (co-associative) surfaces of M8 regarded as
octonionic linear space to surfaces in M4 × CP2 [K25]? This conjecture - M8 − H duality
- would give for M4 × CP2 deep number theoretic meaning. CP2 would parametrize asso-
ciative planes of octonion space containing fixed complex plane M2 ⊂ M8 and CP2 point
would thus characterize the tangent space of X4 ⊂M8. The point of M4 would be obtained
by projecting the point of X4 ⊂ M8 to a point of M4 identified as tangent space of X4.
This would guarantee that the dimension of space-time surface in H would be four. The
conjecture is that the preferred extremals of Kähler action include these surfaces.

3. M8−H duality can be generalized to a duality H → H if the images of the associative surface
in M8 is associative surface in H. One can start from associative surface of H and assume
that it contains the preferred M2 tangent plane in 8-D tangent space of H or integrable
distribution M2(x) of them, and its points to H by mapping M4 projection of H point to
itself and associative tangent space to CP2 point. This point need not be the original one!
If the resulting surface is also associative, one can iterate the process indefinitely.

4. G2 defines the automorphism group of octonions, and one might hope that the maps of
octonions to octonions such that the action of Jacobian in the tangent space of associative
or co-associative surface reduces to that of G2 could produce new associative/co-associative
surfaces. The action of G2 would be analogous to that of gauge group.
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5. One can also ask whether the notions of commutativity and co-commutavity could have
physical meaning. The well-definedness of em charge as quantum number for the modes of
the induced spinor field requires their localization to 2-D surfaces (right-handed neutrino is
an exception) - string world sheets and partonic 2-surfaces. This can be possible only for
Kähler action and could have commutativity and co-commutativity as a number theoretic
counterpart. The basic vision would be that the dynamics of Kähler action realizes number
theoretical geometrical notions like associativity and commutativity and their co-notions.

One can go even further and ask whether one could somehow construct the preferred extremals
of Kähler action using real-octonion analytic functions, call them generically f . For some time I
believed to this idea but it seems I was wrong. The fact that octonion real-analytic functions in
M8 section of M8

c have values in the space of complexified octonions makes the complexification of
octonions necessary. The simplest guess would be that quaternionic 4-surfaces correspond to the
loci at which the values of function f are real quaternionic. One clearly obtains quaternionic planes
as trivial solutions but it is not clear whether their inverse images in general case are quaternionic
surfaces and whether non-trivial surfaces with physical properties are obtained. In complex case
Riemann zeta serves as a discouraging much simpler analogy since real sug-manifolds of complex
plane are just pieces of real axis. Quaternionicity would be replaced with reality and the loci of
zeros of the imaginary part of function should be pieces of real axes. Zeta is real at real axis and
also at the line Im(s) = 1/2 but the inverse image of this line is not real line. Therefore this
approach does not look promising.

3.3.2 Is Kähler action needed also at the level of M8

One can question the feasibility of M8−H duality if the dynamics is purely number theoretic at the
level of M8 and determined by Kähler action at the level of H. Situation becomes more democratic
if Kähler action defines the dynamics in both M8 and H: this might mean that associativity could
imply field equations for preferred extremals or vice versa or there might be equivalence between
two. This means the introduction Kähler structure at the level of M8, and motivates also the
coupling of Kähler gauge potential to M8 spinors characterized by Kähler charge or em charge.
One could call this form of duality strong form of M8 −H duality.

The strong form M8−H duality boils down to the assumption that space-time surfaces can be
regarded either as 4-surfaces of H or as surfaces of M8 composed of associative and co-associative
regions identifiable as regions of space-time possessing Minkowskian resp. Euclidian signature of
the induced metric.

Could they have the same induced metric and Kähler form and WCW associated with H
should be essentially the same as that associated with M8. Associativity corresponds to (hyper-
)quaterniocity at the level of tangent space and co-associativity to co(-hyper)-quaternionicity -
that is associativity/hyper-quaternionicity of the normal space. Both are needed to cope with
known extremals. Since in Minkowskian context precise language would force to introduce clumsy
terms like hyper-quaternionicity and co-hyper-quaternionicity, it is better to speak just about
associativity or co-associativity.

For the octonionic spinor fields the octonionic analogs of electroweak couplings reduce to mere
Kḧler or electromagnetic coupling and the solutions reduce to those for spinor d’Alembertian in
4-D harmonic potential breaking SO(4) symmetry. Due to the enhanced symmetry of harmonic
oscillator, one expects that partial waves are classified by SU(4) and by reduction to SU(3)×U(1)
by em charge and color quantum numbers just as for CP2 - at least formally.

Harmonic oscillator potential defined by self-dual em field splits M8 to M4 × E4 and implies
Gaussian localization of the spinor modes near origin so that E4 effectively compactifies. The
resulting physics brings strongly in mind low energy physics, where only electromagnetic interaction
is visible directly, and one cannot avoid associations with low energy hadron physics. These are
some of the reasons for considering M8−H duality as something more than a mere mathematical
curiosity.

Kähler form for M8 non-trivial only in E4 ⊂M8 implies unique decomposition M8 = M4×E4

making possible to identify M4 point in M8 −H duality uniquely. It however turns out that M4

point corresponds naturally to a projection of M8 point to the quaternionic tangent space.
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3.3.3 Definition of complexified octonions and quaternions

The Minkowskian signatures of M8 and M4 produce technical nuisance if one tries to define
octonion-real- analyticity. One might try to overcome it by Wick rotation, which is however
somewhat questionable trick. M8

c = Oc provides another approach giving hopes. Complexified
tangent space must be introduced in any case so that its detailed definition deserves to discussed.

1. The proper formulation for tangent space is in terms of complexified octonions and quater-
nions involving the introduction of commuting imaginary unit j. If complexified quaternions
are used for H, Minkowskian signature requires the introduction of two commuting imaginary
units j and i meaning double complexification.

2. Hyper-quaternions/octonions define as subspace of complexified quaternions/octonions spanned
by real unit and jIk, where Ik are quaternionic units. These spaces are obviously not closed
under multiplication. One can however define the notion of associativity for the sub-space
of M8 by requiring that the products and sums of the tangent space vectors generate com-
plexified quaternions.

3. Ordinary quaternions Q are expressible as q = q0 + qkIk. Hyper-quaternions are expressible
as q = q0 + jqkIk and form a subspace of complexified quaternions Qc = Q ⊕ jQ. Similar
formula applies to octonions and their hyper counterparts which can be regarded as subspaces
of complexified octonions O ⊕ jO.

4. One can consider two manners to identify the tangent space of H. Either as 8-D manifold
for which tangent space is hyper-octonionic linear sub-space of complexified octonions Oc
generated by sums and products of tangent vectors. Tangent space vectors of H could be
also identified as hyper-quaternions qH = q0 + jqkIk + jiq2 defining a subspace of doubly
complexified quaternions: note the appearance of two imaginary units. This would imply
an asymmetry between M8 and H. The first option looks more elegant also because the
composition of the duality maps can be iterated as maps of surfaces of H to those of H.

1. Are gamma matrices needed at all?

The recent definitions of associativity and M8−H- duality has evolved slowly from in-accurate
characterizations and there are still open questions.

1. The standard spinor structure of H can be regarded as quaternionic in the sense that gamma
matrices are essentially tensor products of quaternionic gamma matrices and reduce in matrix
representation for quaternions to ordinary gamma matrices. Therefore the idea that one
should introduce octonionic gamma matrices in H or even M8 would mean doubling of the
spinor structure: not an attractive idea.

It is however important to notice that the introduction of octonionic gamma matrices is not
necessary. Simplest option is just the interpretation of tangent basis vectors are octonions:
octonion basis is obtained as contractions of vielbein vectors with “flat space” octonions.

2. The earlier formulation was in terms of octonionic flat space gamma matrices replacing the
ordinary gamma matrices so that the formulation reduces to that in M8 tangent space. This
formulation is enough to define what associativity means although one can protest.

3. The known extremals provide a test for the associativity (co-associativity) hypothesis. I have
not demonstrated that the associativity works for massless extremals (MEs) and vacuum
extremals with the dimension of CP2 projection not larger than 2.

4. Could one define associativity in H also in terms of modified gamma matrices defined by
Kähler action (certainly notM8)? The basic problem is that the space spanned by the Kähler-
Dirac gamma matrices can have dimension smaller than that of 4 (so that co-basis would hve
dimension larger than 4 if identified in terms of orthogonal complement). Second problem
is that Kähler-Dirac gammas are in general not in the tangent space of space-time surface
as vectors of the imbedding space. Therefore the notions of associativity (co-associativity)
defined in terms of tangent space (normal space) become problematic.
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3.3.4 Basic formulation of M8 −H duality

If four-surfaces X4 ⊂ M8 under some conditions define 4-surfaces in M4 × CP2 indirectly, the
spontaneous compactification of super string models would correspond in TGD to two different
manners to interpret the space-time surface. This correspondence could be called number theoret-
ical compactification or M8 −H duality.

3.3.5 Basic mathematical facts

The hard mathematical facts behind the notion of number theoretical compactification are follow-
ing.

1. One manner to define M4 image of M8 point uniquely would be to assume that M8 has
unique decomposition M8 = M4 × E4 (it turns out that this is not the correct manner!).
This would be most naturally due to Kähler structure in E4 defined by a self-dual Kähler
form defining parallel constant electric and magnetic fields in Euclidian sense. Besides Kähler
form there is vector field coupling to sigma matrix representing the analog of strong isospin:
the corresponding octonionic sigma matrix however is imaginary unit times gamma matrix
- say ie1 in M4 - defining a preferred plane M2 in M4. Here it is essential that the gamma
matrices of E4 defined in terms of octonion units commute to gamma matrices in M4. What
is involved becomes clear from the Fano triangle illustrating octonionic multiplication table.
One can however do also without the introduction of this structure and use only the octonionic
structure.

2. The space of hyper-complex structures of the hyper-octonion space - they correspond to the
choices of plane M2 ⊂ M8 - is parameterized by 6-sphere S6 = G2/SU(3). The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure
and thus leaves invariant one octonionic imaginary unit, call it e1. Fixed complex structure
therefore corresponds to a point of S6.

3. Quaternionic sub-algebras of M8 are parametrized by G2/U(2). The quaternionic sub-
algebras of octonions with fixed complex structure (that is complex sub-space defined by
real and preferred imaginary unit and parametrized by a point of S6) are parameterized by
SU(3)/U(2) = CP2 just as the complex planes of quaternion space are parameterized by
CP1 = S2. Same applies to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would
thus have an interpretation as the isometry group of CP2, as the automorphism sub-group of
octonions, and as color group. Thus the space of quaternionic structures can be parametrized
by the 10-dimensional space G2/U(2) decomposing as S6 × CP2 locally.

4. The basic result behind number theoretic compactification and M8 − H duality is that
associative sub-spaces M4 ⊂ M8 containing a fixed commutative sub-space M2 ⊂ M8 are
parameterized by CP2. The choices of a fixed hyper-quaternionic basis 1, e1, e2, e3 with a
fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice of e2 and e3

amounts to fixing e2 ±
√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup of SU(3).

U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2) induces
rotations of the spinor having e2 and e3 components. Hence all possible completions of 1, e1

by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

1. Formulation of M8 −H duality

Consider now the formulation of M8 −H duality.

1. The idea of the standard formulation is that associative manifold X4 ⊂ M8 has at its each
point associative tangent plane. That is X4 corresponds to an integrable distribution of
M2(x) ⊂M8 parametrized 4-D coordinate x that is map x→ S6 such that the 4-D tangent
plane is hyper-quaternionic for each x.

2. One should be able to assign a unique point of M4 to a given point of X4 ⊂M8.
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(a) The associative tangent space of space-time surface shifted to go through the origin of
M8 defines the preferred M4 ⊂ M8 uniquely, and one can projects the point of M8

to this M4 to get M4 point. This identification implies that the dimension of tangent
space projection to M4 is maximum, and one avoids the situations in which the image
surface of H has dimension smaller than 4.

(b) One can imagine also second option which however fails. Since the Kähler structure
of M8 implies a unique decomposition M8 = M4 × E4, this surface in turn defines a
surface in M4×CP2 obtained by assigning to the point of 4-surface point (m, s) ∈ H =
M4 × CP2: m ∈ M4 is obtained as projection M8 → M4 (this is modification to the
original definition) and s ∈ CP2 parametrizes the quaternionic tangent plane as point
of CP2. Here the local decomposition G2/U(2) = S6 × CP2 is essential for achieving
uniqueness.

One can however represent objection to this identification. The dimension of image
in H is smaller than 4. For instance, hyperquaternionic plane M4

1 which has M2 the
intersection with preferred M4 corresponds to constant CP2 point so that its H image
is M2.

2. Generalization to H −H duality

As a matter fact, M8 − H duality might generalize to H − H duality allowing to integrate
space-time surfaces and thus WCW to a category.

1. The map of space-time surfaces of M8 to those of H = M4 × CP2 need not imply that the
image surfaces in H are quaternionic in H. If they are, then the construction can be iterated.
It seems that one continue this series ad infinitum and could generate new solutions of field
equations! If this is the case, one could iterate duality as a sequence M8 → H → H... by
mapping the space-time surface to M4×CP2 by the same recipe as in case of M8. One would
obtain basically a category of space-time surfaces with arrows defined by the duality. Same
probably applies to co-associative surfaces. This certainly makes the heart of mathematician
beat.

2. It is not proven that associativity/co-associativity implies preferred extremal property for
Kähler action. One thing to understand is why Kähler action. An argument in favor of
preferred role of Kähler action is that only Kähler action allows localization of spinor modes
to 2-D surfaces essential for the well-definedness of em charge [K32]. These surface would
be string world sheets and possibly also partonic 2-surfaces and their could correspond to
commutative and co-commutative 2-surfaces in number theoretic vision and be well-defined
also for M8. If so, Kähler action would provide a physical representation for the number
theoretic notions like associativity and commutativity and their co-notions.

3. If all goes as in dreams, the mere associativity or co-associativity in M8 would code for the
preferred extremal property of Kähler action in H and would imply this property in H. The
surfaces with this property would form category with arrow defined by the duality.

4. One could also map the associative surface in M8 to surface in 10-dimensional S6×CP2. In
this case the metric of the image surface cannot have Minkowskian signature and one cannot
assume that the induced metrics are identical. It is not known whether S6 allows genuine
complex structure and Kähler structure which is essential for TGD formulation.

3. Some comments

A couple of comments are in order.

1. This definition differs from the first proposal for years ago stating that each point of X4

contains a fixed M2 ⊂ M4 rather than M2(x) ⊂ M8 and also from the proposal assuming
integrable distribution of M2(x) ⊂ M4. The older proposals are not consistent with the
properties of massless extremals and string like objects for which the counterpart of M2

depends on space-time point and is not restricted to M4. The earlier definition M2(x) ⊂M4

was problematic in the co-associative case since for the Euclidian signature is is not clear
what the counterpart of M2(x) could be.
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2. The new definition is consistent with the existence of Hamilton-Jacobi structure meaning
slicing of space-time surface by string world sheets and partonic 2-surfaces with points of
partonic 2-surfaces labeling the string world sheets [K1]. This structure has been proposed
to characterize preferred extremals in Minkowskian space-time regions at least.

3. Co-associative Euclidian 4-surfaces, say CP2 type vacuum extremal do not contain integrable
distribution of M2(x). It is normal space which contains M2(x). Does this have some physical
meaning? Or does the surface defined by M2(x) have Euclidian analog?

A possible identification of the analog would be as string world sheet at which W boson
field is pure gauge so that the modes of the modified Dirac operator [K32] restricted to the
string world sheet have well-defined em charge. This condition appears in the construction
of solutions of Kähler-Dirac operator.

For octonionic spinor structure the W coupling is however absent so that the condition
does not make sense in M8. The number theoretic condition would be as commutative or
co-commutative surface for which imaginary units in tangent space transform to real and
imaginary unit by a multiplication with a fixed imaginary unit! One can also formulate co-
associativity as a condition that tangent space becomes associative by a multiplication with
a fixed imaginary unit.

There is also another justification for the distribution of Euclidian tangent planes. The idea
about associativity as a fundamental dynamical principle can be strengthened to the state-
ment that space-time surface allows slicing by hyper-complex or complex 2-surfaces, which
are commutative or co-commutative inside space-time surface. The physical interpretation
would be as Minkowskian or Euclidian string world sheets carrying spinor modes. This would
give a connection with string model and also with the conjecture about the general structure
of preferred extremals.

4. Minimalist could argue that the minimal definition requires octonionic structure and asso-
ciativity only in M8. There is no need to introduce the counterpart of Kähler action in M8

since the dynamics would be based on associativity or co-associativity alone. Not that the
decomposition M8 = M4×E4 is not necessary if M4 projection is defined to the M4 defined
by hyper-quaternionic tangent place.

3.3.6 Hyper-octonionic Pauli “matrices” and the definition of associativity

Octonionic Pauli matrices suggest an interesting possibility to define precisely what associativity
means at the level of M8 using gamma matrices (for background see [L1] ).

1. According to the standard definition space-time surface X4 ⊂M8 is associative if the tangent
space at each point of X4 in X4 ⊂ M8 picture is associative. The definition can be given
also in terms of octonionic gamma matrices whose definition is completely straightforward.

2. Could/should one define the analog of associativity at the level of H? One can identify the
tangent space of H as M8 and can define octonionic structure in the tangent space and this
allows to define associativity locally. One can replace gamma matrices with their octonionic
variants and formulate associativity in terms of them locally and this should be enough.

Skeptic however remindsM4 allows hyper-quaternionic structure and CP2 quaternionic struc-
ture so that complexified quaternionic structure would look more natural for H. The tangent
space would decompose as M8 = HQ+ ijQ, weher j is commuting imaginary unit and HQ
is spanned by real unit and by units iIk, where i second commutating imaginary unit and Ik
denotes quaternionic imaginary units. There is no need to make anything associative.

There is however far from obvious that octonionic spinor structure can be (or need to be!) de-
fined globally. The lift of the CP2 spinor connection to its octonionic variant has questionable
features: in particular vanishing of the charged part and reduction of neutral part to photon.
Therefore is is unclear whether associativity condition makes sense for X4 ⊂M4×CP2. What
makes it so fascinating is that it would allow to iterate duality as a sequencesM8 → H → H....
This brings in mind the functional composition of octonion real-analytic functions suggested
to produced associative or co-associative surfaces.
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I have not been able to settle the situation. What seems the working option is associativity
in both M8 and H and Kähler-Dirac gamma matrices defined by appropriate Kähler action and
correlation between associativity and preferred extremal property.

3.3.7 Are Kähler and spinor structures necessary in M8?

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of M8

Kähler action with same value of Kähler action defining Kähler function. As found, this leads to
the conclusion that the M8−H duality is Kähler isometry. Coupling of spinors to Kähler potential
is the next step and this in turn leads to the introduction of spinor structure so that quantum
TGD in H should have full M8 dual.

1. Are also the 4-surfaces in M8 preferred extremals of Kähler action?

It would be a mathematical miracle if associative and co-associative surfaces in M8 would be in
1-1 correspondence with preferred extremals of Kähler action. This motivates the question whether
Kähler action make sense also inM8. This does not exclude the possibility that associativity implies
or is equivalent with the preferred extremal property.

One expects a close correspondence between preferred extremals: also now vacuum degeneracy
is obtained, one obtains massless extremals, string like objects, and counterparts of CP2 type
vacuum extremals. All known extremals would be associative or co-associative if modified gamma
matrices define the notion (possible only in the case of H).

The strongest form of duality would be that the space-time surfaces in M8 and H have same
induced metric same induced Kähler form. The basic difference would be that the spinor connection
for surfaces in M8 would be however neutral and have no left handed components and only em
gauge potential. A possible interpretation is that M8 picture defines a theory in the phase in which
electroweak symmetry breaking has happened and only photon belongs to the spectrum.

The question is whether one can define WCW also for M8. Certainly it should be equivalent
with WCW for H: otherwise an inflation of poorly defined notions follows. Certainly the general
formulation of the WCW geometry generalizes from H to M8. Since the matrix elements of
symplectic super-Hamiltonians defining WCW gamma matrices are well defined as matrix elements
involve spinor modes with Gaussian harmonic oscillator behavior, the non-compactness of E4 does
not pose any technical problems.

2. Spinor connection of M8

There are strong physical constraints on M8 dual and they could kill the hypothesis. The
basic constraint to the spinor structure of M8 is that it reproduces basic facts about electro-
weak interactions. This includes neutral electro-weak couplings to quarks and leptons identified as
different H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2

of covariantly constant Kähler forms so that one can accommodate free independent Abelian
gauge fields assuming that the independent gauge fields are orthogonal to each other when
interpreted as realizations of quaternionic imaginary units. This is possible but perhaps a
more natural option is the introduction of just single Kähler form as in the case of CP2.

2. One should be able to distinguish between quarks and leptons also in M8, which suggests
that one introduce spinor structure and Kähler structure in E4. The Kähler structure of
E4 is unique apart form SO(3) rotation since all three quaternionic imaginary units and the
unit vectors formed from them allow a representation as an antisymmetric tensor. Hence one
must select one preferred Kähler structure, that is fix a point of S2 representing the selected
imaginary unit. It is natural to assume different couplings of the Kähler gauge potential
to spinor chiralities representing quarks and leptons: these couplings can be assumed to be
same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving
coupling to Kähler form and Z0 contains both axial and vector parts. The naive replacement
of sigma matrices appearing in the coupling of electroweak gauge fields takes the left handed
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parts of these fields to zero so that only neutral part remains. Further, gauge fields correspond
to curvature of CP2 which vanishes for E4 so that only Kähler form form remains. Kähler
form couples to 3L and q so that the basic asymmetry between leptons and quarks remains.
The resulting field could be seen as analog of photon.

4. The absence of weak parts of classical electro-weak gauge fields would conform with the
standard thinking that classical weak fields are not important in long scales. A further
prediction is that this distinction becomes visible only in situations, where H picture is
necessary. This is the case at high energies, where the description of quarks in terms of SU(3)
color is convenient whereas SO(4) QCD would require large number of E4 partial waves.
At low energies large number of SU(3) color partial waves are needed and the convenient
description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

3. Dirac equation for leptons and quarks in M8

Kähler gauge potential would also couple to octonionic spinors and explain the distinction
between quarks and leptons.

1. The complexified octonions representing H spinors decompose to 1 + 1 + 3 + 3 under SU(3)
representing color automorphisms but the interpretation in terms of QCD color does not
make sense. Rather, the triplet and single combine to two weak isospin doublets and quarks
and leptons corresponds to to “spin” states of octonion valued 2-spinor. The conservation of
quark and lepton numbers follows from the absence of coupling between these states.

2. One could modify the coupling so that coupling is on electric charge by coupling it to elec-
tromagnetic charge which as a combination of unit matrix and sigma matrix is proportional
to 1 + kI1, where I1 is octonionic imaginary unit in M2 ⊂M4. The complexified octonionic
units can be chosen to be eigenstates of Qem so that Laplace equation reduces to ordinary
scalar Laplacian with coupling to self-dual em field.

3. One expects harmonic oscillator like behavior for the modes of the Dirac operator of M8

since the gauge potential is linear in E4 coordinates. One possibility is Cartesian coordinates
is A(Ax, Ay, Az, At) = k(−y, x, t,−z). Thhe coupling would make E4 effectively a compact
space.

4. The square of Dirac operator gives potential term proportional to r2 = x2 + y2 + z2 + t2 so
that the spectrum of 4-D harmonic oscillator operator and SO(4) harmonics localized near
origin are expected. For harmonic oscillator the symmetry enhances to SU(4).

If one replaces Kähler coupling with em charge symmetry breaking of SO(4) to vectorial
SO(3) is expected since the coupling is proportional to 1 + ike1 defining electromagnetic
charge. Since the basis of complexified quaternions can be chosen to be eigenstates of e1

under multiplication, octonionic spinors are eigenstates of em charge and one obtains two
color singles 1 ± e1 and color triplet and antitriplet. The color triplets cannot be however
interpreted in terms of quark color.

Harmonic oscillator potential is expected to enhance SO(3) to SU(3). This suggests the
reduction of the symmetry to SU(3)×U(1) corresponding to color symmetry and em charge
so that one would have same basic quantum numbers as tof CP2 harmonics. An interesting
question is how the spectrum and mass squared eigenvalues of harmonics differ from those
for CP2.

5. In the square of Dirac equation JklΣkl term distinguishes between different em charges (Σkl
reduces by self duality and by special properties of octonionic sigma matrices to a term
proportional to iI1 and complexified octonionic units can be chosen to be its eigenstates with
eigen value ±1. The vacuum mass squared analogous to the vacuum energy of harmonic
oscillator is also present and this contribution are expected to cancel themselves for neutrinos
so that they are massless whereas charged leptons and quarks are massive. It remains to be
checked that quarks and leptons can be classified to triality T = ±1 and t = 0 representations
of dynamical SU(3) respectively.
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4. What about the analog of Kähler-Dirac equation

Only the octonionic structure in T (M8) is needed to formulate quaternionicity of space-time
surfaces: the reduction to Oc-real-analyticity would be extremely nice but not necessary (Oc de-
notes complexified octonions needed to cope with Minkowskian signature). Most importantly,
there might be no need to introduce Kähler action (and Kähler form) in M8. Even the octonionic
representation of gamma matrices is un-necessary. Neither there is any absolute need to define oc-
tonionic Dirac equation and octonionic Kähler Dirac equation nor octonionic analog of its solutions
nor the octonionic variants of imbedding space harmonics.

It would be of course nice if the general formulas for solutions of the Kähler Dirac equation
in H could have counterparts for octonionic spinors satisfying quaternionicity condition. One can
indeed wonder whether the restriction of the modes of induced spinor field to string world sheets
defined by integrable distributions of hyper-complex spaces M2(x) could be interpretated in terms
of commutativity of fermionic physics in M8. M8 −H correspondence could map the octonionic
spinor fields at string world sheets to their quaternionic counterparts in H. The fact that only
holomorphy is involved with the definition of modes could make this map possible.

3.3.8 How could one solve associativity/co-associativity conditions?

The natural question is whether and how one could solve the associativity/-co-associativity con-
ditions explicitly. One can imagine two approaches besides M8 → H → H... iteration generating
new solutions from existing ones.

1.Could octonion-real analyticity be equivalent with associativity/co-associativity?

Analytic functions provide solutions to 2-D Laplace equations and one might hope that also the
field equations could be solved in terms of octonion-real-analyticity at the level of M8 perhaps also
at the level of H. Signature however causes problems - at least technical. Also the compactness of
CP2 causes technical difficulties but they need not be insurmountable.

For E8 the tangent space would be genuinely octonionic and one can define the notion octonion-
real analytic map as a generalization of real-analytic function of complex variables (the coefficients
of Laurent series are real to guarantee associativity of the series). The argument is complexified
octonion in O⊕iO forming an algebra but not a field. The norm square is Minkowskian as difference
of two Euclidian octonionic norms: N(o1 + io2) = N(o1)−N(o2) and vanishes at 15-D light cone
boundary. Obviously, differential calculus is possible outside the light-cone boundary. Rational
analytic functions have however poles at the light-cone boundary. One can wonder whether the
poles at M4 light-cone boundary, which is subset of 15-D light-cone boundary could have physical
significance and relevant for the role of causal diamonds in ZEO.

The candidates for associative surfaces defined by Oc-real-analytic functions (I use Oc for
complexified octonions) have Minkowskian signature of metric and are 4-surfaces at which the
projection of f(o1 + io2) to Im(O1), iIm(O2), and iRe(Q2) ⊕ Im(Q1) vanish so that only the
projection to hyper-quaternionic Minkowskian sub-space M4 = Re(Q1) + iIm(Q2) with signature
(1,−1,−, 1−, 1) is non-vanishing. The inverse image need not belong to M8 and in general it
belongs to M8

c but this is not a problem: all that is needed that the tangent space of inverse
image is complexified quaternionic. If this is the case then M8 − H duality maps the tangent
space of the inverse image to CP2 point and image itself defines the point of M4 so that a point
of H is obtained. Co-associative surfaces would be surfaces for which the projections of image to
Re(O1), iRe(O2), and to Im(O1) vanish so that only the projection to iIm(O2) with signature
(−1,−1,−1,−1) is non-vanishing.

The inverse images as 4-D sub-manifolds of M8
c (not M8!) are excellent candidates for associa-

tive and co-associative 4-surfaces since M8 −H duality assignes to them a 4-surface in M4 ×CP2

if the tangent space at given point is complexified quaternionic. This is true if one believes on the
analytic continuation of the intuition from complex analysis (the image of real axes under the map
defined by Oc-real-analytic function is real axes in the new coordinates defined by the map: the
intuition results by replacing “real” by “complexified quaternionic”). The possibility to solve field
equations in this manner would be of enormous significance since besides basic arithmetic oper-
ations also the functional decomposition of Oc-real-analytic functions produces similar functions.
One could speak of the algebra of space-time surfaces.
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What is remarkable that the complexified octonion real analytic functions are obtained by
analytic continuation from single real valued function of real argument. The real functions form
naturally a hierarchy of polynomials (maybe also rational functions) and number theoretic vision
suggests that there coefficients are rationals or algebraic numbers. Already for rational coefficients
hierarchy of algebraic extensions of rationals results as one solves the vanishing conditions. There
is a temptation to regard this hierarchy coding for space-time sheets as an analog of DNA.

Note that in the recent formulation there is no need to pose separately the condition about
integrable distribution of M2(x) ⊂M4.

2. Quaternionicity condition for space-time surfaces

Quaternionicity actually has a surprisingly simple formulation at the level of space-time sur-
faces. The following discussion applies to both M8 and H with minor modifications if one accepts
that also H can allow octonionic tangent space structure, which does not require gamma matrices.

1. Quaternionicity is equivalent with associativity guaranteed by the vanishing of the associator
A(a, b, c) = a(bc)− (ab)c for any triplet of imaginary tangent vectors in the tangent space of
the space-time surface. The condition must hold true for purely imaginary combinations of
tangent vectors.

2. If one is able to choose the coordinates in such a manner that one of the tangent vectors
corresponds to real unit (in the imbedding map imbedding space M4 coordinate depends
only on the time coordinate of space-time surface), the condition reduces to the vanishing of
the octonionic product of remaining three induced gamma matrices interpreted as octonionic
gamma matrices. This condition looks very simple - perhaps too simple!- since it involves
only first derivatives of the imbedding space vectors.

One can of course whether quaternionicity conditions replace field equations or only select
preferred extremals. In the latter case, one should be able to prove that quaternionicity
conditions are consistent with the field equations.

3. Field equations would reduce to tri-linear equations in in the gradients of imbedding space co-
ordinates (rather than involving imbedding space coordinates quadratically). Sum of analogs
of 3× 3 determinants deriving from a× (b× b) for different octonion units is involved.

4. Written explicitly field equations give in terms of vielbein projections eAα , vielbein vectors eAk ,
coordinate gradients ∂αh

k and octonionic structure constants fABC the following conditions
stating that the projections of the octonionic associator tensor to the space-time surface
vanishes:

eAαe
B
β e

C
γ A

E
ABC = 0 ,

AEABC = f E
AD f D

BC − f D
AB f E

DC ,

eAα = ∂αh
keAk ,

Γk = eAk γA .

(3.6)

The very naive idea would be that the field equations are indeed integrable in the sense that
they reduce to these tri-linear equations. Tri-linearity in derivatives is highly non-trivial
outcome simplifying the situation further. These equations can be formulated as the as
purely algebraic equations written above plus integrability conditions

FAαβ = Dαe
A
β −Dβe

A
α = 0 . (3.7)

One could say that vielbein projections define an analog of a trivial gauge potential. Note
however that the covariant derivative is defined by spinor connection rather than this effective
gauge potential which reduces to that in SU(2). Similar formulation holds true for field
equations and one should be able to see whether the field equations formulated in terms of
derivatives of vielbein projections commute with the associatitivity conditions.
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5. The quaternionicity conditions can be formulated as vanishing of generalization of Cayley’s
hyperdeterminant for “hypermatrix” aijk with 2-valued indiced
(see http://tinyurl.com/ya7h3n9z). Now one has 8 hyper-matrices with 3 8-valued indices
associated with the vanishing AEBCDx

ByCzD = 0 of trilinear forms defined by the associa-
tors. The conditions say somethig only about the octonioni structure constants and since
octonionic space allow quaternionic sub-spaces these conditions must be satisfied.

The inspection of the Fano triangle [A36] (see Fig. 1) expressing the multiplication table for
octonionic imaginary units reveals that give any two imaginary octonion units e1 and e2 their
product e1e2 (or equivalently commutator) is imaginary octonion unit (2 times octonion unit) and
the three units span together with real unit quaternionic sub-algebra. There it seems that one can
generate local quaternionic sub-space from two imaginary units plus real unit. This generalizes to
the vielbein components of tangent vectors of space-time surface and one can build the solutions
to the quaternionicity conditions from vielbein projections e1, e2, their product e3 = k(x)e1e2 and
real fourth “time-like” vielbein component which must be expressible as a combination of real unit
and imaginary units:

e0 = a× 1 + biei

For static solutions this condition is trivial. Here summation over i is understood in the latter
term. Besides these conditions one has integrability conditions and field equations for Kähler
action. This formulation suggests that quaternionicity is additional - perhaps defining - property
of preferred extremals.

3.3.9 Quaternionicity at the level of imbedding space quantum numbers

From the multiplication table of octonions as illustrated by Fano triangle [A36] one finds that all
edges of the triangle, the middle circle and the three the lines connecting vertices to the midpoints
of opposite side define triplets of quaternionic units. This means that by taking real unit and any
imaginary unit in quaternionic M4 algebra spanning M2 ⊂ M4 and two imaginary units in the
complement representing CP2 tangent space one obtains quaternionic algebra. This suggests an
explanation for the preferred M2 contained in tangent space of space-time surface (the M2:s could
form an integrable distribution). Four-momentum restricted to M2 and I3 and Y interpreted as
tangent vectors in CP2 tangent space defined quaterionic sub-algebra. This could give content for
the idea that quantum numbers are quaternionic.

I have indeed proposed that the four-momentum belongs to M2. If M2(x) form a distribution as
the proposal for the preferred extremals suggests this could reflect momentum exchanges between
different points of the space-time surface such that total momentum is conserved or momentum
exchange between two sheets connected by wormhole contacts.

3.3.10 Questions

In following some questions related to M8 −H duality are represented.

1. Could associativity condition be formulated using modified gamma matrices?

Skeptic can criticize the minimal form of M8 − H duality involving no Kähler action in M8

is unrealistic. Why just Kähler action? What makes it so special? The only defense that I can
imagine is that Kähler action is in many respects unique choice.

An alternative approach would replace induced gamma matrices with the modified ones to get
the correlation In the case of M8 this option cannot work. One cannot exclude it for H.

1. For Kähler action the Kähler-Dirac gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, assign to a

given point of X4 a 4-D space which need not be tangent space anymore or even its sub-space.

The reason is that canonical momentum current contains besides the gravitational contri-
bution coming from the induced metric also the “Maxwell contribution” from the induced
Kähler form not parallel to space-time surface. In the case of M8 the duality map to H is
therefore lost.

http://tinyurl.com/ya7h3n9z
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2. The space spanned by the Kähler-Dirac gamma matrices need not be 4-dimensional. For
vacuum extremals with at most 2-D CP2 projection Kähler-Dirac gamma matrices vanish
identically. For massless extremals they span 1- D light-like subspace. For CP2 vacuum
extremals the modified gamma matrices reduces to ordinary gamma matrices for CP2 and the
situation reduces to the quaternionicity of CP2. Also for string like objects the conditions are
satisfied since the gamma matrices define associative sub-space as tangent space of M2×S2 ⊂
M4×CP2. It seems that associativity is satisfied by all known extremals. Hence Kähler-Dirac
gamma matrices are flexible enough to realize associativity in H.

3. Kähler-Dirac gamma matrices in Dirac equation are required by super conformal symmetry
for the extremals of action and they also guarantee that vacuum extremals defined by surfaces
in M4 × Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces.
The modified definition of associativity in H does not affect in any manner M8 −H duality
necessarily based on induced gamma matrices in M8 allowing purely number theoretic in-
terpretation of standard model symmetries. One can however argue that the most natural
definition of associativity is in terms of induced gamma matrices in both M8 and H.

Remark: A side comment not strictly related to associativity is in order. The anti-commutators
of the Kähler-Dirac gamma matrices define an effective Riemann metric and one can assign to it
the counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would
have two different metrics associated with the space-time surface. Only if the action defining
space-time surface is identified as the volume in the ordinary metric, these metrics are equivalent.
The index raising for the effective metric could be defined also by the induced metric and it is not
clear whether one can define Riemann connection also in this case. Could this effective metric have
concrete physical significance and play a deeper role in quantum TGD? For instance, AdS-CFT
duality leads to ask whether interactions be coded in terms of the gravitation associated with the
effective metric.

Now skeptic can ask why should one demand M8 − H correspondence if one in any case
is forced to introduced Kähler also at the level of M8? Does M8 − H correspondence help to
construct preferred extremals or does it only bring in a long list of conjectures? I can repeat the
questions of the skeptic.

2. Minkowskian-Euclidian ↔ associative–co-associative?

The 8-dimensionality of M8 allows to consider both associativity of the tangent space and
associativity of the normal space- let us call this co-associativity of tangent space- as alternative
options. Both options are needed as has been already found. Since space-time surface decomposes
into regions whose induced metric possesses either Minkowskian or Euclidian signature, there is a
strong temptation to propose that Minkowskian regions correspond to associative and Euclidian
regions to co-associative regions so that space-time itself would provide both the description and
its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an in-
teresting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer
as preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size

of the space-time sheet at which elementary particle represented as CP2 type extremal is topolog-
ically condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of

the wormhole contacts associated with the CP2 type extremal and CP2 size is the natural length
unit now. Obviously the quantitative formulation for associative-co-associative duality would be
in terms p→ k duality.

3. Can M8 −H duality be useful?

Skeptic could of course argue that M8 − H duality generates only an inflation of unproven
conjectures. This might be the case. In the following I will however try to defend the conjecture.
One can however find good motivations for M8 −H duality: both theoretical and physical.

1. If M8 −H duality makes sense for induced gamma matrices also in H, one obtains infinite
sequence if dualities allowing to construct preferred extremals iteratively. This might relate
to octonionic real-analyticity and composition of octonion-real-analytic functions.
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2. M8 − H duality could provide much simpler description of preferred extremals of Kähler
action as hyper-quaternionic surfaces. Unfortunately, it is not clear whether one should
introduce the counterpart of Kähler action in M8 and the coupling of M8 spinors to Kähler
form. Note that the Kähler form in E4 would be self dual and have constant components:
essentially parallel electric and magnetic field of same constant magnitude.

3. M8 − H duality provides insights to low energy physics, in particular low energy hadron
physics. M8 description might work when H-description fails. For instance, perturbative
QCD which corresponds to H-description fails at low energies whereas M8 description might
become perturbative description at this limit. Strong SO(4) = SU(2)L × SU(2)R invariance
is the basic symmetry of the phenomenological low energy hadron models based on conserved
vector current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC).
Strong SO(4) = SU(2)L×SU(2)R relates closely also to electro-weak gauge group SU(2)L×
U(1) and this connection is not well understood in QCD description. M8 −H duality could
provide this connection. Strong SO(4) symmetry would emerge as a low energy dual of
the color symmetry. Orbital SO(4) would correspond to strong SU(2)L × SU(2)R and by
flatness of E4 spin like SO(4) would correspond to electro-weak group SU(2)L × U(1)R ⊂
SO(4). Note that the inclusion of coupling to Kähler gauge potential is necessary to achieve
respectable spinor structure in CP2. One could say that the orbital angular momentum in
SO(4) corresponds to strong isospin and spin part of angular momentum to the weak isospin.

This argument does not seem to be consistent with SU(3)×U(1) ⊂ SU(4) symmetry for Mx
Dirac equation. One can however argue that SU(4) symmetry combines SO(4) multiplets
together. Furthermore, SO(4) represents the isometries leaving Kähler form invariant.

4. M8 −H duality in low energy physics and low energy hadron physics

M8 −H can be applied to gain a view about color confinement. The basic idea would be that
SO(4) and SU(3) provide provide dual descriptions of quarks using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies.

A possible interpretation is that the space-time surfaces vary so slowly in CP2 degrees of
freedom that can approximate CP2 with a small region of its tangent space E4. One could also
say that color interactions mask completely electroweak interactions so that the spinor connection
of CP2 can be neglected and one has effectively E4. The basic prediction is that SO(4) should
appear as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks
and gluons are expected to appear at the confinement limit. Since WCW degrees of freedom
begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly
relate to the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong
SO(4) quantum numbers can be identified as orbital counterparts of right and left handed
electro-weak isospin coinciding with strong isospin for lowest quarks. In sigma model pion
and sigma boson form the components of E4 valued vector field or equivalently collection
of four E4 Hamiltonians corresponding to spherical E4 coordinates. Pion corresponds to S3

valued unit vector field with charge states of pion identifiable as three Hamiltonians defined
by the coordinate components. Sigma is mapped to the Hamiltonian defined by the E4 radial
coordinate. Excited mesons corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4)
partial waves. At the low energy limit only lowest representations would be be important
whereas at higher energies higher partial waves would be excited and the description based
on CP2 partial waves would become more appropriate.
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4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left
resp. right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin
statistics problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both
cases so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-
adic mass calculations allowing fractally scaled up versions of various quarks allow to replace
Gell-Mann mass formula with highly successful predictions for hadron masses [K18] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to
construct low energy hadron physics in terms of SO(4) gauge theory.

3.3.11 Summary

The overall conclusion is that the most convincing scenario relies on the associativity/co-associativity
of space-time surfaces define by induced gamma matrices and applying both for M8 and H. The
fact that the duality can be continued to an iterated sequence of duality maps M8 → H → H... is
what makes the proposal so fascinating and suggests connection with fractality.

The introduction of Kähler action and coupling of spinors to Kähler gauge potentials is highly
natural. One can also consider the idea that the space-time surfaces in M8 and H have same
induced metric and Kähler form: for iterated duality map this would mean that the steps in the
map produce space-time surfaces which identical metric and Kähler form so that the sequence might
stop. M8

H duality might provide two descriptions of same underlying dynamics: M8 description
would apply in long length scales and H description in short length scales.

4 Infinite Primes

The notion of prime seems to capture something very essential about what it is to be elementary
building block of matter and has become a fundamental conceptual element of TGD. The notion
of prime gains it generality from its reducibility to the notion of prime ideal of an algebra. Thus
the notion of prime is well-defined, not only in case of quaternions and octonions, but also for
their complexifications and one can speak about infinite primes in the case of hyper-quaternions
and -octonions, which are especially natural physically and for which numbers having zero norm
correspond physically to light-like 8-vectors.

4.1 Basic Ideas

4.1.1 The notion of infinite prime

The original motivation for the notion of infinite prime came from the first attempts to construct
TGD inspired theory of consciousness (around 1995) [K26] . Suppose very naively that the 4-
surfaces in a given sector of the “world of classical worlds” (WCW) are labelled by a fixed p-adic
prime. The natural expectation is that evolution by quantum jumps means dispersion in the space
of these sectors and leads to the increase of the p-adic prime characterizing the Universe. As one
moves backwards in subjective time (sequence of quantum jumps) one ends up to the situation
in which the prime characterizing the universe was p = 2. Should one assume that there was the
first quantum jump when everything began? If not, then it would seem that the p-adic prime
characterizing the Universe must be infinite. Second problem is that the p-adic length scales are
finite and if the size scale of Universe is given by p-adic length scale the Universe has finite sized:
this does not make sense in TGD framework. The only way out of the problems is the assumption
that the p-adic prime characterizing the entire Universe is literally infinite and that p-adic primes
characterizing space-time sheets are finite.

These argument, which are by no means central for the recent view about p-adic primes,
motivated the attempt to construct a theory of infinite primes and to extend quantum TGD
accordingly. This turns out to be possible. The recipe for constructing infinite primes is structurally
equivalent with a repeated second quantization of an arithmetic super-symmetric quantum field
theory. At the lowest level one has fermionic and bosonic states labeled by finite primes and infinite
primes correspond to many particle states of this theory. Also infinite primes analogous to bound
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states are predicted. This hierarchy of quantizations can be continued indefinitely by taking the
many particle states of the previous level as elementary particles at the next level. It must be
also emphasized that the notion of infinity is relativistic. With respect to the p-adic norm infinite
primes have unit norm for all finite and infinite primes so that there is nothing to become scared
of!

Construction could make sense also for hyper-quaternionic and hyper-octonionic primes al-
though non-commutativity and non-associativity pose technical challenges. One can also construct
infinite number of real units as ratios of infinite integers with a precise number theoretic anatomy.
The fascinating finding is that the quantum states labeled by standard model quantum numbers
allow a representation as wave functions in the discrete space of these units. Space-time point
becomes infinitely richly structured in the sense that one can associate to it a wave function in
the space of real (or octonionic) units allowing to represent the WCW spinor fields. One can
speak about algebraic holography or number theoretic Brahman=Atman identity and one can also
say that the points of imbedding space and space-time surface are subject to a number theoretic
evolution. In philosophical mood one can of course also ask whether there exists a hierarchy of
imbedding spaces in which the imbedding space at the lower level represents something with in-
finitesimal size in the sense of real topology and whether this hierarchy is accompanied also by a
hierarchy of conscious entities.

This picture suggest that the Universe of quantum TGD might basically provide a physical
representation of number theory allowing also infinite primes. The proposal suggests also a possible
generalization of real numbers to a number system akin to hyper-reals introduced by Robinson in
his non-standard calculus [A20] providing a rigorous mathematical basis for calculus. In fact, some
rather natural requirements lead to a unique generalization for the concepts of integer, rational and
real. Infinite integers and reals can be regarded as infinite-dimensional vector spaces with integer
and real valued coefficients respectively. Same generalization could make sense for all classical
number fields [A10, A4, A13] .

4.1.2 Infinite primes and physics in TGD Universe

Several different views about how infinite primes, integers, and rationals might be relevant in TGD
Universe have emerged.

1. Infinite primes and super-symmetric quantum field theory

Consider next the physical interpretation.

1. The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization
of a super-symmetric arithmetic quantum field theory. This suggests that WCW spinor fields
or at least the ground states of associated super-conformal representations [A15] (for super-
conformal invariance see [A15] could be mapped to infinite primes in both bosonic and
fermionic degrees of freedom. The process might generalize so that it applies in the case of
quaternionic and octonionic primes and their hyper counterparts. This hierarchy of second
quantizations means enormous generalization of physics to what might be regarded a physical
counterpart for a hierarchy of abstractions about abstractions about.... The ordinary second
quantized quantum physics corresponds only to the lowest level infinite primes.

2. The ordinary primes appearing as building blocks of infinite primes at the first level of the
hierarchy could be identified as coding for p-adic primes assignable to fermionic and bosonic
partons identified as 2-surfaces of a given space-time sheet. The hierarchy of infinite primes
would correspond to hierarchy of space-time sheets defined by the topological condensate.
This leads also to a precise identification of p-adic and real variants of bosonic partonic 2-
surfaces as correlates of intention and action and pairs of p-adic and real fermionic partons
as correlates for cognitive representations.

3. The idea that infinite primes characterize quantum states of the entire Universe, perhaps
ground states of super-conformal representations, if not all states, could be taken further. It
turns out that this idea makes sense when one considers discrete wave functions in the space
of infinite primes and that one can indeed represent standard model quantum numbers in
this manner.
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4. The number theoretical supersymmetry suggests also space-time supersymmetry TGD frame-
work. Space-time super-symmetry in its standard form is not possible in TGD Universe and
this cheated me to believe that this supersymmetry is completely absent in TGD Universe.
The progress in the understanding of the properties of the modified Dirac action however led
to a generalization of the space-time super-symmetry as a dynamical and broken symmetry
of quantum TGD [K11] .

Here however emerges the idea about the number theoretic analog of color confinement. Ra-
tional (infinite) primes allow not only a decomposition to (infinite) primes of algebraic extensions
of rationals but also to algebraic extensions of quaternionic and octonionic (infinite) primes. The
physical analog is the decomposition of a particle to its more elementary constituents. This fits
nicely with the idea about number theoretic resolution represented as a hierarchy of Galois groups
defined by the extensions of rationals and realized at the level of physics in terms of Jones inclu-
sions [K31] defined by these groups having a natural action on space-time surfaces, induced spinor
fields, and on WCW spinor fields representing physical states [K5] .

2. Infinite primes and physics as number theory

The hierarchy of algebraic extensions of rationals implying corresponding extensions of p-adic
numbers [A32, A23, A24, A19] suggests that Galois groups, which are the basic symmetry groups
of number theory, should have concrete physical representations using induced spinor fields and
configuration space spinor fields and also infinite primes and real units formed as infinite rationals.
These groups permute zeros of polynomials and thus have a concrete physical interpretation both
at the level of partonic 2-surfaces dictated by algebraic equations and at the level of braid hierarchy.
The vision about the role of hyperfinite factors of II1 and of Jones inclusions as descriptions of
quantum measurements with finite measurement resolution leads to concrete ideas about how these
groups are realized.

G2 acts as automorphisms of hyper-octonions and SU(3) as its subgroup respecting the choice
of a preferred imaginary unit. The discrete subgroups of SU(3) permuting to each other hyper-
octonionic primes are analogous to Galois group and turned out to play a crucial role in the
understanding of the correspondence between infinite hyper-octonionic primes and quantum states
predicted by quantum TGD.

3. The notion of finite measurement resolution as the key concept

TGD predicts several hierarchies: the hierarchy of space-time sheets, the hierarchy of infinite
primes, the hierarchy of Jones inclusions identifiable in terms of finite measurement resolution [K31]
, the dark matter hierarchy characterized by increasing values of ~ [K9] , the hierarchy of extensions
of a given p-adic number field. TGD inspired theory of consciousness predictes the hierarchy
of selves and quantum jumps with increasing duration with respect to geometric time. These
hierarchies should be closely related.

The notion of finite measurement resolution turns out to be the key concept: the p-adic norm of
the rational defined by the infinite prime characterizes the angle measurement resolution for given
p-adic prime p. It is essential that one has what might be called a state function reduction selecting
a fixed p-adic prime which could be also infinite. This gives direct connections with cognition and
with the p-adicization program relying also on angle measurement resolution. Also the value the
integers characterizing the singular coverings of CD and CP2 defining as their product Planck
constant characterize the measurement resolution for a given p-adic prime in CD and CP2 degrees
of freedom. This conforms with the fact that elementary particles are characterized by two infinite
primes. Hence finite measurement resolution ties tightly together the three threads of the number
theoretic vision. Finite measurement resolution relates also closely to the inclusions of hyper-finite
factors central for TGD inspired quantum measurement theory with finite measurement resolution.

4. Space-time correlates of infinite primes

Infinite primes code naturally for Fock states in a hierarchy of super-symmetric arithmetic
quantum field theories. Quantum classical correspondence leads to ask whether infinite primes
could also code for the space-time surfaces serving as symbolic representations of quantum states.
This would a generalization of algebraic geometry would emerge and could reduce the dynamics of
Kähler action to algebraic geometry and organize 4-surfaces to a physical hierarchy according to
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their algebraic complexity. This conjecture should be consistent with two other conjectures about
the dynamics of space-time surfaces (space-time surfaces as preferred extrema of Kähler action and
space-time surfaces as quaternionic or co-quaternionic (as associative or co-associative) 4-surfaces
of hyper-octonion space M8).

Quantum classical correspondence requires the map of the quantum numbers of WCW spinor
fields to space-time geometry. The quantum numbers characterizing positive and negative energy
parts of zero energy states couple directly to space-time geometry via the measurement interaction
terms in Kähler action expressing the equality of classical conserved charges in Cartan algebra
with their quantal counterparts for space-time surfaces in quantum superposition. This makes
sense if classical charges parametrize zero modes. The localization in zero modes in state function
reduction would be the WCW counterpart of state function collapse.

Therefore, if one wants to map infinite rationals to space-time geometry it is enough to map
infinite primes to quantum numbers. This map might be i achieved thanks to the detailed picture
about the interpretation of the symmetries of infinite primes in terms of standard model symme-
tries. The notion of finite measurement resolution allows to deduce much more detailed about
this correspondence. In particular, the rational defined by the infinite prime classifies the finite
sub-manifold geometry defined by the discretization of the partonic 2-surface implied by the finite
measurement resolution. Also a direct correlation between integers defining Planck constant and
the “fermionic” part of the infinite prime emerges.

4.1.3 Infinite primes and cognition

The correlation of infinite primes with cognition is the first fascinating possibility and this possi-
bility has stimulated several ideas.

1. One can define the notion of prime also for the algebraic extensions of rationals. The hier-
archy of infinite primes associated with algebraic extensions of rationals leading gradually
towards algebraic closure of rationals would in turn define cognitive hierarchy corresponding
to algebraic extensions of p-adic numbers.

2. The introduction of infinite primes, integers, and rationals leads also to a generalization of
classical number fields since an infinite algebra of real (complex, etc...) units defined by finite
ratios of infinite rationals multiplied by ordinary rationals which are their inverses becomes
possible. These units are not units in the p-adic sense and have a finite p-adic norm which
can be differ from one. This construction generalizes also to the case of hyper- quaternions
and -octonions although non-commutativity and in case of octonions also non-associativity
pose technical problems. Obviously this approach differs from the standard introduction of
infinitesimals in the sense that sum of infinitesimals (real zeros) is replaced by multiplication
of real units meaning that the set of real and also more general units becomes infinitely
degenerate.

3. Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space
can be seen as infinitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point -or more generally wave functions in
the space of the units associated with the point- might be even capable of representing the
quantum state of the entire physical Universe in its structure. For instance, in the real sense
surfaces in the space of units correspond to the same real number 1, and single point, which is
structure-less in the real sense could represent arbitrarily high-dimensional spaces as unions
of real units. For real physics this structure is completely invisible and is relevant only for
the physics of cognition. One can say that Universe is an algebraic hologram, and there
is an obvious connection both with Brahman=Atman identity of Eastern philosophies and
Leibniz’s notion of monad.

4. In ZEO hyper-octonionic units identified as ratios of the infinite integers associated with the
positive and negative energy parts of the zero energy state define a representation of WCW
spinor fields. The action of subgroups of SU(3) and rotation group SU(2) preserving hyper-
octonionic and hyper-quaternionic primeness and identification of momentum and electro-
weak charges in terms of components of hyper-octonionic primes makes this representation
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unique. Hence Brahman-Atman identity has a completely concrete realization and fixes
completely the quantum number spectrum including particle masses and correlations between
various quantum numbers.

5. One can assign to infinite primes at nth level of hierarchy rational functions of n rational
arguments which form a natural hierarchical structure in that highest level corresponds to
a polynomial with coefficients which are rational functions of the arguments at the lower
level. One can solve one of the arguments in terms of lower ones to get a hierarchy of
algebraic extensions. At the lowest level algebraic extensions of rationals emerge, at the
next level algebraic extensions of space of rational functions of single variable, etc... This
would suggest that infinite primes code for the correlation between quantum states and the
algebraic extensions appearing in their their physical description and characterizing their
cognitive correlates. The hierarchy of infinite primes would also correlate with a hierarchy of
logics of various orders (hierarchy of statements about statements about...).

4.2 Infinite Primes, Integers, And Rationals

The definition of the infinite integers and rationals is a straightforward procedure and structurally
similar to a repeated second quantization of a super-symmetric quantum field theory but including
also the number theoretic counterparts of bound states.

4.2.1 The first level of hierarchy

In the following the concept of infinite prime is developed gradually by stepwise procedure rather
than giving directly the basic definitions. The hope is that the development of the concept in the
same manner as it actually occurred would make it easier to understand it.

Step 1

One could try to define infinite primes P by starting from the basic idea in the proof of Euclid
for the existence of infinite number of primes. Take the product of all finite primes and add 1 to
get a new prime:

P = 1 +X ,
X =

∏
p p .

(4.1)

If P were divisible by finite prime then P −X = 1 would be divisible by finite prime and one would
encounter contradiction. One could of course worry about the possible existence of infinite primes
smaller than P and possibly dividing P . The numbers N = P − k, k > 1, are certainly not primes
since k can be taken as a factor. The number P ′ = P − 2 = −1 + X could however be prime. P
is certainly not divisible by P − 2. It seems that one cannot express P and P − 2 as product of
infinite integer and finite integer. Neither it seems possible to express these numbers as products
of more general numbers of form

∏
p∈U p + q, where U is infinite subset of finite primes and q is

finite integer.

Step 2

P and P − 2 are not the only possible candidates for infinite primes. Numbers of form

P (±, n) = ±1 + nX ,
k(p) = 0, 1, ..... ,
n =

∏
p p

k(p) ,

X =
∏
p p ,

(4.2)

where k(p) 6= 0 holds true only in finite set of primes, are characterized by a integer n, and are
also good prime candidates. The ratio of these primes to the prime candidate P is given by integer
n. In general, the ratio of two prime candidates P (m) and P (n) is rational number m/n telling
which of the prime candidates is larger. This number provides ordering of the prime candidates
P (n). The reason why these numbers are good candidates for infinite primes is the same as above.
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No finite prime p with k(p) 6= 0 appearing in the product can divide these numbers since, by the
same arguments as appearing in Euclid’s theorem, it would divide also 1. On the other hand it
seems difficult to invent any decomposition of these numbers containing infinite numbers. Already
at this stage one can notice the structural analogy with the construction of multiboson states in
quantum field theory: the numbers k(p) correspond to the occupation numbers of bosonic states
of quantum field theory in one-dimensional box, which suggests that the basic structure of QFT
might have number theoretic interpretation in some very general sense. It turns out that this
analogy generalizes.

Step 3

All P (n) satisfy P (n) ≥ P (1). One can however also the possibility that P (1) is not the smallest
infinite prime and consider even more general candidates for infinite primes, which are smaller than
P (1). The trick is to drop from the infinite product of primes X =

∏
p p some primes away by

dividing it by integer s =
∏
pi
pi, multiply this number by an integer n not divisible by any prime

dividing s and to add to/subtract from the resulting number nX/s natural number ms such that
m expressible as a product of powers of only those primes which appear in s to get

P (±,m, n, s) = nXs ±ms ,
m =

∏
p|s p

k(p) ,

n =
∏
p|Xs

pk(p), k(p) ≥ 0 .
(4.3)

Here x|y means “prime x divides y”. To see that no prime p can divide this prime candidate it is
enough to calculate P (±,m, n, s) modulo p: depending on whether p divides s or not, the prime
divides only the second term in the sum and the result is nonzero and finite (although its precise
value is not known). The ratio of these prime candidates to P (+, 1, 1, 1) is given by the rational
number n/s: the ratio does not depend on the value of the integer m. One can however order
the prime candidates with given values of n and s using the difference of two prime candidates as
ordering criterion. Therefore these primes can be ordered.

One could ask whether also more general numbers of the form nXs ±m are primes. In this case
one cannot prove the indivisibility of the prime candidate by p not appearing in m. Furthermore,
for s mod 2 = 0 and m mod 2 6= 0, the resulting prime candidate would be even integer so that it
looks improbable that one could obtain primes in more general case either.

Step 4

An even more general series of candidates for infinite primes is obtained by using the following
ansatz which in principle is contained in the original ansatz allowing infinite values of n

P (±,m, n, s|r) = nY r ±ms ,
Y = X

s ,
m =

∏
p|s p

k(p) ,

n =
∏
p|Xs

pk(p), k(p) ≥ 0 .

(4.4)

The proof that this number is not divisible by any finite prime is identical to that used in the
previous case. It is not however clear whether the ansatz for given r is not divisible by infinite
primes belonging to the lower level. A good example in r = 2 case is provided by the following
unsuccessful ansatz

N = (n1Y +m1s)(n2Y +m2s) = n1n2X
2

s2 −m1m2s
2 ,

Y = X
s ,

n1m2 − n2m1 = 0 .

Note that the condition states that n1/m1 and −n2/m2 correspond to the same rational number
or equivalently that (n1,m1) and (n2,m2) are linearly dependent as vectors. This encourages the
guess that all other r = 2 prime candidates with finite values of n and m at least, are primes.
For higher values of r one can deduce analogous conditions guaranteeing that the ansatz does not
reduce to a product of infinite primes having smaller value of r. In fact, the conditions for primality
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state that the polynomial P (n,m, r)(Y ) = nY r+m with integer valued coefficients (n > 0) defined
by the prime candidate is irreducible in the field of integers, which means that it does not reduce
to a product of lower order polynomials of same type.

Step 5

A further generalization of this ansatz is obtained by allowing infinite values for m, which leads
to the following ansatz:

P (±,m, n, s|r1, r2) = nY r1 ±ms ,
m = Pr2(Y )Y +m0 ,
Y = X

s ,
m0 =

∏
p|s p

k(p) ,

n =
∏
p|Y p

k(p), k(p) ≥ 0 .

(4.5)

Here the polynomial Pr2(Y ) has order r2 is divisible by the primes belonging to the complement
of s so that only the finite part m0 of m is relevant for the divisibility by finite primes. Note that
the part proportional to s can be infinite as compared to the part proportional to Y r1 : in this case
one must however be careful with the signs to get the sign of the infinite prime correctly. By using
same arguments as earlier one finds that these prime candidates are not divisible by finite primes.
One must also require that the ansatz is not divisible by lower order infinite primes of the same
type. These conditions are equivalent to the conditions guaranteeing the polynomial primeness
for polynomials of form P (Y ) = nY r1 ± (Pr2(Y )Y +m0)s having integer-valued coefficients. The
construction of these polynomials can be performed recursively by starting from the first order
polynomials representing first level infinite primes: Y can be regarded as formal variable and one
can forget that it is actually infinite number.

By finite-dimensional analogy, the infinite value of m means infinite occupation numbers for the
modes represented by integer s in some sense. For finite values of m one can always write m as a
product of powers of pi|s. Introducing explicitly infinite powers of pi is not in accordance with the
idea that all exponents appearing in the formulas are finite and that the only infinite variables are X
and possibly S (formulas are symmetric with respect to S and X/S). The proposed representation
of m circumvents this difficulty in an elegant manner and allows to say that m is expressible as a
product of infinite powers of pi despite the fact that it is not possible to derive the infinite values
of the exponents of pi.

Summarizing, an infinite series of candidates for infinite primes has been found. The prime can-
didates P (±,m, n, s) labeled by rational numbers n/s and integersm plus the primes P (±,m, n, s|r1, r2)
constructed as r1:th or r2:th order polynomials of Y = X/s: the latter ansatz reduces to the less
general ansatz of infinite values of n are allowed.

One can ask whether the p mod 4 = 3 condition guaranteeing that the square root of −1
does not exist as a p-adic number, is satisfied for P (±,m, n, s). P (±, 1, 1, 1) mod 4 is either 3
or 1. The value of P (±,m, n, s) mod 4 for odd s on n only and is same for all states containing
even/odd number of p mod = 3 excitations. For even s the value of P (±,m, n, s) mod 4 depends
on m only and is same for all states containing even/odd number of p mod = 3 excitations. This
condition resembles G-parity condition of Super Virasoro algebras. Note that either P (+,m, n, s)
or P (−,m, n, s) but not both are physically interesting infinite primes (2m mod 4 = 2 for odd
m) in the sense of allowing complex Hilbert space. Also the additional conditions satisfied by
the states involving higher powers of X/s resemble to Virasoro conditions. An open problem is
whether the analogy with the construction of the many-particle states in super-symmetric theory
might be a hint about more deeper relationship with the representation of Super Virasoro algebras
and related algebras.

It is not clear whether even more general prime candidates exist. An attractive hypothesis is
that one could write explicit formulas for all infinite primes so that generalized theory of primes
would reduce to the theory of finite primes.

4.2.2 Infinite primes form a hierarchy

By generalizing using general construction recipe, one can introduce the second level prime candi-
dates as primes not divisible by any finite prime p or infinite prime candidate of type P (±,m, n, s)



4.2 Infinite Primes, Integers, And Rationals 82

(or more general prime at the first level: in the following we assume for simplicity that these are
the only infinite primes at the first level). The general form of these prime candidates is exactly
the same as at the first level. Particle-analogy makes it easy to express the construction receipe.
In present case “vacuum primes” at the lowest level are of the form

X1

S ± S ,
X1 = X

∏
P (±,m,n,s) P (±,m, n, s) ,

S = s
∏
Pi
Pi ,

s =
∏
pi
pi .

(4.6)

S is product or ordinary primes p and infinite primes Pi(±,m, n, s). Primes correspond to physical
states created by multiplying X1/S (S) by integers not divisible by primes appearing S (X1/S).
The integer valued functions k(p) and K(p) of prime argument give the occupation numbers as-
sociated with X/s and s type “bosons” respectively. The non-negative integer-valued function
K(P ) = K(±,m, n, s) gives the occupation numbers associated with the infinite primes associ-
ated with X1/S and S type “bosons”. More general primes can be constructed by mimicking the
previous procedure.

One can classify these primes by the value of the integer Ktot =
∑
P |X/S K(P ): for a given

value of Ktot the ratio of these prime candidates is clearly finite and given by a rational number.
At given level the ratio P1/P2 of two primes is given by the expression

P1(±,m1,n1,s1K1,S1

P2(±,m2,n2,s2,K,S2) = n1s2
n2s1

∏
±,m,n,s(

n
s )K

+
1 (±,n,m,s)−K+

2 (±,n,m,s) . (4.7)

Here K+
i denotes the restriction of Ki(P ) to the set of primes dividing X/S. This ratio must be

smaller than 1 if it is to appear as the first order term P1P2 → P1/P2 in the canonical identification
and again it seems that it is not possible to get all rationals for a fixed value of P2 unless one allows
infinite values of N expressed neatly using the more general ansatz involving higher power of S.

4.2.3 Construction of infinite primes as a repeated quantization of a super-symmetric
arithmetic quantum field theory

The procedure for constructing infinite primes is very much reminiscent of the second quantization
of an super-symmetric arithmetic quantum field theory in which single particle fermion and boson
states are labeled by primes. In particular, there is nothing especially frightening in the particle
representation of infinite primes: theoretical physicists actually use these kind of representations
quite routinely.

1. The binary-valued function telling whether a given prime divides s can be interpreted as a
fermion number associated with the fermion mode labeled by p. Therefore infinite prime is
characterized by bosonic and fermionic occupation numbers as functions of the prime labeling
various modes and situation is super-symmetric. X can be interpreted as the counterpart
of Dirac sea in which every negative energy state state is occupied and X/s± s corresponds
to the state containing fermions understood as holes of Dirac sea associated with the modes
labeled by primes dividing s.

2. The multiplication of the “vacuum” X/s with n =
∏
p|X/s p

k(p) creates k(p) “p-bosons” in

mode of type X/s and multiplication of the “vacuum” s with m =
∏
p|s p

k(p) creates k(p) “p-

bosons”. in mode of type s (mode occupied by fermion). The vacuum states in which bosonic
creation operators act, are tensor products of two vacuums with tensor product represented
as sum

|vac(±)〉 = |vac(X
s

)〉 ⊗ |vac(±s)〉 ↔ X

s
± s (4.8)

obtained by shifting the prime powers dividing s from the vacuum |vac(X)〉 = X to the
vacuum ±1. One can also interpret various vacuums as many fermion states. Prime property
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follows directly from the fact that any prime of the previous level divides either the first or
second factor in the decomposition NX/S ±MS.

3. This picture applies at each level of infinity. At a given level of hierarchy primes P correspond
to all the Fock state basis of all possible many-particle states of second quantized super-
symmetric theory. At the next level these many-particle states are regarded as single particle
states and further second quantization is performed so that the primes become analogous
to the momentum labels characterizing various single-particle states at the new level of
hierarchy.

4. There are two nonequivalent quantizations for each value of S due to the presence of ± sign
factor. Two primes differing only by sign factor are like G-parity +1 and −1 states in the
sense that these primes satisfy P mod 4 = 3 and P mod 4 = 1 respectively. The requirement
that −1 does not have p-adic square root so that Hilbert space is complex, fixes G-parity
to say +1. This observation suggests that there exists a close analogy with the theory of
Super Virasoro algebras so that quantum TGD might have interpretation as number theory
in infinite context. An alternative interpretation for the ± degeneracy is as counterpart for
the possibility to choose the fermionic vacuum to be a state in which either all positive or all
negative energy fermion states are occupied.

5. One can also generalize the construction to include polynomials of Y = X/S to get infinite
hierarchy of primes labeled by the two integers r1 and r2 associated with the polynomials
in question. An entire hierarchy of vacuums labeled by r1 is obtained. A possible inter-
pretation of these primes is as counterparts for the bound states of quantum field theory.
The coefficient for the power (X/s)r1 appearing in the highest term of the general ansatz,
codes the occupation numbers associated with vacuum (X/s)r1 . All the remaining terms are
proportional to s and combine to form, in general infinite, integer m characterizing various
infinite occupation numbers for the subsystem characterized by s. The additional conditions
guaranteeing prime number property are equivalent with the primality conditions for poly-
nomials with integer valued coefficients and resemble Super Virasoro conditions. For r2 > 0
bosonic occupation numbers associated with the modes with fermion number one are infinite
and one cannot write explicit formula for the boson number.

6. One could argue that the analogy with super-symmetry is not complete. The modes of
Super Virasoro algebra are labeled by natural number whereas now modes are labeled by
prime. This need not be a problem since one can label primes using natural number n.
Also 8-valued spin index associated with fermionic and bosonic single particle states in TGD
world is lacking (space-time is surface in 8-dimensional space). This index labels the spin
states of 8-dimensional spinor with fixed chirality. One could perhaps get also spin index by
considering infinite octonionic primes, which correspond to vectors of 8-dimensional integer
lattice such that the length squared of the lattice vector is ordinary prime:∑

k=1,...,8

n2
k = prime .

Thus one cannot exclude the possibility that TGD based physics might provide representation
for octonions extended to include infinitely large octonions. The notion of prime octonion is
well defined in the set of integer octonions and it is easy to show that the Euclidian norm
squared for a prime octonion is prime. If this result generalizes then the construction of
generalized prime octonions would generalize the construction of finite prime octonions. It
would be interesting to know whether the results of finite-dimensional case might generalize
to the infinite-dimensional context. One cannot exclude the possibility that prime octonions
are in one-one correspondence with physical states in quantum TGD.

These observations suggest a close relationship between quantum TGD and the theory of infinite
primes in some sense: even more, entire number theory and mathematics might be reducible to
quantum physics understood properly or equivalently, physics might provide the representation
of basic mathematics. Of course, already the uniqueness of the basic mathematical structure of
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quantum TGD points to this direction. Against this background the fact that 8-dimensionality of
the imbedding space allows introduction of octonion structure (also p-adic algebraic extensions)
acquires new meaning. Same is also suggested by the fact that the algebraic extensions of p-adic
numbers allowing square root of real p-adic number are 4- and 8-dimensional.

What is especially interesting is that the core of number theory would be concentrated in
finite primes since infinite primes are obtained by straightforward procedure providing explicit
formulas for them. Repeated quantization provides also a model of abstraction process understood
as construction of hierarchy of natural number valued functions about functions about ...... At the
first level infinite primes are characterized by the integer valued function k(p) giving occupation
numbers plus subsystem-complement division (division to thinker and external world!). At the next
level prime is characterized in a similar manner. One should also notice that infinite prime at given
level is characterized by a pair (R = MN,S) of integers at previous level. Equivalently, infinite
prime at given level is characterized by fermionic and bosonic occupation numbers as functions in
the set of primes at previous level.

4.2.4 Construction in the case of an arbitrary commutative number field

The basic construction recipe for infinite primes is simple and generalizes even to the case of
algebraic extensions of rationals. Let K = Q(θ) be an algebraic number field (see the Appendix
of [K24] for the basic definitions). In the general case the notion of prime must be replaced by the
concept of irreducible defined as an algebraic integer with the property that all its decompositions
to a product of two integers are such that second integer is always a unit (integer having unit
algebraic norm, see Appendix of [K24] ).

Assume that the irreducibles of K = Q(θ) are known. Define two irreducibles to be equivalent
if they are related by a multiplication with a unit of K. Take one representative from each
equivalence class of units. Define the irreducible to be positive if its first non-vanishing component
in an ordered basis for the algebraic extension provided by the real unit and powers of θ, is positive.
Form the counterpart of Fock vacuum as the product X of these representative irreducibles of K.

The unique factorization domain (UFD) property (see Appendix of [K24] ) of infinite primes
does not require the ring OK of algebraic integers of K to be UFD although this property might
be forced somehow. What is needed is to find the primes of K; to construct X as the product of
all irreducibles of K but not counting units which are integers of K with unit norm; and to apply
second quantization to get primes which are first order monomials. X is in general a product of
powers of primes. Generating infinite primes at the first level correspond to generalized rationals
for K having similar representation in terms of powers of primes as ordinary rational numbers
using ordinary primes.

4.2.5 Mapping of infinite primes to polynomials and geometric objects

The mapping of the generating infinite primes to first order monomials labeled by their rational
zeros is extremely simple at the first level of the hierarchy:

P±(m,n, s) =
mX

s
± ns→ x± ±

m

sn
. (4.9)

Note that a monomial having zero as its root is not obtained. This mapping induces the mapping
of all infinite primes to polynomials.

The simplest infinite primes are constructed using ordinary primes and second quantization
of an arithmetic number theory corresponds in one-one manner to rationals. Indeed, the integer
s =

∏
i p
ki
i defining the numbers ki of bosons in modes ki, where fermion number is one, and the

integer r defining the numbers of bosons in modes where fermion number is zero, are co-prime.
Moreover, the generating infinite primes can be written as (n/s)X ±ms corresponding to the two
vacua V = X ± 1 and the roots of corresponding monomials are positive resp. negative rationals.

More complex infinite primes correspond sums of powers of infinite primes with rational coef-
ficients such that the corresponding polynomial has rational coefficients and roots which are not
rational but belong to some algebraic extension of rationals. These infinite primes correspond sim-
ply to products of infinite primes associated with some algebraic extension of rationals. Obviously
the construction of higher infinite primes gives rise to a hierarchy of higher algebraic extensions.
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It is possible to continue the process indefinitely by constructing the Dirac vacuum at the n:th
level as a product of primes of previous levels and applying the same procedure. At the second
level Dirac vacuum V = X± 1 involves X which is the product of all primes at previous levels and
in the polynomial correspondence X thus correspond to a new independent variable. At the n:th
level one would have polynomials P (q1|q2|...) of q1 with coefficients which are rational functions
of q2 with coefficients which are.... The hierarchy of infinite primes would be thus mapped to the
functional hierarchy in which polynomial coefficients depend on parameters depending on ....

At the second level one representation of infinite primes would be as algebraic curve resulting
as a locus of P (q1|q2) = 0: this certainly makes sense if q1 and q2 commute. At higher levels the
locus is a higher-dimensional surface.

One can speculate with possible connections to TGD physics. The degree n of the polynomial
is its basic characterizer. Infinite primes corresponding to polynomials of degree n > 1 should
correspond to bound states. On the other hand, the hierarchy of Planck constants suggests strongly
the interpretation in terms of gravitational bound states. Could one identify heff/h = n as the
degree of the polynomial characterizing infinite prime?

4.2.6 How to order infinite primes?

One can order the infinite primes, integers and rationals. The ordering principle is simple: one can
decompose infinite integers to two parts: the “large” and the “small” part such that the ratio of
the small part with the large part vanishes. If the ratio of the large parts of two infinite integers is
different from one or their sign is different, ordering is obvious. If the ratio of the large parts equals
to one, one can perform same comparison for the small parts. This procedure can be continued
indefinitely.

In case of infinite primes ordering procedure goes like follows. At given level the ratios are
rational numbers. There exists infinite number of primes with ratio 1 at given level, namely the
primes with same values of N and same S with MS infinitesimal as compared to NX/S. One can
order these primes using either the relative sign or the ratio of (M1S1)/(M2S2) of the small parts
to decide which of the two is larger. If also this ratio equals to one, one can repeat the process
for the small parts of MiSi. In principle one can repeat this process so many times that one can
decide which of the two primes is larger. Same of course applies to infinite integers and also to
infinite rationals build from primes with infinitesimal MS. If NS is not infinitesimal it is not
obvious whether this procedure works. If NiXi/MiSi = xi is finite for both numbers (this need

not be the case in general) then the ratio M1S1

M2S2

(1+x2)
(1+x1) provides the needed criterion. In case that

this ratio equals one, one can consider use the ratio of the small parts multiplied by (1+x2)
(1+x1) of MiSi

as ordering criterion. Again the procedure can be repeated if needed.

4.2.7 What is the cardinality of infinite primes at given level?

The basic problem is to decide whether Nature allows also integers S , R = MN represented as
infinite product of primes or not. Infinite products correspond to subsystems of infinite size (S)
and infinite total occupation number (R) in QFT analogy.

1. One could argue that S should be a finite product of integers since it corresponds to the
requirement of finite size for a physically acceptable subsystem. One could apply similar
argument to R. In this case the set of primes at given level has the cardinality of integers
(alef0) and the cardinality of all infinite primes is that of integers. If also infinite integers
R are assumed to involve only finite products of infinite primes the set of infinite integers is
same as that for natural numbers.

2. NMP is well defined in p-adic context also for infinite subsystems and this suggests that one
should allow also infinite number of factors for both S and R = MN . Super symmetric
analogy suggests the same: one can quite well consider the possibility that the total fermion
number of the universe is infinite. It seems however natural to assume that the occupation
numbers K(P ) associated with various primes P in the representations R =

∏
P P

K(P ) are
finite but nonzero for infinite number of primes P . This requirement applied to the modes
associated with S would require the integer m to be explicitly expressible in powers of Pi|S



4.2 Infinite Primes, Integers, And Rationals 86

(Pr2 = 0) whereas all values of r1 are possible. If infinite number of prime factors is allowed
in the definition of S, then the application of diagonal argument of Cantor shows that the
number of infinite primes is larger than alef0 already at the first level. The cardinality of
the first level is 2alef02alef0 == 2alef0 . The first factor is the cardinality of reals and comes
from the fact that the sets S form the set of all possible subsets of primes, or equivalently
the cardinality of all possible binary valued functions in the set of primes. The second factor
comes from the fact that integers R = NM (possibly infinite) correspond to all natural
number-valued functions in the set of primes: if only finite powers k(p) are allowed then
one can map the space of these functions to the space of binary valued functions bijectively
and the cardinality must be 2alef0 . The general formula for the cardinality at given level
is obvious: for instance, at the second level the cardinality is the cardinality of all possible
subsets of reals. More generally, the cardinality for a given level is the cardinality for the
subset of possible subsets of primes at the previous level.

4.2.8 How to generalize the concepts of infinite integer, rational and real?

The allowance of infinite primes forces to generalize also the concepts concepts of integer, rational
and real number. It is not obvious how this could be achieved. The following arguments lead to a
possible generalization which seems practical (yes!) and elegant.

1. Infinite integers form infinite-dimensional vector space with integer coefficients

The first guess is that infinite integers N could be defined as products of the powers of finite
and infinite primes.

N =
∏
k

pnkk = nM , nk ≥ 0 , (4.10)

where n is finite integer and M is infinite integer containing only powers of infinite primes in its
product expansion.

It is not however not clear whether the sums of infinite integers really allow similar decompo-
sition. Even in the case that this decomposition exists, there seems to be no way of deriving it.
This would suggest that one should regard sums∑

i

niMi

of infinite integers as infinite-dimensional linear space spanned by Mi so that the set of infinite
integers would be analogous to an infinite-dimensional algebraic extension of say p-adic numbers
such that each coordinate axes in the extension corresponds to single infinite integer of form
N = mM . Thus the most general infinite integer N would have the form

N = m0 +
∑

miMi . (4.11)

This representation of infinite integers indeed looks promising from the point of view of practical
calculations. The representation looks also attractive physically. One can interpret the set of
integers N as a linear space with integer coefficients m0 and mi:

N = m0|1〉+
∑

mi|Mi〉 . (4.12)

|Mi〉 can be interpreted as a state basis representing many-particle states formed from bosons
labeled by infinite primes pk and |1〉 represents Fock vacuum. Therefore this representation is
analogous to a quantum superposition of bosonic Fock states with integer, rather than complex
valued, superposition coefficients. If one interprets Mi as orthogonal state basis and interprets mi

as p-adic integers, one can define inner product as

〈Na, Nb〉 = m0(a)m0(b) +
∑
i

mi(a)mi(b) . (4.13)



4.2 Infinite Primes, Integers, And Rationals 87

This expression is well defined p-adic number if the sum contains only enumerable number of
terms and is always bounded by p-adic ultra-metricity. It converges if the p-adic norm of of mi

approaches to zero when Mi increases.

2. Generalized rationals

Generalized rationals could be defined as ratios R = M/N of the generalized integers. This
works nicely when M and N are expressible as products of powers of finite or infinite primes but
for more general integers the definition does not look attractive. This suggests that one should
restrict the generalized rationals to be numbers having the expansion as a product of positive and
negative primes, finite or infinite:

N =
∏
k

pnkk =
n1M1

nM
. (4.14)

3. Generalized reals form infinite-dimensional real vector space

One could consider the possibility of defining generalized reals as limiting values of the gener-
alized rationals. A more practical definition of the generalized reals is based on the generalization
of the pinary expansion of ordinary real number given by

x =
∑
n≥n0

xnp
−n ,

xn ∈ {0, .., p− 1} . (4.15)

It is natural to try to generalize this expansion somehow. The natural requirement is that sums
and products of the generalized reals and canonical identification map from the generalized reals to
generalized p-adcs are readily calculable. Only in this manner the representation can have practical
value.

These requirements suggest the following generalization

X = x0 +
∑
N

xNp
−N ,

N =
∑
i

miMi , (4.16)

where x0 and xN are ordinary reals. Note that N runs over infinite integers which has vanishing
finite part. Note that generalized reals can be regarded as infinite-dimensional linear space such
that each infinite integer N corresponds to one coordinate axis of this space. One could interpret
generalized real as a superposition of bosonic Fock states formed from single single boson state
labeled by prime p such that occupation number is either 0 or infinite integer N with a vanishing
finite part:

X = x0|0〉+
∑
N

xN |N > . (4.17)

The natural inner product is

〈X,Y 〉 = x0y0 +
∑
N

xNyN . (4.18)

The inner product is well defined if the number of N :s in the sum is enumerable and xN approaches
zero sufficiently rapidly when N increases. Perhaps the most natural interpretation of the inner
product is as Rp valued inner product.

The sum of two generalized reals can be readily calculated by using only sum for reals:
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X + Y = x0 + y0 +
∑
N

(xN + yN )p−N ,

(4.19)

The product XY is expressible in the form

XY = x0y0 + x0Y +Xy0 +
∑
N1,N2

xN1yN2p
−N1−N2 ,

(4.20)

If one assumes that infinite integers form infinite-dimensional vector space in the manner proposed,
there are no problems and one can calculate the sums N1+N2 by summing component wise manner
the coefficients appearing in the sums defining N1 and N2 in terms of infinite integers Mi allowing
expression as a product of infinite integers.

Canonical identification map from ordinary reals to p-adics

x =
∑
k

xkp
−k → xp =

∑
k

xkp
k ,

generalizes to the form

x = x0 +
∑
N

xNp
−N → (x0)p +

∑
N

(xN )pp
N , (4.21)

so that all the basic requirements making the concept of generalized real calculationally useful are
satisfied.

There are several interesting questions related to generalized reals.

1. Are the extensions of reals defined by various values of p-adic primes mathematically equiv-
alent or not? One can map generalized reals associated with various choices of the base p to
each other in one-one manner using the mapping

X = x0 +
∑
N

xNp
−N
1 → x0 +

∑
N

xNp
−N
2 .

(4.22)

The ordinary real norms of finite (this is important!) generalized reals are identical since
the representations associated with different values of base p differ from each other only
infinitesimally. This would suggest that the extensions are physically equivalent. It these
extensions are not mathematically equivalent then p-adic primes could have a deep role in
the definition of the generalized reals.

2. One can generalize previous formulas for the generalized reals by replacing the coefficients
x0 and xi by complex numbers, quaternions or octonions so as to get generalized complex
numbers, quaternions and octonions. Also inner product generalizes in an obvious manner.
The 8-dimensionality of the imbedding space provokes the question whether it might be
possible to regard the infinite-dimensional WCW, or rather, its tangent space, as a Hilbert
space realization of the generalized octonions. This kind of identification could perhaps
reduce TGD based physics to generalized number theory.
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4.2.9 Comparison with the approach of Cantor

The main difference between the approach of Cantor and the proposed approach is that Cantor
uses only the basic arithmetic concepts such as sum and multiplication and the concept of successor
defining ordering of both finite and infinite ordinals. Cantor’s approach is also purely set theoretic.
The problems of purely set theoretic approach are related to the question what the statement “Set
is Many allowing to regard itself as One” really means and to the fact that there is no obvious
connection with physics.

The proposed approach is based on the introduction of the concept of prime as a basic concept
whereas partial ordering is based on the use of ratios: using these one can recursively define partial
ordering and get precise quantitative information based on finite reals. The ordering is only partial
and there is infinite number of ratios of infinite integers giving rise to same real unit which in turn
leads to the idea about number theoretic anatomy of real point.

The “Set is Many allowing to regard itself as One” is defined as quantum physicist would define
it: many particle states become single particle states in the second quantization describing the
counterpart for the construction of the set of subsets of a given set. One could also say that integer
as such corresponds to set as “One” and its decomposition to a product of primes corresponds to
the set as “Many”. The concept of prime, the ultimate “One”, has as its physical counterpart the
concept of elementary particle understood in very general sense. The new element is the physical
interpretation: the sum of two numbers whose ratio is zero correspond to completely physical
finite-subsystem-infinite complement division and the iterated construction of the set of subsets
of a set at given level is basically p-adic evolution understood in the most general possible sense
and realized as a repeated second quantization. What is attractive is that this repeated second
quantization can be regarded also as a model of abstraction process and actually the process of
abstraction itself.

The possibility to interpret the construction of infinite primes either as a repeated bosonic
quantization involving subsystem-complement division or as a repeated super-symmetric quanti-
zation could have some deep meaning. A possible interpretation consistent with these two pictures
is based on the hypothesis that fermions provide a reflective level of consciousness in the sense
that the 2N element Fock basis of many-fermion states formed from N single-fermion states can be
regarded as a set of all possible statements about N basic statements. Statements about whether
a given element of set X belongs to some subset S of X are certainly the fundamental statements
from the point of view of mathematics. Hence one could argue that many-fermion states provide
cognitive representation for the subsets of some set. Single fermion states represent the points of
the set and many-fermion states represent possible subsets.

4.3 How To Interpret The Infinite Hierarchy Of Infinite Primes?

From the foregoing it should be clear that infinite primes might play key role in quantum physics.
One can even consider the possibility that physics reduces to a generalized number theory, and
that infinite primes are crucial for understanding mathematically consciousness and cognition.
Of course, one must leave open the question whether infinite primes really provide really the
mathematics of consciousness or whether they are only a beautiful but esoteric mathematical
construct. In this spirit the following subsections give only different points of view to the problem
with no attempt to a coherent overall view.

4.3.1 Infinite primes and hierarchy of super-symmetric arithmetic quantum field
theories

Infinite primes are a generalization of the notion of prime. They turn out to provide number theo-
retic correlates of both free, interacting and bound states of a super-symmetric arithmetic quantum
field theory. It turns also possible to assign to infinite prime space-time surface as a geometric
correlate although the original proposal for how to achieve this failed. Hence infinite primes serve
as a bridge between classical and quantum and realize quantum classical correspondence stating
that quantum states have classical counterparts, and has served as a basic heuristic guideline of
TGD. More precisely, the natural hypothesis is that infinite primes code for the ground states
of super-symplectic representations (for instance, ordinary particles correspond to states of this
kind).
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1. Infinite primes and Fock states of a super-symmetric arithmetic QFT

The basic construction recipe for infinite primes is simple and generalizes to the quaternionic
case.

1. Form the product of all primes and call it X:

X =
∏
p

p .

2. Form the vacuum states

V± = X ± 1 .

3. From these vacua construct all generating infinite primes by the following process. Kick
out from the Dirac sea some negative energy fermions: they correspond to a product s of
first powers of primes: V → X/s ± s (s is thus square-free integer). This state represents a
state with some fermions represented as holes in Dirac sea but no bosons. Add bosons by
multiplying by integer r, which decomposes into parts as r = mn: m corresponding to bosons
in X/s is product of powers of primes dividing X/s and n corresponds to bosons in s and is
product of powers of primes dividing s. This step can be described as X/s±s→ mX/s±ns.

Generating infinite primes are thus in one-one correspondence with the Fock states of a super-
symmetric arithmetic quantum field theory and can be written as

P±(m,n, s) =
mX

s
± ns ,

where X is product of all primes at previous level. s is square free integer. m and n have no
common factors, and neither m and s nor n and X/s have common factors.

The physical analog of the process is the creation of Fock states of a super-symmetric arithmetic
quantum field theory. The factorization of s to a product of first powers of primes corresponds to
many-fermion state and the decomposition of m and n to products of powers of prime correspond
to bosonic Fock states since pk corresponds to k-particle state in arithmetic quantum field theory.

2. More complex infinite primes as counterparts of bound states

Generating infinite primes are not all that are possible. One can construct also polynomi-
als of the generating primes and under certain conditions these polynomials are non-divisible by
both finite primes and infinite primes already constructed. As found, the conjectured effective
2-dimensionality for hyper-octonionic primes allows the reduction of polynomial representation of
hyper-octonionic primes to that for hyper-complex primes. This would be in accordance with the
effective 2-dimensionality of the basic objects of quantum TGD.

The physical counterpart of n:th order irreducible polynomial is as a bound state of n particles
whereas infinite integers constructed as products of infinite primes correspond to non-bound but
interacting states. This process can be repeated at the higher levels by defining the vacuum state
to be the product of all primes at previous levels and repeating the process. A repeated second
quantization of a super-symmetric arithmetic quantum field theory is in question.

The infinite primes represented by irreducible polynomials correspond to quantum states ob-
tained by mapping the superposition of the products of the generating infinite primes to a super-
position of the corresponding Fock states. If complex rationals are the coefficient field for infinite
integers, this gives rise to states in a complex Hilbert space and irreducibility corresponds to a
superposition of states with varying particle number and the presence of entanglement. For in-
stance, the superpositions of several products of type

∏
i=1,..,n Pi of n generating infinite primes

are possible and in general give rise to irreducible infinite primes decomposing into a product of
infinite primes in algebraic extension of rationals.

3. Infinite rationals viz. quantum states and space-time surfaces

The most promising answer to the question how infinite rationals correspond to space-time
surfaces is discussed in detail in the next section. Here it is enough to give only the basic idea.
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1. In ZEO hyper-octonionic units (in real sense) defined by ratios of infinite integers have an
interpretation as representations for pairs of positive and negative energy states. Suppose
that the quantum number combinations characterizing positive and negative energy quantum
states are representable as superpositions of real units defined by ratios of infinite integers
at each point of the space-time surface. If this is true, the quantum classical correspondence
coded by the measurement interaction term of the Kähler-Dirac action maps the quantum
numbers also to space-time geometry and implies a correspondence between infinite rationals
and space-time surfaces.

2. The space-time surface associated with the infinite rational is in general not a union of the
space-time surfaces associated with the primes composing the integers defining the rational.
There the classical description of interactions emerges automatically. The description of
classical states in terms of infinite integers would be analogous to the description of many
particle states as finite integers in arithmetic quantum field theory. This mapping could in
principle make sense both in real and p-adic sectors of WCW.

The finite primes which correspond to particles of an arithmetic quantum field theory present
in Fock state, correspond to the space-time sheets of finite size serving as the building blocks of
the space-time sheet characterized by infinite prime.

4. What is the interpretation of the higher level infinite primes?

Infinite hierarchy of infinite primes codes for a hierarchy of Fock states such that many-particle
Fock states of a given level serve as elementary particles at next level. The unavoidable conclusion
is that higher levels represent totally new physics not described by the standard quantization
procedures. In particular, the assignment of fermion/boson property to arbitrarily large system
would be in some sense exact. Topologically these higher level particles could correspond to space-
time sheets containing many-particle states and behaving as higher level elementary particles.

This view suggests that the generating quantum numbers are present already at the lowest
level and somehow coded by the hyper-octonionic primes taking the role of momentum quantum
number they have in arithmetic quantum field theories. The task is to understand whether and
how hyper-octonionic primes can code for quantum numbers predicted by quantum TGD.

The quantum numbers coding higher level states are collections of quantum numbers of lower
level states. At geometric level the replacement of the coefficients of polynomials with rational func-
tions is the equivalent of replacing single particle states with new single particle states consisting
of many-particle states.

4.3.2 Infinite primes, the structure of many-sheeted space-time, and the notion of
finite measurement resolution

The mapping of infinite primes to space-time surfaces codes the structure of infinite prime to the
structure of space-time surface in a rather non-implicit manner, and the question arises about the
concrete correspondence between the structure of infinite prime and topological structure of the
space-time surface. It turns out that the notion of finite measurement resolution is the key concept:
infinite prime characterizes angle measurement resolution. This gives a direct connection with the
p-adicization program relying also on angle measurement resolution as well as a connection with the
hierarchy of Planck constants. Finite measurement resolution relates also closely to the inclusions
of hyper-finite factors central for TGD inspired quantum measurement theory.

1. The first intuitions

The concrete prediction of the general vision is that the hierarchy of infinite primes should
somehow correspond to the hierarchy of space-time sheets or partonic 2-surfaces if one accepts the
effective 2-dimensionality. The challenge is to find space-time counterparts for infinite primes at
the lowest level of the hierarchy.

One could hope that the Fock space structure of infinite prime would have a more concrete
correspondence with the structure of the many-sheeted space-time. One might that the space-time
sheets labeled by primes p would directly correspond to the primes appearing in the definition of
infinite prime. This expectation seems to be too simplistic.
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1. What seems to be a safe guess is that the simplest infinite primes at the lowest level of the
hierarchy should correspond to elementary particles. If inverses of infinite primes correspond
to negative energy space-time sheets, this would explain why negative energy particles are
not encountered in elementary particle physics.

2. More complex infinite primes at the lowest level of the hierarchy could be interpreted in
terms of structures formed by connecting these structures by join along boundaries bonds to
get space-time correlates of bound states. Even simplest infinite primes must correspond to
bound state structures if the condition that the corresponding polynomial has real-rational
coefficients is taken seriously.

Infinite primes at the lowest level of hierarchy correspond to several finite primes rather than
single finite prime. The number of finite primes is however finite.

1. A possible interpretation for multi-p property is in terms of multi-p p-adic fractality prevailing
in the interior of space-time surface. The effective p-adic topology of these space-time sheets
would depend on length scale. In the longest scale the topology would correspond to pn, in
some shorter length scale there would be smaller structures with pn−1 < pn-adic topology,
and so on... . A good metaphor would be a wave containing ripples, which in turn would
contain still smaller ripples. The multi-p p-adic fractality would be assigned with the 4-D
space-time sheets associated with elementary particles. The concrete realization of multi-p
p-adicity would be in terms of infinite integers coming as power series

∑
xnN

n and having
interpretation as p-adic numbers for any prime dividing N .

2. Effective 2-dimensionality would suggest that the individual p-adic topologies could be as-
signed with the 2-dimensional partonic surfaces. Thus infinite prime would characterize at
the lowest level space-time sheet and corresponding partonic 2-surfaces. There are however
reasons to think that even single partonic 2-surface corresponds to a multi-p p-adic topology.

2. Do infinite primes code for the finite measurement resolution?

The above describe heuristic picture is not yet satisfactory. In order to proceed, it is good to
ask what determines the finite prime or set of them associated with a given partonic 2-surface.
It is good to recall first the recent view about the p-adicization program relying crucially on the
notion of finite measurement resolution.

1. The vision about p-adicization characterizes finite measurement resolution for angle mea-
surement in the most general case as ∆φ = 2πM/N , where M and N are positive integers
having no common factors. The powers of the phases exp(i2πM/N) define identical Fourier
basis irrespective of the value of M and measurement resolution does not depend on on the
value of M . Situation is different if one allows only the powers exp(i2πkM/N) for which
kM < N holds true: in the latter case the measurement resolutions with different values of
M correspond to different numbers of Fourier components. If one regards N as an ordinary
integer, one must have N = pn by the p-adic continuity requirement.

2. One can also interpret N as a p-adic integer. For N = pnM , where M is not divisible by
p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k, which is infinite as a real

integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k. As a root of unity
the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M mod pn. The
phase would non-trivial only for p-adic primes appearing as factors in N . The corresponding
measurement resolution would be ∆φ = R2π/N if modular arithetics is used to define the
measurement resolution. This works at the first level of the hierarchy but not at higher levels.
The alternative manner to assign a finite measurement resolution to M/N for given p is as
∆φ = 2π|N/M |p = 2π/pn. In this case the small fermionic part of the infinite prime would
fix the measurement resolution. The argument below shows that only this option works also
at the higher levels of hierarchy and is therefore more plausible.

3. p-Adicization conditions in their strong form require that the notion of integration based on
harmonic analysis [A5] in symmetric spaces [A16] makes sense even at the level of partonic
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2-surfaces. These conditions are satisfied if the partonic 2-surfaces in a given measurement
resolution can be regarded as algebraic continuations of discrete surfaces whose points belong
to the discrete variant of the δM4

± × CP2. This condition is extremely powerful since it
effectively allows to code the geometry of partonic 2-surfaces by the geometry of finite sub-
manifold geometries for a given measurement resolution. This condition assigns the integer
N to a given partonic surface and all primes appearing as factors of N define possible effective
p-adic topologies assignable to the partonic 2-surface.

How infinite primes could then code for the finite measurement resolution? Can one identify
the measurement resolution for M/N = M/(Rpn) as ∆φ = ((M/R) mod pn) × 2π/pn or as
∆φ = 2π/pn? The following argument allows only the latter option.

1. Suppose that p-adic topology makes sense also for infinite primes and that state function
reduction selects power of infinite prime P from the product of lower level infinite primes
defining the integer N in M/N . Suppose that the rational defined by infinite integer defines
measurement resolution also at the higher levels of the hierarchy.

2. The infinite primes at the first level of hierarchy representing Fock states are in one-one
correspondence with finite rationals M/N for which integers M and N can be chosen to
characterize the infinite bosonic part and finite fermionic part of the infinite prime. This
correspondence makes sense also at higher levels of the hierarchy but M and N are infinite
integers. Also other option obtained by exchanging “bosonic” and “fermionic” but later it
will be found that only the first identification makes sense.

3. The first guess is that the rational M/N characterizing the infinite prime characterizes
the measurement resolution for angles and therefore partially classifies also the finite sub-
manifold geometry assignable to the partonic 2-surface. One should define what M/N =
((M/R) mod Pn) × P−n is for infinite primes. This would require expression of M/R in
modular arithmetics modulo Pn. This does not make sense.

4. For the second option the measurement resolution defined as ∆φ = 2π|N/M |P = 2π/Pn

makes sense. The Fourier basis obtained in this manner would be infinite but all states
exp(ik/Pn) would correspond in real sense to real unity unless one allows k to be infinite P -
adic integer smaller than Pn and thus expressible as k =

∑
m<n kmP

m, where km are infinite
integers smaller than P . In real sense one obtains all roots exp(iq2π) of unity with q < 1
rational. For instance, for n = 1 one can have 0 < k/P < 1 for a suitably chosen infinite
prime k. Thus one would have essentially continuum theory at higher levels of the hierarchy.
The purely fermionic part N of the infinite prime would code for both the number of Fourier
components in discretization for each power of prime involved and the ratio characterize the
angle resolution.

The proposed relation between infinite prime and finite measurement resolution implies very
strong number theoretic selection rules on the reaction vertices.

1. The point is that the vertices of generalized Feyman diagrams correspond to partonic 2-
surfaces at which the ends of light-like 3-surfaces describing the orbits of partonic 2-surfaces
join together. Suppose that the partonic 2-surfaces appearing a both ends of the propagator
lines correspond to same rational as finite sub-manifold geometries. If so, then for a given
p-adic effective topology the integers assignable to all lines entering the vertex must contain
this p-adic prime as a factor. Particles would correspond to integers and only the particles
having common prime factors could appear in the same vertex.

2. In fact, already the work with modelling dark matter [K9] led to ask whether particle could
be characterized by a collection of p-adic primes to which one can assign weak, color, em,
gravitational interactions, and possibly also other interactions. It also seemed natural to
assume that that only the space-time sheets containing common primes in this collection can
interact. This inspired the notions of relative and partial darkness. An entire hierarchy of
weak and color physics such that weak bosons and gluons of given physics are characterized
by a given p-adic prime p and also the fermions of this physics contain space-time sheet
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characterized by same p-adic prime, say M89 as in case of weak interactions. In this picture
the decay widths of weak bosons do not pose limitations on the number of light particles if
weak interactions for them are characterized by p-adic prime p 6= M89. Same applies to color
interactions.

The possibility of multi-p p-adicity raises the question about how to fix the p-adic prime
characterizing the mass of the particle. The mass scale of the contribution of a given throat to
the mass squared is given by p−n/2, where T = 1/n corresponds to the p-adic temperature of
throat. Hence the dominating contribution to the mass squared corresponds to the smallest prime
power pn associated with the throats of the particle. This works if the integers characterizing other
particles than graviton are divisible by the gravitonic p-adic prime or a product of p-adic primes
assignable to graviton. If the smallest power pn assignable to the graviton is large enough, the
mass of graviton is consistent with the empirical bounds on it. The same consideration applies in
the case of photons. Recall that the number theoretically very natural condition that in ZEO the
number of generalized Feynman graphs contributing to a given process is finite is satisfied if all
particles have a non-vanishing but arbitrarily small p-adic thermal mass [K32] .

3. Interpretational problem

The identification of infinite prime as a characterizer of finite measurement resolution looks
nice but there is an interpretational problem.

1. The model characterizing the quantum numbers of WCW spinor fields to be discussed in
the next section involves a pair of infinite primes P+ and P− corresponding to the two
vacuum primes X±1. Do they correspond to two different measurement resolutions perhaps
assignable to CD and CP2 degrees of freedom?

2. Different measurement resolutions in CD and CP2 degrees of freedom need not be not a
problem as long as one considers only the discrete variants of symmetric spaces involved.
What might be a problem is that in the general case the p-adic primes associated with CD
and CP2 degrees of freedom would not be same unless the integers N+ and N− are assumed
to have have same prime factors (they indeed do if p0 = 1 is formally counted as prime power
factors).

3. The idea of assigning different p-adic effective topologies to CD and CP2 does not look
attractive. Both CD and CP2 and thus also partonic 2-surface could however possess simul-
taneously both p-adic effective topologies. This kind of option might make sense since the
integers representable as infinite powers series of integer N can be regarded as p-adic integers
for all prime factors of N . As a matter fact, this kind of multi-p p-adicity could make sense
also for the partonic 2-surfaces characterized by a measurement resolution ∆φ = 2πM/N .
One would have what might be interpreted as N+N−-adicity.

4. It will be found that quantum measurement means also the measurement of the p-adic prime
selecting same p-adic prime from N+ and N−. If N± is divisible only by p0 = 1, the corre-
sponding angle measurement resolution is trivial. From the point of view of consciousness
state function reduction selects also the p-adic prime characterizing the cognitive represen-
tation which is very natural since quantum superpositions of different p-adic topologies are
not natural physically.

4.3.3 How the hierarchy of Planck constants could relate to infinite primes and p-
adic hierarchy?

Besides the hierarchy of space-time sheets, TGD predicts, or at least suggests, several hierarchies
such as the hierarchy of infinite primes, the hierarchy of Jones inclusions identifiable in terms of
finite measurement resolution [K31], the hierarchy of super-symplectic gauge symmetry breakings
closely related to the dark matter hierarchy characterized by increasing values of heff = n×h [K9]
, the hierarchy of extensions of given p-adic number field associated with algebraic extensions of
rationals, and the hierarchy of selves and quantum jumps with increasing duration with respect
to geometric time. There are good reasons to expect that these hierarchies are closely related.
Number theoretical considerations give hopes about developing a more quantitative vision about
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the relationship between these hierarchies, in particular between the hierarchy of infinite primes,
p-adic length scale hierarchy, and the hierarchy if Planck constants.

This idea can be indeed made concrete.

1. The hierarchy of algebraic extensions of rationals corresponds to the hierarchy of quantum
criticalities labelled by integer n = heff/h. There is a temptation to identify n as the product
of ramified primes of the algebraic extension or its power. In accordance with the number
theoretic vision number theoretic criticality would correspond to quantum criticality. The
idea is that ramified primes are analogous to multiple roots of polynomial and criticality
indeed corresponds to this kind of situation.

2. Infinite primes at the n:th level of hierarchy representing analogs of bound states correspond
to irreducible polynomials of n-variables identifiable as polynomials of zn with coefficients,
which are polynomials of z1, .., zn−1. At the first level of hierarchy bound states correspond
to irreducible polynomials of single variable and their roots define irreducible algebraic exten-
sions of rationals. Infinite integers in turn correspond to products of reducible polynomials
defining reducible extensions. The infinite integers at the first level of hierarchy would define
the hierarchy of algebraic extensions of rationals in turn defining a hierarchy of quantum crit-
icalities. This observation might generalize to the higher levels of hierarchy of infinite primes
so that infinite primes would be part of quantum TGD although in much more abstract sense
as thought originally.

REFERENCES

Mathematics

[A1] Atyiah-Singer index-theorem. Available at: http://en.wikipedia.org/wiki/

Atiyah-Singer_index_theorem.

[A2] Clifford algebra. Available at: http://en.wikipedia.org/wiki/Clifford_algebra.

[A3] Complex projective space. Available at: http://en.wikipedia.org/wiki/Complex_

projective_space.

[A4] Fields. Available at: http://en.wikipedia.org/wiki/Field_(mathematics).

[A5] Harmonic analysis. Available at: http://en.wikipedia.org/wiki/Harmonic_analysis.

[A6] Hyper-Kähler manifold. Available at: http://en.wikipedia.org/wiki/Hyper-Khler_

manifold.

[A7] Kac-Moody algebra. Available at: http://en.wikipedia.org/wiki/KacMoody_algebra.

[A8] Kähler manifold. Available at: http://en.wikipedia.org/wiki/Khler_manifold.

[A9] Lagrangian sub-manifold. Available at: http://en.wikipedia.org/wiki/Lagrangian_

submanifold.

[A10] Octonions. Available at: http://en.wikipedia.org/wiki/Octonions.

[A11] Pythagorean triangles. Available at: http://en.wikipedia.org/wiki/Pythagorean_

triangle.

[A12] Quaternion-Kähler symmetric space. Available at: http://en.wikipedia.org/wiki/

Quaternion-Khler_symmetric_space.

[A13] Quaternions. Available at: http://en.wikipedia.org/wiki/Quaternion.

[A14] Scale invariance vs. conformal invariance. Available at: http://en.wikipedia.org/wiki/

Conformal_field_theory#Scale_invariance_vs._conformal_invariance.

http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem
http://en.wikipedia.org/wiki/Atiyah-Singer_index_theorem
http://en.wikipedia.org/wiki/Clifford_algebra
http://en.wikipedia.org/wiki/Complex_projective_space
http://en.wikipedia.org/wiki/Complex_projective_space
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Harmonic_analysis
http://en.wikipedia.org/wiki/Hyper-Kähler_manifold
http://en.wikipedia.org/wiki/Hyper-Kähler_manifold
http://en.wikipedia.org/wiki/Kac–Moody_algebra
http://en.wikipedia.org/wiki/Kähler_manifold
http://en.wikipedia.org/wiki/Lagrangian_submanifold
http://en.wikipedia.org/wiki/Lagrangian_submanifold
http://en.wikipedia.org/wiki/Octonions
http://en.wikipedia.org/wiki/Pythagorean_triangle
http://en.wikipedia.org/wiki/Pythagorean_triangle
http://en.wikipedia.org/wiki/Quaternion-Kähler_symmetric_space
http://en.wikipedia.org/wiki/Quaternion-Kähler_symmetric_space
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Conformal_field_theory##Scale_invariance_vs._conformal_invariance
http://en.wikipedia.org/wiki/Conformal_field_theory##Scale_invariance_vs._conformal_invariance


MATHEMATICS 96

[A15] Super Virasoro algebra. Available at: http://en.wikipedia.org/wiki/Super_Virasoro_
algebra.

[A16] Symmetric space. Available at: http://en.wikipedia.org/wiki/Symmetric_space.

[A17] Symplectic geometry. Available at: http://en.wikipedia.org/wiki/Symplectic_

geometry.

[A18] Symplectic manifold. Available at: http://en.wikipedia.org/wiki/Symplectic_

manifold.

[A19] Khrennikov A. p-Adic Valued Distributions in Mathematical Physics. Kluwer, Dordrecht,
1994.

[A20] Robinson A. Nonstandard Analysis. North-Holland, Amsterdam, 1974.

[A21] Besse AL. Einstein Manifolds. Springer Verlag, 1987.

[A22] Khrennikov AYu. p-Adic Probability and Statistics. Dokl Akad Nauk, (6), 1992.

[A23] Shafarevich IR Borevich ZI. Number Theory. Academic Press, 1966.

[A24] Freund PG Brekke L. p-Adic Numbers in Physics. Phys Rep, 233(1), 1993.

[A25] Kassel C. Quantum Groups. Springer Verlag, 1995.

[A26] Kreimer D Connes A. Hofp algebras, renormalization, and non-commutative geometry, vol-
ume 1999. Kluwer, 1998.

[A27] Silva da AC. Symplectic geometry. Available at: http://www.math.princeton.edu/

~acannas/symplectic.pdf, 2004.

[A28] Frenkel E. Recent Advances in Langlands program. AMS, 41(2):151–184, 2004.

[A29] Frenkel E. Lectures on Langlands program and conformal field theory. Available at: http:
//arxiv.org/abs/hep-th/0512172, 2005.

[A30] Witten E. Quantum field theory and the Jones polynomial. Comm Math Phys, 121:351–399,
1989.

[A31] Zeeman EC. Catastrophe Theory. Addison-Wessley Publishing Company, 1977.

[A32] Gouvea FQ. p-Adic Numbers: An Introduction. Springer Verlag, 1997.

[A33] Jones FR. Braid groups, Hecke algebras and type II1 factors. 1983.

[A34] Olive D Goddard P, Kent A. Unitary representations of the Virasoro and super-Virasoro
algebras. Comm Math Phys, 103(1), 1986.

[A35] Dixmier J. Von Neumann Algebras. North-Holland, Amsterdam, 1981.

[A36] Baez JC. The Octonions. Bull Amer Math Soc. Available at: http://math.ucr.edu/home/
baez/Octonions/octonions.html, 39(2002), 2001.

[A37] Sawin S. Links, Quantum Groups, and TQFT’s. Available at: http://arxiv.org/abs/

q-alg/9506002, 1995.

[A38] White S Solla S, Sorkin G. Configuration space analysis for optimization problems. Springer
Verlag, Berlin, 1986.

[A39] Smith T. D4-D5-E6 Physics. Available at: http://galaxy.cau.edu/tsmith/d4d5e6hist.
html, 1997.

[A40] Lieb EH Temperley NH. Relations between the percolation and colouring problem and other
graph-theoretical problems associated with regular planar lattices:some exact results for the
percolation problem. Proc R Soc London, 322(1971), 1971.

http://en.wikipedia.org/wiki/Super_Virasoro_algebra
http://en.wikipedia.org/wiki/Super_Virasoro_algebra
http://en.wikipedia.org/wiki/Symmetric_space
http://en.wikipedia.org/wiki/Symplectic_geometry
http://en.wikipedia.org/wiki/Symplectic_geometry
http://en.wikipedia.org/wiki/Symplectic_manifold
http://en.wikipedia.org/wiki/Symplectic_manifold
http://www.math.princeton.edu/~acannas/symplectic.pdf
http://www.math.princeton.edu/~acannas/symplectic.pdf
http://arxiv.org/abs/hep-th/0512172
http://arxiv.org/abs/hep-th/0512172
http://math.ucr.edu/home/baez/Octonions/octonions.html
http://math.ucr.edu/home/baez/Octonions/octonions.html
http://arxiv.org/abs/q-alg/9506002
http://arxiv.org/abs/q-alg/9506002
http://galaxy.cau.edu/tsmith/d4d5e6hist.html
http://galaxy.cau.edu/tsmith/d4d5e6hist.html


THEORETICAL PHYSICS 97

Theoretical Physics

[B1] Chowdbury D. Spin Glasses and other Frustrated Systems. World Scientific, 1986.

Particle and Nuclear Physics

[C1] Weiner N Kaplan DB, Nelson AE. Neutrino Oscillations as a Probe of Dark Energy. Available
at: http://arxiv.org/abs/hep-ph/0401099, 2004.

Condensed Matter Physics

[D1] Wilczek F Mackenzie R. Rev Mod Phys . A, 3:2827, 1988.

Fringe Physics

Biology

[I1] Fiaxat JD. The hidden rhythm of evolution. Available at: http://byebyedarwin.blogspot.
fi/p/english-version_01.html, 2014.

Neuroscience and Consciousness

Books related to TGD

[K1] Pitkänen M. Basic Extremals of Kähler Action. In Physics in Many-Sheeted Space-Time.
Online book. Available at: http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#
class, 2006.

[K2] Pitkänen M. Conscious Information and Intelligence. In TGD Inspired Theory of Conscious-
ness. Online book. Available at: http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.
html#intsysc, 2006.

[K3] Pitkänen M. Construction of elementary particle vacuum functionals. In p-Adic Physics.
Online book. Available at: http://tgdtheory.fi/public_html/padphys/padphys.html#

elvafu, 2006.

[K4] Pitkänen M. Construction of Quantum Theory: M-matrix. In Towards M-Matrix. Online
book. Available at: http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#

towards, 2006.

[K5] Pitkänen M. Construction of Quantum Theory: Symmetries. In Towards M-Matrix.
Online book. Available at: http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.

html#quthe, 2006.

[K6] Pitkänen M. Construction of WCW Kähler Geometry from Symmetry Principles. In
Quantum Physics as Infinite-Dimensional Geometry. Online book. Available at: http:

//tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1, 2006.

[K7] Pitkänen M. Dark Matter Hierarchy and Hierarchy of EEGs. In TGD and EEG. Online book.
Available at: http://tgdtheory.fi/public_html/tgdeeg/tgdeeg.html#eegdark, 2006.

[K8] Pitkänen M. DNA as Topological Quantum Computer. In Genes and Memes. On-
line book. Available at: http://tgdtheory.fi/public_html/genememe/genememe.html#

dnatqc, 2006.

http://arxiv.org/abs/hep-ph/0401099
http://byebyedarwin.blogspot.fi/p/english-version_01.html
http://byebyedarwin.blogspot.fi/p/english-version_01.html
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#class
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#class
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#intsysc
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#intsysc
http://tgdtheory.fi/public_html/padphys/padphys.html#elvafu
http://tgdtheory.fi/public_html/padphys/padphys.html#elvafu
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#towards
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#towards
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#quthe
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#quthe
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.fi/public_html/tgdeeg/tgdeeg.html#eegdark
http://tgdtheory.fi/public_html/genememe/genememe.html#dnatqc
http://tgdtheory.fi/public_html/genememe/genememe.html#dnatqc


BOOKS RELATED TO TGD 98

[K9] Pitkänen M. Does TGD Predict the Spectrum of Planck Constants? In Hyper-finite Factors
and Dark Matter Hierarchy. Online book. Available at: http://tgdtheory.fi/public_html/
neuplanck/neuplanck.html#Planck, 2006.

[K10] Pitkänen M. Does the Modified Dirac Equation Define the Fundamental Action Principle?
In Quantum Physics as Infinite-Dimensional Geometry. Online book. Available at: http:

//tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#Dirac, 2006.

[K11] Pitkänen M. Does the QFT Limit of TGD Have Space-Time Super-Symmetry? In Towards
M-Matrix. Online book. Available at: http://tgdtheory.fi/public_html/tgdquantum/

tgdquantum.html#susy, 2006.

[K12] Pitkänen M. Identification of the WCW Kähler Function. In Quantum Physics as Infinite-
Dimensional Geometry. Online book. Available at: http://tgdtheory.fi/public_html/

tgdgeom/tgdgeom.html#kahler, 2006.

[K13] Pitkänen M. Langlands Program and TGD. In TGD as a Generalized Number Theory. On-
line book. Available at: http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#

Langlandia, 2006.

[K14] Pitkänen M. Massless states and particle massivation. In p-Adic Physics. Online book.
Available at: http://tgdtheory.fi/public_html/padphys/padphys.html#mless, 2006.

[K15] Pitkänen M. Negentropy Maximization Principle. In TGD Inspired Theory of Conscious-
ness. Online book. Available at: http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.
html#nmpc, 2006.

[K16] Pitkänen M. New Particle Physics Predicted by TGD: Part I. In p-Adic Physics. Online
book. Available at: http://tgdtheory.fi/public_html/padphys/padphys.html#mass4,
2006.

[K17] Pitkänen M. p-Adic length Scale Hypothesis and Dark Matter Hierarchy. Online book.
Available at: http://tgdtheory.fi/public_html/paddark/paddark.html, 2006.

[K18] Pitkänen M. p-Adic Particle Massivation: Hadron Masses. In p-Adic Length Scale Hypoth-
esis and Dark Matter Hierarchy. Online book. Available at: http://tgdtheory.fi/public_
html/padphys/padphys.html#mass3, 2006.

[K19] Pitkänen M. p-Adic Physics as Physics of Cognition and Intention. In TGD Inspired
Theory of Consciousness. Online book. Available at: http://tgdtheory.fi/public_html/

tgdconsc/tgdconsc.html#cognic, 2006.

[K20] Pitkänen M. p-Adic Physics: Physical Ideas. In TGD as a Generalized Number Theory. On-
line book. Available at: http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#

phblocks, 2006.

[K21] Pitkänen M. Quantum Model for Hearing. In TGD and EEG. Online book. Available at:
http://tgdtheory.fi/public_html/tgdeeg/tgdeeg.html#hearing, 2006.

[K22] Pitkänen M. TGD and Cosmology. In Physics in Many-Sheeted Space-Time. Online book.
Available at: http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#cosmo, 2006.

[K23] Pitkänen M. TGD as a Generalized Number Theory: Infinite Primes. In TGD as a Gen-
eralized Number Theory. Online book. Available at: http://tgdtheory.fi/public_html/

tgdnumber/tgdnumber.html#visionc, 2006.

[K24] Pitkänen M. TGD as a Generalized Number Theory: p-Adicization Program. In TGD as
a Generalized Number Theory. Online book. Available at: http://tgdtheory.fi/public_

html/tgdnumber/tgdnumber.html#visiona, 2006.

[K25] Pitkänen M. TGD as a Generalized Number Theory: Quaternions, Octonions, and their
Hyper Counterparts. In TGD as a Generalized Number Theory. Online book. Available at:
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionb, 2006.

http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#Planck
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#Planck
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#Dirac
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#Dirac
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#susy
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#susy
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#kahler
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#kahler
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#Langlandia
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#Langlandia
http://tgdtheory.fi/public_html/padphys/padphys.html#mless
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#nmpc
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#nmpc
http://tgdtheory.fi/public_html/padphys/padphys.html#mass4
http://tgdtheory.fi/public_html/paddark/paddark.html
http://tgdtheory.fi/public_html/padphys/padphys.html#mass3
http://tgdtheory.fi/public_html/padphys/padphys.html#mass3
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#cognic
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#cognic
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#phblocks
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#phblocks
http://tgdtheory.fi/public_html/tgdeeg/tgdeeg.html#hearing
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#cosmo
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionc
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionc
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visiona
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visiona
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#visionb


BOOKS RELATED TO TGD 99

[K26] Pitkänen M. TGD Inspired Theory of Consciousness. Online book. Available at: http:

//tgdtheory.fi/public_html/tgdconsc/tgdconsc.html, 2006.

[K27] Pitkänen M. The classical part of the twistor story. In Towards M-Matrix. Online
book. Available at: http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#

twistorstory, 2006.

[K28] Pitkänen M. The Relationship Between TGD and GRT. In Physics in Many-Sheeted
Space-Time. Online book. Available at: http://tgdtheory.fi/public_html/tgdclass/

tgdclass.html#tgdgrt, 2006.

[K29] Pitkänen M. Three new physics realizations of the genetic code and the role of dark matter
in bio-systems. In Genes and Memes. Online book. Available at: http://tgdtheory.fi/

public_html/genememe/genememe.html#dnatqccodes, 2006.

[K30] Pitkänen M. Time and Consciousness. In TGD Inspired Theory of Consciousness. On-
line book. Available at: http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#

timesc, 2006.

[K31] Pitkänen M. Was von Neumann Right After All? In Hyper-finite Factors and Dark Mat-
ter Hierarchy. Online book. Available at: http://tgdtheory.fi/public_html/neuplanck/

neuplanck.html#vNeumann, 2006.

[K32] Pitkänen M. WCW Spinor Structure. In Quantum Physics as Infinite-Dimensional Ge-
ometry. Online book. Available at: http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.
html#cspin, 2006.

[K33] Pitkänen M. Construction of Quantum Theory: More about Matrices. In Towards
M-Matrix. Online book. Available at: http://tgdtheory.fi/public_html/tgdquantum/

tgdquantum.html#UandM, 2012.

[K34] Pitkänen M. Meditation, Mind-Body Medicine and Placebo: TGD point of view. In TGD
based view about living matter and remote mental interactions. Online book. Available at:
http://tgdtheory.fi/public_html/tgdlian/tgdlian.html#panel, 2012.

[K35] Pitkänen M. Quantum Adeles. In TGD as a Generalized Number Theory. On-
line book. Available at: http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#

galois, 2012.

[K36] Pitkänen M. TGD Based View About Living Matter and Remote Mental Interactions. Online
book. Available at: http://tgdtheory.fi/public_html/tgdlian/tgdlian.html, 2012.

[K37] Pitkänen M. p-Adic length Scale Hypothesis. Online book. Available at: http://tgdtheory.
fi/public_html/padphys/padphys.html, 2013.

[K38] Pitkänen M. What p-Adic Icosahedron Could Mean? And What about p-Adic Manifold?
In TGD as a Generalized Number Theory. Online book. Available at: http://tgdtheory.

fi/public_html/tgdnumber/tgdnumber.html#picosahedron, 2013.

[K39] Pitkänen M. Criticality and dark matter. In Hyper-finite Factors and Dark Matter Hierarchy.
Online book. Available at: http://tgdtheory.fi/public_html/neuplanck/neuplanck.

html#qcritdark, 2014.

[K40] Pitkänen M. Recent View about Kähler Geometry and Spin Structure of WCW . In Quantum
Physics as Infinite-Dimensional Geometry. Online book. Available at: http://tgdtheory.

fi/public_html/tgdgeom/tgdgeom.html#wcwnew, 2014.

[K41] Pitkänen M. Unified Number Theoretical Vision. In TGD as a Generalized Num-
ber Theory. Online book. Available at: http://tgdtheory.fi/public_html/tgdnumber/

tgdnumber.html#numbervision, 2014.

[K42] Pitkänen M. About Preferred Extremals of Kähler Action. In Physics in Many-Sheeted
Space-Time. Online book. Available at: http://tgdtheory.fi/public_html/tgdclass/

tgdclass.html#prext, 2015.

http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#twistorstory
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#twistorstory
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#tgdgrt
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#tgdgrt
http://tgdtheory.fi/public_html/genememe/genememe.html#dnatqccodes
http://tgdtheory.fi/public_html/genememe/genememe.html#dnatqccodes
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#timesc
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#timesc
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#vNeumann
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#vNeumann
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#cspin
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#cspin
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#UandM
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html#UandM
http://tgdtheory.fi/public_html/tgdlian/tgdlian.html#panel
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#galois
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#galois
http://tgdtheory.fi/public_html/tgdlian/tgdlian.html
http://tgdtheory.fi/public_html/padphys/padphys.html
http://tgdtheory.fi/public_html/padphys/padphys.html
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#picosahedron
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#picosahedron
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#qcritdark
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#qcritdark
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#wcwnew
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#wcwnew
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#numbervision
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html#numbervision
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#prext
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#prext


ARTICLES ABOUT TGD 100

Articles about TGD

[L1] Pitkänen M. Classical part of the twistor story. Available at: http://tgdtheory.fi/public_
html/articles/twistorstory.pdf, 2014.

[L2] Pitkänen M. CMAP representations about TGD, and TGD inspired theory of consciousness
and quantum biology. Available at: http://www.tgdtheory.fi/tgdglossary.pdf, 2014.

http://tgdtheory.fi/public_html/articles/twistorstory.pdf
http://tgdtheory.fi/public_html/articles/twistorstory.pdf
http://www.tgdtheory.fi/tgdglossary.pdf

	Introduction
	P-Adic Physics And Unification Of Real And P-Adic Physics
	Real and p-adic regions of the space-time as geometric correlates of matter and mind
	The generalization of the notion of number
	Zero energy ontology, cognition, and intentionality
	What number theoretical universality might mean?
	p-Adicization by algebraic continuation

	TGD And Classical Number Fields
	Hyper-octonions and hyper-quaternions
	Number theoretical compactification and M8-H duality

	Infinite Primes
	The notion of infinite prime
	Infinite primes and physics in TGD Universe
	Generalization of ordinary number fields: infinite primes and cognition


	P-Adic Physics And The Fusion Of Real And P-Adic Physics To A Single Coherent Whole
	Background
	Problems 
	Program 

	Summary Of The Basic Physical Ideas
	p-Adic mass calculations briefly
	p-Adic length scale hypothesis, ZEO, and hierarchy of Planck constants
	The origin of the preferred p-adic length scales
	p-Adic physics and the notion of finite measurement resolution
	p-Adic numbers and the analogy of TGD with spin-glass
	Life as islands of rational/algebraic numbers in the seas of real and p-adic continua?
	p-Adic physics as physics of cognition

	What Is The Correspondence Between P-Adic And Real Numbers?
	Generalization of the number concept
	Canonical identification

	P-Adic Variants Of The Basic Mathematical Structures Relevant To Physics
	p-Adic probabilities
	How to define integration and p-adic Fourier analysis, integral calculus, and p-adic counterparts of geometric objects?
	p-Adic imbedding space

	What Could Be The Origin Of Preferred P-Adic Primes And P-Adic Length Scale Hypothesis?
	Earlier attempts
	Could preferred primes characterize algebraic extensions of rationals?
	A connection with Langlands program?
	What could be the origin of p-adic length scale hypothesis?
	A connection with infinite primes?


	TGD And Classical Number Fields
	Notations
	Quaternion And Octonion Structures And Their Hyper Counterparts
	Octonions and quaternions
	Hyper-octonions and hyper-quaternions
	Basic constraints
	How to define hyper-quaternionic and hyper-octonionic structures?
	How to end up to quantum TGD from number theory?

	Number Theoretic Compactification And M8-H Duality
	The basic ideas in nutshell
	Is Kähler action needed also at the level of M8
	Definition of complexified octonions and quaternions
	Basic formulation of M8-H duality
	Basic mathematical facts
	Hyper-octonionic Pauli matrices and the definition of associativity
	Are Kähler and spinor structures necessary in M8?
	How could one solve associativity/co-associativity conditions?
	Quaternionicity at the level of imbedding space quantum numbers
	Questions 
	Summary 


	Infinite Primes
	Basic Ideas
	The notion of infinite prime
	Infinite primes and physics in TGD Universe
	Infinite primes and cognition

	Infinite Primes, Integers, And Rationals
	The first level of hierarchy
	Infinite primes form a hierarchy
	Construction of infinite primes as a repeated quantization of a super-symmetric arithmetic quantum field theory
	Construction in the case of an arbitrary commutative number field
	Mapping of infinite primes to polynomials and geometric objects
	How to order infinite primes?
	What is the cardinality of infinite primes at given level?
	How to generalize the concepts of infinite integer, rational and real?
	Comparison with the approach of Cantor

	How To Interpret The Infinite Hierarchy Of Infinite Primes?
	Infinite primes and hierarchy of super-symmetric arithmetic quantum field theories
	Infinite primes, the structure of many-sheeted space-time, and the notion of finite measurement resolution
	How the hierarchy of Planck constants could relate to infinite primes and p-adic hierarchy?



