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0.1 PREFACE

Brief summary of TGD

Towards the end of the year 2023 I became convinced that it would be appropriate to prepare
collections about books related to TGD and its applications. The finiteness of human lifetime
was my first motivation. My second motivation was the deep conviction that TGD will mean a
revolution of the scientific world view and I must do my best to make it easier.

The first collection would relate to the TGD proper and its applications to physics. Second
collection would relate to TGD inspired theory of consciousness and the third collection to TGD
based quantum biology. The books in these collections would focus on much more precise topics
than the earlier books and would be shorter. This would make it much easier for the reader to
understand what TGD is, when the time is finally mature for the TGD to be taken seriously. This
particular book belongs to a collection of books about TGD proper.

The basic ideas of TGD

TGD can be regarded as a unified theory of fundamental interactions but is not the kind of unified
theory as so called GUTs constructed by graduate students in the seventies and eighties using
detailed recipes for how to reduce everything to group theory. Nowadays this activity has been
completely computerized and it probably takes only a few hours to print out the predictions of
this kind of unified theory as an article in the desired format. TGD is something different and I
am not ashamed to confess that I have devoted the last 45 years of my life to this enterprise and
am still unable to write The Rules.

If I remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual difficulties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization
is consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski
space factor of the embedding space is 4-dimensional. During last year it became clear that 4-D
Minkowski space and 4-D complex projective space CP2 are completely unique in the sense that
they allow twistor space with Kähler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (CP2) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, the mainstream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to the same multiplet of the gauge group implying instability of the proton.

Instead of trying to describe in detail the path, which led to TGD as it is now with all its side
tracks, it is better to summarize the recent view which of course need not be final.

TGD can be said to be a fusion of special and general relativities. The Relativity Principle
(Poincare Invariance) of Special Relativity is combined with the General Coordinate Invariance and
Equivalence Principle of General Relativity. TGD involves 3 views of physics: physics geometry,
physics as number theory and physics as topological physics in some sense.
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Physics as geometry

”Geometro-” in TGD refers to the idea about the geometrization of physics. The geometrization
program of Einstein is extended to gauge fields allowing realization in terms of the geometry
of surfaces so that Einsteinian space-time as abstract Riemann geometry is replaced with sub-
manifold geometry. The basic motivation is the loss of classical conservation laws in General
Relativity Theory (GRT)(see Fig. 1). Also the interpretation as a generalization of string models
by replacing string with 3-D surface is natural.

• Standard model symmetries uniquely fix the choice of 8-D space in which space-time surfaces
live to H = M4 ×CP2 [L77]. Also the notion of twistor is geometrized in terms of surface
geometry and the existence of twistor lift fixes the choice of H completely so that TGD is
unique [L26, L30](see Fig. 2). The geometrization applies even to the quantum theory itself
and the space of space-time surfaces - ”world of classical worlds” (WCW) - becomes the
basic object endowed with Kähler geometry (see Fig. 3). The mere mathematical existence
of WCW geometry requires that it has maximal isometries, which together twistor lift and
number theoretic vision fixes it uniquely [L78].

• General Coordinate Invariance (GCI) for space-time surfaces has dramatic implications. A
given 3-surface fixes the space-time surface almost completely as analog of Bohr orbit (pre-
ferred extremal). This implies holography and leads to zero energy ontology (ZEO) in which
quantum states are superpositions of space-time surfaces [K89, L38].

• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields in all scales. It took about 26 years to gain the maturity to admit
the obvious: these fields are classical correlates for long range color and weak interactions
assignable to the phases of ordinary matter predicted by the number theoretic vision and
behaving like dark matter but identifiable as matter explaining the missing baryon problem
whereas the galactic dark matter would correspond to the dark energy assignable monopole
flux tubes as deformations of cosmic strings. The only possible conclusion is that TGD
physics is a fractal consisting of an entire hierarchy of fractal copies of standard model
physics. Also the understanding of electro-weak massivation and screening of weak charges
has been a long standing problem and p-adic physics solved this problem in terms of p-adic
thermodynamics [K17, K41] [L73].

• One of the most recent discoveries of classical TGD is exact general solution of the field
equations. Holography can be realized as a generalized holomorphy realized in terms of
what I call Hamilton-Jacobi structure [L74]. Space-time surfaces correspond to holomorphic
imbeddings of the space-time surface toH with a generalized complex structure defined by the
vanishing of 2 analytic functions of 4 generalized complex coordinates of H. These surfaces
are automatically minimal surfaces. This is true for any geneneral coordinate invariant action
constructed in terms of the induced geometric structures so that the dynamics is universal.
Different actions differ only in the sense that singularities at which the minimal surface
property fails depend on the action. This affects the scattering amplitudes, which can be
constructed in terms of the data related to the singularities [L80].

• Generalized conformal symmetries define an extension of conformal symmetries and one can
assign to them Noether charges. Besides this the so called super-symplectic symmetries
associated with δM4

+ × CP2 define isometries of the ”world of classical worlds” (WCW),
which by holography is essentially the space of Bohr orbits of 3-surfaces as particles so that
quantum TGD is expected to reduce to a generalization of wave mechanics.

Physics as number theory

During these years TGD led to a rather profound generalization of the space-time concept. Quite
general properties of the theory led to the notion of many-sheeted space-time with sheets repre-
senting physical subsystems of various sizes. At the beginning of 90s I became dimly aware of the
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importance of p-adic number fields and soon ended up with the idea that p-adic thermodynam-
ics for a conformally invariant system allows to understand elementary particle massivation with
amazingly few input assumptions. The attempts to understand p-adicity from basic principles
led gradually to the vision about physics as a generalized number theory as an approach comple-
mentary to the physics as an infinite-dimensional spinor geometry of WCW approach. One of its
elements was a generalization of the number concept obtained by fusing real numbers and various
p-adic numbers along common rationals. The number theoretical trinity involves besides p-adic
number fields also quaternions and octonions and the notion of infinite prime.

Adelic physics [L23, L24] fusing real and various p-adic physics is part of the number theoretic
vision, which provides a kind of dual description for the description based on space-time geometry
and the geometry of ”world of classical words”. Adelic physics predicts two fractal length scale
hierarchies: p-adic length scale hierarchy and the hierarchy of dark length scales labelled by heff =
nh0, where n is the dimension of extension of rational. The interpretation of the latter hierarchy is
as phases of ordinary matter behaving like dark matter. Quantum coherence is possible in arbitarily
long scales. These two hierarchies are closely related. p-Adic primes correspond to ramified primes
for a polynomial, whose roots define the extension of rationals: for a given extension this polynomial
is not unique.

M8 −H duality

The concrete realization of the number theoretic vision is based on M8 − H duality (see Fig.
4). What the precise form is this duality is, has been far from clear but the recent form is the
simplest one and corresponds to the original view [L79]. M8 corresponds to octonions O but
with the number theoretic metric defined by Re(o2) rather than the standard norm and giving
Minkowskian signature.

The physics in M8 can be said to be algebraic whereas in H field equations are partial
differential equations. The dark matter hierarchy corresponds to a hierarchy of algebraic extensions
of rationals inducing that for adeles and has interpretation as an evolutionary hierarchy (see Fig.
5). p-Adic physics is an essential part of number theoretic vision and the space-time surfaces are
such that at least their M8 counterparts exists also in p-adic sense. This requires that the analytic
function defining the space-time surfaces are polynomials with rational coefficients.

M8−H duality relates two complementary visions about physics (see Fig. 6), and can be seen
as a generalization of the momentum-position duality of wave mechanics, which fails to generalize
to quantum field theories (QFTs). M8−H duality applies to particles which are 3-surfaces instead
of point-like particles.

p-Adic physics

The idea about p-adic physics as physics of cognition and intentionality emerged also rather nat-
urally and implies perhaps the most dramatic generalization of the space-time concept in which
most points of p-adic space-time sheets are infinite in real sense and the projection to the real
imbedding space consists of discrete set of points. One of the most fascinating outcomes was the
observation that the entropy based on p-adic norm can be negative. This observation led to the
vision that life can be regarded as something in the intersection of real and p-adic worlds. Ne-
gentropic entanglement has interpretation as a correlate for various positively colored aspects of
conscious experience and means also the possibility of strongly correlated states stable under state
function reduction and different from the conventional bound states and perhaps playing key role
in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Principle with standard measurement
theory, negentropic entanglement defined in terms of number theoretic negentropy is necessarily
associated with a density matrix proportional to unit matrix and is maximal and is characterized
by the dimension n of the unit matrix. Negentropy is positive and maximal for a p-adic unique
prime dividing n.
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Hierarchy of Planck constants labelling phases ordinary matter dark matter behaving
like dark matter

One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions can
have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants comes from
bio-electromagnetism suggesting that in living systems Planck constant could have large values
making macroscopic quantum coherence possible. The interpretation of dark matter as a hierarchy
of phases of ordinary matter characterized by the value of Planck constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpretation
of TGD emerged. One of these insights was the realization that the postulated hierarchy of
Planck constants might follow from the basic structure of quantum TGD. The point is that due
to the extreme non-linearity of the classical action principle the correspondence between canonical
momentum densities and time derivatives of the imbedding space coordinates is one-to-many and
the natural description of the situation is in terms of local singular covering spaces of the imbedding
space. One could speak about effective value of Planck constant heff = n×h coming as a multiple
of minimal value of Planck constant. Quite recently it became clear that the non-determinism of
Kähler action is indeed the fundamental justification for the hierarchy: the integer n can be also
interpreted as the integer characterizing the dimension of unit matrix characterizing negentropic
entanglement made possible by the many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets must
be replaced with conformal equivalence classes of space-time sheets and conformal transformations
correspond to quantum critical deformations leaving the ends of space-time surfaces invariant.
Conformal invariance would be broken: only the sub-algebra for which conformal weights are
divisible by n act as gauge symmetries. Thus deep connections between conformal invariance
related to quantum criticality, hierarchy of Planck constants, negentropic entanglement, effective
p-adic topology, and non-determinism of Kähler action perhaps reflecting p-adic non-determinism
emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distinguishing
between TGD and competing theories cannot be under-estimated.

TGD as an analog of topological QFT

Consider next the attribute ”Topological”. In condensed matter physical topological physics has
become a standard topic. Typically one has fields having values in compact spaces, which are
topologically non-trivial. In the TGD framework space-time topology itself is non-trivial as also
the topology of H = M4×CP2. Since induced metric is involved with TGD, it is too much to say
that TGD is topological QFT but one can for instance say, that space-time surfaces as preferred
extremals define representatives for 4-D homological equivalence classes.

The space-time as 4-surface X4 ⊂ H has a non-trivial topology in all scales and this together
with the notion of many-sheeted space-time brings in something completely new. Topologically
trivial Einsteinian space-time emerges only at the QFT limit in which all information about topol-
ogy is lost (see Fig. 7).

Any GCI action satisfying holography=holomorphy principle has the same universal basic ex-
tremals: CP2 type extremals serving basic building bricks of elementary particles, cosmic strings
and their thickenings to flux tubes defining a fractal hierarchy of structure extending from CP2

scale to cosmic scales, and massless extremals (MEs) define space-time correletes for massless par-
ticles. World as a set or particles is replaced with a network having particles as nodes and flux
tubes as bonds between them serving as correlates of quantum entanglement.

”Topological” could refer also to p-adic number fields obeying p-adic local topology differing
radically from the real topology (see Fig. 8).
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Zero energy ontology

TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book
about consciousness. Gradually it became difficult to say where physics ends and consciousness
theory begins since consciousness theory could be seen as a generalization of quantum measurement
theory by identifying quantum jump as a moment of consciousness and by replacing the observer
with the notion of self identified as a system which is conscious as long as it can avoid entanglement
with environment. The somewhat cryptic statement “Everything is conscious and consciousness
can be only lost” summarizes the basic philosophy neatly.

General coordinate invariance leads to the identification of space-time surfaces are analogous to
Bohr orbits inside causal diamond (CD). CD obtained as intersection of future and past directed
light-cones (with CP2 factor included). By the already described hologamphy, 3-dimensional data
replaces the boundary conditions at single 3-surface involving also normal derivatives with condi-
tions involving no derivates.

In zero energy ontology (ZEO), the superpositions of space-time surfaces inside causal diamond
(CD) having their ends at the opposite light-like boundaries of CD, define quantum states. CDs
form a scale hierarchy (see Fig. 9 and Fig. 10). Quantum states are modes of WCW spinor
fields, essentially wave functions in the space WCW consisting of Bohr orbit-like 4-surfaces.

Quantum jumps occur between these and the basic problem of standard quantum measurement
theory disappears. Ordinary state function reductions (SFRs) correspond to ”big” SFRs (BSFRs)
in which the arrow of time changes (see Fig. 11). This has profound thermodynamic implications
and the question about the scale in which the transition from classical to quantum takes place
becomes obsolete. BSFRs can occur in all scales but from the point of view of an observer with
an opposite arrow of time they look like smooth time evolutions.

In ”small” SFRs (SSFRs) as counterparts of ”weak measurements” the arrow of time does not
change and the passive boundary of CD and states at it remain unchanged (Zeno effect).

Equivalence Principle in TGD framework

There have been also longstanding problems related to the relationship between inertial mass and
gravitational mass, whose identification has been far from obvious.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of CDs defined as intersections of future and past directed light-
cones. The notion of energy-momentum becomes length scale dependent since one has a scale
hierarchy for causal diamonds. This allows to understand the non-conservation of energy as
apparent.

Equivalence Principle in the form expressed by Einstein’s equations follows from Poincare
invariance once it is realized that GRT space-time is obtained from the many-sheeted space-
time of TGD by lumping together the space-time sheets to a regionof Minkowski space and
endowing it with an effective metric given as a sum of Minkowski metric and deviations of
the metrices of space-time sheets from Minkowski metric. Similar description relates classical
gauge potentials identified as components of induced spinor connection to Yang-Mills gauge
potentials in GRT space-time. Various topological inhomogenities below resolution scale
identified as particles are described using energy momentum tensor and gauge currents.

At quantum level, the Equivalence Principle has a surprisingly strong content. In linear
Minkowski coordinates, space-time projection of the M4 spinor connection representing grav-
itational gauge potentials the coupling to induced spinor fields vanishes. Also the modified
Dirac action for the solutions of the modified Dirac equation seems to vanish identically and
in TGD perturbative approach separating interaction terms is not possible.

The modified Dirac equation however fails at the singularities of the minimal surface rep-
resenting space-time surface and Dirac action reduces to an integral over singularities for
the trace of the second fundamental form slashed between the induced spinor field and its
conjugate. Also the M4 part of the trace is non-vanishing and gives rise to the gravitational
coupling. The trace gives both standard model vertices and graviton emission vertices. One
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could say that at the quantum level gravitational and gauge interactions are eliminated every-
where except at the singularities identifiable as defects of the ordinary smooth structure. The
exotic smooth structures [L67], possible only in dimension 4, are ordinary smooth structures
apart from these defects serving as vertex representing a creation of a fermion-antifermion
pair in the induced gauge potentials. The vertex is universal and essentially the trace of the
second fundamental form as an analog of the Higgs field and the gravitational constant is
proportional to the square of CP2 radius.

• There is a delicate difference between inertial and gravitational masses. One can assume
that the modes of the imbedding space spinor fields are solutions of massles Dirac equation
in either M4 × CP2 and therefore eigenstates of inertial momentum or in CD = cd × CP2:
in this case they are only mass eigenstates. The mass spectra are identical for these options.
Inertial momenta correspond naturally to the Poincare charges in the space of CDs. For the
CD option the spinor modes correspond to mass squared eigenstates for which the mode for
H3 with a given value of light-proper time is a unitary irreducible SO(1, 3) representation
rather than a representation of translation group. These two eigenmode basis correspond to
gravitational basis for spinor modes.

Quantum TGD as a generalization of Einstein’s geometrization program

I started the serious attempts to construct quantum TGD after my thesis around 1982. The original
optimistic hope was that path integral formalism or canonical quantization might be enough to
construct the quantum theory but it turned that this approach fails due to the extreme non-linearity
of the theory.

It took some years to discover that the only working approach is based on the generalization
of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
“world of classical worlds” (WCW) identified as the space of 3-dimensional surfaces. Later 3-
surfaces where replaced with 4-surfaces satifying holography and therefore as analogs of Bohr
orbits.

• If one assumes Bohr orbitology, then strong correlations between the 3-surfaces at the ends of
CD follow and mean holography. It is natural to identify the quantum states of the Universe
(and sub-Univeverses) as modes of a formally classical spinor field in WCW. WCW gamma
matrices are expressible in terms of oscillator operators of free second quantized spinor fields
of H. The induced spinor fields identified projections of H spinor fields to the space-time
surfaces satisfy modified Dirac equation for the modified Dirac equation. Only quantum
jump remains the genuinely quantal aspect of quantum physics.

• Quantum TGD can be seen as a theory for free spinor fields in WCW having maximal
isometries and the generalization of the Super Virasoro conditions gives rise to the analog
massless Dirac equation at the level of WCW.

The world of classical worlds and its symmetries

The notion of ”World of Classical Worlds” (WCW) emerged around 1985 but found its basic form
around 1990. Holography forced by the realization of General Coordinate Invariance forced/allowed
to give up the attempts to make sense of the path integral.

A more concrete way to express this view is that WCW does not consist of 3-surfaces as
particle-like entities but almost deterministic Bohr orbits assignable to them as preferred extremals
of Kähler action so that quantum TGD becomes wave mechanics in WCW combined with Bohr
orbitology. This view has profound implications, which can be formulated in terms of zero energy
ontology (ZEO), solving among other things the basic paradox of quantum measurement theory.
ZEO forms also the backbone of TGD inspired theory of consciousness and quantum biology.

WCW geometry exists only if it has maximal isometries: this statement is a generalization of
the discovery of Freed for loop space geometries [A54]. I have proposed [K35, K20, K88, K63, L78]
that WCW could be regarded as a union of generalized symmetric spaces labelled by zero modes
which do not contribute to the metric. The induced Kähler field is invariant under symplectic
transformations of CP2 and would therefore define zero mode degrees of freedom if one assumes
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that WCW metric has symplectic transformations as isometries. In particular, Kähler magnetic
fluxes would define zero modes and are quantized closed 2-surfaces. The induced metric appearing
in Kähler action is however not zero mode degree of freedom. If the action contains volume term,
the assumption about union of symmetric spaces is not well-motivated.

Symplectic transformations are not the only candidates for the isometries of WCW. The basic
picture about what these maximal isometries could be, is partially inspired by string models.

• A weaker proposal is that the symplectomorphisms of H define only symplectomorphisms of
WCW. Extended conformal symmetries define also a candidate for isometry group. Re-
markably, light-like boundary has an infinite-dimensional group of isometries which are in
1-1 correspondence with conformal symmetries of S2 ⊂ S2 ×R+ = δM4

+.

• Extended Kac Moody symmetries induced by isometries of δM4
+ are also natural candidates

for isometries. The motivation for the proposal comes from physical intuition deriving from
string models. Note they do not include Poincare symmetries, which act naturally as isome-
tries in the moduli space of causal diamonds (CDs) forming the ”spine” of WCW.

• The light-like orbits of partonic 2-surfaces might allow separate symmetry algebras. One
must however notice that there is exchange of charges between interior degrees of freedom
and partonic 2-surfaces. The essential point is that one can assign to these surface conserved
charges when the dual light-like coordinate defines time coordinate. This picture also assumes
a slicing of space-time surface by by the partonic orbits for which partonic orbits associated
with wormrhole throats and boundaries of the space-time surface would be special. This
slicing would correspond to Hamilton-Jacobi structure.

• Fractal hierarchy of symmetry algebras with conformal weights, which are non-negative in-
teger multiples of fundamental conformal weights, is essential and distinguishes TGD from
string models. Gauge conditions are true only the isomorphic subalgebra and its commu-
tator with the entire algebra and the maximal gauge symmetry to a dynamical symmetry
with generators having conformal weights below maximal value. This view also conforms
with p-adic mass calculations.

• The realization of the symmetries for 3-surfaces at the boundaries of CD and for light-like
orbits of partonic 2-surfaces is known. The problem is how to extend the symmetries to the
interior of the space-time surface. It is natural to expect that the symmetries at partonic
orbits and light-cone boundary extend to the same symmetries.

After the developments towards the end of 2023, it seems that the extension of conformal
and Kac-Moody symmetries of string models to the TGD framework is understood. What about
symplectic symmetries, which were originally proposed as isometries of WCW? In this article
this question is discussed in detail and it will be found that these symmetries act naturally on
3-D holographic data and one can identify conserved charges. By holography this is in principle
enough and might imply that the actions of holomorphic and symplectic symmetry algebras are
dual. Holography=holomorphy hypothesis is discussed also in the case of the modified Dirac
equation.

About the construction of scattering amplitudes

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far-reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. After having made several guesses for what the coun-
terpart of S-matrix could be, it became clear that the dream about explicit formulas is unrealistic
before one has understood what happens in quantum jump.

• In ZEO [K89, L38] one must distinguish between ”small” state function reductions (SSFRs)
and ”big” SFRs (BSFRs). BSFR is the TGD counterpart of the ordinary SFRs and the
arrow of the geometric time changes in it. SSFR follows the counterpart of a unitary time
evolution and the arrow of the geometric time is preserved in SSFR. The sequence of SSFRs
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is the TGD counterpart for the sequence of repeated quantum measurements of the same
observables in which nothing happens to the state. In TGD something happens in SSFRs
and this gives rise to the flow of consciousness. When the set of the observables measured in
SSFR does not commute with the previous set of measured observables, BSFR occurs.

The evolution by SSFRs means that also the causal diamond changes. At quantum level one
has a wave function in the finite-dimensional moduli space of CDs which can be said to form
a spine of WCW [L76]. CDs form a scale hierarchy. SSFRs are preceded by a dispersion in
the moduli space of CDs and SSFR means localization in this space.

• There are several S-matrix like entities. One can assign an analog of the S-matrix to each
analog of unitary time evolution preceding a given SSFR. One can also assign an analog
S-matrix between the eigenstate basis of the previous set of observables and the eigenstate
basis of new observers: this S-matrix characterizes BSFR. One can also assign to zero energy
states an S-matrix like entity between the states assignable to the two boundaries of CD.
These S-matrix like objects can be interpreted as a complex square root of the density matrix
representable as a diagonal and positive square root of density matrix and unitary S-matrix
so that quantum theory in ZEO can be said to define a square root of thermodynamics at
least formally.

In standard QFTs Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so-called Cutkosky
rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual particles are taken
only as a convenient mathematical tool in quantum field theories. The QFT approach is however
plagued by UV and IR divergences and one must keep mind open for the possibility that a genuine
progress might mean opening of the black box of the virtual particle.

In the TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.

• The counterparts of elementary particles can be identified as closed monopole flux tubes
connecting two parallel Minkowskian space-time sheets and have effective ends which are
Euclidean wormhole contacts. The 3-D light-like boundaries of wormhole contacts as orbits
of partonic 2-surfaces.

The intuitive picture is that the 3-D light-like partonic orbits replace the lines of Feynman
diagrams and vertices are replaced by 2-D partonic 2-surfaces. A stronger condition is that
fermion number is carried by light-like fermion lines at the partonic orbits, which can be
identified as boundaries string world sheets.

• The localization of the nodes of induced spinor fields to 2-D string world sheets (and possibly
also to partonic 2-surfaces) implies a stringy formulation of the theory analogous to stringy
variant of twistor formalism with string world sheets having interpretation as 2-braids. In
the TGD framework, the fermionic variant of twistor Grassmann formalism combined with
the number theoretic vision [L62, L63] led to a stringy variant of the twistor diagrammatics.

• Fundamental fermions are off-mass-shell in the sense that their momentum components are
real algebraic integers in an extension of rationals associated with the space-time surfaces
inside CD with a momentum unit determined by the CD size scale. Galois confinement states
that the momentum components are integer valued for the physical states.

• The twistorial approach suggests also the generalization of the Yangian symmetry to infinite-
dimensional super-conformal algebras, which would determine the vertices and scattering
amplitudes in terms of poly-local symmetries.

The twistorial approach is however extremely abstract and lacks a concrete physical interpreta-
tion. The holography=holomorphy vision led to a breakthough in the construction of the scattering
amplitudes by solving the problem of identifying interaction vertices [L80].

1. The basic prediction is that space-time surfaces as analogs of Bohr orbits are holomorphic
in a generalized sense and are therefore minimal surfaces. The minimal surface property
fails at lower-dimensional singularities and the trace of the second fundamental form (SFF)
analogous to acceleration associated with the Bohr orbit of the particle as 3-surface has a
delta function like singularity but vanishes elsewhere.
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2. The minimal surface property expressess masslessness for both fields and particles as 3-
surfaces. At singularities masslessness property fails and singularities can be said to serve as
sources which also in QFT define scattering amplitudes.

3. The singularities are analogs of poles and cuts for the 4-D generalization of the ordinary
holomorphic functions. Also for the ordinary holomorphic functions the Laplace equation as
analog massless field equation and expressing analyticity fails. Complex analysis generalizes
to dimension 4.

4. The conditions at the singularity give a generalization of Newton’s ”F=ma”! I ended up
where I started more than 50 years ago!

5. In dimension 4, and only there, there is an infinite number of exotic diff structures [?], which
differ from ordinary ones at singularities of measure zero analogous to defects. These defects
correspond naturally to the singularities of minimal surfaces. One can say that for the exotic
diff structure there is no singularity.

6. Group theoretically the trace of the SFF can be regarded as a generalization of the Higgs
field, which is non-vanishing only at the vertices and this is enough. Singularities take the role
of generalized particle vertices and determine the scattering amplitudes. The second funda-
mental form contracted with the embedding space gamma matrices and slashed between the
second quantized induced spinor field and its conjugate gives the universal vertex involving
only fermions (bosons are bound states of fermions in TGD). It contains both gauge and
gravitational contributions to the scattering amplitudes and there is a complete symmetry
between gravitational and gauge interactions. Gravitational couplings come out correctly as
the radius squared of CP2 as also in the classical picture.

7. The study of the modified Dirac equation leads to the conclusion that vertices as singu-
larities and defects contain the standard electroweak gauge contribution coming from the
induced spinor connection and a contribution from the M4 spinor connection. M4 part of
the generalized Higgs can give rise to a graviton as an L = 1 rotational state of the flux tube
representing the graviton. It is not clear whether M4 Kähler gauge potential can give rise
to a spin 1 particle. The vielbein part of M4 spinor connection is pure gauge and could give
rise to gravitational topological field theory.

Figures

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 45 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks. The
books provide a view of how TGD evolved rather than the final theory and there are archeological
layers containing mammoth bones, which reflect earlier views not necessarily consistent with the
recent view.

Karkkila, April 21, 2024, Finland

Matti Pitkänen
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Chapter 1

Introduction

1.1 Basic Ideas of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged towards
the end of 1977 - would emerge now it would be seen as an attempt to solve the difficulties of
these approaches to unification.

The basic physical picture behind the geometric vision of TGD corresponds to a fusion
of two rather disparate approaches: namely TGD as a Poincare invariant theory of gravitation
and TGD as a generalization of the old-fashioned string model. After 1995 number theoretic
vision started to develop and was initiated by the success of mass calculations based on p-adic
thermodynamics. Number theoretic vision involves all number fields and is complementary to
the geometric vision: one can say that this duality is analogous to momentum-position duality of
wave mechanics. TGD can be also regarded as topological quantum theory in a very general sense
as already the attribute ”Topological” in ”TGD” makes clear. Space-time surfaces as minimal
surfaces can be regarded as representatives of homology equivalence classes and p-adic topologies
generalize the notion of local topology and apply to the description of correlates of cognition.

1.1.1 Geometric Vision Very Briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description
of basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K2].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional embedding space H = M4×
CP2, where M4 is 4-dimensional (4-D) Minkowski space and CP2 is 4-D complex projective
space (see Appendix).

2. Induction procedure (a standard procedure in fiber bundle theory, see Appendix) allows to
geometrize various fields. Space-time metric characterizing gravitational fields corresponds to
the induced metric obtained by projecting the metric tensor of H to the space-time surface.
Electroweak gauge potentials are identified as projections of the components of CP2 spinor
connection to the space-time surface, and color gauge potentials as projections of CP2

Killing vector fields representing color symmetries. Also spinor structure can be induced:
induced spinor gamma matrices are projections of gamma matrices of H and induced spinor
fields just H spinor fields restricted to space-time surface. Spinor connection is also projected.
The interpretation is that distances are measured in embedding space metric and parallel
translation using spinor connection of embedding space.

1
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Twistor lift of TGD means that one can lift space-time surfaces in H to 6-D surfaces a
analogs of twistor space of space-time surface in the Cartesian product of the twistor spaces
of M4 and CP2, which are the only 4-manifolds allowing twistor space with Kähler structure
[A79]. The twistor structure would be induced in some sense, and should coincide with that
associated with the induced metric. Clearly, the 2-spheres defining the fibers of twistor spaces
of M4 and CP2 must allow identification: this 2-sphere defines the S2 fiber of the twistor
space of the space-time surface. This poses a constraint on the embedding of the twistor
space of space-time surfaces as sub-manifold in the Cartesian product of twistor spaces. The
existence of Kähler structure allows to lift 4-D Kähler action to its 6-D counterparts and the
6-D counterpart of twistor space is obtained by its dimensional reduction so that one obtains
a sphere bundle. This makes possible twistorialization for all space-time surfaces: in general
relativity the general metric does not allow this.

3. A geometrization of quantum numbers is achieved. The isometry group of the geometry
of CP2 codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of CP2 geometry so that
standard model gauge group results. There are also important deviations from the standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this difference is expected to be seen only in CP2 scale. In contrast to GUTs, quark and
lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M4 and CP2 are unique choices for many other reasons. For instance, they are the unique
4-D space-times allowing twistor space with Kähler structure. M4 light-cone boundary
allows a huge extension of 2-D conformal symmetries. M4 and CP2 allow quaternionic
structures. Therefore standard model symmetries have number theoretic meaning.

4. Induced gauge potentials are expressible in terms of embedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field-like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions
in the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particles in space-time can be identified as a topological inhomogeneities in background
space-time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distances of about 104 Planck lengths (CP2 size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their effects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as effective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore a
microscopic theory from which the standard model and general relativity follow as a topo-
logical simplification, however forcing a dramatic increase of the number of fundamental field
variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking effects due to weak interactions. These
effects are indeed observed but only in living matter. The basic problem is that one has long
ranged classical electroweak gauge fields. The resolution of the problem is that the quantum
averages of induced weak and color gauge fields vanish due to the fact that color rotations
affect both space-time surfaces and induced weak and color fields. Only the averages of
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electromagnetic fields are nonvanishing. The correlations functions for weak fields are non-
vanishing below Compton lengths of weak bosons. In living matter large values of effective
Planck constant labelling phases of ordinary matter identified as dark matter make possible
long ranged weak fields and color fields.

6. General coordinate invariance requires holography so that space-time surfaces are analogous
to Bohr orbits for particles identified as 3-surfaces. Bohr orbit property would be naturally
realized by a 4-D generalization of holomorphy of string world sheets and implies that the
space-time surfaces are minimal surfaces apart from singularities. This holds true for any
action as long as it is general coordinate invariant and constructible in terms of the induced
geometry. String world sheets and light-like orbits of partonic 2-surfaces correspond to
singularities at which the minimal surface property of the space-time surfaces realizing the
preferred extremal property fails. Preferred extremals are not completely deterministic,
which implies what I call zero energy ontology (ZEO) meaning that the Bohr orbits are the
fundamental objects. This leads to a solution of the basic paradox of quantum measurement
theory. Also the mathematically ill-defined path integral disappears and leaves only the
well-defined functional integral over the Bohr orbits.

7. A string model-like picture emerges from TGD and one ends up with a rather concrete view
about the topological counterpart of Feynman diagrammatics. The natural stringy action
would be given by the string world sheet area, which is present only in the space-time regions
with Minkowskian signature. Gravitational constant could be present as a fundamental con-
stant in string action and the ratio ~/G/R2 would be determined by quantum criticality
conditions. The hierarchy of Planck constants heff/h = n assigned to dark matter in TGD
framework would allow to circumvent the objection that only objects of length of order
Planck length are possible since string tension given by T = 1/~effG apart from numerical
factor could be arbitrary small. This would make possible gravitational bound states as par-
tonic 2-surfaces as structures connected by strings and solve the basic problem of superstring
theories. This option allows the natural interpretation of M4 type vacuum extremals with
CP2 projection, which is Lagrange manifold as good approximations for space-time sheets at
macroscopic length scales. String area does not contribute to the Kähler function at all.

Whether induced spinor fields associated with Kähler-Dirac action and de-localized inside
the entire space-time surface should be allowed remains an open question: super-conformal
symmetry strongly suggests their presence. A possible interpretation for the corresponding
spinor modes could be in terms of dark matter, sparticles, and hierarchy of Planck constants.

It is perhaps useful to make clear what TGD is not and also what new TGD can give to
physics.

1. TGD is not just General Relativity made concrete by using embeddings: the 4-surface
property is absolutely essential for unifying standard model physics with gravitation and
to circumvent the incurable conceptual problems of General Relativity. The many-sheeted
space-time of TGD gives rise only at the macroscopic limit to GRT space-time as a slightly
curved Minkowski space. TGD is not a Kaluza-Klein theory although color gauge potentials
are analogous to gauge potentials in these theories.

TGD space-time is 4-D and its dimension is due to completely unique conformal properties of
light-cone boundary and 3-D light-like surfaces implying enormous extension of the ordinary
conformal symmetries. Light-like 3-surfaces represent orbits of partonic 2-surfaces and carry
fundamental fermions at 1-D boundaries of string world sheets. TGD is not obtained
by performing Poincare gauging of space-time to introduce gravitation and is plagued by
profound conceptual problems.

2. TGD is not a particular string model although string world sheets emerge in TGD very
naturally as loci for spinor modes: their 2-dimensionality makes among other things possible
quantum deformation of quantization known to be physically realized in condensed matter,
and conjectured in TGD framework to be crucial for understanding the notion of finite
measurement resolution. Hierarchy of objects of dimension up to 4 emerge from TGD: this
obviously means analogy with branes of super-string models.
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TGD is not one more item in the collection of string models of quantum gravitation relying
on Planck length mystics. Dark matter becomes an essential element of quantum gravitation
and quantum coherence in astrophysical scales is predicted just from the assumption that
strings connecting partonic 2-surfaces are responsible for gravitational bound states.

TGD is not a particular string model although AdS/CFT duality of super-string models
generalizes due to the huge extension of conformal symmetries and by the identification
of WCW gamma matrices as Noether super-charges of super-symplectic algebra having a
natural conformal structure.

3. TGD is not a gauge theory. In TGD framework the counterparts of also ordinary gauge
symmetries are assigned to super-symplectic algebra (and its Yangian [A26] [B20, B14, B15]),
which is a generalization of Kac-Moody algebras rather than gauge algebra and suffers a
fractal hierarchy of symmetry breakings defining hierarchy of criticalities. TGD is not one
more quantum field theory like structure based on path integral formalism: path integral
is replaced with functional integral over 3-surfaces, and the notion of classical space-time
becomes an exact part of the theory. Quantum theory becomes formally a purely classical
theory of WCW spinor fields: only state function reduction is something genuinely quantal.

4. TGD view about spinor fields is not the standard one. Spinor fields appear at three levels.
Spinor modes of the embedding space are analogs of spinor modes characterizing incoming
and outgoing states in quantum field theories. Induced second quantized spinor fields at
space-time level are analogs of stringy spinor fields. Their modes are localized by the well-
definedness of electro-magnetic charge and by number theoretic arguments at string world
sheets. Kähler-Dirac action is fixed by supersymmetry implying that ordinary gamma
matrices are replaced by what I call Kähler-Dirac gamma matrices - this something new.
WCW spinor fields, which are classical in the sense that they are not second quantized, serve
as analogs of fields of string field theory and imply a geometrization of quantum theory.

5. TGD is in some sense an extremely conservative geometrization of entire quantum physics:
no additional structures such as gauge fields as independent dynamical degrees of freedom
are introduced: Kähler geometry and associated spinor structure are enough. “Topological”
in TGD should not be understood as an attempt to reduce physics to torsion (see for instance
[B13]) or something similar. Rather, TGD space-time is topologically non-trivial in all scales
and even the visible structures of the everyday world represent non-trivial topology of space-
time in the TGD Universe.

6. Twistor space - or rather, a generalization of twistor approach replacing masslessness in 4-D
sense with masslessness in 8-D sense and thus allowing description of also massive particles
- emerged originally as a technical tool, and its Kähler structure is possible only for H =
M4×CP2. It however turned out that much more than a technical tool is in question. What
is genuinely new is the infinite-dimensional character of the Kähler geometry making it highly
unique, and its generalization to p-adic number fields to describe correlates of cognition. Also
the hierarchy of Planck constants heff = n×h reduces to the quantum criticality of the TGD
Universe and p-adic length scales and Zero Energy Ontology represent something genuinely
new.

The great challenge is to construct a mathematical theory around these physically very
attractive ideas and I have devoted the last 45 years to the realization of this dream and this
has resulted in 26 online books about TGD and nine online books about TGD inspired theory of
consciousness and of quantum biology.

A collection of 30 online books is now (August 2023) under preparation. The goal is to
minimize overlap between the topics of the books and make the focus of a given book sharper.

1.1.2 Two Visions About TGD as Geometrization of Physics and Their
Fusion

As already mentioned, TGD as a geometrization of physics can be interpreted both as a modifi-
cation of general relativity and generalization of string models.
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TGD as a Poincare Invariant Theory of Gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
is regarded as a surface in the 8-dimensional space H = M4

×CP2, where M4 denotes Minkowski
space and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [A61,
A78, A45, A70].

The identification of the space-time as a sub-manifold [A62, A110] of M4 × CP2 leads to
an exact Poincare invariance and solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in struc-
ture than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of CP2

explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors corre-
spond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
concept results. The projections of the CP2 spinor connection, Killing vector fields of CP2 and
of H-metric to four-surface define classical electro-weak, color gauge fields and metric in X4.

The choice of H is unique from the condition that TGD has standard model symmetries.
Also number theoretical vision selects H = M4 × CP2 uniquely. M4 and CP2 are also unique
spaces allowing twistor space with Kähler structure.

TGD as a Generalization of the Hadronic String Model

The second approach was based on the generalization of the mesonic string model describing
mesons as strings with quarks attached to the ends of the string. In the 3-dimensional generalization
3-surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex
of string models. Indeed, the important difference between TGD and string models is that the
analogs of string world sheet diagrams do not describe particle decays but the propagation of
particles via different routes. Particle reactions are described by generalized Feynman diagrams
for which 3-D light-like surface describing particle propagating join along their ends at vertices. As
4-manifolds the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Quite recently, it has turned out that fermionic strings inside space-time surfaces define an
exact part of quantum TGD and that this is essential for understanding gravitation in long length
scales. Also the analog of AdS/CFT duality emerges in that the Kähler metric can be defined
either in terms of Kähler function identifiable as Kähler action assignable to Euclidian space-time
regions or Kähler action + string action assignable to Minkowskian regions.

The recent view about construction of scattering amplitudes is very “stringy”. By strong
form of holography string world sheets and partonic 2-surfaces provide the data needed to con-
struct scattering amplitudes. Space-time surfaces are however needed to realize quantum-classical
correspondence necessary to understand the classical correlates of quantum measurement. There
is a huge generalization of the duality symmetry of hadronic string models.

The proposal is that scattering amplitudes can be regarded as sequences of computational
operations for the Yangian of super-symplectic algebra. Product and co-product define the basic
vertices and realized geometrically as partonic 2-surfaces and algebraically as multiplication for the
elements of Yangian identified as super-symplectic Noether charges assignable to strings. Any com-
putational sequences connecting given collections of algebraic objects at the opposite boundaries
of causal diamond (CD) produce identical scattering amplitudes.

Fusion of the Two Approaches via a Generalization of the Space-Time Concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
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trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a “topological condensate” containing matter as
particle like 3-surfaces “glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
“topological condensate” there could be “vapor phase” that is a “gas” of particle like 3-surfaces
and string like objects (counterpart of the “baby universes” of GRT) and the non-conservation
of energy in GRT corresponds to the transfer of energy between different sheets of the space-time
and possible existence vapour phase.

. What one obtains is what I have christened as many-sheeted space-time (see Fig. http:

//tgdtheory.fi/appfigures/manysheeted.jpg or Fig. ?? in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of
topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory the physical
system does not possess this kind of field identity. The notion of the magnetic body is one of
the key players in TGD inspired theory of consciousness and quantum biology. The existence of
monopole flux tubes requiring no current as a source of the magnetic field makes it possible to
understand the existence of magnetic fields in cosmological and astrophysical scales.

This picture became more detailed with the advent of zero energy ontology (ZEO). The
basic notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP2

and of the intersection of future and past directed light-cones and having scale coming as an
integer multiple of CP2 size is fundamental. CDs form a fractal hierarchy and zero energy states
decompose to products of positive and negative energy parts assignable to the opposite boundaries
of CD defining the ends of the space-time surface. The counterpart of zero energy state in positive
energy ontology is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the
opposite light-like boundaries of CD. Since the extremals of Kähler action connect these, one can
say that by holography the basic dynamical objects are the space-time surface connecting these
3-surfaces and identifiable as analogs of Bohr orbits. This changes totally the vision about notions
like self-organization: self-organization by quantum jumps does not take for a 3-D system but for
the entire 4-D field pattern associated with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as
space-like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that
space-time surface is analogous to Bohr orbit. An alternative identification of the lines of gener-
alized Feynman diagrams is as light-like 3-surfaces at which the signature of the induced metric
changes from Minkowskian to Euclidian . Also the Euclidian 4-D regions can have a similar in-
terpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in
question is due to the effects caused by the failure of strict determinism of Kähler action. In
finite length scale resolution these effects can be neglected below UV cutoff and above IR cutoff.
One can also speak about a strong form of holography.

The understanding of the super symplectic invariance leads to the proposal that super
symplectic algebra and other Kac-Moody type algebras labelled by non-negative multiples of
basic conformal weights allow a hierarchy of symmetry breakings in which the analog of gauge
symmetry breaks down to a genuine dynamical symmetry. This gives rise to fractal hierarchies of
algebras and symmetry breakings. This breaking can occur also for ordinary conformal algebras
if one restricts the conformal weights to be non-negative integers.

1.1.3 Basic Objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four embedding space
coordinates only- essentially CP2 coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed.
Particles topologically condense to several space-time sheets simultaneously and experience the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified
theory the number of primary field variables is countered in hundreds if not thousands, now it is
just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-time
due to the embeddability to 8-D embedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation makes
it possible to understand the relationship to GRT space-time and how the Equivalence Principle
(EP) follows from Poincare invariance of TGD. The interpretation of GRT space-time is as effective
space-time obtained by replacing many-sheeted space-time with Minkowski space with effective
metric determined as a sum of Minkowski metric and sum over the deviations of the induced metrics
of the space-time sheets from Minkowski metric. Poincare invariance strongly suggests classical EP
for the GRT limit in long length scales at least. One can also consider other kinds of limits such
as the analog of GRT limit for Euclidian space-time regions assignable to elementary particles.
In this case deformations of CP2 metric define a natural starting point and CP2 indeed defines a
gravitational instanton with a very large cosmological constant in Einstein-Maxwell theory. Also
gauge potentials of the standard model correspond classically to superpositions of induced gauge
potentials over space-time sheets.

Topological Field Quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to different space-time sheets and only their effects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 Quantum TGD as Spinor Geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was “Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones.

World of Classical Worlds

The notion of WCW reduces the interacting quantum theory to a theory of free WCW spinor
fields.

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude identified as WCW spinor in the configuration space CH (“world of
classical worlds”, WCW) consisting of all possible 3-surfaces in H. “All possible” means that
surfaces with arbitrary many disjoint components and with arbitrary internal topology and
also singular surfaces topologically intermediate between two different manifold topologies
are included.

2. 4-D general coordinate invariance forces holography and replaces the ill-defined path integral
over all space-time surfaces with a discrete sum over 4-D analogs of Bohr orbits for particles
identified as 3-surfaces. Holography means that basic objects are these analogs of Bohr orbits.
Since there is no quantization at the level of WCW, one has an analog of wave mechanics
with point-like particles replaced with 4-D Bohr orbits.



8 Chapter 1. Introduction

3. One must geometrize WCW as the space of Bohr orbits. In an infinite-dimensional situation
the existence of geometry requires maximal symmetries already in the case of loop spaces.
Physics is unique from its mathematical existence.

WCW is endowed with metric and spinor structure so that one can define various metric
related differential operators, say Dirac operators, appearing in the field equations of the
theory 1

Identification of Kähler function

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kähler function. Kähler function is
Kähler action for a preferred extremal assignable to a given 3-surface but what this preferred
extremal is? The obvious first guess was as absolute minimum of Kähler action but could not be
proven to be right or wrong. One big step in the progress was boosted by the idea that TGD should
reduce to almost topological QFT in which braids would replace 3-surfaces in finite measurement
resolution, which could be inherent property of the theory itself and imply discretization at partonic
2-surfaces with discrete points carrying fermion number.

It took long time to realize that there is no discretization in 4-D sense - this would lead to
difficulties with basic symmetries. Rather, the discretization occurs for the parameters character-
izing co-dimension 2 objects representing the information about space-time surface so that they
belong to some algebraic extension of rationals. These 2-surfaces - string world sheets and partonic
2-surfaces - are genuine physical objects rather than a computational approximation. Physics itself
approximates itself, one might say! This is of course nothing but strong form of holography.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coeffi-
cients and in Minkowskian regions the

√
g4 factorc coming from metric would be imaginary

so that one would obtain sum of real term identifiable as Kähler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference effects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The way to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulomb
contribution to Kähler action is required and is true for all known extremals if one makes
a general ansatz about the form of classical conserved currents. The so called weak form of
electric-magnetic duality defines a boundary condition reducing the resulting 3-D terms to
Chern-Simons terms. In this way almost topological QFT results. But only “almost” since
the Lagrange multiplier term forcing electric-magnetic duality implies that Chern-Simons
action for preferred extremals depends on metric.

WCW spinor fields

Classical WCW spinor fields are analogous to Schrödinger amplitudes and the construction of
WCW Kähler geometry reduces to the second quantization of free spinor fields of H.

1There are four kinds of Dirac operators in TGD. The geometrization of quantum theory requires Kähler metric
definable either in terms of Kähler function identified as a the bosonic action for Euclidian space-time regions
or as anti-commutators for WCW gamma matrices identified as conformal Noether super-charges associated with
the second quantized modified Dirac action consisting of string world sheet term and possibly also modified Dirac
action in Minkowskian space-time regions. These two possible definitions reflect a duality analogous to AdS/CFT
duality.
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1. The WCW metric is given by anticommutators of WCW gamma matrices which also have
interpretation as supercharges assignable to the generators of WCW isometries and allow-
ing expression as non-conserved Noether charges. Holography implies zero energy ontology
(ZEO) meaning that zero energy states are superpositions of Bohr orbits connecting bound-
aries of causal diamond (CD). CDs form a fractal hierarchy and their space forming the
spine of WCW is finite-dimensional and can be geometrized. The alternative interpretation
is as a superposition of pairs of ordinary 3-D fermionic states assignable to the ends of the
space-time surfaces.

2. There are several Dirac operators. WCW Dirac operatorDWCW appears in Super-symplectic
gauge conditions analogous to Super Virasoro conditions. The algebraic variant of the H
Dirac operator DH appears in fermionic correlation functions: this is due to the fact that
free fermions appearing as building bricks of WCW gamma matrices are modes of DH . The
modes of DH define the ground states of super-symplectic representations. There is also
the modified Dirac operator DX4 acting on the induced spinors at space-time surfaces and
it is dictated by symmetry one the action fixing the space-time surfaces as Bohr orbits is
fixed. DH is needed since it determines the expressions of WCW gamma matrices as
Noether charges assignable to 3-surfaces at the ends of WCW.

The role of modified Dirac action

1. By quantum classical correspondence, the construction of WCW spinor structure in sectors
assignable to CDs reduces to the second quantization of the induced spinor fields of H. The
basic action is so called modified Dirac action in which gamma matrices are replaced with
the modified) gamma matrices defined as contractions of the canonical momentum currents
of the bosonic action defining the space-time surfaces with the embedding space gamma
matrices. In this way one achieves super-conformal symmetry and conservation of fermionic
currents among other things and a consistent Dirac equation.

Modified Dirac action is needed to define WCW gamma matrices as super charges assignable
to WCW isometry generators identified as generators of symplectic transformations and by
holography are needed only at the 3-surface at the boundaries of WCW. It is important to
notice that the modified Dirac equation does not determine propagators since induced spinor
fields are obtained from free second quantized spinor fields of H. This means enormous
simplification and makes the theory calculable.

2. An important interpretational problem relates to the notion of the induced spinor connec-
tion. The presence of classical W boson fields is in conflict with the classical conservation
of em charge since the coupling to classical W fields changes em charge.

One way out of the problem is the fact that the quantum averages of weak and gluon fields
vanish unlike the quantum average of the em field. This leads to a rather precise understand-
ing of electroweak symmetry breaking as being due the fact that color symmetries rotate
space-time surfaces and also affect the induced weak fields.

One can also consider a stronger condition. If one requires that the spinor modes have well-
defined em charge, one must assume that the modes in the generic situation are localized at
2-D surfaces - string world sheets or perhaps also partonic 2-surfaces - at which classicalW bo-
son fields vanish. Covariantly constant right handed neutrinos generating super-symmetries
forms an exception. The vanishing of the Z0 field is possible for Kähler-Dirac action and
should hold true at least above weak length scales. This implies that the string model in 4-D
space-time becomes part of TGD. Without these conditions classical weak fields can vanish
above weak scale only for the GRT limit of TGD for which gauge potentials are sums over
those for space-time sheets.

The localization would simplify the mathematics enormously and one can solve exactly the
Kähler-Dirac equation for the modes of the induced spinor field just like in super string
models.

At the light-like 3-surfaces the signature of the induced metric changes from Euclidian to
Minkowskian so that

√
g4 vanishes. One can pose the condition that the algebraic analog of
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the massless Dirac equation is satisfied by the modes of the modified-Dirac action assignable
to the Chern-Simons-Kähler action.

1.1.5 Construction of scattering amplitudes

Reduction of particle reactions to space-time topology

Particle reactions are identified as topology changes [A92, A120, A135]. For instance, the decay of
a 3-surface to two 3-surfaces corresponds to the decay A → B + C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle sector
to two-particle sector. All coupling constants should result as predictions of the theory since no
nonlinearities are introduced.

During years this näıve and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong form
of General Coordinate Invariance has led to a rather detailed and in many respects un-expected
visions. This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also introduced the word “world of classical worlds” (WCW) instead of
rather formal “configuration space”. I hope that “WCW” does not induce despair in the reader
having tendency to think about the technicalities involved!

Construction of the counterparts of S-matrices

What does one mean with the counterpart of S-matrix in the TGD framework has been a long
standing problem. The development of ZEO based quantum measurement theory has led to a
rough overall view of the situation.

1. There are two kinds of state function reductions (SFRs). ”Small” SFRs (SSFRs) following the
TGD counterpart of a unitary time evolution defines a sequence of SFRs, which is analogous
to a sequence of repeated quantum measurements associated with the Zeno effect. In wave
mechanics nothing happens in these measurements. In quantum optics these measurements
correspond to weak measurements. In TGD SSFR affects the zero energy state but leaves
the 3-D state at the passive boundary of CD unaffected.

2. In TGD framework each SSFR is preceded by a counterpart of a unitary time evolution,
which means dispersion in the space of CDs and unitary time evolution in fermionic degrees
of freedom such that the passive boundary of CDs and 3-D states at it are unaffected but a
superposition of CDs with varying active boundaries in the space of CDs is formed. In SSFR
a localization in the space of CDs occurs such that the active is fixed. In a statistical sense
the size of the CD increases and the increasing distance between the tips of the CD gives rise
to the arrow of geometric time.

3. Also ”big” SFRS (BSFRs) can occur and they correspond to ordinary SFRs. In BSFR the
roles of the active and passive boundary are changed and this means that the arrow of time
is changed. Big SFR occurs when the SSFR corresponds to a quantum measurement, which
does not commute with the operators, which define the states at the passive boundary of CD
as their eigenstates. This means a radical deviation from standard quantum measurement
theory and has predictions in all scales.

4. One can assign the counterpart of S-matrix to the unitary time evolution between two sub-
sequent SSFRs and also to the counterpart of S-matrix associated with BSFR. At least in
the latter case the dimension of the state space can increase since at least BSFRs lead to
the increase of the dimension of algebraic extension of rationals assignable to the space-time
surface by M8 −H duality. Unitarity is therefore replaced with isometry.

5. I have also considered the possibility that unitary S-matrix could be replaced in the fermionic
degrees of freedom with Kähler metric of the state space satisfying analogs of unitarity
conditions but it seems that this is un-necessary and also too outlandish an idea.
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The notion of M-matrix

1. The most ambitious dream is that zero energy states correspond to a complete solution basis
for the Dirac operators associated with WCWs associated with the spaces of CDs with fixed
passive boundary: this would define an S-matrix assignable to SFR. Also the analog of S-
matrix for the localizations of the states to the active boundary assignable to the BSFR
changing the state at the passive boundary of CD is needed.

2. If one allows entanglement between positive and energy parts of the zero energy state but
assumes that the states at the passive boundary are fixed, one must introduce the counterpart
of the density matrix, or rather its square root. This classical free field theory would dictate
what I have called M-matrices defined between positive and negative energy parts of zero
energy states which form orthonormal rows of what I call U-matrix as a matrix defined
between zero energy states. A biven M-matrix in turn would decompose to a product of a
hermitian square root of density matrix and unitary S-matrix.

3. M-matrix would define time-like entanglement coefficients between positive and negative en-
ergy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in a well-defined sense a square root of thermodynamics. The
orthogonality and hermiticity of the M-matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebras acting as symmetries of the S-matrix. Therefore quan-
tum TGD would reduce to group theory in a well-defined sense.

4. In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained
by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also
the analog of Yangian algebra involving only non-negative powers of S-matrix is possible and
would correspond to a hierarchy of CDs with the temporal distances between tips coming as
integer multiples of the CP2 time.

The M-matrices associated with CDs are obtained by a discrete scaling from the minimal
CD and characterized by integer n are naturally proportional to a representation matrix of
scaling: S(n) = Sn, where S is unitary S-matrix associated with the minimal CD [K48]. This
conforms with the idea about unitary time evolution as exponent of Hamiltonian discretized
to integer power of S and represented as scaling with respect to the logarithm of the proper
time distance between the tips of CD.

5. I have also considered the notion of U-matrix. U-matrix elements between M-matrices for
various CDs are proportional to the inner products Tr[S−n1◦HiHj◦Sn2λ], where λ represents
unitarily the discrete Lorentz boost relating the moduli of the active boundary of CD and
Hi form an orthonormal basis of Hermitian square roots of density matrices. ◦ tells that S
acts at the active boundary of CD only. I have proposed a general representation for the
U-matrix, reducing its construction to that of the S-matrix.

1.1.6 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional config-
uration space (“world of classical worlds”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name “TGD as a gen-
eralized number theory”. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already,
the formulation of quantum TGD in terms of complexified counterparts of classical number fields,
and the notion of infinite prime. Note that one can identify subrings such as hyper-quaternions and
hyper-octonions as sub-spaces of complexified classical number fields with Minkowskian signature
of the metric defined by the complexified inner product.
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The Threads in the Development of Quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name “TGD as
a generalized number theory”. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and rather fruitful revision
of the basic views about what the final form and physical content of quantum TGD might
be. Together with the vision about the fusion of p-adic and real physics to a larger coherent
structure these sub-threads fused to the “physics as generalized number theory” thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite
primes as sub-threads of a thread which might be called “physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to three corresponding to
geometric, number theoretic and topological views of physics.

TGD forces the generalization of physics to a quantum theory of consciousness, and TGD
as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics
of cognitive representations.

Number theoretic vision very briefly

Number theoretic vision about quantum TGD involves notions like adelic physics, M8−H duality
and number theoretic universality. A short review of the basic ideas that have developed during
years is in order.

1. The physical interpretation of M8 is as an analog of momentum space and M8 −H duality
is analogous to momentum-position duality of ordinary wave mechanics.

2. Adelic physics means that all classical number fields, all p-adic number fields and their
extensions induced by extensions of rationals and defining adeles, and also finite number
fields are basic mathematical building bricks of physics.

The complexification of M8, identified as complexified octonions, would provide a realization
of this picture and M8 −H duality would map the algebraic physics in M8 to the ordinary
physics in M4 × CP2 described in terms of partial differential equations.
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3. Negentropy Maximization Principle (NMP) states that the conscious information assignable
with cognition representable measured in terms of p-adic negentropy increases in statistical
sense.

NMP is mathematically completely analogous to the second law of thermodynamics and
number theoretic evolution as an unavoidable statistical increase of the dimension of the
algebraic extension of rationals characterizing a given space-time region implies it. There is
no paradox involved: the p-adic negentropy measures the conscious information assignable
to the entanglement of two systems regarded as a conscious entity whereas ordinary entropy
measures the lack of information about the quantums state of either entangled system.

4. Number theoretical universality requires that space-time surfaces or at least their M8 −H
duals in M8

c are defined for both reals and various p-adic number fields. This is true if they are
defined by polynomials with integer coefficients as surfaces in M8 obeying number theoretic
holography realized as associativity of the normal space of 4-D surface using as holographic
data 3-surfaces at mass shells identified in terms of roots of a polynomial. A physically
motivated additional condition is that the coefficients of the polynomials are smaller than
their degrees.

5. Galois confinement is a key piece of the number theoretic vision. It states that the momenta of
physical states are algebraic integers in the extensions of rationals assignable to the space-time
region considered. These numbers are in general complex and are not consistent with particle
in box quantization. The proposal is that physical states satisfy Galois confinement being
thus Galois singlets and having therefore total momenta, whose components are ordinary
integers, when momentum unit defined by the scale of causal diamond (CD) is used.

6. The notion of p-adic prime was introduced in p-adic mass calculations that started the
developments around 1995. p-Adic length scale hypothesis states that p-adic primes near
powers of 2 have a special physical role (as possibly also the powers of other small primes
such as p = 3).

The proposal is that p-adic primes correspond to ramified primes assignable to the extension
and identified as divisors of the polynomial defined by the products of the root differences
for the roots of the polynomial defining space-time space and having interpretation as values
of, in general complex, virtual mass squared.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might
be important for TGD. Experimentation with p-adic numbers led to the notion of canonical iden-
tification mapping reals to p-adics and vice versa. The breakthrough came with the successful
p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group. Al-
though the details of the calculations have varied from year to year, it was clear that p-adic physics
reduces not only the ratio of proton and Planck mass, the great mystery number of physics, but all
elementary particle mass scales, to number theory if one assumes that primes near prime powers of
two are in a physically favored position. Why this is the case, became one of the key puzzles and
led to a number of arguments with a common gist: evolution is present already at the elementary
particle level and the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired “Universe as Computer” vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.
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In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in different number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that
clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades
central problem in the frontier of mathematics and a lot of profound work has been done
along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly
the notion of algebraic continuation from the world of rationals belonging to the intersection
of real world and various p-adic worlds.

Despite various uncertainties, the number of the applications of the poorly defined p-adic
physics has grown steadily and the applications turned out to be relatively stable so that it was
clear that the solution to these problems must exist. It became only gradually clear that the
solution of the problems might require going down to a deeper level than that represented by reals
and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structure.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of embedding space and space-time concept
and one can speak about real and p-adic space-time sheets. One can talk about adelic space-time,
embedding space, and WCW.

The corresponds of real 4-surfaces with the p-adic ones is induced by number theoretical
discretization using points of 4-surfaces Y 4 ⊂M8

c identifiable as 8-momenta, whose components are
assumed to be algebraic integers in an extension of rationals defined by the extension of rationals
associated with a polynomial P with integer coefficients smaller than the degree of P . These points
define a cognitive representation, which is universal in the sense that it exists also in the algebraic
extensions of p-adic numbers. The points of the cognitive representations associated with the mass
shells with mass squared values identified as roots of P are enough since M8 −H duality can be
used at both M8 and H sides and also in the p-adic context. The mass shells are special in that
they allow for Minkowski coordinates very large cognitive representations unlike the interiors of the
4-surfaces determined by holography by using the data defined by the 3-surfaces at the mass shells.
The higher the dimension of the algebraic extension associated with P , the better the accuracy of
the cognitive representation.

Adelization providing number theoretical universality reduces to algebraic continuation for
the amplitudes from this intersection of reality and various p-adicities - analogous to a back of a
book - to various number fields. There are no problems with symmetries but canonical identification
is needed: various group invariant of the amplitude are mapped by canonical identification to
various p-adic number fields. This is nothing but a generalization of the mapping of the p-adic
mass squared to its real counterpart in p-adic mass calculations.

This leads to surprisingly detailed predictions and far reaching conjectures. For instance,
the number theoretic generalization of entropy concept allows negentropic entanglement central
for the applications to living matter (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or
Fig. ?? in the appendix of this book). One can also understand how preferred p-adic primes could

http://tgdtheory.fi/appfigures/cat.jpg
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emerge as so called ramified primes of algebraic extension of rationals in question and characterizing
string world sheets and partonic 2-surfaces. Preferred p-adic primes would be ramified primes for
extensions for which the number of p-adic continuations of two-surfaces to space-time surfaces
(imaginations) allowing also real continuation (realization of imagination) would be especially
large. These ramifications would be winners in the fight for number theoretical survival. Also a
generalization of p-adic length scale hypothesis emerges from NMP [K45].

The characteristic non-determinism of the p-adic differential equations suggests strongly that
p-adic regions correspond to “mind stuff”, the regions of space-time where cognitive representations
reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is
probably a brilliant simulator of Nature, the natural idea is to study the p-adic physics of the
cognitive representations to derive information about the real physics. This view encouraged by
TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear
interpretation for the predictions of p-adic physics.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined
by a repeatedly second quantized arithmetic quantum field theory gave a further boost for the
speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly repre-
sentable as surfaces geometrically, it was clear how TGD might be formulated as a generalized
number theory with infinite primes forming the bridge between classical and quantum such that
real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from
algebraic physics as various completions of the algebraic extensions of complexified quaternions
and octonions. Complete algebraic, topological and dimensional democracy would characterize
the theory.

The infinite primes at the first level of hierarchy, which represent analogs of bound states,
can be mapped to irreducible polynomials, which in turn characterize the algebraic extensions of
rationals defining a hierarchy of algebraic physics continuable to real and p-adic number fields.
The products of infinite primes in turn define more general algebraic extensions of rationals. The
interesting question concerns the physical interpretation of the higher levels in the hierarchy of
infinite primes and integers mappable to polynomials of n > 1 variables.

1.1.7 An explicit formula for M8 −H duality

M8 −H duality is a generalization of momentum-position duality relating the number theoretic
and geometric views of physics in TGD and, despite that it still involves poorly understood aspects,
it has become a fundamental building block of TGD. One has 4-D surfaces Y 4 ⊂ M8

c , where
M8
c is complexified M8 having interpretation as an analog of complex momentum space and 4-D

spacetime surfaces X4 ⊂ H = M4 ×CP2. M8
c , equivalently E8

c , can be regarded as complexified
octonions. M8

c has a subspace M4
c containing M4.

Comment: One should be very cautious with the meaning of ”complex”. Complexified
octonions involve a complex imaginary unit i commuting with the octonionic imaginary units
Ik. i is assumed to also appear as an imaginary unit also in complex algebraic numbers defined
by the roots of polynomials P defining holographic data in M8

c .
In the following M8 − H duality and its twistor lift are discussed and an explicit formula

for the dualities are deduced. Also possible variants of the duality are discussed.

Holography in H

X4 ⊂ H satisfies holography and is analogous to the Bohr orbit of a particle identified as a 3-
surface. The proposal is that holography reduces to a 4-D generalization of holomorphy so that
X4 is a simultaneous zero of two functions of complex CP2 coordinates and of what I have called
Hamilton-Jacobi coordinates of M4 with a generalized Kähler structure.

The simplest choice of the Hamilton-Jacobi coordinates is defined by the decomposition
M4 = M2 × E2, where M2 is endowed with hypercomplex structure defined by light-like coor-
dinates (u, v), which are analogous to z and z. Any analytic map u → f(u) defines a new set
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of light-like coordinates and corresponds to a solution of the massless d’Alembert equation in M2.
E2 has some complex coordinates with imaginary unit defined by i.

The conjecture is that also more general Hamilton-Jacobi structures for which the tangent
space decomposition is local are possible. Therefore one would have M4 = M2(x)×E2(x). These
would correspond to non-equivalent complex and Kähler structures of M4 analogous to those
possessed by 2-D Riemann surfaces and parametrized by moduli space.

Number theoretic holography in M8
c

Y 4 ⊂ M8
c satisfies number theoretic holography defining dynamics, which should reduce to asso-

ciativity in some sense. The Euclidian complexified normal space N4(y) at a given point y of Y 4

is required to be associative, i.e. quaternionic. Besides this, N4(i) contains a preferred complex
Euclidian 2-D subspace Y 2(y). Also the spaces Y 2(x) define an integrable distribution. I have
assumed that Y 2(x) can depend on the point y of Y 4.

These assumptions imply that the normal space N(y) of Y 4 can be parameterized by
a point of CP2 = SU(3)/U(2). This distribution is always integrable unlike quaternionic tangent
space distributions. M8 −H duality assigns to the normal space N(y) a point of CP2. M4

c

point y is mapped to a point x ∈ M4 ⊂ M4 × CP2 defined by the real part of its inversion
(conformal transformation): this formula involves effective Planck constant for dimensional reasons.

The 3-D holographic data, which partially fixes 4-surfaces Y 4 is partially determined by a
polynomial P with real integer coefficients smaller than the degree of P . The roots define mass
squared values which are in general complex algebraic numbers and define complex analogs of mass
shells in M4

c ⊂ M8
c , which are analogs of hyperbolic spaces H3. The 3-surfaces at these mass

shells define 3-D holographic data continued to a surface Y 4 by requiring that the normal space
of Y 4 is associative, i.e. quaternionic. These 3-surfaces are not completely fixed but an interesting
conjecture is that they correspond to fundamental domains of tessellations of H3.

What does the complexity of the mass shells mean? The simplest interpretation is that
the space-like M4 coordinates (3-momentum components) are real whereas the time-like
coordinate (energy) is complex and determined by the mass shell condition. One would have
Re2(E)− Im(E)2 − p2 = Re(m2) and 2Re(E)Im(E) = Im(m2). The condition for the real parts
gives H3 when

√
Re2(E)− Im(E)2 is taken as a time coordinate. The second condition allows

to solve Im(E) in terms of Re(E) so that the first condition reduces to an equation of mass shell
when

√
(Re(E)2 − Im(E)2), expressed in terms of Re(E), is taken as new energy coordinate

Eeff =
√

(Re(E)2−Im(E)2). Is this deformation of H3 in imaginary time direction equivalent
with a region of the hyperbolic 3-space H3?

One can look at the formula in more detail. Mass shell condition gives Re2(E)−Im(E)2−
p2 = Re(m2) and 2Re(E)Im(E) = Im(m2). The condition for the real parts gives H3, when√
Re2(E)− Im(E)2 is taken as an effective energy. The second condition allows to solve Im(E)

in terms of Re(E) so that the first condition reduces to a dispersion relation for Re(E)2.

Re(E)2 =
1

2
(Re(m2)− Im(m2) + p2)(1±

√
1 +

2Im(m2)2

(Re(m2)− Im(m2) + p2)2
. (1.1.1)

Only the positive root gives a non-tachyonic result for Re(m2)− Im(m2) > 0. For real roots with
Im(m2) = 0 and at the high momentum limit the formula coincides with the standard formula.
For Re(m2) = Im(m2) one obtains Re(E)2 → Im(m2)/

√
2 at the low momentum limit p2 → 0.

Energy does not depend on momentum at all: the situation resembles that for plasma waves.

Can one find an explicit formula for M8 −H duality?

The dream is an explicit formula for the M8 −H duality mapping Y 4 ⊂M8
c to X4 ⊂ H. This

formula should be consistent with the assumption that the generalized holomorphy holds true for
X4.

The following proposal is a more detailed variant of the earlier proposal for which Y 4 is
determined by a map g of M4

c → SU(3)c ⊂ G2,c, where G2,c is the complexified automorphism
group of octonions and SU(3)c is interpreted as a complexified color group.
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This map defines a trivial SU(3)c gauge field. The real part of g however defines a
non-trivial real color gauge field by the non-linearity of the non-abelian gauge field with respect to
the gauge potential. The quadratic terms involving the imaginary part of the gauge potential give
an additional condition to the real part in the complex situation and cancel it. If only the real
part of g contributes, this contribution would be absent and the gauge field is non-vanishing.

How could the automorphism g(x) ⊂ SU(3) ⊂ G2 give rise to M8 −H duality?

1. The interpretation is that g(y) at given point y of Y 4 relates the normal space at y to a
fixed quaternionic/associative normal space at point y0, which corresponds is fixed by some
subgroup U(2)0 ⊂ SU(3). The automorphism property of g guarantees that the normal
space is quaternionic/associative at y. This simplifies the construction dramatically.

2. The quaternionic normal sub-space (which has Euclidian signature) contains a complex sub-
space which corresponds to a point of sphere S2 = SO(3)/O(2), where SO(3) is the quater-
nionic automorphism group. The interpretation could be in terms of a selection of spin
quantization axes. The local choice of the preferred complex plane would not be unique
and is analogous to the possibility of having non-trivial Hamilton Jacobi structures in M4

characterized by the choice of M2(x) and equivalently its normal subspace E2(x).

These two structures are independent apart from dependencies forced by the number theoretic
dynamics. Hamilton-Jacobi structure means a selection of the quantization axis of spin and
energy by fixing a distribution of light-like tangent vectors of M4 and the choice of the
quaternionic normal sub-space fixes a choice of preferred quaternionic imaginary unit defining
a quantization axis of the weak isospin.

3. The real part Re(g(y)) defines a point of SU(3) and the bundle projection SU(3)→ CP2

in turn defines a point of CP2 = SU(3)/U(2). Hence one can assign to g a point of CP2

as M8 − H duality requires and deduce an explicit formula for the point. This means a
realization of the dream.

4. The construction requires a fixing of a quaternionic normal space N0 at y0 containing a
preferred complex subspace at a single point of Y 4 plus a selection of the function g. If M4

coordinates are possible for Y 4, the first guess is that g as a function of complexified M4

coordinates obeys generalized holomorphy with respect to complexified M4 coordinates in
the same sense and in the case of X4. This might guarantee that the M8 −H image of Y 4

satisfies the generalized holomorphy.

5. Also space-time surfaces X4 with M4 projection having a dimension smaller than 4 are
allowed. I have proposed that they might correspond to singular cases for the above formula:
a kind of blow-up would be involved. One can also consider a more general definition of
Y 4 allowing it to have a M4 projection with dimension smaller than 4 (say cosmic strings).
Could one have implicit equations for the surface Y 4 in terms of the complex coordinates of
SU(3)c and M4? Could this give for instance cosmic strings with a 2-D M4 projection and
CP2 type extremals with 4-D CP2 projection and 1-D light-like M4 projection?

What could the number theoretic holography mean physically?

What could be physical meaning of the number theoretic holography? The condition that has been
assumed is that the CP2 coordinates at the mass shells of M4

c ⊂ M8
c mapped to mass shells H3

of M4 ⊂ M4 × CP2 are constant at the H3. This is true if the g(y) defines the same CP2 point
for a given component X3

i of the 3-surface at a given mass shell. g is therefore fixed apart from
a local U(2) transformation leaving the CP2 point invariant. A stronger condition would be that
the CP2 point is the same for each component of X3

i and even at each mass shell but this
condition seems to be unnecessarily strong.

Comment: One can o criticize this condition as too strong and one can consider giving
up this condition. The motivation for this condition is that the number of algebraic points at the
3-surfaces associated with H3 explodes since the coordinates associated with normal directions
vanish. Kind of cognitive explosion would be in question.

SU(3) corresponds to a subgroup of G2 and one can wonder what the fixing of this subgroup
could mean physically. G2 is 14-D and the coset space G2/SU(3) is 6-D and a good guess is that
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it is just the 6-D twistor space SU(3)/U(1)× U(1) of CP2: at least the isometries are the same.
The fixing of the SU(3) subgroup means fixing of a CP2 twistor. Physically this means the
fixing of the quantization axis of color isospin and hypercharge.

Twistor lift of the holography

What is interesting is that by replacing SU(3) with G2, one obtains an explicit formula form the
generalization of M8 −H duality to that for the twistorial lift of TGD!

One can also consider a twistorial generalization of the above proposal for the number
theoretic holography by allowing local G2 automorphisms interpreted as local choices of the color
quantization axis. G2 elements would be fixed apart from a local SU(3) transformation at the
components of 3-surfaces at mass shells. The choice of the color quantization axes for a connected
3-surface at a given mass shell would be the same everywhere. This choice is indeed very natural
physically since 3-surface corresponds to a particle.

Is this proposal consistent with the boundary condition of the number theoretical holog-
raphy mean in the case of 4-surfaces in M8

c and M4 × CP2?

1. The selection of SU(3) ⊂ G2 for ordinary M8 −H duality means that the G2,c gauge field
vanishes everywhere and the choice of color quantization axis is the same at all points of the
4-surface. The fixing of the CP2 point to be constant at H3 implies that the color gauge
field at H3 ⊂M8

c and its image H3 ⊂ H vanish. One would have color confinement at the
mass shells H3

i , where the observations are made. Is this condition too strong?

2. The constancy of the G2 element at mass shells makes sense physically and means a fixed
color quantization axis. The selection of a fixed SU(3) ⊂ G2 for entire space-time surface
is in conflict with the non-constancy of G2 element unless G2 element differs at different
points of 4-surface only by a multiplication of a local SU(3)0 element, that is local SU(3)
transformation. This kind of variation of the G2 element would mean a fixed color group
but varying choice of color quantization axis.

3. Could one consider the possibility that the local G2,c element is free and defines the twistor
lift of M8 −H duality as something more fundamental than the ordinary M8 −H duality
based on SU(3)c. This duality would make sense only at the mass shells so that only the
spaces H3×CP2 assignable to mass shells would make sense physically? In the interior CP2

would be replaced with the twistor space SU(3)/U(1) × U(1). Color gauge fields would be
non-vanishing at the mass shells but outside the mass shells one would have G2 gauge fields.

There is also a physical objection against the G2 option. The 14-D Lie algebra representation
of G2 acts on the imaginary octonions which decompose with respect to the color group to
1 ⊕ 3 ⊕ 3. The automorphism property requires that 1 can be transformed to 3 or 3 to
themselves: this requires that the decomposition contains 3 ⊕ 3. Furthermore, it must be
possible to transform 3 and 3 to themselves, which requires the presence of 8. This leaves
only the decomposition 8 ⊕ 3 ⊕ 3. G2 gluons would both color octet and triplets. In the
TDG framework the only conceivable interpretation would be in terms of ordinary gluons
and leptoquark-like gluons. This does not fit with the basic vision of TGD.

The choice of twistor as a selection of quantization axes should make sense also in the
M4 degrees of freedom. M4 twistor corresponds to a choice of light-like direction at a given point
of M4. The spatial component of the light-like vector fixes the spin quantization axis. Its
choice together with the light-likeness fixes the time direction and therefore the rest system and
energy quantization axis. Light-like vector fixes also the choice of M2 and of E2 as its orthogonal
complement. Therefore the fixing of M4 twistor as a point of SU(4)/SU(3)×U(1) corresponds
to a choice of the spin quantization axis and the time-like axis defining the rest system in which
the energy is measured. This choice would naturally correspond to the Hamilton-Jacobi structure
fixing the decompositions M2(x)× E2(x). At a given mass shell the choice of the quantization
axis would be constant for a given X3

i .
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1.1.8 Hierarchy of Planck Constants and Dark Matter Hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark Matter as Large ~ Phases

D. Da Rocha and Laurent Nottale [E1] have proposed that Schrödinger equation with Planck
constant ~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c =

1). v0 is a velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 × 10−4.
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of v0 seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hy-
drodynamics. Many-sheeted space-time however suggests that astrophysical systems are at some
levels of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets
in question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hgr. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hgr would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K68].

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative “pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Certain experimental findings suggest the identification heff = n× = hgr. The large value
of hgr can be seen as a way to reduce the string tension of fermionic strings so that gravitational
(in fact all!) bound states can be described in terms of strings connecting the partonic 2-surfaces
defining particles (analogous to AdS/CFT description). The values heff/h = n can be interpreted
in terms of a hierarchy of breakings of super-conformal symmetry in which the super-conformal
generators act as gauge symmetries only for a sub-algebras with conformal weights coming as
multiples of n. Macroscopic quantum coherence in astrophysical scales is implied. If also Kähler-
Dirac action is present, part of the interior degrees of freedom associated with the Kähler-Dirac
part of conformal algebra become physical. A possible is that tfermionic oscillator operators
generate super-symmetries and sparticles correspond almost by definition to dark matter with
heff/h = n > 1. One implication would be that at least part if not all gravitons would be dark and
be observed only through their decays to ordinary high frequency graviton (E = hfhigh = heffflow)
of bunch of n low energy gravitons.

Hierarchy of Planck Constants from the Anomalies of Neuroscience and Biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological effects and
affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10−10 times
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lower than thermal energy at physiological temperatures- so that quantal effects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large a value of Planck
constant that the energy of photons is above the thermal energy. The proposed interpretation was
as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter
with non-standard value of Planck constant. If only particles with the same value of Planck
constant can appear in the same vertex of Feynman diagram, the phases with different value of
Planck constant are dark relative to each other. The phase transitions changing Planck constant
can however make possible interactions between phases with different Planck constant but these
interactions do not manifest themselves in particle physics. Also the interactions mediated by
classical fields should be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis heff = hgr - at least for microscopic particles - implies that cyclotron
energies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
heff reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K59, K60, K57] ) support the view that dark
matter might be a key player in living matter.

Dark Matter as a Source of Long Ranged Weak and Color Fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)ew
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kähler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z0

field can vanish. The latter would guarantee the absence of large parity breaking effects above
intermediate boson scale scaling like heff .

1.1.9 Twistors in TGD and connection with Veneziano duality

The twistorialization of TGD has two aspects. The attempt to generalize twistor Grassmannian
approach emerged first. It was however followed by the realization that also the twistor lift of TGD
at classical space-time level is needed. It turned out that the progress in the understanding of the
classical twistor lift has been much faster - probably this is due to my rather limited technical QFT
skills.

Twistor lift at space-time level

8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [K77]. The
reason is that M4 and CP2 are completely exceptional in the sense that they are the only 4-D
manifolds allowing twistor space with Kähler structure [A79]. The twistor space of M4 × CP2 is
Cartesian product of those of M4 and CP2. The obvious idea is that space-time surfaces allowing
twistor structure if they are orientable are representable as surfaces in H such that the properly
induced twistor structure co-incides with the twistor structure defined by the induced metric.

In fact, it is enough to generalize the induction of spinor structure to that of twistor structure
so that the induced twistor structure need not be identical with the ordinary twistor structure
possibly assignable to the space-time surface. The induction procedure reduces to a dimensional
reduction of 6-D Kähler action giving rise to 6-D surfaces having bundle structure with twistor
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sphere as fiber and space-time as base. The twistor sphere of this bundle is imbedded as sphere in
the product of twistor spheres of twistor spaces of M4 and CP2.

This condition would define the dynamics, and the original conjecture was that this dynamics
is equivalent with the identification of space-time surfaces as preferred extremals of Kähler action.
The dynamics of space-time surfaces would be lifted to the dynamics of twistor spaces, which
are sphere bundles over space-time surfaces. What is remarkable that the powerful machinery of
complex analysis becomes available.

It however turned out that twistor lift of TGD is much more than a mere technical tool.
First of all, the dimensionally reduction of 6-D Kähler action contained besides 4-D Kähler action
also a volume term having interpretation in terms of cosmological constant. This need not bring
anything new, since all known extremals of Kähler action with non-vanishing induced Kähler form
are minimal surfaces. There is however a large number of embeddings of twistor sphere of space-
time surface to the product of twistor spheres. Cosmological constant has spectrum and depends on
length scale, and the proposal is that coupling constant evolution reduces to that for cosmological
constant playing the role of cutoff length. That cosmological constant could transform from a mere
nuisance to a key element of fundamental physics was something totally new and unexpected.

1. The twistor lift of TGD at space-time level forces to replace 4-D Kähler action with 6-D
dimensionally reduced Kähler action for 6-D surface in the 12-D Cartesian product of 6-D
twistor spaces of M4 and CP2. The 6-D surface has bundle structure with twistor sphere as
fiber and space-time surface as base.

Twistor structure is obtained by inducing the twistor structure of 12-D twistor space using
dimensional reduction. The dimensionally reduced 6-D Kähler action is sum of 4-D Kähler
action and volume term having interpretation in terms of a dynamical cosmological constant
depending on the size scale of space-time surface (or of causal diamond CD in zero energy
ontology (ZEO)) and determined by the representation of twistor sphere of space-time surface
in the Cartesian product of the twistor spheres of M4 and CP2.

2. The preferred extremal property as a representation of quantum criticality would naturally
correspond to minimal surface property meaning that the space-time surface is separately
an extremal of both Kähler action and volume term almost everywhere so that there is no
coupling between them. This is the case for all known extremals of Kähler action with
non-vanishing induced Kähler form.

Minimal surface property could however fail at 2-D string world sheets, their boundaries and
perhaps also at partonic 2-surfaces. The failure is realized in minimal sense if the 3-surface
has 1-D edges/folds (strings) and 4-surface 2-D edges/folds (string world sheets) at which
some partial derivatives of the embedding space coordinates are discontinuous but canonical
momentum densities for the entire action are continuous.

There would be no flow of canonical momentum between interior and string world sheet and
minimal surface equations would be satisfied for the string world sheet, whose 4-D counterpart
in twistor bundle is determined by the analog of 4-D Kähler action. These conditions allow
the transfer of canonical momenta between Kähler- and volume degrees of freedom at string
world sheets. These no-flow conditions could hold true at least asymptotically (near the
boundaries of CD).

M8−H duality suggests that string world sheets (partonic 2-surfaces) correspond to images
of complex 2-sub-manifolds of M8 (having tangent (normal) space which is complex 2-plane
of octonionic M8).

3. Cosmological constant would depend on p-adic length scales and one ends up to a concrete
model for the evolution of cosmological constant as a function of p-adic length scale and
other number theoretic parameters (such as Planck constant as the order of Galois group):
this conforms with the earlier picture.

Inflation is replaced with its TGD counterpart in which the thickening of cosmic strings to
flux tubes leads to a transformation of Kähler magnetic energy to ordinary and dark matter.
Since the increase of volume increases volume energy, this leads rapidly to energy minimum
at some flux tube thickness. The reduction of cosmological constant by a phase transition
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however leads to a new expansion phase. These jerks would replace smooth cosmic expansion
of GRT. The discrete coupling constant evolution predicted by the number theoretical vision
could be understood as being induced by that of cosmological constant taking the role of
cutoff parameter in QFT picture [L29].

Twistor lift at the level of scattering amplitudes and connection with Veneziano du-
ality

The classical part of twistor lift of TGD is rather well-understood. Concerning the twistorialization
at the level of scattering amplitudes the situation is much more difficult conceptually - I already
mentioned my limited QFT skills.

1. From the classical picture described above it is clear that one should construct the 8-D
twistorial counterpart of theory involving space-time surfaces, string world sheets and their
boundaries, plus partonic 2-surfaces and that this should lead to concrete expressions for the
scattering amplitudes.

The light-like boundaries of string world sheets as carriers of fermion numbers would cor-
respond to twistors as they appear in twistor Grassmann approach and define the analog
for the massless sector of string theories. The attempts to understand twistorialization have
been restricted to this sector.

2. The beautiful basic prediction would be that particles massless in 8-D sense can be massive
in 4-D sense. Also the infrared cutoff problematic in twistor approach emerges naturally and
reduces basically to the dynamical cosmological constant provided by classical twistor lift.

One can assign 4-momentum both to the spinor harmonics of the embedding space represent-
ing ground states of super-conformal representations and to light-like boundaries of string
world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identical
by quantum classical correspondence: this could be seen as a concretization of Equivalence
Principle. Also a connection with string model emerges.

3. As far as symmetries are considered, the picture looks rather clear. Ordinary twistor Grass-
mannian approach boils down to the construction of scattering amplitudes in terms of Yangian
invariants for conformal group of M4. Therefore a generalization of super-symplectic sym-
metries to their Yangian counterpart seems necessary. These symmetries would be gigantic
but how to deduce their implications?

4. The notion of positive Grassmannian is central in the twistor approach to the scattering am-
plitudes in calN = 4 SUSYs. TGD provides a possible generalization and number theoretic
interpretation of this notion. TGD generalizes the observation that scattering amplitudes in
twistor Grassmann approach correspond to representations for permutations. Since 2-vertex
is the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering am-
plitudes are representations for braidings.

Braid interpretation encourages the conjecture that non-planar diagrams can be reduced to
ordinary ones by a procedure analogous to the construction of braid (knot) invariants by
gradual un-braiding (un-knotting).

This is however not the only vision about a solution of non-planarity. Quantum criticality
provides different view leading to a totally unexpected connection with string models, actually
with the Veneziano duality, which was the starting point of dual resonance model in turn leading
via dual resonance models to super string models.

1. Quantum criticality in TGD framework means that coupling constant evolution is discrete
in the sense that coupling constants are piecewise constant functions of length scale replaced
by dynamical cosmological constant. Loop corrections would vanish identically and the
recursion formulas for the scattering amplitudes (allowing only planar diagrams) deduced in
twistor Grassmann would involve no loop corrections. In particular, cuts would be replaced
by sequences of poles mimicking them like sequences of point charge mimic line charges. In
momentum discretization this picture follows automatically.
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2. This would make sense in finite measurement resolution realized in number theoretical vi-
sion by number-theoretic discretization of the space-time surface (cognitive representation)
as points with coordinates in the extension of rationals defining the adele [L24]. Similar dis-
cretization would take place for momenta. Loops would vanish at the level of discretization
but what would happen at the possibly existing continuum limit: does the sequence of poles
integrate to cuts? Or is representation as sum of resonances something much deeper?

3. Maybe it is! The basic idea of behind the original Veneziano amplitudes (see http://

tinyurl.com/yyhwvbqb) was Veneziano duality. This 4-particle amplitude was generalized
by Yoshiro Nambu, Holber-Beck Nielsen, and Leonard Susskind to N-particle amplitude (see
http://tinyurl.com/yyvkx7as) based on string picture, and the resulting model was called
dual resonance model. The model was forgotten as QCD emerged. Later came superstring
models and led to M-theory. Now it has become clear that something went wrong, and it
seems that one must return to the roots. Could the return to the roots mean a careful
reconsideration of the dual resonance model?

4. Recall that Veneziano duality (1968) was deduced by assuming that scattering amplitude can
be described as sum over s-channel resonances or t-channel Regge exchanges and Veneziano
duality stated that hadronic scattering amplitudes have representation as sums over s- or t-
channel resonance poles identified as excitations of strings. The sum over exchanges defined
by t-channel resonances indeed reduces at larger values of s to Regge form.

The resonances had zero width, which was not consistent with unitarity. Further, there
were no counterparts for the sum of s-, t-, and u-channel diagrams with continuous cuts
in the kinematical regions encountered in QFT approach. What puts bells ringing is the u-
channel diagrams would be non-planar and non-planarity is the problem of twistor Grassmann
approach.

5. Veneziano duality is true only for s- and t- channels but not been s- and u-channel. Stringy
description makes t-channel and s-channel pictures equivalent. Could it be that in funda-
mental description u-channels diagrams cannot be distinguished from s-channel diagrams or
t-channel diagrams? Could the stringy representation of the scattering diagrams make u-
channel twist somehow trivial if handles of string world sheet representing stringy loops in
turn representing the analog of non-planarity of Feynman diagrams are absent? The per-
mutation of external momenta for tree diagram in absence of loops in planar representation
would be a twist of π in the representation of planar diagram as string world sheet and would
not change the topology of the string world sheet and would not involve non-trivial world
sheet topology.

For string world sheets loops would correspond to handles. The presence of handle would
give an edge with a loop at the level of 3-surface (self energy correction in QFT). Handles
are not allowed if the induced metric for the string world sheet has Minkowskian signature.
If the stringy counterparts of loops are absent, also the loops in scattering amplitudes should
be absent.

This argument applies only inside the Minkowskian space-time regions. If string world sheets
are present also in Euclidian regions, they might have handles and loop corrections could
emerge in this manner. In TGD framework strings (string world sheets) are identified to 1-
D edges/folds of 3-surface at which minimal surface property and topological QFT property
fails (minimal surfaces as calibrations). Could the interpretation of edge/fold as discontinuity
of some partial derivatives exclude loopy edges: perhaps the branching points would be too
singular?

A reduction to a sum over s-channel resonances is what the vanishing of loops would suggest.
Could the presence of string world sheets make possible the vanishing of continuous cuts even at
the continuum limit so that continuum cuts would emerge only in the approximation as the density
of resonances is high enough?

The replacement of continuous cut with a sum of infinitely narrow resonances is certainly an
approximation. Could it be that the stringy representation as a sum of resonances with finite width
is an essential aspect of quantum physics allowing to get rid of infinities necessarily accompanying
loops? Consider now the arguments against this idea.

http://tinyurl.com/yyhwvbqb
http://tinyurl.com/yyhwvbqb
http://tinyurl.com/yyvkx7as
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1. How to get rid of the problems with unitarity caused by the zero width of resonances? Could
finite resonance widths make unitarity possible? Ordinary twistor Grassmannian approach
predicts that the virtual momenta are light-like but complex: obviously, the imaginary part
of the energy in rest frame would have interpretation as resonance with.

In TGD framework this generalizes for 8-D momenta. By quantum-classical correspondence
(QCC) the classical Noether charges are equal to the eigenvalues of the fermionic charges
in Cartan algebrable (maximal set of mutually commuting observables) and classical TGD
indeed predicts complex momenta (Kähler coupling strength is naturally complex). QCC
thus supports this proposal.

2. Sum over resonances/exchanges picture is in conflict with QFT picture about scattering of
particles. Could finite resonance widths due to the complex momenta give rise to the QFT
type scattering amplitudes as one develops the amplitudes in Taylor series with respect to
the resonance width? Unitarity condition indeed gives the first estimate for the resonance
width.

QFT amplitudes should emerge in an approximation obtained by replacing the discrete set of
finite width resonances with a cut as the distance between poles is shorter than the resolution
for mass squared.

In superstring models string tension has single very large value and one cannot obtain QFT
type behavior at low energies (for instance, scattering amplitudes in hadronic string model
are concentrated in forward direction). TGD however predicts an entire hierarchy of p-
adic length scales with varying string tension. The hierarchy of mass scales corresponding
roughly to the lengths and thickness of magnetic flux tubes as thickened cosmic strings and
characterized by the value of cosmological constant predicted by twistor lift of TGD. Could
this give rise to continuous QCT type cuts at the limit when measurement resolution cannot
distinguish between resonances?

The dominating term in the sum over sums of resonances in t-channel gives near forward
direction approximately the lowest mass resonance for strings with the smallest string tension.
This gives the behavior 1/(t − m2

min), where mmin corresponds to the longest mass scale
involved (the largest space-time sheet involved), approximating the 1/t-behavior of massless
theories. This also brings in IR cutoff, the lack of which is a problem of gauge theories.
This should give rise to continuous QFT type cuts at the limit when measurement resolution
cannot distinguish between resonances.

1.2 Bird’s Eye of View about the Topics of “TGD and Hyper-
Finite Factors”

1.2.1 Hyper-Finite Factors And The Notion Of Measurement Resolu-
tion

The work with TGD inspired model [K4, K3] for topological quantum computation [B24] led to
the realization that von Neumann algebras [A88], in particular so called hyper-finite factors of
type II1 [A66], could provide the mathematics needed to develop a more explicit view about the
construction of scattering amplitudes. Later came the realization that the Clifford algebra of
WCW defines a canonical representation of hyper-finite factors of type II1 and that WCW spinor
fields give rise to HFFs of type III1 encountered also in relativistically invariant quantum field
theories [K87].

Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation ∗ and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.
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The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to
1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one
is that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing pro-
jection probabilities. Quantum measurements can lead with a finite probability only to mixed
states with a density matrix which is projection operator to infinite-dimensional subspace. The
simple von Neumann algebras for which unit operator has unit trace are known as factors of type
II1 [A66].

The definitions of adopted by von Neumann allow however more general algebras. Type In
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras
of type III non-trivial traces are always infinite and the notion of trace becomes useless being
replaced by the notion of state which is generalization of the notion of thermodynamical state.
The fascinating feature of this notion of state is that it defines a unique modular automorphism of
the factor defined apart from unitary inner automorphism and the question is whether this notion
or its generalization might be relevant for the construction of M-matrix in TGD.

Von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fun-
damental and factors of type III as pathological. The highly pragmatic and successful approach
of Dirac [K88] based on the notion of delta function, plus the emergence of generalized Feynman
graphs [K29], the possibility to formulate the notion of delta function rigorously in terms of distri-
butions [A100, A69], and the emergence of path integral approach [A122] meant that von Neumann
approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum
field theories [A59, A127] allowing to deduce invariants of knots, links and 3-manifolds. Also
algebraic structures known as bi-algebras, Hopf algebras, and ribbon algebras [A42, A131] relate
closely to type II1 factors. In topological quantum computation [B24] based on braid groups [A137]
modular S-matrices they play an especially important role.

In algebraic quantum field theory [B26] defined in Minkowski space the algebras of ob-
servables associated with bounded space-time regions correspond quite generally to the type III1
hyper-finite factor [B8, B28].

Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs)
of type II1 and even of type III1- the latter appearing in relativistic quantum field theories could
provide the proper mathematical framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra
known as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-
surface) of WCW is therefore HFF of type II1. If the fermionic Fock algebra defined by the
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fermionic oscillator operators assignable to the induced spinor fields (this is actually not obvi-
ous!) is infinite-dimensional it defines a representation for HFF of type II1. Super-conformal
symmetry suggests that the extension of the Clifford algebra defining the fermionic part of
a super-conformal algebra by adding bosonic super-generators representing symmetries of
WCW respects the HFF property. It could however occur that HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal is
that CDs within CDs are possible. Whether CDs can intersect is not clear. One can actually
construct the space of CDs as a modulispace.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski
space L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are
parameterized by M4×L(a). a analogous to cosmic time [K69]. Since Lorentz boosts define
a non-compact group, the generalization of so called crossed product construction leads to
ask whether the local Clifford algebra of WCW is HFF of type III1.

1.2.2 Organization of “TGD and Hyper-Finite Factors”

The book is organized into two parts. The first part of the book is devoted to hyper-finite factors
of type II1 (HFF) and hierarchy of Planck constants. The notion of HFF is extremely abstract and
I must confess that here I must transcend the boundaries of my technical skills and must trust on
my physical and mathematical intuition.

1. The spinors of the ”world of classical worlds” (WCW) referred to as ”configuration space”
in the earlier writings) form a fermionic Fock space define a canonical example about hyper-
finite factor of type II1.

The work with TGD inspired model for quantum computation led to the realization that
von Neumann algebras, in particular hyper-finite factors of type II1 could provide the math-
ematics needed to develop a more explicit view about the construction of the counterpart
of S-matrix in terms of zero energy states in the zero energy ontology (ZEO). This led to
a proposal of a general master formula for S-matrix (or rather M-matrix as it was called)
with interactions described as a deformation of ordinary tensor product to Connes tensor
products.

2. In the second part of the book a category theoretical formulation of quantum TGD is con-
sidered. Finite measurement resolution realized in terms of a fractal hierarchy of causal
diamonds inside causal diamonds leads to a stringy formulation of quantum TGD involving
effective replacement of the 3-D light-like surface with a collection of braid strands represent-
ing the ends of strings. A formulation in terms of category theoretic concepts is proposed
and leads to a hierarchy of algebras forming what is known as operads.

1.3 Sources

The eight online books about TGD [K83, K78, K62, K53, K16, K49, K32, K71] and nine online
books about TGD inspired theory of consciousness and quantum biology [K76, K13, K56, K12,
K30, K40, K42, K70, K75] are warmly recommended for the reader willing to get overall view
about what is involved.

My homepage (http://tinyurl.com/ybv8dt4n) contains a lot of material about TGD. In
particular, a TGD glossary at http://tinyurl.com/yd6jf3o7).

I have published articles about TGD and its applications to consciousness and living mat-
ter in Journal of Non-Locality (http://tinyurl.com/ycyrxj4o founded by Lian Sidorov and in
Prespacetime Journal (http://tinyurl.com/ycvktjhn), Journal of Consciousness Research and
Exploration (http://tinyurl.com/yba4f672), and DNA Decipher Journal (http://tinyurl.

http://tinyurl.com/ybv8dt4n
http://tinyurl.com/yd6jf3o7
http://tinyurl.com/ycyrxj4o
http://tinyurl.com/ycvktjhn
http://tinyurl.com/yba4f672
http://tinyurl.com/y9z52khg
http://tinyurl.com/y9z52khg
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com/y9z52khg), all of them founded by Huping Hu. One can find the list about the articles pub-
lished at http://tinyurl.com/ybv8dt4n. I am grateful for these far-sighted people for providing
a communication channel, whose importance one cannot overestimate.

1.3.1 PART I: HYPER-FINITE FACTORS

Was von Neumann Right After All?

The work with TGD inspired model for topological quantum computation led to the realization
that von Neumann algebras, in particular so called hyper-finite factors of type II1, seem to provide
the mathematics needed to develop a more explicit view about the construction of S-matrix. The
original discussion has transformed during years from free speculation reflecting in many aspects my
ignorance about the mathematics involved to a more realistic view about the role of these algebras
in quantum TGD. The discussions of this chapter have been restricted to the basic notions are
discussed and only short mention is made to TGD applications discussed in second chapter.

The goal of von Neumann was to generalize the algebra of quantum mechanical observables.
The basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements
allow Hermitian conjugation ∗ and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to
1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projec-
tion probabilities. Quantum measurements can lead with a finite probability only to mixed states
with a density matrix which is projection operator to infinite-dimensional subspace. The simple
von Neumann algebras for which unit operator has unit trace are known as factors of type II1.

The definitions of adopted by von Neumann allow however more general algebras. Type In
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras
of type III non-trivial traces are always infinite and the notion of trace becomes useless being
replaced by the notion of state which is generalization of the notion of thermodynamical state.
The fascinating feature of this notion of state is that it defines a unique modular automorphism
of the factor defined apart from unitary inner automorphism and the question is whether this
notion or its generalization might be relevant for the construction of M-matrix in TGD. It however
seems that in TGD framework based on Zero Energy Ontology identifiable as “square root” of
thermodynamics a square root of thermodynamical state is needed.

The inclusions of hyper-finite factors define an excellent candidate for the description of finite
measurement resolution with included factor representing the degrees of freedom below measure-
ment resolution. The would also give connection to the notion of quantum group whose physical
interpretation has remained unclear. This idea is central to the proposed applications to quantum
TGD discussed in separate chapter.

Evolution of Ideas about Hyper-finite Factors in TGD

The work with TGD inspired model for quantum computation led to the realization that von
Neumann algebras, in particular hyper-finite factors, could provide the mathematics needed to
develop a more explicit view about the construction of M-matrix generalizing the notion of S-

http://tinyurl.com/y9z52khg
http://tinyurl.com/y9z52khg
http://tinyurl.com/ybv8dt4n
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matrix in zero energy ontology (ZEO). In this chapter I will discuss various aspects of hyper-finite
factors and their possible physical interpretation in TGD framework.

1. Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite fac-
tors (HFFs) of type III1 appearing in relativistic quantum field theories provide also the proper
mathematical framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra
known as HFF of type II1. Therefore also the Clifford algebra at a given point (light-like 3-
surface) of world of classical worlds (WCW) is HFF of type II1. If the fermionic Fock algebra
defined by the fermionic oscillator operators assignable to the induced spinor fields (this is
actually not obvious!) is infinite-dimensional it defines a representation for HFF of type II1.
Super-conformal symmetry suggests that the extension of the Clifford algebra defining the
fermionic part of a super-conformal algebra by adding bosonic super-generators representing
symmetries of WCW respects the HFF property. It could however occur that HFF of type
II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal
is that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are parame-
terized by M4 × L(a). A possible interpretation is in terms of quantum cosmology with a
identified as cosmic time. Since Lorentz boosts define a non-compact group, the generaliza-
tion of so called crossed product construction strongly suggests that the local Clifford algebra
of WCW is HFF of type III1. If one allows all values of a, one ends up with M4 ×M4

+ as
the space of moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products of
unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and γk by
octonions. This inspires the idea that it might be possible to end up with quantum TGD from
purely number theoretical arguments. One can start from a local octonionic Clifford algebra
in M8. Associativity (co-associativity) condition is satisfied if one restricts the octonionic
algebra to a subalgebra associated with any hyper-quaternionic and thus 4-D sub-manifold
of M8. This means that the induced gamma matrices associated with the Kähler action
span a complex quaternionic (complex co-quaternionic) sub-space at each point of the sub-
manifold. This associative (co-associative) sub-algebra can be mapped a matrix algebra.
Together with M8 − H duality this leads automatically to quantum TGD and therefore
also to the notion of WCW and its Clifford algebra which is however only mappable to an
associative (co-associative( algebra and thus to HFF of type II1.

2. Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could
be used to define the M-matrix of quantum TGD. This is not the case as is obvious already
from the fact that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of
factors is a more appropriate starting point than the notion modular automorphism but as a
generalization of thermodynamical state is certainly not enough for the purposes of quantum
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TGD and quantum field theories (algebraic quantum field theorists might disagree!). Zero
energy ontology requires that the notion of thermodynamical state should be replaced with
its “complex square root” abstracting the idea about M-matrix as a product of positive
square root of a diagonal density matrix and a unitary S-matrix. This generalization of
thermodynamical state -if it exists- would provide a firm mathematical basis for the notion
of M-matrix and for the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology (ZEO): the two vacua can be assigned with the positive and negative energy
parts of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions meaning the analog of state function
collapse in zero modes fixing the classical conserved charges equal to the quantal counterparts.
Classical charges would be parameters characterizing zero modes.

A concrete construction of M-matrix motivated the recent rather precise view about basic
variational principles is proposed. Fundamental fermions localized to string world sheets can be
said to propagate as massless particles along their boundaries. The fundamental interaction vertices
correspond to two fermion scattering for fermions at opposite throats of wormhole contact and the
inverse of the conformal scaling generator L0 would define the stringy propagator characterizing
this interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite
throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with
monopole Kähler magnetic flux flowing around a loop going through wormhole contacts.

3. Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite
measurement resolution in terms of Connes tensor product but do not fix M-matrix as was the
original optimistic belief.

1. In ZEO N would create states experimentally indistinguishable from the original one. There-
fore N takes the role of complex numbers in non-commutative quantum theory. The space
M/N would correspond to the operators creating physical states modulo measurement res-
olution and has typically fractal dimension given as the index of the inclusion. The cor-
responding spinor spaces have an identification as quantum spaces with non-commutative
N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a uni-
versal M-matrix describing the situation for an ideal measurement resolution exists as the
idea about square root of state encourages to think. Finite measurement resolution forces
to replace the probabilities defined by the M-matrix with their N “averaged” counterparts.
The “averaging” would be in terms of the complex square root of N -state and a direct analog
of functionally or path integral over the degrees of freedom below measurement resolution
defined by (say) length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as N -“aver-
aged” probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix
in M(N interpreted as finite-dimensional space with a projection operator to N . The con-
dition that N averaging in terms of a complex square root of N state produces this kind of
M-matrix poses a very strong constraint on M-matrix if it is assumed to be universal (apart
from variants corresponding to different measurement interactions).
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4. Analogs of quantum matrix groups from finite measurement resolution?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions of von
Neumann algebras allowing to describe mathematically the notion of finite measurement resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution. The basic idea is to replace complex matrix
elements with operators expressible as products of non-negative hermitian operators and unitary
operators analogous to the products of modulus and phase as a representation for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its
development with respect to a fixed row or column does not pose additional conditions. Strong
definition of determinant requires its invariance under permutations of rows and columns. The
permutation of rows/columns turns out to have interpretation as braiding for the hermitian op-
erators defined by the moduli of operator valued matrix elements. The commutativity of all sub-
determinants is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian
operators and sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but
provide a concrete representation and interpretation for quantum group in terms of finite measure-
ment resolution if q is a root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one
obtains quantum matrices for which the determinant is apart from possible change by sign factor
invariant under the permutations of both rows and columns. One could also understand the fractal
structure of inclusion sequences of hyper-finite factors resulting by recursively replacing operators
appearing as matrix elements with quantum matrices.

5. Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy prob-
abilities. For quantum spinors state function reduction cannot be performed unless quantum
deformation parameter equals to q = 1. The reason is that the components of quantum spinor
do not commute: it is however possible to measure the commuting operators representing moduli
squared of the components giving the probabilities associated with “true” and “false”. The univer-
sal eigenvalue spectrum for probabilities does not in general contain (1,0) so that quantum qbits
are inherently fuzzy. State function reduction would occur only after a transition to q=1 phase
and decoherence is not a problem as long as it does not induce this transition.

TGD view about McKay Correspondence, ADE Hierarchy, Inclusions of Hyperfinite
Factors, M8 −H Duality, SUSY, and Twistors

In this chapter 4 topics are discussed. McKay correspondence, SUSY, and twistors are discussed
from TGD point of view, and new aspects of M8 −H duality are considered.

1. McKay correspondence in TGD framework

There are two mysterious looking correspondences involving ADE groups. McKay corre-
spondence between McKay graphs characterizing tensor products for finite subgroups of SU(2)
and Dynkin diagrams of affine ADE groups is the first one. The correspondence between principal
diagrams characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams
for a subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

These correspondences are discussed from number theoretic point of view suggested by TGD
and based on the interpretation of discrete subgroups of SU(2) as subgroups of the covering group
of quaternionic automorphisms SO(3) (analog of Galois group) and generalization of these groups
to semi-direct products Gal(K) / SU(2)K of Galois group for extension K of rationals with the
discrete subgroup SU(2)K of SU(2) with representation matrix elements in K. The identification
of the inclusion hierarchy of HFFs with the hierarchy of extensions of rationals and their Galois
groups is proposed.

A further mystery whether Gal(K)/SU(2)K could give rise to quantum groups or affine al-
gebras. In TGD framework the infinite-D group of isometries of “world of classical worlds” (WCW)
is identified as an infinite-D symplectic group for which the discrete subgroups characterized by
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K have infinite-D representations so that hyper-finite factors are natural for their representations.
Symplectic algebra SSA allows hierarchy of isomorphic sub-algebras SSAn. The gauge conditions
for SSAn and [SSAn, SSA] would define measurement resolution giving rise to hierarchies of in-
clusions and ADE type Kac-Moody type algebras or quantum algebras representing symmetries
modulo measurement resolution.

A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra identi-
fying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements defined by the
traces of representation matrices (characters).

2. New aspects of M8 −H duality

M8−H duality is now a central part of TGD and leads to new findings. M8−H duality can
be formulated both at the level of space-time surfaces and light-like 8-momenta. Since the choice of
M4 in the decomposition of momentum space M8 = M4×E4 is rather free, it is always possible to
find a choice for which light-like 8-momentum reduces to light-like 4-momentum in M4 - the notion
of 4-D mass is relative. This leads to what might be called SO(4)− SU(3) duality corresponding
to the hadronic and partonic views about hadron physics. Particles, which are eigenstates of mass
squared are massless in M4 × CP2 picture and massive in M8 picture. The massivation in this
picture is a universal mechanism having nothing to do with dynamics and results in zero energy
ontology automatically if the zero energy states are superpositions of states with different masses.
p-Adic thermodynamics describes this massivation. Also a proposal for the realization of ADE
hierarchy emerges.

4-D space-time surfaces correspond to roots of octonionic polynomials P (o) with real coef-
ficients corresponding to the vanishing of the real or imaginary part of P (o). These polynomials
however allow universal roots, which are not 4-D but analogs of 6-D branes and having topology
of S6. Their M4 projections are time =constant snapshots t = rn, rM ≤ rn 3-balls of M4 light-
cone (rn is root of P (x)). At each point the ball there is a sphere S3 shrinking to a point about
boundaries of the 3-ball. These special values of M4 time lead to a deeper understanding of ZEO
based quantum measurement theory and consciousness theory.

3. Is the identification of twistor space of M4 really correct?

The critical questions concerning the identification of twistor space of M4 as M4 × S2

led to consider a more conservative identification as CP3 with hyperbolic signature (3,-3) and
replacement of H with H = cdconf × CP2, where cdconf is CP2 with hyperbolic signature (1,-3).
This approach reproduces the nice results of the earlier picture but means that the hierarchy of
CDs in M8 is mapped to a hierarchy of spaces cdconf with sizes of CDs. This conforms with
Poincare symmetry from which everything started since Poincare group acts in the moduli space
of octonionic structures of M8. Note that also the original form of M8 −H duality continues to
make sense and results from the modification by projection from CP3,h to M4 rather than CP2,h.

The outcome of octo-twistor approach applied at level of M8 together with modified M8−H
duality leads to a nice picture view about twistorial description of massive states based on quater-
nionic generalization of twistor (super-)Grassmannian approach. A radically new view is that
descriptions in terms of massive and massless states are alternative options, and correspond to
two different alternative twistorial descriptions and leads to the interpretation of p-adic thermody-
namics as completely universal massivation mechanism having nothing to do with dynamics. As
a side product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which are
not 4-D but analogs of 6-D branes. This part of article is not a mere side track since by M8 −H
duality the finite sub-groups of SU(2) of McKay correspondence appear quite concretely in the
description of the measurement resolution of 8-momentum.

McKay Correspondence from Quantum Arithmetics Replacing Sum and Product with
Direct Sum and Tensor Product?

This article deals with two questions.

1. The ideas related to topological quantum computation suggests that it might make sense to
replace quantum states with representations of the Galois group or even the coefficient space
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of state space with a quantum analog of a number field with tensor product and direct sum
replacing the multiplication and sum.

Could one generalize arithmetics by replacing sum and product with direct sum ⊕ and tensor
product ⊗ and consider group representations as analogs of numbers? Or could one replace
the roots labelling states with representations? Or could even the coefficient field for state
space be replaced with the representations? Could one speak about quantum variants of
state spaces?

Could this give a kind of quantum arithmetics or even quantum number theory and possibly
also a new kind of quantum analog of group theory. If the direct sums are mapped to ordinary
sums in quantum-classical correspondence, this map could make sense under some natural
conditions.

2. McKay graphs (quivers) have irreducible representations as nodes and characterize the tensor
product rules for the irreps of finite groups. How general is the McKay correspondence
relating these graphs to the Dynkin diagrams of ADE type affine algebras? Could it generalize
from finite subgroups of SL(k,C), k = 2, 3, 4 to those of SL(n,C) at least. Is there a deep
connection between finite subgroups of SL(n,C), and affine algebras. Could number theory
or its quantum counterpart provide insights to the problem?

In the TGD framework M8 −H duality relates number theoretic and differential geometric
views about physics: could it provide some understanding of this mystery? The proposal is that
for cognitive representations associated with extended Dynkin diagrams (EEDs), Galois group Gal
acts as Weyl group on McKay diagrams defined by irreps of the isotropy group GalI of given root of
a polynomial which is monic polynomial but with roots replaced with direct sums of irreps of GalI .
This could work for p-adic number fields and finite fields. One also ends up with a more detailed
view about the connection between the hierarchies of inclusion of Galois groups associated with
functional composites of polynomials and hierarchies of inclusions of hyperfinite factors of type II1
assignable to the representation of super-symplectic algebra.

Trying to fuse the basic mathematical ideas of quantum TGD to a single coherent
whole

The theoretical framework behind TGD involves several different strands and the goal is to unify
them to a single coherent whole. TGD involves number theoretic and geometric visions about
physics and M8 − H duality, analogous to Langlands duality, is proposed to unify them. Also
quantum classical correspondence (QCC) is a central aspect of TGD. One should understand both
the M8 −H duality and QCC at the level of detail.

The following mathematical notions are expected to be of relevance for this goal.

1. Von Neumann algebras, call them M , in particular hyperfinite factors of type II1 (HFFs), are
in a central role. Both the geometric and number theoretic side, QCC could mathematically
correspond to the relationship between M and its commutant M ′.

For instance, symplectic transformations leave induced Kähler form invariant and various
fluxes of Kähler form are symplectic invariants and correspond to classical physics commuting
with quantum physics coded by the super symplectic algebra (SSA). On the number theoretic
side, the Galois invariants assignable to the polynomials determining space-time surfaces are
analogous classical invariants.

2. The generalization of ordinary arithmetics to quantum arithmetics obtained by replacing +
and × with ⊕ and ⊗ allows us to replace the notions of finite and p-adic number fields with
their quantum variants. The same applies to various algebras.

3. Number theoretic vision leads to adelic physics involving a fusion of various p-adic physics
and real physics and to hierarchies of extensions of rationals involving hierarchies of Galois
groups involving inclusions of normal subgroups. The notion of adele can be generalized by
replacing various p-adic number fields with the p-adic representations of various algebras.
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4. The physical interpretation of the notion of infinite prime has remained elusive although a
formal interpretation in terms of a repeated quantization of a supersymmetric arithmetic
QFT is highly suggestive. One can also generalize infinite primes to their quantum variants.
The proposal is that the hierarchy of infinite primes generalizes the notion of adele.

The formulation of physics as Kähler geometry of the ”world of classical worlds” (WCW)
involves f 3 kinds of algebras A; supersymplectic isometries SSA acting on δM4

+ × CP2, affine
algebras Aff acting on light-like partonic orbits, and isometries I of light-cone boundary δM4

+,
allowing hierarchies An.

The braided Galois group algebras at the number theory side and algebras {An} at the
geometric side define excellent candidates for inclusion hierarchies of HFFs. M8 − H duality
suggests that n corresponds to the degree nof the polynomial P defining space-time surface and
that the n roots of P correspond to n braid strands at H side. Braided Galois group would act in
An and hierarchies of Galois groups would induce hierarchies of inclusions of HFFs. The ramified
primes of P would correspond to physically preferred p-adic primes in the adelic structure formed
by p-adic variants of An with + and × replaced with ⊕ and ⊗.

1.3.2 PART II: CATEGORY THEORY AND QUANTUM TGD

Category Theory, Quantum TGD, and TGD Inspired Theory of Consciousness

Category theory has been proposed as a new approach to the deep problems of modern physics, in
particular quantization of General Relativity. Category theory might provide the desired systematic
approach to fuse together the bundles of general ideas related to the construction of quantum TGD
proper. Category theory might also have natural applications in the general theory of consciousness
and the theory of cognitive representations.

1. The ontology of quantum TGD and TGD inspired theory of consciousness based on the trin-
ity of geometric, objective and subjective existences could be expressed elegantly using the
language of the category theory. Quantum classical correspondence might allow a mathemat-
ical formulation in terms of structure respecting functors mapping the categories associated
with the three kinds of existences to each other. Basic vision is following.

(a) Self hierarchy would have a functorial map to the hierarchy of space-time sheets and
also WCW spinor fields reflect it. Thus the self referentiality of conscious experience
would have a functorial formulation (it is possible to be conscious about what one was
conscious).

(b) The inherent logic for category defined by Heyting algebra must be modified in TGD
context. Set theoretic inclusion would be replaced with the topological condensation,
which can occur simultaneously to several space-time sheets.

(c) The category of light cones with inclusion as an arrow defining time ordering appears
naturally in the construction of the WCW geometry and realizes the cosmologies within
cosmologies scenario.

(d) In zero energy ontology (ZEO), which emerged many years after writing the first version
of this chapter, causal diamonds (CDs) defined in terms of intersection of future and
past directed light-cones form a category with arrow identified as inclusion.

(e) The preferred extremals would form a category if the proposed duality mapping associa-
tive (co-associative) 4-surfaces of embedding space respects associativity (co-associativity).
The duality would allow to construct new preferred extremals of Kähler action.

2. Cognition is categorizing and category theory suggests itself as a tool for understanding cog-
nition and self hierarchies and the abstraction processes involved with conscious experience.

3. Categories possess inherent generalized logic based on set theoretic inclusion which in TGD
framework is naturally replaced with topological condensation: the outcome is quantum
variants for the notions of sieve, topos, and logic. This suggests the possibility of geometrizing
the logic of both geometric, objective and subjective existences and perhaps understand why
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ordinary consciousness experiences the world through Boolean logic and Zen consciousness
experiences universe through three-valued logic. Also the right-wrong logic of moral rules
and beautiful-ugly logic of aesthetics seem to be too naive and might be replaced with a more
general quantum logic.

Category Theory and Quantum TGD

Possible applications of category theory to quantum TGD are discussed. The so called 2-plectic
structure generalizing the ordinary symplectic structure by replacing symplectic 2-form with 3-form
and Hamiltonians with Hamiltonian 1-forms has a natural place in TGD since the dynamics of the
light-like 3-surfaces is characterized by Chern-Simons type action. The notion of planar operad
was developed for the classification of hyper-finite factors of type II1 and its mild generalization
allows to understand the combinatorics of the generalized Feynman diagrams obtained by gluing 3-
D light-like surfaces representing the lines of Feynman diagrams along their 2-D ends representing
the vertices.

The fusion rules for the symplectic variant of conformal field theory, whose existence is
strongly suggested by quantum TGD, allow rather precise description using the basic notions of
category theory and one can identify a series of finite-dimensional nilpotent algebras as discretized
versions of field algebras defined by the fusion rules. These primitive fusion algebras can be used to
construct more complex algebras by replacing any algebra element by a primitive fusion algebra.
Trees with arbitrary numbers of branches in any node characterize the resulting collection of fusion
algebras forming an operad. One can say that an exact solution of symplectic scalar field theory
is obtained.

Conformal fields and symplectic scalar field can be combined to form symplecto-formal fields.
The combination of symplectic operad and Feynman graph operad leads to a construction of Feyn-
man diagrams in terms of n-point functions of conformal field theory. M-matrix elements with a
finite measurement resolution are expressed in terms of a hierarchy of symplecto-conformal n-point
functions such that the improvement of measurement resolution corresponds to an algebra homo-
morphism mapping conformal fields in given resolution to composite conformal fields in improved
resolution. This expresses the idea that composites behave as independent conformal fields. Also
other applications are briefly discussed.

Years after writing this chapter a very interesting new TGD related candidate for a cate-
gory emerged. The preferred extremals of Kähler action would form a category if the proposed
duality mapping associative (co-associative) 4-surfaces of embedding space respects associativity
(co-associativity). The duality would allow to construct new preferred extremals of Kähler action.

Could categories, tensor networks, and Yangians provide the tools for handling the
complexity of TGD?

TGD Universe is extremely simple locally but the presence of various hierarchies make it to look
extremely complex globally. Category theory and quantum groups, in particular Yangian or its
TGD generalization are most promising tools to handle this complexity. The arguments developed
in the sequel suggest the following overall view.

1. Positive and negative energy parts of zero energy states can be regarded as tensor networks
identifiable as categories. The new element is that one does not have only particles (objects)
replaced with partonic 2-surfaces but also strings connecting them (morphisms). Morphisms
and functors provide a completely new element not present in standard model. For instance,
S-matrix would be a functor between categories. Various hierarchies of of TGD would in
turn translate to hierarchies of categories.

2. TGD view about generalized Feynman diagrams relies on two general ideas. First, the
twistor lift of TGD replaces space-time surfaces with their twistor-spaces getting their twistor
structure as induced twistor structure from the product of twistor spaces of M4 and CP2.
Secondly, topological scattering diagrams are analogous to computations and can be reduced
to tree diagrams with braiding. This picture fits very nicely with the picture suggested
by fusion categories. At fermionic level the basic interaction is 2+2 scattering of fermions
occurring at the vertices identifiable as partonic 2-surface and re-distributes the fermion lines



1.3. Sources 35

between partonic 2-surfaces. This interaction is highly analogous to what happens in braiding
interaction but vertices expressed in terms of twistors depend on momenta of fermions.

3. Braiding transformations take place inside the light-like orbits of partonic 2-surfaces defin-
ing boundaries of space-time regions with Minkowskian and Euclidian signature of induced
metric respectively permuting two braid strands. R-matrix satisfying Yang-Baxter equation
characterizes this operation algebraically.

4. Reconnections of fermionic strings connecting partonic 2-surfaces are possible and suggest
interpretation in terms of 2-braiding generalizing ordinary braiding: string world sheets get
knotted in 4-D space-time forming 2-knots and strings form 1-knots in 3-D space. Recon-
nection induces an exchange of braid strands defined by the boundaries of the string world
sheet and therefore exchange of fermion lines defining boundaries of string world sheets. A
generalization of quantum algebras to include also algebraic representation for reconnection
is needed. Also reconnection might reduce to a braiding type operation.

Yangians look especially natural quantum algebras from TGD point of view. They are
bi-algebras with co-product ∆. This makes the algebra multi-local raising hopes about the under-
standing of bound states. ∆-iterates of single particle system would give many-particle systems
with non-trivial interactions reducing to kinematics.

One should assign Yangian to various Kac-Moody algebras (SKMAs) involved and even with
super-conformal algebra (SSA), which however reduces effectively to SKMA for finite-dimensional
Lie group if the proposed gauge conditions meaning vanishing of Noether charges for some sub-
algebra H of SSA isomorphic to it and for its commutator [SSA,H] with the entire SSA. Strong
form of holography (SH) implying almost 2-dimensionality motivates these gauge conditions. Each
SKMA would define a direct summand with its own parameter defining coupling constant for the
interaction in question.

Are higher structures needed in the categorification of TGD?

The notion of higher structures promoted by John Baez looks very promising notion in the attempts
to understand various structures like quantum algebras and Yangians in TGD framework. The
stimulus for this article came from the nice explanations of the notion of higher structure by Urs
Screiber. The basic idea is simple: replace “=” as a blackbox with an operational definition with
a proof for A = B. This proof is called homotopy generalizing homotopy in topological sense.
n-structure emerges when one realizes that also the homotopy is defined only up to homotopy in
turn defined only up...

In TGD framework the notion of measurement resolution defines in a natural manner various
kinds of “=”s and this gives rise to resolution hierarchies. Hierarchical structures are characteristic
for TGD: hierarchy of space-time sheet, hierarchy of p-adic length scales, hierarchy of Planck
constants and dark matters, hierarchy of inclusions of hyperfinite factors, hierarchy of extensions
of rationals defining adeles in adelic TGD and corresponding hierarchy of Galois groups represented
geometrically, hierarchy of infinite primes, self hierarchy, etc...

In this article the idea of n-structure is studied in more detail. A rather radical idea is a
formulation of quantum TGD using only cognitive representations consisting of points of space-
time surface with embedding space coordinates in extension of rationals defining the level of adelic
hierarchy. One would use only these discrete points sets and Galois groups. Everything would
reduce to number theoretic discretization at space-time level perhaps reducing to that at partonic
2-surfaces with points of cognitive representation carrying fermion quantum numbers.

Even the “world of classical worlds ” (WCW) would discretize: cognitive representation
would define the coordinates of WCW point. One would obtain cognitive representations of scat-
tering amplitudes using a fusion category assignable to the representations of Galois groups: some-
thing diametrically opposite to the immense complexity of the WCW but perhaps consistent with
it. Also a generalization of McKay’s correspondence suggests itself: only those irreps of the Lie
group associated with Kac-Moody algebra that remain irreps when reduced to a subgroup defined
by a Galois group of Lie type are allowed as ground states. Also the relation to number theoretic
Langlands correspondence is very interesting.



36 Chapter 1. Introduction

Is Non-associative Physics and Language Possible only in Many-Sheeted Space-time?

Language is an essentially non-associative structure as the necessity to parse linguistic expressions
essential also for computation using the hierarchy of brackets makes obvious. Hilbert space oper-
ators are associative so that non-associative quantum physics does not seem plausible without an
extension of what one means with physics. Associativity of the classical physics at the level of sin-
gle space-time sheet in the sense that tangent or normal spaces of space-time sheets are associative
as sub-spaces of the octonionic tangent space of 8-D embedding space M4 ×CP2 is one of the key
conjectures of TGD. But what about many-sheeted space-time? The sheets of the many-sheeted
space-time form hierarchies labelled by p-adic primes and values of Planck constants heff = n×h.
Could these hierarchies provide space-time correlates for the parsing hierarchies of language and
music, which in TGD framework can be seen as kind of dual for the spoken language? For instance,
could the braided flux tubes inside larger braided flux tubes inside... realize the parsing hierarchies
of language, in particular topological quantum computer programs? And could the great differ-
ences between organisms at very different levels of evolution but having very similar genomes be
understood in terms of widely different numbers of levels in the parsing hierarchy of braided flux
tubes- that is in terms of magnetic bodies as indeed proposed. If the intronic portions of DNA
connected by magnetic flux tubes to the lipids of lipid layers of nuclear and cellular membranes
make them topological quantum computers, the parsing hierarchy could be realized at the level of
braided magnetic bodies of DNA. The mathematics needed to describe the breaking of associativ-
ity at fundamental level seems to exist. The hierarchy of braid group algebras forming an operad
combined with the notions of quasi-bialgebra and quasi-Hopf algebra discovered by Drinfeld are
highly suggestive concerning the realization of weak breaking of associativity.
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Chapter 2

Was von Neumann Right After
All?

2.1 Introduction

The work with TGD inspired model [K4] for topological quantum computation [B24] led to the
realization that von Neumann algebras [A113, A134, A121, A88] , in particular so called hyper-
finite factors of type II1 [A66] , seem to provide the mathematics needed to develop a more explicit
view about the construction of S-matrix. The lecture notes of R. Longo [A118] give a concise and
readable summary about the basic definitions and results related to von Neumann algebras and I
have used this material freely in this chapter.

The original discussion has transformed during years from a free speculation reflecting in
many aspects my ignorance about the mathematics involved to a more realistic view about the
role of these algebras in quantum TGD. In this chapter I will discuss various aspects of hyperfinite
factors with only a brief digression to TGD inspired applications whose evolution discussed in
separate chapter [K28].

2.1.1 Philosophical Ideas Behind Von Neumann Algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation ∗ and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to
1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one
is that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing pro-
jection probabilities. Quantum measurements can lead with a finite probability only to mixed
states with a density matrix which is projection operator to infinite-dimensional subspace. The
simple von Neumann algebras for which unit operator has unit trace are known as factors of type
II1 [A66] .

The definitions of adopted by von Neumann allow however more general algebras. Type In
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algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras
of type III non-trivial traces are always infinite and the notion of trace becomes useless being
replaced by the notion of state which is generalization of the notion of thermodynamical state.
The fascinating feature of this notion of state is that it defines a unique modular automorphism
of the factor defined apart from unitary inner automorphism and the question is whether this
notion or its generalization might be relevant for the construction of M-matrix in TGD. It however
seems that in TGD framework based on Zero Energy Ontology identifiable as “square root” of
thermodynamics a square root of thermodynamical state is needed.

The inclusions of hyper-finite factors define an excellent candidate for the description of finite
measurement resolution with included factor representing the degrees of freedom below measure-
ment resolution. The would also give connection to the notion of quantum group whose physical
interpretation has remained unclear. This idea is central to the proposed applications to quantum
TGD discussed in separate chapter.

2.1.2 Von Neumann, Dirac, And Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as funda-
mental and factors of type III as pathological. The highly pragmatic and successful approach of
Dirac [A115] based on the notion of delta function, plus the emergence of s [A124] , the possibility
to formulate the notion of delta function rigorously in terms of distributions [A69, A100] , and the
emergence of path integral approach [A122] meant that von Neumann approach was forgotten by
particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum
field theories [A127, A59] allowing to deduce invariants of knots, links and 3-manifolds. Also
algebraic structures known as bi-algebras, Hopf algebras, and ribbon algebras [A42] relate closely
to type II1 factors. In topological quantum computation [B24] based on braid groups [A137]
modular S-matrices they play an especially important role.

In algebraic quantum field theory [B26] defined in Minkowski space the algebras of ob-
servables associated with bounded space-time regions correspond quite generally to the type III1
hyper-finite factor [B8, B28].

I have restricted the considerations of this chapter mostly to the technical aspects and
Appendix includes sections about inclusions of HFFs. The evolution of ideas about possible appli-
cations to quantum TGD is summarized in chapter, which was originally part of this chapter [K28].

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L6].

2.2 Von Neumann Algebras

In this section basic facts about von Neumann algebras are summarized using as a background
material the concise summary given in the lecture notes of Longo [A118] .

2.2.1 Basic Definitions

A formal definition of von Neumann algebra [A134, A121, A88] is as a ∗-subalgebra of the set of
bounded operators B(H) on a Hilbert space H closed under weak operator topology, stable under
the conjugation J =∗: x→ x∗, and containing identity operator Id. This definition allows also von
Neumann algebras for which the trace of the unit operator is not finite.

Identity operator is the only operator commuting with a simple von Neumann algebra. A
general von Neumann algebra allows a decomposition as a direct integral of simple algebras, which

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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von Neumann called factors. Classification of von Neumann algebras reduces to that for factors.
B(H) has involution ∗ and is thus a ∗-algebra. B(H) has order order structure A ≥ 0 :

(Ax, x) ≥ 0. This is equivalent to A = BB∗ so that order structure is determined by algebraic
structure. B(H) has metric structure in the sense that norm defined as supremum of ||Ax||,
||x|| ≤ 1 defines the notion of continuity. ||A||2 = inf{λ > 0 : AA∗ ≤ λI} so that algebraic
structure determines metric structure.

There are also other topologies for B(H) besides norm topology.

1. Ai → A strongly if ||Ax − Aix|| → 0 for all x. This topology defines the topology of
C∗ algebra. B(H) is a Banach algebra that is ||AB|| ≤ ||A|| × ||B|| (inner product is not
necessary) and also C∗ algebra that is ||AA∗|| = ||A||2.

2. Ai → A weakly if (Aix, y) → (Ax, y) for all pairs (x, y) (inner product is necessary). This
topology defines the topology of von Neumann algebra as a sub-algebra of B(H).

Denote by M ′ the commutant ofM which is also algebra. Von Neumann’s bicommutant theorem
says that M equals to its own bi-commutant. Depending on whether the identity operator has a
finite trace or not, one distinguishes between algebras of type II1 and type II∞. II1 factor allow
trace with properties tr(Id) = 1, tr(xy) = tr(yx), and tr(x∗x) > 0, for all x 6= 0. Let L2(M) be
the Hilbert space obtained by completing M respect to the inner product defined 〈x|y〉 = tr(x∗y)
defines inner product in M interpreted as Hilbert space. The normalized trace induces a trace in
M ′, natural trace TrM ′ , which is however not necessarily normalized. JxJ defines an element of
M ′: if H = L2(M), the natural trace is given by TrM ′(JxJ) = trM (x) for all x ∈M and bounded.

2.2.2 Basic Classification Of Von Neumann Algebras

Consider first some definitions. First of all, Hermitian operators with positive trace expressible as
products xx∗ are of special interest since their sums with positive coefficients are also positive.

In quantum mechanics Hermitian operators can be expressed in terms of projectors to the
eigen states. There is a natural partial order in the set of isomorphism classes of projectors by
inclusion: E < F if the image of H by E is contained to the image of H by a suitable isomorph
of F . Projectors are said to be metrically equivalent if there exist a partial isometry which maps
the images H by them to each other. In the finite-dimensional case metric equivalence means that
isomorphism classes are identical E = F .

The algebras possessing a minimal projection E0 satisfying E0 ≤ F for any F are called
type I algebras. Bounded operators of n-dimensional Hilbert space define algebras In whereas the
bounded operators of infinite-dimensional separable Hilbert space define the algebra I∞. In and
I∞ correspond to the operator algebras of quantum mechanics. The states of harmonic oscillator
correspond to a factor of type I.

The projection F is said to be finite if F < E and F ≡ E implies F = E. Hence metric
equivalence means identity. Simple von Neumann algebras possessing finite projections but no
minimal projections so that any projection E can be further decomposed as E = F +G, are called
factors of type II.

Hyper-finiteness means that any finite set of elements can be approximated arbitrary well
with the elements of a finite-dimensional sub-algebra. The hyper-finite II∞ algebra can be regarded
as a tensor product of hyper-finite II1 and I∞ algebras. Hyper-finite II1 algebra can be regarded
as a Clifford algebra of an infinite-dimensional separable Hilbert space sub-algebra of I∞.

Hyper-finite II1 algebra can be constructed using Clifford algebras C(2n) of 2n-dimensional
spaces and identifying the element x of 2n × 2n dimensional C(n) as the element diag(x, x)/2 of
2n+1 × 2n+1-dimensional C(n + 1). The union of algebras C(n) is formed and completed in the
weak operator topology to give a hyper-finite II1 factor. This algebra defines the Clifford algebra
of infinite-dimensional separable Hilbert space and is thus a sub-algebra of I∞ so that hyper-finite
II1 algebra is more regular than I∞.

von Neumann algebras possessing no finite projections (all traces are infinite or zero) are
called algebras of type III. It was later shown by [A46] [A28] that these algebras are labeled by
a parameter varying in the range [0, 1], and referred to as algebras of type IIIx. III1 category
contains a unique hyper-finite algebra. It has been found that the algebras of observables associated
with bounded regions of 4-dimensional Minkowski space in quantum field theories correspond to
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hyper-finite factors of type III1 [A118] . Also statistical systems at finite temperature correspond
to factors of type III and temperature parameterizes one-parameter set of automorphisms of this
algebra [B8] . Zero temperature limit correspond to I∞ factor and infinite temperature limit to
II1 factor.

2.2.3 Non-Commutative Measure Theory And Non-Commutative Topolo-
gies And Geometries

von Neumann algebras and C∗ algebras give rise to non-commutative generalizations of ordinary
measure theory (integration), topology, and geometry. It must be emphasized that these structures
are completely natural aspects of quantum theory. In particular, for the hyper-finite type II1
factors quantum groups and Kac Moody algebras [B29] emerge quite naturally without any need
for ad hoc modifications such as making space-time coordinates non-commutative. The effective
2-dimensionality of quantum TGD (partonic or stringy 2-surfaces code for states) means that these
structures appear completely naturally in TGD framework.

Non-commutative measure theory

von Neumann algebras define what might be a non-commutative generalization of measure theory
and probability theory [A118] .

1. Consider first the commutative case. Measure theory is something more general than topology
since the existence of measure (integral) does not necessitate topology. Any measurable
function f in the space L∞(X,µ) in measure space (X,µ) defines a bounded operator Mf

in the space B(L2(X,µ)) of bounded operators in the space L2(X,µ) of square integrable
functions with action of Mf defined as Mfg = fg.

2. Integral over M is very much like trace of an operator fx,y = f(x)δ(x, y). Thus trace is a
natural non-commutative generalization of integral (measure) to the non-commutative case
and defined for von Neumann algebras. In particular, generalization of probability measure
results if the case tr(Id) = 1 and algebras of type In and II1 are thus very natural from the
point of view of non-commutative probability theory.

The trace can be expressed in terms of a cyclic vector Ω or vacuum/ground state in physicist’s
terminology. Ω is said to be cyclic if the completion MΩ = H and separating if xΩ vanishes only
for x = 0. Ω is cyclic for M if and only if it is separating for M ′. The expression for the trace
given by

Tr(ab) =

(
(ab+ ba)

2
,Ω

)
(2.2.1)

is symmetric and allows to defined also inner product as (a, b) = Tr(a∗b) in M. If Ω has unit
norm (Ω,Ω) = 1, unit operator has unit norm and the algebra is of type II1. Fermionic oscillator
operator algebra with discrete index labeling the oscillators defines II1 factor. Group algebra is
second example of II1 factor.

The notion of probability measure can be abstracted using the notion of state. State ω
on a C∗ algebra with unit is a positive linear functional on U , ω(1) = 1. By so called KMS
construction [A118] any state ω in C∗ algebra U can be expressed as ω(x) = (π(x)Ω,Ω) for some
cyclic vector Ω and π is a homomorphism U → B(H).

Non-commutative topology and geometry

C∗ algebras generalize in a well-defined sense ordinary topology to non-commutative topology.

1. In the Abelian case Gelfand Naimark theorem [A118] states that there exists a contravariant
functor F from the category of unital abelian C∗ algebras and category of compact topological
spaces. The inverse of this functor assigns to space X the continuous functions f on X
with norm defined by the maximum of f . The functor assigns to these functions having
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interpretation as eigen states of mutually commuting observables defined by the function
algebra. These eigen states are delta functions localized at single point of X. The points
of X label the eigenfunctions and thus define the spectrum and obviously span X. The
connection with topology comes from the fact that continuous map Y → X corresponds to
homomorphism C(X)→ C(Y ).

2. In non-commutative topology the function algebra C(X) is replaced with a general C∗ al-
gebra. Spectrum is identified as labels of simultaneous eigen states of the Cartan algebra of
C∗ and defines what can be observed about non-commutative space X.

3. Non-commutative geometry can be very roughly said to correspond to ∗-subalgebras of C∗

algebras plus additional structure such as symmetries. The non-commutative geometry of
Connes [A29] is a basic example here.

2.2.4 Modular Automorphisms

von Neumann algebras allow a canonical unitary evolution associated with any state ω fixed by the
selection of the vacuum state Ω [A118] . This unitary evolution is an automorphism fixed apart
form unitary automorphisms A→ UAU∗ related with the choice of Ω.

Let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can mapM to L2(M) defined
as a completion of M by x → xΩ. The conjugation ∗ in M has image at Hilbert space level as
a map S0 : xΩ → x∗Ω. The closure of S0 is an anti-linear operator and has polar decomposition
S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary involution. The
following conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (2.2.2)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian and
induces also the evolution of the expectation ω as π → ∆itπ∆−it.

2.2.5 Joint Modular Structure And Sectors

Let N ⊂M be an inclusion. The unitary operator γ = JNJM defines a canonical endomorphisms
M → N in the sense that it depends only up to inner automorphism on N , γ defines a sector of
M. The sectors of M are defined as Sect(M) = End(M)/Inn(M) and form a semi-ring with
respected to direct sum and composition by the usual operator product. It allows also conjugation.

L2(M) is a normal bi-module in the sense that it allows commuting left and right multiplica-
tions. For a, b ∈M and x ∈ L2(M) these multiplications are defined as axb = aJb∗Jx and it is easy
to verify the commutativity using the factor Jy∗J ∈ M′. [A46] [A29] has shown that all normal
bi-modules arise in this way up to unitary equivalence so that representation concepts make sense.
It is possible to assign to any endomorphism ρ index Ind(ρ) ≡ M : ρ(M). This means that the
sectors are in 1-1 correspondence with inclusions. For instance, in the case of hyper-finite II1 they
are labeled by Jones index. Furthermore, the objects with non-integral dimension

√
[M : ρ(M)]

can be identified as quantum groups, loop groups, infinite-dimensional Lie algebras, etc...

2.2.6 Basic Facts About Hyper-Finite Factors Of Type III

Hyper-finite factors of type II1, II∞ and III1, III0, IIIλ, λ ∈ (0, 1), allow by definition hierarchy
of finite approximations and are unique as von Neumann algebras. Also hyper-finite factors of
type II∞ and type III could be relevant for the formulation of TGD. HFFs of type II∞ and III
could appear at the level operator algebra but that at the level of quantum states one would obtain
HFFs of type II1. These extended factors inspire highly non-trivial conjectures about quantum
TGD. The book of Connes [A29] provides a detailed view about von Neumann algebras in general.
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Basic definitions and facts

A highly non-trivial result is that HFFs of type II∞ are expressible as tensor products II∞ =
II1 ⊗ I∞, where II1 is hyper-finite [A29] .

1. The existence of one-parameter family of outer automorphisms

The unique feature of factors of type III is the existence of one-parameter unitary group of
outer automorphisms. The automorphism group originates in the following manner.

1. Introduce the notion of linear functional in the algebra as a map ω :M→ C. ω is said to be
hermitian it respects conjugation inM; positive if it is consistent with the notion of positivity
for elements of M in which case it is called weight; state if it is positive and normalized
meaning that ω(1) = 1, faithful if ω(A) > 0 for all positive A; a trace if ω(AB) = ω(BA),
a vector state if ω(A) is “vacuum expectation” ωΩ(A) = (Ω, ω(A)Ω) for a non-degenerate
representation (H, π) of M and some vector Ω ∈ H with ||Ω|| = 1.

2. The existence of trace is essential for hyper-finite factors of type II1. Trace does not ex-
ist for factors of type III and is replaced with the weaker notion of state. State defines
inner product via the formula (x, y) = φ(y∗x) and * is isometry of the inner product. *-
operator has property known as pre-closedness implying polar decomposition S = J∆1/2 of
its closure. ∆ is positive definite unbounded operator and J is isometry which restores the
symmetry between M and its commutant M′ in the Hilbert space Hφ, where M acts via
left multiplication: M′ = JMJ .

3. The basic result of Tomita-Takesaki theory is that ∆ defines a one-parameter group σtφ(x) =

∆itx∆−it of automorphisms of M since one has ∆itM∆−it =M. This unitary evolution is
an automorphism fixed apart from unitary automorphism A→ UAU∗ related with the choice
of φ. For factors of type I and II this automorphism reduces to inner automorphism so that
the group of outer automorphisms is trivial as is also the outer automorphism associated with
ω. For factors of type III the group of these automorphisms divided by inner automorphisms
gives a one-parameter group of Out(M) of outer automorphisms, which does not depend at
all on the choice of the state φ.

More precisely, let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can mapM to L2(M)
defined as a completion ofM by x→ xΩ. The conjugation ∗ inM has image at Hilbert space level
as a map S0 : xΩ→ x∗Ω. The closure of S0 is an anti-linear operator and has polar decomposition
S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary involution. The
following conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (2.2.3)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian and
induces also the evolution of the expectation ω as π → ∆itπ∆−it. What makes this result thought
provoking is that it might mean a universal quantum dynamics apart from inner automorphisms
and thus a realization of general coordinate invariance and gauge invariance at the level of Hilbert
space.

2. Classification of HFFs of type III

Connes achieved an almost complete classification of hyper-finite factors of type III com-
pleted later by others. He demonstrated that they are labeled by single parameter 0 ≤ λ ≤ 1] and
that factors of type IIIλ, 0 ≤ λ < 1 are unique. Haagerup showed the uniqueness for λ = 1. The
idea was that the group has an invariant, the kernel T (M) of the map from time like R to Out(M),
consisting of those values of the parameter t for which σtφ reduces to an inner automorphism and
to unity as outer automorphism. Connes also discovered also an invariant, which he called spec-
trum S(M) ofM identified as the intersection of spectra of ∆φ\{0}, which is closed multiplicative
subgroup of R+.

Connes showed that there are three cases according to whether S(M) is
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1. R+, type III1

2. {λn, n ∈ Z}, type IIIλ.

3. {1}, type III0.

The value range of λ is this by convention. For the reversal of the automorphism it would
be that associated with 1/λ.

Connes constructed also an explicit representation of the factors 0 < λ < 1 as crossed product
II∞ factor N and group Z represented as powers of automorphism of II∞ factor inducing the
scaling of trace by λ. The classification of HFFs of type III reduced thus to the classification of
automorphisms of N ⊗B(H. In this sense the theory of HFFs of type III was reduced to that for
HFFs of type II∞ or even II1. The representation of Connes might be also physically interesting.

Probabilistic view about factors of type III

Second very concise representation of HFFs relies on thermodynamical thinking and realizes factors
as infinite tensor product of finite-dimensional matrix algebras acting on state spaces of finite state
systems with a varying and finite dimension n such that one assigns to each factor a density
matrix characterized by its eigen values. Intuitively one can think the finite matrix factors as
associated with n-state system characterized by its energies with density matrix ρ defining a
thermodynamics. The logarithm of the ρ defines the single particle quantum Hamiltonian as
H = log(ρ) and ∆ = ρ = exp(H) defines the automorphism σφ for each finite tensor factor as
exp(iHt). Obviously free field representation is in question.

Depending on the asymptotic behavior of the eigenvalue spectrum one obtains different
factors [A29] .

1. Factor of type I corresponds to ordinary thermodynamics for which the density matrix as a
function of matrix factor approaches sufficiently fast that for a system for which only ground
state has non-vanishing Boltzmann weight.

2. Factor of type II1 results if the density matrix approaches to identity matrix sufficiently fast.
This means that the states are completely degenerate which for ordinary thermodynamics
results only at the limit of infinite temperature. Spin glass could be a counterpart for this
kind of situation.

3. Factor of type III results if one of the eigenvalues is above some lower bound for all tensor
factors in such a way that neither factor of type I or II1 results but thermodynamics for
systems having infinite number of degrees of freedom could yield this kind of situation.

This construction demonstrates how varied representations factors can have, a fact which
might look frustrating for a novice in the field. In particular, the infinite tensor power of M(2, C)
with state defined as an infinite tensor power of M(2, C) state assigning to the matrix A the
complex number (λ1/2A11 + λ−1/2 φ(A) = A22)/(λ1/2 + λ−1/2) defines HFF IIIλ [A29] , [C1] .
Formally the same algebra which for λ = 1 gives ordinary trace and HFF of type II1, gives III
factor only by replacing trace with state. This simple model was discovered by Powers in 1967.

It is indeed the notion of state or thermodynamics is what distinguishes between factors.
This looks somewhat weird unless one realizes that the Hilbert space inner product is defined by the
“thermodynamical” state φ and thus probability distribution for operators and for their thermal
expectation values. Inner product in turn defines the notion of norm and thus of continuity and it
is this notion which differs dramatically for λ = 1 and λ < 1 so that the completions of the algebra
differ dramatically.

In particular, there is no sign about I∞ tensor factor or crossed product with Z represented
as automorphisms inducing the scaling of trace by λ. By taking tensor product of I∞ factor
represented as tensor power with induces running from −∞ to 0 and II1 HFF with indices running
from 1 to ∞ one can make explicit the representation of the automorphism of II∞ factor inducing
scaling of trace by λ and transforming matrix factors possessing trace given by square root of index
M : N to those with trace 2.
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2.3 Braid Group, Von Neumann Algebras, Quantum TGD,
And Formation Of Bound States

The article of Vaughan Jones in [A137] discusses the relation between knot theory, statistical
physics, and von Neumann algebras. The intriguing results represented stimulate concrete ideas
about how to understand the formation of bound states quantitatively using the notion of join
along boundaries bond. All mathematical results represented in the following discussion can be
found in [A137] and in the references cited therein so that I will not bother to refer repeatedly to
this article in the sequel.

2.3.1 Factors Of Von Neumann Algebras

Von Neumann algebras M are algebras of bounded linear operators acting in Hilbert space. These
algebras contain identity, are closed with respect to Hermitian conjugation, and are topologically
complete. Finite-dimensional von Neuman algebras decompose into a direct sum of algebras Mn,
which act essentially as matrix algebras in Hilbert spacesHnm, which are tensor products Cn⊗Hm.
Here Hm is an m-dimensional Hilbert space in which Mn acts trivially. m is called the multiplicity
of Mn.

A factor of von Neumann algebra is a von Neumann algebra whose center is just the scalar
multiples of identity. The algebra of bounded operators in an infinite-dimensional Hilbert space is
certainly a factor. This algebra decomposes into “atoms” represented by one-dimensional projec-
tion operators. This kind of von Neumann algebras are called type I factors.

The so called type II1 factors and type III factors came as a surprise even for Murray and
von Neumann. II1 factors are infinite-dimensional and analogs of the matrix algebra factors Mn.
They allow a trace making possible to define an inner product in the algebra. The trace defines a
generalized dimension for any subspace as the trace of the corresponding projection operator. This
dimension is however continuous and in the range [0, 1]: the finite-dimensional analog would be the
dimension of the sub-space divided by the dimension of Hn and having values (0, 1/n, 2/n, ..., 1).
II1 factors are isomorphic and there exists a minimal “hyper-finite” II1 factor is contained by every
other II1 factor.

Just as in the finite-dimensional case, one can to assign a multiplicity to the Hilbert spaces
where II1 factors act on. This multiplicity, call it dimM (H) is analogous to the dimension of the
Hilbert space tensor factor Hm, in which II1 factor acts trivially. This multiplicity can have all
positive real values. Quite generally, von Neumann factors of type I and II1 are in many respects
analogous to the coefficient field of a vector space.

2.3.2 Sub-Factors

Sub-factors N ⊂ M , where N and M are of type II1 and have same identity, can be also defined.
The observation that M is analogous to an algebraic extension of N motivates the introduction of
index |M : N |, which is essentially the dimension of M with respect to N . This dimension is an
analog for the complex dimension of CP2 equal to 2 or for the algebraic dimension of the extension
of p-adic numbers.

The following highly non-trivial results about the dimensions of the tensor factors hold true.

1. If N ⊂ M are II1 factors and |M : N | < 4, there is an integer n ≥ 3 such |M : N | = r =
4cos2(π/n), n ≥ 3.

2. For each number r = 4cos2(π/n) and for all r ≥ 4 there is a sub-factor Rr ⊂ R with
|R : Rr| = r.

One can say that M effectively decomposes to a tensor product of N with a space, whose
dimension is quantized to a certain algebraic number r. The values of r corresponding to
n = 3, 4, 5, 6... are r = 1, 2, 1 + Φ ' 2.61, 3, ... and approach to the limiting value r = 4. For
r ≥ 4 the dimension becomes continuous.

An even more intriguing result is that by starting from N ⊂ M with a projection eN :
M → N one can extend M to a larger II1 algebra 〈M, eN 〉 such that one has
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|〈M, eN 〉 : M | = |M : N | ,
tr(xeN ) = |M : N |−1tr(x) , x ∈M . (2.3.1)

One can continue this process and the outcome is a tower of II1 factors Mi ⊂ Mi+1 defined by
M1 = N , M2 = M , Mi+1 = 〈Mi, eMi−1

〉. Furthermore, the projection operators eMi
≡ ei define a

Temperley-Lieb representation of the braid algebra via the formulas

e2
i = ei ,

eiei±1ei = τei , τ = 1/|M : N |
eiej = ejei , |i− j| ≥ 2 . (2.3.2)

Temperley Lieb algebra will be discussed in more detail later. Obviously the addition of a tensor
factor of dimension r is analogous with the addition of a strand to a braid.

The hyper-finite algebra R is generated by the set of braid generators {e1, e2, .....} in the
braid representation corresponding to r. Sub-factor R1 is obtained simply by dropping the lowest
generator e1, R2 by dropping e1 and e2, etc..

2.3.3 Ii1 Factors And The Spinor Structure Of WCW

The following observations serve as very suggestive guidelines for how one could interpret the above
described results in TGD framework.

1. The discrete spectrum of dimensions 1, 2, 1 + Φ, 3, .. below r < 4 brings in mind the discrete
energy spectrum for bound states whereas the for r ≥ 4 the spectrum of dimensions is
analogous to a continuum of unbound states. The fact that r is an algebraic number for
r < 4 conforms with the vision that bound state entanglement corresponds to entanglement
probabilities in an extension of rationals defining a finite-dimensional extension of p-adic
numbers for every prime p.

2. The discrete values of r correspond precisely to the angles φ allowed by the unitarity of
Temperley-Lieb representations of the braid algebra with d = −

√
r. For r ≥ 4 Temperley-

Lieb representation is not unitary since cos2(π/n) becomes formally larger than one (n would
become imaginary and continuous). This could mean that r ≥ 4, which in the generic case is
a transcendental number, represents unbound entanglement, which in TGD Universe is not
stable against state preparation and state function reduction processes.

3. The formula tr(xeN ) = |M : N |−1tr(x) is completely analogous to the formula characterizing
the normalization of the link invariant induced by the second Markov move in which a new
strand is added to a braid such that it braids only with the leftmost strand and therefore
does not change the knot resulting as a link closure. Hence the addition of a single strand
seems to correspond to an introduction of an r-dimensional sub-factor to II1 factor.

In TGD framework the generation of bound state has the formation of (possibly braided
join along boundaries bonds as a space-time correlate and this encourages a rather concrete inter-
pretation of these findings. Also the I1 factors themselves have a nice interpretation in terms of
the WCW spinor structure.

1. The interpretation of II1 factors in terms of Clifford algebra of WCW

The Clifford algebra of an infinite-dimensional Hilbert space defines a II1 factor. The coun-
terparts for ei would naturally correspond to the analogs of projection operators (1 + σi)/2 and
thus to operators of form (1+Σij)/2, defined by a subset of sigma matrices. The first guess is that
the index pairs are (i, j) = (1, 2), (2, 3), (3, 4), ..... The dimension of the Clifford algebra is 2N for
N -dimensional space so that ∆N = 1 would correspond to r = 2 in the classical case and to one
qubit. The problem with this interpretation is r > 2 has no physical interpretation: the formation
of bound states is expected to reduce the value of r from its classical value rather than increase it.
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One can however consider also the sequence (i, j) = (1, 1+k), (1+k, 1+2k), (1+2k, 1+3k), ....
For k = 2 the reduction of r from r = 4 would be due to the loss of degrees of freedom due to the
formation of a bound state and (r = 4,∆N = 2) would correspond to the classical limit resulting
at the limit of weak binding. The effective elimination of the projection operators from the braid
algebra would reflect this loss of degrees of freedom. This interpretation could at least be an
appropriate starting point in TGD framework.

In TGD Universe physical states correspond to WCW spinor fields, whose gamma matrix
algebra is constructed in terms of second quantized free induced spinor fields defined at space-time
sheets. The original motivation was the idea that the quantum states of the Universe correspond
to the modes of purely classical free spinor fields in the infinite-dimensional configuration space
of 3-surfaces (the “world of classical worlds”, WCW) possessing general coordinate invariant (in
4-dimensional sense!) Kähler geometry. Quantum information-theoretical motivation could have
come from the requirement that these fields must be able to code information about the properties
of the point (3-surface, and corresponding space-time sheet). Scalar fields would treat the 3-surfaces
as points and are thus not enough. Induced spinor fields allow however an infinite number of modes:
according to the näıve Fourier analyst’s intuition these modes are in one-one correspondence with
the points of the 3-surface. Second quantization gives much more. Also non-local information
about the induced geometry and topology must be coded, and here quantum entanglement for
states generated by the fermionic oscillator operators coding information about the geometry of
3-surface provides enormous information storage capacity.

In algebraic geometry also the algebra of the embedding space of algebraic variety divided
by the ideal formed by functions vanishing on the surface codes information about the surface:
for instance, the maximal ideals of this algebra code for the points of the surface (functions of
embedding space vanishing at a particular point). The function algebra of the embedding space
indeed plays a key role in the construction of WCW-geometry besides second quantized fermions.

The Clifford algebra generated by the WCW gamma matrices at a given point (3-surface)
of WCW of 3-surfaces could be regarded as a II1-factor associated with the local tangent space
endowed with Hilbert space structure (WCW Kähler metric). The counterparts for ei would
naturally correspond to the analogs of projection operators (1 + σi)/2 and thus operators of form
(GAB × 1 + ΣAB) formed as linear combinations of components of the Kähler metric and of the
sigma matrices defined by gamma matrices and contracted with the generators of the isometries
of WCW. The addition of single complex degree of freedom corresponds to ∆N = 2 and r = 4 and
the classical limit and would correspond to the addition of single braid. (r < 4,∆N < 2) would
be due to the binding effects.

r = 1 corresponds to ∆N = 0. The first interpretation is in terms of strong binding
so that the addition of particle does not increase the number of degrees of freedom. In TGD
framework r = 1 might also correspond to the addition of zero modes which do not contribute to
the WCW metric and spinor structure but have a deep physical significance. (r = 2,∆N = 1)
would correspond to strong binding reducing the spinor and space-time degrees of freedom by a
factor of half. r = Φ2 (n = 5) resp. r = 3 (n = 6) corresponds to ∆Nr ' 1.3885 resp. ∆Nr = 1.585.
Using the terminology of quantum field theories, one might say that in the infinite-dimensional
context a given complex bound state degree of freedom possesses anomalous real dimension r < 2.
r ≥ 4 would correspond to a unbound entanglement and increasingly classical behavior.

2.3.4 About Possible Space-Time Correlates For The Hierarchy Of II1

Sub-Factors

By quantum classical correspondence the infinite-dimensional physics at WCW level should have
definite space-time correlates. In particular, the dimension r should have some fractal dimension
as a space-time correlate.

1. Quantum classical correspondence

Join along boundaries bonds serve as correlates for bound state formation. The presence
of join along boundaries bonds would lead to a generation of bound states just by reducing the
degrees of freedom to those of connected 3-surface. The bonds would constrain the two 3-surfaces
to single space-like section of embedding space.
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This picture would allow to understand the difficulties related to Bethe-Salpeter equations
for bound states based on the assumption that particles are points moving in M4. The restriction
of particles to time=constant section leads to a successful theory which is however non-relativistic.
The basic binding energy would relate to the entanglement of the states associated with the bonded
3-surfaces. Since the classical energy associated with the bonds is positive, the binding energy tends
to be reduced as r increases.

By spin glass degeneracy join along boundaries bonds have an infinite number of degrees
of freedom in the ordinary sense. Since the system is infinite-dimensional and quantum critical,
one expects that the number r of degrees freedom associated with a single join along boundaries
bond is universal. Since join along boundaries bonds correspond to the strands of a braid and are
correlates for the bound state formation, the natural guess is that r = 4cos2(π/n), n = 3, 4, 5, ...
holds true. r < 4 should characterize both binding energy and the dimension of the effective tensor
factor introduced by a new join along boundaries bond.

The assignment of 2 “bare” and ∆N ≤ 2 renormalized real dimensions to single join along
boundaries bond is consistent with the effective two-dimensionality of anyon systems and with the
very notion of the braid group. The picture conforms also with the fact that the degrees of freedom
in question are associated with metrically 2-dimensional light-like boundaries (of say magnetic flux
tubes) acting as causal determinants. Also vibrational degrees of freedom described by Kac-Moody
algebra are present and the effective 2-dimensionality means that these degrees of freedom are not
excited and only topological degrees of freedom coded by the position of the puncture remain.

(r ≥ 4,∆N ≥ 2), if possible at all, would mean that the tensor factor associated with the
join along boundaries bond is effectively more than 4-dimensional due to the excitation of the
vibrational Kac-Moody degrees of freedom. The finite value of r would mean that most of theme
are eliminated also now but that their number is so large that bound state entanglement is not
possible anymore.

The introduction of non-integer dimension could be seen as an effective description of an
infinite-dimensional system as a finite-dimensional system in the spirit of renormalization group
philosophy. The non-unitarity of r ≥ 4 Temperley-Lieb representations could mean that they
correspond to unbound entanglement unstable against state function reduction and preparation
processes. Since this kind of entanglement does not survive in quantum jump it is not representable
in terms of braid groups.

2. Does r define a fractal dimension of CP2 projection of partonic 2-surface?

On basis of the quantum classical correspondence one expects that r should define some
fractal dimension at the space-time level. Since r varies in the range 1, .., 4 and corresponds to the
fractal dimension of 2-D Clifford algebra the corresponding spinors would have dimension d =

√
r.

There are two options.

1. D = r/2 is suggested on basis of the construction of quantum version of Md.

2. D = log2(r) is natural on basis of the dimension d = 2D/2 of spinors in D-dimensional space.

r can be assigned with CP2 degrees of freedom in the model for the quantization of Planck
constant based on the explicit identification of Josephson inclusions in terms of finite subgroups
of SU(2) ⊂ SU(3). Hence D should relate to the CP2 projection of the partonic 2-surface and
one could have D = D(X2), the latter being the average dimension of the CP2 projection of the
partonic 2-surface for the preferred extremals of Kähler action.

Since a strongly interacting non-perturbative phase should be in question, the dimension for
the CP2 projection of the space-time surface must be at least D(X4) = 2 to guarantee that non-
vacuum extremals are in question. This is true for D(X2) = r/2 ≥ 1. The logarithmic formula
D(X2) = log2(r) ≥ 0 gives D(X2) = 0 for n = 3 meaning that partonic 2-surfaces are vacua:
space-time surface can still be a non-vacuum extremal.

As n increases, the number of CP2 points covering a given M4 point and related by the finite
subgroup of G ⊂ SU(2) ⊂ SU(3) defining the inclusion increases so that the fractal dimension of
the CP2 projection is expected to increase also. D(X2) = 2 would correspond to the space-time
surfaces for which partons have topological magnetic charge forcing them to have a 2-dimensional
CP2 projection. There are reasons to believe that the projection must be homologically non-trivial
geodesic sphere of CP2.
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2.3.5 Could Binding Energy Spectra Reflect The Hierarchy Of Effective
Tensor Factor Dimensions?

If one takes completely seriously the idea that join along boundaries bonds are a correlate of binding
then the spectrum of binding energies might reveal the hierarchy of the fractal dimensions r(n).
Hydrogen atom and harmonic oscillator have become symbols for bound state systems. Hence it
is of interest to find whether the binding energy spectrum of these systems might be expressed in
terms of the “binding dimension” x(n) = 4− r(n) characterizing the deviation of dimension from
that at the limit of a vanishing binding energy. The binding energies of hydrogen atom are in a
good approximation given by E(n)/E(1) = 1/n2 whereas in the case of harmonic oscillator one
has E(n)/E0 = 2n + 1. The constraint n ≥ 3 implies that the principal quantum number must
correspond n− 2 in the case of hydrogen atom and to n− 3 in the case of harmonic oscillator.

Before continuing one must face an obvious objection. By previous arguments different
values of r correspond to different values of ~. The value of ~ cannot however differ for the states
of hydrogen atom. This is certainly true. The objection however leaves open the possibility that
the states of the light-like boundaries of join along boundaries bonds correspond to reflective level
and represent some aspects of the physics of, say, hydrogen atom.

In the general case the energy spectrum satisfies the condition

EB(n)

EB(3)
=

f(4− r(n))

f(3)
, (2.3.3)

where f is some function. The simplest assumption is that the spectrum of binding energies
EB(n) = E(n)− E(∞) is a linear function of r(n)− 4:

EB(n)

EB(3)
=

4− r(n)

3
=

4

3
sin2(

π

n
)→ 4π2

3
× 1

n2
. (2.3.4)

In the linear approximation the ratio E(n + 1)/E(n) approaches (n/n + 1)2 as in the case of
hydrogen atom but for small values the linear approximation fails badly. An exact correspondence
results for

E(n)
E(1) = 1

n2 ,

n = 1

π arcsin
(√

1−r(n+2)/4
) − 2 .

Also the ionized states with r ≥ 4 would correspond to bound states in the sense that two particle
would be constrained to move in the same space-like section of space-time surface and should be
distinguished from genuinely free states when particles correspond to disjoint space-time sheets.

For the harmonic oscillator one express E(n)−E(0) instead of E(n)−E(∞) as a function
of x = 4− r and one would have

E(n)
E(0) = 2n+ 1 ,

n = 1

π arcsin
(√

1−r(n+3)/4
) − 3 .

In this case ionized states would not be possible due to the infinite depth of the harmonic oscillator
potential well.

2.3.6 Four-Color Problem, II1 Factors, And Anyons

The so called four-color problem can be phrased as a question whether it is possible to color the
regions of a plane map using only four colors in such a way that no adjacent regions have the
same color (for an enjoyable discussion of the problem see [A94] ). One might call this kind of
coloring complete. There is no loss of generality in assuming that the map can be represented as
a graph with regions represented as triangle shaped faces of the graph. For the dual graph the
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coloring of faces becomes coloring of vertices and the question becomes whether the coloring is
possible in such a way that no vertices at the ends of the same edge have same color. The problem
can be generalized by replacing planar maps with maps defined on any two-dimensional surface
with or without boundary and arbitrary topology. The four-color problem has been solved with
an extensive use of computer [A34] but it would be nice to understand why the complete coloring
with four colors is indeed possible.

There is a mysterious looking connection between four-color problem and the dimensions
r(n) = 4cos2(π/n), which are in fact known as Beraha numbers in honor of the discoverer of this
connection [A73] . Consider a more general problem of coloring two-dimensional map using m
colors. One can construct a polynomial P (m), so called chromatic polynomial, which tells the
number of colorings satisfying the condition that no neighboring vertices have the same color. The
vanishing of the chromatic polynomial for an integer value of m tells that the complete coloring
using m colors is not possible.

P (m) has also other than integer valued real roots. The strange discovery due to Beraha is
that the numbers B(n) appear as approximate roots of the chromatic polynomial in many situa-
tions. For instance, the four non-integral real roots of the chromatic polynomial of the truncated
icosahedron are very close to B(5), B(7), B(8) and B(9). These findings led Beraha to formulate
the following conjecture. Let Pi be a sequence of chromatic polynomials for a graph for which the
number of vertices approaches infinity. If ri is a root of the polynomial approaching a well-defined
value at the limit i→∞, then the limiting value of r(i) is Beraha number.

A physicist’s proof for Beraha’s conjecture based on quantum groups and conformal theory
has been proposed [A73] . It is interesting to look for the a possible physical interpretation of
4-color problem and Beraha’s conjecture in TGD framework.

1. In TGD framework B(n) corresponds to a renormalized dimension for a 2-spin system con-
sisting of two qubits, which corresponds to 4 different colors. For B(n) = 4 two spin 1/2
fermions obeying Fermi statistics are in question. Since the system is 2-dimensional, the
general case corresponds to two anyons with fractional spin B(n)/4 giving rise to B(n) < 4
colors and obeying fractional statistics instead of Fermi statistics. One can replace coloring
problem with the problem whether an ideal antiferro-magnetic lattice using anyons with frac-
tional spin B(n)/4 is possible energetically. In other words, does this system form a quantum
mechanical bound state even at the limit when the lengths of the edges approach to zero.

2. The failure of coloring means that there are at least two neighboring vertices in the lattice
with the property that the spins at the ends of the same edge are in the same direction.
Lattice defect would be in question. At the limit of an infinitesimally short edge length the
failure of coloring is certainly not an energetically favored option for fermionic spins (m = 4)
but is allowed by anyonic statistics for m = B(n) < 4. Thus one has reasons to expect that
when anyonic spin is B(n)/4 the formation of a purely 2-anyon bound states becomes possible
and they form at the limit of an infinitesimal edge length a kind of topological macroscopic
quantum phase with a non-vanishing binding energy. That B(n) are roots of the chromatic
polynomial at the continuum limit would have a clear physical interpretation.

3. Only B(n) < 4 defines a sub-factor of von Neumann algebra allowing unitary Temperley-Lieb
representations. This is consistent with the fact that for m = 4 complete coloring must exists.
The physical argument is that otherwise a macroscopic quantum phase with non-vanishing
binding energy could result at the continuum limit and the upper bound for r from unitarity
would be larger than 4. For m = 4 the completely anti-ferromagnetic state would represent
the ground state and the absence of anyon-pair condensate would mean a vanishing binding
energy.

2.4 Inclusions Of II1 And III1 Factors

Inclusions N ⊂ M of von Neumann algebras have physical interpretation as a mathematical
description for sub-system-system relation. For type I algebras the inclusions are trivial and
tensor product description applies as such. For factors of II1 and III the inclusions are highly
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non-trivial. The inclusion of type II1 factors were understood by Vaughan Jones [A2] and those
of factors of type III by Alain Connes [A28] .

Sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be a sub-
factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M
as N module is in question.

2.4.1 Basic Findings About Inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by indexM : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only
the embedding.

The basic facts proved by Jones are following [A2] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(2.4.1)

the numbers at right hand side are known as Beraha numbers [A73] . The comments below
give a rough idea about what finiteness of principal graph means.

2. As explained in [B29] , for M : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in
terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g)− r)/r. The Lie
algebras of SU(n), E7 and D2n+1 are however not allowed. For M : N = 4 one can assign
to the inclusion an extended Dynkin graph of type ADE characterizing Kac Moody algebra.
Extended ADE diagrams characterize also the subgroups of SU(2) and the interpretation
proposed in [A131] is following. The ADE diagrams are associated with the n = ∞ case
having M : N ≥ 4. There are diagrams corresponding to infinite subgroups: SU(2) itself,
circle group U(1), and infinite dihedral groups (generated by a rotation by a non-rational
angle and reflection. The diagrams corresponding to finite subgroups are extension of An
for cyclic groups, of Dn dihedral groups, and of En with n=6,7,8 for tetrahedron, cube,
dodecahedron. For M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed.

The interpretation of [A131] is that the subfactors correspond to inclusions N ⊂M defined
in the following manner.

1. Let G be a finite subgroup of SU(2). Denote by R the infinite-dimensional Clifford algebras
resulting from infinite-dimensional tensor power of M2(C) and by R0 its subalgebra obtained
by restricting M2(C) element of the first factor to be unit matrix. Let G act by automor-
phisms in each tensor factor. G leaves R0 invariant. Denote by RG0 and RG the sub-algebras
which remain element wise invariant under the action of G. The resulting Jones inclusions
RG0 ⊂ RG are consistent with the ADE correspondence.

2. The argument suggests the existence of quantum versions of subgroups of SU(2) for which
representations are truncations of those for ordinary subgroups. The results have been gen-
eralized to other Lie groups.

3. Also SL(2, C) acts as automorphisms of M2(C). An interesting question is what happens
if one allows G to be any discrete subgroups of SL(2,C). Could this give inclusions with
M : N > 4?. The strong analogy of the spectrum of indices with spectrum of energies with
hydrogen atom would encourage this interpretation: the subgroup SL(2,C) not reducing to
those of SU(2) would correspond to the possibility for the particle to move with respect to
each other with constant velocity.
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2.4.2 The Fundamental Construction And Temperley-Lieb Algebras

It was shown by Jones [A71] that for a given Jones inclusion with β =M : N <∞ there exists a
tower of finite II1 factors Mk for k = 0, 1, 2, .... such that

1. M0 = N , M1 =M,

2. Mk+1 = EndMk−1
Mk is the von Neumann algebra of operators on L2(Mk) generated by

Mk and an orthogonal projection ek : L2(Mk)→ L2(Mk−1) for k ≥ 1, whereMk is regarded
as a subalgebra of Mk+1 under right multiplication.

It can be shown that Mk+1 is a finite factor. The sequence of projections on M∞ = ∪k≥0Mk

satisfies the relations

e2
i = ei , e=

i ei ,
ei = βeiejei for |i− j| = 1 ,
eiej = ejei for |i− j| ≥ 2 .

(2.4.2)

The construction of hyper-finite II1 factor using Clifford algebra C(2) represented by 2 ×
2 matrices allows to understand the theorem in β = 4 case in a straightforward manner. In
particular, the second formula involving β follows from the identification of x at (k − 1)th level
with (1/β)diag(x, x) at kth level.

By replacing 2× 2 matrices with
√
β ×
√
β matrices one can understand heuristically what

is involved in the more general case. Mk is Mk−1 module with dimension
√
β and Mk+1 is the

space of
√
β×
√
β matricesMk−1 valued entries acting inMk. The transition fromMk toMk−1

linear maps of Mk happens in the transition to the next level. x at (k − 1)th level is identified as
(x/β)× Id√β×√β at the next level. The projection ek picks up the projection of the matrix with
Mk−1 valued entries in the direction of the Id√β×

√
β .

The union of algebras Aβ,k generated by 1, e1, ..., ek defines Temperley-Lieb algebra Aβ
[A129] . This algebra is naturally associated with braids. Addition of one strand to a braid adds
one generator to this algebra and the representations of the Temperley Lieb algebra provide link,
knot, and 3-manifold invariants [A137] . There is also a connection with systems of statistical
physics and with Yang-Baxter algebras [A41] .

A further interesting fact about the inclusion hierarchy is that the elements inMi belonging
to the commutator N ′ of N form finite-dimensional spaces. Presumably the dimension approaches
infinity for n→∞.

2.4.3 Connection With Dynkin Diagrams

The possibility to assign Dynkin diagrams (β < 4) and extended Dynkin diagrams (β = 4 to Jones
inclusions can be understood heuristically by considering a characterization of so called bipartite
graphs [A133] , [B29] by the norm of the adjacency matrix of the graph.

Bipartite graphs Γ is a finite, connected graph with multiple edges and black and white
vertices such that any edge connects white and black vertex and starts from a white one. Denote
by w(Γ) (b(Γ)) the number of white (black) vertices. Define the adjacency matrix Λ = Λ(Γ) of size
b(Γ)× w(Γ) by

wb,w =

{
m(e) if there exists e such that δe = b− w ,
0 otherwise .

(2.4.3)

Here m(e) is the multiplicity of the edge e.
Define norm ||Γ|| as

||X|| = max{||X||; ||x|| ≤ 1} ,

||Γ|| = ||Λ(Γ)|| =
∣∣∣∣∣∣ 0 Λ(Γ)

Λ(Γ)t 0

∣∣∣∣∣∣ . (2.4.4)
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Note that the matrix appearing in the formula is (m+ n)× (m+ n) symmetric square matrix so
that the norm is the eigenvalue with largest absolute value.

Suppose that Γ is a connected finite graph with multiple edges (sequences of edges are
regarded as edges). Then

1. If ||Γ|| ≤ 2 and if Γ has a multiple edge, ||Γ|| = 2 and Γ = Ã1, the extended Dynkin diagram
for SU(2) Kac Moody algebra.

2. ||Γ|| < 2 if and only Γ is one of the Dynkin diagrams of A,D,E. In this case ||Γ|| = 2cos(π/h),
where h is the Coxeter number of Γ.

3. ||Γ|| = 2 if and only if Γ is one of the extended Dynkin diagrams Ã, D̃, Ẽ.

This result suggests that one can indeed assign to the Jones inclusions Dynkin diagrams. To really
understand how the inclusions can be characterized in terms bipartite diagrams would require a
deeper understanding of von Neumann algebras. The following argument only demonstrates that
bipartite graphs naturally describe inclusions of algebras.

1. Consider a bipartite graph. Assign to each white vertex linear space W (w) and to each edge
of a linear space W (b, w). Assign to a given black vertex the vector space ⊕δe=b−wW (b, w)⊗
W (w) where (b, w) corresponds to an edge ending to b.

2. Define N as the direct sum of algebras End(W (w)) associated with white vertices andM as
direct sum of algebras ⊕δe=b−wEnd(W (b, w))⊗ End(W (w)) associated with black vertices.

3. There is homomorphism N →M defined by embedding direct sum of white endomorphisms
x to direct sum of tensor products x with the identity endomorphisms associated with the
edges starting from x.

It is possible to show that Jones inclusions correspond to the Dynkin diagrams of An, D2n, and
E6, E8 and extended Dynkin diagrams of ADE type. In particular, the dual of the bi-partite graph
associated with Mn−1 ⊂ Mn obtained by exchanging the roles of white and black vertices de-
scribes the inclusionMn ⊂Mn+1 so that two subsequent Jones inclusions might define something
fundamental (the corresponding space-time dimension is 2× log2(M : N ) ≤ 4.

2.4.4 Indices For The Inclusions Of Type III1 Factors

Type III1 factors appear in relativistic quantum field theory defined in 4-dimensional Minkowski
space [B8] . An overall summary of basic results discovered in algebraic quantum field theory is
described in the lectures of Longo [A118] . In this case the inclusions for algebras of observables are
induced by the inclusions for bounded regions of M4 in axiomatic quantum field theory. Tomita’s
theory of modular Hilbert algebras [A111] , [B28] forms the mathematical corner stone of the
theory.

The basic notion is Haag-Kastler net [A106] consisting of bounded regions of M4. Double
cone serves as a representative example. The von Neumann algebra A(O) is generated by observ-
ables localized in bounded region O. The net satisfies the conditions implied by local causality:

1. Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2).

2. Locality: O1 ⊂ O′2 implies A(O1) ⊂ A(O2)′ with O′ defined as {x : 〈x, y〉 < 0 for all y ∈ O}.

3. Haag duality A(O′)′ = A(O).

Besides this Poincare covariance, positive energy condition, and the existence of vacuum state
is assumed.

DHR (Doplicher-Haag-Roberts) [A52] theory allows to deduce the values of Jones index
and they are squares of integers in dimensions D > 2 so that the situation is rather trivial. The
2-dimensional case is distinguished from higher dimensional situations in that braid group replaces
permutation group since the paths representing the flows permuting identical particles can be
linked in X2 × T and anyonic statistics [D1, D2] becomes possible. In the case of 2-D Minkowski
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space M2 Jones inclusions with M : N < 4 plus a set of discrete values of M : N in the range
(4, 6) are possible. In [A118] some values are given (M : N = 5, 5.5049..., 5.236...., 5.828...).

At least intersections of future and past light cones seem to appear naturally in TGD
framework such that the boundaries of future/past directed light cones serve as seats for incom-
ing/outgoing states defined as intersections of space-time surface with these light cones. III1
sectors cannot thus be excluded as factors in TGD framework. On the other hand, the construc-
tion of S-matrix at space-time level is reduced to II1 case by effective 2-dimensionality.

2.5 TGD And Hyper-Finite Factors Of Type II1

By effective 2-dimensionality of the construction of quantum states the hyper-finite factors of type
II1 fit naturally to TGD framework. In particular, infinite dimensional spinors define a canonical
representations of this kind of factor. The basic question is whether only hyper-finite factors of type
II1 appear in TGD framework. Affirmative answer would allow to interpret physical M -matrix as
time like entanglement coefficients.

2.5.1 What Kind Of Hyper-Finite Factors One Can Imagine In TGD?

The working hypothesis has been that only hyper-finite factors of type II1 appear in TGD. The
basic motivation has been that they allow a new view about M -matrix as an operator representable
as time-like entanglement coefficients of zero energy states so that physical states would represent
laws of physics in their structure. They allow also the introduction of the notion of measurement
resolution directly to the definition of reaction probabilities by using Jones inclusion and the
replacement of state space with a finite-dimensional state space defined by quantum spinors. This
hypothesis is of course just an attractive working hypothesis and deserves to be challenged.

WCW spinors

For WCW spinor s the HFF II1 property is very natural because of the properties of infinite-
dimensional Clifford algebra and the inner product defined by the WCW geometry does not allow
other factors than this. A good guess is that the values of conformal weights label the factors
appearing in the tensor power defining WCW spinor s. Because of the non-degeneracy and super-
symplectic symmetries the density matrix representing metric must be essentially unit matrix for
each conformal weight which would be the defining characteristic of hyper-finite factor of type II1.

Bosonic degrees of freedom

The bosonic part of the super-symplectic algebra consists of Hamiltonians of CH in one-one corre-
spondence with those of δM4

±×CP2. Also the Kac-Moody algebra acting leaving the light-likeness
of the partonic 3-surfaces intact contributes to the bosonic degrees of freedom. The commutator
of these algebras annihilates physical states and there are also Virasoro conditions associated with
ordinary conformal symmetries of partonic 2-surface [K19] . The labels of Hamiltonians of WCW
and spin indices contribute to bosonic degrees of freedom.

Hyper-finite factors of type II1 result naturally if the system is an infinite tensor product
finite-dimensional matrix algebra associated with finite dimensional systems [A29] . Unfortunately,
neither Virasoro, symplectic nor Kac-Moody algebras do have decomposition into this kind of
infinite tensor product. If bosonic degrees for super-symplectic and super-Kac Moody algebra
indeed give I∞ factor one has HFF if type II∞. This looks the most natural option but threatens
to spoil the beautiful idea about M -matrix as time-like entanglement coefficients between positive
and negative energy parts of zero energy state.

The resolution of the problem is surprisingly simple and trivial after one has discovered
it. The requirement that state is normalizable forces to project M -matrix to a finite-dimensional
sub-space in bosonic degrees of freedom so that the reduction I∞ → In occurs and one has the
reduction II∞ → II1 × In = II1 to the desired HFF.

One can consider also the possibility of taking the limit n → ∞. One could indeed say
that since I∞ factor can be mapped to an infinite tensor power of M(2, C) characterized by a
state which is not trace, it is possible to map this representation to HFF by replacing state with
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trace [A29] . The question is whether the forcing the bosonic foot to fermionic shoe is physically
natural. One could also regard the II1 type notion of probability as fundamental and also argue
that it is required by full super-symmetry realized also at the level of many-particle states rather
than mere single particle states.

How the bosonic cutoff is realized?

Normalizability of state requires that projection to a finite-dimensional bosonic sub-space is car-
ried out for the bosonic part of the M -matrix. This requires a cutoff in quantum numbers of
super-conformal algebras. The cutoff for the values of conformal weight could be formulated by
replacing integers with Zn or with some finite field G(p, 1). The cutoff for the labels associated
with Hamiltonians defined as an upper bound for the dimension of the representation looks also
natural.

Number theoretical braids which are discrete and finite structures would define space-time
correlate for this cutoff. p-Adic length scale p ' 2k hypothesis could be interpreted as stating
the fact that only powers of p up to pk are significant in p-adic thermodynamics which would
correspond to finite field G(k, 1) if k is prime. This has no consequences for p-adic mass calculations
since already the first two terms give practically exact results for the large primes associated with
elementary particles [K49] .

Finite number of strands for the theoretical braids would serve as a correlate for the reduction
of the representation of Galois group S∞ of rationals to an infinite produce of diagonal copies of
finite-dimensional Galois group so that same braid would repeat itself like a unit cell of lattice i
condensed matter [K38] .

HFF of type III for field operators and HFF of type II1 for states?

One could also argue that the Hamiltonians with fixed conformal weight are included in fermionic
II1 factor and bosonic factor I∞ factor, and that the inclusion of conformal weights leads to a
factor of type III. Conformal weight could relate to the integer appearing in the crossed product
representation III = Z ×cr II∞ of HFF of type III [A29] .

The value of conformal weight is non-negative for physical states which suggests that Z
reduces to semigroup N so that a factor of type III would reduce to a factor of type II∞ since
trace would become finite. If unitary process corresponds to an automorphism for II∞ factor,
the action of automorphisms affecting scaling must be uni-directional. Also thermodynamical
irreversibility suggests the same. The assumption that state function reduction for positive energy
part of state implies unitary process for negative energy state and vice versa would only mean that
the shifts for positive and negative energy parts of state are opposite so that Z → N reduction
would still hold true.

HFF of type II1 for the maxima of Kähler function?

Probabilistic interpretation allows to gain heuristic insights about whether and how hyper-finite
factors of type type II1 might be associated with WCW degrees of freedom. They can appear both
in quantum fluctuating degrees of freedom associated with a given maximum of Kähler function
and in the discrete space of maxima of Kähler function.

Spin glass degeneracy is the basic prediction of classical TGD and means that instead of a
single maximum of Kähler function analogous to single free energy minimum of a thermodynamical
system there is a fractal spin glass energy landscape with valleys inside valleys. The discretization
of WCW in terms of the maxima of Kähler function crucial for the p-adicization problem, leads
to the analog of spin glass energy landscape and hyper-finite factor of type II1 might be the
appropriate description of the situation.

The presence of the tensor product structure is a powerful additional constraint and some-
thing analogous to this should emerge in WCW degrees of freedom. Fractality of the many-sheeted
space-time is a natural candidate here since the decomposition of the original geometric structure
to parts and replacing them with the scaled down variant of original structure is the geometric
analog of forming a tensor power of the original structure.
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2.5.2 Direct Sum Of HFFs Of Type II1 As A Minimal Option

HFF II1 property for the Clifford algebra of WCW means a definite distinction from the ordinary
Clifford algebra defined by the fermionic oscillator operators since the trace of the unit matrix of
the Clifford algebra is normalized to one. This does not affect the anti-commutation relations at the
basic level and delta functions can appear in them at space-time level. At the level of momentum
space I∞ property requires discrete basis and anti-commutators involve only Kronecker deltas. This
conforms with the fact that HFF of type II1 can be identified as the Clifford algebra associated
with a separable Hilbert space.

II∞ factor or direct sum of HFFs of type II1?

The expectation is that super-symplectic algebra is a direct sum over HFFs of type II1 labeled by
the radial conformal weight. In the same manner the algebra defined by fermionic anti-commutation
relations at partonic 2-surface would decompose to a direct sum of algebras labeled by the conformal
weight associated with the light-like coordinate of X3

l . Super-conformal symmetry suggests that
also the configuration space degrees of freedom correspond to a direct sum of HFFs of type II1.

One can of course ask why not II∞ = I∞ × II1 structures so that one would have single
factor rather than a direct sum of factors.

1. The physical motivation is that the direct sum property allow to decompose M-matrix to
direct summands associated with various sectors with weights whose moduli squared have an
interpretation in terms of the density matrix. This is also consistent with p-adic thermody-
namics where conformal weights take the place of energy eigen values.

2. II∞ property would predict automorphisms scaling the trace by an arbitrary positive real
number λ ∈ R+. These automorphisms would require the scaling of the trace of the projectors
of Clifford algebra having values in the range [0, 1] and it is difficult to imagine how these
automorphisms could be realized geometrically.

How HFF property reflects itself in the construction of geometry of WCW?

The interesting question is what HFF property and finite measurement resolution realizing itself
as the use of projection operators means concretely at the level of WCW geometry.

Super-Hamiltonians define the Clifford algebra of the configuration space. Super-conformal
symmetry suggests that the unavoidable restriction to projection operators instead of complex rays
is realized also WCW degrees of freedom. Of course, infinite precision in the determination of the
shape of 3-surface would be physically a completely unrealistic idea.

In the fermionic situation the anti-commutators for the gamma matrices associated with
WCW individual Hamiltonians in 3-D sense are replaced with anti-commutators where Hamil-
tonians are replaced with projectors to subspaces of the space spanned by Hamiltonians. This
projection is realized by restricting the anti-commutator to partonic 2-surfaces so that the anti-
commutator depends only the restriction of the Hamiltonian to those surfaces.

What is interesting that the measurement resolution has a concrete particle physical meaning
since the parton content of the system characterizes the projection. The larger the number of
partons, the better the resolution about WCW degrees of freedom is. The degeneracy of WCW
metric would be interpreted in terms of finite measurement resolution inherent to HFFs of type
II1, which is not due to Jones inclusions but due to the fact that one can project only to infinite-D
subspaces rather than complex rays.

Effective 2-dimensionality in the sense that WCW Hamiltonians reduce to functionals of
the partonic 2-surfaces of X3

l rather than functionals of X3
l could be interpreted in this manner.

For a wide class of Hamiltonians actually effective 1-dimensionality holds true in accordance with
conformal invariance.

The generalization of WCW Hamiltonians and super-Hamiltonians by allowing integrals over
the 2-D boundaries of the patches of X3

l would be natural and is suggested by the requirement of
discretized 3-dimensionality at the level of WCW.

By quantum classical correspondence the inclusions of HFFs related to the measurement res-
olution should also have a geometric description. Measurement resolution corresponds to braids in
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given time scale and as already explained there is a hierarchy of braids in time scales coming as neg-
ative powers of two corresponding to the addition of zero energy components to positive/negative
energy state. Note however that particle reactions understood as decays and fusions of braid
strands could also lead to a notion of measurement resolution.

2.5.3 Bott Periodicity, Its Generalization, And Dimension D = 8As An
Inherent Property Of The Hyper-Finite II1 Factor

Hyper-finite II1 factor can be constructed as infinite-dimensional tensor power of the Clifford
algebra M2(C) = C(2) in dimension D = 2. More precisely, one forms the union of the Clifford
algebras C(2n) = C(2)⊗n of 2n-dimensional spaces by identifying the element x ∈ C(2n) as block
diagonal elements diag(x, x) of C(2(n + 1)). The union of these algebras is completed in weak
operator topology and can be regarded as a Clifford algebra of real infinite-dimensional separable
Hilbert space and thus as sub-algebra of I∞. Also generalizations obtained by replacing complex
numbers by quaternions and octions are possible.

1. The dimension 8 is an inherent property of the hyper-finite II1 factor since Bott periodicity
theorem states C(n+8) = Cn(16). In other words, the Clifford algebra C(n+8) is equivalent
with the algebra of 16× 16 matrices with entries in C(n). Or articulating it still differently:
C(n+8) can be regarded as 16×16 dimensional module with C(n) valued coefficients. Hence
the elements in the union defining the canonical representation of hyper-finite II1 factor are
16n × 16n matrices having C(0), C(2), C(4) or C(6) valued valued elements.

2. The idea about a local variant of the infinite-dimensional Clifford algebra defined by power
series of space-time coordinate with Taylor coefficients which are Clifford algebra elements
fixes the interpretation. The representation as a linear combination of the generators of
Clifford algebra of the finite-dimensional space allows quantum generalization only in the
case of Minkowski spaces. However, if Clifford algebra generators are representable as gamma
matrices, the powers of coordinate can be absorbed to the Clifford algebra and the local
algebra is lost. Only if the generators are represented as quantum versions of octonions
allowing no matrix representation because of their non-associativity, the local algebra makes
sense. From this it is easy to deduce both quantum and classical TGD.

2.5.4 The Interpretation Of Jones Inclusions In TGD Framework

By the basic self-referential property of von Neumann algebras one can consider several interpre-
tations of Jones inclusions consistent with sub-system-system relationship, and it is better to start
by considering the options that one can imagine.

How Jones inclusions relate to the new view about sub-system?

Jones inclusion characterizes the embedding of sub-system N toMandM as a finite-dimensional
N -module is the counterpart for the tensor product in finite-dimensional context. The possibility
to expressM as N moduleM/N states fractality and can be regarded as a kind of self-referential
“Brahman=Atman identity” at the level of infinite-dimensional systems.

Also the mysterious looking almost identity CH2 = CH for the WCW would fit nicely
with the identity M ⊕M = M . M ⊗M ⊂ M in WCW Clifford algebra degrees of freedom is
also implied and the construction of M as a union of tensor powers of C(2) suggests that M ⊗M
allowsM : N = 4 inclusion toM. This paradoxical result conforms with the strange self-referential
property of factors of II1.

The notion of many-sheeted space-time forces a considerable generalization of the notion
of sub-system and simple tensor product description is not enough. Topological picture based
on the length scale resolution suggests even the possibility of entanglement between sub-systems
of un-entangled sub-systems. The possibility that hyper-finite II1-factors describe the physics of
TGD also in bosonic degrees of freedom is suggested by WCW super-symmetry. On the other
hand, bosonic degrees could naturally correspond to I∞ factor so that hyper-finite II∞ would be
the net result.
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The most general view is that Jones inclusion describes all kinds of sub-system-system
inclusions. The possibility to assign conformal field theory to the inclusion gives hopes of rather
detailed view about dynamics of inclusion.

1. The topological condensation of space-time sheet to a larger space-time sheet mediated by
wormhole contacts could be regarded as Jones inclusion. N would correspond to the condens-
ing space-time sheet, M to the system consisting of both space-time sheets, and

√
M : N

would characterize the number of quantum spinorial degrees of freedom associated with the
interaction between space-time sheets. Note that by general resultsM : N characterizes the
fractal dimension of quantum group (M : N < 4) or Kac-Moody algebra (M : N = 4) [B29]
.

2. The branchings of space-time sheets (space-time surface is thus homologically like branching
like of Feynman diagram) correspond naturally to n-particle vertices in TGD framework.
What is nice is that vertices are nice 2-dimensional surfaces rather than surfaces having
typically pinch singularities. Jones inclusion would naturally appear as inclusion of operator
spaces Ni (essentially Fock spaces for fermionic oscillator operators) creating states at various
lines as sub-spaces Ni ⊂M of operators creating states in common von Neumann factorM.
This would allow to construct vertices and vertices in natural manner using quantum groups
or Kac-Moody algebras.

The fundamental N ⊂M ⊂M⊗NM inclusion suggests a concrete representation based on
the identification Ni = M , where M is the universal Clifford algebra associated with incoming
line and N is defined by the condition thatM/N is the quantum variant of Clifford algebra
of H. N -particle vertices could be defined as traces of Connes products of the operators
creating incoming and outgoing states. It will be found that this leads to a master formula
for S-matrix if the generalization of the old-fashioned string model duality implying that all
generalized Feynman diagrams reduce to diagrams involving only single vertex is accepted.

3. If 4-surfaces can branch as the construction of vertices requires, it is difficult to argue that 3-
surfaces and partonic/stringy 2-surfaces could not do the same. As a matter fact, the master
formula for S-matrix to be discussed later explains the branching of 4-surfaces as an apparent
effect. Despite this one can consider the possibility that this kind of joins are possible so that
a new kind of mechanism of topological condensation would become possible. 3-space-sheets
and partonic 2-surfaces whose p-adic fractality is characterized by different p-adic primes
could be connected by “joins” representing branchings of 2-surfaces. The structures formed
by soap film foam provide a very concrete illustration about what would happen. In the TGD
based model of hadrons [K51] it has been assumed that join along boundaries bonds (JABs)
connect quark space-time space-time sheets to the hadronic space-time sheet. The problem
is that, at least for identical primes, the formation of join along boundaries bond fuses two
systems to single bound state. If JABs are replaced joins, this objection is circumvented.

4. The space-time correlate for the formation of bound states is the formation of JABs. Standard
intuition tells that the number of degrees of freedom associated with the bound state is smaller
than the number of degrees of freedom associated with the pair of free systems. Hence the
inclusion of the bound state to the tensor product could be regarded as Jones inclusion. On
the other hand, one could argue that the JABs carry additional vibrational degrees of freedom
so that the idea about reduction of degrees of freedom might be wrong: free system could be
regarded as sub-system of bound state by Jones inclusion. The self-referential holographic
properties of von Neumann algebras allow both interpretations: any system can be regarded
as sub-system of any system in accordance with the bootstrap idea.

5. Maximal deterministic regions inside given space-time sheet bounded by light-like causal
determinants define also sub-systems in a natural manner and also their inclusions would
naturally correspond to Jones inclusions.

6. The TGD inspired model for topological quantum computation involves the magnetic flux
tubes defined by join along boundaries bonds connecting space-time sheets having light-like
boundaries. These tubes condensed to background 3-space can become linked and knotted
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and code for quantum computations in this manner. In this case the addition of new strand to
the system corresponds to Jones inclusion in the hierarchy associated with inclusion N ⊂M.
The anyon states associated with strands would be represented by a finite tensor product of
quantum spinors assignable to M/N and representing quantum counterpart of H-spinors.

One can regard M : N degrees of freedom correspond to quantum group or Kac-Moody
degrees of freedom. Quantum group degrees of freedom relate closely to the conformal and topo-
logical degrees of freedom as the connection of II1 factors with topological quantum field theories
and braid matrices suggests itself. For the canonical inclusion this factorization would correspond
to factorization of quantum H-spinor from WCW spinor .

A more detailed study of canonical inclusions to be carried out later demonstrates what
this factorization corresponds at the space-time level to a formation of space-time sheets which
can be regarded as multiple coverings of M4 and CP2 with invariance group G = Ga × Gb ⊂
SL(2, C)×SU(2), SU(2) ⊂ SU(3). The unexpected outcome is that Planck constants assignable to
M4 and CP2 degrees of freedom depend on the canonical inclusions. The existence of macroscopic
quantum phases with arbitrarily large Planck constants is predicted.

It would seem possible to assign the M : N degrees quantum spinorial degrees of freedom
to the interface between subsystems represented by N and M. The interface could correspond to
the wormhole contacts, joins, JABs, or light-like causal determinants serving as boundary between
maximal deterministic regions, etc... In terms of the bipartite diagrams representing the inclusions,
joins (say) would correspond to the edges connecting white vertices representing sub-system (the
entire system without the joins) to black vertices (entire system).

About the interpretation of M : N degrees of freedom

The Clifford algebra N associated with a system formed by two space-time sheet can be regarded
as 1 ≤ M : N ≤ 4-dimensional module having N as its coefficients. It is possible to imagine
several interpretations the degrees of freedom labeled by β.

1. The β =M : N degrees of freedom could relate to the interaction of the space-time sheets.
Beraha numbers appear in the construction of S-matrices of topological quantum field theories
and an interpretation in terms of braids is possible. This would suggest that the interaction
between space-time sheets can be described in terms of conformal quantum field theory
and the S-matrices associated with braids describe this interaction. Jones inclusions would
characterize the effective number of active conformal degrees of freedom. At n = 3 limit
these degrees of freedom disappear completely since the conformal field theory defined by
the Chern-Simons action describing this interaction would become trivial (c = 0 as will be
found).

2. The interpretation in terms of embedding space Clifford algebra would suggest that β-
dimensional Clifford algebra of

√
β-dimensional spinor space is in question. For β = 4

the algebra would be the Clifford algebra of 2-dimensional space. M/N would have in-
terpretation as complex quantum spinors with components satisfying z1z2 = qz2z1 and its
conjugate and having fractal complex dimension

√
β. This would conform with the effective 2-

dimensionality of TGD. For β < 4 the fractal dimension of partonic quantum spinors defining
the basic conformal fields would be reduced and become d = 1 for n = 3: the interpretation is
in terms of strong correlations caused by the non-commutativity of the components of quan-
tum spinor. For number theoretical generalizations of infinite-dimensional Clifford algebras
Cl(C) obtained by replacing C with Abelian complexification of quaternions or octonions
one would obtain higher-dimensional spinors.

2.5.5 WCW, Space-Time, Embedding Space AndHyper-Finite Type II1

Factors

The preceding considerations have by-passed the question about the relationship of WCW tangent
space to its Clifford algebra. Also the relationship between space-time and embedding space and
their quantum variants could be better. In particular, one should understand how effective 2-
dimensionality can be consistent with the 4-dimensionality of space-time.



2.5. TGD And Hyper-Finite Factors Of Type II1 61

Super-conformal symmetry and WCW Poisson algebra as hyper-finite type II1 factor

It would be highly desirable to achieve also a description of the WCW degrees of freedom using
von Neumann algebras. Super-conformal symmetry relating fermionic degrees of freedom and
WCW degrees of freedom suggests that this might be the case. Super-symplectic algebra has as
its generators configuration space Hamiltonians and their super-counterparts identifiable as CH
gamma matrices. Super-symmetry requires that the Clifford algebra of CH and the Hamiltonian
vector fields of CH with symplectic central extension both define hyper-finite II1 factors. By
super-symmetry Poisson bracket corresponds to an anti-commutator for gamma matrices. The
ordinary quantized version of Poisson bracket is obtained as {Pi, Qj} → [Pi, Qj ] = JijId. Finite
trace version results by assuming that Id corresponds to the projector CH Clifford algebra having
unit norm. The presence of zero modes means direct integral over these factors.

WCW gamma matrices anti-commuting to identity operator with unit norm corresponds to
the tangent space T (CH) of CH. Thus it would be not be surprising if T (CH) could be imbedded
in the sigma matrix algebra as a sub-space of operators defined by the gamma matrices generating
this algebra. At least for β = 4 construction of hyper-finite II1 factor this definitely makes sense.

The dimension of WCW defined as the trace of the projection operator to the sub-space
spanned by gamma matrices is obviously zero. Thus WCW has in this sense the dimensionality
of single space-time point. This sounds perhaps absurd but the generalization of the number
concept implied by infinite primes indeed leads to the view that single space-time point is infinitely
structured in the number theoretical sense although in the real sense all states of the point are
equivalen. The reason is that there is infinitely many numbers expressible as ratios of infinite
integers having unit real norm in the real sense but having different p-adic norms.

How to understand the dimensions of space-time and embedding space?

One should be able to understand the dimensions of 3-space, space-time and embedding space in a
convincing matter in the proposed framework. There is also the question whether space-time and
embedding space emerge uniquely from the mathematics of von Neumann algebras alone.

1. The dimensions of space-time and embedding space

Two sub-sequent inclusions dual to each other define a special kind of inclusion giving rise
to a quantum counterpart of D = 4 naturally. This would mean that space-time is something
which emerges at the level of cognitive states.

The special role of classical division algebras in the construction of quantum TGD [K74] ,
D = 8 Bott periodicity generalized to quantum context, plus self-referential property of type II1
factors might explain why 8-dimensional embedding space is the only possibility.

State space has naturally quantum dimension D ≤ 8 as the following simple argument
shows. The space of quantum states has quark and lepton sectors which both are super-symmetric
implying D ≤ 4 for each. Since these sectors correspond to different Hamiltonian algebras (triality
one for quarks and triality zero for leptonic sector), the state space has quantum dimension D ≤ 8.

2. How the lacking two space-time dimensions emerge?

3-surface is the basic dynamical unit in TGD framework. This seems to be in conflict with
the effective 2-dimensionality [K74] meaning that partonic 2-surface code for quantum states, and
with the fact that hyper-finite II1 factors have intrinsic quantum dimension 2.

A possible resolution of the problem is that the foliation of 3-surface by partonic two-surfaces
defines a one-dimensional direct integral of isomorphic hyper-finite type II1 factors, and the zero
mode labeling the 2-surfaces in the foliation serves as the third spatial coordinate. For a given
3-surface the contribution to the WCW metric can come only from 2-D partonic surfaces defined
as intersections of 3-D light-like CDs with X7

± [K20] . Hence the direct integral should somehow
relate to the classical non-determinism of Kähler action.

1. The one-parameter family of intersections of light-like CD with X7
± inside X4 ∩ X7

± could
indeed be basically due to the classical non-determinism of Kähler action. The contribution
to the metric from the normal light-like direction to X3 = X4∩X7

± can cause the vanishing of
the metric determinant

√
g4 of the space-time metric at X2 ⊂ X3 under some conditions on

X2. This would mean that the space-time surface X4(X3) is not uniquely determined by the
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minimization principle defining the value of the Kähler action, and the complete dynamical
specification of X3 requires the specification of partonic 2-surfaces X2

i with
√
g4 = 0.

2. The known solutions of field equations [K10] define a double foliation of the space-time sur-
face defined by Hamilton-Jacobi coordinates consisting of complex transversal coordinate
and two light-like coordinates for M4 (rather than space-time surface). Number theoretical
considerations inspire the hypothesis that this foliation exists always [K74] . Hence a natural
hypothesis is that the allowed partonic 2-surfaces correspond to the 2-surfaces in the restric-
tion of the double foliation of the space-time surface by partonic 2-surfaces to X3, and are
thus locally parameterized by single parameter defining the third spatial coordinate.

3. There is however also a second light-like coordinate involved and one might ask whether
both light-like coordinates appear in the direct sum decomposition of II1 factors defining
T (CH). The presence of two kinds of light-like CDs would provide the lacking two space-time
coordinates and quantum dimension D = 4 would emerge at the limit of full non-determinism.
Note that the duality of space-like partonic and light-like stringy 2-surfaces conforms with
this interpretation since it corresponds to a selection of partonic/stringy 2-surface inside
given 3-D CD whereas the dual pairs correspond to different CDs.

4. That the quantum dimension would be 2Dq = β < 4 above CP2 length scale conforms
with the fact that non-determinism is only partial and time direction is dynamically frozen
to a high degree. For vacuum extremals there is strong non-determinism but in this case
there is no real dynamics. For CP2 type extremals, which are not vacuum extremals as far
action and small perturbations are considered, and which correspond to β = 4 there is a
complete non-determinism in time direction since the M4 projection of the extremal is a
light-like random curve and there is full 4-D dynamics. Light-likeness gives rise to conformal
symmetry consistent with the emergence of Kac Moody algebra [K10] .

3. Time and cognition

In a completely deterministic physics time dimension is strictly speaking redundant since the
information about physical states is coded by the initial values at 3-dimensional slice of space-time.
Hence the notion of time should emerge at the level of cognitive representations possible by to the
non-determinism of the classical dynamics of TGD.

Since Jones inclusion means the emergence of cognitive representation, the space-time view
about physics should correspond to cognitive representations provided by Feynman diagram states
with zero energy with entanglement defined by a two-sided projection of the lowest level S-matrix.
These states would represent the “laws of quantum physics” cognitively. Also space-time surface
serves as a classical correlate for the evolution by quantum jumps with maximal deterministic
regions serving as correlates of quantum states. Thus the classical non-determinism making possible
cognitive representations would bring in time. The fact that quantum dimension of space-time is
smaller than D = 4 would reflect the fact that the loss of determinism is not complete.

4. Do space-time and embedding space emerge from the theory of von Neumann algebras and number theory?

The considerations above force to ask whether the notions of space-time and embedding
space emerge from von Neumann algebras as predictions rather than input. The fact that it
seems possible to formulate the S-matrix and its generalization in terms of inherent properties of
infinite-dimensional Clifford algebras suggest that this might be the case.

Inner automorphisms as universal gauge symmetries?

The continuous outer automorphisms ∆it of HFFs of type III are not completely unique and one
can worry about the interpretation of the inner automorphisms. A possible resolution of the worries
is that inner automorphisms act as universal gauge symmetries containing various super-conformal
symmetries as a special case. For hyper-finite factors of type II1 in the representation as an infinite
tensor power of M2(C) this would mean that the transformations non-trivial in a finite number
of tensor factors only act as analogs of local gauge symmetries. In the representation as a group
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algebra of S∞ all unitary transformations acting on a finite number of braid strands act as gauge
transformations whereas the infinite powers P×P× ..., P ∈ Sn, would act as counterparts of global
gauge transformations. In particular, the Galois group of the closure of rationals would act as local
gauge transformations but diagonally represented finite Galois groups would act like global gauge
transformations and periodicity would make possible to have finite braids as space-time correlates
without a loss of information.

Do unitary isomorphisms between tensor powers of II1 define vertices?

What would be left would be the construction of unitary isomorphisms between the tensor products
of the HFFs of type II1 ⊗ In = II1 at the partonic 2-surfaces defining the vertices. This would be
the only new element added to the construction of braiding M -matrices.

As a matter fact, this element is actually not completely new since it generalizes the fusion
rules of conformal field theories, about which standard example is the fusion rule φi = c jk

i φjφk
for primary fields. These fusion rules would tell how a state of incoming HFF decomposes to the
states of tensor product of two outgoing HFFs.

These rules indeed have interpretation in terms of Connes tensor productsM⊗N ...⊗NM
for which the sub-factor N takes the role of complex numbers [A63] so that one has M becomes
N bimodule and “quantum quantum states” have N as coefficients instead of complex numbers.
In TGD framework this has interpretation as quantum measurement resolution characterized by
N (the group G characterizing leaving the elements of N invariant defines the measured quantum
numbers).

2.5.6 Quaternions, Octonions, And Hyper-Finite Type II1Factors

Quaternions and octonions as well as their hyper counterparts obtained by multiplying imaginary
units by commuting

√
−1 and forming a sub-space of complexified division algebra, are in in a

central role in the number theoretical vision about quantum TGD [K74] . Therefore the question
arises whether complexified quaternions and perhaps even octonions could be somehow inherent
properties of von Neumann algebras. One can also wonder whether the quantum counterparts
of quaternions and octonions could emerge naturally from von Neumann algebras. The following
considerations allow to get grasp of the problem.

Quantum quaternions and quantum octonions

Quantum quaternions have been constructed as deformation of quaternions [A126] . The key
observation that the Glebsch Gordan coefficients for the tensor product 3 ⊗ 3 = 5 ⊕ ⊕3 ⊕ 1 of
spin 1 representation of SU(2) with itself gives the anti-commutative part of quaternionic product
as spin 1 part in the decomposition whereas the commutative part giving spin 0 representation
is identifiable as the scalar product of the imaginary parts. By combining spin 0 and spin 1
representations, quaternionic product can be expressed in terms of Glebsh-Gordan coefficients.
By replacing GGC:s by their quantum group versions for group sl(2)q, one obtains quantum
quaternions.

There are two different proposals for the construction of quantum octonions [A103, A1] .
Also now the idea is to express quaternionic and octonionic multiplication in terms of Glebsch-
Gordan coefficients and replace them with their quantum versions.

1. The first proposal [A103] relies on the observation that for the tensor product of j = 3
representations of SU(2) the Glebsch-Gordan coefficients for 7 ⊗ 7 → 7 in 7 ⊗ 7 = 9 ⊕ 7 ⊕
5⊕ 3⊕ 1 defines a product, which is equivalent with the antisymmetric part of the product
of octonionic imaginary units. As a matter fact, the antisymmetry defines 7-dimensional
Malcev algebra defined by the anti-commutator of octonion units and satisfying b definition
the identity

[[x, y, z] , x] = [x, y, [x, z]] , [x, y, z] ≡ [x, [y, z]] + [y, [z, x]] + [z, [x, y]] . (2.5.1)



64 Chapter 2. Was von Neumann Right After All?

7-element Malcev algebra defining derivations of octonionic algebra is the only complex Mal-
cev algebra not reducing to a Lie algebra. The j = 0 part of the product corresponds also
now to scalar product for imaginary units. Octonions are constructed as sums of j = 0 and
j = 3 parts and quantum Glebsch-Gordan coefficients define the octonionic product.

2. In the second proposal [A1] the quantum group associated with SO(8) is used. This repre-
sentation does not allow unit but produces a quantum version of octonionic triality assigning
to three octonions a real number.

Quaternionic or octonionic quantum mechanics?

There have been numerous attempts to introduce quaternions and octonions to quantum theory.
Quaternionic or octonionic quantum mechanics, which means the replacement of the complex
numbers as coefficient field of Hilbert space with quaternions or octonions, is the most obvious
approach (for example and references to the literature see for instance [A101] .

In both cases non-commutativity poses serious interpretational problems. In the octonionic
case the non-associativity causes even more serious obstacles [B32, A101] , [B32] .

1. Assuming that an orthonormalized state basis with respect to an octonion valued inner
product has been found, the multiplication of any basis with octonion spoils the orthonor-
mality. The proposal to circumvent this difficulty discussed in [B32] , [B32] eliminates non-
associativity by assuming that octonions multiply states one by one (rather than multiplying
each other before multiplying the state). Effectively this means that octonions are replaced
with 8× 8-matrices.

2. The definition of the tensor product leads also to difficulties since associativity is lost (recall
that Yang-Baxter equation codes for associativity in case of braid statistics [A42] ).

3. The notion of hermitian conjugation is problematic and forces a selection of a preferred
imaginary unit, which does not look nice. Note however that the local selection of a preferred
imaginary unit is in a key role in the proposed construction of space-time surfaces as

hyper-quaternionic or co-hyper-quaternionic surfaces and allows to interpret space-time sur-
faces either as surfaces in 8-D Minkowski space M8 of hyper-octonions or in M4×CP2. This
selection turns out to have quite different interpretation in the proposed framework.

Hyper-finite factor II1 has a natural Hyper-Kähler structure

In the case of hyper-finite factors of type II1 quaternions a more natural approach is based on
the generalization of the Hyper-Kähler structure rather than quaternionic quantum mechanics.
The reason is that also WCW tangent space should and is expected to have this structure [K20]
. The Hilbert space remains a complex Hilbert space but the quaternionic units are represented
as operators in Hilbert space. The selection of the preferred unit is necessary and natural. The
identity operator representing quaternionic real unit has trace equal to one, is expected to give rise
to the series of quantum quaternion algebras in terms of inclusions N ⊂M having interpretation
as N -modules.

The representation of the quaternion units is rather explicit in the structure of hyper-finite
II1 factor. The M : N ≡ β = 4 hierarchical construction can be regarded as Connes tensor
product of infinite number of 4-D Clifford algebras of Euclidian plane with Euclidian signature of
metric (diag(−1,−1)). This algebra is nothing but the quaternionic algebra in the representation
of quaternionic imaginary units by Pauli spin matrices multiplied by i.

The imaginary unit of the underlying complex Hilbert space must be chosen and there is
whole sphere S2 of choices and in every point of WCW the choice can be made differently. The
space-time correlate for this local choice of preferred hyper-octonionic unit [K74] . At the level
of WCW geometry the quaternion structure of the tangent space means the existence of Hyper-
Kähler structure guaranteeing that WCW has a vanishing Einstein tensor. It it would not vanish,
curvature scalar would be infinite by symmetric space property (as in case of loop spaces) and
induce a divergence in the functional integral over 3-surfaces from the expansion of

√
g [K20] .

The quaternionic units for the II1 factor, are simply limiting case for the direct sums of
2× 2 units normalized to one. Generalizing from β = 4 to β < 4, the natural expectation is that
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the representation of the algebra as β = M : N -dimensional N -module gives rise to quantum
quaternions with quaternion units defined as infinite sums of

√
β ×
√
β matrices.

At Hilbert space level one has an infinite Connes tensor product of 2-component spinor spaces
on which quaternionic matrices have a natural action. The tensor product of Clifford algebras gives
the algebra of 2 × 2 quaternionic matrices acting on 2-component quaternionic spinors (complex
4-component spinors). Thus double inclusion could correspond to (hyper-)quaternionic structure
at space-time level. Note however that the correspondence is not complete since hyper-quaternions
appear at space-time level and quaternions at Hilbert space level.

Von Neumann algebras and octonions

The octonionic generalization of the Hyper-Kähler manifold does not make sense as such since
octonionic units are not representable as linear operators. The allowance of anti-linear operators
inherently present in von Neumann algebras could however save the situation. Indeed, the Cayley-
Dickson construction for the division algebras (for a nice explanation see [A94] ), which allows to
extend any ∗ algebra, and thus also any von Neumann algebra, by adding an imaginary unit it and
identified as ∗, comes in rescue.

The basic idea of the Cayley-Dickson construction is following. The ∗ operator, call it J ,
representing a conjugation defines an anti-linear operator in the original algebra A. One can
extend A by adding this operator as a new element to the algebra. The conditions satisfied by J
are

a(Jb) = J(a∗b) , (aJ)b = (ab∗)J , (Ja)(bJ−1) = (ab)∗ . (2.5.2)

In the associative case the conditions are equivalent to the first condition.
It is intuitively clear that this addition extends the hyper-Kähler structure to an octonionic

structure at the level of the operator algebra. The quantum version of the octonionic algebra
is fixed by the quantum quaternion algebra uniquely and is consistent with the Cayley-Dickson
construction. It is not clear whether the construction is equivalent with either of the earlier
proposals [A103, A1] . It would however seem that the proposal is simpler.

Physical interpretation of quantum octonion structure

Without further restrictions the extension by J would mean that vertices contain operators, which
are superpositions of linear and anti-linear operators. This would give superpositions of states and
their time-reversals and mean that state could be a superposition of states with opposite values
of say fermion numbers. The problem disappears if either the linear operators A or anti-linear
operators JA can be used to construct physical states from vacuum. The fact, that space-time
surfaces are either hyper-quaternionic or co-hyper-quaternionic, is a space-time correlate for this
restriction.

The HQ − coHQ duality discussed in [K74] states that the descriptions based on hyper-
quaternionic and co-hyper-quaternionic surfaces are dual to each other. The duality can have two
meanings.

1. The vacuum is invariant under J so that one can use either complexified quaternionic oper-
ators A or their co-counterparts of form JA to create physical states from vacuum.

2. The vacuum is not invariant under J . This could relate to the breaking of CP and T
invariance known to occur in meson-antimeson systems. In TGD framework two kinds of
vacua are predicted corresponding intuitively to vacua in which either the product of all
positive or negative energy fermionic oscillator operators defines the vacuum state, and these
two vacua could correspond to a vacuum and its J conjugate, and thus to positive and
negative energy states. In this case the two state spaces would not be equivalent although
the physics associated with them would be equivalent.

The considerations of [K74] related to the detailed dynamics of HQ − coHQ duality demon-
strate that the variational principles defining the dynamics of hyper-quaternionic and co-hyper-
quaternionic space-time surfaces are antagonistic and correspond to world as seen by a conscientous
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book-keeper on one hand and an imaginative artist on the other hand. HQ case is conservative:
differences measured by the magnitude of Kähler action tend to be minimized, the dynamics is
highly predictive, and minimizes the classical energy of the initial state. coHQ case is radical:
differences are maximized (this is what the construction of sensory representations would require).
The interpretation proposed in [K74] was that the two space-time dynamics are just different pre-
dictions for what would happen (has happened) if no quantum jumps would occur (had occurred).
A stronger assumption is that these two views are associated with systems related by time reversal
symmetry.

What comes in mind first is that this antagonism follows from the assumption that these
dynamics are actually time-reversals of each other with respect to M4 time (the rapid elimination
of differences in the first dynamics would correspond to their rapid enhancement in the second
dynamics). This is not the case so that T and CP symmetries are predicted to be broken in
accordance with the CP breaking in meson-antimeson systems [K46] and cosmological matter-
antimatter asymmetry [K69] .

2.5.7 Does The Hierarchy Of Infinite Primes Relate To The Hierarchy
Of II1 Factors?

The hierarchy of Feynman diagrams accompanying the hierarchy defined by Jones inclusionsM0 ⊂
M1 ⊂ ... gives a concrete representation for the hierarchy of cognitive dynamics providing a
representation for the material world at the lowest level of the hierarchy. This hierarchy seems to
relate directly to the hierarchy of space-time sheets.

Also the construction of infinite primes [K72] leads to an infinite hierarchy. Infinite primes
at the lowest level correspond to polynomials of single variable x1 with rational coefficients, next
level to polynomials x1 for which coefficients are rational functions of variable x2, etc... so that a
natural ordering of the variables is involved.

If the variables xi are hyper-octonions (subs-space of complexified octonions for which el-
ements are of form x +

√
−1y, where x is real number and y imaginary octonion and

√
−1 is

commuting imaginary unit, this hierarchy of states could provide a realistic representation of phys-
ical states as far as quantum numbers related to embedding space degrees of freedom are considered
in M8 picture dual to M4×CP2 picture [K74] . Infinite primes are mapped to space-time surfaces
in a way analogous to the mapping of polynomials to the loci of their zeros so that infinite primes,
integers, and rationals become concrete geometrical objects.

Infinite primes are also obtained by a repeated second quantization of a super-symmetric
arithmetic quantum field theory. Infinite rational numbers correspond in this description to pairs
of positive energy and negative energy states of opposite energies having interpretation as pairs of
initial and final states so that higher level states indeed represent transitions between the states.
For these reasons this hierarchy has been interpreted as a correlate for a cognitive hierarchy coding
information about quantum dynamics at lower levels. This hierarchy has also been assigned with
the hierarchy of space-time sheets. Just as the hierarchy of generalized Feynman diagrams provides
self representations of the lowest matter level and is coded by it, finite primes code the hierarchy
of infinite primes.

Infinite primes, integers, and rationals have finite p-adic norms equal to 1, and one can
wonder whether a Hilbert space like structure with dimension given by an infinite prime or integer
makes sense, and whether it has anything to do with the Hilbert space for which dimension is
infinite in the sense of the limiting value for a dimension of sub-space. The Hilbert spaces with
dimension equal to infinite prime would define primes for the tensor product of these spaces. The
dimension of this kind of space defined as any p-adic norm would be equal to one.

One cannot exclude the possibility that infinite primes could express the infinite dimensions
of hyper-finite III1 factors, which cannot be excluded and correspond to that part of quantum
TGD which relates to the embedding space rather than space-time surface. Indeed, infinite primes
code naturally for the quantum numbers associated with the embedding space. Secondly, the
appearance of 7-D light-like causal determinants X7

± = M4
± × CP2 forming nested structures in

the construction of S-matrix brings in mind similar nested structures of algebraic quantum field
theory [B8] . If this is were the case, the hierarchy of Beraha numbers possibly associated with
the phase resolution could correspond to hyper-finite factors of type II1, and the decomposition of
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space-time surface to regions labeled by p-adic primes and characterized by infinite primes could
correspond to hyper-finite factors of type III1 and represent embedding space degrees of freedom.

The state space would in this picture correspond to the tensor products of hyper-finite factors
of type II1 and III1 (of course, also factors In and I∞ are also possible). III1 factors could be
assigned to the sub-WCWs defined by 3-surfaces in regions of M4 expressible in terms of unions
and intersections of X7

± = M4
±×CP2. By conservation of four-momentum, bounded regions of this

kind are possible only for the states of zero net energy appearing at the higher levels of hierarchy.
These sub-WCWs would be characterized by the positions of the tips of light cones M4

± ⊂ M4

involved. This indeed brings in continuous spectrum of four-momenta forcing to introduce non-
separable Hilbert spaces for momentum eigen states and necessitating III1 factors. Infinities would
be avoided since the dynamics proper would occur at the level of space-time surfaces and involve
only II1 factors.

2.6 HFFs Of Type III And TGD

One can imagine several ways for how HFFs of type III could emerge in TGD although the
proposed view about M -matrix in zero energy ontology suggests that HFFs of type III1 should be
only an auxiliary tool at best. Same is suggested with interpretational problems associated with
them. Both TGD inspired quantum measurement theory, the idea about a variant of HFF of type
II1 analogous to a local gauge algebra, and some other arguments, suggest that HFFs of type III
could be seen as a useful idealization allowing to make non-trivial conjectures both about quantum
TGD and about HFFs of type III. Quantum fields would correspond to HFFs of type III and II∞
whereas physical states (M -matrix) would correspond to HFF of type II1. I have summarized first
the problems of III1 factors so that reader can decide whether the further reading is worth of it.

2.6.1 Problems Associated With The Physical Interpretation Of III1

Factors

Algebraic quantum field theory approach [B26, B8] has led to a considerable understanding of
relativistic quantum field theories in terms of hyper-finite III1 factors. There are however several
reasons to suspect that the resulting picture is in conflict with physical intuition. Also the infinities
of non-trivial relativistic QFTs suggest that something goes wrong.

Are the infinities of quantum field theories due the wrong type of von Neumann
algebra?

The infinities of quantum field theories involve basically infinite traces and it is now known that
the algebras of observables for relativistic quantum field theories for bounded regions of Minkowski
space correspond to hyper-finite III1 algebras, for which non-trivial traces are always infinite. This
might be the basic cause of the divergence problems of relativistic quantum field theory.

On basis of this observations there is some temptation to think that the finite traces of
hyper-finite II1 algebras might provide a resolution to the problems but not necessarily in QFT
context. One can play with the thought that the subtraction of infinities might be actually a
process in which III1 algebra is transformed to II1 algebra. A more plausible idea suggested by
dimensional regularization is that the elimination of infinities actually gives rise to II1 inclusion
at the limit M : N → 4. It is indeed known that the dimensional regularization procedure of
quantum field theories can be formulated in terms of bi-algebras assignable to Feynman diagrams
and [A30] and the emergence of bi-algebras suggests that a connection with II1 factors and critical
role of dimension D = 4 might exist.

Continuum of inequivalent representations of commutation relations

There is also a second difficulty related to type III algebras. There is a continuum of inequivalent
representations for canonical commutation relations [A117] . In thermodynamics this is blessing
since temperature parameterizes these representations. In quantum field theory context situation
is however different and this problem has been usually put under the rug.
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Entanglement and von Neumann algebras

In quantum field theories where 4-D regions of space-time are assigned to observables. In this case
hyper-finite type III1 von Neumann factors appear. Also now inclusions make sense and has been
studiedin fact, the parameters characterizing Jones inclusions appear also now and this due to the
very general properties of the inclusions.

The algebras of type III1 have rather counter-intuitive properties from the point of view of
entanglement. For instance, product states between systems having space-like separation are not
possible at all so that one can speak of intrinsic entanglement [A81] . What looks worse is that
the decomposition of entangled state to product states is highly non-unique.

Mimicking the steps of von Neumann one could ask what the notion of observables could
mean in TGD framework. Effective 2-dimensionality states that quantum states can be constructed
using the data given at partonic or stringy 2-surfaces. This data includes also information about
normal derivatives so that 3-dimensionality actually lurks in. In any case this would mean that
observables are assignable to 2-D surfaces. This would suggest that hyper-finite II1 factors appear
in quantum TGD at least as the contribution of single space-time surface to S-matrix is considered.
The contributions for WCW degrees of freedom meaning functional (not path-) integral over 3-
surfaces could of course change the situation.

Also in case of II1 factors, entanglement shows completely new features which need not
however be in conflict with TGD inspired view about entanglement. The eigen values of density
matrices are infinitely degenerate and quantum measurement can remove this degeneracy only par-
tially. TGD inspired theory of consciousness has led to the identification of rational (more generally
algebraic entanglement) as bound state entanglement stable in state function reduction. When an
infinite number of states are entangled, the entanglement would correspond to rational (algebraic
number) valued traces for the projections to the eigen states of the density matrix. The symplectic
transformations of CP2 are almost U(1) gauge symmetries broken only by classical gravitation.
They imply a gigantic spin glass degeneracy which could be behind the infinite degeneracies of
eigen states of density matrices in case of II1 factors.

2.6.2 Quantum Measurement Theory And HFFs Of Type III

The attempt to interpret the HFFs of type III in terms of quantum measurement theory based
on Jones inclusions leads to highly non-trivial conjectures about these factors.

Could the scalings of trace relate to quantum measurements?

What should be understood is the physical meaning of the automorphism inducing the scaling of
trace. In the representation based of factors based on infinite tensor powers the action of g should
transform single n × n matrix factor with density matrix Id/n to a density matrix e11 of a pure
state.

Obviously the number of degrees of freedom is affected and this can be interpreted in terms of
appearance or disappearance of correlations. Quantization and emergence of non-commutativity
indeed implies the emergence of correlations and effective reduction of degrees of freedom. In
particular, the fundamental quantum Clifford algebra has reduced dimension M : N = r ≤ 4
instead of r = 4 since the replacement of complex valued matrix elements with N valued ones
implies non-commutativity and correlations.

The transformation would be induced by the shift of finite-dimensional state to right or left
so that the number of matrix factors overlapping with I∞ part increases or is reduced. Could
it have interpretation in terms of quantum measurement for a quantum Clifford factor? Could
quantum measurement forM/N degrees of freedom reducing the state in these degrees of freedom
to a pure state be interpreted as a transformation of single finite-dimensional matrix factor to a
type I factor inducing the scaling of the trace and could the scalings associated with automorphisms
of HFFs of type III also be interpreted in terms of quantum measurement?

This interpretation does not as such say anything about HFF factors of type III since only
a decomposition of II1 factor to Ik2 factor and II1 factor with a reduced trace of projector to the
latter. However, one can ask whether the scaling of trace for HFFs of type III could correspond
to a situation in which infinite number of finite-dimensional factors have been quantum measured.
This would correspond to the inclusion N ⊂M∞ = ∪nMn where N ⊂M ⊂ ...Mn... defines the
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canonical inclusion sequence. Physicist can of course ask whether the presence of infinite number
of I2-, or more generally, In-factors is at all relevant to quantum measurement and it has already
become clear that situation at the level of M -matrix reduces to In.

Could the theory of HHFs of type III relate to the theory of Jones inclusions?

The idea about a connection of HFFs of type III and quantum measurement theory seems to be
consistent with the basic facts about inclusions and HFFs of type III1.

1. Quantum measurement would scale the trace by a factor 2k/
√
M : N since the trace would

become a product for the trace of the projector to the newly born M(2, C)⊗k factor and
the trace for the projection to N given by 1/

√
M : N . The continuous range of values

M : N ≥ 4 gives good hopes that all values of λ are realized. The prediction would be that
2k
√
M : N ≥ 1 holds always true.

2. The values M : N ∈ {rn = 4cos2(π/n)} for which the single M(2, C) factor emerges in
state function reduction would define preferred values of the inverse of λ =

√
M : N/4

parameterizing factors IIIλ. These preferred values vary in the range [1/2, 1].

3. λ = 1 at the end of continuum would correspond to HFF III1 and to Jones inclusions defined
by infinite cyclic subgroups dense in U(1) ⊂ SU(2) and this group combined with reflection.
These groups correspond to the Dynkin diagrams A∞ and D∞. Also the classical values
of M : N = n2 characterizing the dimension of the quantum Clifford M : N are possible.
In this case the scaling of trace would be trivial since the factor n to the trace would be
compensated by the factor 1/n due to the disappearance of M/N factor III1 factor.

4. Inclusions with M : N = ∞ are also possible and they would correspond to λ = 0 so that
also III0 factor would also have a natural identification in this framework. These factors
correspond to ergodic systems and one might perhaps argue that quantum measurement in
this case would give infinite amount of information.

5. This picture makes sense also physically. p-Adic thermodynamics for the representations of
super-conformal algebra could be formulated in terms of factors of type I∞ and in excellent
approximation using factors In. The generation of arbitrary number of type II1 factors in
quantum measurement allow this possibility.

The end points of spectrum of preferred values of λ are physically special

The fact that the end points of the spectrum of preferred values of λ are physically special, supports
the hopes that this picture might have something to do with reality.

1. The Jones inclusion with q = exp(iπ/n), n = 3 (with principal diagram reducing to a Dynkin
diagram of group SU(3)) corresponds to λ = 1/2, which corresponds to HFF III1 differing
in essential manner from factors IIIλ, λ < 1. On the other hand, SU(3) corresponds to
color group which appears as an isometry group and important subgroup of automorphisms
of octonions thus differs physically from the ADE gauge groups predicted to be realized
dynamically by the TGD based view about McKay correspondence [K38] .

2. For r = 4 SU(2) inclusion parameterized by extended ADE diagrams M(2, C)⊗2 would be
created in the state function reduction and also this would give λ = 1/2 and scaling by
a factor of 2. Hence the end points of the range of discrete spectrum would correspond
to the same scaling factor and same HFF of type III. SU(2) could be interpreted either as
electro-weak gauge group, group of rotations of th geodesic sphere of δM4

±, or a subgroup of
SU(3). In TGD interpretation for McKay correspondence a phase transition replacing gauge
symmetry with Kac-Moody symmetry.

3. The scalings of trace by factor 2 seem to be preferred physically which should be contrasted
with the fact that primes near prime powers of 2 and with the fact that quantum phases
q = exp(iπ/n) with n equal to Fermat integer proportional to power of 2 and product of the
Fermat primes (the known ones are 5, 17, 257, and 216 + 1) are in a special role in TGD
Universe.
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2.6.3 What Could One Say About II1 Automorphism Associated With
The II∞ Automorphism Defining Factor Of Type III?

An interesting question relates to the interpretation of the automorphisms of II∞ factor inducing
the scaling of trace.

1. If the automorphism for Jones inclusion involves the generator of cyclic automorphism sub-
group Zn of II1 factor then it would seem that for other values of λ this group cannot be
cyclic. SU(2) has discrete subgroups generated by arbitrary phase q and these are dense in
U(1) ⊂ SU(2) sub-group. If the interpretation in terms of Jones inclusion makes sense then
the identification λ =

√
M : N/2k makes sense.

2. If HFF of type II1 is realized as group algebra of infinite symmetric group [K38] , the
outer automorphism induced by the diagonally imbedded finite Galois groups can induce
only integer values of n and Zn would correspond to cyclic subgroups. This interpretation
conforms with the fact that the automorphisms in the completion of inner automorphisms of
HFF of type II1 induce trivial scalings. Therefore only automorphisms which do not belong
to this completion can define HFFs of type III.

2.6.4 What Could Be The Physical Interpretation Of Two Kinds Of
Invariants Associated With HFFs Type III?

TGD predicts two kinds of counterparts for S-matrix: M -matrix and U -matrix. Both are expected
to be more or less universal.

There are also two kinds of invariants and automorphisms associated with HFFs of type III.

1. The first invariant corresponds to the scaling λ ∈]0, 1[ of the trace associated with the auto-
morphism of factor of II∞. Also the end points of the interval make sense. The inverse of
this scaling accompanies the inverse of this automorphism.

2. Second invariant corresponds to the time scales t = T0 for which the outer automorphism
σt reduces to inner automorphism. It turns out that T0 and λ are related by the formula
λiT0 = 1, which gives the allowed values of T0 as T0 = n2π/log(λ) [A29] . This formula can
be understood intuitively by realizing that λ corresponds to the eigenvalue of the density
matrix ∆ = eH in the simplest possible realization of the state φ.

The presence of two automorphisms and invariants brings in mind U matrix characterizing
the unitary process occurring in quantum jump and M -matrix characterizing time like entangle-
ment.

1. If one accepts the vision based on quantum measurement theory then λ corresponds to the
scaling of the trace resulting when quantum Clifford algebraM/N reduces to a tensor power
of M(2, C) factor in the state function reduction. The proposed interpretation for U process
would be as the inverse of state function reduction transforming this factor back to M/N .
Thus U process and state function reduction would correspond naturally to the scaling and
its inverse. This picture might apply not only in single particle case but also for zero energy
states which can be seen as states associated the a tensor power of HFFs of type II1 associated
with partons.

2. The implication is that U process can occur only in the direction in which trace is reduced.
This would suggest that the full III1 factor is not a physical notion and that one must restrict
the group Z in the crossed product Z ×cr II∞ to the group N of non-negative integers. In
this kind of situation the trace is well defined since the traces for the terms in the crossed
product comes as powers λ−n so that the net result is finite. This would mean a reduction
to II∞ factor.

3. Since time t is a natural parameter in elementary particle physics experiment, one could argue
that σt could define naturally M -matrix. Time parameter would most naturally correspond
to a parameter of scaling affecting all M4

± coordinates rather than linear time. This conforms
also with the fundamental role of conformal transformations and scalings in TGD framework.
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The identification of the full M -matrix in terms of σ does not seem to make sense generally.
It would however make sense for incoming and outgoing number theoretic braids so that σ could
define universal braiding M -matrices. Inner automorphisms would bring in the dependence on
experimental situation. The reduction of the braiding matrix to an inner automorphism for critical
values of t which could be interpreted in terms of scaling by power of p. This trivialization would
be a counterpart for the elimination of propagator legs from M -matrix element. Vertex itself could
be interpreted as unitary isomorphism between tensor product of incoming and outgoing HFFs of
type II1 would code all what is relevant about the particle reaction.

2.6.5 Does The Time Parameter T Represent Time Translation Or Scal-
ing?

The connection Tn = n2π/log(λ) would give a relationship between the scaling of trace and value of
time parameter for which the outer automorphism represented by σ reduces to inner automorphism.
It must be emphasized that the time parameter t appearing in σ need not have anything to do
with time translation. The alternative interpretation is in terms of M4

± scaling (implying also time
scaling) but one cannot exclude even preferred Lorentz boosts in the direction of quantization axis
of angular momentum.

Could the time parameter correspond to scaling?

The central role of conformal invariance in quantum TGD suggests that t parameterizes scaling
rather than translation. In this case scalings would correspond to powers of (Kλ)n. The numerical
factor K which cannot be excluded a priori, seems to reduce to K = 1.

1. The scalings by powers of p have a simple realization in terms of the representation of HFF of
type II∞ as infinite tensor power of M(p, C) with suitably chosen densities matrices in factors
to get product of I∞ and II1 factor. These matrix algebras have the remarkable property of
defining prime tensor power factors of finite matrix algebras. Thus p-adic fractality would
reflect directly basic properties of matrix algebras as suggested already earlier. That scalings
by powers of p would correspond to automorphism reducing to inner automorphisms would
conform with p-adic fractality.

2. Also scalings by powers [
√
M : N/2k]n would be physically preferred if one takes previous

arguments about Jones inclusions seriously and if also in this case scalings are involved.
For q = exp(iπ/n), n = 5 the minimal value of n allowing universal topological quantum
computation would correspond to a scaling by Golden Mean and these fractal scalings indeed
play a key role in living matter. In particular, Golden Mean makes it visible in the geometry
of DNA.

Could the time parameter correspond to time translation?

One can consider also the interpretation of σt as time translation. TGD predicts a hierarchy of
Planck constants parameterized by rational numbers such that integer multiples are favored. In
particular, integers defining ruler and compass polygons are predicted to be in a very special role
physically. Since the geometric time span associated with zero energy state should scale as Planck
constant one expects that preferred values of time t associated with σ are quantized as rational
multiples of some fundamental time scales, say the basic time scale defined by CP2 length or p-adic
time scales.

1. For λ = 1/p, p prime, the time scale would be Tn = nT1, T1 = T0 = 2π/log(p) which is not
what p-adic length scale hypothesis would suggest.

2. For Jones inclusions one would have Tn/T0 = n2π/log(22k/M : N ). In the limit when λ
becomes very small (the number k of reduced M(2, C) factors is large one obtains Tn =
(n/k)t1, T1 = T0π/log(2). Approximate rational multiples of the basic length scale would be
obtained as also predicted by the general quantization of Planck constant.
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p-Adic thermodynamics from first principles

Quantum field theory at non-zero temperature can be formulated in the functional integral formal-
ism by replacing the time parameter associated with the unitary time evolution operator U(t) with
a complexified time containing as imaginary part the inverse of the temperature: t→ t+ i~/T . In
the framework of standard quantum field theory this is a mere computational trick but the time
parameter associated with the automorphisms σt of HFF of type III is a temperature like param-
eter from the beginning, and its complexification would naturally lead to the analog of thermal
QFT.

Thus thermal equilibrium state would be a genuine quantum state rather than fictive but
useful auxiliary notion. Thermal equilibrium is defined separately for each incoming parton braid
and perhaps even braid (partons can have arbitrarily large size). At elementary particle level
p-adic thermodynamics could be in question so that particle massivation would have first prin-
ciple description. p-Adic thermodynamics is under relatively mild conditions equivalent with its
real counterpart obtained by the replacement of pL0 interpreted as a p-adic number with p−L0

interpreted as a real number.

2.6.6 HFFs Of Type III And The Dynamics In M4
± Degrees Of Freedom?

HFFs of type III could be also assigned with the poorly understood dynamics in M4
± degrees of

freedom which should have a lot of to do with four-dimensional quantum field theory. Hyper-finite
factors of type III1 might emerge when one extends II1 to a local algebra by multiplying it with
hyper-octonions replaced as analog of matrix factor and considers hyper-quaternionic subalgebra.
The resulting algebra would be the analog of local gauge algebra and the elements of algebra
would be analogous to conformal fields with complex argument replaced with hyper-octonionic,
-quaternionic, or -complex one. Since quantum field theory in M4 gives rise to hyper-finite III1
factors one might guess that the hyper-quaternionic restriction indeed gives these factors.

The expansion of the local HFF II∞ element as O(m) =
∑
nm

nOn, where M4 coordinate
m is interpreted as hyper-quaternion, could have interpretation as expansion in which On belongs
to N gn in the crossed product N ×cr {gn, n ∈ Z}. The analogy with conformal fields suggests that
the power gn inducing λn fold scaling of trace increases the conformal weight by n.

One can ask whether the scaling of trace by powers of λ defines an inclusion hierarchy of
sub-algebras of conformal sub-algebras as suggested by previous arguments. One such hierarchy
would be the hierarchy of sub-algebras containing only the generators Om with conformal weight
m ≥ n, n ∈ Z.

It has been suggested that the automorphism ∆ could correspond to scaling inside light-cone.
This interpretation would fit nicely with Lorentz invariance and TGD in general. The factors IIIλ
with λ generating semi-subgroups of integers (in particular powers of primes) could be of special
physical importance in TGD framework. The values of t for which automorphism reduces to inner
automorphism should be of special physical importance in TGD framework. These automorphisms
correspond to scalings identifiable in terms of powers of p-adic prime p so that p-adic fractality
would find an explanation at the fundamental level.

If the above mentioned expansion in powers of mn of M4
± coordinate makes sense then the

action of σt representing a scaling by pn would leave the elements O invariant or induce a mere
inner automorphism. Conformal weight n corresponds naturally to n-ary p-adic length scale by
uncertainty principle in p-adic mass calculations.

The basic question is the physical interpretation of the automorphism inducing the scaling
of trace by λ and its detailed action in HFF. This scaling could relate to a scaling in M4 and to
the appearance in the trace of an integral over M4 or subspace of it defining the trace. Fractal
structures suggests itself strongly here. At the level of construction of physical states one always
selects some minimum non-positive conformal weight defining the tachyonic ground state and
physical states have non-negative conformal weights. The interpretation would be as a reduction
to HHF of type II∞ or even II1.
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2.6.7 Could The Continuation Of Braidings To Homotopies Involve ∆It

Automorphisms

The representation of braidings as special case of homotopies might lead from discrete automor-
phisms for HFFs type II1 to continuous outer automorphisms for HFFs of type III1. The question
is whether the periodic automorphism of II1 represented as a discrete sub-group of U(1) would be
continued to U(1) in the transition.

The automorphism of II∞ HFF associated with a given value of the scaling factor λ is
unique. If Jones inclusions defined by the preferred values of λ as λ =

√
M : N/2k (see the

previous considerations), then this automorphism could involve a periodic automorphism of II1
factor defined by the generator of cyclic subgroup Zn for M : N < 4 besides additional shift
transforming II1 factor to I∞ factor and inducing the scaling.

2.6.8 HFFs Of Type III As Super-Structures Providing Additional Unique-
ness?

If the braiding M -matrices are as such highly unique. One could however consider the possibility
that they are induced from the automorphisms σt for the HFFs of type III restricted to HFFs of
type II∞. If a reduction to inner automorphism in HFF of type III implies same with respect to
HFF of type II∞ and even II1, they could be trivial for special values of time scaling t assignable
to the partons and identifiable as a power of prime p characterizing the parton. This would allow
to eliminate incoming and outgoing legs. This elimination would be the counterpart of the division
of propagator legs in quantum field theories. Particle masses would however play no role in this
process now although the power of padic prime would fix the mass scale of the particle.

2.7 Appendix: Inclusions Of Hyper-Finite Factors Of Type
II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[A104] . It would seem to me that the notion Jones inclusion includes them all so that various
names would correspond to different concrete realizations of the inclusions conjugate under outer
automorphisms.

1. According to [A104] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a

countable infinity of sub-factors with are pairwise non inner conjugate but conjugate to N .

2. Also for any finite group G and its outer action there exists uncountably many sub-factors
which are pairwise non inner conjugate but conjugate to the fixed point algebra of G [A104] .
For any amenable group G the inclusion is also unique apart from outer automorphism [A63]
.

Thus it seems that not only Jones inclusions but also more general inclusions are unique apart
from outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines
a sub-factor of type II1 factor [A104] . The construction of Jones leads to a standard inclusion
sequence N ⊂ M ⊂ M1 ⊂ .... This sequence means addition of projectors ei, i < 0, having
visualization as an addition of braid strand in braid picture. This hierarchy exists for all factors of
type II. At the limitM∞ = ∪iMi the braid sequence extends from −∞ to∞. Inclusion hierarchy
can be understood as a hierarchy of Connes tensor powersM⊗NM....⊗NM. Also the ordinary
tensor powers of hyper-finite factors of type II1 (HFF) as well as their tensor products with finite-
dimensional matrix algebras are isomorphic to the original HFF so that these objects share the
magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For
a finite index an infinite inclusion hierarchy of factors results with the same value of index. σ
is said to be basic if it can be extended to *-endomorphisms from M1 to M. This means that
the hierarchy of inclusions can be continued in the opposite direction: this means elimination of
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strands in the braid picture. For finite factors (as opposed to hyper-finite ones) there are no basic
*-endomorphisms of M having fixed point algebra of non-abelian G as a sub-factor [A104] .

2.7.1 Jones Inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist for
all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [A104] . They are defined for an
algebra defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute. λ = 1/r
appears in the relations for the generators of the algebra given by eiejei = λei, |i−j| = 1. N ⊂M
is identified as the double commutator of algebra generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by pro-
jectors can be continued not only to −∞ but that also the dropping of arbitrary number of strands
is possible [A104] . It would seem that ADE property of the principal graph meaning single root
length codes for the duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′ ∩P = P ′ ∩P = C.
For r ≥ 4 one has dim(Q′ ∩ P ) = 2. The operators commuting with Q contain besides identify
operator of Q also the identify operator of P . Q would contain a single finite-dimensional matrix
factor less than P in this case. Basic *-endomorphisms with σ(P ) = Q is σ(ei) = ei+1. The
difference between genuine symmetries of quantum TGD and symmetries which can be mimicked
by TGD could relate to the irreducibility for r < 4 and raise these inclusions in a unique position.
This difference could partially justify the hypothesis [K27] that only the groups Ga×Gb ⊂ SU(2)×
SU(2) ⊂ SL(2, C)× SU(3) define orbifold coverings of H± = M4

± × CP2 → H±/Ga ×Gb.

2.7.2 Wassermann’s Inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2) for these
inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G ⊂ SU(2) and is
given by (1⊗M)G ⊂ (M2(C)×M)G. According to [A104] Jones inclusions are irreducible also for
r = 4. The definition of Wasserman inclusion for r = 4 seems however to imply that the identity
matrices of both MG and (M(2, C) ⊗M)G commute with MG so that the inclusion should be
reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the
elements of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with G
acting as automorphisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as MG ⊂M . The representation of G as outer automorphism
must change step by step in the inclusion sequence ... ⊂ N ⊂M ⊂ ... since otherwise G would act
trivially as one proceeds in the inclusion sequence. This is true since each step brings in additional
finite-dimensional tensor factor in which G acts as automorphisms so that although M can be
invariant under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N =MG ⊂M with G acting non-trivially inM/N quantum Clifford algebra. N
would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking the role of G. N/N1 quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2 to
the orbifold S2/G. The coverings H± → H±/Ga×Gb should relate to these double inclusions and
SU(2) inclusion could mean Kac-Moody type gauge symmetry for N . Note that the presence of
the factor containing only unit matrix should relate directly to the generator d in the generator
set of affine algebra in the McKay construction [K38] . The physical interpretation of the fact that

almost all ADE type extended diagrams (D
(1)
n must have n ≥ 4) are allowed for r = 4 inclusions

whereas D2n+1 and E6 are not allowed for r < 4, remains open.

2.7.3 Generalization From Su(2) To Arbitrary Compact Group

The inclusions with indexM : N < 4 have one-dimensional relative commutant N ′∪M. The most
obvious conjecture thatM : N ≥ 4 corresponds to a non-trivial relative commutant is wrong. The
index for Jones inclusion is identifiable as the square of quantum dimension of the fundamental
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representation of SU(2). This identification generalizes to an arbitrary representation of arbitrary
compact Lie group.

In his thesis Wenzl [A76] studied the representations of Hecke algebras Hn(q) of type An
obtained from the defining relations of symmetric group by the replacement e2

i = (q−1)ei+q. Hn is
isomorphic to complex group algebra of Sn if q is not a root of unity and for q = 1 the irreducible
representations of Hn(q) reduce trivially to Young’s representations of symmetric groups. For
primitive roots of unity q = exp(i2π/l), l = 4, 5..., the representations of Hn(∞) give rise to
inclusions for which index corresponds to a quantum dimension of any irreducible representation
of SU(k), k ≥ 2. For SU(2) also the value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and taking
double commutant of both H∞ and the resulting algebra. The relative commutant corresponds
to Hm(q). By reducing by the minimal projection to relative commutant one obtains an inclusion
with a trivial relative commutant. These inclusions are analogous to a discrete states superposed
in continuum. Thus the results of Jones generalize from the fundamental representation of SU(2)
to all representations of all groups SU(k), and in fact to those of general compact groups as it
turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (2.7.1)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes characterizing
the representations and the condition 1 ≤ k ≤ l − 1 holds true. Only Young diagrams satisfying
the condition l − k = λ1 − λrmax are allowed.

The result would allow to restrict the generalization of the embedding space in such a
way that only cyclic group Zn appears in the covering of M4 → M4/Ga or CP2 → CP2/Gb
factor. Be as it may, it seems that quantum representations of any compact Lie group can be
realized using the generalization of the embedding space. In the case of SU(2) the interpretation of
higher-dimensional quantum representations in terms of Connes tensor products of 2-dimensional
fundamental representations is highly suggestive.

The groups SO(3, 1)× SU(3) and SL(2, C)× U(2)ew have a distinguished position both in
physics and quantum TGD and the vision about physics as a generalized number theory implies
them. Also the general pattern for inclusions selects these groups, and one can say that the
condition that all possible statistics are realized is guaranteed by the choice M4 × CP2.

1. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means that
braid statistics for Jones inclusions cannot give the usual fermionic statistics. That Fermi
statistics cannot “emerge” conforms with the role of infinite-D Clifford algebra as a canonical
representation of HFF of type II1. SO(3, 1) as isometries of H gives Z2 statistics via the
action on spinors of M4 and U(2) holonomies for CP2 realize Z2 statistics in CP2 degrees of
freedom.

2. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the
general case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but trivial
action at the embedding space level so that Z3 statistics would be in question.



Chapter 3

Evolution of Ideas about
Hyper-finite Factors in TGD

3.1 Introduction

This chapter has emerged from a splitting of a chapter devote to the possible role of von Neu-
mann algebras known as hyper-finite factors in quantum TGD. Second chapter emerging from the
splitting is a representation of basic notions to chapter “Was von Neumann right after all?” [K87]
representing only very briefly ideas about application to quantum TGD only briefly.

In the sequel the ideas about TGD applications are reviewed more or less chronologically.
A summary about evolution of ideas is in question, not a coherent final structure, and as always
the first speculations - in this case roughly for a decade ago - might look rather weird. The vision
has however gradually become more realistic looking as deeper physical understanding of factors
has evolved slowly.

The mathematics involved is extremely difficult for a physicist like me, and to really learn
it at the level of proofs one should reincarnate as a mathematician. Therefore the only practical
approach relies on the use of physical intuition to see whether HFFs might the correct structure and
what HFFs do mean. What is needed is a concretization of the extremely abstract mathematics
involved: mathematics represents only the bones to which physics should add flesh.

3.1.1 Hyper-Finite Factors In Quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs)
of type III1 appearing in relativistic quantum field theories provide also the proper mathematical
framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra
known as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-
surface) of world of classical worlds (WCW) is therefore HFF of type II1. If the fermionic
Fock algebra defined by the fermionic oscillator operators assignable to the induced spinor
fields (this is actually not obvious!) is infinite-dimensional it defines a representation for HFF
of type II1. Super-conformal symmetry suggests that the extension of the Clifford algebra
defining the fermionic part of a super-conformal algebra by adding bosonic super-generators
representing symmetries of WCW respects the HFF property. It could however occur that
HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal
is that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated

76
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with a given value of a and with fixed lower tip are parameterized by the Lobatchevski
space L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are
parameterized by M4 × L(a). A possible interpretation is in terms of quantum cosmology
with a identified as cosmic time [K69] . Since Lorentz boosts define a non-compact group,
the generalization of so called crossed product construction strongly suggests that the local
Clifford algebra of WCW is HFF of type III1. If one allows all values of a, one ends up with
M4 ×M4

+ as the space of moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products
of unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and
γk by octonions. This inspires the idea that it might be possible to end up with quantum
TGD from purely number theoretical arguments. This seems to be the case. One can start
from a local octonionic Clifford algebra in M8. Associativity condition is satisfied if one
restricts the octonionic algebra to a subalgebra associated with any hyper-quaternionic and
thus 4-D sub-manifold of M8. This means that the Kähler-Dirac gamma matrices associated
with the Kähler action span a complex quaternionic sub-space at each point of the sub-
manifold. This associative sub-algebra can be mapped a matrix algebra. Together with
M8 −H duality [K88, K19] this leads automatically to quantum TGD and therefore also to
the notion of WCW and its Clifford algebra which is however only mappable to an associative
algebra and thus to HFF of type II1.

3.1.2 Hyper-Finite Factors And M-Matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could
be used to define the M-matrix of quantum TGD. This is not the case as is obvious already
from the fact that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of
factors is a more appropriate starting point than the notion modular automorphism but as a
generalization of thermodynamical state is certainly not enough for the purposes of quantum
TGD and quantum field theories (algebraic quantum field theorists might disagree!). Zero
energy ontology requires that the notion of thermodynamical state should be replaced with
its “complex square root” abstracting the idea about M-matrix as a product of positive
square root of a diagonal density matrix and a unitary S-matrix. This generalization of
thermodynamical state -if it exists- would provide a firm mathematical basis for the notion
of M-matrix and for the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology: the two vacua can be assigned with the positive and negative energy parts
of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of
WCW differing only by a real part of holomorphic function of complex coordinates of WCW
and arbitrary function of zero mode coordinates and giving rise to the same Kähler metric
of WCW.
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3.1.3 Connes Tensor Product As A Realization Of Finite Measurement
Resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite measure-
ment resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the
original one. Therefore N takes the role of complex numbers in non-commutative quantum
theory. The space M/N would correspond to the operators creating physical states mod-
ulo measurement resolution and has typically fractal dimension given as the index of the
inclusion. The corresponding spinor spaces have an identification as quantum spaces with
non-commutative N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a uni-
versal M-matrix describing the situation for an ideal measurement resolution exists as the
idea about square root of state encourages to think. Finite measurement resolution forces
to replace the probabilities defined by the M-matrix with their N “averaged” counterparts.
The “averaging” would be in terms of the complex square root of N -state and a direct analog
of functionally or path integral over the degrees of freedom below measurement resolution
defined by (say) length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition thatN acts like complex numbers on M-matrix elements as far asN “averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix inM(N
interpreted as finite-dimensional space with a projection operator to N . The condition that
N averaging in terms of a complex square root of N state produces this kind of M-matrix
poses a very strong constraint on M-matrix if it is assumed to be universal (apart from
variants corresponding to different measurement interactions).

3.1.4 Concrete Realization Of The Inclusion Hierarchies

A concrete construction of M-matrix motivated by the recent rather precise view about basic
variational principles of TGD allows to identify rather concretely the inclusions of HFFs in TGD
framework and relate them to the hierarchies of broken conformal symmetries accompanying quan-
tum criticalities.

1. Fundamental fermions localized to string world sheets can be said to propagate as massless
particles along their boundaries. The fundamental interaction vertices correspond to two
fermion scattering for fermions at opposite throats of wormhole contact and the inverse of
the conformal scaling generator L0 would define the stringy propagator characterizing this
interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite
throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with
monopole Kähler magnetic flux flowing around a loop going through wormhole contacts.

2. The formulation of scattering amplitudes in terms of Yangian of the super-symplectic alge-
bra leads to a rather detailed view about scattering amplitudes [K77]. In this formulation
scattering amplitudes are representations for sequences of algebraic operations connecting
collections of elements of Yangian and sequences produce the same result. A huge general-
ization of the duality symmetry of the hadronic string models is in question.

3. The reduction of the hierarchy of Planck constants heff/h = n to a hierarchy of quantum
criticalities accompanied by a hierarchy of sub-algebras of super-symplectic algebra acting as
conformal gauge symmetries leads to the identification of inclusions of HFFs as inclusions of
WCW Clifford algebras characterizing by n(i) and n(i+ 1) = m(i)× n(i) so that hierarchies
of von Neuman algebras, of Planck constants, and of quantum criticalities would be very
closely related. In the transition n(i) → n(i + 1) = m(i) × n(i) the measurement accuracy
indeed increases since some conformal gauge degrees of freedom are transformed to physical
ones. An open question is whether one could interpret m(i) as the integer characterizing
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inclusion: the problem is that also m(i) = 2 with M : N = 4 seems to be allowed whereas
Jones inclusions allow only m ≥ 3.

Even more, number theoretic universality and strong form of holography leads to a detailed
vision about the construction of scattering amplitudes suggesting that the hierarchy of alge-
braic extensions of rationals relates to the above mentioned hierarchies.

3.1.5 Analogs of quantum matrix groups from finite measurement res-
olution?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions
of von Neumann algebras allowing to describe mathematically the notion of finite measurement
resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution. The basic idea is to replace complex matrix
elements with operators expressible as products of non-negative hermitian operators and unitary
operators analogous to the products of modulus and phase as a representation for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its
development with respect to a fixed row or column does not pose additional conditions. Strong
definition of determinant requires its invariance under permutations of rows and columns. The
permutation of rows/columns turns out to have interpretation as braiding for the hermitian op-
erators defined by the moduli of operator valued matrix elements. The commutativity of all sub-
determinants is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian
operators and sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but
provide a concrete representation and interpretation for quantum group in terms of finite measure-
ment resolution if q is a root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one
obtains quantum matrices for which the determinant is apart from possible change by sign factor
invariant under the permutations of both rows and columns. One could also understand the fractal
structure of inclusion sequences of hyper-finite factors resulting by recursively replacing operators
appearing as matrix elements with quantum matrices.

3.1.6 Quantum Spinors And Fuzzy Quantum Mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities.
For quantum spinors state function reduction cannot be performed unless quantum deformation
parameter equals to q = 1. The reason is that the components of quantum spinor do not commute:
it is however possible to measure the commuting operators representing moduli squared of the
components giving the probabilities associated with “true” and “false”. The universal eigenvalue
spectrum for probabilities does not in general contain (1,0) so that quantum qbits are inherently
fuzzy. State function reduction would occur only after a transition to q=1 phase and de-coherence
is not a problem as long as it does not induce this transition.

This chapter represents a summary about the development of the ideas with last sections
representing the recent latest about the realization and role of HFFs in TGD. I have saved the
reader from those speculations that have turned out to reflect my own ignorance or are inconsistent
with what I regarded established parts of quantum TGD.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L6].

3.2 A Vision About The Role Of HFFs In TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must have
a profound role in TGD. Whether also HFFs of type III1 appearing also in relativistic quantum

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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field theories emerge when WCW spinors are replaced with spinor fields is not completely clear. I
have proposed several ideas about the role of hyper-finite factors in TGD framework. In particular,
Connes tensor product is an excellent candidate for defining the notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by ZEO and the
recent advances in the understanding of M-matrix using the notion of bosonic emergence. The
conclusion is that the notion of state as it appears in the theory of factors is not enough for the
purposes of quantum TGD. The reason is that state in this sense is essentially the counterpart of
thermodynamical state. The construction of M-matrix might be understood in the framework of
factors if one replaces state with its “complex square root” natural if quantum theory is regarded
as a “complex square root” of thermodynamics. It is also found that the idea that Connes tensor
product could fix M-matrix is too optimistic but an elegant formulation in terms of partial trace for
the notion of M-matrix modulo measurement resolution exists and Connes tensor product allows
interpretation as entanglement between sub-spaces consisting of states not distinguishable in the
measurement resolution used. The partial trace also gives rise to non-pure states naturally.

The newest element in the vision is the proposal that quantum criticality of TGD Universe
is realized as hierarchies of inclusions of super-conformal algebras with conformal weights coming
as multiples of integer n, where n varies. If n1 divides n2 then various super-conformal algebras
Cn2

are contained in Cn1
. This would define naturally the inclusion.

3.2.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more mature
than or at least complementary to the summary that I could afford when I started the work with
factors for more than half decade ago. I of course admit that this just a humble attempt of a
physicist to express physical vision in terms of only superficially understood mathematical notions.

Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert space
H bounded in the norm topology with norm defined by the supremum for the length of the image
of a point of unit sphere H. This algebra has a lot of common with complex numbers in that
the counterparts of complex conjugation, order structure and metric structure determined by the
algebraic structure exist. This means the existence involution -that is *- algebra property. The
order structure determined by algebraic structure means following: A ≥ 0 defined as the condition
(Aξ, ξ) ≥ 0 is equivalent with A = B∗B. The algebra has also metric structure ||AB|| ≤ ||A||||B|
(Banach algebra property) determined by the algebraic structure. The algebra is also C∗ algebra:
||A∗A|| = ||A||2 meaning that the norm is algebraically like that for complex numbers.

A von Neumann algebraM [A24] is defined as a weakly closed non-degenerate *-subalgebra
of B(H) and has therefore all the above mentioned properties. From the point of view of physicist
it is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

1. LetM be subalgebra of B(H) and denote byM′ its commutant (H) commuting with it and
allowing to express B(H) as B(H) =M∨M′.

2. A factor is defined as a von Neumann algebra satisfying M′′ =MM is called factor. The
equality of double commutant with the original algebra is thus the defining condition so that
also the commutant is a factor. An equivalent definition for factor is as the condition that
the intersection of the algebra and its commutant reduces to a complex line spanned by a
unit operator. The condition that the only operator commuting with all operators of the
factor is unit operator corresponds to irreducibility in representation theory.

3. Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H and
separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if and only if
it is separating for its commutant. In so called standard representation Ω is both cyclic and
separating.



3.2. A Vision About The Role Of HFFs In TGD 81

4. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is
dense in the factor exists. This roughly means that one can approximate the algebra in
arbitrary accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the underly-
ing physical motivations. The motivating question is what the decomposition of a physical system
to non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product realizes this
decomposition.

1. Tensor product H = H1 ⊗ H2 is the decomposition according to the standard quantum
measurement theory and means the decomposition of operators in B(H) to tensor products
of mutually commuting operators in M = B(H1) and M′ = B(H2). The information about
M can be coded in terms of projection operators. In this case projection operators projecting
to a complex ray of Hilbert space exist and arbitrary compact operator can be expressed as
a sum of these projectors. For factors of type I minimal projectors exist. Factors of type In
correspond to sub-algebras of B(H) associated with infinite-dimensional Hilbert space and
I∞ to B(H) itself. These factors appear in the standard quantum measurement theory where
state function reduction can lead to a ray of Hilbert space.

2. For factors of type II no minimal projectors exists whereas finite projectors exist. For factors
of type II1 all projectors have trace not larger than one and the trace varies in the range
(0, 1]. In this case cyclic vectors Ω exist. State function reduction can lead only to an infinite-
dimensional subspace characterized by a projector with trace smaller than 1 but larger than
zero. The natural interpretation would be in terms of finite measurement resolution. The
tensor product of II1 factor and I∞ is II∞ factor for which the trace for a projector can
have arbitrarily large values. II1 factor has a unique finite tracial state and the set of traces
of projections spans unit interval. There is uncountable number of factors of type II but
hyper-finite factors of type II1 are the exceptional ones and physically most interesting.

3. Factors of type III correspond to an extreme situation. In this case the projection operators
E spanning the factor have either infinite or vanishing trace and there exists an isometry
mapping EH to H meaning that the projection operator spans almost all of H. All projectors
are also related to each other by isometry. Factors of type III are smallest if the factors are
regarded as sub-algebras of a fixed B(H) whereH corresponds to isomorphism class of Hilbert
spaces. Situation changes when one speaks about concrete representations. Also now hyper-
finite factors are exceptional.

4. Von Neumann algebras define a non-commutative measure theory. Commutative von Neu-
mann algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice versa.

Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann algebras.

1. A weight of von Neumann algebra is a linear map from the set of positive elements (those of
form a∗a) to non-negative reals.

2. A positive linear functional is weight with ω(1) finite.

3. A state is a weight with ω(1) = 1.

4. A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

5. A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the same
trace. Factors of type In the values of trace are equal to multiples of 1/n. For a factor of type
I∞ the value of trace are 0, 1, 2, .... For factors of type II1 the values span the range [0, 1] and for
factors of type II∞ n the range [0,∞). For factors of type III the values of the trace are 0, and∞.
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Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (3.2.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x → x∗ is isometric in M and defines a map M → L2(M) via x → xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor ∆1/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies thatM andM′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A47, A93] ∆ is Hermitian and
positive definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.
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Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the fac-
tor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of cor-
responding II∞ factor characterizes partially a factor of type II1. This group consists real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values λ for which ω
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
the Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of
λ < 1. For factors of type III0 this set contains only identity automorphism so that there
is no periodicity. For factors of type III1 Connes spectrum contains all real numbers so that
the automorphisms do not affect the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not integer
valued in general. The so called standard module has a cyclic separating vector and each factor
has a standard representation possessing antilinear involution J such that M′ = JMJ holds true
(note that J changes the order of the operators in conjugation). The inclusions of factors define
modules having interpretation in terms of a finite measurement resolution defined by M.

Crossed product as a way to construct factors of type III

By using so called crossed product crossedproduct for a group G acting in algebra A one can obtain
new von Neumann algebras. One ends up with crossed product by a two-step generalization by
starting from the semidirect product G/H for groups defined as (g1, h1)(g2, h2) = (g1h1(g2), h1h2)
(note that Poincare group has interpretation as a semidirect product M4 /SO(3, 1) of Lorentz and
translation groups). At the first step one replaces the group H with its group algebra. At the
second step the the group algebra is replaced with a more general algebra. What is formed is the
semidirect product A / G which is sum of algebras Ag. The product is given by (a1, g1)(a2, g2) =
(a1g1(a2), g1g2). This construction works for both locally compact groups and quantum groups.
A not too highly educated guess is that the construction in the case of quantum groups gives the
factor M as a crossed product of the included factor N and quantum group defined by the factor
space M/N .

The construction allows to express factors of type III as crossed products of factors of type
II∞ and the 1-parameter group G of modular automorphisms assignable to any vector which is
cyclic for both factor and its commutant. The ergodic flow θλ scales the trace of projector in II∞
factor by λ > 0. The dual flow defined by G restricted to the center of II∞ factor does not depend
on the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of
the kernel of the dual flow defined as set of values of flow parameter λ for which the flow in the
center is trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for factors of
type IIIλ and contains all real numbers for factors of type III1 meaning that the flow does not
affect the center.

Inclusions and Connes tensor product

Inclusions N ⊂ M of von Neumann algebras have physical interpretation as a mathematical de-
scription for sub-system-system relation. In [K87] there is more extensive TGD colored description
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of inclusions and their role in TGD. Here only basic facts are listed and the Connes tensor product
is explained.

For type I algebras the inclusions are trivial and tensor product description applies as such.
For factors of II1 and III the inclusions are highly non-trivial. The inclusion of type II1 factors
were understood by Vaughan Jones [A2] and those of factors of type III by Alain Connes [A28] .

Formally sub-factor N ofM is defined as a closed ∗-stable C-subalgebra ofM. Let N be a
sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M
as N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by indexM : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only
the embedding.

The basic facts proved by Jones are following [A2] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(3.2.2)

the numbers at right hand side are known as Beraha numbers [A73] . The comments below
give a rough idea about what finiteness of principal graph means.

2. As explained in [B29] , for M : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in
terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g) − r)/r. For
M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed. The Dynkin graphs of
Lie algebras of SU(n), E7 and D2n+1 are however not allowed. E6, E7, andE8 correspond
to symmetry groups of tetrahedron, octahedron/cube, and icosahedron/dodecahedron. The
group for octahedron/cube is missing: what could this mean?

For M : N = 4 one can assign to the inclusion an extended Dynkin graph of type ADE
characterizing Kac Moody algebra. Extended ADE diagrams characterize also the subgroups
of SU(2) and the interpretation proposed in [A131] is following-

The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There are
diagrams corresponding to infinite subgroups: A∞ corresponding to SU(2) itself, A−∞,∞
corresponding to circle group U(1), and infinite dihedral groups (generated by a rotation by
a non-rational angle and reflection.

One can construct also inclusions for which the diagrams corresponding to finite subgroups
G ⊂ SU(2) are extension of An for cyclic groups, of Dn dihedral groups, and of En with
n = 6, 7, 8 for tetrahedron, cube, dodecahedron. These extensions correspond to ADE type
Kac-Moody algebras.

The extension is constructed by constructing first factor R as infinite tensor power of M2(C)
(complexified quaternions). Sub-factor R0 consists elements of of R of form Id ⊗ x. SU(2)
preserves R0 and for any subgroup G of SU(2) one can identify the inclusion N ⊂ M in
terms of N = RG0 and M = RG, where N = RG0 and M = RG consists of fixed points of R0

and R under the action of G. The principal graph for N ⊂M is the extended Coxeter-Dynk
graph for the subgroup G.

Physicist might try to interpret this by saying that one considers only sub-algebras RG0 and
RG of observables invariant under G and obtains extended Dynkin diagram of G defining an
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ADE type Kac-Moody algebra. Could the condition that Kac-Moody algebra elements with
non-vanishing conformal weight annihilate the physical states state that the state is invariant
under R0 defining measurement resolution. Besides this the states are also invariant under
finite group G? Could RG0 and RG correspond just to states which are also invariant under
finite group G.

Connes tensor product

The basic idea of Connes tensor product is that a sub-space generated sub-factor N takes the role
of the complex ray of Hilbert space. The physical interpretation is in terms of finite measurement
resolution: it is not possible to distinguish between states obtained by applying elements of N .

Intuitively it is clear that it should be possible to decomposeM to a tensor product of factor
space M/N and N :

M = M/N ⊗N . (3.2.3)

One could regard the factor space M/N as a non-commutative space in which each point cor-
responds to a particular representative in the equivalence class of points defined by N . The
connections between quantum groups and Jones inclusions suggest that this space closely relates
to quantum groups. An alternative interpretation is as an ordinary linear space obtained by map-
ping N rays to ordinary complex rays. These spaces appear in the representations of quantum
groups. Similar procedure makes sense also for the Hilbert spaces in which M acts.

Connes tensor product can be defined in the spaceM⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from right is
equivalent with N multiplication from left so that N acts like complex numbers on states. One
can imagine variants of the Connes tensor product and in TGD framework one particular variant
appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n×n matrices acts on V from right, V can be regarded
as a space formed by m × n matrices for some value of m. If N acts from left on W , W can be
regarded as space of n× r matrices.

1. In the first representation the Connes tensor product of spaces V and W consists of m ×
r matrices and Connes tensor product is represented as the product VW of matrices as
(VW )mre

mr. In this representation the information about N disappears completely as the
interpretation in terms of measurement resolution suggests. The sum over intermediate states
defined by N brings in mind path integral.

2. An alternative and more physical representation is as a state

∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

3. One can also consider two spaces V and W in which N acts from right and define Connes
tensor product for A† ⊗N B or its tensor product counterpart. This case corresponds to
the modification of the Connes tensor product of positive and negative energy states. Since
Hermitian conjugation is involved, matrix product does not define the Connes tensor product
now. For m = r case entanglement coefficients should define a unitary matrix commuting
with the action of the Hermitian matrices of N and interpretation would be in terms of
symmetry. HFF property would encourage to think that this representation has an analog
in the case of HFFs of type II1.

4. Also type In factors are possible and for them Connes tensor product makes sense if one can
assign the inclusion of finite-D matrix algebras to a measurement resolution.
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Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A118, A47, A93] . There are
good arguments showing that in HFFs of III1 appear are relativistic quantum field theories. In
non-relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group
is essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that ∨ product
should make sense.

Some basic mathematical results of algebraic quantum field theory [A93] deserve to be listed
since they are suggestive also from the point of view of TGD.

1. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x)
where (O+ x) is the translate of O and |x| denotes Minkowski norm. Then every projection
E ∈ M(O) can be written as WW ∗ with W ∈ M(Oε) and W ∗W = 1. Note that the union
is not a bounded set of M4. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz
boosts induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a
tensor product in relativistic QFTs is believed to hold true. This means that the HFFs of
type III1 associated with causally disjoint regions are sub-factors of factor of type I∞. This
means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFs of type III1s is induced by set theoretic inclusions.

3.2.2 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.

The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual
and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

1. Under what conditions the assumptions of Tomita-Takesaki formula stating the existence of
modular automorphism and isomorphy of the factor and its commutant hold true? What is
the physical interpretation of the formula M′ = JMJ relating factor and its commutant in
TGD framework?

2. Is the identification M = ∆it sensible is quantum TGD and ZEO, where M-matrix is “com-
plex square root” of exponent of Hamiltonian defining thermodynamical state and the notion
of unitary time evolution is given up? The notion of state ω leading to ∆ is essentially ther-
modynamical and one can wonder whether one should take also a “complex square root” of
ω to get M-matrix giving rise to a genuine quantum theory.

3. TGD based quantum measurement theory involves both quantum fluctuating degrees of
freedom assignable to light-like 3-surfaces and zero modes identifiable as classical degrees
of freedom assignable to interior of the space-time sheet. Zero modes have also fermionic
counterparts. State preparation should generate entanglement between the quantal and
classical states. What this means at the level of von Neumann algebras?
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4. What is the TGD counterpart for causal disjointness. At space-time level different space-time
sheets could correspond to such regions whereas at embedding space level causally disjoint
CDs would represent such regions.

2. Technical problems

There are also more technical questions.

1. What is the von Neumann algebra needed in TGD framework? Does one have a a direct
integral over factors? Which factors appear in it? Can one construct the factor as a crossed
product of some group G with direct physical interpretation and of naturally appearing factor
A? Is A a HFF of type II∞? assignable to a fixed CD? What is the natural Hilbert space H
in which A acts?

2. What are the geometric transformations inducing modular automorphisms of II∞ inducing
the scaling down of the trace? Is the action of G induced by the boosts in Lorentz group.
Could also translations and scalings induce the action? What is the factor associated with
the union of Poincare transforms of CD? log(∆) is Hermitian algebraically: what does the
non-unitarity of exp(log(∆)it) mean physically?

3. Could Ω correspond to a vacuum which in conformal degrees of freedom depends on the
choice of the sphere S2 defining the radial coordinate playing the role of complex variable
in the case of the radial conformal algebra. Does ∗-operation inM correspond to Hermitian
conjugation for fermionic oscillator operators and change of sign of super conformal weights?

The exponent of the Kähler-Dirac action gives rise to the exponent of Kähler function
as Dirac determinant and fermionic inner product defined by fermionic Feynman rules. It is
implausible that this exponent could as such correspond to ω or ∆it having conceptual roots in
thermodynamics rather than QFT. If one assumes that the exponent of the Kähler-Dirac action
defines a “complex square root” of ω the situation changes. This raises technical questions relating
to the notion of square root of ω.

1. Does the complex square root of ω have a polar decomposition to a product of positive definite
matrix (square root of the density matrix) and unitary matrix and does ω1/2 correspond to
the modulus in the decomposition? Does the square root of ∆ have similar decomposition
with modulus equal equal to ∆1/2 in standard picture so that modular automorphism, which
is inherent property of von Neumann algebra, would not be affected?

2. ∆it or rather its generalization is defined modulo a unitary operator defined by some Hamil-
tonian and is therefore highly non-unique as such. This non-uniqueness applies also to |∆|.
Could this non-uniqueness correspond to the thermodynamical degrees of freedom?

ZEO and factors

The first question concerns the identification of the Hilbert space associated with the factors in
ZEO. As the positive or negative energy part of the zero energy state space or as the entire space
of zero energy states? The latter option would look more natural physically and is forced by the
condition that the vacuum state is cyclic and separating.

1. The commutant of HFF given as M′ = JMJ , where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like
boundaries of CD are analogous to upper and lower hemispheres of S2 in conformal field
theory. The presence of J representing essentially Hermitian conjugation would suggest that
positive and zero energy parts of zero energy states are related by this formula so that state
space decomposes to a tensor product of positive and negative energy states and M -matrix
can be regarded as a map between these two sub-spaces.
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2. The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a canonical
representation makes the situation puzzling for a novice. The assumption that the vacuum is
cyclic and separating means that neither creation nor annihilation operators can annihilate it.
Therefore Fermionic Fock space cannot appear as the Hilbert space in the Tomita-Takesaki
theorem. The paradox is circumvented if the action of ∗ transforms creation operators acting
on the positive energy part of the state to annihilation operators acting on negative energy
part of the state. If J permutes the two Fock vacuums in their tensor product, the action of
S indeed maps permutes the tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in ZEO.

1. In ZEO M -matrix defines time-like entanglement coefficients between positive and negative
energy parts of the state. M -matrix is essentially “complex square root” of the density
matrix and quantum theory similar square root of thermodynamics. The notion of state as it
appears in the theory of HFFs is however essentially thermodynamical. Therefore it is good
to ask whether the “complex square root of state” could make sense in the theory of factors.

2. Quantum field theory suggests an obvious proposal concerning the meaning of the square root:
one replaces exponent of Hamiltonian with imaginary exponential of action at T → 0 limit.
In quantum TGD the exponent of Kähler-Dirac action giving exponent of Kähler function
as real exponent could be the manner to take this complex square root. Kähler-Dirac action
can therefore be regarded as a “square root” of Kähler action.

3. The identification M = ∆it relies on the idea of unitary time evolution which is given up in
ZEO based on CDs? Is the reduction of the quantum dynamics to a flow a realistic idea?
As will be found this automorphism could correspond to a time translation or scaling for
either upper or lower light-cone defining CD and can ask whether ∆it corresponds to the
exponent of scaling operator L0 defining single particle propagator as one integrates over t.
Its complex square root would correspond to fermionic propagator.

4. In this framework J∆it would map the positive energy and negative energy sectors to each
other. If the positive and negative energy state spaces can identified by isometry then M =
J∆it identification can be considered but seems unrealistic. S = J∆1/2 maps positive and
negative energy states to each other: could S or its generalization appear in M -matrix as
a part which gives thermodynamics? The exponent of the Kähler-Dirac action does not
seem to provide thermodynamical aspect and p-adic thermodynamics suggests strongly the
presence exponent of exp(−L0/Tp) with Tp chose in such manner that consistency with p-adic
thermodynamics is obtained. Could the generalization of J∆n/2 with ∆ replaced with its
“square root” give rise to padic thermodynamics and also ordinary thermodynamics at the
level of density matrix? The minimal option would be that power of ∆it which imaginary
value of t is responsible for thermodynamical degrees of freedom whereas everything else is
dictated by the unitary S-matrix appearing as phase of the “square root” of ω.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the
relationship between zero modes and HFFs involves further conceptual problems.

1. The presence of zero modes means that one has a direct integral over HFFs labeled by
zero modes which by definition do not contribute to WCW line element. The realization of
quantum criticality in terms of Kähler-Dirac action [K88] suggests that also fermionic zero
mode degrees of freedom are present and correspond to conserved charges assignable to the
critical deformations of the pace-time sheets. Induced Kähler form characterizes the values
of zero modes for a given space-time sheet and the symplectic group of light-cone boundary
characterizes the quantum fluctuating degrees of freedom. The entanglement between zero
modes and quantum fluctuating degrees of freedom is essential for quantum measurement
theory. One should understand this entanglement.
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2. Physical intuition suggests that classical observables should correspond to longer length scale
than quantal ones. Hence it would seem that the interior degrees of freedom outside CD
should correspond to classical degrees of freedom correlating with quantum fluctuating de-
grees of freedom of CD.

3. Quantum criticality means that Kähler-Dirac action allows an infinite number of conserved
charges which correspond to deformations leaving metric invariant and therefore act on zero
modes. Does this super-conformal algebra commute with the super-conformal algebra asso-
ciated with quantum fluctuating degrees of freedom? Could the restriction of elements of
quantum fluctuating currents to 3-D light-like 3-surfaces actually imply this commutativ-
ity. Quantum holography would suggest a duality between these algebras. Quantum mea-
surement theory suggests even 1-1 correspondence between the elements of the two super-
conformal algebras. The entanglement between classical and quantum degrees of freedom
would mean that prepared quantum states are created by operators for which the operators
in the two algebras are entangled in diagonal manner.

4. The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions
of hyper-finite factors for which sub-factor defines the resolution in the sense that its action
creates states not distinguishable from each other in the resolution used. The notion of
finite measurement resolution suggests that one should speak about entanglement between
sub-factors and corresponding sub-spaces rather than between states. Connes tensor product
would code for the idea that the action of sub-factors is analogous to that of complex numbers
and tracing over sub-factor realizes this idea.

5. Just for fun one can ask whether the duality between zero modes and quantum fluctuating
degrees of freedom representing quantum holography could correspond toM′ = JMJ? This
interpretation must be consistent with the interpretation forced by zero energy ontology. If
this crazy guess is correct (very probably not!), both positive and negative energy states
would be observed in quantum measurement but in totally different manner. Since this
identity would simplify enormously the structure of the theory, it deserves therefore to be
shown wrong.

Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic chal-
lenge. Consider first the question how HFFs of type II∞ emerge, how modular automorphisms act
on them, and how one can understand the non-unitary character of the ∆it in an apparent conflict
with the hermiticity and positivity of ∆.

1. The Clifford algebra at a given point of WCW(CD) (light-like 3-surfaces with ends at the
boundaries of CD) defines HFF of type II1 or possibly a direct integral of them. For a
given CD having compact isotropy group SO(3) leaving the rest frame defined by the tips
of CD invariant the factor defined by Clifford algebra valued fields in WCW(CD) is most
naturally HFF of type II∞. The Hilbert space in which this Clifford algebra acts, consists
of spinor fields in WCW(CD). Also the symplectic transformations of light-cone boundary
leaving light-like 3-surfaces inside CD can be included to G. In fact all conformal algebras
leaving CD invariant could be included in CD.

2. The downwards scalings of the radial coordinate rM of the light-cone boundary applied to
the basis of WCW (CD) spinor fields could induce modular automorphism. These scalings
reduce the size of the portion of light-cone in which the WCW spinor fields are non-vanishing
and effectively scale down the size of CD. exp(iL0) as algebraic operator acts as a phase mul-
tiplication on eigen states of conformal weight and therefore as apparently unitary operator.
The geometric flow however contracts the CD so that the interpretation of exp(itL0) as a
unitary modular automorphism is not possible. The scaling down of CD reduces the value
of the trace if it involves integral over the boundary of CD. A similar reduction is implied by
the downward shift of the upper boundary of CD so that also time translations would induce
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modular automorphism. These shifts seem to be necessary to define rest energies of positive
and negative energy parts of the zero energy state.

3. The non-triviality of the modular automorphisms of II∞ factor reflects different choices of
ω. The degeneracy of ω could be due to the non-uniqueness of conformal vacuum which is
part of the definition of ω. The radial Virasoro algebra of light-cone boundary is generated
by Ln = L∗−n, n 6= 0 and L0 = L∗0 and negative and positive frequencies are in asymmetric
position. The conformal gauge is fixed by the choice of SO(3) subgroup of Lorentz group
defining the slicing of light-cone boundary by spheres and the tips of CD fix SO(3) uniquely.
One can however consider also alternative choices of SO(3) and each corresponds to a slicing
of the light-cone boundary by spheres but in general the sphere defining the intersection of
the two light-cone does not belong to the slicing. Hence the action of Lorentz transformation
inducing different choice of SO(3) can lead out from the preferred state space so that its
representation must be non-unitary unless Virasoro generators annihilate the physical states.
The non-vanishing of the conformal central charge c and vacuum weight h seems to be
necessary and indeed can take place for super-symplectic algebra and Super Kac-Moody
algebra since only the differences of the algebra elements are assumed to annihilate physical
states.

Modular automorphism of HFFs type III1 can be induced by several geometric transforma-
tions for HFFs of type III1 obtained using the crossed product construction from II∞ factor by
extending CD to a union of its Lorentz transforms.

1. The crossed product would correspond to an extension of II∞ by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD
cannot correspond to these transformations. Same applies to time translations acting on
either boundary but not to ordinary translations. As found, the modular automorphisms
reducing the size of CD could act in HFF of type II∞.

2. The geometric counterparts of the modular transformations would most naturally correspond
to any non-compact one parameter sub-group of Lorentz group as also QFT suggests. The
Lorentz boosts would replace the radial coordinate rM of the light-cone boundary associated
with the radial Virasoro algebra with a new one so that the slicing of light-cone boundary
with spheres would be affected and one could speak of a new conformal gauge. The temporal
distance between tips of CD in the rest frame would not be affected. The effect would seem
to be however unitary because the transformation does not only modify the states but also
transforms CD.

3. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal gauge
defining the radial coordinate of the light-cone boundary, they affect also the definition of
the conformal vacuum so that also ω is affected so that the interpretation as a modular
automorphism makes sense. The simplistic intuition of the novice suggests that if one allows
wave functions in the space of Lorentz transforms of CD, unitarity of ∆it is possible. Note
that the hierarchy of Planck constants assigns to CD preferred M2 and thus direction of
quantization axes of angular momentum and boosts in this direction would be in preferred
role.

4. One can also consider the HFF of type IIIλ if the radial scalings by negative powers of
2 correspond to the automorphism group of II∞ factor as the vision about allowed CDs
suggests. λ = 1/2 would naturally hold true for the factor obtained by allowing only the
radial scalings. Lorentz boosts would expand the factor to HFF of type III1. Why scalings
by powers of 2 would give rise to periodicity should be understood.

The identification of M -matrix as modular automorphism ∆it, where t is complex number
having as its real part the temporal distance between tips of CD quantized as 2n and temperature
as imaginary part, looks at first highly attractive, since it would mean that M -matrix indeed exists
mathematically. The proposed interpretations of modular automorphisms do not support the idea
that they could define the S-matrix of the theory. In any case, the identification as modular
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automorphism would not lead to a magic universal formula since arbitrary unitary transformation
is involved.

Quantum criticality and inclusions of factors

Quantum criticality fixes the value of Kähler coupling strength but is expected to have also an
interpretation in terms of a hierarchies of broken conformal gauge symmetries suggesting hierarchies
of inclusions.

1. In ZEO 3-surfaces are unions of space-like 3-surfaces at the ends of causal diamond (CD).
Space-time surfaces connect 3-surfaces at the boundaries of CD. The non-determinism of
Kähler action allows the possibility of having several space-time sheets connecting the ends
of space-time surface but the conditions that classical charges are same for them reduces this
number so that it could be finite. Quantum criticality in this sense implies non-determinism
analogous to that of critical systems since preferred extremals can co-incide and suffer this
kind of bifurcation in the interior of CD. This quantum criticality can be assigned to the
hierarchy of Planck constants and the integer n in heff = n × h [K27] corresponds to the
number of degenerate space-time sheets with same Kähler action and conserved classical
charges.

2. Also now one expects a hierarchy of criticalities and since criticality and conformal invariance
are closely related, a natural conjecture is that the fractal hierarchy of sub-algebras of con-
formal algebra isomorphic to conformal algebra itself and having conformal weights coming
as multiples of n corresponds to the hierarchy of Planck constants. This hierarchy would
define a hierarchy of symmetry breakings in the sense that only the sub-algebra would act
as gauge symmetries.

3. The assignment of this hierarchy with super-symplectic algebra having conformal structure
with respect to the light-like radial coordinate of light-cone boundary looks very attractive.
An interesting question is what is the role of the super-conformal algebra associated with the
isometries of light-cone boundary R+ × S2 which are conformal transformations of sphere
S2 with a scaling of radial coordinate compensating the scaling induced by the conformal
transformation. Does it act as dynamical or gauge symmetries?

4. The natural proposal is that the inclusions of various superconformal algebras in the hierar-
chy define inclusions of hyper-finite factors which would be thus labelled by integers. Any
sequences of integers for which ni divides ni+1 would define a hierarchy of inclusions pro-
ceeding in reverse direction. Physically inclusion hierarchy would correspond to an infinite
hierarchy of criticalities within criticalities.

3.2.3 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments from the point of view of
factors.

A proposal for M-matrix

The proposed general picture reduces the core of U -matrix to the construction of S-matrix possibly
having the real square roots of density matrices as symmetry algebra. This structure can be taken
as a template as one tries to to imagine how the construction of M -matrix could proceed in
quantum TGD proper.

1. At the bosonic sector one would have converging functional integral over WCW . This is
analogous to the path integral over bosonic fields in QFTs. The presence of Kähler function
would make this integral well-defined and would not encounter the difficulties met in the case
of path integrals.

2. In fermionic sector 1-D Dirac action and its bosonic counterpart imply that spinors modes
localized at string world sheets are eigenstates of induced Dirac operator with generalized
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eigenvalue pkγk defining light-like 8-D momentum so that one would obtain fermionic prop-
agators massless in 8-D sense at light-light geodesics of embedding space. The 8-D gen-
eralization of twistor Grassmann approach is suggestive and would mean that the residue
integral over fermionic virtual momenta gives only integral over massless momenta and vir-
tual fermions differ from real fermions only in that they have non-physical polarizations so
that massless Dirac operator replacing the propagator does not annihilate the spinors at the
other end of the line.

3. Fundamental bosons (not elementary particles) correspond to wormhole contacts having
fermion and antifermion at opposite throats and bosonic propagators are composite of mass-
less fermion propagators. The directions of virtual momenta are obviously strongly corre-
lated so that the approximation as a gauge theory with gauge symmetry breaking in almost
massless sector is natural. Massivation follows necessary from the fact that also elementary
particles are bound states of two wormhole contacts.

4. Physical fermions and bosons correspond to pairs of wormhole contacts with throats carry-
ing Kähler magnetic charge equal to Kähler electric charge (dyon). The absence of Dirac
monopoles (as opposed to homological magnetic monopoles due to CP2 topology) implies
that wormhole contacts must appear as pairs (also large numbers of them are possible and 3
valence quarks inside baryons could form Kähler magnetic tripole). Hence elementary parti-
cles would correspond to pairs of monopoles and are accompanied by Kähler magnetic flux
loop running along the two space-time sheets involved as well as fermionic strings connecting
the monopole throats.

There seems to be no specific need to assign string to the wormhole contact and if is a piece
of deformed CP2 type vacuum extremal this might not be even possible: the Kähler-Dirac
gamma matrices would not span 2-D space in this case since the CP2 projection is 4-D. Hence
massless fermion propagators would be assigned only with the boundaries of string world
sheets at Minkowskian regions of space-time surface. One could say that physical particles
are bound states of massless fundamental fermions and the non-collinearity of their four-
momenta can make them massive. Therefore the breaking of conformal invariance would be
due to the bound state formation and this would also resolve the infrared divergence problems
plaguing Grassmann twistor approach by introducing natural length scale assignable to the
size of particles defined by the string like flux tube connecting the wormhole contacts. This
point is discussed in more detail in [K77].

The bound states would form representations of super-conformal algebras so that stringy
mass formula would emerge naturally. p-Adic mass calculations indeed assume conformal
invariance in CP2 length scale assignable to wormhole contacts. Also the long flux tube
strings contribute to the particle masses and would explain gauge boson masses.

5. The interaction vertices would correspond topologically to decays of 3-surface by splitting
in complete analogy with ordinary Feynman diagrams. At the level of orbits of partonic 2-
surface the vertices would be represented by partonic 2-surfaces. In [K77] the interpretation of
scattering ampiltudes as sequences of algebraic operations for the Yangian of super-symplectic
algebra is proposed: product and co-product would define time 3-vertex and its time reversal.
At the level of fermions the diagrams reduce to braid diagrams since fermions are “free”. At
vertices fermions can however reflect in time direction so that fermion-antifermion annihila-
tions in classical fields can be said to appear in the vertices.

The Yangian is generated by super-symplectic fermionic Noether charges assignable to the
strings connecting partonic 2-surfaces. The interpretation of vertices as algebraic operations
implies that all sequences of operations connecting given collections of elements of Yangian
at the opposite boundaries of CD give rise to the same amplitude. This means a huge
generalization of the duality symmetry of hadronic string models that I have proposed already
earlier: the chapter [K9] is a remnant of an “idea that came too early”. The propagators are
associated with the fermionic lines identifiable as boundaries of string world sheets. These
lines are light-like geodesics of H and fermion lines correspond topartial wave in the space
S3 of light like 8-momenta with fixed M4 momentum. For external lines M8 momentum
corresponds to the M4 × CP2 quantum numbers of a spinor harmonic.
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The amplitudes can be formulated using only partonic 2-surfaces and string world sheets
and the algebraic continuation to achieve number theoretic Universality should be rather
straightforward: the parameters characterizing 2-surfaces - by conformal invariance various
conformal moduli - in the algebraic extension of rationals are replaced with real and various
p-adic numbers.

6. Wormhole contacts represent fundamental interaction vertex pairs and propagators between
them and one has stringy super-conformal invariance. Therefore there are excellent reasons to
expect that the perturbation theory is free of divergences. Without stringy contributions for
massive conformal excitations of wormhole contacts one would obtain the usual logarithmic
UV divergences of massless gauge theories. The fact that physical particles are bound states
of massless particles, gives good hopes of avoiding IR divergences of massless theories.

The figures ??, ?? (http://tgdtheory.fi/appfigures/elparticletgd.jpg http://tgdtheory.
fi/appfigures/tgdgrpahs.jpg) in the appendix of this book illustrate the relationship between
TGD diagrammatics, QFT diagrammatics and stringy diagrammatics. In [K77] a more detailed
construction based on the generalization of twistor approach and the idea that scattering ampli-
tudes represent sequences of algebraic operation in the Yangian of super-symplectic algebra, is
considered.

Quantum TGD as square root of thermodynamics

ZEO (ZEO) suggests strongly that quantum TGD corresponds to what might be called square
root of thermodynamics. Since fermionic sector of TGD corresponds naturally to a hyper-finite
factor of type II1, and super-conformal sector relates fermionic and bosonic sectors (WCW degrees
of freedom), there is a temptation to suggest that the mathematics of von Neumann algebras
generalizes: in other worlds it is possible to speak about the complex square root of ω defining a
state of von Neumann algebra [A118] [K87]. This square root would bring in also the fermionic
sector and realized super-conformal symmetry. The reduction of determinant with WCW vacuum
functional would be one manifestation of this supersymmetry.

The exponent of Kähler function identified as real part of Kähler action for preferred ex-
tremals coming from Euclidian space-time regions defines the modulus of the bosonic vacuum
functional appearing in the functional integral over WCW. The imaginary part of Kähler action
coming from the Minkowskian regions is analogous to action of quantum field theories and would
give rise to interference effects distinguishing thermodynamics from quantum theory. This would
be something new from the point of view of the canonical theory of von Neumann algebra. The
saddle points of the imaginary part appear in stationary phase approximation and the imaginary
part serves the role of Morse function for WCW.

The exponent of Kähler function depends on the real part of t identified as Minkowski
distance between the tips of CD. This dependence is not consistent with the dependence of the
canonical unitary automorphism ∆it of von Neumann algebra on t [A118], [K87] and the natural
interpretation is that the vacuum functional can be included in the definition of the inner product
for spinors fields of WCW . More formally, the exponent of Kähler function would define ω in
bosonic degrees of freedom.

Note that the imaginary exponent is more natural for the imaginary part of Kähler action
coming from Minkowskian region. In any case, one has combination of thermodynamics and QFT
and the presence of thermodynamics makes the functional integral mathematically well-defined.

Number theoretic vision requiring number theoretical universality suggests that the value of
CD size scales as defined by the distance between the tips is expected to come as integer multiples
of CP2 length scale - at least in the intersection of real and p-adic worlds. If this is the case the
continuous faimily of modular automorphisms would be replaced with a discretize family.

Quantum criticality and hierarchy of inclusions

Quantum criticality and related fractal hierarchies of breakings of conformal symmetry could allow
to understand the inclusion hierarchies for hyper-finite factors. Quantum criticality - implied
by the condition that the Kähler-Dirac action gives rise to conserved currents assignable to the
deformations of the space-time surface - means the vanishing of the second variation of Kähler
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action for these deformations. Preferred extremals correspond to these 4-surfaces and M8−M4×
CP2 duality would allow to identify them also as associative (co-associative) space-time surfaces.

Quantum criticality is basically due to the failure of strict determinism for Kähler action
and leads to the hierarchy of dark matter phases labelled by the effective value of Planck constant
heff = n × h. These phases correspond to space-time surfaces connecting 3-surfaces at the ends
of CD which are multi-sheeted having n conformal equivalence classes.

Conformal invariance indeed relates naturally to quantum criticality. This brings in n dis-
crete degrees of freedom and one can technically describe the situation by using n-fold singular
covering of the embedding space [K27]. One can say that there is hierarchy of broken conformal
symmetries in the sense that for heff = n×h the sub-algebra of conformal algebras with conformal
weights coming as multiples of n act as gauge symmetries. This implies that classical symplectic
Noether charges vanish for this sub-algebra. The quantal conformal charges associated with in-
duced spinor fields annihilate the physical states. Therefore it seems that the measured quantities
are the symplectic charges and there is not need to introduce any measurement interaction term
and the formalism simplifies dramatically.

The resolution increases with heff/h = n. Also the number of of strings connecting par-
tonic 2-surfaces (in practice elementary particles and their dark counterparts plus bound states
generated by connecting dark strings) characterizes physically the finite measurement resolution.
Their presence is also visible in the geometry of the space-time surfaces through the conditions that
induced W fields vanish at them (well-definedness of em charge), and by the condition that the
canonical momentum currents for Kähler action define an integrable distribution of planes parallel
to the string world sheet. In spirit with holography, preferred extremal is constructed by fixing
string world sheets and partonic 2-surfaces and possibly also their light-like orbits (should one fix
wormhole contacts is not quite clear). If the analog of AdS/CFT correspondence holds true, the
value of Kähler function is expressible as the energy of string defined by area in the effective metric
defined by the anti-commutators of K-D gamma matrices.

Super-symplectic algebra, whose charges are represented by Noether charges associated with
strings connecting partonic 2-surfaces extends to a Yangian algebra with multi-stringy generators
[K77]. The better the measurement resolution, the larger the maximal number of strings associated
with the multilocal generator.

Kac-Moody type transformations preserving light-likeness of partonic orbits and possibly
also the light-like character of the boundaries of string world sheets carrying modes of induced
spinor field underlie the conformal gauge symmetry. The minimal option is that only the light-
likeness of the string end world line is preserved by the conformal symmetries. In fact, conformal
symmetries was originally deduced from the light-likeness condition for the M4 projection of CP2

type vacuum extremals.

The inclusions of super-symplectic Yangians form a hierarchy and would naturally corre-
spond to inclusions of hyperfinite factors of type II1. Conformal symmetries acting as gauge
transformations would naturally correspond to degrees of freedom below measurement resolution
and would correspond to included subalgebra. As heff increases, infinite number of these gauge
degrees of freedom become dynamical and measurement resolution is increased. This picture is
definitely in conflict with the original view but the reduction of criticality in the increase of heff
forces it.

Summary

On basis of above considerations it seems that the idea about “complex square root” of the state
ω of von Neumann algebras might make sense in quantum TGD. Also the discretized versions of
modular automorphism assignable to the hierarchy of CDs would make sense and because of its
non-uniqueness the generator ∆ of the canonical automorphism could bring in the flexibility needed
one wants thermodynamics. Stringy picture forces to ask whether ∆ could in some situation be
proportional exp(L0), where L0 represents as the infinitesimal scaling generator of either super-
symplectic algebra or super Kac-Moody algebra (the choice does not matter since the differences of
the generators annihilate physical states in coset construction). This would allow to reproduce real
thermodynamics consistent with p-adic thermodynamics. Note that also p-adic thermodynamics
would be replaced by its square root in ZEO.
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3.2.4 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the notion
of quantum M -matrix for which elements have values in sub-factor N of HFF rather than being
complex numbers. M-matrix in the factor spaceM/N is obtained by tracing overN . The condition
that N acts like complex numbers in the tracing implies that M-matrix elements are proportional
to maximal projectors toN so that M-matrix is effectively a matrix inM/N and situation becomes
finite-dimensional. It is still possible to satisfy generalized unitarity conditions but in general case
tracing gives a weighted sum of unitary M-matrices defining what can be regarded as a square root
of density matrix.

About the notion of observable in ZEO

Some clarifications concerning the notion of observable in zero energy ontology are in order.

1. As in standard quantum theory observables correspond to hermitian operators acting on
either positive or negative energy part of the state. One can indeed define hermitian conju-
gation for positive and negative energy parts of the states in standard manner.

2. Also the conjugation A → JAJ is analogous to hermitian conjugation. It exchanges the
positive and negative energy parts of the states also maps the light-like 3-surfaces at the
upper boundary of CD to the lower boundary and vice versa. The map is induced by time
reflection in the rest frame of CD with respect to the origin at the center of CD and has a
well defined action on light-like 3-surfaces and space-time surfaces. This operation cannot
correspond to the sought for hermitian conjugation since JAJ and A commute.

3. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This suggests
strongly a connection with quantum field theory and an 8-D generalization of twistor Grass-
mannian approach. By field equations the bosonic part of this action does not contribute
to the Kähler action. Chern-Simons Dirac terms to which Kähler action reduces could be
responsible for the breaking of CP and T symmetries as they appear in CKM matrix.

4. ZEO gives Cartan sub-algebra of the Lie algebra of symmetries a special status. Only Cartan
algebra acting on either positive or negative states respects the zero energy property but this
is enough to define quantum numbers of the state. In absence of symmetry breaking positive
and negative energy parts of the state combine to form a state in a singlet representation of
group. Since only the net quantum numbers must vanish ZEO allows a symmetry breaking
respecting a chosen Cartan algebra.

5. In order to speak about four-momenta for positive and negative energy parts of the states
one must be able to define how the translations act on CDs. The most natural action is a
shift of the upper (lower) tip of CD. In the scale of entire CD this transformation induced
Lorentz boost fixing the other tip. The value of mass squared is identified as proportional to
the average of conformal weight in p-adic thermodynamics for the scaling generator L0 for
either super-symplectic or Super Kac-Moody algebra.

Inclusion of HFFs as characterizer of finite measurement resolution at the level of
S-matrix

The inclusion N ⊂M of factors characterizes naturally finite measurement resolution. This means
following things.

1. Complex rays of state space resulting usually in an ideal state function reduction are re-
placed by N -rays since N defines the measurement resolution and takes the role of complex
numbers in ordinary quantum theory so that non-commutative quantum theory results. Non-
commutativity corresponds to a finite measurement resolution rather than something exotic
occurring in Planck length scales. The quantum Clifford algebraM/N creates physical states
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modulo resolution. The fact that N takes the role of gauge algebra suggests that it might
be necessary to fix a gauge by assigning to each element of M/N a unique element of M.
Quantum Clifford algebra with fractal dimension β =M : N creates physical states having
interpretation as quantum spinors of fractal dimension d =

√
β. Hence direct connection

with quantum groups emerges.

2. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary and
hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and thus corre-
spond entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues
guarantees that it is possible to speak about state function reduction for quantum spinors.
In the simplest case of a 2-component quantum spinor this means that second component of
quantum spinor vanishes in the sense that second component of spinor annihilates physical
state and second acts as element of N on it. The non-commutativity of spinor components
implies correlations between then and thus fractal dimension is smaller than 2.

3. The intuition about ordinary tensor products suggests that one can decompose Tr in M as

TrM(X) = TrM/N × TrN (X) . (3.2.4)

Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one expects that
operator inM defines an operator inM/N by a projection to the preferred elements ofM.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (3.2.5)

4. Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (3.2.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (3.2.7)

5. Unitarity at the level of M/N can be achieved if the unit operator Id for M can be de-
composed into an analog of tensor product for the unit operators of M/N and N and M
decomposes to a tensor product of unitary M-matrices inM/N and N . For HFFs of type II
projection operators of N with varying traces are present and one expects a weighted sum of
unitary M-matrices to result from the tracing having interpretation in terms of square root
of thermodynamics.

6. This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type III1

this assumption must be given up. This might be possible if one compensates the trace over
N by dividing with the trace of the infinite trace of the projection operator to N . This
probably requires a limiting procedure which indeed makes sense for HFFs.
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Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂M seems to boil down
to a simple rule. Replace ordinary quantum mechanics in complex number field C with that in
N . This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced with
their N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix in
the state space generated by quantum Clifford algebra M/N which can be regarded as a finite-
dimensional matrix algebra with non-commutingN -valued matrix elements. This suggests that full
M -matrix can be expressed as M -matrix withN -valued elements satisfyingN -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-
matrix must be commuting hermitian N -valued operators inside every row and column. The
traces of these operators giveN -averaged transition probabilities. The eigenvalue spectrum of these
Hermitian matrices gives more detailed information about details below experimental resolution.
N -hermicity and commutativity pose powerful additional restrictions on the M -matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states
with N -valued coefficients. How this affects the situation? The non-commutativity of quantum
spinors has a natural interpretation in terms of fuzzy state function reduction meaning that quan-
tum spinor corresponds effectively to a statistical ensemble which cannot correspond to pure state.
Does this mean that predictions for transition probabilities must be averaged over the ensemble
defined by “quantum quantum states”?

Quantum fluctuations and inclusions

Inclusions N ⊂M of factors provide also a first principle description of quantum fluctuations since
quantum fluctuations are by definition quantum dynamics below the measurement resolution. This
gives hopes for articulating precisely what the important phrase “long range quantum fluctuations
around quantum criticality” really means mathematically.

1. Phase transitions involve a change of symmetry. One might hope that the change of the
symmetry group Ga ×Gb could universally code this aspect of phase transitions. This need
not always mean a change of Planck constant but it means always a leakage between sectors
of embedding space. At quantum criticality 3-surfaces would have regions belonging to at
least two sectors of H.

2. The long range of quantum fluctuations would naturally relate to a partial or total leakage of
the 3-surface to a sector of embedding space with larger Planck constant meaning zooming
up of various quantal lengths.

3. For M -matrix in M/N regarded as calN module quantum criticality would mean a special
kind of eigen state for the transition probability operator defined by the M -matrix. The
properties of the number theoretic braids contributing to the M -matrix should characterize
this state. The strands of the critical braids would correspond to fixed points for Ga×Gb or
its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states
give a precise formulation for M -matrix in finite measurement resolution and the Connes tensor
product involved. The original expectation that Connes tensor product could lead to a unique
M-matrix is wrong. The replacement of ω with its complex square root could lead to a unique
hierarchy of M-matrices with finite measurement resolution and allow completely finite theory
despite the fact that projectors have infinite trace for HFFs of type III1.

1. In ZEO the counterpart of Hermitian conjugation for operator is replaced with M→ JMJ
permuting the factors. Therefore N ∈ N acting to positive (negative) energy part of state
corresponds to N → N ′ = JNJ acting on negative (positive) energy part of the state.
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2. The allowed elements of N much be such that zero energy state remains zero energy state.
The superposition of zero energy states involved can however change. Hence one must have
that the counterparts of complex numbers are of form N = JN1J ∨ N2, where N1 and N2

have same quantum numbers. A superposition of terms of this kind with varying quantum
numbers for positive energy part of the state is possible.

3. The condition that N1i and N2i act like complex numbers in N -trace means that the effect
of JN1iJ ∨N2i and JN2iJi∨N1i to the trace are identical and correspond to a multiplication
by a constant. If N is HFF of type II1 this follows from the decompositionM =M/N ⊗N
and from Tr(AB) = Tr(BA) assuming that M is of form M = MM/N × PN . Contrary to
the original hopes that Connes tensor product could fix the M-matrix there are no conditions
on MM/N which would give rise to a finite-dimensional M-matrix for Jones inclusions. One
can replaced the projector PN with a more general state if one takes this into account in ∗

operation.

4. In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with
a state ωN in the sense of factors looks more natural. This means that the counterpart of
∗ operation exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S = J∆1/2.
The exchange of N1 and N2 gives altogether ∆. In this case the KMS condition ωN (AB) =
ωN∆A) guarantees the effective complex number property [A8] .

5. Quantum TGD more or less requires the replacement of ω with its “complex square root”
so that also a unitary matrix U multiplying ∆ is expected to appear in the formula for S
and guarantee the symmetry. One could speak of a square root of KMS condition [A8] in
this case. The QFT counterpart would be a cutoff involving path integral over the degrees
of freedom below the measurement resolution. In TGD framework it would mean a cutoff in
the functional integral over WCW and for the modes of the second quantized induced spinor
fields and also cutoff in sizes of causal diamonds. Discretization in terms of braids replacing
light-like 3-surfaces should be the counterpart for the cutoff.

6. If one has M -matrix in M expressible as a sum of M -matrices of form MM/N ×MN with
coefficients which correspond to the square roots of probabilities defining density matrix the
tracing operation gives rise to square root of density matrix in M .

Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities in
which N -trace or its generalization in terms of state ωN is needed. One might however dream of
something more.

1. Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the M-
matrices in finite measurement resolution for all inclusions N ⊂ M. This would mean that
one can write

M = MM/N ⊗MN (3.2.8)

for any physically reasonable choice of N . This would formally express the idea that M is as
near as possible to M-matrix of free theory. Also fractality suggests itself in the sense that
MN is essentially the same as MM in the same sense as N is same as M. It might be that
the trivial solution M = 1 is the only possible solution to the condition.

2. MM/N would be obtained by the analog of TrN or ωN operation involving the “complex
square root” of the state ω in case of HFFs of type III1. The QFT counterpart would be
path integration over the degrees of freedom below cutoff to get effective action.

3. Universality probably requires assumptions about the thermodynamical part of the universal
M-matrix. A possible alternative form of the condition is that it holds true only for canonical
choice of “complex square root” of ω or for the S-matrix part of M :
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S = SM/N ⊗ SN (3.2.9)

for any physically reasonable choice N .

4. In TGD framework the condition would say that the M-matrix defined by the Kähler-Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration
over the degrees of freedom below the measurement resolution.

An obvious counter argument against the universality is that if the M-matrix is “complex
square root of state” cannot be unique and there are infinitely many choices related by a unitary
transformation induced by the flows representing modular automorphism giving rise to new choices.
This would actually be a well-come result and make possible quantum measurement theory.

In the section “Handful of problems with a common resolution” it was found that one can add
to both Kähler action and Kähler-Dirac action a measurement interaction term characterizing the
values of measured observables. The measurement interaction term in Kähler action is Lagrange
multiplier term at the space-like ends of space-time surface fixing the value of classical charges
for the space-time sheets in the quantum superposition to be equal with corresponding quantum
charges. The term in Kähler-Dirac action is obtained from this by assigning to this term canonical
momentum densities and contracting them with gamma matrices to obtain Kähler-Dirac gamma
matrices appearing in 3-D analog of Dirac action. The constraint terms would leave Kähler function
and Kähler metric invariant but would restrict the vacuum functional to the subset of 3-surfaces
with fixed classical conserved charges (in Cartan algebra) equal to their quantum counterparts.

Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and also
now it makes sense to speak about measurement resolution. Hence one can ask whether Connes
tensor product should be posed as a constraint on space-like entanglement. The interpretation
could be in terms of the formation of bound states. The reducibility of HFFs and inclusions means
that the tensor product is not uniquely fixed and ordinary entanglement could correspond to this
kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The inter-
pretation of Connes tensor product would be as the variance of the states with respect to some
subgroup of U(n) associated with the measurement resolution: the analog of color confinement
would be in question.

2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A85] are playing with very formal looking formal structures obtained
by replacing vectors with vector spaces. Direct sum and tensor product serve as the basic arithmetic
operations for the vector spaces and one can define category of n-tuples of vectors spaces with
morphisms defined by linear maps between vectors spaces of the tuple. n-tuples allow also element-
wise product and sum. They obtain results which make them happy. For instance, the category of
linear representations of a given group forms 2-vector spaces since direct sums and tensor products
of representations as well as n-tuples make sense. The 2-vector space however looks more or less
trivial from the point of physics.

The situation could become more interesting in quantum measurement theory with finite
measurement resolution described in terms of inclusions of hyper-finite factors of type II1. The
reason is that Connes tensor product replaces ordinary tensor product and brings in interactions
via irreducible entanglement as a representation of finite measurement resolution. The category in
question could give Connes tensor products of quantum state spaces and describing interactions.
For instance, one could multiply M -matrices via Connes tensor product to obtain category of
M -matrices having also the structure of 2-operator algebra.

1. The included algebra represents measurement resolution and this means that the infinite-
D sub-Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor
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takes the role of complex numbers in generalized QM so that one obtains non-commutative
quantum mechanics. For instance, quantum entanglement for two systems of this kind would
not be between rays but between infinite-D subspaces corresponding to sub-factors. One
could build a generalization of QM by replacing rays with sub-spaces and it would seem that
quantum group concept does more or less this: the states in representations of quantum
groups could be seen as infinite-dimensional Hilbert spaces.

2. One could speak about both operator algebras and corresponding state spaces modulo finite
measurement resolution as quantum operator algebras and quantum state spaces with fractal
dimension defined as factor space like entities obtained from HFF by dividing with the
action of included HFF. Possible values of the fractal dimension are fixed completely for
Jones inclusions. Maybe these quantum state spaces could define the notions of quantum 2-
Hilbert space and 2-operator algebra via direct sum and tensor production operations. Fractal
dimensions would make the situation interesting both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

1. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF con-
taining included algebras replaced with direct sum of included HFFs.

2. The tensor products for quantum state spaces and quantum operator algebras are not any-
more trivial. The condition that measurement algebras act effectively like complex numbers
would require Connes tensor product involving irreducible entanglement between elements
belonging to the two HFFs. This would have direct physical relevance since this entangle-
ment cannot be reduced in state function reduction. The category would defined interactions
in terms of Connes tensor product and finite measurement resolution.

3. The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using the
2-Hilbert spaces and quantum 2-operator algebras.

3.2.5 Questions about quantum measurement theory in Zero Energy
Ontology

The following summary about quantum measurement theory in ZEO is somewhat out-of-date and
somewhat sketchy. For more detailed view see [K45, K82, K6].

Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time scale
imply the conditions at shorter time scales. On the other hand, in shorter time scales the inclusion
would be deeper and would give rise to a larger reducibility of the representation of N in M.
Formally, as N approaches to a trivial algebra, one would have a square root of density matrix
and trivial S-matrix in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) =
Tr[P+M

†P−M ], where P+ and P− are projectors to positive and negative energy energy N -rays.
The projectors give rise to the averaging over the initial and final states inside N ray. The
reduction could continue step by step to shorter length scales so that one would obtain a sequence
of inclusions. If the U -process of the next quantum jump can return the M -matrix associated with
M or some larger HFF, U process would be kind of reversal for state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams
and wild actions to the age when most decisions relate to the routine daily activities; the progress
of science from macroscopic to microscopic scales; even biological decay processes: all these have
an intriguing resemblance to the fractal state function reduction process proceeding to shorter and
shorter time scales. Since this means increasing thermality of M -matrix, U process as a reversal
of state function reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by
U process giving rise to new zero energy states can bring in something new and is responsible for
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evolution. The non-conservative option is that the biological death is the U -process of the next
quantum jump leading to a new life cycle. Breathing would become a universal metaphor for what
happens in quantum Universe. The 4-D body would be lived again and again.

quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the
Kähler function depends however only on the partonic 3-surface X3, and one must be able to
assign to a given quantum state the most probable X3 - call it X3

max - depending on its quantum
numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and
Z0 charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral is
restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine convergence and
that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type vacuum
degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is that
the needed phase factor corresponds to either Chern-Simons type action or an action describing
the interaction of the induced gauge field with the charges associated with the braid strand. This
action would be defined for the induced gauge fields. YM action seems to be excluded since it is
singular for light-like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3)

but also
√
det(g4) vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct

gauge charges. Kind of electric-magnetic duality should relate the normal components Fni of the
gauge fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is
in terms of quantum gravitational holography.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.

Quantum measurements in ZEO

ZEO based quantum measurement theory leads directly to a theory of conscious entities. The
basic idea is that state function reduction localizes the second boundary of CD so that it becomes
a piece of light-cone boundary (more precisely δM4

± × CP2).
Repeated reductions are possible as in standard quantum measurement theory and leave the

passive boundary of CD. Repeated reduction begins with U process generating a superposition of
CDs with the active boundary of CD being de-localized in the moduli space of CDs, and is followed
by a localization in this moduli space so that single CD is the outcome. This process tends to
increase the distance between the ends of the CD and has interpretation as a space-time correlate
for the flow of subjective time.

Self as a conscious entity corresponds to this sequence of repeated reductions on passive
boundary of CD. The first reduction at opposite boundary means death of self and its re-incarnation
at the opposite boundary of CD. Also the increase of Planck constant and generation of negentropic
entanglement is expected to be associated with this state function reduction.

Weak form of NMP is the most plausible variational principle to characterize the state
function reduction. It does not require maximal negentropy gain for state function reductions but
allows it. In other words, the outcome of reduction is n-dimensional eigen space of density matrix
space but this space need not have maximum possible dimension and even 1-D ray is possible in
which case the entanglement negentropy vanishes for the final state and system becomes isolated
from the rest of the world. Weak form of NMP brings in free will and can allow also larger
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negentropy gain than the strong form if n is a product of primes. The beauty of this option is that
one can understand how the generalization of p-adic length scale hypothesis emerges.

Hyper-finite factors of type II1 and quantum measurement theory with a finite mea-
surement resolution

The realization that the von Neumann algebra known as hyper-finite factor of type II1 is tailor made
for quantum TGD has led to a considerable progress in the understanding of the mathematical
structure of the theory and these algebras provide a justification for several ideas introduced earlier
on basis of physical intuition.

Hyper-finite factor of type II1 has a canonical realization as an infinite-dimensional Clifford
algebra and the obvious guess is that it corresponds to the algebra spanned by the gamma matrices
of WCW. Also the local Clifford algebra of the embedding space H = M4 × CP2 in octonionic
representation of gamma matrices of H is important and the entire quantum TGD emerges from
the associativity or co-associativity conditions for the sub-algebras of this algebra which are local
algebras localized to maximal associative or co-associate sub-manifolds of the embedding space
identifiable as space-time surfaces.

The notion of inclusion for hyper-finite factors provides an elegant description for the notion
of measurement resolution absent from the standard quantum measurement theory.

1. The included sub-factor creates in ZEO states not distinguishable from the original one and
the formally the coset space of factors defining quantum spinor space defines the space of
physical states modulo finite measurement resolution.

2. The quantum measurement theory for hyperfinite factors differs from that for factors of type
I since it is not possible to localize the state into single ray of state space. Rather, the ray
is replaced with the sub-space obtained by the action of the included algebra defining the
measurement resolution. The role of complex numbers in standard quantum measurement
theory is taken by the non-commutative included algebra so that a non-commutative quantum
theory is the outcome.

3. This leads also to the notion of quantum group. For instance, the finite measurement reso-
lution means that the components of spinor do not commute anymore and it is not possible
to reduce the state to a precise eigenstate of spin. It is however perform a reduction to an
eigenstate of an observable which corresponds to the probability for either spin state.

4. For HFFs the dimension of infinite-dimensional state space is finite and 1 by convention. For
included HFF N ⊂M the dimension of the tensor factor space containing only the degrees of
freedom which are above measurement resolution is given by the index of inclusion d =M :
N . One can say that the dimension associated with degrees of freedom below measurement
resolution is D = 1/d. This number is never large than 1 for the inclusions and contains
a set of discrete values d = 4cos2(2π/n), n ≥ 3, plus the continuum above it. The fractal
generalization of the formula for entanglement entropy gives S = −log(1/D) = −log(d) ≤ 0
so that one can say that the entanglement negentropy assignable to the projection operators
to the sub-factor is positive except for n = 3 for which it vanishes. The non-measured degrees
of freedom carry information rather than entropy.

5. Clearly both HFFs of type I and II allow entanglement negentropy and allow to assign it
with finite measurement resolution. In the case of factors its is not clear whether the weak
form of NMP allows makes sense.

As already explained, the topology of the many-sheeted space-time encourages the general-
ization of the notion of quantum entanglement in such a way that unentangled systems can possess
entangled sub-systems. One can say that the entanglement between sub-selves is not visible in the
resolution characterizing selves. This makes possible sharing and fusion of mental images central
for TGD inspired theory of consciousness. These concepts find a deeper justification from the
quantum measurement theory for hyper-finite factors of type II1 for which the finite measurement
resolution is basic notion.
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Hierarchies of conformal symmetry breakings, Planck constants, and inclusions of
HFFs

The basic almost prediction of TGD is a fractal hierarchy of breakings of symplectic symmetry as
a gauge symmetry.

It is good to briefly summarize the basic facts about the symplectic algebra assigned with
δM4
± × CP2 first.

1. Symplectic algebra has the structure of Virasoro algebra with respect to the light-like radial
coordinate rM of the light-cone boundary taking the role of complex coordinate for ordinary
conformal symmetry. The Hamiltonians generating symplectic symmetries can be chosen to
be proportional to functions fn(rM ). What is the natural choice for fn(rM ) is not quite
clear. Ordinary conformal invariance would suggests fn(rM ) = rnM . A more adventurous
possibility is that the algebra is generated by Hamiltonians with fn(rM ) = r−s, where s is a
root of Riemann Zeta so that one has either s = 1/2 + iy (roots at critical line) or s = −2n,
n > 0 (roots at negative real axis).

2. The set of conformal weights would be linear space spanned by combinations of all roots
with integer coefficients s = n − iy, s =

∑
niyi, n > −n0, where −n0 ≥ 0 is negative

conformal weight. Mass squared is proportional to the total conformal weight and must be
real demanding y =

∑
yi = 0 for physical states: I call this conformal confinement analogous

to color confinement. One could even consider introducing the analog of binding energy as
“binding conformal weight”.

Mass squared must be also non-negative (no tachyons) giving n0 ≥ 0. The generating
conformal weights however have negative real part -1/2 and are thus tachyonic. Rather
remarkably, p-adic mass calculations force to assume negative half-integer valued ground
state conformal weight. This plus the fact that the zeros of Riemann Zeta has been indeed
assigned with critical systems forces to take the Riemannian variant of conformal weight
spectrum with seriousness. The algebra allows also now infinite hierarchy of conformal sub-
algebras with weights coming as n-ples of the conformal weights of the entire algebra.

3. The outcome would be an infinite number of hierarchies of symplectic conformal symmetry
breakings. Only the generators of the sub-algebra of the symplectic algebra with radial
conformal weight proportional to n would act as gauge symmetries at given level of the
hierarchy. In the hierarchy ni divides ni+1. In the symmetry breaking ni → ni+1 the
conformal charges, which vanished earlier, would become non-vanishing. Gauge degrees of
freedom would transform to physical degrees of freedom.

4. What about the conformal Kac-Moody algebras associated with spinor modes. It seems that
in this case one can assume that the conformal gauge symmetry is exact just as in string
models.

The natural interpretation of the conformal hierarchies ni → ni+1 would be in terms of
increasing measurement resolution.

1. Conformal degrees of freedom below measurement resolution would be gauge degrees of
freedom and correspond to generators with conformal weight proportional to ni. Conformal
hierarchies and associated hierarchies of Planck constants and n-fold coverings of space-
time surface connecting the 3-surfaces at the ends of causal diamond would give a concrete
realization of the inclusion hierarchies for hyper-finite factors of type II1 [K87].

ni could correspond to the integer labelling Jones inclusions and associating with them the
quantum group phase factor Un = exp(i2π/n), n ≥ 3 and the index of inclusion given by
|M : N | = 4cos2(2π/n) defining the fractal dimension assignable to the degrees of freedom
above the measurement resolution. The sub-algebra with weights coming as n-multiples of
the basic conformal weights would act as gauge symmetries realizing the idea that these
degrees of freedom are below measurement resolution.

2. If heff = n× h defines the conformal gauge sub-algebra, the improvement of the resolution
would scale up the Compton scales and would quite concretely correspond to a zoom analo-
gous to that done for Mandelbrot fractal to get new details visible. From the point of view
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of cognition the improving resolution would fit nicely with the recent view about heff/h as
a kind of intelligence quotient.

This interpretation might make sense for the symplectic algebra of δM4
±×CP2 for which the

light-like radial coordinate rM of light-cone boundary takes the role of complex coordinate.
The reason is that symplectic algebra acts as isometries.

3. If Kähler action has vanishing total variation under deformations defined by the broken con-
formal symmetries, the corresponding conformal charges are conserved. The components of
WCW Kähler metric expressible in terms of second derivatives of Kähler function can be
however non-vanishing and have also components, which correspond to WCW coordinates
associated with different partonic 2-surfaces. This conforms with the idea that conformal
algebras extend to Yangian algebras generalizing the Yangian symmetry of N = 4 symmet-
ric gauge theories. The deformations defined by symplectic transformations acting gauge
symmetries the second variation vanishes and there is not contribution to WCW Kähler
metric.

4. One can interpret the situation also in terms of consciousness theory. The larger the value
of heff , the lower the criticality, the more sensitive the measurement instrument since new
degrees of freedom become physical, the better the resolution. In p-adic context large n
means better resolution in angle degrees of freedom by introducing the phase exp(i2π/n) to
the algebraic extension and better cognitive resolution. Also the emergence of negentropic
entanglement characterized by n×n unitary matrix with density matrix proportional to unit
matrix means higher level conceptualization with more abstract concepts.

The extension of the super-conformal algebra to a larger Yangian algebra is highly suggestive
and gives and additional aspect to the notion of measurement resolution.

1. Yangian would be generated from the algebra of super-conformal charges assigned with the
points pairs belonging to two partonic 2-surfaces as stringy Noether charges assignable to
strings connecting them. For super-conformal algebra associated with pair of partonic surface
only single string associated with the partonic 2-surface. This measurement resolution is the
almost the poorest possible (no strings at all would be no measurement resolution at all!).

2. Situation improves if one has a collection of strings connecting set of points of partonic 2-
surface to other partonic 2-surface(s). This requires generalization of the super-conformal
algebra in order to get the appropriate mathematics. Tensor powers of single string super-
conformal charges spaces are obviously involved and the extended super-conformal generators
must be multi-local and carry multi-stringy information about physics.

3. The generalization at the first step is simple and based on the idea that co-product is the
”time inverse” of product assigning to single generator sum of tensor products of generators
giving via commutator rise to the generator. The outcome would be expressible using the
structure constants of the super-conformal algebra schematically a Q1

A = fBCA QB⊗QC . Here
QB and QC are super-conformal charges associated with separate strings so that 2-local
generators are obtained. One can iterate this construction and get a hierarchy of n-local
generators involving products of n stringy super-conformal charges. The larger the value of
n, the better the resolution, the more information is coded to the fermionic state about the
partonic 2-surface and 3-surface. This affects the space-time surface and hence WCW metric
but not the 3-surface so that the interpretation in terms of improved measurement resolution
makes sense. This super-symplectic Yangian would be behind the quantum groups and Jones
inclusions in TGD Universe.

4. n gives also the number of space-time sheets in the singular covering. One possible interpre-
tation is in terms measurement resolution for counting the number of space-time sheets. Our
recent quantum physics would only see single space-time sheet representing visible manner
and dark matter would become visible only for n > 1.

It is not an accident that quantum phases are assignable to Yangian algebras, to quantum
groups, and to inclusions of HFFs. The new deep notion added to this existing complex of high
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level mathematical concepts are hierarchy of Planck constants, dark matter hierarchy, hierarchy
of criticalities, and negentropic entanglement representing physical notions. All these aspects
represent new physics.

3.2.6 Planar Algebras And Generalized Feynman Diagrams

Planar algebras [A14] are a very general notion due to Vaughan Jones and a special class of
them is known to characterize inclusion sequences of hyper-finite factors of type II1 [A49] . In
the following an argument is developed that planar algebras might have interpretation in terms
of planar projections of generalized Feynman diagrams (these structures are metrically 2-D by
presence of one light-like direction so that 2-D representation is especially natural). In [K14] the
role of planar algebras and their generalizations is also discussed.

Planar algebra very briefly

First a brief definition of planar algebra.

1. One starts from planar k-tangles obtained by putting disks inside a big disk. Inner disks
are empty. Big disk contains 2k braid strands starting from its boundary and returning
back or ending to the boundaries of small empty disks in the interior containing also even
number of incoming lines. It is possible to have also loops. Disk boundaries and braid strands
connecting them are different objects. A black-white coloring of the disjoint regions of k-
tangle is assumed and there are two possible options (photo and its negative). Equivalence
of planar tangles under diffeomorphisms is assumed.

2. One can define a product of k-tangles by identifying k-tangle along its outer boundary with
some inner disk of another k-tangle. Obviously the product is not unique when the number
of inner disks is larger than one. In the product one deletes the inner disk boundary but if
one interprets this disk as a vertex-parton, it would be better to keep the boundary.

3. One assigns to the planar k-tangle a vector space Vk and a linear map from the tensor
product of spaces Vki associated with the inner disks such that this map is consistent with
the decomposition k-tangles. Under certain additional conditions the resulting algebra gives
rise to an algebra characterizing multi-step inclusion of HFFs of type II1.

4. It is possible to bring in additional structure and in TGD framework it seems necessary to
assign to each line of tangle an arrow telling whether it corresponds to a strand of a braid
associated with positive or negative energy parton. One can also wonder whether disks could
be replaced with closed 2-D surfaces characterized by genus if braids are defined on partonic
surfaces of genus g. In this case there is no topological distinction between big disk and
small disks. One can also ask why not allow the strands to get linked (as suggested by the
interpretation as planar projections of generalized Feynman diagrams) in which case one
would not have a planar tangle anymore.

General arguments favoring the assignment of a planar algebra to a generalized Feyn-
man diagram

There are some general arguments in favor of the assignment of planar algebra to generalized
Feynman diagrams.

1. Planar diagrams describe sequences of inclusions of HFF:s and assign to them a multi-
parameter algebra corresponding indices of inclusions. They describe also Connes tensor
powers in the simplest situation corresponding to Jones inclusion sequence. Suppose that
also general Connes tensor product has a description in terms of planar diagrams. This might
be trivial.

2. Generalized vertices identified geometrically as partonic 2-surfaces indeed contain Connes
tensor products. The smallest sub-factor N would play the role of complex numbers meaning
that due to a finite measurement resolution one can speak only about N-rays of state space
and the situation becomes effectively finite-dimensional but non-commutative.
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3. The product of planar diagrams could be seen as a projection of 3-D Feynman diagram to
plane or to one of the partonic vertices. It would contain a set of 2-D partonic 2-surfaces.
Some of them would correspond vertices and the rest to partonic 2-surfaces at future and
past directed light-cones corresponding to the incoming and outgoing particles.

4. The question is how to distinguish between vertex-partons and incoming and outgoing par-
tons. If one does not delete the disk boundary of inner disk in the product, the fact that
lines arrive at it from both sides could distinguish it as a vertex-parton whereas outgoing par-
tons would correspond to empty disks. The direction of the arrows associated with the lines
of planar diagram would allow to distinguish between positive and negative energy partons
(note however line returning back).

5. One could worry about preferred role of the big disk identifiable as incoming or outgoing
parton but this role is only apparent since by compactifying to say S2 the big disk exterior
becomes an interior of a small disk.

A more detailed view

The basic fact about planar algebras is that in the product of planar diagrams one glues two disks
with identical boundary data together. One should understand the counterpart of this in more
detail.

1. The boundaries of disks would correspond to 1-D closed space-like stringy curves at partonic
2-surfaces along which fermionic anti-commutators vanish.

2. The lines connecting the boundaries of disks to each other would correspond to the strands
of number theoretic braids and thus to braidy time evolutions. The intersection points of
lines with disk boundaries would correspond to the intersection points of strands of number
theoretic braids meeting at the generalized vertex.

[Number theoretic braid belongs to an algebraic intersection of a real parton 3-surface and its
p-adic counterpart obeying same algebraic equations: of course, in time direction algebraicity
allows only a sequence of snapshots about braid evolution].

3. Planar diagrams contain lines, which begin and return to the same disk boundary. Also
“vacuum bubbles” are possible. Braid strands would disappear or appear in pairwise manner
since they correspond to zeros of a polynomial and can transform from complex to real and
vice versa under rather stringent algebraic conditions.

4. Planar diagrams contain also lines connecting any pair of disk boundaries. Stringy decay of
partonic 2-surfaces with some strands of braid taken by the first and some strands by the
second parton might bring in the lines connecting boundaries of any given pair of disks (if
really possible!).

5. There is also something to worry about. The number of lines associated with disks is even
in the case of k-tangles. In TGD framework incoming and outgoing tangles could have odd
number of strands whereas partonic vertices would contain even number of k-tangles from
fermion number conservation. One can wonder whether the replacement of boson lines with
fermion lines could imply naturally the notion of half-k-tangle or whether one could assign
half-k-tangles to the spinors of WCW (“world of classical worlds”) whereas corresponding
Clifford algebra defining HFF of type II1 would correspond to k-tangles.

3.2.7 Miscellaneous

The following considerations are somewhat out-of-date: hence the title “Miscellaneous”.



3.2. A Vision About The Role Of HFFs In TGD 107

Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M -matrix with physically
acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal
field theory suggest that Connes tensor product is essentially equivalent with the fusion rules for
conformal fields defined by the Clifford algebra elements of CH(CD) (4-surfaces associated with
3-surfaces at the boundary of causal diamond CD in M4), extended to local fields in M4 with
gamma matrices acting on WCW spinor s assignable to the partonic boundary components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms
of Connes tensor product [A131] and refers to the work of Wassermann about the fusion of loop
group representations as a demonstration of the possibility to formula the fusion rules in terms of
Connes tensor product [A32] .

Fusion rules are indeed something more intricate that the näıve product of free fields ex-
panded using oscillator operators. By its very definition Connes tensor product means a dramatic
reduction of degrees of freedom and this indeed happens also in conformal field theories.

1. For non-vanishing n-point functions the tensor product of representations of Kac Moody
group associated with the conformal fields must give singlet representation.

2. The ordinary tensor product of Kac Moody representations characterized by given value of
central extension parameter k is not possible since k would be additive.

3. A much stronger restriction comes from the fact that the allowed representations must define
integrable representations of Kac-Moody group [A44] . For instance, in case of SU(2)k Kac
Moody algebra only spins j ≤ k/2 are allowed. In this case the quantum phase corresponds
to n = k + 2. SU(2) is indeed very natural in TGD framework since it corresponds to both
electro-weak SU(2)L and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical
states would replace näıve tensor product with something more intricate. The näıvest approach
would start from M4 local variants of gamma matrices since gamma matrices generate the Clifford
algebra Cl associated with CH(CD). This is certainly too näıve an approach. The next step
would be the localization of more general products of Clifford algebra elements elements of Kac
Moody algebras creating physical states and defining free on mass shell quantum fields. In standard
quantum field theory the next step would be the introduction of purely local interaction vertices
leading to divergence difficulties. In the recent case one transfers the partonic states assignable to
the light-cone boundaries δM4

±(mi) × CP2 to the common partonic 2-surfaces X2
V along X3

L,i so
that the products of field operators at the same space-time point do not appear and one avoids
infinities.

The remaining problem would be the construction an explicit realization of Connes tensor
product. The formal definition states that left and right N actions in the Connes tensor product
M⊗NM are identical so that the elements nm1 ⊗m2 and m1 ⊗m2n are identified. This implies
a reduction of degrees of freedom so that free tensor product is not in question. One might hope
that at least in the simplest choices for N characterizing the limitations of quantum measurement
this reduction is equivalent with the reduction of degrees of freedom caused by the integrability
constraints for Kac-Moody representations and dropping away of higher spins from the ordinary
tensor product for the representations of quantum groups. If fusion rules are equivalent with
Connes tensor product, each type of quantum measurement would be characterized by its own
conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided by
quantum field theories. In [K18] a rather precise vision about generalized Feynman diagrams is
developed and the challenge is to relate this vision to Connes tensor product.

Connection with topological quantum field theories defined by Chern-Simons action

There is also connection with topological quantum field theories (TQFTs) defined by Chern- Simons
action [A59] .



108 Chapter 3. Evolution of Ideas about Hyper-finite Factors in TGD

1. The light-like 3-surfaces X3
l defining propagators can contain unitary matrix characterizing

the braiding of the lines connecting fermions at the ends of the propagator line. Therefore
the modular S-matrix representing the braiding would become part of propagator line. Also
incoming particle lines can contain similar S-matrices but they should not be visible in the
M -matrix. Also entanglement between different partonic boundary components of a given
incoming 3-surface by a modular S-matrix is possible.

2. Besides CP2 type extremals MEs with light-like momenta can appear as brehmstrahlung like
exchanges always accompanied by exchanges of CP2 type extremals making possible mo-
mentum conservation. Also light-like boundaries of magnetic flux tubes having macroscopic
size could carry light-like momenta and represent similar brehmstrahlung like exchanges. In
this case the modular S-matrix could make possible topological quantum computations in
q 6= 1 phase [K4] . Notice the somewhat counter intuitive implication that magnetic flux
tubes of macroscopic size would represent change in quantum jump rather than quantum
state. These quantum jumps can have an arbitrary long geometric duration in macroscopic
quantum phases with large Planck constant [K25] .

There is also a connection with topological QFT defined by Chern-Simons action allowing
to assign topological invariants to the 3-manifolds [A59] . If the light-like CDs X3

L,i are boundary
components, the 3-surfaces associated with particles are glued together somewhat like they are
glued in the process allowing to construct 3-manifold by gluing them together along boundaries.
All 3-manifold topologies can be constructed by using only torus like boundary components.

This would suggest a connection with 2+1-dimensional topological quantum field theory
defined by Chern-Simons action allowing to define invariants for knots, links, and braids and 3-
manifolds using surgery along links in terms of Wilson lines. In these theories one consider gluing
of two 3-manifolds, say 3-spheres S3 along a link to obtain a topologically non-trivial 3-manifold.
The replacement of link with Wilson lines in S3#S3 = S3 reduces the calculation of link invariants
defined in this manner to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-
manifolds are glued together along link so that a singular 3-manifolds with a book like structure
are possible. The allowance of CDs which are not boundaries, typically 3-D light-like throats of
wormhole contacts at which induced metric transforms from Minkowskian to Euclidian, brings in
additional richness of structure. If the scaling factor of CP2 metric can be arbitrary large as the
quantization of Planck constant predicts, this kind of structure could be macroscopic and could
be also linked and knotted. In fact, topological condensation could be seen as a process in which
two 4-manifolds are glued together by drilling light-like CDs and connected by a piece of CP2 type
extremal.

3.3 Fresh View About Hyper-Finite Factors In TGD Frame-
work

In the following I will discuss the basic ideas about the role of hyper-finite factors in TGD with the
background given by a work of more than half decade. First I summarize the input ideas which
I combine with the TGD inspired intuitive wisdom about HFFs of type II1 and their inclusions
allowing to represent finite measurement resolution and leading to notion of quantum spaces with
algebraic number valued dimension defined by the index of the inclusion.

Also an argument suggesting that the inclusions define “skewed” inclusions of lattices to
larger lattices giving rise to quasicrystals is proposed. The core of the argument is that the
included HFF of type II1 algebra is a projection of the including algebra to a subspace with
dimension D ≤ 1. The projection operator defines the analog of a projection of a bigger lattice to
the included lattice. Also the fact that the dimension of the tensor product is product of dimensions
of factors just like the number of elements in finite group is product of numbers of elements of
coset space and subgroup, supports this interpretation.

One also ends up with a detailed identification of the hyper-finite factors in orbital degrees
of freedom in terms of symplectic group associated with δM4

± × CP2 and the group algebras of
their discrete subgroups define what could be called “orbital degrees of freedom” for WCW spinor
fields. By very general argument this group algebra is HFF of type II, maybe even II1.
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3.3.1 Crystals, Quasicrystals, Non-Commutativity And Inclusions Of
Hyperfinite Factors Of Type II1

I list first the basic ideas about non-commutative geometries and give simple argument suggesting
that inclusions of HFFs correspond to “skewed” inclusions of lattices as quasicrystals.

1. Quasicrystals (see http://tinyurl.com/67kz3qo) (say Penrose tilings) [A19] can be re-
garded as subsets of real crystals and one can speak about “skewed” inclusion of real lattice
to larger lattice as quasicrystal. What this means that included lattice is obtained by pro-
jecting the larger lattice to some lower-dimensional subspace of lattice.

2. The argument of Connes concerning definition of non-commutative geometry can be found
in the book of Michel Lapidus at page 200. Quantum space is identified as a space of
equivalence classes. One assigns to pairs of elements inside equivalence class matrix elements
having the element pair as indices (one assumes numerable equivalence class). One considers
irreducible representations of the algebra defined by the matrices and identifies the equivalent
irreducible representations. If I have understood correctly, the equivalence classes of irreps
define a discrete point set representing the equivalence class and it can often happen that
there is just single point as one might expect. This I do not quite understand since it requires
that all irreps are equivalent.

3. It seems that in the case of linear spaces - von Neumann algebras and accompanying Hilbert
spaces - one obtains a connection with the inclusions of HFFs and corresponding quantum
factor spaces that should exist as analogs of quantum plane. One replaces matrices with
elements labelled by element pairs with linear operators in HFF of type II1. Index pairs
correspond to pairs in linear basis for the HFF or corresponding Hilbert space.

4. Discrete infinite enumerable basis for these operators as a linear space generates a lattice
in summation. Inclusion N ⊂ M defines inclusion of the lattice/crystal for N to the cor-
responding lattice of M . Physical intuition suggests that if this inclusion is “skewed” one
obtains quasicrystal. The fact the index of the inclusion is algebraic number suggests that
the coset space M/N is indeed analogous to quasicrystal.

More precisely, the index of inclusion is defined for hyper-finite factors of type II1 using the
fact that quantum trace of unit matrix equals to unity Tr(Id(M)) = 1, and from the tensor
product composition M = (M/N)×N given Tr(Id(M)) = 1 = Ind(M/N)Tr(P (M → N)),
where P (M → N is projection operator from M to N . Clearly, Ind(M/N) = 1/Tr(P (M →
N)) defines index as a dimension of quantum space M/N .

For Jones inclusions characterized by quantum phases q = exp(i2π/n), n = 3, 4, ... the
values of index are given by Ind(M/N) = 4cos2(π/n), n = 3, 4, .... There is also another
range inclusions Ind(M/N) ≥ 4: note that Tr(P (M → N)) defining the dimension of N as
included sub-space is never larger than one for HFFs of type II1. The projection operator
P (M → N) is obviously the counterpart of the projector projecting lattice to some lower-
dimensional sub-space of the lattice.

5. Jones inclusions are between linear spaces but there is a strong analogy with non-linear coset
spaces since for the tensor product the dimension is product of dimensions and for discrete
coset spaces G/H one has also the product formula n(G) = n(H)×n(G/H) for the numbers
of elements. Noticing that space of quantum amplitudes in discrete space has dimension
equal to the number of elements of the space, one could say that Jones inclusion represents
quantized variant for classical inclusion raised from the level of discrete space to the level
of space of quantum states with the number of elements of set replaced by dimension. In
fact, group algebras of infinite and enumerable groups defined HFFs of type II under rather
general conditions (see below).

Could one generalize Jones inclusions so that they would apply to non-linear coset spaces
analogs of the linear spaces involved ? For instance, could one think of infinite-dimensional
groups G and H for which Lie-algebras defining their tangent spaces can be regarded as HFFs
of type II1? The dimension of the tangent space is dimension of the non-linear manifold:
could this mean that the non-linear infinite-dimensional inclusions reduce to tangent space

http://tinyurl.com/67kz3qo
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level and thus to the inclusions for Lie-algebras regarded hyper-finite factors of type II1 or
more generally, type II? This would would rise to quantum spaces which have finite but
algebraic valued quantum dimension and in TGD framework take into account the finite
measurement resolution.

6. To concretize this analogy one can check what is the number of points map from 5-D space
containing aperiodic lattice as a projection to a 2-D irrational plane containing only origin as
common point with the 5-D lattice. It is easy to get convinced that the projection is 1-to-1
so that the number of points projected to a given point is 1. By the analogy with Jones
inclusions this would mean that the included space has same von Neumann dimension 1 -
just like the including one. In this case quantum phase equals q = exp(i2π/n), n = 3 - the
lowest possible value of n. Could one imagine the analogs of n > 3 inclusions for which the
number of points projected to a given point would be larger than 1? In 1-D case the rational
lines y = (k/l)x define 1-D rational analogs of quasi crystals. The points (x, y) = (m,n),
m mod l = 0 are projected to the same point. The number of points is now infinite and
the ratio of points of 2-D lattice and 1-D crystal like structure equals to l and serves as the
analog for the quantum dimension dq = 4cos2(π/n).

To sum up, this this is just physicist’s intuition: it could be wrong or something totally
trivial from the point of view of mathematician. The main message is that the inclusions of HFFs
might define also inclusions of lattices as quasicrystals.

3.3.2 HFFs And Their Inclusions In TGD Framework

In TGD framework the inclusions of HFFs have interpretation in terms of finite measurement
resolution. If the inclusions define quasicrystals then finite measurement resolution would lead to
quasicrystals.

1. The automorphic action of N in M ⊃ N and in associated Hilbert space HM where N
acts generates physical operators and accompanying stas (operator rays and rays) not dis-
tinguishable from the original one. States in finite measurement resolution correspond to
N -rays rather than complex rays. It might be natural to restrict to unitary elements of N .

This leads to the need to construct the counterpart of coset space M/N and corresponding
linear space HM/HN . Physical intuition tells that the indices of inclusions defining the
“dimension” of M/N are algebraic numbers given by Jones index formula.

2. Here the above argument would assign to the inclusions also inclusions of lattices as qua-
sicrystals.

Degrees of freedom for WCW spinor field

Consider first the identification of various kinds of degrees of freedom in TGD Universe.

1. Very roughly, WCW (“world of classical worlds”) spinor is a state generated by fermionic
creation operators from vacuum at given 3-surface. WCW spinor field assigns this kind of
spinor to each 3-surface. WCW spinor fields decompose to tensor product of spin part (Fock
state) and orbital part (“wave” in WCW) just as ordinary spinor fields.

2. The conjecture motivated by super-symmetry has been that both WCW spinors and their
orbital parts (analogs of scalar field) define HFFs of type II1 in quantum fluctuating degrees
of freedom.

3. Besides these there are zero modes, which by definition do not contribute to WCW Kähler
metric.

(a) If the zero zero modes are symplectic invariants, they appear only in conformal factor of
WCW metric. Symplectically invariant zero modes represent purely classical degrees of
freedom - direction of a pointer of measurement apparatus in quantum measurement -
and in given experimental arrangement they entangle with quantum fluctuating degrees
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of freedom in one-one manner so that state function reduction assigns to the outcome
of state function reduction position of pointer. I forget symplectically invariant zero
modes and other analogous variables in the following and concentrate to the degrees of
freedom contributing WCW line-element.

(b) There are also zero modes which are not symplectic invariants and are analogous to
degrees of freedom generated by the generators of Kac-Moody algebra having vanishing
conformal weight. They represent “center of mass degrees of freedom” and this part of
symmetric algebra creates the representations representing the ground states of Kac-
Moody representations. Restriction to these degrees of freedom gives QFT limit in
string theory. In the following I will speak about “cm degrees of freedom”.

The general vision about symplectic degrees of freedom (the analog of “orbital degrees of
freedom” for ordinary spinor field) is following.

1. WCW (assignable to given CD) is a union over the sub-WCWs labeled by zero modes and
each sub-WCW representing quantum fluctuating degrees of freedom and “cm degrees of
freedom” is infinite-D symmetric space. If symplectic group assignable to δM4

+×CP2 acts as
as isometries of WCW then “orbital degrees of freedom” are parametrized by the symplectic
group or its coset space (note that light-cone boundary is 3-D but radial dimension is light-like
so that symplectic - or rather contact structure - exists).

Let S2 be rM = constant sphere at light-cone boundary (rM is the radial light-like coordinate
fixed apart from Lorentz transformation). The full symplectic group would act as isometries
of WCW but does not - nor cannot do so - act as symmetries of Kähler action except in the
huge vacuum sector of the theory correspond to vacuum extremals.

2. WCW Hamiltonians can be deduced as “fluxes” of the Hamiltonians of δM4
+ × CP2 taken

over partonic 2-surfaces. These Hamiltonians expressed as products of Hamiltonians of S2

and CP2 multiplied by powers rnM . Note that rM plays the role of the complex coordinate z
for Kac-Moody algebras and the group G defining KM is replaced with symplectic group of
S2×CP2. Hamiltonians can be assumed to have well-defined spin (SO(3)) and color (SU(3))
quantum numbers.

3. The generators with vanishing radial conformal weight (n = 0) correspond to the symplectic
group of S2 × CP2. They are not symplectic invariants but are zero modes. They would
correspond to “cm degrees of freedom” characterizing the ground states of representations of
the full symplectic group.

Discretization at the level of WCW

The general vision about finite measurement resolution implies discretization at the level of WCW.

1. Finite measurement resolution at the level of WCW means discretization. Therefore the
symplectic groups of δM4

+ × CP2 resp. S2 × CP2 are replaced by an enumerable discrete
subgroup. WCW is discretized in both quantum fluctuating degrees of freedom and “center
of mass” degrees of freedom.

2. The elements of the group algebras of these discrete groups define the “orbitals parts” of
WCW spinor fields in discretization. I will later develop an argument stating that they are
HFFs of type II - maybe even II1. Note that also function spaces associated with the coset
spaces of these discrete subgroups could be considered.

3. Discretization applies also in the spin degrees of freedom. Since fermionic Fock basis generates
quantum counterpart of Boolean algebra the interpretation in terms of the physical correlates
of Boolean cognition is motivated (fermion number 1/0 and various spins in decomposition
to a tensor product of lower-dimensional spinors represent bits). Note that in ZEO fermion
number conservation does not pose problems and zero states actually define what might be
regarded as quantum counterparts of Boolean rules A→ B.
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4. Note that 3-surfaces correspond by the strong form of GCI/holography to collections of
partonic 2-surfaces and string world sheets of space-time surface intersecting at discrete set
of points carrying fermionic quantum numbers. WCW spinors are constructed from second
quantized induced spinor fields and fermionic Fock algebra generates HFF of type II1.

Does WCW spinor field decompose to a tensor product of two HFFs of type II1?

The group algebras associated with infinite discrete subgroups of the symplectic group define the
discretized analogs of waves in WCW having quantum fluctuating part and cm part. The proposal
is that these group algebras are HFFs of type II1. The spinorial degrees of freedom correspond to
fermionic Fock space and this is known to be HFF. Therefore WCW spinor fields would defined
tensor product of HFFs of type II1. The interpretation would be in terms of supersymmetry at
the level of WCW. Super-conformal symmetry is indeed the basic symmetry of TGD so that this
result is a physical “must”. The argument goes as follows.

1. In non-zero modes WCW is symplectic group of δM4
+ × CP2 (call this group just Sympl)

reduces to the analog of Kac-Moody group associated with S2 × CP2, where S2 is rM =
constant sphere of light-cone boundary and z is replaced with radial coordinate. The Hamil-
tonians, which do not depend on rM would correspond to zero modes and one could not
assign metric to them although symplectic structure is possible. In “cm degrees of freedom”
one has symplectic group associated with S2 × CP2.

2. Finite measurement resolution, which seems to be coded already in the structure of the
preferred extremals and of the solutions of the Kähler-Dirac equation, suggests strongly that
this symplectic group is replaced by its discrete subgroup or symmetric coset space. What
this group is, depends on measurement resolution defined by the cutoffs inherent to the
solutions. These subgroups and coset spaces would define the analogs of Platonic solids in
WCW!

3. Why the discrete infinite subgroups of Sympl would lead naturally to HFFs of type II? There
is a very general result stating that group algebra of an enumerable discrete group, which has
infinite conjugacy classes, and is amenable so that its regular representation in group algebra
decomposes to all unitary irreducibles is HFF of type II. See for examples about HFFs of
type II listed in Wikipedia article (see http://tinyurl.com/y8445w8q) [A7].

4. Suppose that the group algebras associated the discrete subgroups Sympl are indeed HFFs
of type II or even type II1. Their inclusions would define finite measurement resolution
the orbital degrees of freedom for WCW spinor fields. Included algebra would create rays of
state space not distinguishable experimentally. The inclusion would be characterized by the
inclusion of the lattice defined by the generators of included algebra by linearity. One would
have inclusion of this lattice to a lattice associated with a larger discrete group. Inclusions of
lattices are however known to give rise to quasicrystals (Penrose tilings are basic example),
which define basic non-commutative structures. This is indeed what one expects since the
dimension of the coset space defined by inclusion is algebraic number rather than integer.

5. Also in fermionic degrees of freedom finite measurement resolution would be realized in terms
of inclusions of HFFs- now certainly of type II1. Therefore one could obtain hierarchies of
lattices included as quasicrystals.

What about zero modes which are symplectic invariants and define classical variables? They
are certainly discretized too. One might hope that one-one correlation between zero modes (clas-
sical variables) and quantum fluctuating degrees of freedom suggested by quantum measurement
theory allows to effectively eliminate them. Besides zero modes there are also modular degrees of
freedom associated with partonic 2-surfaces defining together with their 4-D tangent space data
basis objects by strong form of holography. Also these degrees of freedom are automatically dis-
cretized. But could one consider finite measurement resolution also in these degrees of freedom. If
the symplectic group of S2 × CP2 defines zero modes then one could apply similar argument also
in these degrees of freedom to discrete subgroups of S2 × CP2.

http://tinyurl.com/y8445w8q
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3.3.3 Little Appendix: Comparison Of WCW Spinor Fields With Ordi-
nary Second Quantized Spinor Fields

In TGD one identifies states of Hilbert space as WCW spinor fields. The analogy with ordinary
spinor field helps to understand what they are. I try to explain by comparison with QFT.

Ordinary second quantized spinor fields

Consider first ordinary fermionic QFT in fixed space-time. Ordinary spinor is attached to an space-
time point and there is 2D/2 dimensional space of spin degrees of freedom. Spinor field attaches
spinor to every point of space-time in a continuous/smooth manner. Spinor fields satisfying Dirac
equation define in Euclidian metric a Hilbert space with a unitary inner product. In Minkowskian
case this does not work and one must introduce second quantization and Fock space to get a
unitary inner product. This brings in what is essentially a basic realization of HFF of type II1 as
allowed operators acting in this Fock space. It is operator algebra rather than state space which
is HFF of type II1 but they are of course closely related.

Classical WCW spinor fields as quantum states

What happens TGD where one has quantum superpositions of 4-surface/3-surfaces by GCI/partonic
2-surfaces with 4-D tangent space data by strong form of GCI.

1. First guess: space-time point is replaced with 3-surface. Point like particle becomes 3-surface
representing particle. WCW spinors are fermionic Fock states at this surface. WCW spinor
fields are Fock state as a functional of 3-surface. Inner product decomposes to Fock space
inner product plus functional integral over 3-surfaces (no path integral!). One could speak
of quantum multiverse. Not single space-time but quantum superposition of them. This
quantum multiverse character is something new as compared to QFT.

2. Second guess: forced by ZEO, by geometrization of Feynman diagrams, etc.

(a) 3-surfaces are actually not connected 3-surfaces. They are collections of components at
both ends of CD and connected to single connected structure by 4-surface. Components
of 3-surface are like incoming and outgoing particles in connected Feynman diagrams.
Lines are identified as regions of Euclidian signature or equivalently as the 3-D light-like
boundaries between Minkowskian and Euclidian signature of the induced metric.

(b) Spinors(!!) are defined now by the fermionic Fock space of second quantized induced
spinor fields at these 3-surfaced and by holography at 4-surface. This fermionic Fock
space is assigned to all multicomponent 3-surfaces defined in this manner and WCW
spinor fields are defined as in the first guess. This brings integration over WCW to the
inner product.

3. Third, even more improved guess: motivated by the solution ansatz for preferred extremals
and for Kähler-Dirac equation [K88] giving a connection with string models.

The general solution ansatz restricts all spinor components but right-handed neutrino to
string world sheets and partonic 2-surfaces: this means effective 2-dimensionality. String
world sheets and partonic 2-surfaces intersect at the common ends of light-like and space-like
braids at ends of CD and at along wormhole throat orbits so that effectively discretization
occurs. This fermionic Fock space replaces the Fock space of ordinary second quantization.

3.4 The idea of Connes about inherent time evolution of
certain algebraic structures from TGD point of view

Jonathan Disckau asked me about what I think about the proposal of Connes represented in the
summary of progress of noncommutative geometry in ”Noncommutative Geometry Year 2000”
[A31] (see https://arxiv.org/abs/math/0011193) that certain mathematical structures have
inherent time evolution coded into their structure.

https://arxiv.org/abs/math/0011193
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I have written years ago about Connes’s proposal. At that time I was trying to figure out how
to understand the construction of scattering amplitudes in the TGD framework and the proposal
of Connes looked attractive. Later I had to give up this idea. However, the basic idea is beautiful.
One should only replace the notion of time evolution from a one-parameter group of automorphisms
to something more interesting. Also time evolution as increasing algebraic complexity is a more
attractive interpretation.

The inclusion hierarchies of hyperfinite factors (HFFs) - closely related to the work of Connes
- are a key element of TGD and crucial for understanding evolutionary hierarchies in TGD. Is it
possible that mathematical structure evolves in time in some sense? The TGD based answer is
that quantum jump as a fundamental evolutionary step - moment of subjective time evolution - is a
necessary new element. The sequence of moments of consciousness as quantum jumps would have
an interpretation as hopping around in the space of mathematical structures leading to increasingly
complex structures.

The generalization of the idea of Connes is discussed in this framework. In particular,
the inclusion hierarchies of hyper-finite factors, the extension hierarchies of rationals, and fractal
inclusion hierarchies of subalgebras of supersymplectic algebra isomorphic with the entire algebra
are proposed to be more or less one and the same thing in TGD framework.

The time evolution operator of Connes could corresponds to super-symplectic algebra (SSA)
to the time evolution generated by exp(iL0τ) so that the operator ∆ of Connes would be identified
as ∆ = exp(L0). This identification allows number theoretical universality if τ is quantized.
Furthermore, one ends up with a model for the subjective time evolution by small state function
reductions (SSFRs) for SSA with SSAn gauge conditions: the unitary time evolution for given
SSFR would be generated by a linear combination of Virasoro generators not annihilating the
states. This model would generalize the model for harmonic oscillator in external force allowing
exact S-matrix.

3.4.1 Connes proposal and TGD

In this section I develop in more detail the analog of Connes proposal in TGD framework.

What does Connes suggest?

One must first make clear what the automorphism of HFFs discovered by Connes is.

1. Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. I have described the theory
earlier [K48, K28].

First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (3.4.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x → x∗ is isometric in M and defines a map M → L2(M) via x → xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor ∆1/2.



3.4. The idea of Connes about inherent time evolution of certain algebraic structures
from TGD point of view 115

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies thatM andM′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A47, A93] ∆ is Hermitian and
positive definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.

The definition of ∆it reduces in eigenstate basis of ∆ to the definition of complex function
dit. Note that is positive so that the logarithm of d is real.

In TGD framework number theoretic universality poses additional conditions. In diagonal
basis elog(d)it must exist. A simply manner to solve the conditions is e = exp(m/r) existing p-
adically for an extension of rational allowing r:th root of e. This requires also quantization of as a
root of unity so that the exponent reduces to a root of unity.

2. Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the fac-
tor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of corre-
sponding II∞ factor characterizes partially a factor of type II1. This group consists of real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values λ for which ω
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
the Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of
λ < 1. For factors of type III0 this set contains only identity automorphism so that there
is no periodicity. For factors of type III1 Connes spectrum contains all real numbers so that
the automorphisms do not affect the identity operator of the factor at all.
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The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not integer
valued in general. The so called standard module has a cyclic separating vector and each factor
has a standard representation possessing antilinear involution J such that M′ = JMJ holds true
(note that J changes the order of the operators in conjugation). The inclusions of factors define
modules having interpretation in terms of a finite measurement resolution defined by M.

3. Objections against the idea of Connes

One can represent objections against this idea.

1. Ordinary time evolution in wave mechanics is a unitary automorphism, so that in this
framework they would not have physical meaning but act as gauge transformations. If outer
automorphisms define time evolutions, they must act as gauge transformations. One would
have an analog of gauge field theory in HFF. This would be of course highly interesting: when
I gave up the idea of Connes, I did not consider this possibility. Super-symplectic algebras
having fractal structure are however extremely natural candidate for defining HFF and there
is infinite number of gauge conditions.

2. An automorphism is indeed in question so that the algebraic system would not be actually
affected. Therefore one cannot say that HFF has inherent time evolution and time. However,
one can represent in HFF dynamical systems obeying this inherent time evolution. This
possibility is highly interesting as a kind of universal gauge theory.

On the other hand, outer automorphisms affect the trace of the projector defining the identity
matrix for a given factor. Does the scaling factor Λ represent some kind of renormalization
operation? Could it relate to the action of scalings in the TGD framework where scalings
replace time translations at the fundamental level? What the number theoretic vision of
TGD could mean? Could this quantize the continuous spectrum of the scalings Λ for HFFs
so that they belong to the extension? Could one have a spectrum of Λ for each extension of
rationals? Are different extensions related by inclusions of HFFs?

3. The notion of time evolution itself is an essentially Newtonian concept: selecting a preferred
time coordinate breaks Lorentz invariance. In TGD however time coordinate is replace by
scaling parameter and the situation changes.

4. The proposal of Connes is not general enough if evolution is interpreted as an increase of
complexity.

For these reasons I gave up the automorphism proposed by Connes as a candidate for defining
time evolution giving rise to scattering amplitudes in TGD framework.

Two views about TGD

The two dual views about what TGD is described briefly in [L49].

1. Physics as geometry of the world of ”world of classical worlds” (WCW) identified as the
space of space-time surfaces in M4 × CP2 [K63]. Twistor lift of TGD [L26] implies that
the space-time surfaces are minimal surfaces which can be also regarded as extermals of the
Kähler action. This implies holography required by the general coordinate invariance in TGD
framework.

2. TGD as generalized number theory forcing to generalize physics to adelic physics [L24] fus-
ing real physics as correlate of sensory experience and various p-adic physics as correlates of
cognition. Now space-times are naturally co-associative surfaces in complexified M8 (com-
plexified octonions) defined as ”roots” of octonionic polynomials determined by polynomials
with rational coefficients [L45, L46, L55]. Now holography extends dramatically: finite num-
ber of rational numbers/roots of rational polynomial/points of space-time region dictate it.

M8−H duality relates these two views and is actually a generalization of Fourier transform
and realizes generalization of momentum-position duality.
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The notion of time evolution in TGD

Concerning various time evolutions in TGD, the general situation is now rather well understood.
There are two quantal time evolutions: geometric one assignable to single CD and and

subjective time evolution which reflects the generalization of point-like particle to a 3-surface and
the introduction of CD as 4-D perceptive field of particle in ZEO [L38].

1. Geometric time evolution corresponds to the standard scattering amplitudes for which I have
a general formula now in terms of zero energy ontology (ZEO) [L51, L45, L46, L55]. The
analog of S-matrix corresponds to entanglement coefficients between members of zero energy
state at opposite boundaries of causal diamond (CD).

2. Subjective time evolution of conscious entity corresponds to a sequence of ”small” state
function reductions (SSFRs) as moments of consciousness: each SSFR is preceded by an
analog of unitary time evolution, call it U . SSFRs are the TGD counterparts of ”weak”
measurements.

U(t) is generated by the scaling generator L0 scaling light-like radial coordinate of light-
cone boundary and is a generalization of corresponding operator in superconformal and string
theories and defined for super-symplectic algebras acting as isometries of the world of classical
worlds (WCW) [L55]. U(t) is not the exponential of energy as a generator of time translation
as in QFTs but an exponential of the mass squared operator and corresponds to the scaling of
radial light-like coordinate r of the light-like boundary of CD: r is analogous to the complex
coordinate z in conformal field theories.

Also ”big” SFRs (BSFRs) are possible and correspond to ”ordinary” SFRs and in TGD
framework mean death of self in the universal sense and followed by reincarnation as time
reversed subjective time evolution [L32].

3. There is also classical time evolution at the level of space-time surfaces. Here the assumption
that X4 belongs to H = M4 × CP2 defines Minkowski coordinates of M4 as almost unique
space-time coordinates of X4 is the M4 projection of X4 is 4-D. This generalizes also to the
case of M8. Symmetries make it possible to identify an essentially a unique time coordinate.

This means enormous simplification. General coordinate invariance is a marvellous symmetry
but it leads to the problem of specifying space-time coordinates that is finding preferred
coordinates. This seems impossible since 3-metric is dynamical. M4 provides a fixed reference
system and the problem disappears. M4 is dynamical by its Minkowskian signature and one
can speak about classical signals.

4. There is also classical time evolution for the induced spinor fields. At the level of H the spinor
field is a superposition of modes of the massless Dirac operator (massless in 8-D sense). This
spinor field is free and second quantized. Second quantization of induced spinor trivializes
and this is absolutely crucial for obtaining scattering amplitudes for fermions and avoiding
the usual problems for quantization of fermions in curved background.

The induced spinor field is a restriction of this spinor field to the space-time surface and
satisfies modified Dirac equation automatically. There is no need for second quantization
at the level of space-time surface and propagators etc.... are directly calculable. This is an
enormous simplification.

There are therefore as many as 4 time evolutions and subjective time evolution by BSFRs
and possibly also by SSFRs is a natural candidate for time evolution as genuine evolution as
emergence of more complex algebraic structures.

Could the inherent time evolution of HFF have a physical meaning in TGD after all?

The idea about inherent time evolution defined by HFF itself as one parameter group of outer
automorphisms is very attractive by its universality: physics would become part of mathematics.

1. Thermodynamic interpretation, with inverse temperature identified as an analog of time
coordinate, comes first in mind but need not be the correct interpretation.
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2. Outer automorphisms should act at a very fundamental level analogous to the state space
of topological field theories. Fundamental group is after all in question! The assignment of
the S-matrix of particle physics to the outer automorphism does not look reasonable since
the time evolution would be with respect to the linear Minkowski coordinate, which is not
Lorentz invariant.

For these reasons I gave up the idea of Connes when considering it for the first time.
However, TGD inspired theory of consciousness as a generalization of quantum measurement theory
has evolved since then and the situation is different now.

The sequence of SSFRs defines subjective time evolution having no counterpart in QFTs.
Each SSFR is preceded by a unitary time evolution, which however corresponds to the scaling
of the light-like radial coordinate of the light-cone boundary [L55] rather than time translation.
Hamiltonian is replaced with the scaling generator L0 acting as Lorentz invariant mass squared
operator so that Lorentz invariance is not lost.

Could the time evolution assignable to L0 correspond to the outer automorphism of Connes
when one poses an infinite number of gauge conditions making inner automorphisms gauge trans-
formations? The connection of Connes proposal with conformal field theories and with TGD is
indeed suggestive.

1. Conformally invariant systems obey infinite number of gauge conditions stating that the
conformal generators Ln, n > 0, annihilate physical states and carry vanishing Noether
charges.

These gauge conditions bring in mind the condition that infinitesimal inner automorphisms
do not change the system physically. Does this mean that Connes outer automorphism
generates the time evolution and inner automorphisms act as gauge symmetries? One
would have an analog of gauge field theory in HFF.

2. In TGD framework one has an infinite hierarchy of systems satisfying conditions analogous
to the conformal gauge conditions. The generators of the super-symplectic algebra (SCA)
acting as isometries of the ”world of classical worlds” (WCW) are labelled by non-negative
conformal weight n and it has infinite hierarchy of algebras SCAk isomorphic to it with
conformal weights given by k-multiple of those of the entire algebra, k = 1, 2, .....

Gauge conditions state for SCAk that the generators of SCAk and its commutator with
SCA annihilate physical states. The interpretation is in terms of a hierarchy of improving
measurement resolutions with degrees of freedom below measurement resolution acting like
gauge transformations.

The Connes automorphism would ”see” only the time evolution in the degrees of freedom
above measurement resolution and as k increases, their number would increase.

In the case of hyperfinite factors of type II1 (HFFs) the fundamental group of corresponding
factor II∞ consists of all reals: I hope I am right here.

1. The hyperfinite factors of type II1 and corresponding factors II∞ are natural in the TGD
context. Therefore the spectrum would consist of reals unless one poses additional conditions.

2. Could the automorphisms correspond to the scalings of the lightcone proper time, which
replace time translations as fundamental dynamics. Also in string models scalings take the
role of time translations.

3. In zero energy ontology (ZEO) the scalings would act in the moduli space of causal diamonds
which is finite-dimensional. This moduli space defines the backbone of the ”world of classical
worlds”. WCW itself consists of a union of sub-WCs as bundle structures over CDs [?]. The
fiber consists of space-time surfaces inside a given CD analogous to Bohr orbits and satisfying
holography reducing to generalized holomorphy. The scalings as automorphisms scale
the causal diamonds. The space of CDs is a finite-dimensional coset space and has also
other symmetry transformations.
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4. The number theoretic vision suggests a quantization of the spectrum of Λ so that for a given
extension of rationals the spectrum would belong to the extension. HFFs would be labelled
at least partially by the extensions of rationals. The recent view of M8 − H duality [L79]
is dramatically simpler than the earlier view [L45, L46, ?] and predicts that the space-time
regions are determined by a pair of analytic functions with rational coefficients forced by
number theoretical universality meaning that the space-time surfaces have interpretation
also as p-adic surfaces.

The simplest analytic functions are polynomials with integer coefficients and if one requires
that the coefficients are smaller than the degree of the polynomial, the number of polynomials
is finite for a given degree. This would give very precise meaning for the concept of number
theoretic evolution.

There would be an evolutionary hierarchy of pairs of polynomials characterized by increasing
complexity and one can assign to these polynomials extension of rationals characterized by
ramified primes depending on the polynomials. The ramified primes would have interpreta-
tion as p-adic primes characterizing the space-time region considered. Extensions of rationals
and ramified primes could also characterize HFFs. This is a rather dramatic conjecture at
the level of pure mathematics.

5. Scalings define renormalization group in standard physics. Now they scale the size of the
CD. Could the scalings as automorphisms of HFFs correspond to discrete renormalization
operations?

Three views about finite measurement resolution

Evolution could be seen physically as improving finite measurement resolution: this applies to both
sensory experience and cognition. There are 3 views about finite measurement resolution (FMR)
in TGD.

1. Hyper finite factors (HFFs) and FMR

HFFs are an essential part of Connes’s work and I encountered them about 15 years ago or
so [K87, K28].

The inclusions of hyper-finite factors HFFs provide one of the three - as it seems equivalent
- ways to describe finite measurement resolution (FMR) in TGD framework: the included factor
defines an analog for gauge degrees of freedom which correspond to those below measurement
resolution.

2. Cognitive representations and FMR

Another description for FMR in the framework of adelic physics would be in terms of cog-
nitive representations [L34]. First some background about M8 −H duality.

1. There are number theoretic and geometric views about dynamics. In algebraic dynamics at
the level of M8, the space-time surfaces are roots of polynomials. There are no partial
differential equations like in the geometric dynamics at the level of H.

2. The algebraic ”dynamics” of space-time surfaces in M8 is dictated by co-associativity, which
means that the normal space of the space-time surface is associative and thus quaternionic.
That normal space rather than tangent space must be associative became clear last year
[L45, L46].

3. M8−H duality maps these algebraic surfaces inM8 toH = M4×CP2 and the one obtains the
usual dynamics based on variational principle giving minimal surfaces which are non-linear
analogs for the solutions of massless field equations. Instead of polynomials the natural
functions at the level of H are periodic functions used in Fourier analysis [L55].

At level of complexified M8 cognitive representation would consist of points of co-associative
space-time surface X4 in complexified M8 (complexified octonions), whose coordinates belong to
extension of rationals and therefore make sense also p-adically for extension of p-adic numbers
induced by extension of rationals. M8 −H duality maps the cognitive representations to H.
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Cognitive representations form a hierarchy: the larger the extension of rationals, the larger
the number of points in the extension and in the unique discretization of space-time surface.
Therefore also the measurement resolution improves.

The surprise was that the cognitive representations which are typically finite, are for the
”roots” of octonionic polynomials infinite [L45, L46]. Also in this case the density of points of
cognitive representation increases as the dimension of extensions increases.

The understanding of the physical interpretation of M8 −H duality increased dramatically
during the last half year.

1. X4 in M8 is highly analogous to momentum space (4-D analog of Fermi ball one might say)
and H to position space. Physical states correspond to discrete sets of points - 4-momenta
- in X4. This is just the description used in particle physics for physical states. Time and
space in this description are replaced by energy and 4-momentum. At the level of H one
space-time and classical fields and one talks about frequencies and wavelengths instead of
momenta.

2. M8 −H duality is a generalization of Fourier transform. Hitherto I have assumed that the
space-time surface in M8 is mapped to H. The momentum space interpretation at the level
of M8 however requires that the image must be a superposition of translates of the image in
plane wave with some momentum: only the translates inside some bigger CD are allowed -
this means infrared cutoff.

The total momentum as sum of momenta for two half-cones of CD in M8 is indeed well-
defined. One has a generalization of a plane wave over translational degrees of freedom
of CD and restricted to a bigger CD.

At the limit of infinitely large size for bigger CD, the result is non-vanishing only when
the sum of the momenta for two half-cones of CD vanishes: this corresponds to conservation
of 4-momentum as a consequence of Poincare invariance rather than assumption as in the
earlier approach [L55].

This generalizes the position-momentum duality of wave mechanics lost in quantum field
theory. Point-like particle becomes a quantum superposition of space-time surfaces inside
the causal diamond (CD). Plane wave is a plane wave for the superposition of space-time
surfaces inside CD having the cm coordinates of CD as argument.

3. Inclusion hierarchy of supersymplectic algebras and FMR

The third inclusion hierarchy allowing to describe finite measurement resolution is defined
by supersymplectic algebras acting as the isometries of the ”world of classical worlds” (WCW)
consisting of space-time surfaces are preferred extremals (”roots” of polynomials inM8 and minimal
surfaces satisfying infinite-D set of additional ”gauge conditions” in H).

At a given level of hierarchy generators with conformal weight larger than n act like gauge
generators as also their commutators with generators with conformal weight smaller than n corre-
spond to vanishing Noether charges. This defines ”gauge conditions”.

To sum up, there are therefore 3 hierarchies allowing to describe finite measurement resolu-
tion and they must be essentially equivalent in TGD framework.

Three evolutionary hierarchies

There are three evolutionary hierarchies: hierarchies of extensions of extensions of... ofrationals...;
inclusions of inclusions of .... of HFFs, and inclusions of isomorphic super symplectic algebras.

1. Extensions of rationals

The extensions of rationals become algebraically increasingly complex as their dimension
increases. The co-associative space-time surfaces in M8 are ”roots” of real polynomials with ra-
tional coefficients to guarantee number theoretical universality and this means space-time surfaces
are characterized by extension of rationals.

Each extension of rationals defines extensions for p-adic number fields and entire adele. The
interpretation is as a cognitive leap: the system’s intelligence/algebraic complexity increases when
the extension is extended further.
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The extensions of extensions of .... define hierarchies with Galois groups in certain sense
products of extensions involved. Exceptional extensions are those which do not allow this decom-
position. In this case Galois group is a simple group. Simple groups are primes of finite groups and
correspond to elementary particles of cognition. Kind of fundamental, non-decomposable ideas.
Mystic might speak of pure states of consciousnesswith no thoughts.

In the evolution by quantum jumps the dimension of extension increases in statistical sense
and evolution is unavoidable. This evolution is due to subjective time evolution by quantum jumps,
something which is in spirit with Connes proposal but replaces time evolution by a sequence of
evolutionary leaps.

2. Inclusions of HFFs as a hierarchy

HFFs are fractals. They have infinite inclusion hierarchies in which sub-HFF isomorphicto
entire HFFs is included to HFF.

Also the hierarchies of inclusions define evolutionary hierarchies: HFF which is isomorphic
with original becomes larger and in some sense more complex than the included factor. Also now
one has sequences of inclusions of inclusions of.... These sequences would correspond to sequences
for extensions of extensions... of rationals. Note that the inclusion hierarchy would be the basic
object: not only single HFF in the hierarchy.

3. Inclusions of supersymplectic algebras as an evolutionary hierarchy

The third hierarchy is defined by the fractal hierarchy of sub-algebras of supersymplectic
algebra isomorphic to the algebra itself. At a given level of hierarchy generators with conformal
weight larger than n correspond to gauge degrees of freedom. As n increases the number of physical
degrees of freedom above measurement resolution increases which means evolution. This hierarchy
should correspond rather concretely to that for the extensions of rationals. These hierarchies would
be essentially one and the same thing in the TGD Universe.

TGD based model for subjective time development

The understanding of subjective time development as sequences of SSFRs preceded by unitary
”time” evolution has improved quite considerably recently [L55]. The idea is that the subjective
time development as a sequence of scalings at the light-cone boundary generated by the vibrational
part L̂0 of the scaling generator L0 = p2 − L̂0 (L0 annihilates the physical states). Also p-adic
mass calculations use L̂0 .

For more than 10 years ago [K48, K28], I considered the possibility that Connes time
evolution operator that he assigned with thermo-dynamical time could have a significant role in
the definition of S-matrix in standard sense but had to give up the idea.

It however seems that for super-symplectic algebra L̂0 generates an outer automorphism
since the algebra has only generators with conformal with n > 0 and its extension to included
also generators with n ≤ 0 is required to introduce L0: since L0 contains annihilation operators,
it indeed generates outer automorphism in SCA. The two views could be equivalent! Whereas
Connes considered thermo-dynamical time evolution, in TGD framework the time evolution would
be subjective time evolution by SSFRs.

1. The guess would be that the exponential of the scaling operator L0 gives the time evolution.
The problem is that L0 annihilates the physical states. The solution of the problem would be
the same as in p-adic thermodynamics. L0 decomposes as L0 = p2− L̂0 and the vibrational
part L̂0 this gives mass spectrum as eigenvalues of p2. The thermo-dynamical state in p-adic

thermodynamics is pL̂0β . This operator exists p-adically in the p-adic number field defined
by prime p.

2. Could unitary subjective time development involve the operator exp(i2πL0τ) τ =
log(T/T0)? This requires T/T0 = exp(n/m) guaranteeing that exponential is a root
of unity for an eigenstate of L0. The scalings are discretized and scalings come as powers of
e1/m. This is possible using extensions of rationals generated by a root of e. The unique
feature of p-adics is that ep is ordinary p-adic number. This alone would give periodic time
evolution for eigenstates of L0 with integer eigenvalues n.



122 Chapter 3. Evolution of Ideas about Hyper-finite Factors in TGD

SSA and SSAn

Supersymplectic algebra SSA has fractal hierarchies of subalgebras SSAn. The integers in a
given hierarchy are of forn n1, n1n2, n1n2n3, ... and correspond naturally to hierarchies of inclusions
of HFFs. Conformal weights are positive: n > 0. For ordinary conformal algebras also negative
weights are allowed. Yangians have only non-negative weights. This is of utmost importance.

SSAn with generators have radial light-like conformal weights coming as multiples of
n. SSAn annihilates physical states and [SSAn, SSA] does the same. Hence the generators with
conformal weight larger than n annihilate the physical states.

What about generators with conformal weights smaller than n? At least a subset of them
need not annihilate the physical states. Since Ln are superpositions of creation operators, the idea
that analogs of coherent states could be in question.

It would be nice to have a situation in which Ln, n < m commute. [Lk, Ll] = 0 effectively
for k + l ≥ m.

The simplest way to obtain a set of effectively commuting operators is to take the generators
Lk, [m/2] < k < m, where [m/2] is nearest integer larger than m/2.

This raises interesting questions.

1. Could the Virasoro generators O({ck}) =
∑
k∈[m/2],m] ckLk as linear combinations of creation

operators generate a set of coherent states as eigenstates of their Hermitian conjugates.

2. Some facts about coherent states are in order.

(a) When one adds to quantum harmonic oscillator Hamiltonian oscillator a time de-
pendent perturbation which lasts for a finite the vacuum state evolves to an oscillator
vacuum whose position is displacemented. The displacement is complex and is a Fourier
component of the external force f(t) corresponding to the harmonic oscillator frequency
ω. Time evolution picks up only this component.

(b) Coherent state property means that the state is eigenstate of the annihilation creation
operator with eivengeu α = −ig(ω) where g(omega) =

∫
f(u)exp(−iωu)du is Fourier

transform of f(t).

(c) Coherent states are not orthogonal and form an overcomplete set. The overlaps of
coherent states are proportional to a Gaussian depending on the complex parameters
characterizing them. One can however develop any state in terms of coherent states as
a unique expansion since one can represent unitary in terms of coherent states.

(d) Coherent state obtained from the vacuum state by time evolution in presence of f(t)
by a unitary displacement operator D(α) = exp(αa† − αa). (https://en.wikipedia.
org/wiki/Displacement_operator).

The displacement operator is a unitary operator and in the general case the displacement
is complex. The product of two displacement operators would be apart from a phase
factor a displacement operator associated with the sum of displacements.

(e) Harmonic oscillator coherent states are indeed maximally classical since wave packets
have minimal width in both q and p space. Furthermore, the classical expectation values
for q and p obey classical equations of motion.

These observations raise interesting questions about how the evolution by SSFRs could be
modelled.

1. Instead of harmonic oscillator in q-space, one would have time evolution in the space of
scalings of causal diamond parameterized by the scaling parameter τ = log(T/T0), where T
can be identified as the radial light-like coordinate of light-cone boundary.

The analogs of harmonic oscillator states would be defined in this space and would be essen-
tially wave packets with ground state minimizing the width of the wave packet.

2. The role of harmonic oscillator Hamiltonian in absence of external force would be taken by
the generator L̂0 (L0 = p2 − L̂0 acts trivially) and gives rise to mass squared quantization.
The situation would be highly analogous to that in p-adic thermodynamics. The role of ω

https://en.wikipedia.org/wiki/Displacement_operator
https://en.wikipedia.org/wiki/Displacement_operator
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would be taken by the minimal conformal weight hmin such that the eigenvalues of L0 are
its multiples. It seems that this weight must be equal to hmin = 1.

The commutations of ~L0 with Lk, k > 0 would be as for L0 so what the replacement should
not affect the situation.

3. The scaling parameter τ is analogous to the spatial coordinate q for the harmonic oscillator.
Can one identify the analog of the external force f(t) acting during unitary evolution between
two SSFRs? Or is it enough to use only the analog of g(ω → hmin = 1) - that is the coefficients
Ck.

To identify f(t), one needs a time coordinate t. This was already identified as τ . This one
would have q = t, which looks strange. The space in which time evolution is the space of
scalings and the time evolutions are scalings and thus time evolution means translation in
this space. The analog for this would be Hamiltonian H = i~d/dq.
Number theoretical universality allows only the values of τ = r/s whose exponents give roots
of unity. Also exp(nτ) makes sense p-adically for these values. This would mean that the
Fourier transform defining g would become discrete and be sum over the values f(τ = r/s).

4. What happens if one replaces L̂0 with L0. In this case one would have the replacement
of ω with hvac = 0. Also the analog of Fourier transform with zero frequency makes
sense. L̂0 = p2 − L0 is the most natural choice for the Hamiltonian defining the time
evolution operator but is trivial. Could ∆iτ describe the inherent time evolution. It would
be outer automorphism since it is not defined solely in terms of SCA. So: could one have
∆ = exp(L̂0) so that ∆iτ coincide with exp(iL̂0τ)? This would mean the identification

∆ = exp(L̂0) ,

which is a positive definite operator. The exponents coming from exp(iL0τ) can be number
theoretically universal if τ = log(T/T0) is a rational number implying T/T0 = exp(r/s),
which is possible number theoretically) and the extension of rationals contains some roots
of e.

5. Could one have ∆ = L0? Also now that positivity condition would be satisfied if SSA
conformal weights satisfy n > 0.

The problem with this operation is that it is not number theoretically universal since the
exponents exp(ilog(n)τ) do not exist p-adically without introducing infinite-D extension of
p-adic number making log(n) well-defined.

What is however intriguing is that the ”time” evolution operator ∆iτ in the eigenstate basis
would have trace equal to Tr(∆iτ )

∑
d(n)niτ , where d(n) is the degeneracy of the state. This

is a typical zeta function: for Riemann Zeta one has d(n) = 1.

For ∆ = exp(L0) option Tr(∆iτ ) =
∑
d(n)exp(inτ) exists for τ = r/s if r:th root of e

belongs to the extension of p-adics.

To sum up, one would have Gaussian wave packet as harmonic oscillator vacuum in the
space of scaled variants of CD. The unitary time evolution associated with SSFR would displace
the peak of the wave packet to a larger scalings. The Gaussian wave function in the space of
scaled CDs has been proposed earlier.

Could this time evolution make sense and be even realistic?

1. The analogs of harmonic oscillator states are defined in the space of scalings as Gaussians
and states obtained from them using oscillator operators. There would be a wave function
in the moduli space of CDs analogous to a state of harmonic oscillator.

2. SSFR following the time evolutions would project to an eigenstate of harmonic oscillator
having in general displaced argument. The unitary displacement operator D should commute
with the operators having the members of zero energy states at the passive boundary of CD
as eigenstates. This poses strong conditions. At least number theoretic measurements could
satisfy these conditions.
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3. SSFRs are identified as weak measurements as near as possible to classical measurements.
Time evolution by the displacement would be indeed highly analogous to classical time evo-
lution for theeharmonic oscillator.

4. The unitary displacement operator corresponds to the arbitrary external force on the har-
monic oscillator and it seems that it would be selected in SSFR for the unitary evolution
after SSFR. This means fixing the coefficients Ck in the operator

∑
CkLk.

What is the subjective ”time” evolution operator when in the case of SSAn?

1. The scaling analog of the unitary displacement operator D as D =
∑
exp(

∑
CkLk−CkL−k)

is highly suggestive and would take the oscillator vacuum to a coherent state. Coefficients
Ck would be proportional to τ . There would be a large number of choices for the unitary
displacement operator. One can also consider complex values of τ since one has complexified
M8.

2. There should be a normalization for the coefficients: without this it is not possible to talk
about a special value of τ does not make sense. For instance, the sum of their moduli
squared could be equal to 1. This would give interpretation as a quantum state in the
degrees of freedom considered. The width of the Gaussian would increase slowly during the
unitary time evolution and be proportional to log(T/T0).

The width of the Gaussian would increase slowly as a function of T during the unitary time
evolution and be proportional to log(T/T0). The condition that ck are proportional the same
complex number times τ is too strong.

3. The arbitrariness in the choice of Ck would bring in a kind of non-determinism as a selection
of this superposition. The ability to engineer physical systems is in conflict with the
determinism of classical physics and also difficult to understand in standard quantum physics.
Could one interpret this choice as an analog for engineering a Hamiltonian as in say
quantum computation or build-up of an electric circuit for some purpose? Could goal
directed action correspond to this choice?

If so engineerable degrees of freedom would correspond to intermediate degrees of freedom
associated with Lk, [m/2] ≤ k ≤ m. They would be totally absent for k = 1 and this would
correspond to a situation analogous to the standard physics without any intentional action.

3.5 MIP*= RE: What could this mean physically?

I received a very interesting link to a popular article (https://cutt.ly/sfd5UQF) explaining a
recently discovered deep result in mathematics having implications also in physics. The article
[A97] (https://cutt.ly/rffiYdc) by Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John
Wright, and Henry Yuen has a rather concise title “MIP*=RE”. In the following I try to express
the impressions of a (non-mainstream) physicist about the result.

The following is the result expressed using the concepts of computer science about which I
know very little at the hard technical level. The results are however told to state something highly
non-trivial about physics.

1. RE (recursively enumerable languages) denotes all problems solvable by computer. P denotes
the problems solvable in a polynomial time. NP does not refer to a non-polynomial time but
to “non-deterministic polynomial acceptable problems” - I hope this helps the reader- I am
a little bit confused! It is not known whether P = NP is true.

2. IP problems (P is now for “prover” that can be solved by a collaboration of an interrogator
and prover who tries to convince the interrogator that her proof is convincing with high
enough probability. MIP involves multiple l provers treated as criminals trying to prove
that they are innocent and being not allowed to communicate. MIP* is the class of solvable
problems in which the provers are allowed to entangle.

https://cutt.ly/sfd5UQF
https://cutt.ly/rffiYdc
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The finding, which is characterized as shocking, is that all problems solvable by a Turing
computer belong to this class: MIP*=RE. All problems solvable by computer would reduce to
problems in the class MIP*! Quantum computation would indeed add something genuinely new
to the classical computation.

Quantum entanglement would play an essential role in quantum computation. Also the
implications for physics are highly non-trivial.

1. Connes embedding problem asking whether all infinite-D matrices can always be approx-
imated by finite-D matrices has a negative solution.Therefore MIP*= RE does not hold
true for hyperfinite factors of type II1 (HFFs) central in quantum TGD. Also the Tirelson
problem finds a solution. The measurements of commuting observers performed by two ob-
servers are equivalent to the measurements of tensor products of observables only in finite-D
case and for HFFs. That quantum entanglement would not have any role in HFFs is in
conflict with intuition.

2. In the TGD framework finite measurement resolution is realized in terms of HFFs at
Hilbert space level and in terms of cognitive representations at space-time level defined purely
number-theoretically. This leads to a hierarchy of adeles defined by extensions of rationals
and the Hilbert spaces must have algebraic extensions of rationals as a coefficient field.
Therefore one cannot in general case find a unitary transformation mapping the entangled
situation to an unentangled one, and quantum entanglement plays a key role. It seems that
computationalism formulated in terms of recursive functions of natural numbers must be
formulated for the hierarchy of extensions of rationals in terms of algebraic integers.

3. In TGD inspired theory of consciousness entanglement between observers could be seen as
a kind of telepathy helping to perform conscious quantum computations. Zero energy
ontology also suggests a modification of the views about quantum computation. TGD can
be formulated also for real and p-adic continua identified as correlates of sensory experience
and cognition, and it seems that computational paradigm need not apply in the continuum
cases.

3.5.1 Two physically interesting applications

There are two physically interesting applications of the theorem interesting also from the TGD
point of view and force to make explicit the assumptions involved.

About the quantum physical interpretation of MP*

To proceed one must clarify the quantum physical interpretation of MIP*.

Quantum measurement requires entanglement of the observer O with the measured system
M . What is basically measured is the density matrix of M (or equivalently that of O).
State function reduction gives as an outcome a state, which corresponds to an eigenvalue
of the density matrix. Note that this state can be an entangled state if the density matrix
has degenerate eigenvalues. Quantum measurement can be regarded as a question to the
measured system: “What are the values of given commuting observables?”. The final
state of quantum measurement provides an eigenstate of the observables as the answer to
this question. M would be in the role of the prover and Oi would serve as interrogators.

In the first case multiple interrogators measurements would entangle M with unentangled
states of the tensor product H1 ⊗H2 for O followed by a state function reduction splitting
the state of M to un-entangled state in the tensor product M1 ⊗M2.

In the second case the entire M would be interrogated using entanglement of M with
entangled states of H1 ⊗H2 using measurements of several commuting observables. The
theorem would state that interrogation in this manner is more efficient in infinite-D case
unless HFFs are involved.
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3. This interpretation differs from the interpretation in terms of computational problem solving
in which one would have several provers and one interrogator. Could these interpretations
be dual as the complete symmetry of the quantum measurement with respect to O and M
suggests? In the case of multiple provers (analogous to accused criminals) it is advantageous
to isolate them. In the case of multiple interrogators the best result is obtained if the
interrogator does not effectively split itself into several ones.

Connes embedding problem and the notion of finite measurement/cognitive resolution

Alain Connes formulated what has become known as Connes embedding problem. The question
is whether infinite matrices forming factor of type II1 can be always approximated by finite-D
matrices that is imbedded in a hyperfinite factor of type II1 (HFF). Factors of type II and their
HFFs are special classes of von Neumann algebras possibly relevant for quantum theory.

This result means that if one has measured of a complete set of for a product of commuting
observables acting in the full space, one can find in the finite-dimensional case a unitary transfor-
mation transforming the observables to tensor products of observables associated with the factors
of a tensor product. In the infinite-D case this is not true.

What seems to put alarms ringing is that in TGD there are excellent arguments suggesting
that the state space has HFFs as building bricks. Does the result mean that entanglement cannot
help in quantum computation in TGD Universe? I do not want to live in this kind of Universe!

Tsirelson problem

Tsirelson problem (see this) is another problem mentioned in the popular article as a physically
interesting application. The problem relates to the mathematical description of quantum measure-
ment.

Three systems are considered. There are two systems O1 and O2 representing observers
and the third representing the measured system M . The measurement reducing the entanglement
between M and O1 or O2 can regarded as producing correspondence between state of M and O1

or O2, and one can think that O1 or O2 measures only obserservables in its own state space as a
kind of image of M . There are two ways to see the situation. The provers correspond now to the
observers and the two situations correspond to provers without and with entanglement.

Consider first a situation in which one has single Hilbert space H and single observer O.
This situation is analogous to IP.

1. The state of the system is described statistically by a density matrix - not necessarily pure
state -, whose diagonal elements have interpretation as reduction probabilities of states in
this bases. The measurement situation fixes the state basis used. Assume an ensemble of
identical copies of the system in this state. Assume that one has a complete set of commuting
observables.

2. By measuring all observables for the members of the ensemble one obtains the probabilities
as diagonal elements of the density matrix. If the observable is the density matrix having
no- degenerate eigenvalues, the situation is simplified dramatically. It is enough to use the
density matrix as an observable. TGD based quantum measurement theory assumes that
the density matrix describing the entanglement between two subsystems is in a universal
observable measure in state function reductions reducing their entanglement.

3. Can one deduce also the state of M as a superposition of states in the basic chosen by the
observer? This basis need not be the same as the basis defined by - say density matrix if the
system has interacted with some system and this ineracton has led to an eigenstate of the
density matrix. Assume that one can prepare the latter basis by a physical process such as
this kind of interaction.

The coefficients of the state form a set of N2 complex numbers defining a unitary N × N
matrix. Unitarity conditions giveN conditions telling that the complex rows and unit vectors:
these numbers are given by the measurement of all observables. There are also N(N − 1)
conditions telling that the rows are orthogonal. Together these N+N(N−1) = N2 numbers

https://arxiv.org/abs/0812.4305
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fix the elements of the unitary matrix and therefore the complex coefficients of the state basis
of the system can be deduced from a complete set of measurements for all elements of the
basis.

Consider now the analog of the MIS* involving more than one observer. For simplicity
consider two observers.

1. Assume that the state space H of M decomposes to a tensor product H = H1 ⊗ H2 of
state spaces H1 and H2 such that O1 measures observables X1 in H1 and O2 measuresob-
servables X2 in H2. The observables X1 and X2 commute since they act in different tensor
factors. The absence of interaction between the factors corresponds to the inability of the
provers to communicate. As in the previous case, one can deduce the probabilities for the
various outcomes of the joint measurements interpreted as measurements of a complete set
of observables X1 ⊗X2.

2. One can also think that the two systems form a single system O so that O1 and O2 can
entangle. This corresponds to a situation in which entanglement between the provers is
allowed. Now X1 and X2 are not in general independent but also now they must commute.
One can deduce the probabilities for various outcomes as eigenstates of observables X1X2

and deduce the diagonal elements of the density matrix as probabilities.

Are these ways to see the situation equivalent? Tsirelson demonstrated that this is the case
for finite-dimensional Hilbert spaces, which can indeed be decomposed to a tensor product of factors
associated with O1 and O2. This means that one finds a unitary transformation transforming the
entangled situation to an unentangled one and to tensor product observables.

For the infinite-dimensional case the situation remained open. According to the article,
the new result implies that this is not the case. For hyperfinite factors the situation can be
approximated with a finite-D Hilbert space so that the situations are equivalent in arbitrary precise
approximation.

3.5.2 The connection with TGD

The result looks at first a bad news from the TGD point of view, where HFFs are highly suggestive.
One must be however very careful with the basic definitions.

Measurement resolution

Measurement resolution is the basic notion.

1. There are intuitive physicist’s arguments demonstrating that in TGD the operator algebras
involved with TGD are HFFs provides a description of finite measurement resolution. The
inclusion of HFFs defines the notion of resolution: included factor represents the degrees
of freedom not seen in the resolution used [K87, K28] (http://tgdtheoryd.fi/pfpool/
vNeumann.pdf) and http://tgdtheoryd.fi/pfpool/vNeumannnew.pdf).

Hyperfinite factors involve new structures like quantum groups and quantum algebras reflect-
ing the presence of additional symmetries: actually the “world of classical worlds” (WCW) as
the space of space-time surfaces as maximal group of isometries and this group has a fractal
hierarchy of isomorphic groups imply inclusion hierarchies of HFFs. By the analogs of gauge
conditions this infinite-D group reduces to a hierarchy of effectively finite-D groups. For
quantum groups the infinite number of irreps of the corresponding compact group effectively
reduces to a finite number of them, which conforms with the notion of hyper-finiteness.

It looks that the reduction of the most general quantum theory to TGD-like theory relying on
HFFs is not possible. This would not be surprising taking into account gigantic symmetries
responsible for the cancellation of infinities in TGD framework and the very existence of
WCW geometry.

2. Second TGD based approach to finite resolution is purely number theoretic [L23] and involves
adelic physics as a fusion of the real physics with various p-adic physics as correlates of

http://tgdtheoryd.fi/pfpool/vNeumann.pdf
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cognition. Cognitive representations are purely number theoretic and unique discretizations
of space-time surfaces defined by a given extension of rationals forming an evolutionary
hierarchy: the coordinates for the points of space-time as a 4-surface of the embedding space
H = M4 × CP2 or of its dual M8 are in the extension of rationals defining the adele. In
the case of M8 the preferred coordinates are unique apart from time translation. These two
views would define descriptions of the finite resolution at the level of space-time and Hilbert
space. In particular, the hierarchies of extensions of rationals should define hierarchies of
inclusions of HFFs.

For hyperfinite factors the analog of MIP*=RE cannot hold true. Doesn’t the TGD Universe
allow a solution of all the problems solvable by Turing Computer? There is a loophole in this
argument.

1. The point is that for the hierarchy of extensions of rationals also Hilbert spaces have as a
coefficient field the extension of rationals! Unitary transformations are restricted to matrices
with elements in the extension. In general it is not possible to realize the unitary transforma-
tion mapping the entangled situation to an un-entangled one! The weakening of the theorem
would hold true for the hierarchy of adeles and entanglement would give something genuinely
new for quantum computation!

2. A second deep implication is that the density matrix characterizing the entanglement between
two systems cannot in general be diagonalized such that all diagonal elements identifiable as
probabilities would be in the extension considered. One would have stable or partially stable
entanglement (could the projection make sense for the states or subspaces with entanglement
probability in the extension). For these bound states the binding mechanism is purely number
theoretical. For a given extension of p-adic numbers one can assign to algebraic entanglement
also information measure as a generalization of Shannon entropy as a p-adic entanglement
entropy (real valued). This entropy can be negative and the possible interpretation is that
the entanglement carries conscious information.

What about transcendental extensions?

During the writing of this article an interesting question popped up.

1. Also transcendental extensions of rationals are possible, and one can consider the gener-
alization of the computationalism by also allowing functions in transcendental extensions.
Could the hierarchy of algebraic extensions could continue with transcendental extensions?
Could one even play with the idea that the discovery of transcendentals meant a quantum
leap leading to an extension involving for instance e and π as basic transcendentals? Could
one generalize the notion of polynomial root to a root of a function allowing Taylor expansion
f(x) =

∑
qnx

n with rational coefficients so that the roots of f(x) = 0 could be used define
transcendental extensions of rationals?

2. Powers of e or its root define and infinite-D extensions having the special property that they
are finite-D for p-adic number fields because ep is ordinary p-adic number. In the p-adic
context e can be defined as a root of the equation xp −

∑
pn/n! = 0 making sense also for

rationals. The numbers log(pi) such that pi appears a factor for integers smaller than p
define infinite-D extension of both rationals and p-adic numbers. They are obtained as roots
of ex − pi = 0.

3. The numbers (2n+ 1)π (2nπ) can be defined as roots of sin(x) = 0 (cos(x) = 0. The exten-
sion by π is infinite-dimensional and the conditions defining it would serve as consistency
conditions when the extension contains roots of unity and effectively replaces them.

4. What about other transcendentals appearing in mathematical physics? The values ζ(n)
of Riemann Zeta appearing in scattering amplitudes are for even values of n given by
ζ(2n) = (−1)n+1B2n(2π)2n/2(2n+1)!. This follows from the functional identity for Riemann
zeta and from the expression ζ(−n) = (−1)nBn+1/(n + 1) ( (B(−1/2) = −1/2) (https:

https://cutt.ly/dfgtgmw
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//cutt.ly/dfgtgmw). The Bernoulli numbers Bn are rational and vanish for odd values of
n. An open question is whether also the odd values are proportional to πn with a rational
coefficient or whether they represent “new” transcendentals.

What about the situation for the continuum version of TGD?

At least the cognitively finitely representable physics would have the HFF property with coefficient
field of Hilbert spaces replaced by an extension of rationals. Number theoretical universality would
suggest that HFF property characterizes also the physics of continuum TGD. This leads to a series
of questions.

1. Does the new theorem imply that in the continuum version of TGD all quantum computations
allowed by the Turing paradigm for real coefficients field for quantum states are not possible:
MIP∗ ⊂ RE? The hierarchy of extensions of rationals allows utilization of entanglement,
and one can even wonder whether one could have MIP∗ = RE at the limit of algebraic
numbers.

2. Could the number theoretic vision force change also the view about quantum computation?
What does RE actually mean in this framework? Can one really assume complex entangle-
ment coefficients in computation. Does the computational paradigm makes sense at all in
the continuum picture?

Are both real and p-adic continuum theories unreachable by computation giving rise to cog-
nitive representations in the algebraic intersubsection of the sensory and cognitive worlds? I
have indeed identified real continuum physics as a correlate for sensory experience and various
p-adic physics as correlates of cognition in TGD: They would represent the computionally
unreachable parts of existence.

Continuum physics involves transcendentals and in mathematics this brings in analytic for-
mulas and partial differential equations. At least at the level of mathematical consciousness
the emergence of the notion of continuum means a gigantic step. Also this suggests that
transcendentality is something very real and that computation cannot catch all of it.

3. Adelic theorem allows to express the norm of a rational number as a product of inverses of its
p-adic norms. Very probably this representation holds true also for the analogs of rationals
formed from algebraic integeres. Reals can be approximated by rationals. Could extensions
of all p-adic numbers fields restricted to the extension of rationals say about real physics only
what can be expressed using language?

Also fermions are highly interesting in the recent context. In TGD spinor structure can be
seen as a square root of Kähler geometry, in particular for the “world of classical worlds” (WCW).
Fermions are identified as correlates of Boolean cognition. The continuum case for fermions does
not follow as a näıve limit of algebraic picture.

1. The quantization of the induced spinors in TGD looks different in discrete and continuum
cases. Discrete case is very simple since equal-time anticommutators give discrete Kronecker
deltas. In the continuum case one has delta functions possibly causing infinite vacuum energy
like divergences in conserved Noether charges (Dirac sea).

2. In [L47] (https://cutt.ly/zfftoK6) I have proposed how these problems could be avoided
by avoiding anticommutators giving delta-function. The proposed solution is based on zero
energy ontology and TGD based view about space-time. One also obtains a long-sought-for
concrete realization for the idea that second quantized induce spinor fields are obtained as
restrictions of second quantized free spinor fields in H = M4 × CP2 to space-time surface.
The fermionic variant of M8 − H-duality [L48] provides further insights and gives a very
concrete picture about the dynamics of fermions in TGD.

These considerations relate in an interesting manner to consciousness. Quantum entangle-
ment makes in the TGD framework possible telepathic sharing of mental images represented by
sub-selves of self. For the series of discretizations of physics by HFFs and cognitive representations
associated with extensions of rationals, the result indeed means something new.

https://cutt.ly/dfgtgmw
https://cutt.ly/dfgtgmw
https://cutt.ly/zfftoK6
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What does one mean with quantum computation in TGD Universe?

The TGD approach raises some questions about computation.

1. The ordinary computational paradigm is formulated for Turing machines manipulating nat-
ural numbers by recursive algorithms. Programs would essentially represent a recursive
function n → f(n). What happens to this paradigm when extensions of rationals define
cognitive representations as unique space-time discretizations with algebraic numbers as the
limit giving rise to a dense in the set of reals.

The usual picture would be that since reals can be approximated by rationals, the situation is
not changed. TGD however suggests that one should replace at least the quantum version of
the Turing paradigm by considering functions mapping algebraic integers (algebraic rational)
to algebraic integers.

Quite concretely, one can manipulate algebraic numbers without approximation as a rational
and only at the end perform this approximation and computations would construct recursive
functions in this manner. This would raise entanglement to an active role even if one has
HFFs and even if classical computations could still look very much like ordinary computation
using integers.

This suggests that computationalism usually formulated in terms of recursive functions
of natural or rational numbers could be replaced with a hierarchy of computationalisms
for the hierarchy of extensions of rationals. One would have recursively definable functions
defined and having values in the extensions of rationals. These functions would be analogs
of analytic functions (or polynomials) with the complex variable replaced with an integer
or a rational of the extension. This poses very powerful constraints and there are good
reasons to expect an increase of computational effectiveness. One can hope that at
the limit of algebraic numbers of these functions allow arbitrarily precise approximations
to real functions. If the real world phenomena can be indeed approximated by cognitive
representations in the TGD sense, one can imagine a highly interesting approach to AI.

2. ZEO brings in also time reversal occurring in “big” (ordinary) quantum jumps and this mod-
ifies the views about quantum computation. In ZEO based conscious quantum computation
halting means “death” and “reincarnation” of conscious entity, self? How the processes in-
volving series of haltings in this sense differs from ordinary quantum computation: could one
shorten the computation time by going forth and back in time.

There are many interesting questions to be considered. M8 −H duality gives justifications
for the vision about algebraic physics. TGD leads also to the notion of infinite prime and I have
considered the possibility that infinite primes could give a precise meaning for the dimension of
infinite-D Hilbert space. Could the number-theoretic view about infinite be considerably richer
than the idea about infinity as limit would suggest [K72].

The construction of infinite primes is analogous to a repeated second quantization of arith-
metic supersymmetric quantum field theory allowing also bound states at each level and a concrete
correspondence with the hierarchy of space-time sheets is suggestive. For the infinite primes at
the lowest level of the hierarchy single particle states correspond to rationals and bound states to
polynomials and therefore to the sets of their roots. This strongly suggests a connection with M8

picture.

Could the number field of computable reals (p-adics) be enough for physics?

For some reason I have managed to not encounter the notion of computable number (see
https://cutt.ly/pTeSSfR) as opposed to that of non-computable number (see https://cutt.

ly/gTeD9vF). The reason is perhaps that I have been too lazy to take computationalism seriously
enough.

Computable real number is a number, which can be produced to an arbitrary accuracy by
a Turing computer, which by definition has a finite number of internal states, has input which
is natural number and produces output which is natural numbers. Turing computer computes
values of a function from natural numbers to itself by applying a recursive algorithm.

The following three formal definitions of the notion are equivalent.

https://cutt.ly/pTeSSfR
https://cutt.ly/gTeD9vF
https://cutt.ly/gTeD9vF
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1. The real number a is computable, if it can be expressed in terms of a computable function
n→ f(n) from natural numbers to natural numbers characterized by the property

f(n)− 1)

n
≤ a ≤ (

f(n) + 1)

n
.

For rational a = q, f(n) = nq satisfies the conditions. Note that this definition does not
work for p-adic numbers since they are not well-ordered.

2. The number a is computable if for an arbitrarily small rational number ε there exists a
computable function producing a rational number r satisfying |r − x≤ ε. This definition
works also for p-adic numbers since it involves only the p-adic norm which has values which
are powers of p and is therefore real valued.

3. a is computable if there exists a computable sequence of rational numbers ri converging to
a such that |a− ri| ≤ 2−i holds true. This definition works also for 2-adic numbers and its
variant obtained by replacing 2 with the p-adic prime p makes sense for p-adic numbers.

The set Rc of computable real numbers and the p-adic counterparts Qp,c of Rc, have
highly interesting properties.

1. Rc is enumerable and therefore can be mapped to a subset of rationals: even the
ordering can be preserved. Also Qp,c is enumerable but now one cannot speak of ordering.
As a consequence, most real (p-adic) numbers are non-computable. Note that the pinary
expansion of a rational is periodic after some pinary digit. For a p-adic transcendental
this is not the case.

2. Algebraic numbers are computable so that one can regard Rc as a kind of completion of
algebraic numbers obtained by adding computable reals. For instance, π and e are com-
putable. 2π can be computed by replacing the unit circle with a regular polygon with n sides
and estimating the length as nLn. Ln the length of the side. e can be computed from the
standard formula. Interestingly, ep is an ordinary p-adic number. An interesting question
is whether there are other similar numbers. Certainly many algebraic numbers correspond
to ordinary p-adic numbers.

3. Rc (Qp,c) is a number field since the arithmetic binary operations +,−×, / are computable.
Also differential and integral calculus can be constructed. The calculation of a derivative
as a limit can be carried out by restricting the consideration to computable reals and there
is always a computable real between two computable reals. Also Riemann sum can be
evaluated as a limit involving only computable reals.

4. An interesting distinction between real and p-adic numbers is that in the sum of real numbers
the sum of arbitrarily high digits can affect even all lower digits so that it requires computa-
tional work to predict the outcome. For p-adic numbers memory digits affect only the higher
digits. This is why p-adic numbers are tailor made for computational purposes.Canonical
identification

∑
xnp

n →
∑
xnp

−n used in p-adic mass calculations to map p-adic mass
squared to its real counterpart [K41] maps p-adics to reals in a continuous manner. For inte-
gers this corresponds is 2-to-1 due to the fact that the p-adic numbers −1 = (p− 1)/(1− p)
and 1/p are mapped to p.

5. For computable numbers, one cannot define the relation =. One can only define equality in
some resolution ε. The category theoretical view about equality is also effective and conforms
with the physical view.

Also the relations ≤ and ≥ fail to have computable counterparts since only the absolute
value |x − y| can appear in the definition and one loses the information about the well-
ordered nature of reals. For p-adic numbers there is no well-ordering so that nothing is
lost. A restriction to non-equal pairs however makes order relation computable. For p-adic
numbers the same is true.
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6. Computable number is obviously definable but there are also definanable numbers, which
are not computable. Examples are Gödel numbers in a given coding scheme for statements,
which are true but not provable. More generally, the Gödel numbers coding for undecidable
problems such as the halting problem are uncomputable natural numbers in a given coding
scheme. Chaitin’s constant, which gives the probability that random Turing computation
halts, is a non-computable but definable real number.

7. Computable numbers are arithmetic numbers, which are numbers definable in terms of
first order logic using Peano’s axioms. First order logic does not allow statements about
statements and one has an entire hierarchy of statements about... about statements. The
hierarchy of infinite primes defines an analogous hierarchy in the TGD framework and is
formally similar to a hierarchy of second quantizations [K72].

3.6 Analogs Of Quantum Matrix Groups From Finite Mea-
surement Resolution?

The notion of quantum group [?]eplaces ordinary matrices with matrices with non-commutative
elements. This notion is physically very interesting, and in TGD framework I have proposed that
it should relate to the inclusions of von Neumann algebras allowing to describe mathematically
the notion of finite measurement resolution [?] These ideas have developed slowly through various
side tracks.

In the sequel I will consider the notion of quantum matrix inspired by the recent view about
quantum TGD relying on the notion of finite measurement resolution and show that under some
additional conditions it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution.

1. The basic idea is to replace complex matrix elements with operators, which are products
of non-negative hermitian operators and unitary operators analogous to the products of
modulus and phase as a representation for complex numbers. Modulus and phase would be
non-commuting and have commutation relation analogous to that between momentum and
plane-wave in accordance with the idea about quantization of complex numbers.

2. The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. Strong/weak permutation symmetry of de-
terminant requires its invariance apart from sign change under permutations of rows and/or
columns. Weak permutation symmetry means development of determinant with respect to a
fixed row or column and does not pose additional conditions. For weak permutation symme-
try the permutation of rows/columns would however have a natural interpretation as braiding
for the hermitian operators defined by the moduli of operator valued matrix elements and
here quantum group structure emerges.

3. The commutativity of all sub-determinants is essential for the replacement of eigenvalues with
eigenvalue spectra of hermitian operators and sub-determinants define mutually commuting
set of operators.

Quantum matrices define a more general structure than quantum group but provide a con-
crete representation for them in terms of finite measurement resolution, in particular when q is a
root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one obtains quantum matri-
ces for which the determinant is apart from possible change by a sign factor invariant under the
permutations of both rows and columns. One can also understand the recursive fractal structure
of inclusion sequences of hyper-finite factors resulting by replacing operators appearing as matrix
elements with quantum matrices and a concrete connection with quantum groups emerges.

In Zero Energy Ontology (ZEO) M-matrix serving as the basic building brick of unitary U-
matrix and identified as a hermitian square root of density matrix provides a possible application
for this vision. Especially fascinating is the possibility of hierarchies of measurement resolutions
represented as inclusion sequences realized as recursive construction of M-matrices. Quantization
would emerge already at the level of complex numbers appearing as M-matrix elements.
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This approach might allow to unify various ideas behind TGD. For instance, Yangian alge-
bras emerging naturally in twistor approach are examples of quantum algebras. The hierarchy of
Planck constants should have close relationship with inclusions and fractal hierarchy of sub-algebras
of super-symplectic and other conformal algebras.

3.6.1 Well-definedness Of The Eigenvalue Problem As A Constraint To
Quantum Matrices

Intuition suggests that the presence of degrees of freedom below measurement resolution implies
that one must use density matrix description obtained by taking trace over the unobserved degrees
of freedom. One could argue that in state function reduction with finite measurement resolution
the outcome is not a pure state, or not even negentropically entangled state (possible in TGD
framework) but a state described by a density matrix. The challenge is to describe the situation
mathematically in an elegant manner.

1. There is present an infinite number of degrees of freedom below measurement resolution with
which measured degrees of freedom entangle so that their presence affects the situation. One
has a system with finite number degrees of freedom such as two-state system described by a
quantum spinor. In this case observables as hermitian operators described by 2× 2 matrices
would be replaced by quantum matrices with elements, which in general do not commute.

An attractive generalization of complex numbers appearing as elements of matrices is ob-
tained by replacing them with products Hij = hijuij of hermitian operators hij with non-
negative spectrum (modulus of complex number) and unitary operators uij (phase of complex
number) suggests itself. The commutativity of hij and uij would look nice but is not neces-
sary and is in conflict with the idea that modulus and phase of an amplitudes do not commute
in quantum mechanics.

Very probably this generalization is trivial for mathematician. One could indeed interpret
the generalization in terms of a tensor product of finite-dimensional matrices with possibly
infinite-dimensional space of operators of Hilbert space. For the physicist the situation might
be different as the following proposal for what hermitian quantum matrices could be suggests.

2. The modulus of complex number is replaced with a hermitian operator having non-negative
eigenvalues. The representation as h = AA† + A†A is would guarantee this. The phase of
complex number would be replaced by a unitary operator U possibly allowing the represen-
tation U = exp(iT ), T hermitian. The commutativity condition

[hij , uij ] = 0 (3.6.1)

for a given matrix element is also suggestive but as already noticed, Uncertainty Principle
suggests that modulus and phase do not commute as operators. The commutator of modulus
and phase would naturally be equal to that between momentum operator and plane wave:

[hij , uij ] = i~× uij , (3.6.2)

Here ~ = h/2π can be chosen to be unity in standard quantum theory. In TGD it can be
generalized to a hermitian operator Heff/h with an integer valued spectrum of eigenvalues
given by heff/h = n so that ordinary and dark matter sectors would be unified to single
structure mathematically.

3. The notions of eigenvalues and eigenvectors for a hermitian operator should generalize. Now
hermitian operator H would be a matrix with formally the same structure as N×N hermitian
matrix in commutative number field - say complex numbers - possibly satisfying additional
conditions.
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Hermitian matrix can be written as

Hij = hijuij for i>j Hij = uijhij for i<j , Hii = hi . (3.6.3)

Hermiticity conditions Hij = H†ji give

hij = hji , uij = u†ji . (3.6.4)

Here it has been assumed that one has quantum SU(2). For quantum U(2) one would have

U11 = U†22 = haua with ua commuting with other operators. The form of the conditions is
same as for ordinary hermitian matrices and it is not necessary to assume commutativity
[hij , uij ] = 0. Generalization of Pauli spin matrices provides a simple illustration.

4. The well-definedness of eigenvalue problem gives a strong constraint on the notion of her-
mitian quantum matrix. Eigenvalues of hermitian operator are determined by the vanishing
of determinant det(H − λI). Its expression involves sub-determinants and one must decide
whether to demand that the definition of determinant is independent of which column or row
one chooses to develop the determinant.

For ordinary matrix the determinant is expressible as sum of symmetric functions:

det(H − λI) =
∑

λnSn(H) . (3.6.5)

Elementary symmetric functions Sn - n-functions in following - have the property that they
are sums of contributions from to n-element paths along the matrix with the property that
path contains no vertical or horizontal steps. One has a discrete analog of path integral
in which time increases in each step by unit. The analogy with fermionic path integral is
also obvious. In the non-commutative case non-commutativity poses problems since different
orderings of rows (or columns) along the same n-path give different results.

(a) For the first option one gives up the condition that determinant can be developed with
respect to any row or column and defines determinant by developing it with respect
to say first row or first column. If one developing with respect to the column (row)
the permutations of rows (columns) do not affect the value of determinant or sub-
determinants but permutations of columns (rows) do so unless one poses additional
conditions stating that the permutations do not affect given contribution to the deter-
minant or sub-determinant. It turns out that this option must be applied in the case
of ordinary quantum group. For quantum phase q = ±1 the determinant is invariant
under permutations of both rows and columns.

(b) Second manner to get rid of difficulty would be that n-path does not depend on the
ordering of the rows (columns) differ only by the usual sign factor. For 2× 2 case this
would give

ad− bc = da− cb , (Option 2) (3.6.6)

These conditions state the invariance of the n-path under permutation group Sn per-
muting rows or columns.

(c) For the third option the elements along n-paths commute: paths could be said to be
“classical”. The invariance of N -path in this sense guarantees the invariance of all
n-paths. In 2-D case this gives

[a, d] = 0 , [b, c] = 0 . (Option 3) (3.6.7)
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5. One should have a well-defined eigenvalue problem. If the n-functions commute, one can
diagonalize the corresponding operators simultaneously and the eigenvalues problem reduces
to possibly infinite number of ordinary eigenvalue problems corresponding to restrictions to
given set of eigenvalues associated with N − 1 symmetric functions. This gives an additional
constraint on quantum matrices.

In 2-dimensional case one would have the condition

[ad− bc, a+ d] = 0 . (3.6.8)

Depending on how strong S2 invariance one requires, one obtains 0, 1, 2 nontrivial conditions
for 2 × 2 quantum matrices and 1 condition from the commutativity of n-functions besides
hermiticity conditions.

For N × N -matrices one would have N ! − 1 non-trivial conditions from the strong form of
permutation invariance guaranteeing the permutation symmetry of n-functions and N(N −
1)/2 conditions from the commutativity of n-functions.

6. The eigenvectors of the density matrix are obtained in the usual manner for each eigenvalue
contributing to quantum eigenvalue. Also the diagonalization can be carried out by a uni-
tary transformation for each eigenvalue separately. Hence the standard approach seems to
generalize almost trivially.

What makes the proposal non-trivial and possibly physically interesting is that the hermitian
operators are not assumed to be just tensor products of N × N hermitian matrices with
hermitian operators in Hilbert space.

The notion of unitary quantum matrix should also make sense. The näıve guess is that
the exponentiation of a linear combination of ordinary hermitian matrices with coefficients, which
are hermitian matrices gives quantum unitary matrices. In the case of U(1) the replacement of
exponentiation parameter t in exp(itX) with a hermitian operator gives standard expression for
the exponent and it is trivial to see that unitary conditions are satisfied also in this case. Also in
the case of SU(2) it is easy to verify that the guess is correct. One must also check that one indeed
obtains a group: it could also happen that only semi-group is obtained.

In any case, one could speak of quantum matrix groups with coordinates replaced by her-
mitian matrices. These quantum matrix group need not be identical with quantum groups in the
standard sense of the word. Maybe this could provide one possible meaning for quantization in
the case of groups and perhaps also in the case of coset spaces G/H.

3.6.2 The Relationship To Quantum Groups And Quantum Lie Algebras

It is interesting to find out whether quantum matrices give rise to quantum groups under suitable
additional conditions. The child’s guess for these conditions is that the permutation of rows and
columns correspond to braiding for the hermitian moduli hij defined by unitary operators Uij .

Quantum groups and quantum matrices

The conditions for hermiticity and unitary do not involve quantum parameter q, which suggests
that the näıve generalization of the notion of unitary matrix gives unitary group obtained by
replacing complex number field with operator algebra gives group with coordinates defined by
hermitian operators rather than standard quantum group. This turns out to be the case and it
seems that quantum matrices provide a concrete representation for quantum group. The notion of
braiding as that for operators hij can be said to emerge from the notion of quantum matrix.

1. Exponential of quantum hermitian matrix is excellent candidate for quantum unitary matrix.
One should check the exponentiation indeed gives rise to a quantum unitary matrix. For
q = ±1 this seems obvious but one should check this separately for other roots of unity.
Instead of considering the general case, we consider explicit ansatz for unitary U(2) quantum
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matrix as U = [a, b;−b†, a†]. The conditions for unitary quantum group in the proposed
sense would state the orthonormality and unit norm property of rows/columns.

The explicit form of the conditions reads as

ab− ba = 0 , ab† = b†a ,
aa† + bb† = 1 , a†a+ b†b = 1 .

(3.6.9)

The orthogonality conditions are unique and reduce to the vanishing of commutators.

Normalization conditions involve a choice of ordering. One possible manner to avoid the
problem is to assume that both orderings give same unit length for row or column (as done
above). If only the other option is assumed then only third or fourth equations is needed.
The invariance of determinant under permutation of rows would imply [a, a†] = [b, b†] = 0
and the ordering problem would disappear.

2. One can look what conditions the explicit representation Uij = hijuij or equivalently [haua, hbub;−u†bhb, u†aha]
gives. The intuitive expectation is that U(2) matrix decomposes to a product of commutating
SU(2) matrix and U(1) matrices. This implies that ua commutes with the other matrices
involved. One obtains the conditions

hahb = hb(ubhau
†
b) , hbha = (ubhau

†
b)hb . (3.6.10)

These conditions state that the permutation of ha and hb analogous to braiding operation is
a unitary operation.

For the purposes of comparison consider now the corresponding conditions for SU(2)q ma-
trix.

1. The SU(2)q matrix [a, b; b†, a†] with real value of q (see http://tinyurl.com/yb8tycag)
satisfies the conditions

ba = qab , b†a = qab†, bb† = b†b ,
a†a+ q2b†b = 1 , aa† + bb† = 1 .

(3.6.11)

This gives [a†, a] = (1 − q2)b†b. The above conditions would correspond to q = ±1 but
with complex numbers replaced with operator algebra. q-commutativity obviously replaces
ordinary commutativity in the conditions and one can speak of q-orthonormality.

For complex values of q - in particular roots of unity - the condition a†a + q2b†b = 1 is in
general not self-consistent since hermitian conjugation transforms q2 to its complex conjugate.
Hence this condition must be dropped for complex roots of unity.

2. Only for q = ±1 corresponding to Bose-Einstein and Fermi-Dirac statistics the conditions
are consistent with the invariance of n-functions (determinant) under permutations of both
rows and columns. Indeed, if 2 × 2 q-determinant is developed with respect to column, the
permutation of rows does not affect its value. This is trivially true also in N×N dimensional
case since the permutation of rows does not affect the n-paths at all.

If the symmetry under permutations is weakened, nothing prevents from posing quantum or-
thogonality conditions also now and the decomposition to a product of positive and hermitian
matrices give a concrete meaning to the notion of quantum group.

Do various n−functions commute with each other for SU(2)q? The only commutator of this
kind is that for the trace and determinant and should vanish:

http://tinyurl.com/yb8tycag
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[
b+ b†, aa† + bb†

]
= 0 . (3.6.12)

Since a†a and aa† are linear combinations of b†b = b†b, they vanish. Hence it seems that
TGD based view about quantum groups is consistent with the standard view.

3. One can look these conditions in TGD framework by restricting the consideration to the case
of SU(2) (ua = 1) and using the ansatz U = [ha, hbub;−u†bhb, ha]. Orthogonality conditions
read as

hahb = qhb(ubhau
†
b) , hbha = q(ubhau

†
b)hb .

If q is root of unity, these conditions state that the permutation of ha and hb analogous
to a unitary braiding operation apart from a multiplication with quantum phase q. For
q = ±1 the sign-factor is that in standard statistics. Braiding picture could help guess the
commutators of hij in the case of N ×N quantum matrices. The permutations of rows and
columns would have interpretation as braidings and one could say that braided commutators
of matrix elements vanish.

The conditions from the normalization give

h2
a + h2

b = 1 , h2
a + q2(u†bh

2
bub) = 1 . (3.6.13)

For complex q the latter condition does not make sense since h2
a−1 and u†bh

2
bub are hermitian

matrices with real eigenvalues. Also for real values of q 6= ±1 one obtains contradicion since
the spectra of unitarily related hermitian operators would differ by scaling factor q2. Hence
one must give up the condition involving q2 unless one has q = ±1. Note that the term
proportional to q2 does not allow interpretation in terms of braiding.

4. Roots of unity are natural number theoretically as values of q but number theoretical uni-
versality allows the generic value of q would be a complex number existing simultaneously in
all p-adic number properly extended. This would suggest the spectrum of q to come as

q(m,n) = e1/mexp(
ı2π

n
) . (3.6.14)

The motivation comes from the fact that ep is ordinary p-adic number for all p-adic number
fields so e and also any root of e defines a finite-dimensional extension of p-adic numbers
[K86] [L8]. The roots of unity would be associated to the discretization of the ordinary angles
in case of compact matrix groups. Roots of e would be associated with the discretization of
hyperbolic angles needed in the case of non-compact matrix groups such as SL(2,C).

Also now unification of various values of q to single single operator Q, which is product of
commuting hermitian and unitary operators and commuting with the hermitian operator H
representing the spectrum of Planck constant would code the spectrum. Skeptic can of course
wonder, whether the modulus and phase of Q can be assumed to commute. The relationship
between integers associated with H and Q is interesting.
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Quantum Lie algebras and quantum matrices

What about quantum Lie algebras? There are many notions of quantum Lie algebra and quantum
group. General formulas for the commutation relations are well-known for Drinfeld-Jimbo type
quantum groups (see http://tinyurl.com/yb8tycag). The simplest guess is that one just poses
the defining conditions for quantum group, replaces complex numbers as coefficient module with
operator algebra, and poses the above described conditions making possible to speak about eigen-
values and eigen vectors. One might however hope that this representation allows to realize the
non-commutativity of matrix elements of quantum Lie algebra in a concrete manner.

1. For SU(2) the commutation relations for the elements X+, X−, h read as

[h,X±] = ±X± , [X+, X−] = h . (3.6.15)

Here one can use the 2× 2 matrix representations for the ladder operators X± and diagonal
angular momentum generator h.

2. For SU(2)q one has

[h,X±] = ±X± , [X+, X−] = qh−q−h
q−q−1 . (3.6.16)

3. Using the ansatz for the generators but allowing hermitian operator coefficients in non-
diagonal generators X±, one obtains the condition

For SU(2)q one would have

[X+, X−] = h2
+ = h2

− =
qh − q−h

q − q−1
. (3.6.17)

Clearly, the proposal might make possible to have concrete representations for the quantum
Lie algebras making the decomposition to measurable and directly non-measurable degrees
of freedom explicit.

The conclusion is that finite measurement resolution does not lead automatically to standard
quantum groups although the proposed realization is consistent with them. Also the quantum
phases q = ±1 n = 1, 2 are realized and correspond to strong permutation symmetry and Bose-
Einstein and Fermi statistics.

3.6.3 About Possible Applications

The realization for the notion of finite measurement resolution is certainly the basic application
but one can imagine also other applications where hermitian and unitary matrices appear.

Density matrix description of degrees of freedom below measurement resolution

Density matrix ρ obtained by tracing over non-observable degrees of freedom is a fundamental
example about a hermitian matrix satisfying the additional condition Tr(ρ) = 1.

1. A state function reduction with a finite measurement resolution would lead to a non-pure
state. This state would be describable using N × N -dimensional quantum hermitian quan-
tum density matrix satisfying the condition Tr(ρ) = 1 (or more generally Trq(ρ) = 1), and
satisfying the additional conditions allowing to reduce its diagonalization to that for a col-
lection of ordinary density matrices so that the eigenvalues of ordinary density matrix would
be replaced by N quantum eigenvalues defined by infinite-dimensional diagonalized density
matrices.

http://tinyurl.com/yb8tycag
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2. One would have N quantum eigenvalues - quantum probabilities - each decomposing to
possibly infinite set of ordinary probabilities assignable to the degrees of freedom below
measurement resolution and defining density matrix for non-pure states resulting in state
function reduction.

Some questions

Some further questions pop up naturally.

1. One might hope that the quantum counterparts of hermitian operators are in some sense
universal, at least in TGD framework (by quantum criticality). Could the condition that
the commutator of hermitian generators is proportional to i~ times hermitian generator pose
additional constraints? In 2-D case this condition is satisfied for quantum SU(2) generators
and very probably the same is true also in the general case. The possible problems result from
the non-commutativity but (XY )† = Y †X† identity takes care that there are no problems.

2. One can also raise physics related questions. What one can say about most general quantum
Hamiltonians and their energy spectra, say quantum hydrogen atom? What about quan-
tum angular momentum? If the proposed construction is only a concretization of abstract
quantum group construction, then nothing new is expected at the level of representations of
quantum groups.

3. Could the spectrum of heff define a quantum h as a hermitian positive definite operator?
Could this allow a description for the presence of dark matter, which is not directly observ-
able? Same question applies to the quantum parameter q.

4. M-matrices are basic building bricks of scattering amplitudes in ZEO. M-matrix is produce
of hermitian ”complex” square root H of density matrix satisfying H2 = ρ and unitary S-
matrix S. It has been proposed that these matrices commute. The previous consideration
relying on basic quantum thinking suggests that they relate like translation generator in radial
direction and phase defined by angle and thus satisfy [H,S] = i(Heff/h) × S. This would
give enormously powerful additional condition to S-matrix. One can also ask whether M-
matrices in presence of degrees of freedom below measurement resolution is quantum version
of M-matrix in the proposed sense.

5. Fractality is of of the key notions of TGD and characterizes also hyperfinite factors. I have
proposed some realizations of fractality such as infinite primes and finite-dimensional Hilbert
spaces taking the role of natural numbers and ordinary sum and product replaced with direct
sum and tensor product. One could also imagine a fractal hierarchy of quantum matrices
obtained by replacing the operators appearing as matrix elements of quantum matrix element
by quantum matrices. This hierarchy could relate to the sequence of inclusions of HFFs.

3.7 Jones Inclusions And Cognitive Consciousness

WCW spinors have a natural interpretation in terms of a quantum version of Boolean algebra.
Beliefs of various kinds are the basic element of cognition and obviously involve a representation
of the external world or part of it as states of the system defining the believer. Jones inclusions
mediating unitary mappings between the spaces of WCWs spinors of two systems are excellent
candidates for these maps, and it is interesting to find what one kind of model for beliefs this
picture leads to.

The resulting quantum model for beliefs provides a cognitive interpretation for quantum
groups and predicts a universal spectrum for the probabilities that a given belief is true. This
spectrum depends only on the integer n characterizing the quantum phase q = exp(i2π/n) charac-
terizing the Jones inclusion. For n 6=∞ the logic is inherently fuzzy so that absolute knowledge is
impossible. q = 1 gives ordinary quantum logic with qbits having precise truth values after state
function reduction.
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3.7.1 Does One Have A Hierarchy Of U- And M-Matrices?

U -matrix describes scattering of zero energy states and since zero energy states can be illustrated
in terms of Feynman diagrams one can say that scattering of Feynman diagrams is in question.
The initial and final states of the scattering are superpositions of Feynman diagrams characterizing
the corresponding M -matrices which contain also the positive square root of density matrix as a
factor.

The hypothesis that U -matrix is the tensor product of S-matrix part of M -matrix and its
Hermitian conjugate would make U -matrix an object deducible by physical measurements. One
cannot of course exclude that something totally new emerges. For instance, the description of
quantum jumps creating zero energy state from vacuum might require that U -matrix does not
reduce in this manner. One can assign to the U -matrix a square like structure with S-matrix and
its Hermitian conjugate assigned with the opposite sides of a square.

One can imagine of constructing higher level physical states as composites of zero energy
states by replacing the S-matrix with M -matrix in the square like structure. These states would
provide a physical representation of U -matrix. One could define U -matrix for these states in a
similar manner. This kind of hierarchy could be continued indefinitely and the hierarchy of higher
level U and M -matrices would be labeled by a hierarchy of n-cubes, n = 1, 2,... TGD inspired
theory of consciousness suggests that this hierarchy can be interpreted as a hierarchy of abstractions
represented in terms of physical states. This hierarchy brings strongly in mind also the hierarchies
of n-algebras and n-groups and this forces to consider the possibility that something genuinely new
emerges at each step of the hierarchy. A connection with the hierarchies of infinite primes [K72]
and Jones inclusions are suggestive.

3.7.2 Feynman Diagrams As Higher Level Particles And Their Scatter-
ing As Dynamics Of Self Consciousness

The hierarchy of inclusions of hyper-finite factors of II1 as counterpart for many-sheeted space-time
lead inevitably to the idea that this hierarchy corresponds to a hierarchy of generalized Feynman
diagrams for which Feynman diagrams at a given level become particles at the next level. Accepting
this idea, one is led to ask what kind of quantum states these Feynman diagrams correspond, how
one could describe interactions of these higher level particles, what is the interpretation for these
higher level states, and whether they can be detected.

Jones inclusions as analogs of space-time surfaces

The idea about space-time as a 4-surface replicates itself at the level of operator algebra and state
space in the sense that Jones inclusion can be seen as a representation of the operator algebra N
as infinite-dimensional linear sub-space (surface) of the operator algebra M. This encourages to
think that generalized Feynman diagrams could correspond to image surfaces in II1 factor having
identification as kind of quantum space-time surfaces.

Suppose that the modular S-matrices are representable as the inner automorphisms ∆(Mit
k

assigned to the external lines of Feynman diagrams. This would mean that N ⊂Mk moves inside
calMk along a geodesic line determined by the inner automorphism. At the vertex the factors
calMk to fuse along N to form a Connes tensor product. Hence the copies of N move inside Mk

like incoming 3-surfaces in H and fuse together at the vertex. Since all Mk are isomorphic to
a universal factor M, many-sheeted space-time would have a kind of quantum image inside II1
factor consisting of pieces which are d = M : N/2-dimensional quantum spaces according to the
identification of the quantum space as subspace of quantum group to be discussed later. In the
case of partonic Clifford algebras the dimension would be indeed d ≤ 2.

The hierarchy of Jones inclusions defines a hierarchy of S-matrices

It is possible to assign to a given Jones inclusion N ⊂ M an entire hierarchy of Jones inclusions
M0 ⊂ M1 ⊂ M2..., M0 = N , M1 = M . A possible interpretation for these inclusions would be
as a sequence of topological condensations.

This sequence also defines a hierarchy of Feynman diagrams inside Feynman diagrams. The
factor M containing the Feynman diagram having as its lines the unitary orbits of N under ∆M
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becomes a parton inM1 and its unitary orbits under ∆M1
define lines of Feynman diagrams in M1.

The concrete representation for M -matrix or projection of it to some subspace as entanglement
coefficients of partons at the ends of a braid assignable to the space-like 3-surface representing a
vertex of a higher level Feynman diagram. In this manner quantum dynamics would be coded and
simulated by quantum states.

The outcome can be said to be a hierarchy of Feynman diagrams within Feynman diagrams,
a fractal structure for which many particle scattering events at a given level become particles at
the next level. The particles at the next level represent dynamics at the lower level: they have the
property of “being about” representing perhaps the most crucial element of conscious experience.
Since net conserved quantum numbers can vanish for a system in TGD Universe, this kind of
hierarchy indeed allows a realization as zero energy states. Crossing symmetry can be understood
in terms of this picture and has been applied to construct a model for M -matrix at high energy
limit [K18] .

One might perhaps say that quantum space-time corresponds to a double inclusion and that
further inclusions bring in N -parameter families of space-time surfaces.

Higher level Feynman diagrams

The lines of Feynman diagram inMn+1 are geodesic lines representing orbits ofMn and this kind
of lines meet at vertex and scatter. The evolution along lines is determined by ∆Mn+1 . These
lines contain within themselves Mn Feynman diagrams with similar structure and the hierarchy
continues down to the lowest level at which ordinary elementary particles are encountered.

For instance, the generalized Feynman diagrams at the second level are ribbon diagrams
obtained by thickening the ordinary diagrams in the new time direction. The interpretation as
ribbon diagrams crucial for topological quantum computation and suggested to be realizable in
terms of zero energy states in [K4] is natural. At each level a new time parameter is introduced so
that the dimension of the diagram can be arbitrarily high. The dynamics is not that of ordinary
surfaces but the dynamics induced by the ∆Mn

.

Quantum states defined by higher level Feynman diagrams

The intuitive picture is that higher level quantum states corresponds to the self reflective aspect
of existence and must provide representations for the quantum dynamics of lower levels in their
own structure. This dynamics is characterized by M -matrix whose elements have representation
in terms of Feynman diagrams.

1. These states correspond to zero energy states in which initial states have “positive energies”
and final states have “negative energies”. The net conserved quantum numbers of initial
and final state partons compensate each other. Gravitational energies, and more generally
gravitational quantum numbers defined as absolute values of the net quantum numbers of
initial and final states do not vanish. One can say that thoughts have gravitational mass but
no inertial mass.

2. States in sub-spaces of positive and negative energy states are entangled with entanglement
coefficients given by M -matrix at the level below.

To make this more concrete, consider first the simplest non-trivial case. In this case the
particles can be characterized as ordinary Feynman diagrams, or more precisely as scattering
events so that the state is characterized by Ŝ = PinSPout, where S is S-matrix and Pin resp. Pout
is the projection to a subspace of initial resp. final states. An entangled state with the projection
of S-matrix giving the entanglement coefficients is in question.

The larger the domains of projectors Pin and Pout, the higher the representative capacity of
the state. The norm of the non-normalized state Ŝ is Tr(ŜŜ†) ≤ 1 for II1 factors, and at the limit
Ŝ = S the norm equals to 1. Hence, by II1 property, the state always entangles infinite number of
states, and can in principle code the entire S-matrix to entanglement coefficients.

The states in which positive and negative energy states are entangled by a projection of
S-matrix might define only a particular instance of states for which conserved quantum numbers
vanish. The model for the interaction of Feynman diagrams discussed below applies also to these
more general states.
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The interaction of Mn Feynman diagrams at the second level of hierarchy

What constraints can one pose to the higher level reactions? How Feynman diagrams interact?
Consider first the scattering at the second level of hierarchy (M1), the first levelM0 being assigned
to the interactions of the ordinary matter.

1. Conservation laws pose constraints on the scattering at level M1. The Feynman diagrams
can transform to new Feynman diagrams only in such a way that the net quantum numbers
are conserved separately for the initial positive energy states and final negative energy states
of the diagram. The simplest assumption is that positive energy matter and negative energy
matter know nothing about each other and effectively live in separate worlds. The scattering
matrix form Feynman diagram like states would thus be simply the tensor product S ⊗ S†,
where S is the S-matrix characterizing the lowest level interactions and identifiable as unitary
factor of M -matrix for zero energy states. Reductionism would be realized in the sense that,
apart from the new elements brought in by ∆Mn defining single particle free dynamics, the
lowest level would determine in principle everything occurring at the higher level providing
representations about representations about... for what occurs at the basic level. The lowest
level would represent the physical world and higher levels the theory about it.

2. The description of hadronic reactions in terms of partons serves as a guide line when one
tries to understand higher level Feynman diagrams. The fusion of hadronic space-time sheets
corresponds to the vertices M1. In the vertex the analog of parton plasma is formed by a
process known as parton fragmentation. This means that the partonic Feynman diagrams
belonging to disjoint copies ofM0 find themselves inside the same copy ofM0. The standard
description would apply to the scattering of the initial resp. final state partons.

3. After the scattering of partons hadronization takes place. The analog of hadronization in
the recent case is the organization of the initial and final state partons to groups Ii and Fi
such that the net conserved quantum numbers are same for Ii and Fi. These conditions can
be satisfied if the interactions in the plasma phase occur only between particles belonging
to the clusters labeled by the index i. Otherwise only single particle states in M1 would be
produced in the reactions in the generic case. The cluster decomposition of S-matrix to a
direct sum of terms corresponding to partitions of the initial state particles to clusters which
do not interact with each other obviously corresponds to the “hadronization”. Therefore no
new dynamics need to be introduced.

4. One cannot avoid the question whether the parton picture about hadrons indeed corresponds
to a higher level physics of this kind. This would require that hadronic space-time sheets
carry the net quantum numbers of hadrons. The net quantum numbers associated with the
initial state partons would be naturally identical with the net quantum numbers of hadron.
Partons and they negative energy conjugates would provide in this picture a representation
of hadron about hadron. This kind of interpretation of partons would make understandable
why they cannot be observed directly. A possible objection is that the net gravitational
mass of hadron would be three times the gravitational mass deduced from the inertial mass
of hadron if partons feed their gravitational fluxes to the space-time sheet carrying Earth’s
gravitational field.

5. This picture could also relate to the suggested duality between string and parton pictures
[K74] . In parton picture hadron is formed from partons represented by space-like 2-surfaces
X2
i connected by join along boundaries bonds. In string picture partonic 2-surfaces are

replaced with string orbits. If one puts positive and negative energy particles at the ends of
string diagram one indeed obtains a higher level representation of hadron. If these pictures
are dual then also in parton picture positive and negative energies should compensate each
other. Interestingly, light-like 3-D causal determinants identified as orbits of partons could
be interpreted as orbits of light like string word sheets with “time” coordinate varying in
space-like direction.

Scattering of Feynman diagrams at the higher levels of hierarchy

This picture generalizes to the description of higher level Feynman diagrams.
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1. Assume that higher level vertices have recursive structure allowing to reduce the Feynman
diagrams to ordinary Feynman diagrams by a procedure consisting of finite steps.

2. The lines of diagrams are classified as incoming or outgoing lines according to whether the
time orientation of the line is positive or negative. The time orientation is associated with
the time parameter tn characterizing the automorphism ∆itn

M\ . The incoming and outgoing

net quantum numbers compensate each other. These quantum numbers are basically the
quantum numbers of the state at the lowest level of the hierarchy.

3. In the vertices the Mn+1 particles fuse and Mn particles form the analog of quark gluon
plasma. The initial and final state particles of Mn Feynman diagram scatter independently
and the S-matrix Sn+1 describing the process is tensor product Sn ⊗ S†n. By the clustering
property of S-matrix, this scattering occurs only for groups formed by partons formed by the
incoming and outgoing particles Mn particles and each outgoing Mn+1 line contains and
irreducible Mn diagram. By continuing the recursion one finally ends down with ordinary
Feynman diagrams.

3.7.3 Logic, Beliefs, And Spinor Fields In The World Of Classical Worlds

Beliefs can be characterized as Boolean value maps βi(p) telling whether i believes in proposition
p or not. Additional structure is brought in by introducing the map λi(p) telling whether p is true
or not in the environment of i. The task is to find quantum counterpart for this model.

The spectrum of probabilities for outcomes in state function reduction with finite
measurement resolution is universal

Consider quantum two-spinor as a model of a system with finite measurement resolution implying
that state function reduction do not anymore lead to a spin state with a precise value but that one
can only predict the probability distribution for the outcome of measurement. These probabilities
can be also interpreted as truth values of a belief in finite cognitive resolution.

It is actually possible to calculate the spectrum of the probabilities of truth values with
rather mild additional assumptions.

1. Since the Hermitian operators X1 = (z1z1 + z1z1)/2 and X2 = (z2z2 + z2z2)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p1 = X1/R

2 and p2 = X2/R
2, R2 = X1 +X2.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfying z1|0〉 =

z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 = z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥

0. The eigenvalues of X1 and X2 are given by a modified harmonic oscillator spectrum as

X1 = (1/2 + n1q
n2)r , X2 = (1/2 + n2q

n1)r .

The reality of eigenvalues (hermiticity) is guaranteed if one has n1 = N1n and n1 = N2n and
implies that the spectrum of eigen states gets increasingly thinner for n → ∞. This must
somehow reflect the fractal dimension. The fact that large values of oscillator quantum num-
bers n1 and n2 correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n→∞.

3. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2+N1n, 1/2+N2n)/[1+
(N1 +N2)n] are rational and allow an interpretation as both real and p-adic numbers. This
also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits N1 � N2 and N2 � N1 non-fuzzy states result. As noticed,
n = ∞ must be treated separately and corresponds to an ordinary non-fuzzy qbit logic. At
n→∞ limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0 states are
non-fuzzy.
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4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitsN1 � N2 and N2 �
N1. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density
matrix obtained by tracing over non-visible degrees of freedom.

WCW spinors as logic statements

In TGD framework the infinite-dimensional WCW (CH) spinor fields defined in CH, the “world
of classical worlds”, describe quantum states of the Universe [K88] . WCW spinor field can be
regarded as a state in infinite-dimensional Fock space and are labeled by a collection of various
two valued indices like spin and weak isospin. The interpretation is as a collection of truth values
of logic statements one for each fermionic oscillator operator in the state. For instance, spin up
and down would correspond to two possible truth values of a proposition characterized by other
quantum numbers of the mode.

The hierarchy of space-time sheet could define a physical correlate for the hierarchy of higher
order logics (statements about statements about...). The space-time sheet containing N fermions
topologically condensed at a larger space-time sheet behaves as a fermion or boson depending on
whether N is odd or even. This hierarchy has also a number theoretic counterpart: the construc-
tion of infinite primes [K72] corresponds to a repeated second quantization of a super-symmetric
quantum field theory.

Quantal description of beliefs

The question is whether TGD inspired theory of consciousness allows a fundamental description
of beliefs.

1. Beliefs define a model about some subsystem of universe constructed by the believer. This
model can be understood as some kind of representation of real word in the state space
representing the beliefs.

2. One can wonder what is the difference between real and p-adic variants of WCW spinor
fields and whether they could represent reality and beliefs about reality. WCW spinors (as
opposed to spinor fields) are constructible in terms of fermionic oscillator operators and seem
to be universal in the sense that one cannot speak about p-adic and real WCW spinors as
different objects. Real/p-adic spinor fields however have real/p-adic space-time sheets as
arguments. This would suggest that there is no fundamental difference between the logic
statements represented by p-adic and real WCW spinors.

3. This vision is realized if the intersection of reality and various p-adicities corresponds to an
algebraically universal set of consisting of partonic 2-surfaces and string world sheets for which
defining parameters are WCW coordinates in an algebraic extension of rationals defining that
for p-adic number fields. Induced spinor fields would be localized at string world sheets and
their intersections with partonic 2-surfaces and would be number theoretically universal. If
second quantized induced spinor fields are correlates of Boolean cognition, which is behind the
entire mathematics, their number theoretical universality is indeed a highly natural condition.
Also fermionic anticommutation relations are number theoretically universal. By conformal
invariance the conformal moduli of string world sheets and partonic 2-surface would be the
natural WCW coordinates for the 2-surfaces in question and I proposed their p-adicization
already in p-adic mass calculations for two decades ago.

This picture would provide an elegant realization for the p-adicization. There would be ne
need to map real space-time surfaces directly to p-adic ones and vice versa and one would
avoid problems related to general coordinate invariance (GCI) completely. Strong form of
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holography would assign to partonic surfaces the real and p-adic variants. Already p-adic
mass calculations support the presence of cognition in all length scales.

These observations suggest a more concrete view about how beliefs emerge physically.
The idea that p-adic WCW spinor fields could serve as representations of beliefs and real

WCW spinor fields as representations of reality looks very nice and conforms with the adelic vision
that space-time is adele - a book-like structure contains space-time sheets in various number fields
as pages glued together along back for which the parameters characterizing space-time surface are
numbers in an algebraic extension of rationals. Real space-time surfaces would be correlates for
sensory experience and p-adic space-time sheets for cognition.

3.7.4 Jones Inclusions For Hyperfinite Factors Of Type II1 As A Model
For Symbolic And Cognitive Representations

Consider next a more detailed model for how cognitive representations and beliefs are realized at
quantum level. This model generalizes trivially to symbolic representations.

The Clifford algebra of gamma matrices associated with WCW spinor fields corresponds
to a von Neumann algebra known as hyper-finite factor of type II1. The mathematics of these
algebras is extremely beautiful and reproduces basic mathematical structures of modern physics
(conformal field theories, quantum groups, knot and braid groups,....) from the mere assumption
that the world of classical worlds possesses infinite-dimensional Kähler geometry and allows spinor
structure.

The almost defining feature is that the infinite-dimensional unit matrix of the Clifford algebra
in question has by definition unit trace. Type II1 factors allow also what are known as Jones
inclusions of Clifford algebras N ⊂M. What is special to II1 factors is that the induced unitary
mappings between spinor spaces are genuine inclusions rather than 1-1 maps.

The S-matrix associated with the real-to-p-adic quantum transition inducing belief from
reality would naturally define Jones inclusion of CH Clifford algebra N associated with the real
space-time sheet to the Clifford algebraM associated with the p-adic space-time sheet. The moduli
squared of S-matrix elements would define probabilities for pairs or real and belief states.

In Jones inclusion N ⊂ M the factor N is included in factor M such that M can be
expressed as N -module over quantum space M/N which has fractal dimension given by Jones
index M : N = 4cos2(π/n) ≤ 4, n = 3, 4, .... varying in the range [1, 4]. The interpretation is
as the fractal dimension corresponding to a dimension of Clifford algebra acting in d =

√
M : N -

dimensional spinor space: d varies in the range [1, 2]. The interpretation in terms of a quantal
variant of logic is natural.

Probabilistic beliefs

ForM : N = 4 (n =∞) the dimension of spinor space is d = 2 and one can speak about ordinary
2-component spinors with N -valued coefficients representing generalizations of qubits. Hence the
inclusion of a given N -spinor as M-spinor can be regarded as a belief on the proposition and for
the decomposition to a spinor in N-module M/N involves for each index a choice M/N spinor
component selecting super-position of up and down spins. Hence one has a superposition of truth
values in general and one can speak only about probabilistic beliefs. It is not clear whether one
can choose the basis in such a way that M/N spinor corresponds always to truth value 1. Since
WCW spinor field is in question and even if this choice might be possible for a single 3-surface,
it need not be possible for deformations of it so that at quantum level one can only speak about
probabilistic beliefs.

Fractal probabilistic beliefs

For d < 2 the spinor space associated with M/N can be regarded as quantum plane having
complex quantum dimension d with two non-commuting complex coordinates z1 and z2 satisfying
z1z2 = qz2z1 and z1z2 = qz2z1. These relations are consistent with hermiticity of the real and
imaginary parts of z1 and z2 which define ordinary quantum planes. Hermiticity also implies that
one can identify the complex conjugates of zi as Hermitian conjugates.
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The further commutation relations [z1, z2] = [z2, z1] = 0 and [z1, z1] = [z2, z2] = r give a
closed algebra satisfying Jacobi identities. One could argue that r ≥ 0 should be a function r(n)
of the quantum phase q = exp(i2π/n) vanishing at the limit n→∞ to guarantee that the algebra
becomes commutative at this limit and truth values can be chosen to be non-fuzzy. r = sin(π/n)
would be the simplest choice. As will be found, the choice of r(n) does not however affect at all the
spectrum for the probabilities of the truth values. n =∞ case corresponding to non-fuzzy quantum
logic is also possible and must be treated separately: it corresponds to Kac Moody algebra instead
of quantum groups.

The non-commutativity of complex spinor components means that z1 and z2 are not inde-
pendent coordinates: this explains the reduction of the number of the effective number of truth
values to d < 2. The maximal reduction occurs to d = 1 for n = 3 so that there is effectively only
single truth value and one could perhaps speak about taboo or dogma or complete disappearance
of the notions of truth and false (this brings in mind reports about meditative states: in fact n = 3
corresponds to a phase in which Planck constant becomes infinite so that the system is maximally
quantal).

As non-commuting operators the components of d-spinor are not simultaneously measurable
for d < 2. It is however possible to measure simultaneously the operators describing the probabil-
ities z1z1 and z2z2 for truth values since these operators commute. An inherently fuzzy Boolean
logic would be in question with the additional feature that the spinorial counterparts of state-
ment and its negation cannot be regarded as independent observables although the corresponding
probabilities satisfy the defining conditions for commuting observables.

If one can speak of a measurement of probabilities for d < 2, it differs from the ordinary
quantum measurement in the sense that it cannot involve a state function reduction to a pure
qubit meaning irreducible quantal fuzziness. One could speak of fuzzy qbits or fqbits (or quantum
qbits) instead of qbits. This picture would provide the long sought interpretation for quantum
groups.

The previous picture applies to all representations M1 ⊂ M2, where M1 and M2 denote
either real or p-adic Clifford algebras for some prime p. For instance, real-real Jones inclusion
could be interpreted as symbolic representations assignable to a unitary mapping of the states of
a subsystem M1 of the external world to the state space M2 of another real subsystem. p1 → p2

unitary inclusions would in turn map cognitive representations to cognitive representations. There
is a strong temptation to assume that these Jones inclusions define unitary maps realizing universe
as a universal quantum computer mimicking itself at all levels utilizing cognitive and symbolic
representations. Subsystem-system inclusion would naturally define one example of Jones inclusion.

The spectrum of probabilities of truth values is universal

It is actually possible to calculate the spectrum of the probabilities of truth values with rather
mild additional assumptions.

1. Since the Hermitian operators X1 = (z1z1 + z1z1)/2 and X2 = (z2z2 + z2z2)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p1 = X1/R

2 and p2 = X2/R
2, R2 = X1 +X2.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfying z1|0〉 =

z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 = z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥

0. The eigenvalues of X1 and X2 are given by a modified harmonic oscillator spectrum as

X1 = (1/2 + n1q
n2)r , X2 = (1/2 + n2q

n1)r .

The reality of eigenvalues (hermiticity) is guaranteed if one has n1 = N1n and n1 = N2n and
implies that the spectrum of eigen states gets increasingly thinner for n → ∞. This must
somehow reflect the fractal dimension. The fact that large values of oscillator quantum num-
bers n1 and n2 correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n→∞.

3. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2+N1n, 1/2+N2n)/[1+
(N1 +N2)n] are rational and allow an interpretation as both real and p-adic numbers. This
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also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits N1 � N2 and N2 � N1 non-fuzzy states result. As noticed,
n = ∞ must be treated separately and corresponds to an ordinary non-fuzzy qbit logic. At
n→∞ limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0 states are
non-fuzzy.

4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitsN1 � N2 and N2 �
N1. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density
matrix obtained by tracing over non-visible degrees of freedom.

How to define variants of belief quantum mechanically?

Probabilities of true and false for Jones inclusion characterize the plausibility of the belief and
one can ask whether this description is enough to characterize states such as knowledge, misbelief,
doubt, delusion, and ignorance. The truth value of βi(p) is determined by the measurement of
probability assignable to Jones inclusion on the p-adic side. The truth value of λi(p) is determined
by a similar measurement on the real side. β and λ appear completely symmetrically and one can
consider all kinds of triplets M1 ⊂ M2 ⊂ M3 assuming that there exist unitary S-matrix like
maps mediating a sequence M1 ⊂ M2 ⊂ M3 of Jones inclusions. Interestingly, the hierarchies
of Jones inclusions are a key concept in the theory of hyper-finite factors of type II1 and pair of
inclusions plays a fundamental role.

Let us restrict the consideration to the situation whenM1 corresponds to a real subsystem
of the external world, M2 its real representation by a real subsystem, andM3 to p-adic cognitive
representation of M3. Assume that both real and p-adic sides involve a preferred state basis for
qubits representing truth and false.

Assume first that both M1 ⊂ M2 and M2 ⊂ M3 correspond to d = 2 case for which
ordinary quantum measurement or truth value is possible giving outcome true or false. Assume
further that the truth values have been measured in both M2 and M3.

1. Knowledge corresponds to the proposition βi(p) ∧ λi(p).

2. Misbelief to the proposition βi(p)∧ 6= λi(p).
Knowledge and misbelief would involve both the measurement of real and p-adic probabilities
.

3. Assume next that one has d < 2 form M2 ⊂ M3. Doubt can be regarded neither belief or
disbelief: βi(p)∧ 6= βi(6= p): belief is inherently fuzzy although proposition can be non-fuzzy.

Assume next that truth values inM1 ⊂M2 inclusion corresponds to d < 2 so that the basic
propositions are inherently fuzzy.

4. Delusion is a belief which cannot be justified: βi(p)∧λi(p)∧ 6= λ( 6= p)). This case is possible
if d = 2 holds true for M2 ⊂ M3. Note that also misbelief that cannot be shown wrong is
possible.
In this case truth values cannot be quantum measured for M1 ⊂ M2 but can be measured
for M2 ⊂M3. Hence the states are products of pure M3 states with fuzzy M2 states.

5. Ignorance corresponds to the proposition βi(p)∧ 6= βi( 6= p) ∧ λi(p)∧ 6= λ(6= p)). Both real
representational states and belief states are inherently fuzzy.

Quite generally, only for d1 = d2 = 2 ideal knowledge and ideal misbelief are possible. Fuzzy
beliefs and logics approach to ordinary one at the limit n → ∞, which according to the proposal
of [K68] corresponds to the ordinary value of Planck constant. For other cases these notions are
only approximate and quantal approach allows to characterize the goodness of the approximation.
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A new kind of inherent quantum uncertainty of knowledge is in question and one could speak
about a Uncertainty Principle for cognition and symbolic representations. Also the unification of
symbolic and various kinds of cognitive representations deserves to be mentioned.

3.7.5 Intentional Comparison Of Beliefs By Topological Quantum Com-
putation?

Intentional comparison would mean that for a given initial state also the final state of the quantum
jump is fixed. This requires the ability to engineer S-matrix so that it leads from a given state
to single state only. Any S-matrix representing permutation of the initial states fulfills these
conditions. This condition is perhaps unnecessarily strong.

Quantum computation is basically the engineering of S-matrix so that it represents a super-
position of parallel computations. In TGD framework topological quantum computation based on
the braiding of magnetic flux tubes would be represented as an evolution characterized by braid [K4]
. The dynamical evolution would be associated with light-like boundaries of braids. This evolution
has dual interpretations either as a limit of time evolution of quantum state (program running) or
a quantum state satisfying conformal invariance constraints (program code).

The dual interpretation would mean that conformally invariant states are equivalent with en-
gineered time evolutions and topological computation realized as braiding connecting the quantum
states to be compared (beliefs represented as many-fermion states at the boundaries of magnetic
flux tubes) could give rise to conscious computational comparison of beliefs. The complexity of
braiding would give a measure for how much the states to be compared differ.

Note that quantum computation is defined by a unitary map which could also be interpreted
as symbolic representation of states of system M1 as states of system M2 mediated by the braid of
join along boundaries bonds connecting the two space-time sheets in question and having light-like
boundaries. These considerations suggest that the idea about S-matrix of the Universe should be
generalized so that the dynamics of the Universe is dynamics of mimicry described by an infinite
collection of fermionic S-matrices representable in terms of Jones inclusions.

3.7.6 The Stability Of Fuzzy Qbits And Quantum Computation

The stability of fqbits against state function reduction might have deep implications for quantum
computation since quantum spinors would be stable against state function reduction induced by
the perturbations inducing de-coherence in the normal situation. If this is really true, and if the
only dangerous perturbations are those inducing the phase transition to qbits, the implications for
quantum computation could be dramatic. Of course, the rigidity of qbits could be just another
way to say that topological quantum computations are stable against thermal perturbations not
destroying anyons [K4] .

The stability of fqbits could also be another manner to state the stability of rational, or
more generally algebraic, bound state entanglement against state function reduction, which is one
of the basic hypothesis of TGD inspired theory of consciousness [K43] . For sequences of Jones
inclusions or equivalently, for multiple Connes tensor products, one would obtain tensor products
of quantum spinors making possible arbitrary complex configurations of fqbits. Anyonic braids
in topological quantum computation would have interpretation as representations for this kind of
tensor products.

3.7.7 Fuzzy Quantum Logic And Possible Anomalies In The Experimen-
tal Data For The EPR-Bohm Experiment

The experimental data for EPR-Bohm experiment [J4] excluding hidden variable interpretations
of quantum theory. What is less known that the experimental data indicates about possibility of
an anomaly challenging quantum mechanics [J1] . The obvious question is whether this anomaly
might provide a test for the notion of fuzzy quantum logic inspired by the TGD based quantum
measurement theory with finite measurement resolution.
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The anomaly

The experimental situation involves emission of two photons from spin zero system so that photons
have opposite spins. What is measured are polarizations of the two photons with respect to
polarization axes which differ from standard choice of this axis by rotations around the axis of
photon momentum characterized by angles α and β. The probabilities for observing polarizations
(i, j), where i, j is taken Z2 valued variable for a convenience of notation are Pij(α, β), are predicted
to be P00 = P11 = cos2(α− β)/2 and P01 = P10 = sin2(α− β)/2.

Consider now the discrepancies.

1. One has four identities Pi,i + Pi,i+1 = Pii + Pi+1,i = 1/2 having interpretation in terms of
probability conservation. Experimental data of [J4] are not consistent with this prediction [J2]
and this is identified as the anomaly.

2. The QM prediction E(α, β) =
∑
i(Pi,i − Pi,i+1) = cos(2(α − β) is not satisfied neither: the

maxima for the magnitude of E are scaled down by a factor ' .9. This deviation is not
discussed in [J2] .

Both these findings raise the possibility that QM might not be consistent with the data. It turns out
that fuzzy quantum logic predicted by TGD and implying that the predictions for the probabilities
and correlation must be replaced by ensemble averages, can explain anomaly b) but not anomaly
a). A “mundane” explanation for anomaly a) is proposed.

Predictions of fuzzy quantum logic for the probabilities and correlations

1. The description of fuzzy quantum logic in terms statistical ensemble

The fuzzy quantum logic implies that the predictions Pi,j for the probabilities should be
replaced with ensemble averages over the ensembles defined by fuzzy quantum logic. In practice
this means that following replacements should be carried out:

Pi,j → P 2Pi,j + (1− P )2Pi+1,j+1

+ P (1− P ) [Pi,j+1 + Pi+1,j ] . (3.7.1)

Here P is one of the state dependent universal probabilities/fuzzy truth values for some value of
n characterizing the measurement situation. The concrete predictions would be following

P0,0 = P1,1 → A
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2
+B
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2
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+
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2
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+B
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2
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sin2(α− β)

2
+
B

2
,

A = P 2 + (1− P )2 , B = 2P (1− P ) . (3.7.2)

The prediction is that the graphs of probabilities as a function as function of the angle α− β are
scaled by a factor 1 − 4P (1 − P ) and shifted upwards by P (1 − P ). The value of P , and one
might hope even the value of n labeling Jones inclusion and the integer m labeling the quantum
state might be deducible from the experimental data as the upward shift. The basic prediction is
that the maxima of curves measuring probabilities P(i, j) have minimum at B/2 = P (1− P ) and
maximum is scaled down to (A−B)/2 = 1/2− 2P (1− P ).

If the P is same for all pairs i, j, the correlation E =
∑
i(Pii − Pi,i+1) transforms as

E(α, β) → [1− 4P (1− P )]E(α, β) . (3.7.3)
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Only the normalization of E(α, β) as a function of α− β reducing the magnitude of E occurs. In
particular the maximum/minimum of E are scaled down from E = ±1 to E = ±(1− 4P (1− P )).

From the figure 1b) of [J2] the scaling down indeed occurs for magnitudes of E with same
amount for minimum and maximum. Writing P = 1 − ε one has A − B ' 1 − 4ε and B ' 2ε so
that the maximum is in the first approximation predicted to be at 1 − 4ε. The graph would give
1− P ' ε ' .025. Thus the model explains the reduction of the magnitude for the maximum and
minimum of E which was not however considered to be an anomaly in [J1, J2] .

A further prediction is that the identities P (i, i) + P (i + 1, i) = 1/2 should still hold true
since one has Pi,i + Pi,i+1 = (A−B)/2 +B = 1. This is implied also by probability conservation.
The four curves corresponding to these identities do not however co-incide as the figure 6 of [J2]
demonstrates. This is regarded as the basic anomaly in [J1, J2] . From the same figure it is also
clear that below α − β < 10 degrees P++ = P−− ∆P+− = −∆P−+ holds true in a reasonable
approximation. After that one has also non-vanishing ∆Pii satisfying ∆P++ = −∆P−−. This kind
of splittings guarantee the identity

∑
ij Pij = 1. These splittings are not visible in E.

Since probability conservation requires Pii + Pii+1 = 1, a mundane explanation for the
discrepancy could be that the failure of the conditions Pi,i+Pii+1 = 1 means that the measurement
efficiency is too low for P+− and yields too low values of P+−+P−− and P+−+P++. The constraint∑
ij Pij = 1 would then yield too high value for P−+. Similar reduction of measurement efficiency

for P++ could explain the splitting for α− β > 10 degrees.
Clearly asymmetry with respect to exchange of photons or of detectors is in question.

1. The asymmetry of two photon state with respect to the exchange of photons could be con-
sidered as a source of asymmetry. This would mean that the photons are not maximally
entangled. This could be seen as an alternative “mundane” explanation.

2. The assumption that the parameter P is different for the detectors does not change the
situation as is easy to check.

3. One manner to achieve splittings which resemble observed splittings is to assume that the
value of the probability parameter P depends on the polarization pair : P = P (i, j) so that one
has (P (−,+), P (+,−)) = (P + ∆, P −∆) and (P (−,−), P (+,+)) = (P + ∆1, P −∆1). ∆ '
.025 and ∆1 ' ∆/2 could produce the observed splittings qualitatively. One would however
always have P (i, i) + P (i, i + 1) ≥ 1/2. Only if the procedure extracting the correlations
uses the constraint

∑
i,j Pij = 1 effectively inducing a constant shift of Pij downwards an

asymmetry of observed kind can result. A further objection is that there are no special reason
for the values of P (i, j) to satisfy the constraints.

2. Is it possible to say anything about the value of n in the case of EPR-Bohm experiment?

To explain the reduction of the maximum magnitudes of the correlation E from 1 to ∼ .9
in the experiment discussed above one should have p1 ' .9. It is interesting to look whether this
allows to deduce any information about the valued of n. At the limit of large values of Nin one
would have (N1 − N2)/(N1 + N2) ' .4 so that one cannot say anything about n in this case.
(N1, N2) = (3, 1) satisfies the condition exactly. For n = 3, the smallest possible value of n, this
would give p1 ' .88 and for n = 4 p1 = .41. With high enough precision it might be possible to
select between n = 3 and n = 4 options if small values of Ni are accepted.

3.7.8 Category Theoretic Formulation For Quantum Measurement The-
ory With Finite Measurement Resolution?

I have been trying to understand whether category theory might provide some deeper understand-
ing about quantum TGD, not just as a powerful organizer of fuzzy thoughts but also as a tool
providing genuine physical insights. Marni Dee Sheppeard (or Kea in her blog Arcadian Functor at
http://tinyurl.com/yb3lsbjq) is also interested in categories but in much more technical sense.
Her dream is to find a category theoretical formulation of M-theory as something, which is not the
11-D something making me rather unhappy as a physicist with second foot still deep in the muds
of low energy phenomenology.

http://tinyurl.com/yb3lsbjq
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Locales, frames, Sierpinski topologies and Sierpinski space

The ideas below popped up when Kea mentioned in M-theory lesson 51 the notions of locale and
frame [A5] . In Wikipedia I learned that complete Heyting algebras, which are fundamental to
category theory, are objects of three categories with differing arrows. CHey, Loc and its opposite
category Frm (arrows reversed). Complete Heyting algebras are partially ordered sets which are
complete lattices. Besides the basic logical operations there is also algebra multiplication (I have
considered the possible role of categories and Heyting algebras in TGD in [K15] ). From Wikipedia
I also learned that locales and the dual notion of frames form the foundation of pointless topology
[A17] . These topologies are important in topos theory which does not assume axiom of choice.

The so called particular point topology [A13] assumes a selection of single point but I have the
physicist’s feeling that it is otherwise rather near to pointless topology. Sierpinski topology [A21]
is this kind of topology. Sierpinski topology is defined in a simple manner: the set is open only
if it contains a given preferred point p. The dual of this topology defined in the obvious sense
exists also. Sierpinski space consisting of just two points 0 and 1 is the universal building block of
these topologies in the sense that a map of an arbitrary space to Sierpinski space provides it with
Sierpinski topology as the induced topology. In category theoretical terms Sierpinski space is the
initial object in the category of frames and terminal object in the dual category of locales. This
category theoretic reductionism looks highly attractive.

Particular point topologies, their generalization, and number theoretical braids

Pointless, or rather particular point topologies might be very interesting from physicist’s point of
view. After all, every classical physical measurement has a finite space-time resolution. In TGD
framework discretization by number theoretic braids replaces partonic 2-surface with a discrete
set consisting of algebraic points in some extension of rationals: this brings in mind something
which might be called a topology with a set of particular algebraic points. Could this preferred
set belongs to any open set in the particular point topology appropriate in this situation?

Perhaps the physical variant for the axiom of choice could be restricted so that only sets
of algebraic points in some extension of rationals can be chosen freely and the choices is defined
by the intersection of p-adic and real partonic 2-surfaces and in the framework of TGD inspired
theory of consciousness would thus involve the interaction of cognition with the material world.
The extension would depend on the position of the physical system in the algebraic evolutionary
hierarchy defining also a cognitive hierarchy. Certainly this would fit very nicely to the formulation
of quantum TGD unifying real and p-adic physics by gluing real and p-adic number fields to single
super-structure via common algebraic points.

Analogs of particular point topologies at the level of state space: finite measurement
resolution

There is also a finite measurement resolution in Hilbert space sense not taken into account in the
standard quantum measurement theory based on factors of type I. In TGD framework one indeed
introduces quantum measurement theory with a finite measurement resolution so that complex
rays become included hyper-finite factors of type II1 (HFFs).

1. Could topology with particular algebraic points have a generalization allowing a category the-
oretic formulation of the quantum measurement theory without states identified as complex
rays?

2. How to achieve this? In the transition of ordinary Boolean logic to quantum logic in the
old fashioned sense (von Neuman again!) the set of subsets is replaced with the set of
subspaces of Hilbert space. Perhaps this transition has a counterpart as a transition from
Sierpinski topology to a structure in which sub-spaces of Hilbert space are quantum sub-
spaces with complex rays replaced with the orbits of subalgebra defining the measurement
resolution. Sierpinski space {0,1} would in this generalization be replaced with the quantum
counterpart of the space of 2-spinors. Perhaps one should also introduce q-category theory
with Heyting algebra being replaced with q-quantum logic.
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Fuzzy quantum logic as counterpart for Sierpinksi space

The program formulated above might indeed make sense. The lucky association induced by Kea’s
blog was to the ideas about fuzzy quantum logic realized in terms of quantum 2-spinor that I
had developed a couple of years ago. Fuzzy quantum logic would reflect the finite measurement
resolution. I just list the pieces of the argument.

Spinors and qbits: Spinors define a quantal variant of Boolean statements, qbits. One
can however go further and define the notion of quantum qbit, qqbit. I indeed did this for couple
of years ago (the last section of this chapter).

Q-spinors and qqbits: For q-spinors the two components a and b are not commuting
numbers but non-Hermitian operators: ab = qba, q a root of unity. This means that one cannot
measure both a and b simultaneously, only either of them. aa† and bb† however commute so
that probabilities for bits 1 and 0 can be measured simultaneously. State function reduction is
not possible to a state in which a or b gives zero. The interpretation is that one has q-logic
is inherently fuzzy: there are no absolute truths or falsehoods. One can actually predict the
spectrum of eigenvalues of probabilities for say 1. Obviously quantum spinors would be state space
counterparts of Sierpinski space and for q 6= 1 the choice of preferred spinor component is very
natural. Perhaps this fuzzy quantum logic replaces the logic defined by the Heyting algebra.

Q-locale: Could one think of generalizing the notion of locale to quantum locale by using
the idea that sets are replaced by sub-spaces of Hilbert space in the conventional quantum logic.
Q-openness would be defined by identifying quantum spinors as the initial object, q-Sierpinski
space. a (resp. b for the dual category) would define q-open set in this space. Q-open sets for
other quantum spaces would be defined as inverse images of a (resp. b) for morphisms to this
space. Only for q=1 one could have the q-counterpart of rather uninteresting topology in which
all sets are open and every map is continuous.

Q-locale and HFFs: The q-Sierpinski character of q-spinors would conform with the very
special role of Clifford algebra in the theory of HFFs, in particular, the special role of Jones
inclusions to which one can assign spinor representations of SU(2). The Clifford algebra and
spinors of the world of classical worlds identifiable as Fock space of quark and lepton spinors is
the fundamental example in which 2-spinors and corresponding Clifford algebra serves as basic
building brick although tensor powers of any matrix algebra provides a representation of HFF.

Q-measurement theory: Finite measurement resolution (q-quantum measurement the-
ory) means that complex rays are replaced by sub-algebra rays. This would force the Jones inclu-
sions associated with SU(2) spinor representation and would be characterized by quantum phase q
and bring in the q-topology and q-spinors. Fuzzyness of qqbits of course correlates with the finite
measurement resolution.

Q-n-logos: For other q-representations of SU(2) and for representations of compact groups
(Appendix) one would obtain something which might have something to do with quantum n-logos,
quantum generalization of n-valued logic. All of these would be however less fundamental and
induced by q-morphisms to the fundamental representation in terms of spinors of the world of
classical worlds. What would be however very nice that if these q-morphisms are constructible
explicitly it would become possible to build up q-representations of various groups using the fun-
damental physical realization - and as I have conjectured [K62] - McKay correspondence and huge
variety of its generalizations would emerge in this manner.

The analogs of Sierpinski spaces: The discrete subgroups of SU(2), and quite generally,
the groups Zn associated with Jones inclusions and leaving the choice of quantization axes invariant,
bring in mind the n-point analogs of Sierpinski space with unit element defining the particular point.
Note however that n ≥ 3 holds true always so that one does not obtain Sierpinski space itself. If
all these n preferred points belong to any open set it would not be possible to decompose this
preferred set to two subsets belonging to disjoint open sets. Recall that the generalized embedding
space related to the quantization of Planck constant is obtained by gluing together coverings
M4 × CP2 → M4 × CP2/Ga × Gb along their common points of base spaces. The topology in
question would mean that if some point in the covering belongs to an open set, all of them do so.
The interpretation would be that the points of fiber form a single inseparable quantal unit.

Number theoretical braids identified as as subsets of the intersection of real and p-adic
variants of algebraic partonic 2-surface define a second candidate for the generalized Sierpinski
space with a set of preferred points.



Chapter 4

TGD view about McKay
Correspondence, ADE Hierarchy,
Inclusions of Hyperfinite Factors,
M8 −H Duality, SUSY, and
Twistors

4.1 Introduction

There are two mysterious looking correspondences involving ADE groups. McKay correspondence
between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin
diagrams of affine ADE groups is the first one. The correspondence between principal diagrams
characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams for a
subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

I have considered the interpretation of McKay correspondence in TGD framework already
earlier [K87, K28] but the decision to look it again led to a discovery of a bundle of new ideas
allowing to answer several key questions of TGD.

1. Asking questions about M8 − H duality at the level of 8-D momentum space [L18] led
to a realization that the notion of mass is relative as already the existence of alternative
QFT descriptions in terms of massless and massive fields suggests (electric-magnetic duality).
Depending on choice M4 ⊂ M8, one can describe particles as massless states in M4 × CP2

picture (the choice is M4
L depending on state) and as massive states (the choice is fixed M4

T )
in M8 picture. p-Adic thermal massivation of massless states in M4

L picture can be seen as
a universal dynamics independent mechanism implied by ZEO. Also a revised view about
zero energy ontology (ZEO) based quantum measurement theory as theory of consciousness
suggests itself.

2. Hyperfinite factors of type II1 (HFFs) [K87, K28] and number theoretic discretization in
terms of what I call cognitive representations [L29] provide two alternative approaches to
the notion of finite measurement resolution in TGD framework. One obtains rather concrete
view about how these descriptions relate to each other at the level of 8-D space of light-like
momenta. Also ADE hierarchy can be understood concretely.

3. The description of 8-D twistors at momentum space-level is also a challenge of TGD. 8-D
twistorializations in terms of octo-twistors (M4

T description) and M4 × CP2 twistors (M4
L

description) emerge at embedding space level. Quantum twistors could serve as a twistor
description at the level of space-time surfaces.
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Hyperfinite Factors, M8 −H Duality, SUSY, and Twistors

4.1.1 McKay correspondence in TGD framework

Consider first McKay correspondence in more detail.

1. McKay correspondence states that the McKay graphs characterizing the tensor product de-
composition rules for representations of discrete and finite sub-groups of SU(2) are Dynkin
diagrams for the affine ADE groups obtained by adding one node to the Dynkin diagram of
ADE group. Could this correspondence make sense for any finite group G rather than only
discrete subgroups of SU(2)? In TGD Galois group of extensions K of rationals can be any
finite group G. Could Galois group take the role of G?

2. Why the subgroups of SU(2) should be in so special role? In TGD framework quaternions
and octonions play a fundamental role at M8 side of M8 − H duality [L18]. Complexified
M8 represents complexified octonions and space-time surfaces X4 have quaternionic tangent
or normal spaces. SO(3) is the automorphism group of quaternions and for number theo-
retical discretizations induced by extension K of rationals it reduces to its discrete subgroup
SO(3)K having SU(2)K as a covering. In certain special cases corresponding to McKay cor-
respondence this group is finite discrete group acting as symmetries of Platonic solids. Could
this make the Platonic groups so special? Could the semi-direct products Gal(K) / SU(2)K
take the role of discrete subgroups of SU(2)?

4.1.2 HFFs and TGD

The notion of measurement resolution is definable in terms of inclusions of HFFs and using number
theoretic discretization of X4. These definitions should be closely related.

1. The inclusions N ⊂M of HFFs with indexM : N < 4 are characterized by Dynkin diagrams
for a subset of ADE groups. The TGD inspired conjecture is that the inclusion hierarchies of
extensions of rationals and of corresponding Galois groups could correspond to the hierarchies
for the inclusions of HFFs. The natural realization would be in terms of HFFs with coefficient
field of Hilbert space in extension K of rationals involved.

Could the physical triviality of the action of unitary operators N define measurement res-
olution? If so, quantum groups assignable to the inclusion would act in quantum spaces
associated with the coset spaces M/N of operators with quantum dimension d = M : N .
The degrees of freedom below measurement resolution would correspond to gauge symmetries
assignable to N .

2. Adelic approach [L24] provides an alternative approach to the notion of finite measurement
resolution. The cognitive representation identified as a discretization of X4 defined by the
set of points with points having H (or at least M8 coordinates) in K would be common to
all number fields (reals and extensions of various p-adic number fields induced by K). This
approach should be equivalent with that based on inclusions. Therefore the Galois groups of
extensions should play a key role in the understanding of the inclusions.

How HFFs could emerge from TGD?

1. The huge symmetries of “world of classical words” (WCW) could explain why the ADE
diagrams appearing as McKay graphs and principal diagrams of inclusions correspond to
affine ADE algebras or quantum groups. WCW consists of space-time surfaces X4, which
are preferred extremals of the action principle of the theory defining classical TGD connecting
the 3-surfaces at the opposite light-like boundaries of causal diamond CD = cd×CP2, where
cd is the intersection of future and past directed light-cones of M4 and contain part of
δM4
±×CP2. The symplectic transformations of δM4

+×CP2 are assumed to act as isometries
of WCW. A natural guess is that physical states correspond to the representations of the
super-symplectic algebra SSA.

2. The sub-algebras SSAn of SSA isomorphic to SSA form a fractal hierarchy with confor-
mal weights in sub-algebra being n-multiples of those in SSA. SSAn and the commutator
[SSAn, SSA] would act as gauge transformations. Therefore the classical Noether charges for



4.1. Introduction 155

these sub-algebras would vanish. Also the action of these two sub-algebras would annihilate
the quantum states. Could the inclusion hierarchies labelled by integers .. < n1 < n2 < n3....
with ni+1 divisible by ni would correspond hierarchies of HFFs and to the hierarchies of ex-
tensions of rationals and corresponding Galois groups? Could n correspond to the dimension
of Galois group of K.

3. Finite measurement resolution defined in terms of cognitive representations suggests a re-
duction of the symplectic group SG to a discrete subgroup SGK , whose linear action is
characterized by matrix elements in the extension K of rationals defining the extension. The
representations of discrete subgroup are infinite-D and the infinite value of the trace of unit
operator is problematic concerning the definition of characters in terms of traces. One can
however replace normal trace with quantum trace equal to one for unit operator. This im-
plies HFFs and the hierarchies of inclusions of HFFs [K87, K28]. Could inclusion hierarchies
for extensions of rationals correspond to inclusion hierarchies of HFFs and of isomorphic
sub-algebras of SSA?

Quantum spinors are central for HFFs. A possible alternative interpretation of quantum
spinors is in terms of quantum measurement theory with finite measurement resolution in which
precise eigenstates as measurement outcomes are replaced with universal probability distributions
defined by quantum group. This has also application in TGD inspired theory of consciousness
[K28]: the idea is that the truth value of Boolean statement is fuzzy. At the level of quantum
measurement theory this would mean that the outcome of quantum measurement is not anymore
precise eigenstate but that one obtains only probabilities for the appearance of different eigenstate.
One might say that probability of eigenstates becomes a fundamental observable and measures the
strength of belief.

4.1.3 New aspects of M8 −H duality

M8−H duality (H = M4×CP2) [L18] has become one of central elements of TGD. M8−H duality
implies two descriptons for the states.

1. M8−H duality assumes that space-time surfaces in M8 have associative tangent- or normal
space M4 and that these spaces share a common sub-space M2 ⊂ M4, which corresponds
to complex subspace of octonions (also integrable distribution of M2(x) can be considered).
This makes possible the mapping of space-time surfaces X4 ⊂M8 to X4 ⊂ H = M4×CP2)
giving rise to M8 −H duality.

2. M8−H duality makes sense also at the level of 8-D momentum space in one-one correspon-
dence with light-like octonions. In M8 = M4×E4 picture light-like 8-momenta are projected
to a fixed quaternionic M4

T ⊂M8. The projections to M4
T ⊃M2 momenta are in general mas-

sive. The group of symmetries is for E4 parts of momenta is Spin(SO(4)) = SU(2)L×SU(2)R
and identified as the symmetries of low energy hadron physics.

M4 ⊃ M2 can be also chosen so that the light-like 8-momentum is parallel to M4
L ⊂ M8.

Now CP2 codes for the E4 parts of 8-momenta and the choice of M4
L and color group SU(3)

as a subgroup of automorphism group of octonions acts as symmetries. This correspond to
the usual description of quarks and other elementary particles. This leads to an improved
understanding of SO(4) − SU(3) duality. A weaker form of this duality S3 − CP2 duality:
the 3-spheres S3 with various radii parameterizing the E4 parts of 8-momenta with various
lengths correspond to discrete set of 3-spheres S3 of CP2 having discrete subgroup of U(2)
isometries.

3. The key challenge is to understand why the MacKay graphs in McKay correspondence and
principal diagrams for the inclusions of HFFs correspond to ADE Lie groups or their affine
variants. It turns out that a possible concrete interpretation for the hierarchy of finite
subgroups of SU(2) appears as discretizations of 3-sphere S3 appearing naturally at M8 side
of M8 −H duality. Second interpretation is as covering of quaternionic Galois group. Also
the coordinate patches of CP2 can be regarded as piles of 3-spheres and finite measurement
resolution. The discrete groups of SU(2) define in a natural way a hierarchy of measurement
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resolutions realized as the set of light-like M8 momenta. Also a concrete interpretation for
Jones inclusions as inclusions for these discretizations emerges.

4. A radically new view is that descriptions in terms of massive and massless states are alterna-
tive options leads to the interpretation of p-adic thermodynamics as a completely universal
massivation mechanism having nothing to do with dynamics. The problem is the paradoxi-
cal looking fact that particles are massive in H picture although they should be massless by
definition. The massivation is unavoidable if zero energy states are superposition of massive
states with varying masses. The M4

L in this case most naturally corresponds to that associ-
ated with the dominating part of the state so that higher mass contributions can be described
by using p-adic thermodynamics and mass squared can be regarded as thermal mass squared
calculable by p-adic thermodynamics.

5. As a side product emerges a deeper understanding of ZEO based quantum measurement
theory and consciousness theory. 4-D space-time surfaces correspond to roots of octonionic
polynomials P (o) with real coefficients corresponding to the vanishing of the real or imaginary
part of P (o).

These polynomials however allow universal roots, which are not 4-D but analogs of 6-D
branes and having topology of S6. Their M4 projections are time =constant snapshots
t = rn, rM ≤ rn 3-balls of M4 light-cone (rn is root of P (x)). At each point the ball there is
a sphere S3 shrinking to a point about boundaries of the 3-ball.

What suggests itself is following “braney” picture. 4-D space-time surfaces intersect the 6-
spheres at 2-D surfaces identifiable as partonic 2-surfaces serving as generalized vertices at
which 4-D space-time surfaces representing particle orbits meet along their ends. Partonic
2-surfacew would define the space-time regions at which one can pose analogs of boundary
values fixing the space-time surface by preferred extremal property. This would realize strong
form of holography (SH): 3-D holography is implied already by ZEO.

This picture forces to consider a modification of the recent view about ZEO based theory
of consciousness. Should one replace causal diamond (CD) with light-cone, which can be
however either future or past directed. “Big” state function reductions (BSR) meaning the
death and re-incarnation of self with opposite arrow of time could be still present. An
attractive interpretation for the moments t = rn would be as moments assignable to “small”
state function reductions (SSR) identifiable as “weak” measurements giving rise to sensory
input of conscious entity in ZEO based theory of consciousness. One might say that conscious
entity becomes gradually conscious about its roots in increasing order. The famous question
“What it feels to be a bat” would reduce to “What it feels to be a polynomial?”! One must
be however very cautious here.

4.1.4 What twistors are in TGD framework?

The basic problem of the ordinary twistor approach is that the states must be massless in 4-D sense.
In TGD framework particles would be massless in 8-D sense. The meaning of 8-D twistorialization
at space-time level is relatively well understood but at the level of momentum space the situation
is not at all so clear.

1. In TGD particles are massless in 8-D sense. For M4
L description particles are massless in 4-D

sense and the description at momentum space level would be in terms of products of ordinary
M4 twistors and CP2 twistors. For M4

T description particles are massive in 4-D sense. How
to generalize the twistor description to 8-D case?

The incidence relation for twistors and the need to have index raising and lowering operation
in 8-D situation suggest the replacement of the ordinary l twistors with either with octo-
twistors or non-commutative quantum twistors.

2. I have assumed that what I call geometric twistor space of M4 is simply M4×S2. It however
turned out that one can consider standard twistor space CP3 with metric signature (3,-3)
as an alternative. This option reproduces the nice results of the earlier approach but the
philosophy is different: there is no fundamental length scale but the hierarchy of causal
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diamonds (CDs) predicted by zero energy ontology (ZEO) gives rise to the breaking of the
exact scaling invariance of M8 picture. This forces to modify M8 − H correspondence so
that it involves map from M4 to CP3 followed by a projection to hyperbolic variant CP2,h

of CP2. Note that also the original form of M8 − H duality continues to make sense and
results from the modification by projection from CP3,h to M4 rather than CP2,h.

M4 in H would not be be replaced with conformally compactified M4 (M4
conf ) but con-

formally compactified cd (cdconf ) for which a natural identification is as CP2 with second
complex coordinate replaced with hypercomplex coordinate. The sizes of twistor spaces of
cdconf using CP2 size as unit would reflect the hierarchy of size scales for CDs. The consider-
ation on the twistor space of M8 in similar picture leads to the identification of corresponding
twistor space as HP3 - quaternionic variant of CP3: the counterpart of CD8 would be HP2.

3. Octotwistors can be expressed as pairs of quaternionic twistors. Octotwistor approach sug-
gests a generalization of twistor Grassmannian approach obtained by replacing the bi-spinors
with complexified quaternions and complex Grassmannians with their quaternionic counter-
parts. Although TGD is not a quantum field theory, this proposal makes sense for cognitive
representations identified as discrete sets of spacetime points with coordinates in the exten-
sion of rationals defining the adele [L24] implying effective reduction of particles to point-like
particles.

4. The outcome of octo-twistor approach together with M8 − H duality leads to a nice pic-
ture view about twistorial description of massive states based on quaternionic generalization
of twistor Grassmannian approach. A radically new view is that descriptions in terms of
massive and massless states are alternative options, and correspond to two different alter-
native twistorial descriptions and leads to the interpretation of p-adic thermodynamics as
completely universal massivation mechanism having nothing to do with dynamics. As a side
product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which
are not 4-D but analogs of 6-D branes. By M8 −H duality the finite sub-groups of SU(2)
of McKay correspondence appear quite concretely in the description of the measurement
resolution of 8-momentum.

What about super-twistors in TGD framework?

1. The parallel progress in the understanding SUSY in TGD framework [L39] in turn led to the
identification of the super-counterparts of M8, H and of twistor spaces modifying dramati-
cally the physical interpretation of SUSY. Super-spinors in twistor space would provide the
description of quantum states. Super-Grassmannians would be involved with the construc-
tion of scattering amplitudes. Quaternionic super Grassmannians would be involved with
M8 description.

2. The great surprise from physics point of view is that in fermionic sector only quarks are
allowed by SO(1, 7) triality and that anti-leptons are local 3-quark composites identifiable as
spartners of quarks. Gauge bosons, Higgs and graviton would be also spartners and assignable
to super-coordinates of embedding space expressible as super-polynomials of quark oscillator
operators. Super-symmetrization means also quantization of fermions allowing local many-
quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

What about the interpretation of quantum twistors? They could make sense as 4-D space-
time description analogous to description at space-time level. Now one can consider generalization
of the twistor Grassmannian approach in terms of quantum Grassmannians.
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4.2 McKay correspondence

Consider first McKay correspondence from TGD point of view.

4.2.1 McKay graphs

McKay graps are defined in the following manner. Consider group G which is discrete but not
necessarily finite. If the group is finite there is a finite number of irreducible representations χI .
Select preferred representation V - usually V is taken to be the fundamental representation of
G and form tensor products χI ⊗ V . Suppose irrep χJ appears nij times in the tensor product
χI ⊗ χ0. Assign to each representation χI dot and connect the dots of χI and χJ by nij arrows.
This gives rise to MacKay graph.

Consider now the situation for finite-D groups of SU(2). 2-D SU(2) spinor representation
as a fundamental representation is essential for obtaining the identification of McKay graphs as
Dynkin diagrams of simply laced affine algebras having only single line connecting the roots (the
angle between positive roots is 120 degrees) (see http://tinyurl.com/z48d92t).

1. For SU(2) representations one has the basic rule j1 − 1/2 ≤ j ≤ j1 + 1/2 for the tensor
product j1 ⊗ 1/2. This rule must be broken for finite subgroups of SU(2) since the number
of representations if finite so that branching point appears in McKay graph. In branching
point the decomposition of j1 ⊗ 1/2 decomposes to 3 lower-dimensional representations of
the finite subgroup takes place.

2. Simply lacedness means that given representation appears only once in chiI ⊗ V , when V is
2-D representation as it can be for a subgroup of SU(2). Additional exceptional properties
is the absence of loops (nii = 0) and connectedness of McKay graph.

3. One can consider binary icosahedral group (double covering of icosahedral group A5 with
order 60) as an example (for the McKay graph see http://tinyurl.com/y2h55jwp). The
representations of A5 are 1A, 3A, 3

′
B , 4A, 5A, where integer tells the dimension. Note that

SO(3) does not allow 4-D representation. For binary icosahedral group one obtains also
the representations 2A, 2

′
B , 4B , 6A. The McKay graph of E8 contains one branching point in

which one has the tensor product of 6-D and 2-D representations 6A and 2A giving rise to
5A ⊕ 3C ⊕ 4B .

McKay graphs can be defined for any finite group and they are not even unions of simply
laced diagrams unless one has subgroups of SU(2). Still one can wonder whether McKay corre-
spondence generalizes from subgroups of SU(2) to all finite groups. At first glance this does not
seem possible but there might be some clever manner to bring in all finite groups.

The proposal has been that this McKay correspondence has a deeper meaning. Could simply
laced affine ADE algebras, ADE type quantum algebras, and/or corresponding finite groups act
as symmetry algebras in TGD framework?

4.2.2 Number theoretic view about McKay correspondence

Could the physical picture provided by TGD help to answer the above posed questions?

1. Could one identify discrete subgroups of SU(2) with those of the covering group SU(2)
of SO(3) of quaternionic automorphisms defining the continuous analog of Galois group
and reducing to a discrete subgroup for a finite resolution characterized by extension K
of rationals. The tensor products of 2-D spinor representation of these discrete subgroups
SU(2)K would give rise to irreps appearing in the McKay graph.

2. In adelic physics [L24] extensionsK of rationals define an evolutionary hierarchy with effective
Planck constant heff/h0 = n identified as the dimension of K. The action of discrete and
finite subgroups of various symmetry groups can be represented as Galois group action making
sense at the level of X4 [L18] for what I have called cognitive representations. By M8 −H
duality also the Galois group of quaternions and its discrete subgroups appear naturally.

http://tinyurl.com/z48d92t
http://tinyurl.com/y2h55jwp
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This suggests a possible generalization of McKay correspondence so that it would apply to
all finite groups G. Any finite group G can appear as Galois group. The Galois group
Gal(K) characterizing the extension of rationals induces in turn extensions of p-adic number
fields appearing in the adele. Could the representation of G as Galois group of extension of
rationals allow to generalize McKay correspondence?

Could the following argument inspired by these observations make sense?

1. SU(2) is identified as spin covering of the quaternionic automorphism group. One can define
the subgroups in matrix representation of SU(2) based on complex numbers. One can replace
complex numbers with the extension of rationals and speak of group SU(2)K identified as a
discrete subgroup of SU(2) having in general infinite order.

The discrete finite subgroups G ⊂ SU(2) appearing in the standard McKay correspondence
correspond to extensions K of rationals for which one has G = SU(2)K . These special
extensions can be identified by studying the matrix elements of the representation of G and
include the discrete groups Zn acting as rotation symmetries of the Platonic solids. For
instance, for icosahedral group Z2,Z3 and Z5 are involved and correspond to roots of unity.

2. The semi-direct product Gal / SU(2)K with group action

(gal1, g1)(gal2, g2) = (gal1 ◦ gal2, g1(gal1g2))

makes sense. The action of Gal/SU(2)K in the representation is therefore well-defined. Since
all finite groups G can appear as Galois groups, it seems that one obtains extension of the
McKay correspondence to semi-direct products involving all finite groups G representable as
Galois groups.

3. A good guess is that the number of representations of SU(2)K involved is infinite if SU(2)K
has infinite order. For Ãn and D̃n the branching occurs only at the ends of the McKay graph.
For Ek, k = 6, 7, 8 the branching occurs in middle of the graph (see http://tinyurl.com/

y2h55jwp). What happens for arbitrary G. Does the branching occur at all? One could
argue that if the discrete subgroup has infinite order, the representation can be completed
to a representation of SU(2) in terms of real numbers so that the McKay graphs must be
identical.

4. A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra
identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements
defined by the traces of representation matrices (characters).

5. A possible interpretation of quantum spinors is in terms of quantum measurement theory
with finite measurement resolution in which precise eigenstates as measurement outcomes
are replaced with universal probability distributions defined by quantum group [K28]. TGD
inspired theory of consciousness is a possible application.

Also the notion of quantum twistor [L43] can be considered. In TGD particles are massless
in 8-D sense and in general massive in 4-D sense but 4-D twistors are needed also now so that
a modification of twistor approach is needed. The incidence relation for twistors suggests the
replacement of the usual twistors with non-commutative quantum twistors.

4.3 ADE diagrams and principal graphs of inclusions of hy-
perfinite factors of type II1

Dynkin diagrams for ADE groups and corresponding affine groups characterize also the inclusions
of hyperfinite factors of type II1 (HFFs) [K28].

http://tinyurl.com/y2h55jwp
http://tinyurl.com/y2h55jwp
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4.3.1 Principal graphs and Dynkin diagrams for ADE groups

1. If the index β = M : N of the Jones inclusion satisfies β < 4, the affine Dynkin diagrams
of SU(n) (discrete symmetry groups of n-polygons) and E7 (symmetry group of octahedron
and cube) and D(2n+ 1) (symmetries of double 2n+1-polygons) are not allowed.

2. Vaughan Jones [A131] (see http://tinyurl.com/y8jzvogn) has speculated that these fi-
nite subgroups could correspond to quantum groups as kind of degenerations of Kac-Moody
groups. Modulo arithmetics defined by the integer n defining the quantum phase suggests
itself strongly. For β = 4 one can construct inclusions characterized by extended Dynkin
diagram and any finite sub-group of SU(2). In this case affine ADE hierarchy appear as
principal graphs characterizing the inclusions. For β < 4 the finite measurement resolution
could reduce affine algebra to quantum algebra.

3. The rule is that for odd values of n defining the quantum phase the Dynkin diagram does
not appear. If Dynkin diagrams correspond to quantum groups, one can ask whether they
allow only quantum group representations with quantum phase q = exp(iπ/n) equal to even
root of unity.

4.3.2 Number theoretic view about inclusions of HFFs and preferred
role of SU(2)

Consider next the TGD inspired interpretation.

1. TGD suggests the interpretation in terms of representations of Gal(K(G)) / G for finite
subgroups G of SU(2), where K(G) would be an extension associated with G. This would
generalize to subgroups of SU(2) with infinite order in the case of arbitrary Galois group.
Quantum groups have finite number of representations in 1-1-correspondence with terms of
finite-D representations of G. Could the representations of Gal(K(G)) /G correspond to the
representations of quantum group defined by G?

This would conform with the vision that there are two ways to realize finite measurement
resolution. The first one would be in terms of inclusions of hyper-finite factors. Second would
be in terms cognitive representations defining a number theoretic discretization of X4 with
embedding space coordinates in the extension of rationals in which Galois group acts.

In fact, also the discrete subgroup of infinite-D group of symplectic transformations of
∆M4

+ × CP2 would act in the cognitive representations and this suggests a far reaching
implications concerning the understanding of the cognitive representations, which pose a
formidable looking challenge of finding the set of points of X4 in given extension of ratio-
nals [L37].

2. This brings in mind also the model for bio-harmony in which genetic code is defined in terms
of Hamiltonian cycles associated with icosahedral and tetrahedral geometries [L7, L31]. One
can wonder why the Hamiltonian cycles for cubic/octahedral geometry do not appear. On the
other hand, according to Vaughan the Dynkin diagram for E7 is missing from the hierarchy
of so principal graphs characterizing the inclusions of HFFs for β < 4 (a fact that I failed to
understand). Could the genetic code directly reflect the properties of the inclusion hierarchy?

How would the hierarchies of inclusions of HFFs and extensions of rationals relate to each
other?

1. I have proposed that the inclusion hierarchies of extensions K of rationals accompanied by
similar hierarchies of Galois groups Gal(K) could correspond to a fractal hierarchy of sub-
algebras of hyperfinite factor of type II1. Quantum group representations in ADE hierarchy
would somehow correspond to these inclusions. The analogs of coset spaces for two alge-
bras in the hierarchy define would quantum group representations with quantum dimension
characterizing the inclusion.

http://tinyurl.com/y8jzvogn
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2. The quantum group in question would correspond to a quantum analog of finite-D group
of SU(2) which would be in completely unique role mathematically and physically. The
infinite-D group in question could be the symplectic group of δM4

+ × CP2 assumed to act
as isometries of WCW. In the hierarchy of Galois groups the quantum group of finite group
G ⊂ SU(2) would correspond to Galois group of an extension K.

3. The trace of unit matrix defining the character associated with unit element is infinite for
these representations for factors of type I. Therefore it is natural to assume that hyper-finite
factor of type II1 for which the trace of unit matrix can be normalized to 1. Sub-factors
would have trace of projector with trace smaller than 1.

4. Do the ADE diagrams for groups Gal(K(G)) / G indeed correspond to quantum groups and
affine algebras? Why the finite groups should give rise to affine/Kac-Moody algebras? In
number theoretic vision a possible answer would be that depending on the value of the index
β of inclusion the symplectic algebra reduces in the number theoretic discretization by gauge
conditions specifying the inclusion either to Kac-Moody group (β = 4) or to quantum group
(β < 4).

What about subgroups of groups other than SU(2)? According to Vaughan there has been
work about inclusion hierarchies of SU(3) and other groups and it seems that the results generalize
and finite subgroups of say SU(3) appear. In this case the tensor products of finite sub-groups
McKay graphs do not however correspond to the principal graphs for inclusions. Could the number
theoretic vision come in rescue with the replacement of discrete subgroup with Galois group and
the identification of SU(2) as the covering for the Galois group of quaternions?

4.3.3 How could ADE type quantum groups and affine algebras be con-
cretely realized?

The questions discussed are following. How to understand the correspondence between the McKay
graph for finite group G ⊂ SU(2) and ADE (affine) group Dynkin diagram for β < 4 (β = 4)?
How the nodes of McKay grap representing the irreps of finite group can correspond to the positive
roots of a Dynkin diagram, which are essentially vectors defined by eigenvalues of Cartan algebra
generators for complexified Lie-algebra basis.

The first thing that comes in mind is the construction of representation of Kac-Moody alge-
bra using scalar fields labelled by Cartan algebra generators (see http://tinyurl.com/y9lkeelk):
these representations are discussed by Edward Frenkel [A55]. The charged generators of Kac-
Moody algebra in the complement of Cartan algebra are obtained by exponentiating the contrac-
tions of the vector formed by these scalar fields with roots to get α · Φ = αiΦ

i. The charged field
is represented as a normal ordered product : exp(iα · Φ) :. If one can assign to each irrep of G a
scalar field in a natural manner one could achieve this.

Neglect first the presence of the group algebra of Gal(K(G)) /G. The standard rule for the
dimensions of the representations of finite groups reads as

∑
i d

2
I = n(G). For double covering of

G one obtains this rule separately for integer spin representations and half-odd integers spin repre-
sentations. An interesting possibility is that this could be interpreted in terms of supersymmetry
at the level of group algebra in which representation of dimension dI appears dI times.

The group algebra of G and its covering provide a universal manner to realize these repre-
sentations in terms of a basis for complex valued functions in group (for extensions of rationals
also the values of the functions must belong to the extension).

1. Representation with dimension dI occurs dI times and corresponds to dI × dI representation
matrices DI

mn of representation χI , whose columns and rows provide representations for left-
and right-sided action of G. The tensor product rules for the representations χI can be
formulated as double tensor products. For basis states |J, n〉 in χI and |J, n〉 in χJ one has

|I,m〉⊗|J, n〉 = cK,pI,m|J,n|K, p〉 ,

where cK,pJ,n|J,n are Glebch-Gordan coefficients.

http://tinyurl.com/y9lkeelk
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2. For the tensor product of matrices DI
mn and DJ

mn one must apply this rule to both indices.
The orthogonality properties of Glebsch-Gordan coefficients guarantee that the tensor prod-
uct contains only terms in which one has same representation at left- and right-hand side.
The orthogonality rule is ∑

m,n

cK,pI,m|J,nc
K,q
I,r|J,s ∝ δK,L .

3. The number of states is n(G) whereas the number I(G) of irreps corresponds to the dimension
of Cartan algebra of Kac-Moody algebra or of quantum group is smaller. One should be able
to pick only one state from each representation DI .

The condition that the state X of group algebra is invariant under automorphism gXg−1

implies that the allowed states as function in group algebra are traces Tr(DI)(g) of the
representation matrices. The traces of representation matrices indeed play fundamental role
as automorphism invariants. This suggests that the scalar fields ΦI in Kac-Moody algebra
correspond to Hilbert space coefficients of Tr(DI)(g) as elements of group algebra labelled by
the representation. The exponentiation of α · Φ would give the charged Kac-Moody algebra
generators as free field representation.

4. For infinite sub-groups G ⊂ SU(2) d(G) is infinite. The traces are finite also in this case if
the dimensions of the representations involved are finite. If one interprets the unit matrix as
a function having value 1 in entire group Tr(Id) diverges. Unit dimension for HFFs provide
a more natural notion of dimension d = n(G) of group algebra n(G) as d = n(G) = 1.
Therefore HFFs would emerge naturally.

It is easy to take into account Gal(K(G)). One can represent the elements of semi-direct
product Gal(K(G))/G as functions in Gal(K(G))×G and the proposed construction brings in also
the tensor products in the group algebra of Gal(K(G)). It is however essential that group algebra
elements have values in K. This brings in tensor products of representations Gal and G and the
number of representations is n(Gal)×n(G). The number of fields ΦI as also the number of Cartan
algebra generators of ADE Lie algebra increases from I(G) to I(Gal) × I(G). The reduction of
the extension of coefficient field for the Kac-Moody algebra from complex numbers to K splits the
Hilbert space to sectors with smaller number of states.

4.4 M 8 −H duality

The generalization of the standard twistor Grassmannian approach to TGD remains a challenge
for TGD and one can imagine several approaches. M8−H duality is essential for these approaches
and will be discussed in the sequel.

The original form of M8 −H duality assumed H = M4 × CP2 but quite recently it turned
out that one could replace the twistor space of M4 identified as M4 × S2 with CP3,h, which is
hyperbolic variant of CP3. This option forces to replace H with H = CP2,h×CP2. M8−H duality
would consist of a map of M4 point to corresponding twistor sphere in CP3,h and its projection to
CP2,h. This option will be discussed in the section about twistor lift of TGD.

4.4.1 M8 −H duality at the level of space-time surfaces

M8 − H duality [L18] relates two views about space-time surfaces X4: as algebraic surfaces in
complexified octonionic M8 and as minimal surfaces with singularities in H = M4 × CP2.

1. Octonion structure at the level of M8 means a selection of a suitable decomposition M8 =
M4 × E4 in turn determining H = M4 × CP2. Choices of M4 share a preferred 2-plane
M2 ⊂M4 belonging to the tangent space of allowed space-time surfaces X4 ⊂M8 at various
points. One can parameterize the tangent space of X4 ⊂ M8 with this property by a point
of CP2. Therefore X4 can be mapped to a surface in H = M4 ×CP2: one M8-duality. One
can consider also the possibility that the choice of M2 is local but that the distribution of
M2(x) is integrable and defines string world sheet in M4. In this case M2(x) is mapped to
same M2 ⊂ H.
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2. Since 8-momenta p8 are light-like one can always find a choice of M4
L ⊂ M8 such that p8

belongs to M4
L and is thus light-like. The momentum has in the general case a component

orthogonal to M2 so that M4
L is unique by quaternionicity: quaternionic cross product for

tangent space quaternions gives the third imaginary quaternionic unit. For a fixed M4, call
it M4

T , the M4 projections of momenta are time-like. When momentum belongs to M2 the
choices is non-unique and any M4 ⊂M2 is allowed.

3. Space-time surfaces X4 ⊂M8 have either quaternionic tangent- or normal spaces. Quantum
classical correspondence (QCC) requires that charges in Cartan algebra co-incide with their
classical counters parts determined as Noether charges by the action principle determining X4

as preferred extremal. Parallelity of 8-momentum currents with tangent space of X4 would
conform with the näıve view about QCC. It does not however hold true for the contributions
to four-momentum coming from string world sheet singularities (string world sheet boundaries
are identified as carriers of quantum numbers), where minimal surface property fails.

An important aspect of M8−H duality is the description of space-time surfaces X4
c ⊂M8

c as
roots for the “real” or “imaginary” part in quaternionic sense of complexified-octonionic polynomial
with real coefficients: these options correspond to complexified-quaternionic tangent - or normal
spaces. The real space-time surfaces would be naturally obtained as “real” parts with respect to i
of their complexified counterparts by projection from M8

c to M4
c . One could drop the subscripts

”c” but in the sequel they are kept.

Remark:Oc,Oc,Cc,Rc will be used in the sequel for complexifications of octonions, quater-
nions, etc.. number fields using commuting imaginary unit i appearing naturally via the roots of
real polynomials.

M8−H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Space-time surface is identified as a 4-D root for a Hc-valued “imaginary” or “real” part of
Oc valued polynomial obtained as an Oc continuation of a real polynomial P with rational
coefficients, which can be chosen to be integers. For P (x) = xn + .. ordinary roots are
algebraic integers. The 4-D space-time surface is projection of this surface from M8

c to M8.

The tangent space of space-time surface and thus space-time surface itself contains a preferred
M2
c ⊂M4

c or more generally, an integrable distribution of tangent spaces M2
c (x). The string

world sheet like entity defined by this distribution is 2-D surface X2
c ⊂ X4

c in Rc sense.

X2c can be fixed by posing to the non-vanishing Qc-valued part of octonionic polynomial
condition that the Cc valued “real” or “imaginary” part in Cc sense for this polynomial
vanishes. M2

c would be the simplest solution but also more general complex sub-manifolds
X2
c ⊂ M4

c are possible. In general one would obtain book like structures as collections of
several string world sheets having real axis as back.

By assuming that Rc-valued “real” or “imaginary” part of the polynomial at this 2-surface
vanishes. one obtains preferred M1

c or E1
c containing octonionic real and preferred imagi-

nary unit or distribution of the imaginary unit having interpretation as complexified string.
Together these kind 1-D surfaces in Rc sense would define local quantization axis of energy
and spin. The outcome would be a realization of the hierarchy R→Cc → Hc → Oc realized
as surfaces.

Remark: Also M4
c appears as a special solution for any polynomial P . M4

c seems to be like
a universal reference solution with which to compare other solutions. M4

c would intersect
all other solutions along string world sheets X2

c . Also this would give rise to a book like
structures with 2-D string world sheet representing the back of given book. The physical
interpretation of these book like structures remains open in both cases.

I have proposed that string world sheets as singularities correspond to 2-D folds of space-
time surfaces at which the dimension of the quaternionic tangent space degenerates from
4 to 2 [L35] [K7]. This interpretation is consistent with the identification as a book like
structure with 2-pages. Also 1-D real and imaginary manifols could be interpreted as folds
or equivalently books with 2 pages.
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2. Associativity condition for tangent-/normal space is second essential condition and means
that tangent - or normal space is quaternionic. The conjecture is that the identification in
terms of roots of polynomials guarantees this and one can formulate this as rather convincing
argument [L19, L20, L21].

One cannot exclude rational functions and or even real analytic functions in the sense that
Taylor coefficients are octonionically real (propotional to octonionic real unit). Number theoret-
ical vision - adelic physics [L24], suggests that polynomial coefficients are rational or perhaps in
extensions of rationals. The real coefficients could in principle be replaced with complex numbers
a + ib, where i commutes with the octonionic units and defines complexifiation of octonions. i
appears also in the roots defining complex extensions of rationals.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone δM8
+ of M8

with tip at the origin of coordinates is an exception [L18]. At δM8
+ the octonionic coordinate

o is light-like and one can write o = re, where 8-D time coordinate and radial coordinate are
related by t = r and one has e = (1 + er)/

√
2 such that one as e2 = e.

Polynomial P (o) can be written at δM8
+ as P (o) = P (r)e and its roots correspond to 6-

spheres S6 represented as surfaces tM = t = rN , rM =
√
r2
N − r2

E ≤ rN , rE ≤ rN , where
the value of Minkowski time t = r = rN is a root of P (r) and rM denotes radial Minkowski
coordinate. The points with distance rM from origin of t = rN ball of M4 has as fiber
3-sphere with radius r =

√
r2
N − r2

E . At the boundary of S3 contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries rM = rN of balls belong to the
boundary of M4 light-cone. In this case the intersection would be that of 4-D and 3-D surface,
and empty in the generic case (it is however quite not clear whether topological notion of
“genericity” applies to octonionic polynomials with very special symmetry properties).

3. The 6-spheres tM = rN would be very special. At these 6-spheres the 4-D space-time surfaces
X4 as usual roots of P (o) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of rn.

The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their
2-D ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary
Feynman diagrams. Obviously this would make the definition of the generalized vertices
mathematically elegant and simple.

Note that this does not require that space-time surfaces X4 meet along 3-D surfaces at
S6. The interpretation of the times tn as moments of phase transition like phenomena is
suggestive. ZEO based theory of consciousness suggests interpretation as moments for state
function reductions analogous to weak measurements ad giving rise to the flow of experienced
time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as
initial data fixing the 4-D roots of polynomials. This would give precise content to strong
form of holography (SH), which is one of the central ideas of TGD and strengthens the
3-D holography coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of
CD define unique preferred extremals. The reduction to 2-D holography would be due to
preferred extremal property realizing the huge symplectic symmetries and making M8 −H
duality possible as also classical twistor lift.

I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X4 ∩ S6? This is not possible since time coordinate tM constant at the roots
and varies at string world sheets.

Note that the compexification of M8 (or equivalently octonionic E8) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(ε1, εi, .., ε8), epsiloni = ±1 signatures. Their physical interpretation - if any - remains open
at this moment.
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5. The universal 6-D brane-like solutions S6
c have also lower-D counterparts. The condition

determining X2 states that the Cc-valued “real” or “imaginary” for the non-vanishing Qc-
valued “real” or “imaginary” for P vanishes. This condition allows universal brane-like
solution as a restriction of Oc to M4

c (that is CDc) and corresponds to the complexified
time=constant hyperplanes defined by the roots t = rn of P defining “special moments in
the life of self” assignable to CD. The condition for reality in Rc sense in turn gives roots of
t = rn a hyper-surfaces in M2

c .

4.4.2 M8 −H duality at the level of momentum space

M8 −H duality occurs also at the level of momentum space and has different meaning now.

1. At M8 level 8-momenta are quaternionic and light-like. The choices of M4
L ⊃M2 for which

8-momentum in M4
L, are parameterized by CP2 parameterizing also the choices of tangent or

normal spaces of X4 ⊂M8 at space-time level. This maps M8 light-like momenta to light-like
M4
L momenta and to CP2 point characterizing the M4 and depending on 8-momentum. One

can introduce CP2 wave functions expressible in terms of spinor harmonics and generators
of of a tensor product of Super-Virasoro algebras.

2. For a fixed choice M4
T momenta in general time-like and the E4 component of 8-momentum

has value equal to mass squared. E4 momenta are points of 3-sphere so that SO(3) harmonics
with SO(4) symmetry could parametrize the states. The quantum numbers are M4

T ⊃
M2 momenta with fixed mass and the two angular momenta with identical values for S3

harmonics, which correspond to the quantum states of a spherical quantum mechanical rigid
body, and are given by the matrix elements Dj

m,n SU(2) group elements (SO(4) decomposes
to SU(2)L)× SU(2)R acting from left and right).

This picture suggests what one might call SO(4)− SU(3) duality at the level of momentum
space. There would be two descriptions of states: as massless states with SU(3) symmetry
and massive states with SO(4) symmetry.

3. What about the space formed by the choices of the space of the light-like 8-momenta? This
space is the space for the choices of preferred M2 and parameterized by the 6-D (symmetric
space G2/SU(3), where SU(3) ⊂ G2 leaving complex plane M2 invariant is subgroup of
quaternionic automorphic group G(2) leaving octonionic real unit defining the rest system
invariant. This space is moduli space for octonionic structures each of which defines family
of space-time surfaces. 8-D Lorent transformations produce even more general octonionic
structures. The space for the choices of color quantization axes is SU(3)/U(1) × U(1), the
twistor space of CP2.

Do M4
L and M4

T have analogs at the space-time level?

As found, the solutions of octonionic polynomials consisting of 4-D roots and special 6-D roots
coming as 6-sphere S6 s at 7-D light-cone of M8. The roots at t = r light-cone boundary are given
by the roots r = rN of the polynomial P (t) and correspond to M4 slices tM = rN , rM ≤ rN . At
point rM S3 fiber as radius r(S3) =

√
r2
N − r2

M and contracts to a point at its boundaries.

Could M4
L and MT have analogies at the space-time level?

1. The sphere S3 associated M4
T could have counterpart at the level of space-time description.

The momenta in M4
T would naturally be mapped to momenta in the section t = rn in this

case the S3:s of different mass squared values would naturally correspond to S3:s assignable
to the points of the balls t = rn and code for mass squared value.

The counterpart of M4
L should correspond to light-cone boundary but what does CP2 corre-

spond? Could the pile of S3 associated with t = rn correspond also to CP2. Could this be
the case if there is wormhole contact carrying monopole flux at the origin so that the analog
for the replacement of 3-sphere at rCP2 = ∞ with homologically non-trivial 2-sphere would
be realized?
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2. Does the 6-sphere as a root polynomial have counterpart in H? The image should be con-
sistent with M8 −H duality and correspond to a fixed structure depending on the root rn
only. Since S3 associated with the E4 momenta reduces to a point for M4

L, the natural guess
is that S6 reduces to t = rn, 0 ≤ rM ≤ rn surface in H.

S3 − CP2 duality

S3−CP2 duality at the level of quantum numbers suggest strongly itself. What does this require?
One can approach the problem from two different perspectives.

1. The first approach would be that the representations of SU(3) and SO(4) groups somehow
correspond to each other: one could speak of SU(3)−SO(4) duality [K74, K86]. The original
form of this duality was this. The color symmetries of quark physics at high energies would
be dual to the SO(4) = SU(2)L × SU(2)R symmetries of the low energy hadron physics.
Since the physical objects are partons and hadrons formed from the one cannot expect the
duality to hold true at the level of details for the representations, and the comparison of the
representations makes this clear.

2. The second approach relies on the notion of cognitive representation meaning discretization
of CP2 and S3 and counting of points of cognitive representations providing discretization in
terms of M8 or H points belonging to the extension of rationals considered. In this case it
is more natural to talk about S3 − CP2 duality.

The basic observation is that the open region 0 ≤ r < ∞ of CP2 in Eguchi-Hanson coordi-
nates with r labeling 3-spheres S3(r) with finite radius can be regarded as pile of S3(r). In
discretization one would have discrete pile of these 3-spheres with finite number of points in
the extension of rationals. They points of given S3 could be related by isometries in special
cases.

How S3 − CP2 duality at the level of light-like M8 momenta could emerge?

1. Consider first the situation in which one chooses M4 ⊃ M2 sub-spaces so that momentum
projection to it is light-like. For cognitive representation the choices of M4 ⊃M2 correspond
to ad discrete set of points of CP2 and thus points in the pile of S3 with discrete radii since all
E4 parts of momenta with fixed length squared to zero in this choice and each E4 momentum
with fixed lengthand thus identifiable as discrete point of S3 would correspond to one choice.

All these choices would give rise to a pile of S3:s identifiable as set 0 ≤ r <∞ of CP2. The
number of CP2 points would be same as total number of points in the pile of discrete S3s.
This is what S3 − CP2 duality would say.

Remark: The volumes of CP2 and S3 with unit radius are 8π2 and 2π2 so that ration is
rational number.

2. Consider now the situation for M4
T so that one has non-vanishing M4 mass squared equal to

E4 mass squared, having discretized values. The E4 would momenta correspond to points
for a pile of discretized S3 and thus to the points of CP2 by above argument. One would
have S3 −CP2 correspondence also now as one indeed expects since the two ways to see the
situation should be equivalent.

3. In the space of light-like M8 momenta E8 momenta could naturally organize into repre-
sentations of finite discrete subgroups of SU(2) appearing in McKay correspondence with
ADE groups: the groups are cyclic groups, dihedral groups, and the isometry groups as-
sociated with tetrahedron, octahedron (cube) and icosahedron (dodecahedron) (see http:

//tinyurl.com/yyyn9p95).

4. Could a concrete connection with the inclusion hierarchy of HFFs be based on increasing
momentum resolution realized in terms of these groups at sphere S3. Notice however that
for cyclic and dihedral groups the orbits are circles and pairs of circles for dihedral groups so
that the discretization looks too simple and is rotationally asymmetric. Discretization should
improve as n increases.

http://tinyurl.com/yyyn9p95
http://tinyurl.com/yyyn9p95
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One can of course ask why Cn and Dn with single direction of rotation axes would appear?
Could it be that the directions of rotation axis correspond to the directions defined by the
vertices of the 5 Platonic solids. Or could the orbits of fixed axis under the 5 Platonic orbits
be allowed. Also this looks still too simple.

Could the discretization labelled by nmax be determined by the product of the groups up to
nmax and define a group with infinite order. One can consider also groups defined by subsets
{n1, n2...n3} and these a pair of sequences with larger sequence containing the smaller one
could perhaps define an inclusion. The groups Cn and Dn allow prime decomposition in
obvious manner and it seems enough to include to the product only the groups Cp and Dp,
where p is prime as generators so that one would have set {p1, ...pn} of primes labelling these
groups besides the Platonic groups. The extension of rationals used poses a cutoff on the
number of groups involved and on the group elements representable since since too high roots
of unity resulting in the multiplication of Cpi and Dpj do not belong to the extension.

At the level of momentum space the hierarchy of finite discrete groups of SU(2) would define
the notion measurement resolution. The discrete orbits of SU(2) × U(1) at S3 would be
analogous to tessellations of sphere S2 known as Platonic solids at sphere S2 and appearing
in the ADE correspondence assignable to Jones inclusions as description of measurement
resolution. This would also explain also why Z2 coverings of the subgroups of SO(3) appear
in ADE sequence.

This picture is probably not enough for the needs of adelic physics [L24] allowing all extensions
of rationals. Besides roots of unity only the roots of small integers 2, 3, 5 associated with the
geometry of Platonic solids would be included in these discretizations. One could interpret
these discretizations in terms of subgroups of discrete automorphism groups of quaternions.
Also the extensions of rationals are probably needed.

Could S3−CP2 duality make sense at space-time level? Consider the space-time analog for
the projection of M8 momenta to fixed M4

T .

1. Suppose that the 3-surfaces determining the space-time surfaces as algebraic surfaces in
X4 ⊂ M8 are given at the surfaces t = rN , rM ≤ rN and have a 3-D fiber which should be
surface in CP2. On can assign to each point of this ball S3(rM ) with radius going to zero at
rM = rN . One has pile of S3(rM ) which corresponds to the region 0 ≤ r <∞ of CP2. This
set is discretized. Suppose that the discretization is like momentum discretization. If so, the
points would correspond to points of CP2. It is not however clear why the discretization
should be so symmetric as in momentum discretization.

2. The initial values could be chosen by choosing discrete set of points in this pile of S3:s and
this would give rise to a discrete set of points of CP2 fixing tangent or normal plane of X4

at these points. One should show that the selection of a point of S6 at each point indeed
determines quaternionic tangent or normal plane plane for a given polynomial P (o) in M8.

It would seem that this correspondence need not hold true.

4.4.3 M8 −H duality and the two ways to describe particles

The isometry groups for M4 × CP2 is P × SU(3) (P for Poincare group). The isometry group
for M8 = M4 × E4 with a fixed choice of M4 breaks down to P × SO(4). A further breaking by
selection M4 ⊂M2 of preferred octonionic complex plane M2 necessary in the algebraic approach
to space-time surfaces X4 ⊂M8 brings in preferred rest system and reduces the Poincare symmetry
further. At the space-time level the assumption that the tangent space of X4 contains fixed M2

or at least integral distribution of M2(x) ⊂M4 is necessary for M8 −H duality [L18].
The representations SO(4) and SU(3) could provide alternative description of physics so

that one would have what I have called SO(4)−SU(3) duality [K74]. This duality could manifest in
the description of strong interaction physics in terms of hadrons and quarks respectively (conserved
vector current hypothesis and partially conserved axial current hypothesis based on Spin(SO(4)) =
SU(2)×SU(2)R. The challenge is to understand in more detail this duality. This could allow also
to understand better how the two twistor descriptions might relate.
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SO(4)− SU(3) duality implies two descriptions for the states and scattering amplitudes.

Option I: One uses projection of 8-momenta to a fixed M4
T ⊃M2.

Option II: One assumes that M4
L ⊃M2 is defines the frame in which quaternionic octonion

momentum is parallel to M4
L: this M4

L depends on particle state and describes this dependence in
terms of wave function in CP2.

Option I: fixed M4
T ⊃M2

For Option I the description would be in terms of a fixed M4
T ⊂ M8 = M4

T × E4 and M2 ⊂ M4
T

fixed for both options. For given quaternionic light-like M8 momentum one would have projection
to M4

T , which is in general massive. E4 momentum would have same the length squared by
light-likeness.

De-localization M4
T mass squared equal to p2(M4

T ) = m2 in E4 can be described in terms
of SO(4) harmonics at sphere having p2(E4) = m2. This would be the description applied to
hadrons and leptons and particles treated as massive particles. Particle mass would be due to the
fixed choice of M4

T . What dictates this choice is an interesting question. An interesting question is
how these descriptions relate to QFT Higgs mechanism as (in principle) alternative descriptions:
the choice of fixed M4

T could be seen as analog for the generation of vacuum expectation of Higgs
selecting preferred direction in the space of Higgs fields.

Option II: varying M4
L ⊃M2

For Option II the description would use M4
L ⊃M2, which is not fixed but chosen so that it contains

light-like M8 momentum. This would give light-like momentum in M4
L identifiable as quaternionic

sub-space of complexified octonions.

1. One could assign to the state wave function function for the choices of M4 and by quaternion-
icity of 8-momenta this would correspond to a state in super-conformal representation with
vanishing M4

L mass: CP2 point would code the information about E4 component light-like
8-momentum. This description would apply to the partonic description of hadrons in terms
of massless quarks and gluons.

2. For this option one could use the product of ordinary M4 twistors and CP2 twistors. One
challenge would be the generalization of the twistor description to the case of CP2 twistors.

p-Adic particle massivation and ZEO

The two pictures about description of light-like M8 momenta do not seem to be quite consistent
with the recent view about TGD in which H-harmonics describe massivation of massless particles.
What looks like a problem is following.

1. The resulting particles are massive in M4. But they should be massless in M4 × CP2

description. The non-vanishing mass would suggest the correct description in terms of Option
I for which the description in terms of E4 momenta with length equal to mass and thus
identifiable as points of S3. Momentum space wave functions at S3 - essentially rigid body
wave functions given by representation matrices of SU(2) could characterize the states rather
than CP2 harmonic.

2. The description based on CP2 color partial waves however works and this would favor Option
II with vanishing M4 mass. What goes wrong?

To understand what might be involved, consider p-adic mass calculations.

1. The massivation of physical fermion states includes also the action of super-conformal gen-
erators changing the mass. The particles are originally massless and p-adic mass squared is
generated thermally and mapped to real mass squared by canonical identification map.

For CP2 spinor harmonics mass squared is of order CP2 mass squared and thus gigantic.
Therefore the mass squared is assumed to contain negative tachyonic ground state contribu-
tion due to the negative half-odd integer valued conformal weight hvac < 0 of vacuum. The



4.4. M8 −H duality 169

origin of this contribution has remained a mystery in p-adic thermodynamics but it makes
possible to construct massless states. hvac cancels the spinorial contributions and the con-
tribution from positive conformal weights of super-conformal generators so that the particle
states are massless before thermalization. This would conform with the idea of using varying
M4
L and thus CP2 description.

2. What does the choice of M4 mean in terms of super-conformal representations? Could the
mysterious vacuum conformal weight hvac provide a description for the effect of the needed
SU(3) rotation of M4 from standard orientation on super-conformal representation. The
effect would be very simple and in certain sense reversal to the effect of Higgs vacuum
expectation value in that it would cancel mass rather than generate it.

An important prediction would be that heavy states should be absent from the spectrum
in the sense that mass squared would be p-adically of order O(p) or O(p2) (in real sense of
order O(1/p) or O(1/p2)). The trick would be that the generation of h0 as a representation
of SU(3) rotation of M4 makes always the dominating contribution to the mass of the state
vanishing.

Remark: If the canonical identification I mapping the p-adic mass integers to their real
numbers is of the simplest form m =

∑
n xnp

n → I(m) =
∑
n xnp

−n, it can happen that
the image of rational m/n with p-adic norm not larger than 1 represented as p-adic integer
by expanding it in powers of p, can be near to the maximal value of p and the mass of the
state can be of order CP2 mass - about 10−4 Planck masses. If the canonical identification
is defined as m/n→ I/(m)/I(n) the image of the mass is small for small values of m and n.

3. Unfortunately, it is easy to get convinced that this explanation of hvac is not physically
attractive. Identical mass spectra at the level of M8 and H looks like a natural implication
of M8 −H-duality. SU(3) rotation of M4 in M8 cannot however preserve the general form
of M4×CP2 mass squared spectrum for the M4 projections of M8 momenta at level of M8.

Remark: For H = M4 × CP2 the mass squared in given representation of Super-conformal
symmetries is given as a sum of CP2 mass squared for the spinor harmonic determining the
ground state and of a Virasoro contribution proportional to a non-negative integer. The
masses are required to independent of electroweak quantum numbers.

One can imagine two further identifications for the origin of hvac.

1. Take seriously the possibility of complex momenta allowed by the complexification of M8

by commuting imagine unit i and also suggested by the generalization of the twistorializa-
tion. The real and imaginary parts of light-like complex 8-momenta p8 = p8,Re + ip8,Im are
orthogonal to each other: p8,Re · p8,Im = 0 so that both real and imaginary parts of p8 are
light-like: p2

8,Re = p2
8,Im = 0. The M4 mass squared can be written has m2 = m2

Re −m2
Im

with hvac ∝ −m2
Im. The representations of Super-conformal algebra would be labelled by

hvac ∝ m2
Im.

Could the needed wrong sign contribution to CP2 mass squared mass make sense? CP2 type
extremals having light-like geodesic as M4 projection are locally identical with CP2 but be-
cause of light-like projection they can be regarded as CP2 with a hole and thus non-compact.
Boundary conditions allow analogs of CP2 harmonics for which spinor d’Alembertian would
have complex eigenvalues.

Does quantum-classical correspondence allow complex momenta: can the classical four-
momenta assignable to 6-D Kähler action be complex? The value of Kähler coupling strength
allows the action to have complex phase but parts with different phases are not allowed. Could
the imaginary part to 4-momentum could come from the CP2 type extremal with Euclidian
signature of metric?

2. Second - not necessarily independent - idea relies on the observation that in TGD one has
besides the usual conformal algebra acting on complex coordinate z also its analog acting on
the light-like radial coordinate r of light-cone boundary. At light-cone boundary one has both
super-symplectic symmetries of ∆M4

+ × CP2 and extension of super-conformal symmetries
of sphere S2 to analogs of conformal symmetries depending on z and r and it seems that one
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must chose between these two options. Also the extension of ordinary Kac-Moody algebra
acts at the light-like orbits of partonic 2-surfaces.

There are two scaling generators: the usual L0 = zd/dz and the second generator L0,1 =
ird/dr. For L0,1 at light-cone boundary powers of zn are replaced with (r/r0)ik = exp(iku),
u = log(r/r0)). Could it be that mass squared operator is proportional to L0 + L0,1 having
eigenvalues h = n − k? The absence of tachyons requires h ≥ 0. Could k characterize
given Super-Virasoro representation? Could k ≥ 0 serve as an analog of positive energy
condition allowing to analytically continue exp(iku) to upper u-plane? How to interpret this
continuation?

The 3-D generalization of super-symplectic symmetries at light-cone boundary and extended
Ka-Moody symmetries at partonic 2-surfaces should be possible in some sense. Could the
continuation to the upper u-plane correspond to the continuation of the extended conformal
symmetries from light-cone boundary to future light-one and from light-partonic 2-surfaces
to space-time interior?

Why p-adic massivation should occur at all? Here ZEO comes in rescue.

1. In ZEO one can have superposition of states with different 4-momenta, mass values and also
other charges: this does not break conservation laws. How to fix M4 in this case? One
cannot do it separately for the states in superposition since they have different masses. The
most natural choices is as the M4 associated with the dominating contribution to the zero
energy state. The outcome would be thermal massivation described excellently by p-adic
thermodynamics [K41]. Recently a considerable increase in the understanding of hadron and
weak boson masses took place [L44].

2. In ZEO quantum theory is square root of thermodynamics in a well-defined formal sense, and
one can indeed assign to p-adic partition function a complex square root as a genuine zero
energy state. Since mass varies, one must describe the presence of higher mass excitations
in zero energy state as particles in M4 assigned with the dominating part of the state so
that the observed particle mass squared is essentially p-adic thermal expectation value over
thermal excitations. p-Adic thermodynamics would thus describe the fact that the choice of
M4
L cannot not ideal in ZEO and massivation would be possible only in ZEO.

3. Current quarks and constituent quarks are basic notions of hadron physics. Constituent
quarks with rather large masses appear in the low energy description of hadrons and current
quarks in high energy description of hadronic reactions. That both notions work looks rather
paradoxical. Could massive quarks correspond to MT picture and current quarks to M4

L

picture but with p-adic thermodynamics forced by the superposition of mass eigenstates
with different masses.

The massivation of ordinary massless fermion involves mixing of fermion chiralities. This
means that the SU(3) rotation determined by the dominating component in zero energy
state must induce this mixing. This should be understood.

4.4.4 M8 −H duality and consciousness

M8 −H duality is one of the key ideas of TGD and one can ask whether it has implications for
TGD inspired theory of consciousness and it indeed forces to challenge the recent ZEO based view
about consciousness [L27] .

Objections against ZEO based theory of consciousness

Consider first objections against ZEO based view about consciousness.

1. ZEO (zero energy ontology) based view about conscious entity can be regarded as a sequence
of “small” state function reductions (SSRs) identifiable as analogs of so called weak mea-
surements at the active boundary of causal diamond (CD) receding reduction by reduction
farther away from the passive boundary, which is unchanged as also the members of state
pairs at it. One can say that weak measurements commute with the observables, whose
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eigenstates the states at passive boundary are. This asymmetry assigns arrow of time to the
self having CD as embedding space correlate. “Big” state function reductions (BSRs) would
change the roles of boundaries of CD and the arrow of time. The interpretation is as death
and re-incarnation of the conscious entity with opposite arrow of time.

The question is whether quantum classical correspondence (QCC) could allow to say some-
thing about the time intervals between subsequent values of temporal distance between weak
state function reductions.

2. The questionable aspect of this view is that tM = constant sections look intuitively more
natural as seats of quantum states than light-cone boundaries forming part of CD boundaries.
The boundaries of CD are however favoured by the huge symplectic symmetries assignable to
the boundary of M4 light-cone with points replaced with CP2 at level of H. These symmetries
are crucial or the existence of the geometry of WCW (“world of classical worlds”).

3. Second objection is that the size of CD increases steadily: this nice from the point of view of
cosmology but the idea that CD as correlate for a conscious entity increases from CP2 size to
cosmological scales looks rather weird. For instance, the average energy of the state assignable
to either boundary of CD would increase. Since zero energy state is a superposition of
states with different energies classical conservation law for energy does not prevent this [L40]:
essentially quantal effect due to the fact that the zero energy states are not exact eigenstates
of energy could be in question. In BSRs the energy would gradually increase. Admittedly
this looks strange and one must be keen for finding more conventional options.

4. Third objection is that re-incarnated self would not have any “childhood” since CD would
increase all the time.

One can ask whether M8 − H duality and this braney picture has implications for ZEO
based theory of consciousness. Certain aspects of M8−H duality indeed challenge the recent view
about consciousness based on ZEO (zero energy ontology) and ZEO itself.

1. The moments t = rn defining the 6-branes correspond classically to special moments for which
phase transition like phenomena occur. Could t = rn have a special role in consciousness
theory?

(a) For some SSRs the increase of the size of CD reveals new t = rn plane inside CD. One
can argue that these SSRS define very special events in the life of self. This would not
modify the original ZEO considerably but could give a classical signature for how many
ver special moments of consciousness have occurred: the number of the roots of P would
be a measure for the lifetime of self and there would be the largest root after which BSR
would occur.

(b) Second possibility is more radical. One could one think of replacing CD with single
truncated future- or past-directed light-cone containing the 6-D universal roots of P up
to some rn defining the upper boundary of the truncated cone? Could t = rn define
a sequence of moments of consciousness? To me it looks more natural to assume that
they are associated with very special moments of consciousness.

2. For both options SSRs increase the number of roots rn inside CD/truncated light-one grad-
ually and thus its size? When all roots of P (o) would have been measured - meaning that
the largest value rmax of rn is reached -, BSR would be unavoidable.

BSR could replace P (o) with P1(r1 − o): r1 must be real and one should have r1 > rmax.
The new CD/truncated light-cone would be in opposite direction and time evolution would
be reversed. Note that the new CD could have much smaller size size if it contains only the
smallest root r0. One important modification of ZEO becomes indeed possible. The size of
CD after BSR could be much smaller than before it. This would mean that the re-incarnated
self would have “childhood” rather than beginning its life at the age of previous self - kind
of fresh start wiping the slate clean.

One can consider also a less radical BSR preserving the arrow of time and replacing the
polynomial with a new one, say a polynomial having higher degree (certainly in statistical
sense so that algebraic complexity would increase).
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Could one give up the notion of CD?

A possible alternative view could be that one the boundaries of CD are replaced by a pair of two
t = rN snapshots t = r0 and t = rN . Or at least that these surfaces somehow serve as correlates
for mental images. The theory might allow reformulation also in this case, and I have actually
used this formulation in popular lectures since it is easier to understand by laymen.

1. Single truncated light-cone, whose size would increase in each SSR would be present now
since the spheres correspond to balls of radius rn at times rn. If r0 = 0, which is the case for
P (o) ∝ o, the tip of the light-cone boundary is one root. One cannot avoid association with
big bang cosmology. For P (0) 6= r0 the first conscious moment of the cosmology corresponds
to t = r0. One can wonder whether the emergence of consciousness in various scales could
be described in terms of the varying value of the smallest root r0 of P (o).

If one allows BSR:s this picture differs from the earlier one in that CDs are replaced with
alternation of light-cones with opposite directions and their intersections would define CD.

2. For this option the preferred values of t for SSRs would naturally correspond to the roots of
the polynomial defining X4 ⊂ M8. Moments of consciousness as state function reductions
would be due to collisions of 4-D space-time surfaces X4 with 6-D branes! They would
replace the sequence of scaled CD sizes. CD could be replaced with light-one and with the
increasing sequence (r0, ...rn) of roots defining the ticks of clock and having positive and
negative energy states at the boundaries r0 and rn.

3. What could be the interpretation for BSRs representing death of a conscious entity in the
new variant of ZEO? Why the arrow of time would change? Could it be because there are
no further roots of P (o)? The number of roots of P (o) would give the number of small state
function reductions?

What would happen to P (o) in BSR? The vision about algebraic evolution as increase of
the dimension for the extension of rationals would suggest that the degree of P (o) increases
as also the number of roots if all complex roots are allowed. Could the evolution continue
in the same direction or would it start to shift the part of boundary corresponding to the
lowest root in opposite direction of time. Now one would have more roots and more algebraic
complexity so that evolutionary step would occur.

In the time reversal one would have naturally tmax ≥ rnmax for the new polynomial P (t−tmax)
having rnmax as its smallest root. The light-cone in M8 with tip at t = tmax would be in
opposite direction now and also the slices t− tmax = r′n would increase in opposite direction!
One would have two light-cones with opposite directions and the t = rn sections would
replace boundaries of CDs. The reborn conscious entity would start from the lowest root so
that also it would experience childhood.

This option could solve the argued problems of the previous scenario and give concrete
connection with the classical physics in accordance with QCC. On the other hand, a minimal
modification of original scenario combined with M8 −H duality with moments t = rn as special
moments in the life of conscious entity allows also to solve these problems if the active boundary
of CD is interpreted as boundary beyond which classical signals cannot contribute to perceptions.

What could be the minimal modification of ZEO based view about consciousness?

What would be the minimal modification of the earlier picture? Could one assume that CDs serve
as embedding space correlates for the perceptive field?

1. Zero energy states would be defined as before that is in terms of 3-surfaces at boundaries of
CD: this would allow a realization of huge symmetries of WCW and the active boundary A of
CD would define the boundary of the region from which self can receive classical information
about environment. The passive boundary P of CD would define the boundary of the region
providing classical information about the state of self. Also now BSR would mean death and
reincarnation with an opposite arrow of time. Now however CD would shrink in BSR before
starting to grow in opposite time direction. Conscious entity would have “childhood”.
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2. If the geometry of CD were fixed, the size scale of the t = rn balls of M4 would first increase
and then start to decrease and contract to a point eventually at the tip of CD. One must
however remember that the size of t = rn planes increases all the time as also the size of
CD in the sequences of SSRs. Moments t = rn could represent special moments in the life
of conscious entity taking place in SSRs in which t = rn hyperplane emerges inside CD with
increased size. The recent surprising findings challenging the Bohrian view about quantum
jumps [L32] can be understood in this picture [L32].

3. t = rn planes could also serve as correlates for memories. As CD increases at active boundary
new events as t = rn planes would take place and give rise to memories. The states at t = rn
planes are analogous to seats of boundary conditions in strong holography and the states
at these planes might change in state function reductions - this would conform with the
observations that our memories are not absolute.

To sum up, the original view about ZEO seems to be essentially correct. The introduction of
moments t = rn as special moments in the life of self looks highly attractive as also the possibility
of wiping the slate clear by reduction of the size of CD in BSR.

4.5 Could standard view about twistors work at space-time
level after all?

While asking what super-twistors in TGD might be, I became critical about the recent view con-
cerning what I have called geometric twistor space of M4 identified as M4 × S2 rather than CP3

with hyperbolic metric. The basic motivations for the identification come from M8 picture in
which there is number theoretical breaking of Poincare and Lorentz symmetries. Second moti-
vation was that M4

conf - the conformally compactified M4 - identified as group U(2) [B3] (see

http://tinyurl.com/y35k5wwo) assigned as base space to the standard twistor space CP3 of M4,
and having metric signature (3,-3) is compact and is stated to have metric defined only modulo
conformal equivalence class.

As found in the previous section, TGD strongly suggests that M4 in H = M4×CP2 should
be replaced with hyperbolic variant of CP2, and it seems to me that these spaces are not identical.
Amusingly, U(2) and CP2 are fiber and base in the representation of SU(3) as fiber space so that
the their identification does not seem plausible.

On can however ask whether the selection of a representative metric from the conformal
equivalence class could be seen as breaking of the scaling invariance implied also by ZEO intro-
ducing the hierarchy of CDs in M8. Could it be enough to have M4 only at the level of M8 and
conformally compactified M4 at the level of H? Should one have H = cdconf ×CP2? What cdconf
would be: is it hyperbolic variant of CP2?

4.5.1 Getting critical

The only way to make progress is to become very critical now and then. These moments of almost
despair usually give rise to a progress. At this time I got very critical about the TGD inspired
identification of twistor spaces of M4 and CP2 and their properties.

Getting critical about geometric twistor space of M4

Let us first discuss the recent picture and how to modify it so that it is consistent with the hierarchy
of CDs. The key idea is that the twistor space and its base space represents CD so that one obtains
scale hierarchy of twistor spaces as a realization of broken scale invariance giving rise to the p-adic
length scale hierarchy.

1. I have identified the twistor space of M4 simply as T (M4) = M4 × S2. The interpretation
would be at the level of octonions as a product of M4 and choices of M2 as preferred complex
sub-space of octonions with S2 parameterizing the directions of spin quantization axes. Real
octonion axis would correspond to time coordinate. One could talk about the space of of
light-like directions. Light-like vector indeed defines M2. This view could be defended by

http://tinyurl.com/y35k5wwo
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the breaking of both translation and Lorentz invariance in the octonionic approach due to
the choice of M2 and by the fact that it seems to work.

Remark: M8 = M4 × E4 is complexified to M8
c by adding a commuting imaginary unit i

appearing in the extensions of rationals and ordinary M8 represents its particular sub-space.
Also in twistor approach one uses often complexified M4.

2. The objection is that it is ordinary twistor space identifiable as CP3 with (3,-3) signature of
metric is what works in the construction of twistorial amplitudes. CP3 has metric as compact
space and coset space. Could this choice of twistor space make sense after all as geometric
twistor space?

Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X4 ⊂ M4 × CP2. Now Poincare symmetry has been transformed to
a symmetry acting at the level of M8 in the moduli space of octonion structures defined
by the choice of the direction of octonionic real axis reducing Poincare group to T × SO(3)
consisting of time translations and rotations. Fixing of M2 reducrs the group to T × SO(2)
and twistor space can be seen as the space for selections of quantization axis of energy and
spin.

3. But what about the space H? The first guess is H = M4
conf × CP2. According to [B3] (see

http://tinyurl.com/y35k5wwo) one has M4
conf = U(2) such that U(1) factor is time- like

and SU(2) factor is space-like. One could understand M4
conf = U(2) as resulting by addition

and identification of metrically 2-D light-cone boundaries at t = ±∞. This is topologically
like compactifying E3 to S3 and gluing the ends of cylinder S3×D1 together to the S3×S1.

The conformally compactified Minkowski space M4
conf should be analogous to base space of

CP3 regarded as bundle with fiber S2. The problem is that one cannot imagine an analog
of fiber bundle structure in CP3 having U(2) as base. The identification H = M4

conf × CP2

does not make sense.

4. In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog of
M4
conf - call it cdconf . The only candidate is cdconf = CP2 with one hypercomplex coordinate.

To understand why one can start from the following picture. The light-like boundaries of
CD are metrically equivalent to spheres. The light-like boundaries at t = ±∞ are identified
as in the case of M4

conf . In the case of CP2 one has 3 homologically trivial spheres defining
coordinate patches. This suggests that cdconf is simply CP2 with second complex coordinate
made hypercomplex. M4 and E4 differ only by the signature and so would do cdconf and
CP2.

The twistor spheres of CP3 associated with points of M4 intersect at point if the points differ
by light-like vector so that one has and singular bundle structure. This structure should have
analog for the compactification of CD. CP3 has also bundle structure CP3 → CP2. The S2

fibers and base are homologically non-trivial and complex analogs of mutually orthogonal line
and plane and intersect at single point. This defines the desired singular bundle structure
via the assignment of S2 to each point of CP2.

The M4 points must belong to the interior of cd and this poses constraints on the distance of
M4 points from the tips of cd. One expects similar hierarchy of cds at the level of momentum
space.

5. In this picture M4
conf = U(2) could be interpreted as a base space for the space of CDs

with fixed direction of time axis identified as direction of octonionic real axis associated with
various points of M4 and therefore of M4

conf . For Euclidian signature one would have base
and fiber of the automorphism sub-group SU(3) regarded as U(2) bundle over CP2: now one
would have CP2 bundle over U(2). This is perhaps not an accident, and one can ask whether
these spaces could be interpreted as representing local trivialization of SU(3) as U(2)×CP2.
This would give to metric cross terms between U(2) and CP2.

6. The proposed identification can be tested by looking whether it generalizes. What the twistor
space for entire M8 would be? cd = CD4 is replaced with CD8 and the discussion of the
preceding chapter demonstrated that the only possible identification of the twistor space is

http://tinyurl.com/y35k5wwo
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now is as the 12-D hyperbolic variant of HP3 whereas CD8,conf would correspond to 8-D
hyperbolic variant of HP2 analogous to hyperbolic variant of CP2.

The outcome of these considerations is surprising.

1. One would have T (H) = CP3×F and H = CP2,H×CP2 where CP2,H has hyperbolic metric
with metric signature (1,−3) having M4 as tangent space so that the earlier picture can be
understood as an approximation. This would reduce the construction of preferred extremals
of 6-D Kähler action in T (H) to a construction of polynomial holomorphic surfaces and
also the minimal surfaces with singularities at string world sheets should result as bundle
projection. Since M8 − H duality must respect algebraic dynamics the maximal degree of
the polynomials involved must be same as the degree of the octonionic polynomial in M8.

2. The hyperbolic variant Kähler form and also spinor connection of hyperbolic CP2 brings in
new physics beyond standard model. This Kähler form would serve as the analog of Kähler
form assigned to M4 earlier, and suggested to explain the observed CP breaking effects and
matter antimatter asymmetry for which there are two explanations [L39].

Some comments about the Minkowskian signature of the hyperbolic counterparts of CP3

and CP2 are in order.

1. Why the metric of CP3 could not be Euclidian just as the metric of F? The basic objection
is that propagation of fields is not possible in Euclidian signature and one completely loses
the earlier picture provided by M4×CP2. The algebraic dynamics in M8 picture can hardly
replace it.

2. The map assigning to the point M4 a point of CP3 involves Minkowskian sigma matrices but
it seems that the Minkowskian metric of CP3 is not explicitly involved in the construction
of scattering amplitudes. Note however that the antisymmetric bi-spinor metric for the spin
1/2 representation of Lorentz group and its conjugate bring in the signature. U(2, 2) as
representation of conformal symmetries suggests (2, 2) signature for 8-D complex twistor
space with 2+2 complex coordinates representing twistors.

The signature of CP3 metric is not explicitly visible in the construction of twistor amplitudes
but analytic continuations are carried out routinely. One has also complexified M4 and M8

and one could argue that the problems disappear. In the geometric situation the signatures
of the subspaces differ dramatically. As already found, analytic continuation could allow
to define the variants of twistor spaces elegantly by replacing a complex coordinate with a
hyperbolic one.

Remark: For E4 CP3 is Euclidian and if one has E4
conf = U(2), one could think of replacing

the Cartesian product of twistor spaces with SU(3) group having M4
conf = U(2) as fiber and

CP2 as base. The metric of SU(3) appearing as subgroup of quaternionic automorphisms
leaving M4 ⊂ M8 invariant would decompose to a sum of M4

conf metric and CP2 metric

plus cross terms representing correlations between the metrics of M4
conf and CP2. This is

probably mere accident.

M8 −H duality and twistor space counterparts of space-time surfaces

It seems that by identifying CP3,h as the twistor space of M4, one could develop M8 −H duality
to a surprisingly detailed level from the conditions that the dimensional reduction guaranteed by
the identification of the twistor spheres takes place and the extensions of rationals associated with
the polynomials defining the space-time surfaces at M8- and twistor space sides are the same.
The reason is that minimal surface conditions reduce to holomorphy meaning algebraic conditions
involving first partial derivatives in analogy with algebraic conditions at M8 side but involving no
derivatives.

1. The simplest identification of twistor spheres is by z1 = z2 for the complex coordinates of the
spheres. One can consider replacing zi by its Möbius transform but by a coordinate change
the condition reduces to z1 = z2.



176
Chapter 4. TGD view about McKay Correspondence, ADE Hierarchy, Inclusions of

Hyperfinite Factors, M8 −H Duality, SUSY, and Twistors

2. At M8 side one has either RE(P ) = 0 or IM(P ) = 0 for octonionic polynomial obtained as
continuation of a real polynomial P with rational coefficients giving 4 conditions (RE/IM
denotes real/imaginary part in quaternionic sense). The condition guarantees that tan-
gent/normal space is associative.

Since quaternion can be decomposed to a sum of two complex numbers: q = z1 + Jz2

RE(P ) = 0 correspond to the conditions Re(RE(P )) = 0 and Im(RE(P )) = 0. IM(P ) = 0
in turn reduces to the conditions Re(IM(P )) = 0 and Im(IM(P )) = 0.

3. The extensions of rationals defined by these polynomial conditions must be the same as
at the octonionic side. Also algebraic points must be mapped to algebraic points so that
cognitive representations are mapped to cognitive representations. The counterparts of both
RE(P ) = 0 and IM(P ) = 0 should be satisfied for the polynomials at twistor side defining
the same extension of rationals.

4. M8 − H duality must map the complex coordinates z11 = Re(RE) and z12 = Im(RE)
(z21 = Re(IM) and z22 = Im(IM)) at M8 side to complex coordinates ui1 and ui2 with
ui1(0) = 0 and ui2(0) = 0 for i = 1 or i = 2, at twistor side.

Roots must be mapped to roots in the same extension of rationals, and no new roots are
allowed at the twistor side. Hence the map must be linear: ui1 = aizi1+bizi2 and ui2 = cizi1+
dizi2 so that the map for given value of i is characterized by SL(2,Q) matrix (ai, bi; ci, di).

5. These conditions do not yet specify the choices of the coordinates (ui1, ui2) at twistor side.
At CP2 side the complex coordinates would naturally correspond to Eguchi-Hanson complex
coordinates (w1, w2) determined apart from color SU(3) rotation as a counterpart of SU(3)
as sub-group of automorphisms of octonions.

If the base space of the twistor space CP3,h of M4 is identified as CP2,h, the hyper-complex
counterpart of CP2, the analogs of complex coordinates would be (w3, w4) with w3 hypercom-
plex and w4 complex. A priori one could select the pair (ui1, ui2) as any pair (wk(i), wl(i)),
k(i) 6= l(i). These choices should give different kinds of extremals: such as CP2 type ex-
tremals, string like objects, massless extremals, and their deformations.

String world sheet singularitees and world-line singularities as their light-like boundaries at
the light-like orbits of partonic 2-surfaces are conjectured to characterize preferred extremals as
surfaces of H at which there is a transfer of canonical momentum currents between Kähler and
volume degrees of freedom so that the extremal is not simultaneously an extremal of both Kähler
action and volume term as elsewhere. What could be the counteparts of these surfaces in M8?

1. The interpretation of the pre-images of these singularities in M8 should be number theoretic
and related to the identification of quaternionic imaginary units. One must specify two
non-parallel octonionic imaginary units e1 and e2 to determine the third one as their cross
product e3 = e1 × e2. If e1 and e2 are parallel at a point of octonionic surface, the cross
product vanishes and the dimension of the quaternionic tangent/normal space reduces from
D = 4 to D = 2.

2. Could string world sheets/partonic 2-surfaces be images of 2-D surfaces in M8 at which
this takes place? The parallelity of the tangent/normal vectors defining imaginary units ei,
i = 1, 2 states that the component of e2 orthogonal to e1 vanishes. This indeed gives 2
conditions in the space of quaternionic units. Effectively the 4-D space-time surface would
degenerate into 2-D at string world sheets and partonic 2-surfacesa as their duals. Note that
this condition makes sense in both Euclidian and Minkowskian regions.

3. Partonic orbits in turn would correspond surfaces at which the dimension reduces to D=3
by light-likeness - this condition involves signature in an essential manner - and string world
sheets would have 1-D boundaries at partonic orbits.

Getting critical about implicit assumptions related to the twistor space of CP2

One can also criticize the earlier picture about implicit assumptions related the twistor spaces of
CP2.
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1. The possibly singular decomposition of F to a product of S2 and CP2 would has a description
similar to that for CP3. One could assign to each point of CP2 base homologically non-trivial
sphere intersecting it orthogonally.

2. I have assumed that the twistor space T (CP2) = F = SU(3)/U(1) × U(1) allows Kaluza-
Klein type metric meaning that the metric decomposes to a sum of the metrics assignable to
the base CP2 and fiber S2 plus cross terms representing interaction between these degrees
of freedom. It is easy to check that this assumption holds true for Hopf fibration S3 → S2

having circle U(1) as fiber (see http://tinyurl.com/qbvktsx). If Kaluza-Klein picture
holds true, the metric of F would decompose to a sum of CP2 metric and S2 metric plus
cross terms representing correlations between the metrics of CP2 and S2.

3. One should demonstrate that F = SU(3)/U(1)×U(1) has metric with the expected Kaluza-
Klein property. One can represent SU(3) matrices as products XY Z of 3 matrices. X
represents a point of base space CP2 as matrix, Y represents the point of the fiber S2 =
U(2)/U(1)×U(1) of F in similar manner as U(2) matrix, and the Z represents U(1)×U(1)
element as diagonal matrix [B3](see http://tinyurl.com/y6c3pp2g).

By dropping U(1)×U(1) matrix one obtains a coordinatization of F . To get the line element
of F in these coordinates one could put the coordinate differentials of U(1) × U(1) to zero
in an expression of SU(3) line element. This should leave sum of the metrics of CP2 and S2

with constant scales plus cross terms. One might guess that the left- and righ-invariance of
the SU(3) metric under SU(3) implies KK property.

Also CP3 should have the KK structure if one wants to realize the breaking of scaling
invariance as a selection of the scale of the conformally compactified M4. In absence of KK
structure the space-time surface would depend parametrically on the point of the twistor sphere
S2.

4.5.2 The nice results of the earlier approach to M4 twistorialization

The basic nice results of the earlier picture should survive in the new picture.

1. Central for the entire approach is twistor lift of TGD replacing space-time surfaces with 6-D
surfaces in 12-D T (M4)× T (CP2) having space-time surfaces as base and twistor sphere S2

as fiber. Dimensional reduction identifying twistor spheres of T (M4) an T (CP2) and makes
these degrees of freedom non-dynamical.

2. Dimensionally reduced action 6-D Kähler action is sum of 4-D Kähler action and a volume
term coming from S2 contribution to the induced Kähler form. On interpretation is as a
generalization of Maxwell action for point like charge by making particle a 3-surface.

The interpretation of volume term is in terms of cosmological constant. I have proposed
that a hierarchy of length scale dependent cosmological constants emerges. The hierarchy of
cosmological constants would define the running length scale in coupling constant evolution
and would correspond to a hierarchy of preferred p-aic length scales with preferred p-adic
primes identified as ramified primes of extension of rationals.

3. The twistor spheres associated M4 × S2 and F were assumed to have same radii and most
naturally same Euclidian signature: this looks very nice since there would be only single
fundamental length equal to CP2 radius determining the radius of its twistor sphere. The
vision to be discussed would be different. There would be no fundamental scale and length
scales would emerge through the length scale hierarchy assignable to CDs in M8 and mapped
to length scales for twistor spaces.

The identification of twistor spheres with same radius would give only single value of cosmo-
logical constant and the problem of understanding the huge discrepancy between empirical
value and its näıve estimate would remain. I have argued that the Kähler forms and metrics
of the two twistor spheres can be rotated with respect to each other so that the induced
metric and Kähler form are rotated with respect to each other, and the magnetic energy
density assignable to the sum of the induced Kähler forms is not maximal.

http://tinyurl.com/qbvktsx
http://tinyurl.com/y6c3pp2g
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The definition of Kähler forms involving preferred coordinate frame would gives rise to sym-
metry breaking. The essential element is interference of real Kähler forms. If the signatures of
twistor spheres were opposite, the Kähler forms differ by imaginary unit and the interference
would not be possible.

Interference could give rise to a hierarchy of values of cosmological constant emerging as coef-
ficient of the Kähler magnetic action assignable to S2(X4) and predict length scale dependent
value of cosmological constant and resolve the basic problem related to the extremely small
value of cosmological constant.

4. One could criticize the allowance of relative rotation as adhoc: note that the resulting cosmo-
logical constant becomes a function depending on S2 point. For instance, does the rotation
really produce preferred extremals as minimal surfaces extremizing also Kähler action except
at string world sheets? Each point of S2 would correspond to space-time surface X4 with
different value of cosmological constant appearing as a parameter. Moreover, non-trivial rel-
ative rotation spoils the covariant constancy and J2(S2) = −g(S2) property for the S2 part
of Kähler form, and that this does not conform with the very idea of twistor space.

5. One nice implication would be that space-time surfaces would be minimal surfaces apart
from 2-D string world sheet singularities at which there is a transfer of canonical momen-
tum currents between Kähler and volume degrees of freedom. One can also consider the
possibility that the minimal surfaces correspond to surfaces give as roots of 3 polynomials of
hypercomplex coordinate of M2 and remaining complex coordinates.

Minimal surface property would be direct translation of masslessness and conform with the
twistor view. Singular surfaces would represent analogs of Abelian currents. The universal
dynamics for minimal surfaces would be a counterpart for the quantum criticality. At M8

level the preferred complex plane M2 of complexified octonions would represent the singular
string world sheets and would be forced by number theory.

Masslessness would be realized as generalized holomorphy (allowing hyper-complexity in M2

plane) as proposed in the original twistor approach but replacing holomorphic fields in twistor
space with 6-D twistor spaces realized as holomorphic 6-surfaces.

4.5.3 ZEO and twistorialization as ways to introduce scales in M8 physics

M8 physics as such has no scales. One motivation for ZEO is that it brings in the scales as sizes
of causal diamonds (CDs).

ZEO generates scales in M8 physics

Scales are certainly present in physics and must be present also in TGD Universe.

1. In TGD Universe CP2 scale plays the role of fundamental length scale, there is also the
length scale defined by cosmological constant and the geometric mean of these two length
scales defining a scale of order 10−4 meters emerging in the earlier picture and suggesting a
biological interpretation.

The fact that conformal inversion mk → R2mk/a2, a2 = mkmk is a conformal transformation
mapping hyperboloids with a ≥ R and a ≤ R to each other, suggests that one can relate
CP2 scale and cosmological scale defined by Λ by inversion so that cell length scale would
define one possible radius of cdconf .

2. In fact, if one has R(cdconf ) = x × R(CP2) one obtains by repeated inversions a hierarchy
R(k) = xkR and for x =

√
p one obtains p-adic length scale hierarchy coming as powers of

√
p,

which can be also negative. This suggests a connection with p-adic length scale hypothesis
and connections between long length scale and short length scale physics: they could be
related by inversion. One could perhaps see Universe as a kind of Leibnizian monadic system
in which monads reflect each other with respect to hyperbolic surfaces a = constant. This
would conform with the holography.
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3. Without additional assumptions there is a complete scaling invariance at the level of M8.
The scales could come from the choice of 8-D causal diamond CD8 as intersection of 8-D
future and past directed light-cones inducing choice of cd in M4. CD serves as a correlate
for the perceptive field of a conscious entity in TGD inspired theory of consciousness and is
crucial element of zero energy ontology (ZEO) allowing to solve the basic problem of quantum
measurement theory.

Twistorial description of CDs

Could the map of the surfaces of 4-surfaces of M8 to cdconf × CP2 by a modification of M8 −H
correspondence allow to describe these scales? If so, compactification via twistorialization and
M8 − H correspondence would be the manner to describe these scales as something emergent
rather than fundamental.

1. The simplest option is that the scale of cdconf corresponds to that of CD8 and CD4. One
should also understand what CP2 scale corresponds. The simplest option is that CP2 scale
defines just length unit since it is difficult to imagine how this scale could appear at M8

level. cdconf scale squared would be multiple or CP2 scale squared, say prime multiple of it,
and assignable to ramified primes of extension of rationals. Inversions would produce further
scales. Inversion would allow kind of hologram like representation of physics in long length
scales in arbitrary short length scales and vice versa.

2. The compactness of cdconf corresponds to periodic time assignable to over-critical cosmologies
starting with big bang and ending with big crunch. Also CD brings in mind over-critical
cosmology, and one can argue that the dynamics at the level of cdconf reflects the dynamics
of ZEO at the level of M8.

Modification of H and M8 −H correspondence

It is often said that the metric of M4
conf is defined only modulo conformal scaling factor. This would

reflect projectivity. One can however endow projective space CP3 with a metric with isometry
group SU(2, 2) and the fixing of the metric is like gauge choice by choosing representative in
the projective equivalence class. Thus CP3 with signature (3,-3) might perhaps define geometric
twistor space with base cdconf rather than M4

conf very much like the twistor space T (CP2) = F =

SU(3)/U(1)× U(1) at the level. Second projection would be to M4 and map twistor sphere to a
point of M4. The latter bundle structure would be singular since for points of M4 with light-like
separation the twistor spheres have a common point: this is an essential feature in the construction
of twistor amplitudes.

New picture requires a modification of the view about H and about M8−H correspondence.

1. H would be replaced with cdconf ×CP2 and the corresponding twistor space with CP3 ×F .
M8 − H duality involves the decomposition M2 ⊂ M4 ⊂ M8 = M4 × CP2, where M4 is
quaternionic sub-space containing preferred place M2. The tangent or normal space of X4

would be characterized by a point of CP2 and would be mapped to a point of CP2 and the
point of CP2 - or rather point plus the space S2 or light-like vectors characterizing the choices
of M2 - would mapped to the twistor sphere S2 of CP3 by the standard formulas.

S2(cdconf ) would correspond to the choices of the direction of preferred octonionic imaginary
unit fixing M2 as quantization axis of spin and S2(CP2) would correspond to the choice
of isospin quantization axis: the quantization axis for color hyperspin would be fixed by
the choice of quaternionic M4 ⊂ M8. Hence one would have a nice information theoretic
interpretation.

2. The M4 point mapped to twistor sphere S2(CP3) would be projected to a point of cdconf
and define M8 −H correspondence at the level of M4. This would define compactification
and associate two scales with it. Only the ratio R(cdconf )/R(CP2) matters by the scaling
invariance at M8 level and one can just fixe the scale assignable to T (CP2) and call it CP2

length scale.

One should have a concrete construction for the hyperbolic variants of CPn.
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1. One can represent Minkowski space and its variants with varying signatures as sub-spaces of
complexified quaternions, and it would seem that the structure of sub-space must be lifted to
the level of the twistor space. One could imagine variants of projective spaces CPn, n = 2, 3
as and HPn, n = 2, 3. They would be obtained by multiplying imaginary quaternionic
unit Ik with the imaginary unit i commuting with quaternionic units. If the quaternions
λ involved with the projectivization (q1, ..., qn) ≡ λ(q1, ..., qn) are ordinary quaternions, the
multiplication respects the signature of the subspace. By non-commutativity of quaternions
one can talk about left- and right projective spaces.

2. One would have extremely close correspondence between M4 and CP2 degrees of freedom
reflecting the M8−H correspondence. The projection CP3 → CP2 for E4 would be replaced
with the projection for the hyperbolic analogs of these spaces in the case of M4. The twistor
space of M4 identified as hyperbolic variant of CP3 would give hyperbolic variant of CP2 as
conformally compactified cd. The flag manifold F = SU(3)/U(1)× U(1) as twistor space of
CP2 would also give CP2 as base space.

The general solution of field equations at the level of T (H) would correspond to holomorphy
in general sense for the 6-surfaces defined by 3 vanishing conditions for holomorphic functions - 6
real conditions. Effectively this would mean the knowledge of the exact solutions of field equations
also at the level of H: TGD would be an integrable theory. Scattering amplitudes would in turn
constructible from these solutions using ordinary partial differential equations [L39].

1. The first condition would identify the complex coordinates of S2(cdconf ) and S2(CP2): here
one cannot exclude relative rotation represented as a holomorphic transformation but for
R(cdconf )� R(CP2) the effect of the rotation is small.

2. Besides this there would be vanishing conditions for 2 holomorphic polynomials. The coor-
dinate pairs corresponding to M2 ⊂ M4 would correspond to hypercomplex behavior with
hyper complex coordinate u = ±t − z. t and z could be assigned with U(1) fibers of Hopf
fibrations SU(2)→ S2 .

3. The octonionic polynomial P (o) of degree n = heff/h0 with rational coefficients fixes the
extension of rationals and since the algebraic extension should be same at both sides, the
polynomials in twistor space should have same degree. This would give enormous boos
concerning the understanding of the proposed cancellation of fermionic Wick contractions in
SUSY scattering amplitudes forced by number theoretic vision [L39].

Possible problems related to the signatures

The different signatures for the metrics of the twistor spheres of cdconf and CP2 can pose technical
problems.

1. Twistor lift would replaceX4 with 6-D twistor spaceX6 represented as a 6-surface in T (M4)×
T (CP2). X6 is defined by dimensional reduction in which the twistor spheres S2(cdconf ) and
S2(CP2) are identified and define the twistor sphere S2(X4) of X6 serving as a fiber whereas
space-time surface X4 serves as a base. The simplest identification is as (θ, φ)S2(M4) =
(θ, φ)S2(CP2): the same can be done for the complex coordinates zS2(M4

conf ) = zS2(CP2))). An

open question is whether a Möbius transformation could relate the complex coordinates. The
metrics of the spheres are of opposite sign and differ only by the scaling factors R2(cdconf )
and R2(CP2).

2. For cdconf option the signatures of the 2 twistor spheres would be opposite (time-like for
cdconf ). For R(cdconf )/R(CP2) = 1. J2 = −g is the only consistent option unless the
signature of space is not totally positive or negative and implies that the Kähler forms of
the two twistor spheres differ by i. The magnetic contribution from S2(X4) would give rise
to an infinite value of cosmological constant proportional to 1/

√
g2, which would diverge

R(cdconf )/R(CP2) = 1. There is however no need to assume this condition as in the original
approach.
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4.5.4 Hierarchy of length scale dependent cosmological constants in
twistorial description

At the level of M8 the hierarchy of CDs defines a hierarchy of length scales and must correspond
to a hierarchy of length scale dependent cosmological constants. Even fundamental scales would
emerge.

1. If one has R(cdconf )/R(CP2) >> 1 as the idea about macroscopic cdconf would suggest, the
contribution of S2(cdconf ) to the cosmological constant dominates and the relative rotation
of metrics and Kähler form cannot affect the outcome considerably. Therefore different
mechanism producing the hierarchy of cosmological constants is needed and the freedom to
choose rather freely the ratio R(cdconf )/R(CP2) would provide the mechanism. What looked
like a weakness would become a strength.

2. S2(cdconf would have time-like metric and could have large scale. Is this really accept-
able? Dimensional reduction essential for the twistor induction however makes S2(cdconf )
non-dynamical so that time-likeness would not be visible even for large radii of S2(cdconf )
expected if the size of cdconf can be even macroscopic. The corresponding contribution to
the action as cosmological constant has the sign of magnetic action and also Kähler mag-
netic energy is positive. If the scales are identical so that twistor spheres have same radius,
the contributions to the induced metric cancel each other and the twistor space becomes
metrically 4-D.

3. At the limit R(cdconf )→ RCP2) cosmological constant coming from magnetic energy density
diverges for J2 = −G option since it is proportional to 1/

√
g2. Hence the scaling factors must

be different. The interpretation is that cosmological constant has arbitrarily large values near
CP2 length scale. Note however that time dependence is replaced with scale dependence and
space-time sheets with different scales have only wormhole contacts.

It would seem that this approach could produce the nice results of the earlier approach.
The view about how the hierarchy of cosmological constants emerges would change but the idea
about reducing coupling constant evolution to that for cosmological constant would survive. The
interpretation would be in terms of the breaking of scale invariance manifesting as the scales of CDs
defining the scales for the twistor spaces involved. New insights about p-adic coupling constant
evolution emerge and one finds a new “must” for ZEO. H = M4 × CP2 picture would emerge
as an approximation when cdconf is replaced with its tangent space M4. The consideration of
the quaternionic generalization of twistor space suggests natural identification of the conformally
compactified twistor space as being obtained from CP2 by making second complex coordinate
hyperbolic. This need not conform with the identification as U(2).

4.6 How to generalize twistor Grassmannian approach in
TGD framework?

One should be able to generalize twistor Grassmannian approach in TGD framework. The basic
modification is replacement of 4-D light-like momenta with their 8-D counterparts. The octonionic
interpretation encourages the idea that twistor approach could generalize to 8-D context. Higher-
dimensional generalizations of twistors have been proposed but the basic problem is that the index
raising and lifting operations for twistors do not generalize (see http://tinyurl.com/y24lkwce).

1. For octonionic twistors as pairs of quaternionic twistors index raising would not be lost work-
ing for MT option and light-like M8 momenta can be regarded sums of M4

T and E4 parts
as also twistors. Quaternionic twistor components do not commute and this is essential for
incidence relation requiring also the possibility to raise or lower the indices of twistors. Ordi-
nary complex twistor Grassmannians would be replaced with their quaternionic countparts.
The twistor space as a generalization of CP3 would be 3-D quaternionic projective space
T (M8) = HP3 with Minkowskian signature (6,6) of metric and having real dimension 12 as
one might expect.

http://tinyurl.com/y24lkwce
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Another option realizing non-commutativity could be based on the notion of quantum twistor
to be also discussed.

2. Second approach would rely on the identification of M4 × CP2 twistor space as a Cartesian
product of twistor spaces of M4 and CP2. For this symmetries are not broken, M4

L ⊂ M8

depends on the state and is chosen so that the projection of M8 momentum is light-like so
that ordinary twistors and CP2 twistors should be enough. M8−H relates varying M4

L based
and M4

T based descriptions.

3. The identification of the twistor space of M4 as T (M4) = M4 × S2 can be motivated by
octonionic considerations but might be criticized as non-standard one. The fact that quater-
nionic twistor space HP3 looks natural for M8 forces to ask whether T (M4) = CP3 endowed
with metric having signature (3,3) could work in the case of M4. In the sequel also a vision
based on the identification T (M4) = CP3 endowed with metric having signature (3,3) will
be discussed.

4.6.1 Twistor lift of TGD at classical level

In TGD framework twistor structure is generalized [K77, L26, K8, L30]. The inspiration for
TGD approach to twistorialization has come from the work of Nima Arkani-Hamed and colleagues
[B20, B14, B15, B17, B36, B21, B7]. The new element is the formulation of twistor lift also at the
level of classical dynamics rather than for the scattering amplitudes only [K77, K8, L26, L30].

1. The 4-D light-like momenta in ordinary twistor approach are replaced by 8-D light-like mo-
menta so that massive particles in 4-D sense become possible. Twistor lift of TGD takes
places also at the space-time level and is geometric counterpart for the Penrose’s replace-
ment of massless fields with twistors. Roughly, space-time surfaces are replaced with their
6-D twistor spaces represented as 6-surfaces. Space-time surfaces as preferred extremals are
minimal surfaces with 2-D string world sheets as singularities. This is the geometric manner
to express masslessness. X4 is simultaneously also extremal of 4-D Kähler action outside
singularities: this realizes preferred extremal property.

2. One can say that twistor structure of X4 is induced from the twistor structure of H =
M4 × CP2, whose twistor space T (H) is the Cartesian product of geometric twistor space
T (M4) = M4 × CP1 and T (CP2) = SU(3)/U(1)× U(1). The twistor space of M4 assigned
to momenta is usually taken as a variant of CP3 with metric having Minkowski signature and
both CP1 fibrations appear in the more precise definition of T (M4). Double fibration [B34]
(see http://tinyurl.com/yb4bt74l) means that one has fibration from M4 × CP1 - the
trivial CP1 bundle defining the geometric twistor space to the twistors space identified as
complex projective space defining conformal compactification of M4. Double fibration is
essential in the twistorialization of TGD [K29].

3. The basic objects in the twistor lift of classical TGD are 6-D surfaces in T (H) having the
structure of twistor space in the sense that they are CP1 bundles having X4 as base space.
Dimensional reduction to CP1 bundle effectively eliminates the dynamics in CP1 degrees
of freedom and its only remnant is the value of cosmological constant appearing as coeffi-
cient of volume term of the dimensionally reduced action containing also 4-D Kähler action.
Cosmological term depends on p-adic length scales and has a discrete spectrum [L30, L29].

CP1 has also an interpretation as a projective space constructed from 2-D complex spinors.
Could the replacement of these 2-spinors with their quantum counterparts defining in turn quan-
tum CP1 realize finite quantum measurement resolution in M4 degrees of freedom? Projective
invariance for the complex 2-spinors would mean that one indeed has effectively CP1.

4.6.2 Octonionic twistors or quantum twistors as twistor description of
massive particles

For M4
T option the particles are massive and the one encounters the problem whether and how to

generalize the ordinary twistor description.

http://tinyurl.com/yb4bt74l
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4.6.3 Basic facts about twistors and bi-spinors

It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a

′
with λ̃ defined as complex conjugate of λ

and having opposite chirality (see http://tinyurl.com/y6bnznyn).

1. When λ is scaled by a complex number λ̃ suffers an opposite scaling. The bi-spinors allow
the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′ λ̃
a′ µ̃b

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (4.6.1)

2. Spinor indices are lowered and raised using antisymmetric tensors εαβ and εα̇β̇ . If the particle
has spin one can assign it a positive or negative helicity h = ±1. Positive helicity can be
represented by introducing artitrary negative (positive) helicity bispinor µa (µa′) not parallel
to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (4.6.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

3. What makes 4-D twistors unique is the existence of the index raising and lifting operations
using ε tensors. In higher dimensions they do not exist and this causes difficulties. For octo-
nionic twistors with quaternionic components possibly only in D = 8 the situation changes.

To get a very rough idea about twistor Grassmannian approach idea, consider tree am-
plitudes of N = 4 SUSY as example and it is convenient to drop the group theory factor
Tr(T1T2 · · ·Tn). The starting point is the observation that tree amplitude for which more than
n − 2 gluons have the same helicity vanish. MHV amplitudes have exactly n − 2 gluons of same
helicity- taken by a convention to be negative- have extremely simple form in terms of the spinors
and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(4.6.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].
An essential point in what follows is that the amplitudes are expressible in terms of the

antisymmetric bi-linears 〈λi, λj〉 making sense also for octotwistors and identifiable as quaternions
rather than octonions.

M8 −H duality and two alternative twistorializations of TGD

M8 −H duality suggests two alternative twistorializations of TGD.

1. The first approach would be in terms of M8 twistors suggested by quaternionic light-lineness
of 8-momenta. M8 twistors would be Cartesian products of M4 and E4 twistors. One can
imagine a straightforward generalization of twistor scattering amplitudes in terms of general-
ized Grassmannian approach replacing complex Grassmannian with quaternionic Grassman-
nian, which is a mathematically well-defined notion.

http://tinyurl.com/y6bnznyn
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2. Second approach would rely on M4 × CP2 twistors, which are products of M4 twistors and
CP2 twistors: this description works nicely at classical space-time level but at the level of
momentum space the problem is how to describe massivation of M4 momenta using twistors.

Why the components of twistors must be non-commutative?

How to modify the 4-D twistor description of light-like 4-momenta so that it applies to massive
4-momenta?

1. Twistor consists of a pair (µα̇, λ
α) of bi-spinors in conjugate representations of SU(2). One

can start from the 4-D incidence relations for twistors

µα̇ = pαα̇λ
α .

Here pαα̇ denotes the representation of four-momentum pkσk. The antisymmetric permu-
tation symbols εαβ and its dotted version define antisymmetric “inner product” in twistor
space. By taking the inner product of µ with itself, one obtains the commutation relation
µ1µ2−µ2µ1 = 0, which is consistent with right-hand side for massless particles with pkp

k = 0.

2. In TGD framework particles are massless only in 8-D sense so that the right hand side in
the contraction is in general non-vanishing. In massive case one can replace four-momentum
with unit vector. This requires

〈µ1, µ2〉 = µ1µ2 − µ2µ1 6= 0 .

The components of 2-spinor become non-commutative.

This raises two questions.

1. Could the replacement of complex twistors by quaternionic twistors make them non-commutative
and allow massive states?

2. Could non-commutative quantum twistors solve the problem caused by the light-likeness of
momenta allowing 4-D twistor description?

Octotwistors or quantum twistors?

One should be able to generalize twistor amplitudes and twistor Grassmannian approach to TGD
framework, where particles are massless in 8-D sense and massive in 4-D sense. Could twistors be
replaced by octonionic or quantum twistors.

1. One can express mass squared as a product of commutators of components of the twistors λ
and λ̃, which is essentially the conjugate of λ:

p · p = 〈λ, λ〉
[
λ̃, λ̃

]
. (4.6.4)

This operator should be non-vanishing for non-vanishing mass squared. Both terms in the
product vanish unless commutativity fails so that mass vanishes. The commutators should
have the quantum state as its eigenstate.

2. Also 4-momentum components should have well-defined values. Four-momentum has ex-
pression paa

′
= λaλ̃a

′
in massless case. This expression should generalized to massive case

as such. Eigenvalue condition and reality of the momentum components requires that the
components paa

′
are commuting Hermitian operators.

In twistor Grassmannian approach complex but light-like momenta are possible as analogs of
virtual momenta. Also in TGD framework the complexity of Kähler coupling strength allows
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to consider complex momenta. For twistor lift they however differ from real momenta only
by a phase factor associated with the 1/αK associated with 6-D Kähler action.

Remark: I have considered also the possibility that states are eigenstates only for the longi-
tudinal M2 projection of 4-momentum with quark model of hadrons serving as a motivation.

(a) Could this equation be obtained in massive case by regarding λa and λ̃a
′

as commuting
octo-spinors and their complex conjugates? Octotwistors would naturally emerge in the
description at embedding space level. I have already earlier considered the notion of
octotwistor [K73] [L18]).

(b) Or could it be obtained for quantum bi-spinors having same states as eigenstates. Could
quantum twistors as generalization of the ordinary twistors correspond to the reduction
of the description from the level of M8 or H to at space-time level so that one would have
4-D twistors and massive particles with 4-momentum identifiable as Noether charge for
the action principle determining preferred extremals? I have considered also the notion
of quantum spinor earlier [K28, K48, K43, K1, K84].

3. In the case of quantum twistors the generalization of the product of the quantities 〈λi, λi+1〉
appearing in the formula should give rise to c-number in the case of quantum spinors. Can
one require that the quantities 〈λi, λi+1〉 or even 〈λi, λj〉 are c-numbers simultaneously? This
would also require that 〈λ, λ〉 is non-vanishing c-number in massive case: also incidence rela-
tion suggest this condition. Could one think λ as an operator such that 〈λ, λ〉 has eigenvalue
spectrum corresponding to the quantities 〈λi, λi+1〉 appearing in the scattering amplitude?

4.6.4 The description for M4
T option using octo-twistors?

For option I with massive M4
T projection of 8-momentum one could imagine twistorial description

by using M8 twistors as products of M4
T and E4 twistors, and a rather straightforward generaliza-

tion of standard twistor Grassmann approach can be considered.

Could twistor Grassmannians be replaced with their quaternionic variants?

The first guess would simply replace Gr(k, n) with Gr(2k, 2n) 4-D twistors 8-D twistors. From
twistor amplitudes with quaternionic M8-momenta one could construct physical amplitudes by
going from 8-momentum basis to the 4-momentum- basis with wave functions in irreps of SO(3).
Life is however not so simple.

1. The notion of ordinary twistor involves in an essential manner Pauli matrices σi satisfying
the well-known anti-commutation relations. They should be generalized. In fact, σ0 and√
−1σi can be regarded as a matrix representation for quaternionic units. They should have

analogs in 8-D case.

Octonionic units iei indeed provide this analog of sigma matrices. Octonionic units for
the complexification of octonions allow to define incidence relation and representation of 8-
momenta in terms of octo-spinors. They do not however allow matrix representation whereas
time-like octonions allow interpretation as quaternion in suitable bases and thus matrix
representation. Index raising operation is essential for twistors and makes dimension D = 4
very special. For näıve generalizations of twistors to higher dimensions this operation is lost
(see http://tinyurl.com/y24lkwce).

2. Could one avoid multiplication of more than two octo-twistors in Grassmann amplitudes
leading to difficulties with associativity. An important observation is that in the expressions
for the twistorial scattering amplitudes only products 〈λi, λj〉 or [λ̃i, λ̃i+1] but not both occur.
These products are associative even if the spinors are replaced by quaternionic spinors.

These operations are antisymmetric in the arguments, which suggests cross product for
quaternions giving rise to imaginary quaternion so that the product of objects would give
rise to a product of imaginary quaternions. This might be a problem since a large number
of terms in the product would approach to zero for random imaginary quaternions.

http://tinyurl.com/y24lkwce
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An ad hoc guess would be that scattering probability is proportional to the product of
amplitude as product 〈λi, λj〉 and its “hermitian conjugate” with the conjugates [λ̃i, λ̃i+1]
in the reverse order (this does not affect the outcome) so that the result would be real.
Scattering amplitude would be more like quaternion valued operator. Could one have a
formulation of quantum theory or at least TGD view about quantum theory allowing this?

3. If ordinary massless 4-momenta correspond to quaternionic sigma matrices, twistors can be
regarded as pairs of 2-spinors in matrix representation. Octonionic 8-momenta should cor-
respond to pairs of 4-spinors. As already noticed, octonions do not however allow matrix
representation! Octonions for a fixed decomposition M8 = M4 ×E4 can be however decom-
posed to linear combination of two quaternions just like complex numbers to a combination of
real numbers. These quaternions would have matrix representation and quaternionic analogs
of twistor pair (µ, λ̃). One could perhaps formulate the generalization of twistor Grassmann
amplitudes using these pairs. This would suggest replacement of complex bi-spinors with
complexified quaternions in the ordinary formalism. This might allow to solve problems with
associativity if only 〈λi, λj〉 or [λ̃i, λ̃i+1] appear in the amplitudes.

4. The argument in the momentum conserving delta function δ(λiλ̃i) should be real so that the
conjugation with respect to i would not change the argument and non-commutativity would
not be problem. In twistor Grassmann amplitudes the argument C · Z of delta momentum
conserving function is linear in the components of complex twistor Z. If complex twistor
is replaced with quaternionic twistor, the Grassmannian coordinates C in delta functions
δ(C · Z) must be replaced with quaternionic one.

The replacement of complex Grassmannians GrC(k, n) with quaternionic Grassmannians
GrH(k, n) is therefore highly suggestive. Quaternionic Grassmannians (see http://tinyurl.com/

y23jsffn) are quotients of symplectic Lie groups GrH(k, n) = Un(H)/(Ur(H)×Un−r(H)) and thus
well-defined. In the description using GlH(k, n) matrices the matrix elements would be quaternions
and k × k minors would be quaternionic determinants.

Remark: Higher-D projective spaces of octonions do not exist so that in this sense dimen-
sion D = 8 for embedding space would be maximal.

Twistor space of M8 as quaternionic projective space HP3?

The simplest Grassmannian corresponds to twistor space and one can look what one obtains in
this case. One can also try to understand how to cope with the problems caused by Minkowskian
signature.

1. In previous section it was found that the modification of H to H = cdconf×CP2 with cdconf =
CP2,h identifiable as CP2 with Minkowskian signature of metric is strongly suggestive.

2. For E8 quaternionic twistor space as analog of CP3 would be its quaternionic variant HP3

with expected dimension D = 16 − 4 = 12. Twistor sphere would be replaced with its
quaternionic counterpart SU(2)H/U(1)H having dimension 4 as expected. CD8,conf as con-
formally compactified CD8 must be 8-D. The space HP2 has dimension 8 and is analog of
CP2 appearing as analog of base space of CP3 identified as conformally compactified 4-D
causal diamond cdconf . The quaternionic analogy of M4

conf = U(2) identified as conformally

compactified M4 would be U(2)H having dimension D = 10 rather than 8.

HP3 and HP2 might work for E8 but it seems that the 4-D analog of twistor sphere should
have signature (2,-2) whereas base space should have signature (1,-7). Some kind of hy-
perbolic analogs of these spaces obtained by replacing quaternions with their hypercomplex
variant seem to be needed. The same receipe in the twistorialization of M4 would give cdconf
as analog of CP2 with second complex coordinate made hyperbolic. I have already considered
the construction of hyperbolic analogs of CP2 and CP3 as projective spaces. These results
apply to HP2 and HP3.

3. What about octonions? Could one define octonionic projective plane OP2 and its hyperbolic
variants corresponding to various sub-spaces of M8? Euclidian OP2 known as Cayley plane
exists as discovered by Ruth Moufang in 1933. Octonionic higher-D projective spaces and
Grassmannians do not however exist so that one cannot assign OP3 as twistor spaces.

http://tinyurl.com/y23jsffn
http://tinyurl.com/y23jsffn
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Can one obtain scattering amplitudes as quaternionic analogs of residue integrals?

Can one obtain complex valued scattering amplitudes (i commuting with octonionic units) in this
framework?

1. The residue integral over quaternionic C-coordinates should make sense, and pick up the
poles as vanishing points of minors. The outcome of repeated residue integrations should
give a sum over poles with complex residues.

2. Residue calculus requires analyticity. The problem is that quaternion analyticity based on a
generalization of Cauchy-Riemann equations allows only linear functions. One could define
quaternion (and octonion) analyticity in restricted sense using powers series with real coeffi-
cients (or in extension involving i commuting with octonion units). The quaternion/octonion
analytic functions with real coefficients are closed with respect to sum and product. I have
used this definition in the proposed construction of algebraic dynamics for in X4 ⊂M8 [L18].

3. Could one define the residue integral purely algebraically? Could complexity of the coeffi-
cients (i) force complex outcome: if pole q0 is not quaternionically real the function would
not allow decompose to f(q)/(q − q0) with f allowing similar Taylor series at pole. If so,
then the formulas of Grassmannian formalism could generalize more or less as such at M8

level and one could map the predictions to predictions of M4 × CP2 approach by analog of
Fourier transform transforming these quantum state basis to each other.

This option looks rather interesting and involves the key number theoretic aspects of TGD
in a crucial manner.

4.6.5 Do super-twistors make sense at the level of M8?

By M8 −H duality [L18] there are two levels involved: M8 and H. These levels are encountered
both at the space-time level and momentum space level. Do super-octonions and super-twistors
make sense at M8 level?

1. At the level of M8 the high uniqueness and linearity of octonion coordinates makes the
notion of super-octonion natural. By SO(8) triality octonionic coordinates (bosonic octet
80), octonionic spinors (fermionic octet 81), and their conjugates (anti-fermionic octet 8−1)
would for triplet related by triality. A possible problem is caused by the presence of separately
conserved B and L. Together with fermion number conservation this would require N = 4
or even N = 4 SUSY, which is indeed the simplest and most beautiful SUSY.

2. At the level of the 8-D momentum space octonionic twistors would be pairs of two quater-
nionic spinors as a generalization of ordinary twistors. Super octo-twistors would be obtained
as generalization of these.

The progress in the understanding of the TGD version of SUSY [L39] led to a dramatic
progress in the understanding of super-twistors.

1. In non-twistorial description using space-time surfaces and Dirac spinors in H, embedding
space coordinates are replaced with super-coordinates and spinors with super-spinors. Theta
parameters are replaced with quark creation and annihilation operators. Super-coordinate is
a super-polynomial consisting of monomials with vanishing total quark number and appearing
in pairs of monomial and its conjugate to guarantee hermiticity.

Dirac spinor is a polynomial consisting of powers of quark creation operators multiplied by
monomials similar to those appearing in the super-coordinate. Anti-leptons are identified
as spartners ofquarks identified as local 3-quark states. The multi-spinors appearing in the
expansions describe as such local many-quark-antiquark states so that super-symmetrization
means also second quantization. Fermionic and bosonic states assignable to H-geometry
interact since super-Dirac action contains induced metric and couplings to induced gauge
potentials.
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2. The same recipe works at the level of twistor space. One introduces twistor super-coordinates
analogous to super-coordinates of H and M8. The super YM field of N = 4 SUSY is replaced
with super-Dirac spinor in twistor space. The spin degrees of freedom associated with twistor
spheres S2 would bring in 2 additional spin-like degrees of freedom.

The most plausible option is that the new spin degrees are frozen just like the geometric S2

degrees of freedom. The freezing of bosonic degrees of freedom is implied by the construction
of twistor space of X4 by dimensional reduction as a 6-D surface in the product of twistor
spaces of M4 and CP2. Chirality conditions would allow only single spin state for both
spheres.

3. Number theoretical vision implies that the number of Wick contractions of quarks and anti-
quarks cannot be larger than the degree of the octonionic polynomial, which in turn should be
same as that of the polynomials of twistor space giving rise to the twistor space of space-time
surface as 6-surface. The resulting conditions correspond to conserved currents identifiable
as Noether currents assignable to symmetries.

Also Grassmannian is replaced with super-Grassmannian and super-coordinates as matrix
elements of super matrices are introduced.

1. The integrand of the Grassmannian integral defining the amplitude can be expanded in Taylor
series with respect to theta parameters associated with the super coordinates C as rows of
super G(k, n) matrix.

2. The delta function δ(C,Z) factorizing into a product of delta functions is also expanded in
Taylor series to get derivatives of delta function in which only coordinates appear. By partial
integration the derivatives acting on delta function are transformed to derivatives acting on
integrand already expanded in Taylor series in theta parameters. The integration over the
theta parameters using the standard rules gives the amplitudes associated with different
powers of theta parameters associated with Z and from this expression one can pick up the
scattering amplitudes for various helicities of external particles.

The super-Grassmannian formalism is extremely beautiful but one must remember that one
is dealing with quantum field theory. It is not at all clear whether this kind of formalism generalizes
to TGD framework, where particle are 3-surfaces [L18]. The notion of cognitive representation ef-
fectively reducing 3-surfaces to a set of point-like particles strongly suggests that the generalization
exists.

The progress in understanding of M8 −H duality throws also light to the problem whether
SUSY is realized in TGD and what SUSY breaking does mean. It seems now clear that sparticles
are predicted and SUSY remains in the simplest scenario exact but that p-adic thermodynamics
causes thermal massivation: unlike Higgs mechanism, this massivation mechanism is universal and
has nothing to do with dynamics. This is due to the fact that zero energy states are superpositions
of states with different masses. The selection of p-adic prime characterizing the sparticle causes
the mass splitting between members of super-multiplets although the mass formula is same for all
of them.

The increased undestanding of what twistorialization leads to an improved understanding
of what twistor space in TGD could be. It turns out that the hyperbolic variant CP3,h of the
standard twistor space CP3 is a more natural identification than the earlier M4×S2 also in TGD
framework but with a scale corresponding to the scale of CD at the level of M8 so that one obtains
a scale hierarchy of twistor spaces. Twistor space has besides the projection to M4 also a bundle
projection to the hyperbolic variant CP2,h of CP2 so that a remarkable analogy between M4 and
CP2 emerges. One can formulate super-twistor approach to TGD using the same formalism as will
be discussed in this article for the formulation at the level of H. This requires introducing besides
6-D Kähler action and its super-variant also spinors and their super-variants in super-twistor space.
The two formulations are equivalent apart from the hierarchy of scales for the twistor space. Also
M8 allows analog of twistor space as quaternionic Grassmannian HP3 with signature (6,6). What
about super- variant of twistor lift of TGD? consider first the situation before the twistorialization.

1. The parallel progress in the understanding SUSY in TGD framework [L39] leads to the iden-
tification of the super-counterparts of M8, H and of twistor spaces modifying dramatically
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the physical interpretation of SUSY. Super-spinors in twistor space would provide the de-
scription of quantum states. Super-Grassmannians would be involved with the construction
of scattering amplitudes. Quaternionic super Grassmannians would be involved with M8

description.

2. In fermionic sector only quarks are allowed by SO(1, 7) triality and that anti-leptons are local
3-quark composites identifiable as spartners of quarks. Gauge bosons, Higgs and graviton
would be also spartners and assignable to super-coordinates of embedding space express-
ible as super-polynomials of quark oscillator operators. Super-symmetrization means also
quantization of fermions allowing local many-quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

Super-counterpart of twistor lift using the proposed formalism

The construction of super-coordinates and super-spinors [L39] suggests a straightforward formula-
tion of the super variant of twistor lift . One should only replace the super-embedding space and
super-spinors with super-twistor space and corresponding super-spinors and formulate the theory
using 6-D super-Kähler action and super-Dirac equation and the same general prescription for
constructing S-matrix. Dimensional reduction should give essentially the 4-D theory apart from
the variation of the radius of the twistor space predicting variation of cosmological constant. The
size scale of CD would correspond to the size scale of the twistor space for M4 and for CP2 the
size scale would serve as unit and would not vary.

The first step is the construction of ordinary variant of Kähler action and modified Dirac
action for 6-D surfaces in 12-D twistor space.

1. Replace the spinors of H with the spinors of 12-D twistor space and assume only quark
chirality. By the bundle property of the twistor space one can express the spinors as tensor
products of spinors of the twistor spaces T (M4) and T (CP2). One can express the spinors
of T (M4) tensor products of spinors of M4 - and S2 spinors locally and spinors of T (CP2)
as tensor products of CP2 - and S2 spinors locally. Chirality conditions should reduce the
number of 2 spin components for both T (M4) and T (CP2) to one so that there are no
additional spin degrees of freedom.

The dimensional reduction can be generalized by identifying the two S2 fibers for the preferred
extremals so that one obtains induced twistor structure. In spinorial sector the dimensional
reduction must identify spinorial degrees of freedom of the two S2s by the proposed chirality
conditions also make them non-dynamical. The S2 spinors covariantly constant in S2 degrees
of freedom.

2. Define the spinor structure of 12-D twistor space, define induced spinor structure at 6-D
surfaces defining the twistor space of space-time surface. Define the twistor counterpart of
the analog of modified Dirac action using same general formulas as in case of H.

Construct next the super-variant of this structure.

1. Introduce second quark oscillator operators labelled by the points of cognitive representa-
tion in 12-D twistor space effectively replacing 6-D surface with its discretization and having
quantized quark field q as its continuum counterpart. Replace the coordinates of the 12-D
twistor space with super coordinates hs expressed in terms of quark and anti-quark oscil-
lator operators labelled by points of cognitive representation, and having interpretation as
quantized quark field q restricted to the points of representation.

2. Express 6-D Kähler action and Dirac action density in terms of super-coordinates hs. The
local monomials of q appear in hs and therefore also in the expansion of super-variants of
modified gamma matrices defined by 6-D ähler action as contractions of canonical momentum
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currents of the action density LK with the gamma matrices of 12-D twistor space. In super-
Kähler action also the local composites of q giving rise to currents formed from the local
composites of 3-quarks and antiquarks and having interpretation as leptons and anti-leptons
occur - leptons would be therefore spartners of squarks.

3. Perform super-expansion also for the induced spinor field qs in terms of monomials of q. qs(q)
obeys super-Dirac equation non-linear in q. But also q should satisfy super-Dirac action
as an analog of quantized quark field and non-linearity indeed forces also q to have has
super-expansion. Thus both quark field q and super-quark field qs both satisfy super-Dirac
equation.

The only possibility is qs = q stating fixed point property under q → qs having interpretation
in terms of quantum criticality fixing the values of the coefficients of various terms in qs and
in the super-coordinate hs having interpretation as coupling constants. One has quantum
criticality and discrete coupling constant evolution with respect to extension of rationals
characterizing adelic physics.

4. Super-Dirac action vanishes for its solutions and the exponent of super-action reduces to
exponent of super-Kähler action, whose matrix elements between positive and negative energy
parts of zero energy states give S-matrix elements.

Super-Dirac action has however an important function: the derivatives of quark currents
appearing in the super-Kähler action can be transformed to a linear strictly local action of
super spinor connection (∂α → Aα,s effectively). Without this lattice discretization would
be needed and cognitive representation would not be enough.

To sum up, the super variants of modified gamma matrices of the 6-surface would satisfy the
condition Dα,sΓ

α
s = 0 expressing preferred extremal property and guaranteeing super-hermicity of

Ds. qs would obey super-Dirac equation Dsqs = 0. The self-referential identification q = qs would
express quantum criticality of TGD.

4.7 Could one describe massive particles using 4-D quantum
twistors?

The quaternionic generalization of twistors looks almost must. But before this I considered also
the possibility that ordinary twistors could be generalized to quantum twistors to describe particle
massivation. Quantum twistors could provide space-time level description, which requires 4-D
twistors, which cannot be ordinary M4 twistors. Also the classical 4-momenta, which by QCC
would be equal to M8 momenta, are in general massive so that the ordinary twistor approach
cannot work. One cannot of course exclude the possibility that octo-twistors are enough or that
M8
L description is equivalent with space-time description using quantum twistors.

4.7.1 How to define quantum Grassmannian?

The approach to twistor amplitude relies on twistor Grassmann approach [B16, B11, B10, B19,
B20, B7] (see http://tinyurl.com/yxllwcsn). This approach should be replaced by replacing
Grassmannian GR(K,N) = Gl(n,C)/Gl(n−m,C)×Gl(m,C) with quantum Grassmannian.

näıve approach to the definition of quantum Grassmannian

Quantum Grassmannian is a notion studied in mathematics and the approach of [A95] (see http:

//tinyurl.com/y5q6kv6b) looks reasonably comprehensible even for physicist. I have already
earlier tried to understand quantum algebras and their possible role in TGD [K9]. It is however
better to start as ignorant physicist and proceed by trial and error and find whether mathematicians
have ended up with something similar.

1. Twistor Grassmannian scattering amplitudes involving k negative helicity gluons involve
product of k × k minors of an k × n matrix C taken in cyclic order. C defines k × n
coordinates for Grassmannian Gr(k, n) of which part is redundant by the analogs of gauge

http://tinyurl.com/yxllwcsn
http://tinyurl.com/y5q6kv6b
http://tinyurl.com/y5q6kv6b
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symmetries Gl(n − m,C) × Gl(m,C). Here n is the number of external gluons and k the
number of negative helicity gluons. The k × k determinants taken in cyclic order appear
in the integrand over Grassmannian. Also the quantum variants of these determinants and
integral over quantum Grassmannian should be well-defined and residue calculus gives hopes
for achieving this.

2. One should define quantum Grassmannian as algebra according to my physicist’s understand-
ing algebra can be defined by starting from a free algebra generated by a set of elements -
now the matrix elements of quantum matrix. One poses on these elements relations to get
the algebra considered. What could these conditions be in the recent case.

3. A natural condition is that the definition allows induction in the sense that its restriction to
quantum sub-matrices is consistent with the general definition of k × n quantum matrices.
In particular, one can identify the columns and rows of quantum matrices as instances of
quantum vectors.

4. How to generalize from 2× 2 case to k×n case? The commutation relations for neighboring
elements of rows and columns are fixed by induction. In 4× 4 corresponding to M4 twistors
one would obtain for (a1, ..., a4). aiai+1 = qai+1ai cyclically (k = 1 follows k = 4).

What about commutations of ai and ai+k, k > 1. Is there need to say anything about these
commutators? In twistor Grassmann approach only connected k × k minors in cyclic order
appear. Without additional relations the algebra might be too large. One could argue that
the simplest option is that one has aiai+k = qai+kai for k odd aiai+k = q−1ai+kai for k
even. This is required from the consistency with cyclicity. These conditions would allow to
define also sub-determinants, which do not correspond to connected k×k squares by moving
the elements to a a connected patch by permutations of rows and columns.

5. What about elements along diagonal? The induction from 2 × 2 would require the commu-
tativity of elements along right-left diagonals. Only commutativity of the elements along
left-right diagonal be modified. Or is the commutativity lost only along directions parallel
to left-right diagonal? The problem is that the left-right and right-left directions are trans-
formed to each other in odd permutations. This would suggest that only even permutations
are allowed in the definition of determinant

6. Could one proceed inductively and require that one obtains the algebra for 2 × 2 matrices
for all 2 × 2 minors? Does this apply to all 2 × 2 minors or only to connected 2 × 2 minors
with cyclic ordering of rows and columns so that top and bottom row are nearest neighbors
as also right and left column. Also in the definition of 3× 3 determinant only the connected
developed along the top row or left column only 2×2 determinants involving nearest neighbor
matrix elements appear. This generalizes to k × k case.

It is time to check how wrong the näıve intuition has been. Consider 2 × 2 matrices as
simple example. In this case this gives only 1 condition (ad− bc = −da+ cb) corresponding to the
permutation of rows or columns. Stronger condition suggested by higher-D case would be ad = da
and bc = cb. The definition of 2× 2 in [A95] however gives for quantum 2-matrices (a, b; c, d) the
conditions

ac = qca , bd = qda ,
ab = qba , cd = qdc ,
bc = cb , ad− da = (q − q−1)bc .

(4.7.1)

The commutativity along left-right diagonal is however lost for q 6= 1 so that quantum determinant
depends on what row or column is used to expand it. The modification of the commutation relations
along rows and columns is what one might expect and wants in order to achieve non-commutativity
of twistor components making possible massivation in M4 sense.

The limit q → 1 corresponds to non-trivial algebra in general and would correspond to β = 4
for inclusions of HFFs expected to give representations of Kac-Moody algebras. At this limit only
massless particles in 4-D sense are allowed. This suggests that the reduction of Kac-Moody algebras
to quantum groups corresponds to symmetry breaking associated with massivation in 4-D sense.
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Mathematical definition of quantum Grassmannian

It would seem that the proposed approach is reasonable. The article [A130] (see http://tinyurl.
com/yycflgrd) proposing a definition of quantum determinant explains also the basic interpreta-
tion of what the non-commutativity of elements of quantum matrices does mean.

1. The first observation is that the commutation of the elements of quantum matrix corresponds
to braiding rather than permutation and this operation is represented by R-matrix. The
formula for the action of braiding is

Rabcdt
c
et
d
f = tadt

b
cR

cd
ef . (4.7.2)

Here R-matrix is a solution of Yang-Baxter equaion and characterizes completely the commu-
tation relations between the elements of quantum matrix. The action of braiding is obtained
by applying the inverse of R-matrix from left to the equation. By iterating the braidings of
nearest neighbors one can deduce what happens in the braiding exchanging quantum matrix
elements which are not nearest neighbors. What is nice that the R-matrix would fix the
quantum algebra, in particular quantum Grassmannian completely.

2. In the article the notion of quantum determinant is discussed and usually the definition of
quantum determinant involves also the introduction of metric gab allowing the raising of the
indices of the permutation symbol. One obtains formulas relating metric and R-matrix and
restricting the choice of the metric. Note however that if ordinary permutation symbol is
used there is no need to introduce the metric.

The definition quantum Grassmannian proposed does not involve hermitian conjugates of
the matrices involved. One can define the elements of Grassmannian and Grassmannian residue
integrals without reference to complex conjugation: could one do without hermitian conjugates?
On the other hand, Grassmannians have complex structure and Kähler structure: could this require
hermitian conjugates and commutation relations for these?

4.7.2 Two views about quantum determinant

If one wants to define quantum matrices in Gr(k, n) so that quantal twistor-Grassmann amplitudes
make sense, the first challenge is to generalize the notion of k × k determinant.

One can consider two approaches concerning the definition of quantum determinant.

1. The first guess is that determinant should not depend on the ordering of rows or columns
apart from the standard sign factor. This option fails unless one modifies the definition of
permutation symbol.

2. The alternative view is that permutation symbol is ordinary and there is dependence on
the row or column with respect to which one develops. This dependence would however
disappear in the scattering amplitudes. If the poles and corresponding residues associated
with the k× k-minors of the twistor amplitude remain invariant under the permutation, this
is not a problem. In other words, the scattering amplitudes are invariant under braid group.
This is what twistor Grassmann approach implies and also TGD predict.

For the first option quantum determinant would be braiding invariant. The standard defini-
tion of quantum determinant is discussed in detail in [A130] (see http://tinyurl.com/yycflgrd).

1. The commutation of the elements of quantum matrix corresponds to braiding rather than
permutation and as found, this operation is represented by R-matrix.

2. Quantum determinant would change only by sign under the braidings of neighboring rows and
columns. The braiding for the elements of quantum matrix would compensate the braiding
for quantum permutation symbol. Permutation symbol is assumed to be q-antisymmetric
under braiding of any adjacent indices. This requires that permutation ik ↔ ik+1 regarded

http://tinyurl.com/yycflgrd
http://tinyurl.com/yycflgrd
http://tinyurl.com/yycflgrd
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as braiding gives a contraction of quantum permutation symbol εi1,...1k with Rijikik+1
plus

scaling by some normalization factor λ besides the change of sign.

εa1...akak+1...an = −λεa1...ij...anRjiakak+1
. (4.7.3)

The value of λ can be calculated.

3. The calculation however leads to the result that quantum determinant D satisfies D2 = 1! If
the result generalizes for sub-determinants defined by k× k-minors (, which need not be the
case) would have determinants satisfying D2 = 1, and the idea about vanishing of k×k-minor
essential for getting non-trivial twistor scattering amplitude as residue would not make sense.

It seems that the braiding invariant definition of quantum determinant, which of course
involves technical assumptions) is too restrictive. Does this mean that the usual definition requiring
development with respect to preferred row is the physically acceptable option? This makes sense
if only the integral but not integrand is invariant under braidings. Braiding symmetry would be
analogous to gauge invariance.

4.7.3 How to understand the Grassmannian integrals defining the scat-
tering amplitudes?

The beauty of the twistor Grassmannian approach is that the residue integrals over quantum
Gr(k, n) would reduce to sum over poles (or possibly integrals over higher-D poles). Could residue
calculus provide a manner to integrate q-number valued functions of q-numbers? What would be
the minimal assumptions allowing to obtain scattering amplitudes as c-numbers?

Consider first what the integrand to be replaced with its quantum version looks like.

1. Twistor scattering amplitudes involve also momentum conserving delta function expressible
as δ(λaλ̃

a). This sum and - as it seems - also the summands should be c-numbers - in other
words one has eigenstates of the operators defining the summands.

2. By introducing Grassmannian space Gr(k, n) with coordinates Cα,i (see http://tinyurl.

com/yxllwcsn), one can linearize δ(λaλ̃
a) to a product of delta functions δ(C ·Z) = δ(C ·λ̃)×

δ(C⊥ · λ) (I have not written the delta function is Grassmann parameters related to super
coordinates). Z is the n-vector formed by the twistors associated with incoming particles.

The 4×k components of Cα,kZ
k should be c-numbers at least when they vanish. One should

define quantum twistors and quantum Grassmannian and pose the constraints on the poles.

How to achieve the goal? Before proceeding it is good to recall the notion of non-commutative
geometry (see http://tinyurl.com/yxrcr8xv). Ordinary Riemann geometry can be obtained
from exterior algebra bundle, call it E. The Hilbert space of square integrable sections in E carries
a representation of the space of continuous functions C(M) by multiplication operators. Besides
this there is unbounded differential operator D, which so called signature operator and defined in
terms of exterior derivative and its dual: D = d+d∗. This spectral triple of algebra, Hilbert space,
and operator D allows to deduce the Riemann geometry.

The dream is that one could assign to non-commutative algebras non-commutative spaces
using this spectral triple. The standard q-p quantization is example of this: one obtains now
Lagrange manifolds as ordinary commutative manifolds.

Consider now the situation in the case of quantum Grassmannian.

1. In the recent case the points defining the poles of the function - it might be that the eventual
poles are not a set of discrete points but a higher-dimensional object - would form the
commutative part of non-commutative quantum space. In this space the product of quantum
minors would become ordinary number as also the argument C ·Z of the delta function. This
commutative sub-space would correspond to a space in which maximum number of minors
vanish and residues reduce to c-numbers.

http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxrcr8xv
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Thus poles of the integrand of twistor amplitude would correspond to eigenstates for some
k× k minors of Grassmannian with a vanishing eigenvalue. The residue at the pole at given
step in the recursion pole by pole need not be c-number but the further residue integrals
should eventually lead to a c-number or c-number valued integrand.

2. The most general option would be that the conditions hold true only in the sense that some
k×k minors for k ≥ 2 are c-numbers and have a vanishing eigenvalue but that smaller minors
need not have this property. Also Cα,kZ

k should be c-numbers and vanish. Residue calculus
would give rise to lower-D integrals in step-wise manner.

The simplest and most general option is that one can speak only about eigenvalues of k × k
minors. At pole it is enough to have one minor for which eigenvalue vanishes whereas other
minors could remain quantal. In the final reduction the product of all non-vanishing k × k
minors appearing in cyclic order in the integrand should have a well-defined c-number as
eigenvalue. Does this allow the appearance of only cyclic minors.

A stronger condition would be that all non-vanishing minors reduce to their eigenvalues.
Could it be that only the n cyclic minors can commute simultaneously and serve as analogs
of q-coordinates in phase space? The complex dimension of GC(n, k) is d = (n− k)k. If the
space spaced by minors corresponds to Lagrangian manifold with real dimension not larger
than d, one has k ≤ d = (n − k)k. This gives k ≤ n/2(1 +

√
1− 2/n) For k = 2 this gives

k ≤ n/2. For n → ∞ one has k ≤ n/2 + 1. For k > n/2 one can change the roles of
positive and negative helicities. It has been found that in certain sense the Grassmannian
contributing to the twistor amplitude is positive.

The notion of positivity found to characterize the part of Grassmannian contributing to the
residue integral and also the minors and the argument of delta function [B18](see http:

//tinyurl.com/yd9tf2ya) would suggest that it is also real sub-space in some sense and
this finding supports this picture.

The delta function constraint forcing C ·Z to zero must also make sense. C ·Z defines k× 6
matrix and also now one must consider eigenvalues of C · Z. Positivity suggest reality also
now. Z adds 4×n degrees of freedom and the number 6×k of additional conditions is smaller
than 4 × n. 6k ≤ 4 × n combined with k ≤ n/2 gives k ≤ n/2 so that the conditions seems
to be consistent.

3. The c-number property for the cyclic minors could define the analog of Lagrangian manifold
for the phase space or Kähler manifold. One can of course ask, whether Kähler structure
of Gr(k, n) could generalize to quantum context and give the integration region as a sub-
manifold of Lagrangian manifold of Gr(k, n) and whether the twistor amplitudes could reduce
to integral over sub-manifold of Lagrangian manifold of ordinary Gr(k, n).

To sum up, I have hitherto thought that TGD allows to get rid of the idea of quantization of
coordinates. Now I have encountered this idea from totally unexpected perspective in an attempt
to understand how 8-D masslessness and its twistor description could relate to 4-D one. Grass-
mannians are however very simple and symmetric objects and have natural coordinates as k × n
matrices interpretable as quantum matrices. The notion of quantum group could find very concrete
application as a solution to the basic problem of the standard twistor approach. Therefore one
can consider the possibility that they have quantum counterparts and at least the residue integrals
reducing to c-numbers make sense for quantum Grassmannians in algebraic sense.

http://tinyurl.com/yd9tf2ya
http://tinyurl.com/yd9tf2ya


Chapter 5

McKay Correspondence from
Quantum Arithmetics Replacing
Sum and Product with Direct
Sum and Tensor Product?

5.1 Introduction

This article deals with two questions.

1. The ideas related to topological quantum computation [L69] suggests that it might make sense
to replace quantum states with representations of the Galois group or even the coefficient
space of Hilbert space with a quantum analog of a number field with tensor product and
direct sum replacing the multiplication and sum. I have considered this kind of idea already
earli [K54].

Could one generalize arithmetics by replacing sum and product with direct sum ⊕ and tensor
product ⊗ and consider group representations as analogs of numbers? Could one replace the
roots labelling states with group representations? Or could even the coefficient field for the
state space be replaced with a ring of representations? Could one speak about quantum
variants of state spaces?

Could this give a kind of quantum arithmetics or even quantum number theory and possibly
also a new kind of quantum analog of group theory. If the direct sums are mapped to
ordinary sums of algebraic numbers in quantum-classical correspondence interpreted as a kind
of category theoretic morphism, this map could make sense under some natural conditions.

2. McKay graphs (quivers) have irreducible representations as nodes and characterize the tensor
product rules for the irreps of finite groups. How general is the McKay correspondence
relating these graphs to the Dynkin diagrams of ADE type affine algebras? Could it generalize
from finite subgroups of SL(k,C), k = 2, 3, 4 [A65, A64] to those of SL(n,C). Is there a
deep connection between finite subgroups of SL(n,C), and affine algebras. Could number
theory or its quantum counterpart provide insights to the problem?

5.1.1 Could one generalize arithmetics by replacing sum and product
with direct sum and tensor product?

In the model for topological quantum computation (TQC) [B5, B4] quantum states in the represen-
tations of groups are replaced with entire representations (anyons). One can argue that this helps
to guarantee statibility: this generalization could be regarded as error correction code. In TGD,
these representations would correspond to irreps of Galois groups or of discrete subgroups of the
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covering group for automorphisms of quaternions. Also discrete subgroups of SL(2, C) assignable
naturally to the tessellations of H3 can be considered.

Tensor product ⊗ and direct sum ⊕ are commutative operations and very much like oper-
ations of ordinary arithmetics. One can also speak of positive integer multiples of representation.
The algebras of irreps of various algebraic structures generated by ⊕ and ⊗ are applied quite
generally in mathematics and especially so in gauge theories and conformal field theories and are
known as fusion algebras (https://cutt.ly/TLU3hvJ) and quivers (https://cutt.ly/xLU3zrM).

Could the replacement of the roots of the EDD of the ADE group with representations of the
finite subgroup of SL(2, C) associated with the diagram make sense? The trivial representation
would correspond to an additional node and lead to an extended Dynkin diagram (EDD).

Could one regard the irreps as quantum roots of an ordinary monic polynomial so that the
ordinary algebraic numbers would have representation as state spaces? Could one obtain the full
root diagram by a generalization of the Weyl group operation as reflection of root with respect to
root? The first guess is that the isotropy group GalI of a root acts as a subgroup of Gal defines
the polynomial, which gives the roots replaced by irreps and that Gal itself acts in the same role
as the Weyl group.

McKay graph characterizes the rules for the tensor product compositions for the irreps of a
finite group G, in particular Galois group. There is an excellent description of McKay graphs on
the web (see https://cutt.ly/zLzoAwF). The article describes first the special McKay graphs
for finite subgroups of SL(2, C) and their geometric interpretation in terms of the geometry of
Platonic solids and their denerate versions as regular polygons and shows that they turn out to
correspond to EDDs for ADE type Lie algebras. Also general McKay graphs are considered.

5.1.2 McKay graphs and McKay correspondence

The McKay graphs are a special case of quiver diagrams (https://cutt.ly/xLU3zrM) and code
for the tensor product decomposition rules for the irreps of finite groups [A105, A82].

For a general finite group, McKay graphs can be constructed in the following way. Consider
any finite group G and its irreducible representations (irreps) ξi and assign to ξi vertices. Select
one irrep V and assign also to it a vertex. For all tensor products ξi⊗V and decompose them to a
direct sum of irreps ξj . If ξj is contained to V ⊗ ξi aij times, draw aij directed arrows connecting
vertex i to vertex j. One obtains a weighted, directed graph with incidence matrix aij . Adjacency
matrix plays a central role in graph theory.

McKay correspondence is only one of the mysteries related to MacKay graphs for finite
subgroups of SL(k,C), k = 2, 3, 4 and presumably also k > 4 [A65, A64]. The MacKay graphs
correspond to EDDs for ADE type Lie groups having interpretations as Dynkin diagrams for ADE
type affine algebras.

The classification of singularities of complex surfaces represents another example of McKay
correspondence.

1. ADE Dynkin diagrams provide a classification of Kleinian singularities of complex sur-
faces having real dimension 4 and satisfying a polynomial equation P (z1, z2, z3) = 0 with
P (0, 0, 0) = 0 so that the singularity is at origin [A82] (https://cutt.ly/5LQPyhy). The
finite subgroups of SL(2, C) naturally appear as symmetries of the singularities at origin.

2. In the TGD framework, this kind of complex surfaces could correspond to surfaces with an
Euclidean signature of induced metric as 4-surfaces in E2 × CP2 ⊂ M4 × CP2. What I
call CP2 type extremals have light-like M4 projection as deformations of the canonically
imbedded CP2. These surfaces could correspond to deformations of CP2 type extremals.
One can ask whether one could assign ADE type affine algebras as affine algebras with these
singularities.

https://cutt.ly/TLU3hvJ
https://cutt.ly/xLU3zrM
https://cutt.ly/zLzoAwF
https://cutt.ly/xLU3zrM
https://cutt.ly/5LQPyhy
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5.2 Could the arithmetics based on direct sum and tensor
product for the irreps of the Galois group make sense
and have physical meaning?

The idea about the generalization of the mathematical structures based on integer arithmetics
with arithmetics replacing + and × with direct sum ⊕ and tensor product ⊗ raises a bundle of
questions. This idea makes sense also for the finite subgroups of SU(2) defining the covering group
of quaternion automorphism having a role similar to that of the Galois group.

What motivates this proposal is that the extensions of rationals and their Galois groups
are central in TGD. Polynomials P with integer coefficients are proposed to determine space-time
surfaces by M8 − H duality in terms of holography based on the realization of dynamics in M8

in terms of roots of P having interpretation as mass shells. Holography is realized in terms of
the condition that the normal space of the space-time surface going through the mass shells has
associative normal space [L45, L46].

5.2.1 Questions

The following questions and considerations are certainly very naive from the point of view of a
professional mathematician and the main motivation for the mathematical self ridicule is that there
are fascinating physical possibilities involved.

The basic question is whether ⊗ and ⊕ can give rise to quantum variants of rings of integers
and even algebraic integers defined in terms of quantum roots of ordinary polynomial equations
and could one even generalize the notion of number field: do quantum variants of extensions of
rationals, finite fields, and p-adic number fields make sense?

Recall that also p-adic number fields and the adelic physics relying on the fusion of p-adic
physics and real physics play a central role in TGD [L23, L24] [K49, K33, K34].

Quantum polynomials

To build extensions of rationals, one must have polynomials. The notion of polynomial playing
central role in M8−H duality [L45, L46], or rather the notion of a root of polynomial, generalizes.

1. Polynomials would look exactly like ordinary monic polynomials, with the real unit replaced
with identity representation but their quantum roots would be expressible as direct sums
of irreps associated with a given extension of rationals.

2. One would obtain roots as direct sums of the generators of the extension which could cor-
respond to irreps of the isotropy group GalI of Galois group Gal. McKay graph would
define the multiplication rules for the tensor products appearing in the polynomial whose
coefficients would be quantum counterparts of ordinary (positive) integers.

3. Also a generalization of an imaginary unit could make sense for p-adic ring and finite fields
as a root of a polynomial. Note that

√
−1 can exist for p-adic number fields. Also p-adic

number fields and the adelic physics relying on the fusion of p-adic physics and real physics
play a central role in TGD [L23, L24] [K49, K33, K34].

Does one obtain additive and multiplicative group structures, rings, and fields?

Could one give to the space spanned by irreps a structure of ring or even field?

1. Could one replace algebraic integers of the ordinary extension of rationals with direct sums
of the nC irreps of Galois group G, where nC is the number of classes of G? Note that the
dimensions ni of irreps satisfy the formula

∑
n2
i = nC .

If ⊕ corresponds to + for ordinary integers, only non-negative integers can appear as coeffi-
cients so that one would have semigroups with respect to both ⊕ and ⊗.
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2. The inverse with respect to ⊕ requires that negative multiples of quantum integers make
sense. This is possible in p-adic topology: the number -1 would correspond to the quantum
part of the integer (p−1)

∑
⊕ p
⊕n. The summands in this expression would have p-adic norms

p−n. This allows to define also the negatives of other roots playing the role of generator of
the quantum extension of rationals.

3. Is even the quantum analog of a number field possible? If one requires multiplicative inverse,
only the finite field option remains under consideration since the quantum variant of 1/pk

does not make sense since one has p ≡= 0. If one requires group structure for only ⊕,
quantum p-adics remain under consideration.

Can one map the numbers of quantum extensions of rationals the numbers of ordinary
extensions?

Concerning the physical interpretation, it would be important to map the quantum variants of
algebraic integers to their real counterparts. Mathematicians might talk of some kind of category
theoretical correspondence.

1. Since the same polynomial would have ordinary roots and quantum roots, the natural ques-
tion is whether the quantum roots can be mapped to the ordinary roots.

2. If the quantum roots correspond to roots of the Dynkin diagram as quantum numbers in
quantum extension of rationals, it should be able to map all quantum roots of the ADE type
affine algebra to ordinary roots. This requires that sums with respect to ⊕ correspond to
sums with respect to +: additivity of quantum numbers would hold true at both levels and
one would have category theoretic correspondence as algebraic isomorphisms.

Note that Galois confinement means that 4-momenta and other quantum numbers of states
are integer valued, when one uses the momentum scale defined by causal diamond (CD).
This means that they would correspond to ⊕ multiples of trivial representation of the Galois
group acting as Weyl group.

3. What about the tensor products of roots appearing in the McKay graph? Can one require
that the products with respect to ⊗ correspond to products with respect to ×. Only ⊗
does appear in the generation of the quantum roots of a given KM algebra representation.

What about quantum variants of quantum states? If the quantum variants of p-adic integers
or finite fields appear also as a coefficient field of quantum states, one can always express
the coefficients as direct sums of quantum roots and map these sums to sums of ordinary
polynomial roots, that is algebraic numbers. Extensions of rationals can appear as coefficient
fields for Hilbert spaces.

If one assumes that only quantum variants of p-adic numbers with a finite number of the
pinary digits and their negatives are possible, they can be mapped to numbers in algebraic
extension. One could overcome the problems related to the definition of inner product when
finite field or p-adic numbers define the coefficient field for Hilbert state.

4. For generalized finite fields, the notions of vector space and matrix algebra, hermiticity
and unitarity, and eigenvalue problem could be generalized. For instance, eigenvalues of a
Hermitian operator could be just real numbers. Also a relatively straightforward looking
generalization of group theory can be imagined, and would be obtained by replacing the
elements of the matrix group with the elements of a generalized finite field.

5.2.2 Could the notion of quantum arithmetics be useful in the TGD
framework?

These ideas might find an application in TGD.

1. The quantum generalization of the notion of rationals, p-adic number fields, and finite fields
could be defended as something more than a mere algebraic game. In particular, in TGD the
ramified primes of extension of rationals correspond to physically important p-adic primes,
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especially the largest ramified prime of the extension. Algebraic prime is a generalization of
the notion of ordinary prime. Also its generalization could make sense and give rise to the
notion of quantum prime.

Unfortunately, the extension of finite field Fp induced by a given extension of rationals does
not exist for the ramified primes appearing as divisors in the discriminant determined by the
product of root differences.

Could the generalization of the notion of finite field save the situation? Topological quantum
computations (TQC) relying on Galois representations as counterparts for anyons would
mean an increase of the abstraction level replacing numbers of algebraic extension with
representations of Galois group as their cognitive representations.

One can assign also to the possibly unique monic polynomial Pc defining the nc-dimensional
extension, a discriminant, call it Dc. For the primes dividing the discriminant D of P but
not Dc, the quantum counterpart of the finite-field extension could make sense.

2. In TGD, the roots of polynomials define 3-D mass and energy shells in M8 in turn defining
holographic data defining 4-D surface in M8 mapped to space-time surfaces in H by M8−H
duality. Could one consider quantum variants of the polynomial equations defining space-time
surfaces by holography in the generalized extensions of rationals based on representations of
Galois groups?

Could monic polynomials define quantum variants of 4-surfaces or at least of discretizations
of hyperbolic spaces H3 as 3-D sections of 4-surface in M8 defined as roots of polynomial P
and containing holographic data as cognitive representation? Mass shells would be mapped
by M8 −H duality to light-cone proper time hyperboloids in H.

The interiors of 4-surfaces in M8 would contain very few points of cognitive representation
as momentum components in the extension of rationals defined by the polynomial P . Mass
shells and their H images would be different and represent a kind of cognitive explosion. The
presence of fermions (quarks) at the points of cognitive representation of given mass shells
would make them active.

3. Could the transition from the classical to a quantum theory, which also describes cognition,
replace discrete classical mass shells as roots of a polynomial in M8 with roots with direct
sums of irreps of the Galois group?

This idea would conform with category theoretic thinking which leaves the internal structure
of the basic object, such as point, open. That points of cognitive representations would be
actually irreducible representations of the Galois groups would reveal a kind of cognitive
hidden variables and quantum cognition.

These ideas are now completely new. I have earlier considered the possibility that points
could have an infinite complex internal structure and that the ”world of classical worlds” could be
actually M8 or H with points having this structure [K72]. I have also considered the possibility
that Hilbert spaces could have arithmetic structure based on ⊗ and ⊕ with Hilbert spaces with
prime dimension defining the primes [K54].

”Do not quantize” has been my motto for all these years but in this framework, it might
be possible to talk about quantization of cognition as a deformation of number theory obtained
by replacing + and × with ⊕ and ⊗ and ordinary numbers with representations of Galois group.
Perhaps this quantization could apply to cognition.

5.3 What could lurk behind McKay correspondence?

The appearance of EDDs in so many contexts having apparently no connection with affine algebras
is an almost religious mystery and one cannot avoid the question of whether there is a deep
connection between some finite groups G, in particular finite subgroups of SL(n,C), and affine
algebras. In the TGD frameworkM8−H duality relates number theoretic and differential geometric
views about physics and the natural question whether it could provide some understanding of this
mystery.



200
Chapter 5. McKay Correspondence from Quantum Arithmetics Replacing Sum and

Product with Direct Sum and Tensor Product?

M8 − H duality also suggests how to understand the Langlands correspondence: during
years I have tried to understand Langlands correspondence [A57, A56] from the TGD perspective
[K38, L11].

5.3.1 McKay correspondence

There is an excellent article of Khovanov [A105] describing the details of McKay correspondence
for the discrete subgroups of SL(2, C) (https://cutt.ly/1LQDqce). There is also an article
”McKay correspondence” by Nakamura about various aspects of McKay correspondence [A82]
(https://cutt.ly/5LQPyhy).

1. Consider finite subgroups G of SL(2, C). The McKay graph for the tensor products of what
is called canonical (faithful) 2-D representation V of G with irreps ξi of G corresponds to an
extended Dynkin diagram with one node added to a Dynkin diagram. Note that V need not
be always irreducible.

The constraints on the graph come from the conditions for the dimension d = 2dj of the
tensor product V ⊗ ξi satisfies 2di =

∑
j aijdj , where the sum is over all vertices directed

away from the vertex i. If arrows in both directions are present, there is no arrow. This
implies that the dimensions dj associated with the vertex have G.C.D equal to 1.

2. Dynkin diagram in turn describes the minimal set of roots from which the roots of Lie algebra
can be generated by repeated reflections with respect to roots. EDDs can be assigned to affine
algebras and for them the eigenvalues of the adjacency matrix are not larger than 2. The
maximum of the eigenvalues measures the complexity of the graph.

3. The Weyl group characterizes the symmetries of the root diagram and is generated by reflec-
tions of roots with respect to other roots. The Dynkin diagram contains a minimal number
of roots needed to generate all roots by reflections as Weyl orbits of the roots of the Dynkin
diagram. The action of the Weyl group leads away from the Dynkin diagram since otherwise
this set of roots would not be minimal.

The number of lines characterizes the angle between the roots i and j. For ADE groups
aij = 1 codes for angle of 120 degrees 2π/3, aij = 2 corresponds to 135 degrees, and aij = 3
to 150 degrees. aij = 0 means either angle π or π/2. In the general case, there are 2-valent
and 3-valent nodes depending on the number of oriented lines emerging from the node.

For instance, in the case of a triangle group with 6 elements with irreps 1, 11, 12. The
canonical representation to 2-D reducible representation decomposes to 11 + 12 so that there
are 3 vertices involved corresponding to 11 and 12 and 1. It is easy to see that the adjacency
matrix is symmetric and gives rise to an EDD with 3 vertices. From the corresponding
Dynkin diagram, representing 2 neighboring roots of the root diagram one obtains the entire
root diagram by repeated reflections having 6 roots characterizing the octet representation
of A2 (SU(3)).

4. What kind of McKay graphs are associated with other than canonical 2-D representations
in the case of rotation groups? Every representation of G belongs to some minimal tensor
power V ⊗k and one can study the MacKay diagrams assignable to V ⊗k. It is easy to see
that the number of paths connecting vertices i and j in the McKay graph Mk(V ) for V ⊗k

can be understood in terms of the McKay graph M(V ) for V . The paths leading from i to
j are all k-edged paths along M(V ) leading from i to j.

The symmetry of the adjacency matrix A implies that forth and back movement along M(V )
is possible. The adjacency matrix has the same number of nodes and equals the k : th power
Ak of A so that extended ADE type Dynkin diagrams are not in question.

5.3.2 Questions

McKay correspondence raises a series of questions which I have discussed several times from the
TGD point of view several times [L17, L42, L41]. In the following these questions are discussed by
introducing the possibility of quantum arithmetics and cognitive representations as new elements.

https://cutt.ly/1LQDqce
https://cutt.ly/5LQPyhy
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Why would SL(2, C) be so special?

SL(2, C) is in a very special role in McKay correspondence. Of course, also the finite subgroups
of other groups could have a special role and it is actually known that SL(n,C) n < 5 are in the
same role, which suggests that all groups SL(n,C) have this role [A65, A64].

Why? In the TGD framework, a possible reason for the special role of SL(2, C) acts as the
double covering group of the isometries of the mass shell H3 ⊂ M4 ⊂ M8 and its counterpart in
M4 × CP2 obtained by M8 −H correspondence. SL(2, C) has also natural action on the spinors
of H. The finite subgroups relate naturally to the tessellations of the mass shell H3 leaving the
basic unit of tessellation invariant.

The tessellations could naturally force the emergence of ADE type affine algebras as dy-
namical symmetries in the TGD framework. In fact, the icosa-tetrahedral tessellation plays a key
role in the proposed model of the genetic code based on Hamiltonian cycles at icosahedron and
tetrahedron [L54].

Why does the faithful representation have a special role?

The mathematical reason for the special role of the faithful canonical representation V is that its
tensor powers contain all irreps of the finite group: the tensor product structure for other choices
of V can be deduced from that for canonical representations. It is known that any irrep V , which
is faithful irrep of G, generates the fusion algebra.

However, this kind of irrep might fail to exist. If G has a normal subgroup H and the irrep
χ has H as kernel then the powers of χ contain only the irreps of G/H. In the article ”McKay
Connectivity Properties of McKay Quivers” by Hazel Brown [A72] (https://arxiv.org/pdf/
2003.09502.pdf) it was shown that the number of connected components of the McKay quiver
is the number of classes of the G, which are contained in H. For instance, the classes associated
with the center of G are such (Zn for SL(n,C)).

For simple groups this does not happen but in the case of Galois groups assignable to
composite polynomials one has a hierarchy of normal subgroups and this kind of situation can
occur since the number of classes of G contained in normal subgroups can be non-vanishing.

2-D representation is also in a special role physically in the TGD framework, the ground
states of affine representation correspond to a 2-D spinor representation since quarks are the
fundamental particles.

The irreps of the affine representation are obtained as tensor products of the irrep associated
with the affine generators with it. Cognitive representations imply a unique discretization and this
forces discrete subgroups of SL(2, C) and implies that the irreps of SL(2, C) decompose to irreps
of a discrete subgroup. Therefore the quivers for their tensor products appear naturally.

Electroweak gauge group U(2) corresponds to the holonomy group U(2) for CP2 and for
SU(2)w the McKay correspondence holds true. Also the isometry group SU(3) of CP2 is as-
sumed to appear as affine algebra. Discretization due to cognitive representations in M8 induces
discretization in H and CP2. The replacement of SU(3) with its discrete subgroups would decom-
pose irreps for SU(3) to irreps of SU(3). SL(3, C) allows analog of McKay correspondence [A65]
so that also the finite subgroups of SU(3) allow it.

What about McKay graphs for more general finite groups?

The obvious question concerns the generality of McKay correspondence. What finite groups and
therefore corresponding Galois groups correspond to representations of affine type algebras.

In the general case, the McKay graphs look very different from Dynkin diagrams. The
article ”Spectral measures for G2” of Evans and Pugh [A51] (https://cutt.ly/hLQO7HE) is of
special interest from the TGD point of view since G2 is the automorphism group of octonions. G2

however naturally reduces to SU(3) corresponding to color isometries in H. The article discusses
in detail McKay graphs for the finite subgroups of G2. These finite subgroups correspond to those
for SU(2)×SU(2) and SU(3) plus 7 other groups. The McKay graphs for the latter groups contain
loops are very complex and contain loops.

What can one say about finite groups, which allow McKay correspondence.

https://arxiv.org/pdf/2003.09502.pdf
https://arxiv.org/pdf/2003.09502.pdf
https://cutt.ly/hLQO7HE
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1. ADE diagrams are known to classify the following three finite simple groups, the derived
group F ′24 of the Fischer F24, the Baby monster B and the Monster M are related with E6,
E7 and E8 respectively [A82] (https://cutt.ly/5LQPyhy). In the TGD framework, this
finding inspires the question whether these groups could appear as Galois groups of some
polynomial and give rise to E6, E7 and E8 as dynamical symmetries.

In the TGD framework, one can ask whether also the above mentioned simple groups could
appear as Galois groups. What is fascinating that monster would relate to icosahedron and
dodecahedron: icosahedron and tetrahedron play key role in TGD inspired model of genetic
code, in particular in the proposal that it relates to tetra-icosahedral tessellation of hyperbolic
space H3 [L54].

2. The article [A136](https://cutt.ly/jLQPgkQ) mentioned the conjecture that the tensor
product structure for the finite subgroups of SU(3) could relate to the integrable charac-
ters for some representations of affine algebra associated with SU(3). This encourages the
conjecture that this is true also for SU(n).

In TGD, this inspires the question whether finite Galois groups representable as subgroups
of SU(3) could give rise to corresponding affine algebras as dynamical symmetries of TGD.

3. Butin and Perets demonstrated McKay correspondence in the article ”Branching law for finite
subgroups of SL(3, C) and McKay correspondence” [A65] (https://cutt.ly/CLQPvp2) for
finite subgroups of SL(3, C) in the sense that branching law defines a generalized Cartan
matrix. In the article ”Branching Law for the Finite Subgroups of SL(4,C) and the Related
Generalized Poincare Polynomials” [A64] (https://cutt.ly/mLQPQnT) shows that the same
result holds true for SL(4, C), which suggests that it is true for all SL(n,C).

A generalization to finite subgroups of SL(n,C) is a natural guess. Therefore Galois groups
with this property could be assigned with affine algebras characterized by the generalized
Cartan matrices and could correspond to physically very special kind of extensions of ratio-
nals,

5.3.3 TGD view about McKay correspondence

The key idea is that one replaces quantum numbers representable as sums of the roots of Lie algebra
with representations of the isotropy group of Galois group which is same as a finite subgroup of
say SL(2, C) and that Galois groups acts as Weyl group. The Weyl group codes for the differential
geometric notion of symmetry realized by Lie groups and Galois group codes for the number
theoretic view of symmetry. This correspondence would represent a facet of the duality between
number theory and differential geometry.

Quantum roots as direct sums of irreps

Consider first the correspondence between quantum roots (or more generally weights defined as
dual space of roots) and ordinary roots (weights) as quantum numbers.

1. The representations of finite group G (say subgroup of SL(2, C)) represented by the isotropy
group GalI of Galois group for a given root, would appear as labels of states rather than as
counterparts of states. Galois group Gal itself would act as Weyl group on the roots.

2. Quantum numbers as labels of quantum states would be replaced with representations of
GalI . The additivity of quantum numbers would correspond to the additivity of represen-
tations with respect to ⊕. Tensor product for the representations would be analogous to
multiplication of quantum quantum numbers so that they would form an algebra. An ab-
straction or cognitive representation would be in question. Since the roots of the Dynkin
diagram correspond to roots of a monic polynomial, one could map them to ordinary alge-
braic numbers. Same applies to the root of affine representations.

https://cutt.ly/5LQPyhy
https://cutt.ly/jLQPgkQ
https://cutt.ly/CLQPvp2
https://cutt.ly/mLQPQnT
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Could also the quantal version of the coeffient field of the state space make sense?

Could also the coefficient field of state space be replaced with a quantum variant of p-adic numbers
or of finite field?

1. Here one encounters a technical problem that is encountered already at the level of ordinary
p-adics and finite fields. Inner products are bilinear. If norm squared is defined as a sum
for the squares of the coefficients of the state in the basis of n states, the non-well-ordered
character of p-adics implies that one can have states for which this sum vanishes in p-adic
and finite fields.

In the p-adic case, allowance of only finite number of non-vanishing binary digits for the
coefficients might help and would conform with the idea about finite measurement resolution
as a pinary cutoff. One could even allow negatives of integers with finite number of pinary
digits if the p-adic quantum integers are mapped to the real counterparts.

2. There is also a problem associated with the normalization factors of the states, which cannot
be p-adic integers in general. Overall normalization does not however matter so that this
problem might be circumvented.

Physical predictions would require the map of the quantum integers to real ones. The fact
that quantum integers are ⊕ sums of quantum roots of ordinary monic polynomials, makes
this possible. The irreps appearing as coefficients of states would be mapped to ordinary
algebraic numbers and the normalization of the states could be carried out at the level of the
ordinary algebraic numbers.

What about negative multiples of quantum roots

If the quantum roots of a polynomial correspond to irreps of the Galois group, one encounters a
technical problem with negative multiples of quantum roots.

1. The negatives of positive roots correspond to −1 multiples of irreps. This does not make
sense in ordinary arithmetics. p-Adically −1 corresponds to (p − 1)(1 + p + p2 + ...) and
would correspond to infinite ⊕-multiple of root but decompose to pn multiples to which one
can assign norm p−k so that the sum converges: −ξi = (p− 1)(Id⊕ pId⊕ p2Id⊕ ...)ξi.
One has finite measurement resolution so that the appearance of strictly infinite sums is highly
questionable. Should one consider only finite sums of positive roots and their negatives but
how should one deal with the negatives?

Could the creation operators labelled by negative roots correspond to annihilation operators
with positive roots as in the case of super-Virasoro and affine algebras. Note that if one
restricts to ordinary integers at the level of algebra as one must to for supersymplectic and
Yangian algebras, one must consider only half-algebras with generators, which have only
non-negative conformal weights. This does not make sense for ordinary affine generators.

2. The most plausible solution of the problem relies on the proposed categorical correspondence
between quantum roots and ordinary roots as roots of the same monic polynomial. One
could map the quantum roots and their direct summands to sums of ordinary roots and this
would make sense also for the negatives of positive roots with a finite number of summands.
It would be essential that p-adic integers correspond to finite ordinary integers and to their
negatives and are mapped to numbers in an extension of rationals. As found, this map would
also allow us to circumvent the objections against the quantum variant of the state space.

3. Could zero energy ontology (ZEO) come to the rescue? In zero energy ontology creation and
annihilation operators are assigned with the opposite boundaries of causal diamond (CD).
Could one assign the negative conformal weights and roots with the members of state pairs
located at the opposite boundary of CD?

This works for the Virasoro and affine generators but this kind of restriction is unphysical in
the case of eigenvalues of Lz with both signs? Why would opposite values of Lz be assigned
to opposite boundaries of CD?
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Wheels and quantum arithmetics

Gary Ehlenberg gave a link to a Wikipedia article telling of Wheel theory (https://cutt.ly/
RZnUB5y). Wheel theory could be very relevant to the TGD inspired idea about quantum arith-
metics.

I understood that Wheel structure is special in the sense that division by zero is well defined
and multiplication by zero gives a non-vanishing result. The wheel of fractions, discussed in the
Wikipedia article as an example of wheel structure, brings into mind a generalization of arithmetics
and perhaps even of number theory to its quantum counterpart obtained by replacing + and -
with direct sum ⊕ and tensor product ⊗ for irreps of finite groups with trivial representation as
multiplicative unit: Galois group is the natural group in TGD framework.

Could wheel structure provide a more rigorous generalization of the notions of the additive
and multiplicative inverse of the representation in order to build quantum counterparts of rationals,
algebraic numbers and p-adics and their extensions?

1. One way to achieve this is to restrict consideration to the quantum analogs of finite fields
G(p, n): + and x would be replaced with ⊕ and ⊗ obtained as extensions by the irreps of the
Galois group in TGD picture. There would be quantum-classical correspondence between
roots of quantum polynomials and ordinary monic polynomials.

2. The notion of rational as a pair of integers (now representations) would provide at least a
formal solution of the problem, and one could define non-negative rationals.

p-Adically one can also define quite concretely the inverse for a representation of form R =
1⊕O(p) where the representation O(p) is proportional to p (p-fold direct sum) as a geometric
series.

3. Negative integers and rationals pose a problem for ordinary integers and rationals: it is
difficult to imagine what direct sum of -n irreps could mean.

The definition of the negative of representation could work in the case of p-adic integers:
−1 = (p − 1) ⊗ (1 ⊕ p ∗ 1 ⊕ p2 ∗ 1 ⊕ ...) would be generalized by replacing 1 with trivial
representation. Infinite direct sum would be obtained but it would converge rapidly in p-adic
topology.

4. Could 1/pn make sense in the Wheel structure so that one would obtain the quantum analog
of a p-adic number field? The definition of rationals as pairs might allow this since only
non-negative powers of p need to be considered. p would represent zero in the sense of Wheel
structure but multiplication by p would give a non-vanishing result and also division with p
would be well-defined operation.

Galois group as Weyl group?

The action of the Weyl group as reflections could make sense in the quantum arithmetics for
quantum variants of extensions of p-adics and finite fields. The generalized Cartan matrix Cij =
dδij − nij , where nij is the number of lines connecting the nodes i and j and d is the dimension
of V , is indeed well-defined for any finite group and has integer valued coefficients so that Weyl
reflection makes sense also in quantum case.

Can one identify the Weyl group giving the entire root diagram number theoretically? The
natural guess is Gal = W : Gal would define the Weyl group giving the entire root diagram from
the Dynkin diagram by reflections of the roots of the EDD. One can assign to Gal an extension
defined by a monic polynomial P with Galois group Gal.

How the group defining the McKay graph is represented?

How the group G defining the McKay graph is represented? The irreps of G should have natural
realization and the quarks at mass shells would provide these representations.

One can consider two options. The first option is based on the isotropy group GI of Gal = W
leaving a given root invariant. Second option is based on the finite subgroup of SU(2) as a covering
group of quaternion automorphisms.

https://cutt.ly/RZnUB5y
https://cutt.ly/RZnUB5y
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1. The subgroup GalI ⊂ Gal acting as an isotropy group of a given root of Gal would naturally
define the EDD since the action of Gal = W would not leave its nodes as irreps of GalI
invariant.

The root diagram should be the orbit of the EDD under Gal = W . The irreps of the EDD
would correspond to the roots of a monic polynomial PI associated with GalI and having
nc + 1 quantum roots. The quantum roots would be in the quantum extension defined by
a monic polynomial P for Gal so that the action of Gal on EDD would be well-defined and
non-trivial.

2. In the TGD framework, the mass mass squared values assignable to the monic polynomial
representing the EDD correspond to different mass squared values. There is no deep reason
for why the irreps of GalI could not correspond to different mass squared values and in the
TGD framework the symmetry breaking Gal→ GalI is the analog for the symmetry breaking
in the Higgs mechanism.

In the recent case this symmetry breaking would be associated with GalI → GalI,I and
imply that quantum roots correspond to different mass squared values. At the level of affine
algebra this could mean symmetry breaking since the different roots would not have different
mass squared values.

If Gal acts as a Weyl group, the McKay graph associated with GalI corresponds to the EDD.
GalI is a subgroup of Gal so that the action of Gal = Weyl on the quantum roots of the monic
polynomial PI would be non-trivial and natural. Could GalI be a normal subgroup in which
case Gal/GalI would be a group and one would have a composite polynomial P = Q ◦ P1?
This cannot be true generally: for instance for Ap, p prime and E6 the W is simple. For E7

and E8 W is a semidirect product.

3. There is an additional restriction coming from the fact that GalI does not affect the rational
parts of the 4-momenta. Is it possible to have construct irreps for a finite subgroup of
SL(2, C) or even SL(n,C) using many quark states at a given mass shell? The non-rational
part of 4-momentum corresponds to the ”genuinely” virtual part of virtual momentum and
for Galois confined states only the rational parts contribute to the total 4-momentum. Could
one say that these representations are possible but only for the virtual states which do not
appear as physical states: cognition remains physically hidden.

The very cautious, and perhaps over-optimistic conclusion, would be that only Galois groups,
which act as Weyl groups, can give rise to affine algebras as dynamical symmetries. For this option,
one would obtain cognitive representations for the isotropy groups of all Galois groups. For Galois
groups acting as Weyl groups, EDDs could define cognitive representations of affine algebras.
Also cognitive representations for finite subgroups of SL(n,C) and groups like Monster would be
obtained.

For the second option in which the subgroup G of quaternionic automorphisms affecting the
real parts of 4-momenta is involved. This representation would be possible only for the subgroups
of SL(2, C). In this case one would have 3 different groups Gal = W , GalI and G rather than
Gal = W and GalI .

1. Quaternionic automorphisms are analogous to the Galois group and one can ask whether the
finite subgroups G of quaternionic automorphisms could be directly involved with cognitive
representations. This would give McKay correspondence for SL(2, C) only. The quaternionic
automorphism would affect the rational part of the 4-momentum in an extension of rationals
unlike the Galois group which leaves it invariant. The irrep of G would be realized as many-
quark states at a fixed mass shell. Different irreps would correspond to different masses
having interpretation in terms of symmetry breaking.

2. Also now one would consider the extension defined by the roots of a monic polynomial
P having Galois group Gal = W associated with the corresponding EDD. PI would give
quantum roots defining the Dynkin diagram and define the mass squared values assignable
to irreps of G.
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3. The situation would differ from the previous one in that the action of GI on irreps would be
replaced by the action of G. Indeed, since GI leaves the rational part of the 4-momentum
invariant, GI cannot represent G as a genuine subgroup of rotations.

4. The roots would correspond to irreps of a subgroup G of quaternionic automorphisms, which
would affect the 4-momenta with a given mass shell and define an irrep of G. Different roots
of P would define the mass shells and irreps of G associated with EDD as a McKay graph.

Information about Weyl groups of ADE groups

The Wikipedia article about Coxeter groups (https://en.wikipedia.org/wiki/Coxeter_group#
Properties), which include Weyl groups, lists some properties of finite irreducible Coxter groups
and contains information about Weyl groups. This information might be of interest in the proposed
realization as a Galois group.

• W (An) = Sn+1, which is the maximal Galois group associated with a polynomial of degree
n+ 1.

• W (Dn) = Zn−1
2 o Sn.

• W (E6) is a unique simple group of order 25920.

• W (E7) is a direct product of a unique simple group of order 2903040 with Z2.

• W (E8) acts as an orthogonal group for F2 linear automorphisms preserving a norm in Ω/Z2,
where Ω is E8 lattice (https://mathoverflow.net/questions/230120/the-weyl-group-of-e8-versus-o-82/
230130#230130)

• W (Bn) = W (Cn) = Zn2 o Sn.

• W (F4) is a solvable group of order 1152 , and is isomorphic to the orthogonal group O4(F3)
leaving invariant a quadratic form of maximal index in a 4-dimensional vector space over the
field F3.

• W (G2) = D6 = Z2 o Z6.

Candidates for symmetry algebras of WCW, inclusions of hyperfinite factors, and
Galois groups acting as Weyl groups

TGD allows several candidates for the symmetry algebras acting in WCW. The intuitive guess
is that the isometries and possibly also symplectic transformations of the light-cone boundary
δM4

+ × CP2 define isometries of WCW whereas holonomies of H induce holonomies of WCW.

1. In TGD, supersymplectic algebra SSA could replace affine algebras of string models.

2. By the metric 2-dimensionality of the light-cone boundary δM4
+, one can assign to it an

infinite-dimensional conformal group of sphere S2 in well-defined sense local with respect to
the complex coordinate z of S2. These transformations can be made local with respect to the
light-like coordinate r of δM4

+. Also a S2-local radial scaling making these transformations
isometries is possible. This is possible only for M4 and makes it unique.

Whether SSA or this algebra or both act as isometries of WCW is not clear: see the more
detailed discussion in the Appendix of [L65].

3. One can assign this kind of hierarchy also to affine algebras assignable to the holomies of H
and Virasoro algebras and their super counterparts. The geometric interpretation of these
algebras would be as analogs of holonomy algebras, which serve at the level of H as the
counterparts of broken gauge symmetries: isometries would correspond to non-broken gauge
symmetries.

All these algebras, refer to them collectively by A, define inclusion hierarchies of sub-algebras
An with the radial conformal weights given by n-ples of the weights of A.

https://en.wikipedia.org/wiki/Coxeter_group#Properties
https://en.wikipedia.org/wiki/Coxeter_group#Properties
 https://mathoverflow.net/questions/230120/the-weyl-group-of-e8-versus-o-82/230130#230130
 https://mathoverflow.net/questions/230120/the-weyl-group-of-e8-versus-o-82/230130#230130
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1. I have proposed that the hierarchy of inclusions of hyperfinite factors of type II1 to which
one could perhaps assign ADE hierarchy could correspond to the hierarchies of subalgebras
assignable to SSA and labelled by integer n: the radial conformal weights would be multiples
of n. Only non-negative values of n would be allowed.

2. For a given hierarchy An, one has n1 | n2 | ....., where | means ”divides”. At the n:th
level of the hierarchy physical states are annihilated by An and [An, A]. For isometries, the
corresponding Noether charges vanish both classically and quantally.

3. The algebra An effectively reduces to a finite-D algebra and An would be analogous to normal
subgroup, which suggests that this hierarchy relates to a hierarchy of Galois groups associated
with composite polynomials and having a decomposition to a product of normal subgroups.

4. These hierarchies could naturally relate to the hierarchies of inclusions of hyperfinite factors
of type II1 and also to hierarchies of Galois groups for extensions of rationals defined by
composites Pn ◦ Pn−1 ◦ ...P1 of polynomials.

The Galois correspondence raises questions.

1. Could the Dynkin diagrams for An be assigned to the McKay graphs of Galois groups acting
as Weyl groups?

2. The Galois groups acting as Weyl group could be assigned to finite subgroups of SU(2)
acting as the covering group of quaternion automorphisms and of SL(2, C) as covering group
of H3 isometries acting on tessellations of H3. Also the finite subgroups of SL(n,C) can be
considered.

The proposed interpretation for the hierarchies of inclusions of HFFs is that they correspond
to hierarchies for the inclusions of Galois groups defined by hierarchies of composite polynomials
Pn ◦ ... ◦ P1 interpreted as number theoretical evolutionary hierarchies.

If the relative Galois groups act as Weyl groups, they would be associated with the inclusions
of HFFs naturally and the corresponding affine algebra (perhaps its finite field or p-adic variant)
would characterize the inclusion. The proposed interpretation of the inclusion is in terms of
measurement resolution defined by the included algebra. This suggests that a finite field version
of the affine algebra could be in question.

This picture would suggest that hierarchies of polynomials for which the relative Galois
groups act as Weyl groups are very special and could be selected in the number theoretical fight
for survival.

One could argue that since number theoretic degrees of freedom relate to cognition, the
quantum arithmetics for the irreps of Galois groups could make possible cognitive representations
of the ordinary quantum states: roots would be represented by irreps. Irreps as quantum roots
would correspond to ordinary roots as roots of the same monic polynomial and the direct sums of
irreps would correspond to ordinary algebraic numbers.

About the interpretation of EDDs

An innocent layman can wonder whether the tensor products for 2-D spinor ground states for
the discrete subgroups of the covering group of quaternionic automorphisms or of SL(2, C) as
covering group of H3 isometries could give rise to representations contained by ADE type affine
algebras characterized by the same EDD. These representations would be only a small part of the
representations and perhaps define representation from which all states can be generated.

1. The reflections for the roots represented as irreps of GalI by Weyl group represented as Gal
should assign to the irreps of G new copies so that the nodes of the entire root diagram would
correspond to a set of representations obtained from the ground state. Infinite number of
states labelled by conformal weight n is obtained.

2. Adjacency matrix A should characterize the angles between the roots represented as irreps?
If the irreps of GalI and their Weyl images correspond to roots of a monic polynomial, they
can be mapped to roots of an ordinary algebraic extension of rationals and the angles could
correspond to angles between the points of extension regarded as vectors.
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How the EDD characterizing the tensor products of the irreps of finite subgroups G with
2-D canonical representation V could define an ADE type affine algebra?

1. Roots are replaced with representations of G, which are in the general case direct sums of
irreps. The identity representation should correspond to the scaling generator L0, whose
eigenvalues define integer value conformal weights.

The inner products between the roots appearing in the Cartan matrix would correspond to the
symmetric matrices defined by the structure constant n2ij characterizing the tensor product.
One might say that the inner products are matrix elements of the operator 〈ξj |V ⊗ξi〉 defined
by the tensor product action of V . The diagonal elements of the Cartan matrix have value
+2 and non-diagonal elements are negative integers or vanish.

2. Weyl reflections of roots with respect to roots involve negatives of the non-diagonal elements
of Cartan matrix, which are negative so that the coefficient of the added root is positive
represented as a direct sum. The negatives of the positive roots would correspond to negative
integers and make sense only p-adically or for finite fields.

The expression for the generalized Cartan matrix for McKay graph is known (https://
cuttly/QLRqrGt) for the tensor products of representation with dimension d and multiplic-
ities ndij and is given by

Cdij = dδij − ndij .

For Dynkin diagrams the Cartan matrix satisfies additional conditions.

Weyl reflection (https://cutt.ly/kLRuXBP) of the root v with respect to root α in the space
of roots is defined as

sαv = v − 2
(v, α)

(α, α)
α .

where (., .) is the inner product in V , which now corresponds to extension of rationals asso-
ciated with Gal.

The Weyl chamber is identified as the set of points of V for which the inner products (α, v)
are positive. The Weyl group permutes the Weyl chambers.

3. The root system would be obtained from the roots of the quantum Dynkin diagram by Weyl
reflections (Galois group as Weyl group) with respect to other roots. The number N of these
roots is n = dC +1,where dC is the dimension of Cartan algebra of the Dynkin diagram. The
number NI of irreps is the same: N = NI . The Cartan matrix defines metric in the roots so
that the reflections are well-defined also in the generalized picture.

4. It would seem that one must introduce an infinite number of copies of the Lie algebra realized
in the usual manner (in terms of oscillator operators) with copies labelled by the conformal
weight n. The commutators of these copies would be like for an ordinary affine algebra. Only
the roots as labels of generators and possibly also the coefficient field would be replaced with
their quantum variants.

5. What about the realization of the scaling generator L0, whose Sugawara representation in-
volves bilinears of the generators and their Hermitian conjugates with negative conformal
weight? In the case of finite fields there are no obvious problems. Also the analog of Virasoro
algebra can be realized in the case of finite fields. If one restricts consideration to finite
quantum integers and their negatives as conformal weights, the map of the roots to algebraic
numbers in extension of rationals is well defined.

https://cuttly/QLRqrGt
https://cuttly/QLRqrGt
https://cutt.ly/kLRuXBP
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5.3.4 Could the inclusion hierarchies of extensions of rationals corre-
spond to inclusion hierarchies of hyperfinite factors?

I have enjoyed discussions with Baba Ilya Iyo Azza about von Neumann algebras. Hyperfinite
factors of type II1 (HFF) (https://cutt.ly/lXp6MDB) are the most interesting von Neumann
algebras from the TGD point of view. One of the conjectures motivated by TGD based physics,
is that the inclusion sequences of extensions of rationals defined by compositions of polynomials
define inclusion sequences of hyperfinite factors. It seems that this conjecture might hold true!

Already von Neumann demonstrated that group algebras of groups G satisfying certain
additional constraints give rise to von Neuman algebras. For finite groups they correspond to
factors of type I in finite-D Hilbert spaces.

The group G must have an infinite number of elements and satisfy some additional conditions
to give a HFF. First of all, all its conjugacy classes must have an infinite number of elements.
Secondly, G must be amenable. This condition is not anymore algebraic. Braid groups define
HFFs.

To see what is involved, let us start from the group algebra of a finite group G. It gives a
finite-D Hilbert space, factor of type I.

1. Consider next the braid groups Bn, which are coverings of Sn. One can check from Wikipedia
that the relations for the braid group Bn are obtained as a covering group of Sn by giving
up the condition that the permutations σi of nearby elements ei, ei+1 are idempotent. Could
the corresponding braid group algebra define HFF?

It is. The number of conjugacy classes giσig
−1
i , gi == σi+1 is infinite. If one poses the

additional condition σ2
i = U × 1, U a root of unity, the number is finite. Amenability is too

technical a property for me but from Wikipedia one learns that all group algebras, also those
of the braid group, are hyperfinite factors of type II1 (HFFs).

2. Any finite group is a subgroup G of some Sn. Could one obtain the braid group of G and
corresponding group algebra as a sub-algebra of group algebra of Bn, which is HFF. This
looks plausible.

3. Could the inclusion for HFFs correspond to an inclusion for braid variants of corresponding
finite group algebras? Or should some additional conditions be satisfied? What the conditions
could be?

Here the number theoretic view of TGD comes to rescue.

1. In the TGD framework, I am primarily interested in Galois groups, which are finite groups.
The vision/conjecture is that the inclusion hierarchies of extensions of rationals correspond
to the inclusion hierarchies for hyperfinite factors. The hierarchies of extensions of rationals
defined by the hierarchies of composite polynomials Pn◦...◦P1 have Galois groups which define
a hierarchy of relative Galois groups such that the Galois group Gk is a normal subgroup of
Gk+1. One can say that the Galois group G is a semidirect product of the relative Galois
groups.

2. One can decompose any finite subgroup to a maximal number of normal subgroups, which are
simple and therefore do not have a further decomposition. They are primes in the category
of groups.

3. Could the prime HFFs correspond to the braid group algebras of simple finite groups acting
as Galois groups? Therefore prime groups would map to prime HFFs and the inclusion hier-
archies of Galois groups induced by composite polynomials would define inclusion hierarchies
of HFFs just as speculated.

One would have a deep connection between number theory and HFFs.

https://cutt.ly/lXp6MDB
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5.4 Appendix: Isometries and holonomies of WCW as coun-
terparts of exact and broken gauge symmetries

The detailed interpretation of various candidates for the symmetries of WCW [L37] has remained
somewhat obscure. At the level of H, isometries are exact symmetries and analogous to unbroken
gauge symmetries assignable to color interactions. Holonomies do not give rise to Noether charges
and are analogous to broken gauge symmetries assignable to electroweak interactions. This obser-
vation can serve as a principle in attempts to understand WCW symmetries.

The division to isometries and holonomies is expected to take place at the level of WCW
and this decomposition would naturally correspond to exact and broken gauge symmetries.

5.4.1 Isometries of WCW

The identification of the isometries of WCW is still on shaky ground.

1. In the H picture, the conjecture has been that symplectic transformations of δM4
+ act as

isometries. The hierarchies of dynamically emerging symmetries could relate to the hierar-
chies of sub-algebras (SSAn) of super symplectic algebra SSA [L37] acting as isometries of
the ”world of classical worlds” (WCW) [K63] [L60].

Each level in the hierarchy of subalgebras SSAn of SSA corresponds to a transformation in
which SSAn acts as a gauge symmetry and its complement acts as genuine isometries of
WCW: gauge symmetry breaking in the complement generates a genuine symmetry, which
could correspond to Kac-Moody symmetry. By Noether’s theorem, the isometries of WCW
would give rise to local integrals of motion: also super-charges are involved. These charges
are well-defined but they need not be conserved so that the interpretation as dynamically
emerging symmetries must be considered.

The symmetries would naturally correspond to a long range order. The hierarchies of SSAn:s,
of relative Galois groups and of inclusions of hyperfinite factors [K87, K28] could relate to
each other as M8 −H duality suggests [L68].

What can one say about the algebras SSAn and the corresponding affine analogs KMn

(for affine algebras the generalized Cartan matrix is a product of a diagonal matrix with
integer entries with a symmetric matrix). If n is prime, one can regard these algebras as
local algebras in a finite field G(p). Also extensions G(p, n) of G(p) induced by extensions of
rationals can be considered. KM algebras in finite fields define what are called the incomplete
Kac-Moody groups. Some of their aspects are discussed in the article ”Abstract simplicity of
complete Kac-Moody groups over finite fields” [A43]. It is shown that for p > 3, affine groups
are abstractly simple, that is, have no proper non-trivial closed subgroups. Complete KM
groups are obtained as completions of incomplete KM groups and are totally disconnected:
this suggests that they define p-adic analogs of Kac-Moody groups. Complete KM groups
are known to be simple.

2. There are also different kinds of isometries. Consider first the light-cone boundary δM4
+×CP2

as an example of a light-like 3-surface. The isometries of CP2 are symmetries. ∆M4
+ is

metrically equivalent with sphere S2. Conformal transformations of S2, which are made
local with light-like coordinate r of δM4

+, induce a conformal scaling of the metric of S2

depending on r. It is possible to compensate for this scaling by a local radial scaling of r
depending on S2 coordinates such that the transformation acts as an isometry of δM4

+.

These isometries of ∆M4
+ form an infinite-D group. The transformations of this group differ

from those of the symplectic group in that the symplectic group of δM4
+ is replaced with the

isometries of δM4
+ consisting of r-local conformal transformations of S2 involving S2-local

radial scaling. There are no localizat of CP2 isometries. This yields an analog of KM algebra.

This group induces local spinor rotations defining a realization of KM algebra. Also super-
KM algebra defined in terms of conserved super-charges associated with the modified Dirac
action is possible. These isometries would be Noether symmetries just like those defined by
SSA.



5.4. Appendix: Isometries and holonomies of WCW as counterparts of exact and
broken gauge symmetries 211

3. What about light-like partonic orbits analogous to δM4
+ × CP2. Can one assign with them

Kac-Moody type algebras acting as isometries?

The infinite-D group of isometries of the light-cone boundary could generalize. If they leave
the partonic 2-surfaces at the ends of the orbit X3

L, they could be seen as 3-D general
coordinate transformations acting as internal isometries of the partonic 3-surface, which
cannot be regarded as isometries of a fixed subspace of H. These isometries do not affect
the partonic 3-surface as a whole and cannot induce isometries of WCW.

However, if X3
L is connected by string world sheets to other partonic orbits, these transfor-

mations affect the string world sheets and there is a real physical effect, and one has genuine
isometries. Same is true if these transformations do not leave the partonic 2-surfaces at the
ends of X3

L invariant.

5.4.2 Holonomies of WCW

What about holonomies at the level of WCW? The holonomies of H acting on spinors induces
a holonomy at the level of WCW: WCW spinors identified as Fock states created by oscillator
operators of the second quantized H spinors. This would give a generalized KM-type algebra de-
composing to sub-algebras corresponding to spin and electroweak quantum numbers. This algebra
would have 3 tensor-factors. p-Adic mass calculations imply that the optimal number of tensor
factors in conformal algebra is 5 [K41]. 2 tensor factors are needed.

1. SSA would give 2 tensor factors corresponding to δM4
+ (effectively S2) and CP2. This gives 5

tensor factors which is the optimal number of tensor factors in p-adic mass calculations [K41].
SSA Noether charges are well-defined but not conserved. Could SSA only define a hierarchy
of dynamical symmetries. Note however that for isometries of H conservation holds true.

2. Also the isometries of δM4 and of light-like orbits of partonic 2-surfaces give the needed
2 tensor factors. Also this alternative would give inclusion hierarchies of KM sub-algebras
with conformal weights coming as multiples of the full algebra. The corresponding Noether
charges are well-defined but can one speak of conservation only in the partonic case? One can
even argue that the isometries of δM4

+ ×CP2 define a more plausible candidate for inducing
WCW isometries than the symplectic transformations. p-Adic mass calculations conform
with this option.

To sum up, WCW symmetries would have a nice geometric interpretation as isometries and
holonomies. The details of the interpretation are however still unclear and one must leave the
status of SSA open.



Chapter 6

Trying to fuse the basic
mathematical ideas of quantum
TGD to a single coherent whole

6.1 Introduction

I have had a very interesting discussions with Baba Ilya Iyo Azza about von Neumann alge-
bras [A89]. I have a background of physicist and have suffered a lot of frustration in trying to
understand hyperfinite factors of type II1 (HFFs, https://cutt.ly/OX8uP32) by trying to read
mathematicians’ articles.

I cannot understand without a physical interpretation and associations to my own big vi-
sion TGD. Again I stared at the basic definitions, ideas and concepts trying to build a physical
interpretation. This is not my first attempt to understand the possible role of HFFs in TGD:
I have written already earlier of the possible role of von Neumann algebras in the TGD frame-
work [K87, K28]. In the sequel I try to summarize what I have possibly understood with my
meager technical background.

In the first section I will redescribe the basic notions and ideas related to von Neumann alge-
bras as I see them now, in particular HFFs, which seem to be especially relevant for TGD because
of their ”hyperfiniteness” property implying that they are effectively finite-D matrix algebras.

There are also more general factors of type II1, in particular those related to the notion
of free probability (hhttps://cutt.ly/SX2ftyx), which is a notion related to a theory of non-
commutative random variables. The free group generated by a finite number of generators is basic
notion and the group algebras associated with free groups are factors of type II1. The isomorphism
problem asks whether these algebras are isomorphic for different numbers of generators. These
algebras are not hyperfinite and from the physics point of view this is not a good news.

6.1.1 Basic notions of HFFs from TGD perspective

In this section I will describe my recent, still rather primitive physicist’s understanding of HFFs.
Factor M and its commutant M ′ are central notions in the theory of von Neumann algebras. An
important question, not discussed earlier, concerns the physical counterparts of M and M ′. I will
not discuss technical details: I have made at least a noble attempt to do this earlier [K87, K28].

1. In the TGD framework, one can distinguish between quantum degrees of freedom and classical
ones, and classical physics can be said to be an exact part of quantum physics.

2. The formulation of physics as Kähler geometry of the ”world of classical worlds” (WCW)
is briefly summarized in the Appendix. The formulation involves hierarchies An of 3 kinds
of algebras; supersymplectic algebras SSAn acting on δM4

+ × CP2 and assumed to induce
isometries of WCW, affine algebras Affn associated with isometries and holonomies of H =
M4 × CP2 acting on light-like partonic orbits, and isometries In of the light-cone boundary
δM4

+.
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At the H-side, quantum degrees of freedom are assignable to An, which would correspond to
M .

In zero energy ontology (ZEO) [K89] states are quantum superpositions of preferred ex-
tremals. Preferred extremals depend on zero modes, which are symplectic invariants and
do not appear in the line element of WCW. Zero modes serve as classical variables, which
commute with super symplectic transformations and could correspond to M ′ for SSAn at
H-side. Similar identification of analogs of zero modes should be possible for Affn and In.

3. In the number theoretic sector at the M8-side, braided group algebras would correspond to
quantum degrees of freedom, that is M . M ′ would correspond to some number theoretic
invariants of polynomials P determining the space-time surface in H by M8 − H duality
[L45, L46]. The set of roots of P and ramified primes dividing the discriminant of P are such
invariants.

6.1.2 Bird’s eye view of HFFs in TGD

A rough bird’s eye view of HFFs is discussed with an emphasis on their physical interpretation.
There are two visions of TGD: the number theoretic view [L23, L24] and the geometric view
[K35, K20, K88, K63] and M8 −H duality relates these views [L60, L45, L46].

1. At the M8 side, the p-adic representations of braided group algebras of Galois groups asso-
ciated with hierarchies of extensions of rationals define natural candidates for the inclusion
hierarchies of HFFs.

Braid groups represent basically permutations of tensor factors and the same applies to the
braided Galois groups with Sn restricted to the Galois group.

A good guess is that braid strands correspond to the roots of a polynomial labelling mass
shells H3 in M4 ⊂M8.

2. The 3-D mass shells define a 4-surface in M8 by holography based on associativity, which
makes possible holography.

The condition that the normal space N of the 4-surface X4 in M8 is associative and contains
a 2-D commutative sub-space X2, guarantees both holography and M8−H duality mapping
this 4-surface X4 ⊂M8 to a space-time surface Y 4 ⊂ H.

The 2-D commutative space X2 ⊂ N can be regarded as a normal space of the 6-D counter-
part of twistor space T (M4). T (M4) is mapped by M8−H duality to a point of the twistor
space T (CP2) = SU(3)/U(1)×U(1) of CP2. This map is assumed to define the twistor space
T (Y 4) ⊂ T (M4)× T (CP2) as a preferred extremal [L62, L63].

3. The physical picture strongly suggests that also string world sheets and partonic 2-surfaces in
Y 4 ⊂ H are needed. They are are assumed to correspond to singularities for the map to H.
A natural conjecture is that the 2-D subspace X2 ⊂ N is mapped to a 2-D subspace Y 2 ⊂ T
of the tangent space T of X4 by a multiplication with a preferred octonionic imaginary unit
in T .

How could this preferred octonionic unit be determined?

(a) Complexified octonionic units in the tangent space of M8
c decomposes under SU(3) ⊂

G2, having interpretation as color group, to representations 11 ⊕ 12 ⊕ 3⊕ 3. 11 and 12

correspond to the real unit I0 and imaginary unit I1 and 3 and 3 correspond to color
triplets analogous to quarks and antiquarks.

(b) Complexified quaternionic sub-space defining N corresponds to color singlets I0, I1,
and quarks I2, I3 with (Y = −1/3, I3 = 1/2) and Y = 2/3, I3 = 0). The complement
T corresponds to quark I4 (Y = −1/3, I3 = 1/2) and 3 antiquarks (I5, I6, I7). The
octonionic multiplication of the units of quaternionic subspace by quark I4 gives T as
the orthogonal complement of the quaternionic sub-space N .
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(c) This multiplication would assign to X2 ⊂ N 2-D subspace of T and also its orthogonal
complement Y 2 in T . If the distributions of X2 and Y 2 are integrable, they define the
slicing of X4 by partonic 2-surfaces and string world sheets. The tangent spaces for
them would correspond to the local choice of I0, I1 and I2, I3. X2 and Y 2 at different
points would differ by a local SU(3) transformation. In fact, the 4-surface in M8 would
correspond to a complex color gauge transformation [L45, L46].

This choice could correspond to what I have called Hamilton-Jacobi (H-J) structure [K7]
in X4 defining a slicing of X4 defined by an integrable distribution of pairs of orthonormal
2-surfaces analogous to the choice of massless wave vector and orthogonal polarization plane
depending on the point of X4 or equivalently on the point of M4 as its projection. H-
J structure would also define the analog of Kähler structure in M4 strongly suggested by
twistor lift.

The original proposal was that the H-J structure is associated with M4, and one cannot
completely exclude the possibility that the projection of the proposed slicing to M4 defines
H-J. The idea about single H-J structure is not physical. Dynamical H-J structure does not
conform with the idea that M4 is completely non-dynamical. However, if the H-J structure
is determined by the choice X2 ⊂ N and defines H-J structure in X4, this objection can be
circumvented.

At the H side there are 3 algebras.

1. The subalgebras SSAn of super-symplectic algebra (SSA) are assumed to induce isometries
of WCW. Since SSA and also other algebras have non-negative conformal weights, it has
a hierarchy of subalgebras SSAn with conformal weights coming as n-multiples of those for
SSA.

2. There are also affine algebras Aff associated with H isometries acting on light-like orbits of
partonic 2-surfaces and having similar hierarchy of Affn. Both isometries and holonomies
of H are involved.

3. Light-cone boundary allows infinite dimensional isometry group I consisting of generalized
conformal transformation combined with a local scaling allowing similar hierarchy In.

One should understand how the number theoretic and geometric hierarchies relate to each
other and a good guess is that braided group algebras act on braids assignable to SSAn with n
interpreted as the number of braid strands and thus the degree n of P .

Also the interpretational problems related to quantum measurement theory and probability
interpretation are discussed from the TGD point of view, in which zero energy ontology (ZEO)
allows us to solve the basic problem of quantum measurement theory.

6.1.3 M8 −H duality and HFFS

M8 −H duality [L45, L46] suggests that the hierarchies of extensions of rationals at the number
theoretic side and hierarchies of HFFs at the geometric side are closely related.

The key idea is that the braided Galois groups at M8-side interact on algebras An ∈
{SSAn, Affn, In} at H level as number theoretic braid groups permuting the tensor factors
assignable to the braid strands, which correspond to the roots of the polynomial P .

The basic notions associated with a polynomial P with rational coefficients having degree
n are its n roots, ramified primes as factors of the discriminant defined by the difference of its
roots, and Galois group plus a set of Galois invariants such as symmetric polynomials of roots.
The Galois group is the same for a very large number of polynomials P . The question concerns
the counterparts of these notions at the level of H?

An educated guess is that the n roots of P label the strands of an n-braid in H assignable to
An, ramified primes correspond to physically preferred p-adic primes in the adelic structure formed
by various p-adic representations An,p of the algebras An and the Galois group algebra associated
with the polynomial P with degree n.
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This picture suggests a generalization of arithmetics to quantum arithmetics based on the
replacement of + and × with ⊕ and ⊗ and replacement of numbers with representations of groups
or algebras [L68]. This implies a generalization of adele by replacing p-adic numbers with the
p-adic quantum counterparts of algebras An.

The mysterious McKay correspondence [A108] has inspired several articles during years
[L17, L42, L41, L68] but it is fair to say that I do not really understand it. Hence I could not avoid
the temptation to attack this mystery also in this article.

6.1.4 Infinite primes

The notion of infinite primes [K72, K44] is one of the ideas inspired by TGD, which has waited for a
long time for its application. Their construction is analogous to a quantization of supersymmetric
arithmetic quantum field theory.

1. The analog of Dirac sea X is defined by the product of finite primes and one ”kicks” from
sea a subset of primes defining a square free integer nF to get the sum X/nF + nF . One
can also add bosons to X/nF resp. nF multiplying it with integer nB1

resp. nB2
, which is

divisible only by primes dividing Z/nF resp. nF .

2. This construction generalizes and one can form polynomials of X to get infinite primes
analogous to bound states. One can consider instead of P (X) a polynomial P (X,Y ), where
Y is the product of all primes at the first level thus involving the product of all infinite primes
already constructed, and repeat the procedure. One can repeat the procedure indefinitely
and the formal interpretation is as a repeated quantization. The interpretation could be
in terms of many-sheeted space-time or abstraction process involving formation of logical
statements about statements about ...

3. The polynomials Q could also be interpreted as ordinary polynomials. If Q(X) = P (X),
where P (X) is the polynomial defining a 4-surface in M8, the space-time surface X4 in
H would correspond to infinite prime. This would give a ”quantization” of P defining the
space-time surface.

The polynomial P defining 4-surface in H would fix various quantum algebras associated
with it. The polynomials P (X1, X2, ...Xn) could be interpreted as n− 1-parameter families
defining surfaces in the ”world of classical worlds” (WCW) [L60] (for the development of the
notion see [K35, K20, K88, K63]).

4. X is analogous to adele and infinite primes could be perhaps seen as a generalization of the
notion of adele. One could assign p-adic variants of various HFFs to the primes defining the
adele and + and × could be replaced with ⊕ and ⊗. The physical interpretation of ramified
primes of P is highly interesting.

In the last section, I try to guess how the fusion of these building blocks by using the ideas
introduced in the previous sections could give rise to what might be called quantum TGD. It must
be made clear that the twistor lift of TGD [L62, L63] is not considered in this work.

6.2 Basic notions related to hyperfinite factors of type II1

from TGD point of view

In this section, the basic notions of hyperfinite factors (HFFs) as a physicists from the TGD point
of view will be discussed. I have considered HFFs earlier several times [K87, K28] and will not
discuss here the technical details of various notions.

6.2.1 Basic concepts related to von Neumann algebras

John von Neumann proposed that the algebras, which now carry his name are central for quantum
theory [A89]. Von Neumann algebra decomposes to a direct integral of factors appearing and there
are 3 types of factors corresponding to types I, II, and III.
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Inclusion/embedding as a basic aspect of physics

Inclusion (https://cutt.ly/NX8eWwa, https://cutt.ly/cX8eUuf, https://cutt.ly/4X8ePn6))
is a central notion in the theory of factors. Inclusion/embedding involving induction of various
geometric structures is a key element of classical and quantum TGD.

One starts from the algebra B(H) of bounded operators in Hilbert space. This algebra
has naturally hermitian conjugation ∗ as an antiunitary operation and therefore one talks of C∗
algebras. von Neumann algebra is a subalgebra of B(H). Already here an analog of inclusion is
involved (https://cutt.ly/3XkPO2s). There are also inclusions between von Neumann algebras,
in particular HFFs.

What could the inclusion of von Neumann algebra to B(H) as subalgebra mean physically?
In the TGD framework, one can identify several analogies.

1. Space-time is a 4-surface in H = M4×CP2: analog of inclusion reducing degrees of freedom.

2. Space-time is not only an extremal of an action [K7] [L61] but a preferred extremal (PE),
which satisfies holography so that it is almost uniquely defined by a 3-surface. This guarantees
general coordinate invariance at the level of H without path integral. I talk about preferred
extremals (PEs) analogous to Bohr orbits. Space-time surface as PE is a 4-D minimal surface
with singularities [L61]: there is an analogy with a soap film spanned by frames. This implies
a small failure of determinism localizable at the analogs of frames so that holography is not
completely unique.

Holography means that very few extremals are physically possible. This Bohr orbit property
conforms with the Uncertainty Principle. Also HFFs correspond to small sub-spaces of B(H).
Quantum classical correspondence suggests that this analogy is not accidental.

The notion of commutant and its physical interpretation in the TGD framework

The notion of the commutant M ′ of M , which also defines HFF, is also essential. What could be
the physical interpretation of M ′? TGD suggests 3 important hierarchies of HFFs as algebras An.
An could correspond to super-symplectic algebras SSAn acting at δM4

−×CP2; to an affine algebras
Affn acting at the light-like partonic orbits; or to an isometry algebra In acting at δM4

+. All these
HFF candidates have commutants and would have interpretation in terms of quantum-classical
correspondence.

One can consider SSA as an example.

1. In TGD, one has indeed an excellent candidate for the commutant. Supersymplectic symme-
try algebra (SSA) of δM4

+×CP2 (δM4
+ denotes the boundary of a future directed light-cone)

is proposed to act as isometries of the ”world of classical worlds” (WCW) consisting of
space-time surfaces as PEs (very, very roughly).

Symplectic symmetries would be generated by Hamiltonians, which are products of Hamil-
tonians associated with δM4

+ (metrically sphere S2) and CP2. Symplectic symmetries are
conjectured to act as isometries of WCW and gamma matrices of WCW extend symplectic
symmetries to super-symplectic ones.

Hamiltonians and their super-counterparts generate the super-symplectic algebra (SSA) and
quantum states are created by using them. SSA is a candidate for HFF. Call it M . What
about M?

2. The symplectic symmetries leave invariant the induced Kähler forms of CP2 and contact
form of δM4

+ (assignable to the analog of Kähler structure in M4).

3. The wave functions in WCW depending of magnetic fluxes defined by these Kähler forms
over 2-surfaces are physically observables which commute SSA and with M . These fluxes are
in a central role in the classical view about TGD and define what might perhaps be regarded
as a dual description necessary to interpret quantum measurements.

Could M ′ correspond or at least include the WCW wave functions (actually the scalar parts
multiplying WCW spinor fields with WCW spinor for a given 4-surface a fermionic Fock state)
depending on these fluxes only? I have previously talked of these degrees of freedom as zero
modes commuting with quantum degrees of freedom and of quantum classical correspondence.

https://cutt.ly/NX8eWwa
https://cutt.ly/cX8eUuf
https://cutt.ly/4X8ePn6
https://cutt.ly/3XkPO2s
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4. There isM−M ′ correspondence also for number theoretic degrees of freedom, which naturally
appear from the number theoretic M8 description mapped to H-description. Polynomials
P associated with a given Galois group are analogous to symplectic degrees of freedom with
given fluxes as symplectic invariants. Galois groups and Galois invariants are ”classical”
invariants at the M8 side and should have counterparts on the H side. For instance, the
degree n of polynomial P could correspond to the number of braid stran

More algebraic notions

There are further algebraic notions involved. The article of John Baez (https://cutt.ly/VXlQyqD)
describes these notions nicely.

1. The condition M ′′ = M is a defining algebraic condition for von Neumann algebras. What
does this mean? Or what could its failure mean? Could M ′′ be larger than M? It would
seem that this condition is achieved by replacing M with M ′′.

M ′′ = M codes algebraically the notion of weak continuity, which is motivated by the idea
that functions of operators obtained by replacing classical observable by its quantum counter-
part are also observables. This requires the notion of continuity. Every sequence of operators
must approach an operator belonging to the von Neumann algebra and this can be required
in a weak sense, that is for matrix elements of the operators.

Does M ′′ = M mean that the classical descriptions and quantum descriptions are somehow
equivalent? At first, this looks nonsensical but when one notices that the scalar parts of
WCW spinor fields correspond to wave functions in the zero mode of WCW which do not
appear in the line element of WCW, this idea starts to look more sensible. In quantum
measurements the outcome is indeed expressed in terms of classical variables. Zero modes
and quantum fluctuating modes would provide dual descriptions of physics.

2. There is also the notion of hermitian conjugation defined by an antiunitary operator J : a† =
JAJ . This operator is absolutely essential in quantum theory and in the TGD framework it
is geometrized in terms of the Kähler form of WCW. The idea is that entire quantum theory,
rather than only gravitation or gravitation and gauge interactions should be geometrized.
Left multiplication by JaJ corresponds to right multiplication by a.

Connes tensor product and category theoretic notions

Connes tensor product (Connes fusion) [A29] appears in the construction of the hierarchy of inclu-
sions of HFFs. For instance, matrix multiplication has an interpretation as Connes tensor product
reduct tensor product of matrices to a matrix product. The number of degrees of freedom is re-
duced. The tensor product A⊗RB depends on the coefficient ring R acting as right multiplication
in A and left multiplication in B. If the dimension of R increases, the dimension of A (B) as a
left/right R module is reduced. For instance, A as an A-module is 1-dimensional.

Also category theory related algebraic notions appear. I still do not have an intuitive
grasp about category theory. In any case, one would have a so-called 2-category (https://cutt.
ly/3XkPO2s). M and N correspond to 0-morphisms (objects). One can multiply arguments of
functions in L2(M) and L2(N) by M or N .

Bimodule (https://cutt.ly/EX885WA) is a key notion. For instance the set of Rm,n of m×n
matrices is a bimodule, which is a left (right) module with respect to m × m (n × n) matrices.
One can replace matrices with algebras. The bimodule MMM resp. NNN is analogous to m×m
resp. n × n matrices. They correspond to 1-morphisms, which behave like units. The bimodule

MNN resp. NNM is analogous to m × n resp. n ×m matrices. These two bimodules correspond
to a generating 1-morphisms mapping N to M resp. M to N . Bimodule map corresponds to
2-morphisms. Connes tensor product defines what category theorists call a tensor functory.

The notions of factor and trace

The notion of factor as a building block of more complex structures is central and analogous to the
notion of simple group or prime. Factor is a von Neumann algebra, which is simple in the sense

https://cutt.ly/VXlQyqD
https://cutt.ly/3XkPO2s
https://cutt.ly/3XkPO2s
https://cutt.ly/EX885WA
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that it has a trivial center consisting of multiples of unit operators. The algebra is direct sum or
integral over different factors.

The notion of trace is fundamental and highly counter intuitive. For the factors of type I,
it is just the ordinary trace and the trace Tr(I) of the unit operator is equal to the dimension n of
the Hilbert space. This notion is natural when direct sum is the key notion. For the other factors,
the situation is different.

Factors can be classified into three types: I, II, andIII.

1. For factors of type I associated with three bosons, the trace equals n in the n-D case and ∞
in the infinite-D case.

2. A highly non-intuitive and non-trivial axiom relating to HFFs as hyperfinite factors of type
II1 is that the trace of the unit operator satisfies Tr(Id) = 1: for factors of type II (see the
article of Popa at https://cutt.ly/KX8y0Fs). This definition is natural in the sense that
being a subsystem means being a tensor factor rather than subspace.

The intuitive idea is that the density matrix for an infinite-D system identified as a unit
operator gives as its trace total probability equal to one. These factors emerge naturally for
free fermions. ”Hyperfinite” expresses the fact that the approximation of a factor with its
finite-D cutoff is an excellent approximation.

HFFs are extremely flexible and can look like arbitrarily high-dimensional factor In. For
instance, one can extract any matrix algebra Mn(C) as a tensor factor so that one has
M = Mn(C)⊗M1/n by the multiplicativity of dimensions in the tensor product. Should one
interpret this by saying that measurement can separate from a factor an n−D Hilbert space
and that M1/n is something that remains inaccessible to the measurements considered?
If one introduces the notion of measurement resolution in this manner, the description of
measurement could be based on factors of tyoe In.

3. The factors of type II∞ are tensor products of infinite-D factors of type I and HFFs and
could describe free bosons and fermions.

4. In quantum field theory (QFT), factors of type III appear and in this case the notion of
trace becomes useless. These factors are pathological and in QFT they lead to divergence
difficulties. The physical reason is the idea about point-like particles, which is too strong an
idealization.

In the TGD framework, the generalization of a point-like particle to 3-surface saves from these
difficulties and leads to factors of type I and HFFs. In TGD, finite measurement resolution
is realized in terms of a unique number theoretic discretization, which further simplifies the
situation in the TGD framework.

6.2.2 Standard construction for the hierarchy of HFFs

Consider now the standard construction leading to a hierarchy of HFFs and their inclusions.

1. One starts from an inclusion M ⊂ N of HFFs. I will later consider what these algebras could
be in the TGD framework.

2. One introduces the spaces L2(M) resp. L2(N) of square integrable functions in M resp. N .

From the physics point of view, bringing in ”L2” is something extremely non-trivial. Space is
replaced with wave functions in space: this corresponds to what is done in wave mechanics,
that is quantization! One quantizes in M , particles as points of M are replaced by wave
functions in M , one might say.

3. At the next step one introduces the projection operator e as a projection from L2(N) to
L2(M): this is like projecting wave functions in N to wave functions in M . I wish I could
really understand the physical meaning of this. The induction procedure for second quantized
spinor fields in H to the space-time surface by restriction is completely analogous to this
procedure.

https://cutt.ly/KX8y0Fs
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After that one generates a HFF as an algebra generated by e and L2(N): call it 〈L2(N), e〉.
One has now 3 HFFs and their inclusions: M0 ≡M , M1 ≡ N , and 〈L2(N), e〉 ≡M2.

An interesting question is whether this process could generalize to the level of induced spinor
fields?

4. Even this is not enough! One constructs L2(M2) ≡M3 including M2. One can continue this
indefinitely. Physically this means a repeated quantization.

One could ask whether one could build a hierarchy M0, L2(M0),..., L2(L2...(M0))..): why is
this not done?

The hierarchy of projectors ei to Mi defines what is called Temperley-Lieb algebra [A129]
involving quantum phase q = exp(iπ/n) as a parameter. This algebra resembles that of
S∞ but differs from it in that one has projectors instead of group elements. For the braid
group e2

i = 1 is replaced with a sum of terms proportional to ei and unit matrix: mixture of
projector and permutation is in question.

5. There is a fascinating connection in TGD and theory of consciousness. The construction of
what I call infinite primes [K72, K44] is structurally like a repeated second quantization of a
supersymmetric arithmetic quantum field theory involving fermions and bosons labelled by
the primes of a given level I conjectured that it corresponds physically to quantum theory in
the many-sheeted space-time.

Also an interpretation in terms of a hierarchy of statements about statements about ....
bringing in mind hierarchy of logics comes to mind. Cognition involves generation of reflective
levels and this could have the quantization in the proposed sense as a quantum physical
correlate.

6.2.3 Classification of inclusions of HFFs using extended ADE diagrams

Extended ADE Dynkin diagrams for ADE Lie groups, which correspond to finite subgroups of
SU(2) by McKay correspondence [A108, A105, A82], discussed from the TGD point of view in [L68],
characterize inclusions of HFFs.

For a subset of ADE groups not containing E7 and D2n+1, there are inclusions, which cor-
respond to Dynkin diagrams corresponding quantum groups. What is interesting that E6 (tetra-
hedron) and E8 (icosahedron/dodecahedron) appear in the TGD based model of bioharmony and
genetic code but not E7 (cube and octahedron) [L54].

1. Why finite subgroups of SU(2) (or SU(2)q) should characterize the inclusions in the tunnel
hierarchies with the same value of the quantum dimension Mn+1 : Mn of quantum group?

In the TGD interpretation Mn+1 reduces to a tensor product of Mn and quantum group,
when Mn represents reduced measurement resolution and quantum group the added degrees
of freedom. Quantum groups would represent the reduced degrees of freedom. This has a
number theoretical counterpart in terms of finite measurement resolution obtained when an
extension of ... of rationals is reduced to a smaller extension. The braided relative Galois
group would represent the new degrees of freedom.

2. One can algebraically identify HFF as a ”tunnel” obtained by iterated standard construction
as an infinite tensor power of GL(2, c) or GL(n,C). The analog of the McKay graph for the
irreps of a closed subgroup of GL(2, C) defines an invariant characterizing the fusion rules
involved with the reduction of the Connes tensor products. This invariant reduces to the
McKay graph for the tensor products of the canonical 2-D representation with the irreps of
a finite rather than only closed subgroups of SU(2). This must take place also for GL(n,C).
Why?

The reduction of degrees of freedom implied by the Connes tensor product seems to imply
a discretization at the level of SU(2) and replace closed subgroups of SU(2) with finite
subgroups. This conforms with the similarity of the representation theories of discrete and
closed groups. In the case of quantum group representations only a finite number of ordinary
finite-D group representations survive.
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All this conforms with the TGD view about the equivalence of number-theoretic discretization
and inclusions as descriptions of finite measurement resolution.

In the TGD framework, SU(2) could correspond to a covering group of quaternionic auto-
morphisms and number theoretic discretization (cognitive representations) would naturally lead to
discrete and finite subgroups of SU(2).

6.3 TGD and hyperfinite factors of type II1: a bird’s eye of
view

In this section, a tentative identification of hyperfinite factors of type II1 (HFFS) in the TGD
framework [K87, K28] is discussed. Also some general related to the interpretation of HFFs and
their possible resolution in the TGD framework are considered.

6.3.1 Identification of HFFs in the TGD framework

Inclusion hierarchies of extensions of rationals and of HFFs

I have enjoyed discussions with Baba Ilya Iyo Azza about von Neumann algebras. Hyperfinite
factors of type II1 (HFF) (https://cutt.ly/lXp6MDB) are the most interesting von Neumann
algebras from the TGD point of view. One of the conjectures motivated by TGD based physics,
is that the inclusion sequences of extensions of rationals defined by compositions of polynomials
define inclusion sequences of hyperfinite factors. It seems that this conjecture might hold true!

Already von Neumann demonstrated that group algebras of groups G satisfying certain
additional constraints give rise to von Neuman algebras. For finite groups they correspond to
factors of type I in finite-D Hilbert spaces.

The group G must have an infinite number of elements and satisfy some additional conditions
to give a HFF. First of all, all its conjugacy classes must have an infinite number of elements.
Secondly, G must be amenable. This condition is not anymore algebraic. Braid groups define
HFFs.

To see what is involved, let us start from the group algebra of a finite group G. It gives a
finite-D Hilbert space, factor of type I.

1. Consider next the braid groups Bn, which are coverings of Sn. One can check from Wikipedia
that the relations for the braid group Bn are obtained as a covering group of Sn by giving
up the condition that the permutations σi of nearby elements ei, ei+1 are idempotent. Could
the corresponding braid group algebra define HFF?

It is. The number of conjugacy classes giσig
−1
i , gi == σi+1 is infinite. If one poses the

additional condition σ2
i = U × 1, U a root of unity, the number is finite. Amenability is too

technical a property for me but from Wikipedia one learns that all group algebras, also those
of the braid group, are hyperfinite factors of type II1 (HFFs).

2. Any finite group is a subgroup G of some Sn. Could one obtain the braid group of G and
corresponding group algebra as a sub-algebra of group algebra of Bn, which is HFF. This
looks plausible.

3. Could the inclusion for HFFs correspond to an inclusion for braid variants of corresponding
finite group algebras? Or should some additional conditions be satisfied? What the conditions
could be?

Here the number theoretic view of TGD could comes to the rescue.

1. In the TGD framework, I am primarily interested in Galois groups. The vision/conjecture is
that the inclusion hierarchies of extensions of rationals correspond to the inclusion hierarchies
for hyperfinite factors. The hierarchies of extensions of rationals defined by the hierarchies
of composite polynomials Pn ◦ ...◦P1 have Galois groups, which define a hierarchy of relative
Galois groups such that the Galois group Gk is a normal subgroup of Gk+1. One can say
that the Galois group G is a semidirect product of the relative Galois groups.

https://cutt.ly/lXp6MDB
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2. One can decompose any finite subgroup to a maximal number of normal subgroups, which are
simple and therefore do not have a further decomposition. They are primes in the category
of groups.

3. Could the prime HFFs correspond to the braid group algebras of simple finite groups acting
as Galois groups? Therefore prime groups would map to prime HFFs and the inclusion hier-
archies of Galois groups induced by composite polynomials would define inclusion hierarchies
of HFFs just as speculated.

One would have a deep connection between number theory and HFFs.

How could HFFs emerge in TGD?

What could HFFs correspond to in the TGD framework? Consider first the situation at the level
of M8.

1. Braid group B(G) of group (say Galois group as subgroup of Sn) and its group algebra
would correspond to B(G) and L2(B(G) ). Braided Galois group and its group algebra could
correspond to B(G) and L2(B(G)).

The inclusion of Galois group algebra of extension to its extension could naturally define
a Connes tensor product. The additional degrees of freedom brought in by extension of
extension would be below measurement resolution.

2. Composite polynomials Pn ◦ .... ◦ P1 are used instead of a product of polynomials naturally
characterizing free n-particle states. Composition would describe interaction physically: the
degree is the product of degrees of factors for a composite polynomial and sum for the product
of polynomials.

The multiplication rule for the dimensions holds also for the tensor product so that functional
composition could be also seen as a number theoretic correlate for the formation of interacting
many particle states.

3. Compositeness implies correlations and formation of bound states so that the number of
degrees of freedom is reduced. The interpretation as bound state entanglement is suggestive.
This hierarchical entanglement could be assigned with directed attention in the TGD inspired
theory of consciousness [L50].

An alternative interpretation is in terms of braids of braids of ... of braids with braid strands
at a given level characterized by the roots of Pi. These interpretations could be actually
consistent with each other.

4. Composite polynomials define hierarchies of Galois groups such that the included Galois
group is a normal subgroup. This kind of hierarchy could define an increasing sequence of
inclusions of braided Galois groups.

Consider the situation at the H level.

1. At the level of H, elements of the algebras A ∈ {SSA,Aff, I}a associated with super-
symplectic symmetries acting at δM4

+, affine isometries acting at light-like partonic orbites,
isometries of δM4

+, are labelled by conformal weights coming as non-negative integers. Also
algebraic integers can be considered but for physical states conformal confinement requires
integer valued conformal weights.

2. One can construct a hierarchy of representations of A such that subalgebras An with con-
formal weights h ≥ 0 coming as multiples of n and the commutator [An, A] annihilate the
physical states. These representations are analogous to quantum groups and one can say
that An defines a finite measurement resolution in A. Ank, k ≥ 1 is included by An for and
one has a reversed sequence of inclusions.

One can construct inclusion hierarchies defined by the sequences 1÷n1÷n2÷ .... ”n−1 = 1”
corresponds to SSA. The factor spaces Ank/Ank+1

are analogs of quantum group-like objects
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associated with Jones inclusions and the interpretation is in terms of finite measurement
resolution defined by Ank+1

.

The factor spaces A/Ank define inclusion hierarchies with an increasing measurement reso-
lution.

6.3.2 Could the notion of free probability be relevant in TGD?

In discussions with Baba Ilya Iyo Azza, I learned about the notion of free probability (https:
//cutt.ly/LCY51sy) assignable to von Neumann algebras. This algebra is II1 factor. Originally,
the notion was discovered by Voiolescu [A128] in order to attack some operator algebra problems, in
particular free group factor isomorphism problem and Voiolescu demonstrated there is an infinity
of von Neumann free group factors, which can be isomorphic. One can ask whether the free
probability could have physical applications. In particular, whether the HFFs emerging naturally
in TGD are consistent with this notion.

I try first to describe the notion of free probability as I understand it, on basis of what I
learned in the discussions.

1. Free probability theory and classical probability theory differ because the latter is commu-
tative and the former is highly noncommutative, and the notion of independence differs for
them.

In the classical theory, the expectations of the variables X,Y, ... are commutative whereas
in free probability theory they become observables represented by operators, which in gen-
eral are non-commutative. The expectations for independent variables satisfy E(XY ) =
E(X)E(Y ) and more generally E(XmY n) = E(Xm)E(Y n). The expectations for powers
are called moments.

The free probability theory generalizes independent variables to free, in general non-commutative,
operators a, b, ... of von Neumann algebra M . The mean value E(X) is replaced with a vac-
uum expectation value τ(a) of a, as physicists would call it. The expectations define what
mathematicians call a normal state. Here τ , defining the vacuum expectation, denotes a
linear functional in M .

The random variable a can act on the argument of square integrable functions F (m) defined
in non-commutative von Neumann algebra M defining a commutative algebra L2(M). The
action of a is non-commutative right or left multiplication of the argument of F (m). One
can speak of non-commutative probability space.

Could group algebras and braid group algebra represent free algebras? Unfornatunately not.
It is known that HFF probability is not consistent with free algebra property.

2. In the classical theory of independent random variables, one has E(XY ) = E(X)E(Y ) and it
is possible to express all expectations of monomials of X1, X2, ... of polynomials of variables
X1, X2, .. in terms of moments E(Xn

i ).

For free probability theory an analogous situation prevails although the formulas are not
identical. Consider factor M of type II1, which in the case ff free algebras cannot be hyper-
finite. A linear functional τ(a) corresponds to vacuum expectation value, using the language
of physicists. One has τ(1) = 1. This corresponds to the condition Tr(Id) = 1. One has
pointless space in the sense that the projector to a ray of Hilbert state defined by M has a
vanishing trace. This corresponds to a finite measurement resolution requiring that the trace
of the projector characterizing quantum measurement is a nonvanishing number.

τ(ab) = τ(a)τ(b) is true for the generators of the free algebra and states that there is no
correlation between a and b. This is however not true in general.

[Note that an analogous condition holds true for the correlators of free quantum field fields
at the level of momentum space: the n-point correlation functions reduce to products of
momentum space propagators.]

For instance, one would have

τ(abab) = τ(a2)τ(b)2 + τ(a)2τ(b2)− 2τ(a)2τ(b)2

https://cutt.ly/LCY51sy
https://cutt.ly/LCY51sy
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instead of E(XYXY ) = E(X2)E(Y 2) for classical independent variables. Also now however
only powers of a and b appear in the formula. This reduction of the expectations to the
momenta τ(an) would hold quite generally.

3. A more precise definition is as follows (https://cutt.ly/LCY51sy). Unital subalgebras
A1, ..., Am are said to be freely independent if the expectation of the product a1...an is zero
whenever each aj has zero expectation, lies in an Ak, no adjacent aj ’s come from the same
subalgebra Ak, and n is nonzero. Random variables are freely independent if they generate
freely independent unital subalgebras.

4. The lattice of non-crossing partitions (https://cutt.ly/jCY6jNe) for a finite set ordered
cyclically, distinguishes free probability theory from lattice of all partition in the theory if
independent random variables. Two partitions ab and xy are non-crossing if their elements
do not correspond to order axby. The subsets of a non-crossing partition consist of elements,
which are adjacent in this ordering and form connected subsets with ki elements in which a
cyclic subgroup Zki ⊂ Zn acts. The expression of an element of Sn as a product of elements
of cyclic subgroups Znk of Sn corresponds to this kind of partition.

Interestingly, in the construction of the non-planar parts of the twistor amplitudes similar
cyclic ordering plays an important role. The problem of the twistor constructed are non-
planar amplitudes which do not allow cyclic ordering. Could it be that the non-planar parts
of the amplitudes do not have counterparts in a deeper theory utilizing HFFs? If so, free
probability could code a very profound aspect of quantum theory.

Free random variables could correspond to the generators of von Neumann algebra of type
II1. My un-educated guess was that also HFFs realize free probability. I was wrong: thanks for
Baba Ilya Iyo Azza for noticing this. It however seems that something highly reminiscent of free
probability emerges for the algebras involved with TGD.

1. In the TGD framework, the generators typically generate an algebra of observables having
interpretation as algebra of symmetries, such as affine algebra or super symplectic algebra.

2. ab would correspond to the product of say affine algebra generators a and b labelled by quan-
tum numbers which are additive in the product. τ(a) would vanish as a vacuum expectation
value of a generator with non-vanishing quantum numbers so that for generators one should
have τ(ab) = τ(a)τ(b) = 0.

ab is expressible in terms of commutator and anticommutator as the sum [a, b]/2 + {a, b}/2.
Both terms vanish if the quantum numbers of ab are non-vanishing. Only when the quantum
numbers of a and b are opposite, the vanishing need not take place. If a and its Hermitian
conjugate a† with opposite quantum numbers belong to the set of generators of the free
algebra, one has τ(aa†) > 0 and is different from τ(a)τ(a†) = 0.

Therefore the hermitian conjugates of generators cannot belong to the generators of the
algebra creating the physical states. This algebra is highly reminiscent of free algebra since
all vacuum expectations for the products vanish.

3. For affine and conformal algebras this condition corresponds to the requirement that physical
states are created using only the generators with non-negative conformal weight n ≥ 0
analogous to the algebra of creation operators. Also the generators of this algebra, whose
number is finite, satisfy this condition. One could speak of half-algebra.

4. In TGD half-algebras appear for a different reason. The TGD Universe is fractal in several
senses of the word. Also the algebra A of observables is fractal in the sense that it contains an
infinite hierarchy of sub-algebras An for which the conformal weights are n-multiples of those
for A. The finite measurement resolution is realized by the conditions that An and [An, A]
annihilate physical states and that also the corresponding classical Noether charges vanish,
which gives strong conditions on space-time surfaces. These sub-algebras define hierarchies
of measurement resolutions related to inclusions of HFFs.

If the generators of super symplectic algebra and extensions of affine algebras indeed define
free algebras, the rules of free probability theory could bring in dramatic computational

https://cutt.ly/LCY51sy
https://cutt.ly/jCY6jNe
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simplifications if the scattering amplitudes correspond to expectations for the polynomials of
the free-algebra generators.

5. In ZEO, zero energy states are generated by this kind of half-algebra and its hermitian con-
jugate as superpositions of state pairs assigned to the opposite boundaries of causal diamond
(CD= cd× CP2, where cd is the intersection of future and past directed light-ones).

The members of the state pair are created by the half-algebra resp. its hermitian conjugate
and are assigned with opposite boundaries of CD (intersection of light-ones with opposite
time directions). The corresponding vacua are analogous to Dirac sea of negative energy
fermions and its hermitian conjugate consisting of positive energy fermions. The zero energy
states are analogous to pairs formed by Dirac’s bras and kets. This allows to code the
scattering matrix elements [L62, L63] as zero energy states.

6.3.3 Some objections against HFFs

One cannot avoid philosophical considerations related to the notion of probability and to the
interpretations of quantum measurement theory (https://cutt.ly/YXxSLS1).

Standard measurement theory and HFFs

The standard interpretations of quantum measurement theory are known to lead to problems in
the case of HFFs.

1. An important aspect related to the probabilistic interpretation is that physical states are
characterized by a density matrix so that quantum theory reduces to a purely statistical
theory. Therefore the phenomenon of interference central in the wave mechanics does not
have a direct description.

Another problem is that for HFFs, pure states do not exist as so-called normal states, which
are such that it is possible to assign a density operator to them. This is easy to understand
intuitively since by the Tr(Id) = 1 property of the unit matrix, there is no minimal projection.
Selection of a ray would correspond to an infinite precision and delta function type density
operator. The axiom of choices in mathematics is quite a precise analogy.

One can of course argue that even if pure states as normal states are possible, in practice
the studied system is entangled with the environment and that this forces the description in
terms of a density matrix even when pure states are realized at the fundamental level.

2. In the purely statistical approach, the notion of quantum measurement must be formulated in
terms of what occurs for the density matrix in quantum measurement. The expectation value
of any observable A for the new density matrix generated in the measurement of observable
O with a discrete spectrum must be a weighted sum for the expectations for the eigenstates
of the observable with weights given by the state function reduction probabilities.

Problems are however encountered when the spectrum contains discrete parts. In the TGD
framework, the number theoretic discretization would make it possible to avoid these prob-
lems.

Should density matrix be replaced with a more quantal object?

These problems force us to ask whether there could be something deeply wrong with the notion
of density matrix? The TGD inspired view of HFFs [K87, K28] suggests a generalization of the
state as a density matrix to a ”complex square root” of the density matrix. At the level of WCW
as vacuum functional, it would be proportional to exponent of a real valued Kähler function of
WCW identified as Kähler action for the space-time region as a preferred extremal and a phase
factor defined by the analog of of action exponential. Zero energy state would be proportional to
an exponent of Kähler function of WCW identified as Kähler action for space-time surface as a
preferred extrema.

https://cutt.ly/YXxSLS1
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Problems with the interpretations of quantum theory

HFFs based probability concept has also problems with the interpretations of quantum theory,
which actually strongly suggest that something is badly wrong with the standard ontology.

1. In TGD, this requires a generalization of quantum measurement theory [L38] [K89] based
on zero energy ontology (ZEO) and Negentropy Maximization Principle (NMP) [K45] [L12],
which is consistent with the second law [L56]. What is essential is that physics is extended to
what I call adelic physics [L23, L24] to describe also the correlates of cognition. This brings
in a measure for conscious information based on a p-adic generalization of Shannon entropy.

2. ZEO [K89] is forced by an almost exact holography in turn implied by general coordinate
invariance for space-time as 4-surface. States in ZEO are superpositions of classical time
evolutions and and is replaced by a new one in a state function reduction (SFR) [L38, L64].
The determinism of the unitary time evolution is consistent with the non-determinism of
SFR. The basic problem of quantum measurement theory disappears since there are two
times and two causalities. Causality of field equations and geometric time of physicists can
be assigned to the classical time evolutions. The causality of free will and flow of experienced
time can be assigned to a sequence of SFRs. The findings of Minev et al [L32] provide support
for ZEO [L32].

Quantum measurement as a reduction of entanglement can in principle occur for any entan-
gled system pair if NMP favors it. There is no need to assume mysterious decoherence as a
separate postulate. By NMP, entanglement negentropy can also increase by the formation of
entangled states. Since entanglement negentropy is the sum of positive p-adic contribution
and negative contribution from real entanglement and is positive, the increase of negentropy
is consistent with the increase of real entanglement entropy.

However, since classical determinism is slightly broken [L61] (there is analogy with the non-
uniqueness of the minimal surfaces spanned by frames), the holography is not quite exact.
This has important implications for the understanding of the space-time correlates of cogni-
tion and intentionality in the TGD framework.

The notion of finite measurement resolution and probabilistic interpretation

One can also ask whether something could go wrong with the quantum measurement theory itself.
This notion of quantum measurement does not take into account the fact that the measurement
resolution is finite.

The notion of finite measurement resolution realized in terms of inclusion, replacing Hilbert
space ray with the included factor and reducing state space to quantum group like object, could
allow us to overcome the problems due to the absence of minimal projectors for HFFs implying
that the notion of Hilbert space ray does not make sense.

Quantum group like object would represent the degrees of freedom modulo finite measure-
ment resolution described by the included factor. The quantum group representations form a
finite subset of corresponding group representations and the state function reductions could occur
to quantum group representations and the standard quantum measurement theory for factors of
type I would generalize.

Connes tensor product and finite measurement resolution

In the TGD framework Connes tensor product could provide a description of finite measurement
resolution in terms of inclusion.

1. In the TGD framework, inclusion of HFFs are interpreted in terms of measurement resolution.
The included factor M ⊂ N would represent the degrees of freedom below measurement
resolution. N as M module would mean that M degrees of freedom are absorbed to the
coefficient ring and are not visible in the physical states. Complex numbers as a coefficient
ring of the Hilbert space are effectively replaced with M . In the number theoretic description
of the measurement resolution, the extension of extension is replaced with the extension. The
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quantum group, N as M , quantum group with quantum dimension N : M would characterize
the observable degrees of freedom.

This fits with the hierarchy of SSAn:s. SSAn+1 would take the role of M and SSAn that
of N . This conforms with the physical intuition. Since n corresponds to conformal weight,
the large values of n would naturally correspond to degrees of freedom below UV cutoff.

Could also IR cutoff have a description in the super symplectic hierarchy of SSAn:s. It
should correspond to a minimal value for conformal weight. The finite size of CD defining
a momentum unit gives a natural IR cutoff. The proposal is that the total momentum
assignable to the either half-cone of CD defines by M8 − H duality the size scale L as
L = heff/M [L45, L46].

2. For the hierarchies of extensions of rationals the upper levels of the extension hierarchy would
not be observed. The larger the value of n = heff/h0, n a dimension of extension of rationals
associated with polynomial P defining the space-time region by M8 −H duality, the longer
the quantum coherence scale.

In this case large values for the dimension of extension would correspond to IR cutoff. There-
fore UV and IR cutoffs would correspond to number theoretic and geometric cutoffs. This
conforms with the view that M8 −H duality as an analog of Langlands duality is between
number theoretic and geometric descriptions.

3. Duality suggests that also UV cutoff should have a number theoretic description. In the
number theoretic situation, Galois confinement for these levels might imply that they are
indeed unobservable, just like color-confined quarks. In fact, the hypothesis n = heff/h0, n
a dimension of extension of rationals associated with polynomial P defining the space-time
region by M8 − H duality, for the effective Planck constant leads to estimate for ordinary
Planck constant as h = n0h0 where n0 corresponds to the order of permutation group S7.

Could the interpretation be that these degrees of freedom are Galois confined and unobserv-
able in the scales at which measurements are performed. Smaller values of heff would appear
only in length scales much below the electroweak scale and at the limit of CP2 scale?

How finite measurement resolution could be realized using inclusions of HFFs?

The basic ideas are that finite measurement resolution corresponds to inclusions of HFFs on one
hand, and to number theoretic discretizations defined by extensions of rationals. In both cases one
has inclusion hierarchies.

One can consider realizations at the level of WCW (geometry) and at the level of number
theory in terms of adelic structures assignable to the extensions of rationals. Space-time surfaces
can be discretized and this induces discretization of WCW. Even more, WCW should be in some
natural manner effectively discrete.

In [K35, K20, K63] the construction WCW Kähler metric is considered and the mere exis-
tence of the K ”ahler metric is expected to require infinite-D isometry group and imply constant
curvature property. The Kähler function K is defined in terms of action consisting of the Kähler
action and volume part for a preferred extremal (PE). There are however zero modes present and
the metric depends on the zero modes. Twistor lift fixes the choices of H uniquely [L62, L63].

How to define WCW functional integral and how to discretize it? I have proposed that
the Gaussian approximation to WCW integration is exact and allows to define a discretization
in terms of the maxima (maybe also other extrema) of Kähler function. The proposal is that
the exponential of Kähler function should correspond to a number theoretic invariant, perhaps the
discriminant of the polynomial P defining PE by M8 −H duality.

Consider first the standard realization of the restriction P : N →M reducing the measure-
ment resolution.

1. The definition of a unitary S-matrix for HFFs is non-trivial. Usually one considers only
density matrices expressible in terms of projection operators P to subspaces of HFF.

I have earlier proposed the notion of a complex square root of the density matrix as a
generalization of the density matrix. In a direct sum representation of S over projections,
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in which S-matrix is diagonal, and the projection operators would be multiplied by phase
factors. This definition looks sensible at the level of WCW but perhaps as a generalization
of the density matrix rather than the S-matrix.

The exponent of Kähler function could have a modulus multiplied by a phase factor. Also
an additional state dependent phase factor can be considered. The mathematical existence of
the WCW integral fixes the modulus essentially uniquely to an exponent of Kähler function
K multiplied by the metric volume element. K could also have an imaginary part.

2. The projected S-matrix PSP is unitary if the projection operator P must commute with S.
S-matrix is realized at the level of HFFs so that the matrix representation does not make
sense in a strict sense since the notion of ray is not sensical.

3. Projection N → M respects unitarity only if P commutes with S and S†. The S-matrix
does not have matrix elements between M and N . This is a very tough condition.

How the finite measurement resolution could be realized in the TGD framework?

1. In WCW spin degrees of freedom plus algebras An. Number theoretic degrees of freedom
are discrete and correspond to various p-adic degrees of freedom. Continuous WCW is
associated with the real part of the adelic structure. Its number theoretic parts correspond
to the p-adic degrees of freedom, which are discrete.

2. Discretization could be a natural and necessary part of the definition of WCW. Could dis-
crete WCW degrees of freedom be identified in terms of symplectic and number theoretic
invariants? They would represent for WCW spinor fields scalar degrees scalar degrees
of freedom separable from spin degrees of freedom representable in terms of algebras An.
These two kinds of degrees of freedom correspond to M and M ′ if the proposed general
picture is correct.

Measurement resolution would be realized in terms of braid group algebras and algebras An
defining the measurement resolution. What does this mean at the level of WCW?

1. Bosonic generators of SSAn and possible other algebras An define tangent space basis for
WCW. The gauge conditions stating that An and [An, A] annihilate WCW spinor fields
define a finite measurement resolution selecting only a subset of tangent space-generators
and their super counterparts.

2. Consider first ideal measurement resolution in a function space. There is a complete basis of
scalar functions Φm in a given space. The sum Φm(x)Φm(y) = δ(x, y) would hold true for
an infinite measurement resolution.

In a finite measurement resolution one uses only a finite subset of the scalar function basis,
and completeness relation becomes non-local and is smoothed out: δ(x, y)→ D(x, y), which
is non-vanishing for different point pairs x, y.

3. The condition of finite measurement resolution should define a partition of WCW to disjoint
sets. In real topology, the condition |x− y|2 would define a natural measurement resolution
but would not define a partition.

In p-adic topology, the situation is different: the p-adic distance function d(x−y) has values
p−n and the sets d(x − y) < d are either disjoint or identical. One would have the desired
partition. Therefore it seems that p-adicization is essential and the p-adic variants of WCW,
or rather regions of WCW, obtained by discretization could allow partitions corresponding to
various p-adic number fields forming the adele. Different p-adic representations of algebras
An would define measurement resolutions.

There is a connection with spin glasses where spin energy landscape consisting of free energy
minima allows ultrametric topology: p-adic topologies are indeed ultrametric. The TGD view
of spin glasses is discussed in [L58]. One expects the decomposition of WCW to different
p-adic topologies with ramified primes of polynomial P defining the p-adic sectors to which
a given space-time surface can belong.
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4. The consistency condition is that the transition probabilities P (m → n) between the
states satisfying the gauge conditions representing finite measurement resolution, predicted
by S-matrix or its TGD counterpat, should be constant should be constant in the subsets of
WCW for which the completeness relation gives a non-vanishing D(x, y) for the point pairs
(x, y).

5. Does WCW have hierarchies of partitions such that the constancy of P (m → n) holds
true within each partition?

Do these partitions correspond to hierarchies of inclusions of HFFs defining increasing res-
olution? M8 −H duality does not allow all kinds of hierarchies. The hierarchies should be
induced by the hierarchies of extensions of rationals. As the measurement precision
increases, the partition involves an increasing number of sets and at the limit of ideal mea-
surement resolution, the partition consists of algebraic points of WCW and of space-time
surfaces.

6. P = Q condition implying that space-time surfaces correspond to infinite prime, could
appear as a consistency condition for allowed hierarchies. Preferred extremals and preferred
polynomials would correspond to each other. Note that P = Q conditions fixes the scaling
of P .

In the TGD framework, one can challenge the idea, originally due to Wheeler, that transition
probabilities are given by a unitary S-matrix.

1. The TGD based proposal is that in spin degrees of freedom, that is for many-fermion states
for a given space-time surface, the counterpart of S-matrix could be be given by the analog
of Kähler metric in the fermionic Hilbert space [L52]. This would mean a geometrization of
quantum theory, at least in fermionic degrees of freedom.

The transition probabilities would be given by P (m→ n) = KmnK
nm and the properties of

Kähler metric K give analogs of unitary conditions and probability conservation plus some
prediction distinguishing the proposal from the standard view.

2. In the infinite-D situation, the existence of Hilbert space Kähler metric in the fermionic
sector is an extremely powerful condition and one expects that the Kähler metric is a unique
constant curvature metric allowing a maximal group of isometries. This, together with p-
adization, would help to satisfy the constancy conditions for P (m → n) inside the sets
for which D(x, y) is non-vanishing. In fact, one expects that since super-generators are
proportional to isometry generators contracted with WCW gamma matrices the metric in the
fermionic degrees of freedom is induced by Kähler metric in the basis of isometry generators.

3. This condition could allow a generalization to include the states obtained by application of
the bosonic generations of An the to ground state. This would mean that in bosonic degrees
of freedom Kähler metric of WCW in the isometry basis defines the transition probabilities.
Tangent vectors of WCW correspond to the isometry generators. An arbitrary number of
isometry generators is involved in the definition of the state. However, the Kähler metric
of WCW induces a Kähler metric in the algebra generated by the isometry generators,
which is analogous to the algebra of tensors.

6.4 M 8 −H duality and HFFs

M8 −H duality [L45, L46] gives strong constraints on the interpretation of HFFs at the number
theoretic M8 side and the geometric H side of the duality. One must also understand the relation
between M8 − H duality and M −M ′ duality, identifiable as quantum-classical correspondence
(QCC).

Although McKay correspondence [A108, A105, A82, A65, A64] is not quite at the core of
M8 − H duality, it is difficult to avoid its discussion. I have considered McKay correspondence
also before [L17, L41, L42, L68].
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6.4.1 Number theoretical level: M8 picture

Braided Galois group algebras

For n-braids the permutation group has extension to a braid group Bn defining an infinite covering
of Sn for which permutation corresponds to a geometric operation exchanging the two strands of
a braid. There are also hierarchies of finite coverings.

Sn is replaced with the Galois group which is a subgroup of Sn and the property of being a
subgroup of Sn allows to identify a braided Galois group as a braided Galois subgroup of braided
Sn. In the same way one can identify the braided Galois group algebra defining HFF as a sub-
algebra of HFF associated with braid group algebra defined by Sn. One can ask whether the
property of being a number theoretic braid could be interpreted as a kind of symmetry breaking
to Sn to the Galois group of P .

M8−H duality [L45, L46] suggests that the roots correspond to braid strands of geometric
braids in H. If so, the braided Galois group would be both topological and number theoretic:
topology, natural at the level of H, and number theory, natural at the level of M8, would meet by
M8 −H duality.

This picture looks nice but one can make critical questions.

1. Can the n roots really correspond to n braid strands at the level of H? The n roots correspond
to, in general complex, algebraic numbers associated with the extension of rationals. The real
projections correspond to mass shells with different mass values mapped to light-cone proper
time surfaces in H by M8 − H duality. Therefore the action of the Galois group changes
mass squared values and does not commute with Lorentz transformations. This suggests a
violation of causality.

Should one restrict the Galois group to the isotropy group of a given root? This would mean
number theoretic symmetry breaking and could relate to massivation. This restriction would
however trivialize the braid.

2. Zero energy ontology (ZEO) could come to the rescue here. In fact, ZEO implies space-time
surfaces are the basic objects rather than 3-surfaces so that quantum states are superpositions
of space-time surfaces as preferred extremals (PEs). This is forced by the slight violation of
determinism of field equations implying also a slight violation of ideal holography.

Space-time surfaces are minimal surfaces [L61] analogous to soap films spanned by frames
and there can be a slight violation of the strict determinism localized to frames as already
2-D case suggests. This could be also seen as violation of classical causality. At the level of
consciousness theory it would be a classical correlate for the non-determinism of intentional
free will.

In particular, time-like braids for which the braiding is time-like and corresponds to a dy-
namical dance pattern, make sense. For these braids one can in principle select the mass
squared value mapped to a value of light-cone proper time a to belong to the braid. The
values of a need not be the same.

Also Galois confinement, which is a key aspect of the number theoretic vision, is involved.

1. Galois confinement states that physical states transform trivially under the Galois group of
extension. This condition for physical states follows as a consequence of periodic boundary
conditions for causal diamond (CD), which takes the role of box for a particle in a box.

A weaker condition would be that singlet property holds only for the isotropy group of a
given root of the polynomial P characterizing the space-time region and corresponding to
mass squared value and at the level of H to a value of the light-cone proper time a.

2. In M8, the momenta of particles are points at the mass shells of M4 ⊂ M8 identifiable as
hyperbolic spaces H3 ⊂M4 defined with mass squared values defined as the roots of P . The
momenta correspond to algebraic integers (the momentum unit is defined by CD) for the
extension defined by P , and in general they are complex. The interpretation is as virtual
particles which form physical particles as composites. The physical states must have total
momenta, which are ordinary integers. This gives the simplest form of Galois confinement.
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3. Commutativity with the Lorentz group would favor the isotropy group instead of the full
Galois group. One must be however very cautious since in zero energy ontology (ZEO)
physical states correspond to a superposition of space-time surfaces and time-like braids are
natural. There is a small violation of strict determinism at the level of preferred extremas.
The labelling of braid strands based on the images of roots as mass squared values at level
of H is quite natural and is not in conflict with causality.

The Galois group for a polynomial Pn ◦ ... ◦ P1 has a decomposition to normal subgroups
GAi acting as Galois groups for the i:th sub-extension.

1. The number of roots is a product of the numbers of roots for Pi. Therefore the natural
identification is that number theoretic braid groups allow a natural interpretation in terms
of braids of braids ... of braids.

2. This hierarchy defines an inclusion hierarchy for the braided HFFs assignable to the polyno-
mials Pk ◦ ... ◦ P1, k = 1, ..., n. It is not quite clear to me whether these inclusions reduce
to Jones inclusions and whether one can characterize the inclusions in the sequence by the
same invariants as in the case of Jones inclusions.

3. In this picture the Connes tensor product would correspond to formation of composite poly-
nomials P ◦Q. The reduction in the number of degrees of freedom from that for the ordinary
tensor product of braided Galois group algebras would be due to interactions described in
terms of polynomial decomposition. Various braids in the hierarchy could correspond to
braids at different sheets of the many-sheeted space-time.

4. Any normal subgroup Gali of Galois group Gal defining a sequence of inclusions of nor-
mal sub-groups Gali can be trivially represented. By normal subgroup property, the ele-
ments of Gal can be represented as semidirect products of elements of the factor groups
Gi = Gali/Gali−1. Any representation of Gal can be decomposed to a direct sum of tensor
products of representations of Gi.

From this decomposition it is clear that any group Gi in the decomposition can be trivially
represented so that one obtains a rich structure of representation in which some Gi:s are
trivially represented.

A possible interpretation is that in TGD, rational polynomials give discrete cognitive rep-
resentations as approximations for physics. Cognitive representations are in the intersection of
p-adicities and reality defined by the intersection of reals and extension of p-adics defined by the
algebraic extension of the polynomial P defining a given space-time surface. Continuum theory
would represent real numbers as a factor of the adele.

One can ask whether the various zeta functions consistent with the integer spectrum for the
conformal weights and possibly also with conformal confinement, appear at the continuum limit
and provide representations for the space-time surfaces at this limit? In this framework, it would
be natural for the roots of zeta to be algebraic numbers [K64]. Also in the case of ζ, the virtual
momenta of fermions would be algebraic integers for virtual fermions and integers for the physical
states. This makes sense if the notions of Galois group and Galois confinement are sensible for ζ.

As noticed, the notion of ζ generalizes. The so-called global L-functions (https://cutt.
ly/3VNPYmp) are formally similar to ζ and the extended Riemann Hypothesis could be true for
them. The physical motivation for RH would be that it would allow fermion with any conformal
weight to appear in a state which is conformal singlet. Algebraic integers for a finite extension of
rationals replace integers in the ordinary ζ and one has an entire hierarchy of L-functions. Could
one think that the global L-functions could define preferred extremals at the continuum limit?

How could the degrees of prime polynomials associated with simple Galois groups and
ramified primes relate to the symmetry algebras acting in H?

The goal is to relate various parameters characterizing polynomials P for which braided Galois
group algebras define HFFs to the parameters labelling the symmetry algebras defining hierarchies
of HFFs at the level H. There are good reasons to believe that polynomial composition defines

https://cutt.ly/3VNPYmp
https://cutt.ly/3VNPYmp
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inclusion of HFFs and that this inclusion induces the inclusions for the symmetry algebras An at
the level of H.

One can identify simple Galois groups as prime groups having no normal subgroups. The
polynomial P associated with a simple Galois group cannot have no non-trivial functional decom-
position Pn ◦ ... ◦ P1 if one stays in the field of rationals (say). This leads to the notion of prime
polynomials. Note that this notion of primeness does not correspond to the irreducibility stating
that polynomials with coefficients in a given number field do not allow decomposition to lower
degree polynomials.

A polynomial P is also partially characterized by ramified primes and discriminant defines
a Galois invariant for the polynomial as also the symmetric polynomials formed from the roots.

How do these two notions of primeness relate to the p-adic prime decomposition of adelic
structures defined by the algebras An, which act at the level of H and decomposed adelically to a
tensor product of all An,p:s?

Simple Galois groups correspond to prime polynomials. This notion looks fundamental
concerning the understanding of the situation at the level of H.

1. Polynomials can be factorized into composites of prime polynomials [A33, A96] (https:
//cutt.ly/HXAKDzT and https://cutt.ly/5XAKCe2). A polynomial, which does not have
a functional composition to lower degree polynomials, is called a prime polynomial. It is not
possible to assign to prime polynomials prime degrees except in special cases. Simple Galois
groups with no normal subgroups must correspond to prime polynomials.

2. For a non-prime polynomial, the number N of the factors Pi, their degrees ni are fixed and
only their order can vary so that ni and n =

∏
ni is an invariant of a prime polynomial

and of simple Galois group [A33, A96]. Note that this composition need not exist for monic
polynomials even if the Galois group is not simple so that polynomial primes in the monic
sense need not correspond to simple Galois groups.

3. The number of the roots of Pi is given by its order ni, and since Galois group and its braided
variant permute the roots as subgroup of Sni , it is natural to assume that the roots define an
ni-braid. The composite polynomial would define braid of braids of ... of braids. At the level
of H the braid strands would correspond to flux tubes and braiding would have a geometric
interpretation.

4. The integer n characterizing the algebra An acting in H would naturally correspond to the
degree of n of P and the decomposition of P to polynomial primes would naturally correspond
to an inclusion hierarchy Ani An1 ⊂ An1n2 ⊂ ... ⊂ An with improving resolution allowing to
see braids and braids of braids.

The corresponding factor spaces realizing the notion of finite measurement resolution, would
be analogous to quantum groups obtained when some number of the highest levels in the
hierarchy of braids in the braid of braids of ... braids are neglected and the entire algebra
is replaced with a quantum group-like structure. This means cutting off some number of
the highest levels in the tree-like hierarchy. The trunk is described by a quantum group-like
object.

5. This hierarchy corresponds to the hierarchy of Galois groups as normal subgroups assignable
to braids in the decomposition and the hierarchy of corresponding braided Galois group
algebras defining inclusions of HFFs. Galois group algebras would act as braid groups inc
corresponding algebras An. Therefore number theoretic and geometric views would fuse
together.

6. Connes tensor product is a central notion in the theory of HFFs and it could be naturally asso-
ciated with the inclusions of brided Galois group algebras. The counterpart for the quantum
group as factor space N/M of the factors would correspond to the inclusion Gali−1 ⊂ Gali as
a normal subgroup. The inclusion defines group Gi = Gali/Gli−1. Also its braided variant is
defined. The factor space of braided group algebras would be the counterpart of the quantum
group Gi.

Note that these quantum group-like objects could be much more general than the quantum
groups defined by subgroups of SU(2) appearing in Jones inclusions.

https://cutt.ly/HXAKDzT
https://cutt.ly/HXAKDzT
https://cutt.ly/5XAKCe2
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What about the interpretation of the ramified primes, which are Galois invariants as also
the root spectrum (but not the roots themselves) and depends on the polynomial.

In accordance with the proposed physical interpretation of the ramified primes as preferred p-
adic primes labelling particles in p-adic thermodynamics, ramified primes pi would define preferred
p-adic primes for the p-adic variants of the algebras An in the adelic generalization of An as tensor
product of p-adic representations of An,p of An. An,pi would be physically and also mathematically
special.

Both the degree n as the number of braids of P and the ramified primes of P would dictate
the physically especially relevant algebras An,pi . For instance, un-ramified primes could be such
that corresponding p-adic degrees of freedom are not excited.

6.4.2 Geometric level: H picture

The hierarchies of algebras SSAn, Affn and In

The algebras An ∈ {SSAn, Affn, In} for n = p acting at the level of WCW seem to have special
properties since the values of the conformal weights for the factor algebras defined by the conditions
that An and [An, A] annihilate physical states, allow the structure of finite field G(p) or even its
extension G(p, k) for conformal weights in extension of rationals. The representations would be
finite-D. Also the values n = pk seem special and the finite field representations of SSAp could be
extended to p-adic representations.

This raises the question, whether one could regard n as a p-adic number? The interpretation
of n as the number of braid strands assignable to roots of the polynomial P with degree n defining
the space-time surface, looks more approriate since it allows braid group algebra of P to act in
SSAn, This identification does not favor this interpretation.

A more plausible interpretation is that the p-adic primes, identifiable as ramified primes of
P , characterize the p-adic representations of SSAn. This also conforms with the interpretation of
preferred p-adic primes characterizing elementary particles as ramified primes.

The polynomials with prime degree could be however physically special. The algebras SSAp,
with p defining the degree of polynomial p allow finite field representations, which extend to p-adic
representations and one can ask whether the prime decomposition of n could allow some kind of
inclusion hierarchy of representations.

This would also give a possible content for the p-adic length scale hypothesis p ' 2k, k
prime, or its generalization involving primes near powers of prime q = 2, 3, 5, .... A more general
form of p-adic length scale hypothesis would be p ' qn, n the degree of P .

Commutants for algebras An and braid group algebras

For the super A ∈ {SSA,Aff, I}, the inclusion Annk to SSAn should define a Connes tensor
product. One would obtain inclusion hierarchies labelled by divisibility hierarchies n1 ÷ n2 ÷ .....
For braid group algebras one obtains similar hierarchies realized in terms of composite polynomials.

What about the already mentioned ”classical” degrees of freedom associated with the fluxes
of the induced Kähler form? They should be included to M ′ at the level of H. The hierarchies of
flux tubes within ... within flux tubes correspond to the hierarchies assignable to M ′ at the level
of H.

The number theoretic degrees of freedom identifiable as invariants of Galois groups should
be included to M ′ at the number theoretical level. The hierarchies of roots assignable to composite
polynomials Pn◦...◦P1 with roots assigned to the strands of time like braid strands could correspond
to these hierarchies at the level of M8.

6.4.3 Wild speculations about McKay correspondence

McKay correspondence is loosely related to the HFFs in TGD framework [L17, L42, L41, L68] and
I cannot avoid the temptation to try to understand it in TGD framework.

1. The origin of the McKay graphs for inclusions is intuitively understood. Representations
of finite subgroups of SU(2) are assignable to 2-D factors. These representations could
correspond to closed subgroups of quaternionic SU(2) on the basis of the reduction to
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M2(C) ⊗ M2(C) ⊗ ..... A reduction of degrees of freedom happens for HFFs since they
are subalgebras of B(H) and this could reduce the closed subgroup to a finite subgroup.

Also the interpretation N as tensor product of M and quantum group SU(2) suggests the
same since quantum groups have a finite number of irreps, when q equal is a root of unity.
The analog of McKay graph coding fusion rules for the quantum group tensor products would
reduce to McKay graphs.

2. Why would the McKay graphs for finite subgroups of U(2) correspond to those for affine
or ordinary Lie algebras? Could these Lie-algebras emerge from the inclusions. This is a
mystery, at least to me.

3. In the TGD framework one can ask why there should be Weyl group of extended ADE
Dynkin diagram assignable to SSAn? SSAn defines a representation of SSA with SSAn and
[SSAn, SSA] acting trivially. Could this representation correspond to an affine or ordinary
ADE algebra? Similar question makes sense for all algebras An ∈ {SSAn, Affn, In}. Ann
would define a cutoff of the SSA so that all generators with conformal weight larger than n
would be represented trivially.

Note that for n = p, the conformal weights of An would define a finite field and if alge-
braic integers also its extension. This case could correspond to polynomials defining cyclic
extension of order p with roots coming as roots of unity.

4. The Weyl groups assignable to the ”factor algebra” of SSAn defined by the gauge conditions
for An and [An, A] and proposed to reduce to ADE type affine or ordinary Lie algebra should
relate to Galois groups for polynomial P with degree n as number of braid strands.

(a) Could the braid strands correspond to the roots of ADE algebra so that roots in the
number theoretic sense would correspond to the roots in the group theoretic sense?
This would conform with Langlands correspondence [K38, A57, A56] discussed from
the TGD perspective in [K38] [L4, L11].

(b) Could the Weyl groups allow identification as subgroups of corresponding Galois groups?

Note that simple Galois groups correspond to so-called prime polynomials [A33, A96] allowing
no decomposition to polynomials of lower degree so that the preferred values of n would
correspond to prime polynomials.

5. Affine electroweak and color algebras an their M4 counterparts would be special since they
wuuld not emerge a dynamical symmetries of SSAn but define algebras Affn and In related
to the light-like partonic orbits. They would also correspond to symmetries both at the level
of M8 and H.

This inspires the following questions, which of course look very naive from the point of view
of a professional mathematician. My only excuse is the strong conviction that the proposed picture
is on the right track. I might be wrong.

1. The Jones inclusion of HFFs [A66, A131, A132] involves an extended or ordinary ADE Dynkin
diagram assignable also to finite subgroups of SU(2) by McKay correspondence [A108].

Could the Weyl group of an extended ADE diagram really correspond to an affine algebra or
quantum group assignable to An? If so, one would have dynamical symmetries and should
relate to the ”factor” space SSA/SSAn in which SSAn defines a measurement resolution.

2. HFF can be regarded algebraically as an infinite tensor power of M2(C). Does the repre-
sentation as a 2 × 2 matrix imply the emergence of representations of a closed subgroup of
SU(2) or its quantum counterpart. Could the reduction of degrees of freedom due to the
finite measurement resolution imply that the closed subgroup reduces to a finite subgroup?
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3. The algebraic decomposition of HFF to an infinite tensor power of M2(C) would suggest that
the including factor N with dimension 1 is equal to Mdq ⊗M1/dq , where dq is the quantum
dimension characterizing eith M or N . Could these two objects correspond to an ADE type
affine algebra and quantum group with inverse quantum dimensions? Or could either of them
correspond to ADE type affine algebra or quantum group?

4. Could one think that the analog of McKay graph for the quantum group-like object assignable
to affine group by a finite measurement resolution reduces to the McKay graph for a finite
subgroup of SU(2) because only a finite number of representations survives?

5. Could the finite subgroups of SU(2) correspond to finite subgroups for the covering group of
quaternion automorphisms acting naturally in M8? Could these finite subgroups correspond
to finite subgroups of the rotation group SU(2) at H side?

Could only the nC (dimension of Cartan algebra) roots appearing in the Dynkin diagram be
represented as roots of a polynomial P in extension of rationals or its quantum variant? This option
fails since the Dynkin diagram does not allow a symmetry group identifiable as the Galois group.
The so called Steinberg symmetry groups (https://cutt.ly/GXMb8Si) act as automorphisms of
Dynkin diagrams of ADE type groups and seem quite too small and fail to be transitive as action
of the Galois group of an irreducible polynomial is.

M8 −H duality inspires the question whether a subgroup of Galois group could act as the
Weyl group of ADE type affine or ordinary Lie algebra at H side.

1. The Galois group acts as a braid group and permutes the roots of P represented as braid
strands. Weyl group permutes the roots of Lie algebra

The crazy question is whether the roots of P and roots of the ADE type Lie-algebra could
correspond to each other. Could the roots of P in N → 1-correspondence with the non-
vanishing roots of the representation of Lie algebra or of its affine counterpart containing an
additional root corresponding to the central extension?

If the roots appearing in the Dynkin diagram correspond to a subset of roots of polynomial
P , the Weyl group could correspond to a minimal subgroup of the Galois group generated
by reflections and generating all non-vanishing roots of the Lie algebra.

2. The action of the Weyl group should give all roots for the representation of G. Could the
Weyl group, which is generated by reflections, correspond to a minimal subgroup of Gal
giving all roots as roots of P when applied to the McKay graph?

The obvious objection is that the order of the Weyl group increases rapidly with the order
of the Cartan group so that also the Gal and also the order of corresponding polynomials
P would increase very rapidly. Gal is a subgroup of Sn having order n! for a polynomial of
degree n so that the degree of P need not be large and this is what matters.

If the m braid strands labelled by the m roots correspond to the roots of the affine algebra,
it would be natural to assign affine algebra generators to these roots with the braid strands.
The condition n = Nm implies that m divides n. For Gal = Sn with order n! this condition
is very mild. Gal = Zp fixes the Lie algebra to Ap.

The root space of the dynamical symmetry group would have dimension m, which is a factor
of n. For Lie algebras An and D2n (with n ≥ 4) appear besides E6 and E8. For affine Lie
algebras Ân or hatDn (with n ≥ 3) and Ê6, Ê7 and Ê8 appear. For large values of n, there
are two alternatives for even values of n.

3. One can also consider quantum arithmetics based on ⊕ and ⊗ and replace P with its quantum
counterpart and solve it in the space of irreps of the finite subgroup G of U(2) defining a
quantum analog for an extension of rationals. The roots of the quantum variant of P would
be direct sums of irreps of G.

These quantum roots define nodes of a diagram. This diagram should include as nodes the
roots of the Dynkin diagram defined by positive roots, whose number is the dimension nC of
Cartan algebra.

https://cutt.ly/GXMb8Si


6.5. About the selection of the action defining the Kähler function of the ”world of
classical worlds” (WCW) 235

Could the missing edges correspond to the edges of the Mac-Kay graph in the tensor product
with a 2-D representation of SU(2) restricted to a subgroup? The action of 2-D representation
would generate the (extended) Dynkin diagram ADE type.

One can look this option in more detail.

1. Assume that adjoint representation Adj of an affine or ordinary ADE Lie group L emerges in
the tensor product M2(C)⊗...⊗M2(C) allowing embedding of SU(2) as diagonal embedding.
One can imbed the finite subgroup G ⊂ SU(2) as a diagonal group G × G × ... × G to
M2(C)⊗ ...⊗M2(C).

Also a given representation of G can be embedded as a direct sum of the copies of the
representation, each acting in one factor of M2(C) ⊗ ... ⊗ M2(C). The 2 − D canonical
representation of G ⊂ SU(2) has a natural action in the G×G×...×G to M2(C)⊗...⊗M2(C)
and would generate a McKay graph.

One can also embed G to L as G ⊂ SU(2) ⊂ L. Adj can be decomposed to irreps G.
Therefore the tensor product action of various irreps of G, in particular the canonical 2-D
representation, in Adj is well-defined. The tensor action of the 2-D canonical representation
of G gives a McKay graph such that the nodes have weights telling how many times a given
irrep appears in the decomposition of Adj to irreps of G. The weighted sum of the dimensions
of irreps of G is equal to the dimension of Adj.

2. This construction is possible for any Lie group and some consistency conditions should be
satisfied. That McKay graph is the same as the generalized Dynkin diagram would be such
a consistency condition and leave only simply laced Lie groups.

3. What can one say about the weights of the weighted McKay graph? Could the weights be
the number of the images of the positive root under the action of the Weyl group W of L.

The McKay graph would correspond only to the nC (dimension of the Cartan algebra)
positive roots appearing in the Dynkin diagram of Adj. How to continue the Dynkin dynkin
to a root diagram of Adj?

4. Could the nC roots in the Dynkin diagram correspond to the roots of a polynomial P in
a quantum extension of rationals with roots as irreps of G appearing in the McKay graph.
The multiple of a given root would correspond to its orbit under W . The action of W as
reflections in the quantum extension of rationals, spanned by the roots of Adj, as vectors
with integer components would generate all roots of Adj as quantum algebraic integers in
the quantum extension of rationals.

5. As proposed, one could interpret the Dynkin diagram as a subdiagram of the root diagram
of Adj and identify its nodes as roots of Gal for a suitable polynomial P . The Weyl group
could be the minimal transitive subgroup of Gal.

6. The Galois group of extension of ... of rationals is a semidirect of Galois groups which can
be chosen to be simple so that the polynomials considered are prime polynomials unless one
poses additional restrictions. What does this restriction mean for the ADE type Weyl group
of assignable to the exrtension

6.5 About the selection of the action defining the Kähler
function of the ”world of classical worlds” (WCW)

The proposal is that space-time surfaces correspond to preferred extremals of some action principle,
being analogous to Bohr orbits, so that they are almost deterministic. The action for the preferred
extremal would define the Kähler function of WCW [K35, K63].

How unique is the choice of the action defining WCW Kähler metric? The problem is that
twistor lift strongly suggests the identification of the preferred extremals as 4-D surfaces having
4-D generalization of complex structure and that a large number of general coordinate invariant
actions constructible in terms of the induced geometry have the same preferred extremals.
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6.5.1 Could twistor lift fix the choice of the action uniquely?

The twistor lift of TGD [L26] [L60, L62, L63] generalizes the notion of induction to the level of
twistor fields and leads to a proposal that the action is obtained by dimensional reduction of the
action having as its preferred extremals the counterpart of twistor space of the space-time surface
identified as 6-D surface in the product T (M4)× T (CP2) twistor spaces of T (M4) and T (CP2)
of M4 and CP2. Only M4 and CP2 allow a twistor space with Kähler structure [A79] so that
TGD would be unique. Dimensional reduction is forced by the condition that the 6-surface
has S2-bundle structure characterizing twistor spaces and the base space would be the space-time
surface.

1. Dimensional reduction of 6-D Kähler action implies that at the space-time level the funda-
mental action can be identified as the sum of Kähler action and volume term (cosmological
constant). Other choices of the action do not look natural in this picture although they
would have the same preferred extremals.

2. Preferred extremals are proposed to correspond to minimal surfaces with singularities such
that they are also extremals of 4-D Kähler action outside the singularities. The physical
analogue are soap films spanned by frames and one can localize the violation of the strict
determinism and of strict holography to the frames.

3. The preferred extremal property is realized as the holomorphicity characterizing string world
sheets, which generalizes to the 4-D situation. This in turn implies that the preferred ex-
tremals are the same for any general coordinate invariant action defined on the induced gauge
fields and induced metric apart from possible extremals with vanishing CP2 Kähler action.

For instance, 4-D Kähler action and Weyl action as the sum of the tensor squares of the
components of the Weyl tensor of CP2 representing quaternionic imaginary units constructed
from the Weyl tensor of CP2 as an analog of gauge field would have the same preferred
extremals and only the definition of Kähler function and therefore Kähler metric of WCW
would change. One can even consider the possibility that the volume term in the 4-D action
could be assigned to the tensor square of the induced metric representing a quaternionic or
octonionic real unit.

Action principle does not seem to be unique. On the other hand, the WCW Kähler form
and metric should be unique since its existence requires maximal isometries.

Unique action is not the only way to achieve this. One cannot exclude the possibility that
the Kähler gauge potential of WCW in the complex coordinates of WCW differs only by a complex
gradient of a holomorphic function for different actions so that they would give the same Kähler
form for WCW. This gradient is induced by a symplectic transformation of WCW inducing a
U(1) gauge transformation. The Kähler metric is the same if the symplectic transformation is an
isometry.

Symplectic transformations of WCW could give rise to inequivalent representations of the
theory in terms of action at space-time level. Maybe the length scale dependent coupling parame-
ters of an effective action could be interpreted in terms of a choice of WCW Kähler function, which
maximally simplifies the computations at a given scale.

1. The 6-D analogues of electroweak action and color action reducing to Kähler action in 4-D
case exist. The 6-D analog of Weyl action based on the tensor representation of quaternionic
imaginary units does not however exist. One could however consider the possibility that only
the base space of twistor space T (M4) and T (CP2) have quaternionic structure.

2. Kähler action has a huge vacuum degeneracy, which clearly distinguishes it from other actions.
The presence of the volume term removes this degeneracy. However, for minimal surfaces
having CP2 projections, which are Lagrangian manifolds and therefore have a vanishing
induced Kähler form, would be preferred extremals according to the proposed definition. For
these 4-surfaces, the existence of the generalized complex structure is dubious.

For the electroweak action, the terms corresponding to charged weak bosons eliminate these
extremals and one could argue that electroweak action or its sum with the analogue of color
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action, also proportional Kähler action, defines the more plausible choice. Interestingly, also
the neutral part of electroweak action is proportional to Kähler action.

Twistor lift strongly suggests that also M4 has the analog of Kähler structure. M8 must be
complexified by adding a commuting imaginary unit i. In the E8 subspace, the Kähler structure
of E4 is defined in the standard sense and it is proposed that this generalizes to M4 allowing also
generalization of the quaternionic structure. M4 Kähler structure violates Lorentz invariance but
could be realized at the level of moduli space of these structures.

The minimal possibility is that the M4 Kähler form vanishes: one can have a different
representation of the Kähler gauge potential for it obtained as generalization of symplectic trans-
formations acting non-trivially in M4. The recent picture about the second quantization of spinors
of M4 × CP2 assumes however non-trivial Kähler structure in M4.

6.5.2 Two paradoxes

TGD view leads to two apparent paradoxes.

1. If the preferred extremals satisfy 4-D generalization of holomorphicity, a very large set of
actions gives rise to the same preferred extremals unless there are some additional conditions
restricting the number of preferred extremals for a given action.

2. WCW metric has an infinite number of zero modes, which appear as parameters of the metric
but do not contribute to the line element. The induced Kähler form depends on these degrees
of freedom. The existence of the Kähler metric requires maximal isometries, which suggests
that the Kähler metric is uniquely fixed apart from a conformal scaling factor Ω depending
on zero modes. This cannot be true: galaxy and elementary particle cannot correspond to
the same Kähler metric.

Number theoretical vision and the hierarchy of inclusions of HFFs associated with supersym-
plectic algebra actings as isometries of WcW provide equivalent realizations of the measurement
resolution. This solves these paradoxes and predicts that WCW decomposes into sectors for which
Kähler metrics of WCW differ in a natural way.

The hierarchy subalgebras of supersymplectic algebra implies the decomposition of
WCW into sectors with different actions

Supersymplectic algebra of δM4
+ ×CP2 is assumed to act as isometries of WCW [L72]. There are

also other important algebras but these will not be discussed now.

1. The symplectic algebra A of δM4
+×CP2 has the structure of a conformal algebra in the sense

that the radial conformal weights with non-negative real part, which is half integer, label the
elements of the algebra have an interpretation as conformal weights.

The super symplectic algebra A has an infinite hierarchy of sub-algebras [L72] such that the
conformal weights of sub-algebras An(SS) are integer multiples of the conformal weights of
the entire algebra. The superconformal gauge conditions are weakened. Only the subalgebra
An(SS) and the commutator [An(SS), A] annihilate the physical states. Also the corresponding
classical Noether charges vanish for allowed space-time surfaces.

This weakening makes sense also for ordinary superconformal algebras and associated Kac-
Moody algebras. This hierarchy can be interpreted as a hierarchy symmetry breakings,
meaning that sub-algebra An(SS) acts as genuine dynamical symmetries rather than mere
gauge symmetries. It is natural to assume that the super-symplectic algebra A does not
affect the coupling parameters of the action.

2. The generators of A correspond to the dynamical quantum degrees of freedom and leave the
induced Kähler form invariant. They affect the induced space-time metric but this effect is
gravitational and very small for Einsteinian space-time surfaces with 4-D M4 projection.

The number of dynamical degrees of freedom increases with n(SS). Therefore WCW decom-
poses into sectors labelled by n(SS) with different numbers of dynamical degrees of freedom
so that their Kähler metrics cannot be equivalent and cannot be related by a symplectic
isometry. They can correspond to different actions.
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Number theoretic vision implies the decomposition of WCW into sectors with different
actions

The number theoretical vision leads to the same conclusion as the hierarchy of HFFs. The number
theoretic vision of TGD based on M8−H duality [L72] predicts a hierarchy with levels labelled by
the degrees n(P ) of rational polynomials P and corresponding extensions of rationals characterized
by Galois groups and by ramified primes defining p-adic length scales.

These sequences allow us to imagine several discrete coupling constant evolutions realized
at the level H in terms of action whose coupling parameters depend on the number theoretic
parameters.

1. Coupling constant evolution with respect to n(P )

The first coupling constant evolution would be with respect to n(P ).

1. The coupling constants characterizing action could depend on the degree n(P ) of the poly-
nomial defining the space-time region by M8 −H duality. The complexity of the space-time
surface would increase with n(P ) and new degrees of freedom would emerge as the number
of the rational coefficients of P .

2. This coupling constant evolution could naturally correspond to that assignable to the in-
clusion hierarchy of hyperfinite factors of type II1 (HFFs). I have indeed proposed [L72]
that the degree n(P ) equals to the number n(braid) of braids assignable to HFF for which
super symplectic algebra subalgebra An(SS) with radial conformal weights coming as n(SS)-
multiples of those of entire algebra A. One would have n(P ) = n(braid) = n(SS). The
number of dynamical degrees of freedom increases with n which just as it increases with
n(P ) and n(SS).

3. The actions related to different values of n(P ) = n(braid) = n(SS) cannot define the same
Kähler metric since the number of allowed space-time surfaces depends on n(SS).

WCW could decompose to sub-WCWs corresponding to different actions, a kind of theory
space. These theories would not be equivalent. A possible interpretation would be as a
hierarchy of effective field theories.

4. Hierarchies of composite polynomials define sequences of polynomials with increasing values
of n(P ) such that the order of a polynomial at a given level is divided by those at the lower
levels. The proposal is that the inclusion sequences of extensions are realized at quantum
level as inclusion hierarchies of hyperfinite factors of type II1.

A given inclusion hierarchy corresponds to a sequence n(SS)i such that n(SS)i divides
n(SS)i+1. Therefore the degree of the composite polynomials increases very rapidly. The
values of n(SS)i can be chosen to be primes and these primes correspond to the degrees
of so called prime polynomials [L66] so that the decompositions correspond to prime fac-
torizations of integers. The ”densest” sequence of this kind would come in powers of 2 as
n(SS)i = 2i. The corresponding p-adic length scales (assignable to maximal ramified primes

for given n(SS)i) are expected to increase roughly exponentially, say as 2r2
i

. r = 1/2 would
give a subset of scales 2r/2 allowed by the p-adic length scale hypothesis. These transitions
would be very rare.

A theory corresponding to a given composite polynomial would contain as sub-theories the
theories corresponding to lower polynomial composites. The evolution with respect to n(SS)
would correspond to a sequence of phase transitions in which the action genuinely changes.
For instance, color confinement could be seen as an example of this phase transition.

5. A subset of p-adic primes allowed by the p-adic length scale hypothesis p ' 2k defining the
proposed p-adic length scale hierarchy could relate to nS changing phase transition. TGD
suggests a hierarchy of hadron physics corresponding to a scale hierarchy defined by Mersenne
primes and their Gaussian counterparts [K46, K47]). Each of them would be characterized
by a confinement phase transition in which nS and therefore also the action changes.
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2. Coupling constant evolutions with respect to ramified primes for a given value of n(P )

For a given value of n(P ), one could have coupling constant sub-evolutions with respect to
the set of ramified primes of P and dimensions n = heff/h0 of algebraic extensions. The action
would only change by U(1) gauge transformation induced by a symplectic isometry of WCW.
Coupling parameters could change but the actions would be equivalent.

The choice of the action in an optimal manner in a given scale could be seen as a choice
of the most appropriate effective field theory in which radiative corrections would be taken into
account. One can interpret the possibility to use a single choice of coupling parameters in terms
of quantum criticality.

The range of the p-adic length scales labelled by ramified primes and effective Planck con-
stants heff/h0 is finite for a given value of n(SS).

The first coupling constant evolution of this kind corresponds to ramified primes defining
p-adic length scales for given n(SS).

1. Ramified primes are factors of the discriminantD(P ) of P , which is expressible as a product of
non-vanishing root differents and reduces to a polynomial of the n coefficients of P . Ramified
primes define p-adic length scales assignable to the particles in the amplitudes scattering
amplitudes defined by zero energy states.

P would represent the space-time surface defining an interaction region in N−-particle scat-
tering. The N ramified primes dividing D(P ) would characterize the p-adic length scales
assignable to these particles. If D(P ) reduces to a single ramified prime, one has elementary
particle [L66], and the forward scattering amplitude corresponds to the propagator.

This would give rise to a multi-scale p-adic length scale evolution of the amplitudes analogous
to the ordinary continuous coupling constant evolution of n-point scattering amplitudes with
respect to momentum scales of the particles. This kind of evolutions extend also to evolutions
with respect to n(SS).

2. According to [L66], physical constraints require that n(P ) and the maximum size of the
ramified prime of P correlate.

A given rational polynomial of degree n(P ) can be always transformed to a polynomial with
integer coefficients. If the integer coefficients are smaller than n(P ), there is an upper bound
for the ramified primes. This assumption also implies that finite fields become fundamental
number fields in number theoretical vision [L66].

3. p-Adic length scale hypothesis [L73] in its basic form states that there exist preferred primes
p ' 2k near some powers of 2. A more general hypothesis states that also primes near some
powers of 3 possibly also other small primes are preferred physically. The challenge is to
understand the origin of these preferred scales.

For polynomials P with a given degree n(P ) for which discriminant D(P ) is prime, there
exists a maximal ramified prime. Numerical calculations suggest that the upper bound
depends exponentially on n(P ).

Could these maximal ramified primes satisfy the p-adic length scale hypothesis or its general-
ization? The maximal prime defines a fixed point of coupling constant evolution in accordance
with the earlier proposal. For instance, could one think that one has p ' 2k, k = n(SS)? Each
p-adic prime would correspond to a p-adic coupling constant sub-evolution representable in
terms of symplectic isometries.

Also the dimension n of the algebraic extension associated with P , which is identified in
terms of effective Planck constant heff/h0 = n labelling different phases of the ordinary matter
behaving like dark matter, could give rise to coupling constant evolution for given n(SS). The
range of allowed values of n is finite. Note however that several polynomials of a given degree can
correspond to the same dimension of extension.

Number theoretic discretization of WCW and maxima of WCW Kähler function

Number theoretic approach involves a unique discretization of space-time surface and also of WCW.
The question is how the points of the discretized WCW correspond to the preferred extremals.
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1. The exponents of Kähler function for the maxima of Kähler function, which correspond to
the universal preferred extremals, appear in the scattering amplitudes. The number theo-
retical approach involves a unique discretization of space-time surfaces defining the WCW
coordinates of the space-time surface regarded as a point of WCW.

In [L72] it is assumed that these WCW points appearing in the number theoretical discretiza-
tion correspond to the maxima of the Kähler function. The maxima would depend on the
action and would differ for ghd maxima associated with different actions unless they are not
related by symplectic WCW isometry.

2. The symplectic transformations of WCW acting as isometries are assumed to be induced by
the symplectic transformations of δM4

+×CP2 [K35, K20]. As isometries they would naturally
permute the maxima with each other.

6.6 About the TGD based notions of mass, of twistors and
hyperbolic counterpart of Fermi torus

The notion of mass in the TGD framework is discussed from the perspective of M8 −H duality
[L45, L46, L73, L63].

1. In TGD, space-time regions are characterized by polynomials P with rational coefficients
[L45, L46]. Galois confinement defines a universal mechanism for the formation of bound
states. Momenta for virtual fermions have components, which are algebraic integers in
an extension of rationals defined by a polynomial P characterizing a space-time region.
For the physical many fermion states, the total momentum as the sum of fermion momenta
has components, which are integers using the unit defined by the size of the causal diamond
(CD) [L38, L57, L64].

2. This defines a universal number theoretical mechanism for the formation of bound states as
Galois singlets. The condition is very strong but for rational coefficients it can be satisfied
since the sum of all roots is always a rational number as the coefficient of the first order
term.

3. Galois confinement implies that the sum of the mass squared values, which are in general
complex algebraic numbers in E, is also an integer. Since the mass squared values correspond
to conformal weights as also in string models, one has conformal confinement: states are
conformal singlets. This condition replaces the masslessness condition of gauge theories
[L73].

Also the TGD based notion of twistor space is considered at concrete geometric level.

1. Twistor lift of TGD means that space-time surfaces X4 is H = M4 ×CP2 are replaced with
6-surfaces in the twistor space with induced twistor structure of T (H) = T (M4)×T (CP2)
identified as twistor space T (X4). This proposal requires that T(H) has Kähler structure
and this selects M4 × CP2 as a unique candidate [A79] so that TGD is unique.

2. One ends up to a more precise understanding of the fiber of the twistor space of CP2 as a
space of ”light-like” geodesics emanating from a given point. Also a more precise view of
the induced twistor spaces for preferred extremals with varying dimensions of M4 and CP2

projections emerges. Also the identification of the twistor space of the space-time surface as
the space of light-like geodesics itself is considered.

3. Twistor lift leads to a concrete proposal for the construction of scattering amplitudes. Scat-
tering can be seen as a mere re-organization of the physical many-fermion states as Galois
singlets to new Galois singlets. There are no primary gauge fields and both fermions and
bosons are bound states of fundamental fermions. 4-fermion vertices are not needed so that
there are no divergences.
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4. There is however a technical problem: fermion and antifermion numbers are separately
conserved in the simplest picture, in which momenta in M4 ⊂M8 are mapped to geodesics of
M4 ⊂ H.The led to a proposal for the modification of M8−H duality [L45, L46]. The mod-
ification would map the 4-momenta to geodesics of X4. Since X4 allows both Minkowskian
and Euclidean regions, one can have geodesics, whose M4 projection turns backwards in
time. The emission of a boson as a fermion-antifermion pair would correspond to a fermion
turning backwards in time. A more precise formulation of the modification shows that it
indeed works

The third topic of this article is the hyperbolic generalization of the Fermi torus to hyper-
bolic 3-manifold H3/Γ. Here H3 = SO(1, 3)/SO(3) identifiable the mass shell M4 ⊂ M8 or its
M8 − H dual in H = M4 × CP2. Γ denotes an infinite subgroup of SO(1, 3) acting completely
discontinuously in H3. For virtual fermions also complexified mass shells are required and the ques-
tion is whether the generalization of H3/Γ, defining besides hyperbolic 3-manifold also tessellation
of H3 analogous to a cubic lattice of E3.

6.6.1 Conformal confinement

The notion of mass distinguishes TGD from QFT. As in string models, mass squared corresponds
to a conformal weight in TGD. However, in the TGD framework tachyonic states are not a curse
but an essential part of the physical picture and conformal confinement, generalizing massless-
ness condition, states that the sum of conformal weights for physical states vanishes. This view
conforms with the fact that Euclidean space-time regions are unavoidable at the level of H. Pos-
itive resp. negative resp. vanishing conformal weights can be assigned with Minkowskian resp.
Euclidean space-time regions resp. light-like boundaries associated with them.

Mass squared as conformal weight, conformal confinement and its breaking

At the level of M8, the momentum components for momenta as points of H3
c ⊂M4

c ⊂M8
c are

(in general complex) algebraic integers in an extension of rationals defined by the polynomial P
defining the space-time region. For physical states the momentum components for the sum of the
momenta are ordinary integers when the momentum unit is defined by the size scales of causal
diamond (CD). This scale corresponds to a p-adic length scale for p-adic prime, which is a ramified
prime of the extension of rationals defined by the polynomial P .

For virtual many-fermion states the mass squared is an algebraic integer but an ordinary
integer for the physical states [L73]. The question is whether the mass squared for the physical
states can be negative so that one would have tachyons. The p-adic mass calculations require the
presence of tachyonic mass squared values and the proposal is conformal confinement in the sense
that the sum of mass squared values for the particles present in state and identifiable as conformal
weights sum up to zero. Conformal confinement would generalize the masslessness condition of
gauge field theories.

The observed mass squared values would correspond to the Minkowskian non-tachyonic parts
of the mass squared values assignable to states, which in general are entangled states formed from
tachyonic and non-tachyonic states. p-Adic thermodynamics would describe the entanglement
in terms of the density matrix and observed mass squared would be thermal average. p-Adic
thermodynamics leads to a breaking of the generalized conformal invariance and explains why
different values of the Virasoro scaling generator L0 are involved. Since complex mass squared
values with a negative real part are allowed as roots of polynomials, the condition is highly
non-trivial.

Association of mass squared values to space-time regions

M8 − H duality [L45, L46] would make it natural to assign tachyonic masses with CP2 type
extremals and with the Euclidean regions of the space-time surface. Time-like masses would be
assigned with time-like space-time regions. In [L71] it was found that, contrary to the beliefs held
hitherto, it is possible to satisfy boundary conditions for the action action consisting of the Kähler
action, volume term and Chern-Simons term, at boundaries (genuine or between Minkowskian and
Euclidean space-time regions) if they are light-like surfaces satisfying also detg4 = 0. Masslessness,
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at least in the classical sense, would be naturally associated with light-like boundaries (genuine
or between Minkowskian and Euclidean regions).

Riemann zeta, quantum criticality, and conformal confinement

The assumption that the space-time surface corresponds to rational polynomials in TGD is not
necessary. One can also consider real analytic functions f [L63]. The condition that momenta
of physical states have integer valued momentum components implies integer valued conformal
weights poses extremely strong conditions on this kind of functions since the sum of the real parts
of the roots of f must be an integer as a conformal weight identified as the sum of in general
complex virtual mass squared values.

There are strong indications Riemann zeta (https://cutt.ly/iVTV1kqs) has a deep role
in physics, in particular in the physics of critical systems. TGD Universe is quantum critical.
What quantum criticality would mean at the space-time level is discussed in [L71]. This raises the
question whether Riemann zeta could have a deep role in TGD.

First some background relating to the number theoretic view of TGD.

1. In TGD, space-time regions are characterized by polynomials P with rational coefficients
[L45, L46]. Galois confinement defines a universal mechanism for the formation of bound
states. Momenta for virtual fermions have components, which are algebraic integers in an
extension of rationals defined by a polynomial P characterizing space-time region. For the
physical many fermion states, the total momentum as the sum of fermion momenta has
components, which are integers using the unit defined by the size of the causal diamond
(CD).

This defines a universal number theoretical mechanism for the formation of bound states.
The condition is very strong but for rational coefficients it can be satisfied since the sum of
all roots is always a rational number as the coefficient of the first order term.

2. Galois confinement implies that the sum of the mass squared values, which are in general
complex algebraic numbers in E, is also an integer. Since the mass squared values correspond
to conformal weights as also in string models, one can have conformal confinement: states
would be conformal singlets. This condition replaces the masslessness condition of gauge
theories [L73].

Riemann zeta [A60] (https://cutt.ly/oVNSltD)is not a polynomial but has infinite number
of roots. How could one end up with Riemann zeta in TGD? One can also consider the replacement
of the rational polynomials with analytic functions with rational coefficients or even more general
functions [L63].

1. For real analytic functions roots come as pairs but building many-fermion states for which
the sum of roots would be a real integer, is very difficult and in general impossible.

2. Riemann zeta and the hierarchy of its generalizations to extensions of rationals (Dedekind
zeta functions, and L-functions in general) is however a complete exception! If the roots are
at the critical line as the generalization of Riemann Hypothesis (RH) assumes, the sum of
the root and its conjugate is equal to 1 and it is easy to construct many fermion states as
2N fermion states, such that they have integer value conformal weight.

Since zeta has also trivial zeros for even negative integers interpretable in terms of tachyonic
states, also conformal confinement with vanishing net conformal weight for physical states
is possible. The trivial zeros would be associated with Euclidean space-time regions and
non-trivial ones to Minkowskian ones.

One can wonder whether one could see Riemann zeta as an analog of a polynomial such that
the roots as zeros are algebraic numbers. This is however not necessary. Could zeta and
its analogies allow it to build a very large number of Galois singlets and they would form
a hierarchy corresponding to extensions of rationals. Could they represent a kind of second
abstraction level after rational polynomials?

https://cutt.ly/iVTV1kqs
https://cutt.ly/oVNSltD
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A possible interpretation is that in TGD, rational polynomials give discrete cognitive rep-
resentations as approximations for physics. Cognitive representations are in the intersection of
p-adicities and reality defined by the intersection of reals and extension of p-adics defined by the
algebraic extension of the polynomial P defining a given space-time surface. Continuum theory
would represent real numbers as a factor of the adele.

One can ask whether the various zeta functions consistent with the integer spectrum for the
conformal weights and possibly also with conformal confinement, appear at the continuum limit
and provide representations for the space-time surfaces at this limit? In this framework, it would
be natural for the roots of zeta to be algebraic numbers [K64]. Also in the case of ζ, the virtual
momenta of fermions would be algebraic integers for virtual fermions and integers for the physical
states. This makes sense if the notions of Galois group and Galois confinement are sensible for ζ.

As noticed, the notion of ζ generalizes. The so-called global L-functions (https://cutt.ly/
3VNPYmp) are formally similar to ζ and the extended Riemann Hypothesis (RH) could be true for
them. The physical motivation for RH would be that it would allow a fermion with any conformal
weight to appear in a state which is conformal singlet. Algebraic integers for a finite extension of
rationals replace integers in the ordinary ζ and one has an entire hierarchy of L-functions. Could
one think that the global L-functions could define preferred extremals at the continuum limit?

6.6.2 About the notion of twistor space

For the twistor lift of TGD, twistor space T (X4) of the space-time surface X4 is identified an S2

bundle over X4 obtained by the induction of the twistor bundle T (H) = T (M4)× T (CP2). The
definition of the T (X4) as 6-surface in T (H) identifies the twistor spheres of T (M4) and T (CP2)
and identifies it as a twistor sphere of T (X4).

The notion of twistor space for different different types of preferred extremals

I have not previously considered the notion of the induced twistor space for the different types of
preferred extremals. Here some technical complications emerge.

1. Since the points of the twistor spaces T (M4) and T (CP2) are in 1-1 correspondence, one
can use either T (M4) or T (CP2) so that the projection to M4 or CP2 would serve as the
base space of T (X4). One could use either CP2 coordinates or M4 coordinates as space-time
coordinates if the dimension of the projection is 4 to either of these spaces. In the generic
case, both dimensions are 4 but one must be very cautious with genericity arguments, which
turned out to fail at the level of M8 [L45, L46].

2. There are exceptional situations in which genericity fails at the level of H. String-like objects
of the form X2× Y 2 ⊂M4 ⊂ CP2 is one example of this. In this case, X6 would not define
1-1 correspondence between T (M4) or T (CP2).

Could one use partial projections to M2 and S2 in this case? Could T (X4) be divided locally
into a Cartesian product of 3-D M4 part projecting to M2 ⊂M4 and of 3-D CP2 part
projected to Y 2 ⊂ CP2?

3. One can also consider the possibility of defining the twistor space T (M2 × S2). Its fiber
at a given point would consist of light-like geodesics of M2 × S2. The fiber consists of
direction vectors of light-like geodesics. S2 projection would correspond to a geodesic circle
S1 ⊂ S2 going through a given point of S2 and its points are parametrized by azimuthal
angle Φ. Hyperbolic tangent tanh(η) with range [−1, 1] would characterize the direction of
a time like geodesic in M2. At the limit of η → ±∞ the S2 contribution to the S2 tangent
vector to length squared of the tangent vector vanishes so that all angles in the range (0, 2π)
correspond to the same point. Therefore the fiber space has a topology of S2.

There are also other special situations such as M1×S3, M3×S1 for which one must introduce
specific twistor space and which can be treated in the same way.

To deal with these special cases in which the dimensions of both M4 and CP2 are not equal
to 4, one must allow also 6-surfaces X6 which can have dimension of M4 and CP2 projections
which are different from the canonical value 4. For CP2 type extremals the dimension of CP2

https://cutt.ly/3VNPYmp
https://cutt.ly/3VNPYmp
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projection would be 6 and the dimension of M4 projection would be 1. For cosmic strings the
dimensions of M4 projection and CP2 projection would be 2.

The concrete definition of the twistor space of H as the space of light-like geodesics

During the writing of this article I realized that the twistor space of H defined geometrically as
a bundle, which has as H as base space and fiber as the space of light-like geodesic starting
from a given point of H, need not be equal to T (M4)× T (CP2), where T (CP2) is identified as
SU(3)/U(1)× U(1) characterizing the choices of color quantization axes. Is this really the case?

1. The definition of T (CP2) as the space of light-like geodesics from a given point of CP2 is
not possible. One could also define the fiber space of T (CP2) geometrically as the space
of geodesics emating from origin at r = 0 in the Eguchi-Hanson coordinates [K11] and
connecting it to the homologically non-trivial geodesic sphere S2

G r = ∞. This relation is
symmetric.

In fact, all geodesics from r = 0 end up to S2. This is due to the compactness and symmetries
of CP2. In the same way, the geodesics from the North Pole of S2 end up to the South
Pole. If only the endpoint of the geodesic of CP2 matters, one can always regard it as a
point S2

G.

The two homologically non-trivial geodesic spheres associated with distinct points of CP2

always intersect at a single point, which means that their twistor fibers contain a common
geodesic line of this kind. Also the twistor spheres of T (M4) associated with distinct points
of M4 with a light-like distance intersect at a common point identifiable as a light-like
geodesic connecting them.

2. Geometrically, a light-like geodesic of H is defined by a 3-D momentum vector in M4 and
3-D color momentum along CP2 geodesic. The scale of the 8-D tangent vector does not
matter and the 8-D light-likeness condition holds true. This leaves 4 parameters so that
T (H) identified in this way is 12-dimensional.

The M4 momenta corresponds to a mass shell H3. Only the momentum direction matters
so that also in the M4 sector the fiber reduces to S2. If this argument is correct, the
space of light-like geodesics at point of H has the topology of S2 × S2 and T (H) would
reduce to T (M4)× T (CP2) as indeed looks natural.

The twistor space of the space-time surface

The twistor lift of TGD allows to identify the twistor space of the space-time surface X4 as the
base space of the S2 bundle induced from the 12-D twistor space T (8) = T (M4) × CP(2) to
the 6-surface X6 ⊂ T (H) by a local dimensional reduction to X4 × S2 occurring for the preferred
extremals of 6-D Kähler action existing only in case of H = M4 × CP2.

Could the geometric definition of T (X4) as the space of light-like geodesics make sense in
the Minkowskian regions of X4?

1. By their definition, stating that the length of the tangent vector of the geodesic is conserved,
the geodesic equations conserve the value of the velocity squared so that light-likeness can
be forced via the initial values. This allows the assignment of a twistor sphere to a given point
of a Minkowskian space-time region. Whether this assignment can be made global is not at
all trivial and the difficulties related to the definition of twistor space in general relativity
probably reflects this problem. If this is the case, then the direct geometric definition might
not make sense unless the very special properties of the PEs come to rescue.

2. The twistor lift of TGD is proposed to modify the definition of the twistor space so that
one can assign twistor structure to the space-time surface by inducing the twistor structure
of H just as one can assign spinor structure with the space-time surface by inducing the
spinor structure of H.

Could the generalized holomorphic structure, implying that PEs are extremals of both
volume and of 4-D Kähler action, make possible the existence of light-like geodesics and
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even allow to assign to a given point of the space-time surface sphere parametrizing light-like
geodesics?

3. The light-like 3-surfaces X3 representing partonic orbits carry fermionic lines as light-like
geodesics and are therefore especially interesting. They are metrically 2-D and boundary
conditions for the field equations force the vanishing of the determinant det(g4) of the induced
metric at them so that the dimension of the tangent space is effectively reduced. Light-like
3-surfaces allow a generalization of isometries such that conformal symmetries accompanied
by scaling of the light-like radial coordinate depending on transversal complex coordinates is
isometry.

It seems that to a given point of the space-like intersection, only a single light-like geodesic
can be assigned so that the twistor space at a given point would consist of a single light-like
geodesic. This would be caused by the light-likeness of X3.

The geometric definition of the twistor space for CP2

In the case of the Euclidean regions, the notion of a light-like geodesic does not make sense.
The closed geodesics and the presence of pairs of points analogous to North pole-South pole pairs,
where diverging geodesics meet, would be required. This condition is very strong and the minimal
requirement is that the space has a positive curvature so that the geodesics do not diverge. Also
symmetries seem to be necessary. Clearly, something new is required.

1. The addition of Kähler coupling term equal to an odd multiple of the induced Kähler gauge
potential A to the spinor connection is an essential element in the definition of a generalized
spinor structure of CP2.

2. Should one replace the light-like geodesics with orbits of Kähler charged particles for which
CP2 has been replaced with p− qKA. For the counterparts of light-like geodesics p− qKA
would vanish and the analog of mass squared would vanish but one would have a line. For a
geodesic p would be constant.

Is it possible to have A = constant along a closed geodesic? In the case of sphere, the
Kähler gauge potential in the spherical coordinates is (Aθ = Aφ = kcos(θ) and is constant
along the geodesics going through South and North Poles. Something like this could happen
in the case of CP2 but it seems that a special pair of homological non-trivial spheres S2

invariant under U(2) ⊂ SU(3) is selected. One might perhaps speak of symmetry breaking.

To obtain entire S2 of light-like geodesics in this sense, the geodesics must emanate from a
coordinate singularity, the origin of Eguchi-Hanson coordinates at r = 0, where the values of
the coordinates (θ, φ, ψ) correspond to the same point. The space for the light-like geodesics
must be 2-D rather than 3-D. This must be forced by the p − A = 0 condition. For the
homologically trivial geodesic sphere r =∞, Ψ coordinate is redundant so that the conserved
value of Aψ must vanish for the light-like geodesics and the associated velocities cannot have
component in the direction of Ψ.

3. Note that this definition could apply also in Minkowskian regions of space-time surface.

The description of particle reactions without vertices

In standard field theory, particles are point-like and particle reactions are described using vertices
assignable to non-linear interaction terms in the action.

1. In the TGD framework, particles are replaced with 3-surfaces and elementary particles are
assigned to partonic 2-surface whose orbits correspond to light-like 3-surfaces identifiables as
the boundary regions between Minkowskian and Euclidean space-time regions and modelled
as wormhole contacts between two space-time sheets with a Minkowskian signature. Vertices
are replaced with topological vertices at which incoming partonic 2-surfaces, whose orbits
are light-like 3-surfaces, meet at partonic 2-surfaces.
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2. In TGD, all particles are composites of fundamental fermions assignable to the wormhole
throats identified as partonic orbits. In particular, bosons consist of fermions and an-
tifermions assignable to the throats of wormholes. Since wormhole contact contains ho-
mologically trivial 2-surface of CP2, there is a monopole flux throwing out of the throat and
one must have at least two wormhole contacts so that one obtains a closed monopole flux
flowing between the sheets and forming a closed flux tube.

3. The light-like orbits of the partonic 2-surfaces contain fermionic lines defined at the ends
of string world sheets connecting different partonic orbits. In QFT description, this would
require a 4-fermion vertex as a fundamental vertex involving dimensional coupling constant
and leading to a non-renormalizable QFT. Therefore there can be no vertices at the level of
fermion lines.

In the number theoretic vision based on Galois confinement [L62, L63], the interactions
correspond at the level of M8 to re-arrangements of virtual fermions, having virtual momentum
components in the extension of rationals defined by P , to new combinations required to be Galois
singlets and therefore having momentum components, which are ordinary integers. Note that P
fixes by holography the 4-surface in M8 in turn defining the space-time surface in H by M8−H
duality based on associativity.

There is however a problem. If the particle reactions are mere re-arrangements of funda-
mental fermions and antifermions, moving along light-like geodesic lines in fixed time direction,
the total numbers of fermions and antifermions are separately conserved. How can one overcome
this problem without introducing the disastrous 4-fermion vertex?

Consider FFB vertex describing boson emission by fermion as a concrete example.

1. B is described as a pair of partonic surfaces containing at least one fermion-antifermion pair,
which must be created in the vertex. Incoming particles for the topolocal FFB 3-vertex
correspond to partonic orbits for incoming F and outgoing F , each containing one fermion
line and possibly a pair of fermion and antifermion.

2. The idea is that boson emission as a pair creation could be described geometrically as a
turning of fermion backwards in time. This forces us to reconsider the definition of M8−H
duality. The simplest view of M8−H duality is that momenta of M4 ⊂M8 are mapped to
the geodesic lines of M4. Tachyonic momenta in M4 ⊂M8 would be mapped to space-like
geodesics in H emanating from the center of CD which is a sub-CD of a larger CD in general.
It seems that this definition does not allow us to understand boson emission by fermion in
the way proposed in [L63].

3. This led to a proposal that the images of momenta could be geodesics of the space-time surface
X4, rather than H. Since X4 allows also Euclidean regions and the interiors of the deformed
CP2 type extremals are Euclidean, one ends up with the idea that the geodesics lines of X4

can have M4 projections, which turn backwards in the time direction [L45, L46, L60].

This would allow us to interpret the emission of a boson as a fermion-antifermion pair as
the turning of a fermionic line backwards in time. Fermions lines would be identified as the
boundaries of string world sheets. Sub-manifold gravitation would play a key role in the
elimination of 4-fermion vertex and thus of QFT type divergences.

4. But is it possible to have a light-like geodesic arriving at the partonic 2-surface and contin-
uing as a light-like geodesic in the Euclidean wormhole contact and returning back? The
problem is that in Euclidean regions, ordinary light-like geodesics degenerate to points. The
generalization of the light-like geodesics satisfying p = qA implying (p−qA)2 = 0 is possible.
At the space-time level, these conditions could be true quite generally and give as a special
case light-like geodesics with p2 = 0 in the Minkowskian regions.

6.6.3 About the analogies of Fermi torus and Fermi surface in H3

Fermi torus (cube with opposite faces identified) emerges as a coset space of E3/T 3, which defines
a lattice in the group E3. Here T 3 is a discrete translation group T 3 corresponding to periodic
boundary conditions in a lattice.
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In a realistic situation, Fermi torus is replaced with a much more complex object having
Fermi surface as boundary with non-trivial topology. Could one find an elegant description of the
situation?

Hyperbolic manifolds as analogies for Fermi torus?

The hyperbolic manifold assignable to a tessellation of H3 defines a natural relativistic generaliza-
tion of Fermi torus and Fermi surface as its boundary. To understand why this is the case, consider
first the notion of cognitive representation.

1. Momenta for the cognitive representations [L72] define a unique discretization of 4-surface in
M4 and, by M8−H duality, for the space-time surfaces in H and are realized at mass shells
H3 ⊂M4 ⊂M8 defined as roots of polynomials P . Momentum components are assumed to
be algebraic integers in the extension of rationals defined by P and are in general complex.

If the Minkowskian norm instead of its continuation to a Hermitian norm is used, the mass
squared is in general complex. One could also use Hermitian inner product but Minkowskian
complex bilinear form is the only number-theoretically acceptable possibility. Tachyonicity
would mean in this case that the real part of mass squared, invariant under SO(1, 3) and
even its complexification SOc(1, 3), is negative.

2. The active points of the cognitive representation contain fermion. Complexification of H3

occurs if one allows algebraic integers. Galois confinement [L72, L68] states that physical
states correspond to points of H3 with integer valued momentum components in the scale
defined by CD.

Cognitive representations are in general finite inside regions of 4-surface of M8 but at H3

they explode and involve all algebraic numbers consistent with H3 and belonging to the
extension of rationals defined by P . If the components of momenta are algebraic integers,
Galois confinement allows only states with momenta with integer components favored by
periodic boundary conditions.

Could hyperbolic manifolds as coset spaces SO(1, 3)/Γ, where Γ is an infinite discrete sub-
group SO(1, 3), which acts completely discontinuously from left or right, replace the Fermi torus?
Discrete translations in E3 would thus be replaced with an infinite discrete subgroup Γ. For a
given P , the matrix coefficients for the elements of the matrix belonging to Γ would belong to an
extension of rationals defined by P .

1. The division of SO(1, 3) by a discrete subgroup Γ gives rise to a hyperbolic manifold with
a finite volume. Hyperbolic space is an infinite covering of the hyperbolic manifold as a
fundamental region of tessellation. There is an infinite number of the counterparts of Fermi
torus [L54]. The invariance respect to Γ would define the counterpart for the periodic bound-
ary conditions.

Note that one can start from SO(1, 3)/Γ and divide by SO(3) since Γ and SO(3) act from
right and left and therefore commute so that hyperbolic manifold is SO(3) \ SO(1, 3)/Γ.

2. There is a deep connection between the topology and geometry of the Fermi manifold as a
hyperbolic manifold. Hyperbolic volume is a topological invariant, which would become a
basic concept of relativistic topological physics (https://cutt.ly/RVsdNl3).

The hyperbolic volume of the knot complement serves as a knot invariant for knots in S3.
Could this have physical interpretation in the TGD framework, where knots and links,
assignable to flux tubes and strings at the level of H, are central. Could one regard the
effective hyperbolic manifold in H3 as a representation of a knot complement in S3?

Could these fundamental regions be physically preferred 3-surfaces at H3 determining the
holography and M8 − H duality in terms of associativity [L45, L46]. Boundary conditions
at the boundary of the unit cell of the tessellation should give rise to effective identifications
just as in the case of Fermi torus obtained from the cube in this way.

https://cutt.ly/RVsdNl3
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De Sitter manifolds as tachyonic analogies of Fermi torus do not exist

Can one define the analogy of Fermi torus for the real 4-momenta having negative, tachyonic mass
squared? Mass shells with negative mass squared correspond to De-Sitter space SO(1, 3)/SO(1, 2)
having a Minkowskian signature. It does not have analogies of the tessellations of H3 defined by
discrete subgroups of SO(1, 3).

The reason is that there are no closed de-Sitter manifolds of finite size since no infinite
group of isometries acts completely discontinuously on de Sitter space: therefore these is no group
replacing the Γ in H3/Γ. (https://cutt.ly/XVsdLwY).

Do complexified hyperbolic manifolds as analogies of Fermi torus exist?

The momenta for virtual fermions defined by the roots defining mass squared values can also be
complex. Tachyon property and complexity of mass squared values are not of course not the same
thing.

1. Complexification of H3 would be involved and it is not clear what this could mean. For
instance, does the notion of complexified hyperbolic manifold with complex mass squared
make sense.

2. SO(1, 3) and its infinite discrete groups Γ act in the complexification. Do they also act
completely discontinuously? p2 remains invariant if SO(1, 3) acts in the same way on the
real and imaginary parts of the momentum leaves invariant both imaginary and complex mass
squared as well as the inner product between the real and imaginary parts of the momenta.
So that the orbit is 5-dimensional. Same is true for the infinite discrete subgroup Γ so that
the construction of the coset space could make sense. If Γ remains the same, the additional 2
dimensions can make the volume of the coset space infinite. Indeed, the constancy of p1 · p2

eliminates one of the two infinitely large dimensions and leaves one.

Could one allow a complexification of SO(1, 3), SO(3) and SO(1, 3)c/SO(3)c? Complexified
SO(1, 3) and corresponding subgroups Γ satisfy OOT = 1. Γc would be much larger and
contain the real Γ as a subgroup. Could this give rise to a complexified hyperbolic manifold
H3
c with a finite volume?

3. A good guess is that the real part of the complexified bilinear form p · p determines what
tachyonicity means. Since it is given by Re(p)2 − Im(p)2 and is invariant under SOc(1, 3)
as also Re(p) · Im(p), one can define the notions of time-likeness, light-likeness, and space-
likeness using the sign of Re(p)2 − Im(p2) as a criterion. Note that Re(p)2 and Im(p)2 are
separately invariant under SO(1, 3).

The physicist’s naive guess is that the complexified analogies of infinite discrete and discon-
tinuous groups and complexified hyperbolic manifolds as analogies of Fermi torus exist for
Re(P 2) − Im(p2) > 0 but not for Re(P 2) − Im(p2) < 0 so that complexified dS manifolds
do not exist.

4. The bilinear form in H3
c would be complex valued and would not define a real valued

Riemannian metric. As a manifold, complexified hyperbolic manifold is the same as the
complex hyperbolic manifold with a hermitian metric (see https://cutt.ly/qVsdS7Y and
https://cutt.ly/kVsd3Q2) but has different symmetries. The symmetry group of the com-
plexified bilinear form of H3

c is SOc(1, 3) and the symmetry group of the Hermitian metric is
U(1, 3) containing SO(1, 3) as a real subgroup. The infinite discrete subgroups Γ for U(1, 3)
contain those for SO(1, 3). Since one has complex mass squared, one cannot replace the
bilinear form with hermitian one. The complex H3 is not a constant curvature space with
curvature -1 whereas H3

c could be such in a complexified sense.

6.7 The notion of generalized integer

This chapter was inspired by the article ”Space Element Reduction Duplication (SERD) model
produces photon-like information packets and light-like cosmological horizons” by Thomas L.

https://cutt.ly/XVsdLwY
https://cutt.ly/qVsdS7Y
https://cutt.ly/kVsd3Q2
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Wood, published in Metodologia IV B: Journal of International and Finnish Methodology, ex-
presses the basic assumptions of the SERD approach very coherently and in a systematic way so
that it easy to criticize them and compare with other views, in my case the TGD view.

My criticism, summarized below, is based on a different interpretations of the discreteness.
In TGD framework would be assignable to cognitive representations based on p-adic numbers fields
involving extensions of rationals rather than being a feature of space-time. The introduction of
continuous number fields (reals, complex numbers, quaternions, octonions) besides p-adic number
fields brings in real space-time as sensory representation and one ends up to a generalization of
the standard model proving a number theoretic interpretation for its symmetries.

The approach of Wood looks is essentially topological: for instance, the information prop-
agating in the hypergraph is assumed to be topological and characterize the graph. In TGD,
discrete structures analogs define cognitive representations of the continuous sensory world and
are basically number theoretic. The description of the sensory world involves both topology and
geometry.

6.7.1 The first reactions to the abstract

The abstract gives a very concise summary of the approach and I have added below my reactions
to it. The following commentary is my attempt to understand the basic ideas of SERD. I have also
used the third section of the article to clarify my views. I must admit that I didn’t quite get the
two basic principles in the beginning of the third section. I have slightly re-organized the abstract
and hope that I have not done any damage.

[TW] This document describes a correspondence between photons and propagating informa-
tion packets (PIPs) that are emergent out of the Space Element Reduction Duplication (SERD)
model introduced in a rudimentary form in [1, 2]. The SERD model is a discrete background
independent microscopic space-time description.

[MP] The assumption of discreteness at the fundamental space-time level raises several chal-
lenges. 4-D space-time with Minkowskian signature should somehow emerge. The mere hypergraph
might possess under additional assumptions a local dimension defined homologically/combinatorially
but would vary. Note that in standard homology theory an embedding to some space is required
and would give a metric. Now the distance and other geometric notions look problematic to me.
One can also ask what kind of dynamics for hypergraphs could select the 4-D space-time? Should
one have a variational principle of some kind?

The notion of symmetries is central in physics. Lorentz invariance or even Poincare invari-
ance should emerge as approximate symmetries at least. Only discrete subgroups of these groups
can emerge in the hypergraph approach. Lorentz invariance poses very, perhaps too, powerful
constraints on the hypergraphs. The notion of discretized time is introduced. It should be Lorentz
invariant and here the light-cone proper time a serves as an analog. a=constant sections would be
analogs of hyperbolic 3-space H3.

[TW] By observation of physically comparable behaviour emerging from this system, through
analysis and computer simulation, we draw conclusions of what the form and dynamics of the true
underlying space-time may be.

By treating elements of the system as fundamental observers, mathematical and empirical
evidence is obtained of the existence of fully emergent light-like cosmological horizons, implying
the existence of causally separated ‘pocket universes’.

[MP] The emergence of the analogy with expanding cosmology presumably reflects the un-
derlying dynamics implying the increase of the size of the hypergraph. The emergence of light-like
causal horizons is natural if the dynamics involves maximal velocity of propagation for the signals.
This is probably due to the locality of the basic dynamics involving only local changes of the hy-
pergraph topology. Locality and classicality raise challenges if one wants to describe phenomena
like quantum entanglement.

[TW] The SERD model is a hypergraph of connected hyperedges called Point Particles (PP)
which represent the fundamental constituents of all matter and particles (and therefore observers)
separated by strings of consecutive and fundamental elements or edges called Space Elements (SE).

[MP] I had to clarify myself what a hypergraph is. Hypergraph is a generalization of graphs.
Also it contains the set of vertices/nodes. The notion of edge connecting a pair of vertices is however

 https://www.journalofmethodology.com/en/publications/
https://en.wikipedia.org/wiki/Hypergraph
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generalized to a hyperedge (PP) as a pair of subsets of vertices. PPs correspond to hyperedges as
fundamental constituents of matter and formed by pairs of subsets of the set of nodes.

One could interpret this as a combinatorial counterpart for a length scale hierarchy of TGD
in which a set can be approximated as a point. One might also interpret subsets of vertices as
analogs of bound states of fundamental particles. In the TGD framework, many-sheeted space-time
and various other hierarchies serve as its analogs.

Space elements (SEs) would bring in basic aspects of 3-space. It is said that they are
infinitesimal or maximally small. SEs would be like edges (not hyperedges) of the hypergraph.
Consecutive SEs in turn form interaction edges (IEs) connecting PPs. IEs store and transmit
information relating to the structure space. What comes to mind is that functionally PPs are like
neutrons and neuron groups and IEs are like axons.

[TW] All elements are separated by nodes called Information Gaps (IGs), that store prop-
agating topological information of the hypergraph. Information gaps (IGs) are between PPs and
SEs, between SEs and between PPs themselves.

[MP] What distinguishes the SERD model from physical theories, is that information takes
the role of matter. Information is treated as some kind of substance. The basic objection is that
conscious information is always about something, whereas matter just is.

IGs have the role of interfaces somewhat analogous to black-hole horizon assumed to store
information in the holographic picture. One could see PPs as the nodes and IEs as the edges or
SEs as the edges and IGs as the nodes. IGs could have synaptic contacts as analogs.

[TW] In time step (TS), SE can duplicate and reduce (disappear) while the PPs split and
merge through discrete time. These processes create space or destroy it and increase or reduce the
effective distance between PPs. Splitting generates an SE between the resulting PPs. These are
known as the actions of the elements and create a highly dynamic multi-way system.

[MP] Time step (TS) is a further basic notion and corresponds to an elementary event as
nearest neighbor interaction taking during the time chronon. The propagation rate for information
is CS/TS and is analogous to maximal signal velocity. The counterpart of the space-time metric
is thus brought in by the introduction of TS and CS.

SEs emerge or disappear so that the effective distances of the nearby points change: this
would the counterpart for the dynamics of space-time metric in General Relativity. I understood
that duplication and reduction effectively corresponds to the duplication or halving of the distance
assignable to SE.

[TW] Elements have an ‘awareness’ of the information around them and communicate with
their nearest neighbours through time.

[MP] The treatment of elements as fundamental observers is an interesting idea but can be
criticized. Why not PPs? One could also argue that the SEs become conscious observers only
under some additional assumptions. For instance, one can imagine that they represent matter and
become fundamental conscious observers if fermions or fermion pairs can be assigned to them.

The abstract says nothing about quantum theory. To my view it is very difficult to imagine
how quantum theory could emerge from an approach based on classical probability and some kind
of quantum approach would be required to understand entanglement and state function reduction.

6.7.2 Fundamental discretization as a cognitive representation?

In the sequel TGD view of the discretization interpreted as cognitive representation is described.
The surprise was the discovery of what I call generalized integers and rationals as a union of various
p-adic number fields with different p-adic number fields glued together along numbers which belong
to both p-adic number fields. I do not know whether mathematicians have played with this thought.
This space has an ultrametric topology and could have application to the description of spin glass
type systems [L58]. In TGD it could have application in the mathematical description of processes
in which the p-adic prime associated with the particle changes.

Something is discrete but what it is?

Something is discrete at the fundamental level: is it space-time or only a discrete cognitive
representation, a discretization of a continuous space-time? The essential assumption of
SERD is that it is space-time, which is fundamentally discrete and realized as hypergraph. The
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basic problem is that it is not clear whether the notions of space-time dimensions, distance, angle,
and curvature can emerge in a purely combinatorial approach in which only distance between
nearby nodes is a metric notion. These notions also have a formal generalization to gauge theories.

The alternative approach would be based on the observation that cognition is discrete and
finite. Cognition provides representations of the physical world. Could one assume that the
physical world has continuous geometry and that only cognition is discrete?

Could the cognitive Universe consist of generalized integers?

Integers (and rationals) are the simplest discrete but infinite systems. Integers/rationals are
usually assumed to have real topology. One can however imagine an infinite number of p-adic
topologies, which are ultrametric and are defined by a p-adic norm having values coming as powers
of prime p. p-Adic primes typically have an infinite expansion in powers of p and large powers of
p have small p-adic norm in contrast to the real norm.

p-Adic integer/rational has expansion in powers of p and the inverse of the smallest power
in the expansion determines the norm so that the notion of size is completely different for p-adic
and real integers. Note that also the p-adic expansion of rationals involves an infinite number of
powers of p but is periodic. p-Adic transcendentals do not have this property. Note also that
p-adic integers modulo p define a finite field G(p).

p-Adic integers are only weakly ordered. Only if two p-adic integers/ rationals have
different p-adic norms, can one tell which is the larger one. One can however construct continuous
maps from p-adics to reals to approximately preserve the norm. p-Adic norm is ultrametric and
this property is essential in the thermodynamic models of spin glass energy landscape [L58].

One could, at least as the first guess, imagine that the Universe of cognition consists of
integers/rationals or a finite subset of them and that one also allows integers/rationals, which
are infinite as real integers but finite as p-adic integers for some prime p.

One can decompose generalized integers to subsets with different p-adic topologies.

1. Regions corresponding to two different p-adic topologies p1 and p2 have as an interface as
the set integers, which have an expansion in powers of n12 = p1p2. Therefore the cognitive
world decomposes into p-adic regions having interfaces, which consist of power series of
n12..k = pk11 ... × pnkk . Ordinary integer n with a decomposition to primes belongs to the
interface of the p-adic worlds corresponding to the prime factors.

How does this decomposition relate to adeles [L23, L22], which can be regarded as a Cartesian
product of p-adic number fields defining and of reals [L23, L22]? Adeles correspond to a
Cartesian product but now one has a union so that these concepts seems to be different. I do
not know whether mathematicians have encountered the notion of generalized integers and
rationals.

2. Each p-adic region decomposes into shells, kinds of analogs of mass shells, consisting of
p-adic integers with p-adic norm given by a power of p.

3. The distance between the points of the cognitive sub-landscape corresponding to p would be
defined by the p-adic norm. The points with the same p-adic norm would have a distance
defined as the p-adic norm of their difference. This distance is the same for several point
pairs so that p-adic topology is much rougher than the real topology. For instance the p-adic
norm of numbers 1, ..., p− 1 is the same.

4. One could define a distance between points associated with p-adic topologies p1 and p2 as
the shortest distance between them identified as the sum of the distances to the interface
between these regions.

In this framework, the analog of a hypergraph would be simply a subset of generalized
integers decomposing to p-adic integers labeled by some subset of primes.

1. The simplest dynamical operation, having now an interpretation as a cognitive operation,
would be addition or removal of a p-adic integer corresponding to some value of p-adic prime
or several of them. The addition would have an interpretation or worsening or improving
the cognitive representation for some prime p.
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2. Arithmetic operations for the points inside a region corresponding to a given p are possible.
Arithmetic operations of finite integers are basic elements of at least human cognition and
their sum and product would correspond to ”particle reactions” in which two points fuse
together to form a sum or product. If infinite integers can be expressed as power series of
integers n1 and n2, they can be regarded as p-adic integers for the factors of n1 and n2 and
both sum and product make sense for common prime factors. Note that the operations are
well-defined also for generalized rationals.

3. What happens in the arithmetic operations information theoretically? In the product
operation, the outcome is in the interface region associated with n1 and n2 and the
information about factors is not lost since a measurement revealing prime factors can be
done repeatedly.

The projection operator applied to a quantum superposition of integers would project to a
subspace of integers, which are divisible by a given prime p. This operation could be repeated
for different primes and eventually give the prime number decomposition for some integer n
in the superposition.

One strange fact about idiot savants described by Oliver Sacks (this is discussed from the
TGD point of view in [K65]) is that they can decompose integers into prime factors and
obviously see the emergence of the prime factors. Could this kind of cognitive measurement
be in question?

Sum does not in general belong to the interface region of either integer and information is
lost since many number pairs give rise to the same sum. Therefore sum and product are
information-theoretically very different operations.

Could there be a quantum physical realization for the arithmetic operations? Could they
relate to our conscious arithmetic thinking?

1. Consider first the sum operation. Quantum numbers, such as momenta, represented
as integers or even algebraic integers are conserved in the physical reaction vertices. The
conserved quantum numbers for the final state for a fusion reaction are sums of integers so
that these reactions have an arithmetic interpretation.

2. In the case of a product, the fusion reaction should give a product of integers n1 and n2 or
a representation of it? One should have conserved multiplicative quantum numbers in the
vertex.

Phase factors as eigenvalues of unitary operators are such. They should form a multiplicative
group as representation of integers or even rationals. Integer scalings define such a group. One
can also consider eigenvalues niφ, φ some fixed phase angle. The operator would therefore
be a scaling represented unitarily by these phase factors.

Initial state would be a product of eigenstates of the scaling operator with eigenphases niφ1 and

niφ2 and the final state would be a single particle state with the eigenvalue niφ1 n
iφ
2 = (n1n2)iφ.

One can say that n1 acts on n2 by scaling or vice versa. Interestingly, at the fundamental level
scalings replace time translations in the TGD framework (and also in superstring theory),
and this is especially so for spin glass phase [L58].

Interestingly, sum appears at the level of Lie algebras and product at the level of Lie groups.

In quantum groups also the reverse operations, co-product and co-sum, having pair creation
as analog, are possible. For the co-sum the information increases for the product. These operations
would be time reversals of each other. In the zero energy ontology (ZEO) of TGD time reversal
occurs in ”big” (ordinary) state function reductions (BSFRs) [L38, L64] [K89]. What comes to
mind is that the idiot savants described by Sacks might perform a time reversal decomposing
product to prime factors. The cognitive measurement would correspond to BSFR.

Note that ZEO also predicts ”small” state function reductions (SSFRs), which do not change
the arrow of time and give rise to the flow of consciousness whereas BSFR corresponds to a universal
counterpart of death or of falling asleep. It is the TGD counterpart of repeated measurements in
the Zeno effect and of weak measurements of quantum optics.

This cognitive world would in TGD correspond physically to the most general spin glass
energy landscape having an ultrametric topology [L58].
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The algebraic extensions of p-adic number fields are discrete

The proposed structure does not have any natural notion of dimension. We are however able to
cognize higher dimensional spaces using formulas.

1. p-Adic number fields indeed allow infinite hierarchies of algebraic extensions obtained by
adding to them roots of polynomials, which are algebraic numbers. These induce extensions
of p-adic number fields as finite fields G(p, k) having algebraic dimension, which is at most
the dimension of the corresponding extensions of rationals.

2. It is natural to assume that cognitive representations are always finite. This suggests that the
set of ”populated” points of the cognitive space is discrete and even finite. Being ”populated”
could mean that a fermion, having an interpretation as a generator of Boolean algebra, is
labelled by the algebraic number defining the point. In a more general formulation bringing
in quaternions and octonions as number fields: algebraic complexified quaternions would
define the momentum components of fermions.

What has been said above, generalizes almost as such and one obtains a hierarchy of gener-
alized integers as algebraic extensions of generalized integers at the lowest level. This could
generalize the rational number based computationalism (Turing paradigm) to an entire hi-
erarchy of cognitive computationalisms. The hierarchy of algebraic extensions suggests the
same.

3. The algebraic complexity of generalized integers increases with the dimension of extension
and in the TGD framework it corresponds to an evolutionary hierarchy. The dimension of
extension defines what is identified in terms of an effective Planck constant.

But what about the real world?

A hierarchy of p-adicities and hierarchies of the algebraic extensions of p-adicities have been
obtained. The 4-D world of sensory perceptions with its fundamental symmetries is however
still missing. Could number theory come to rescue also here? This is indeed the case.

1. The fundamental continuous number fields consist of reals, complex numbers, quaternions and
octonions with dimensions 1,2,4, 8 [L45, L46, L75]. Quaternions cannot as such correspond
to 4-D space-time since the number theoretic purely algebraic norm defines the Euclidean
metric.

2. This norm can be however algebraically continued to the complexification of quaternions ob-
tained by adding a commuting imaginary unit i commuting with quaternionic and octonionic
imaginary units. This algebraic norm squared does not involve complex conjugation as the
Hilbert space norm and is in general complex but real for the subspaces corresponding to var-
ious metric signatures (a given component of quaternion are either real or imaginary). One
obtains therefore Minkowski space and even more: its variants with various metric signatures.

3. One can imagine a generalization of the notion of generalized integer so that one would have
hierarchies of generalized complex numbers, quaternions and octonions and their complexi-
fications for various extensions of rationals.

A possible problem relates to the p-adic variants of quaternions, octonions and complex
numbers. Consider the inverse z−1 = (x−iy)/(x2+y2) of p-adic complex numbers z = x+iy.
The problem is that x2 + y2 can vanish since there is no notion of sign of the number. For
p mod 4 = 1,

√
−1 is an ordinary p-adic number, albeit with an infinite pinary expansion

so that for y =
√
−1x, one has this problem.

Could the finiteness of cognition solve the problem? If only finite p-adic integers and
rationals can define momentum components of fermions (finite cognitive and measurement
resolution), the problem disappears.

Could one give up the field property for the p-adic variants of classical number fields?
Already the complexification by i forces to give up the field property but has physical
meaning since it makes Minkowski signature possible.
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This would give Minkowski space M4 as a special case. This is however not enough. One
wants curved 4-D space-times. The basic structure is complexified octonions.

1. One should obtain 4-D surfaces of M8 generalizing empty Minkowski space M4. Octonions
fail to be associative and at the level of M8

c the natural proposal is that there is number
theoretic dynamics based on associativity. The 4-D surfaces must be associative in some
sense. The geometric vision predicts holography and this holography should have a number
theoretic counterpart based on associativity.

2. The first guess is that the tangent space of 4-surface is associative and thus quaternionic.
This gives only M4 and is therefore trivial [L45, L46, L75].

The requirement that the normal space of the 4-surface Y 4 in M8
c is associative/quaternionic

however works. If one requires that the normal subspace contains also a commutative (com-
plex) subspace, one ends up to M8 −H-duality (H = M4 × CP2 mapping the associative
4-D surfaces Y 4 of M8

c to space-time surfaces X4 in H determined by holography forced by
generalized coordinate invariance. The symmetries of H include Poincare symmetries and
standard model symmetries.

3. At the level of M8, associativity of the normal space allows also 6-D surfaces with 2-D
commutative normal space and they can be interpreted in terms of analogs of 6-D twistor
spaces of 4-D surfaces Y 4. They can be mapped to to the twistor space of H by M8 −H
duality and define 6-D twistor spaces of space-time surfaces X4 of H. What is beautiful is
that the Kähler structure for the twistor space of H exists only for the choice H = M4×CP2,
which is also forced by the associative dynamics [A79]! TGD is unique!

4. The dynamics would rely on holography but how to get the algebraic extensions? The roots of
a polynomial P with rational or even integer coefficients satisfying some additional conditions
would define the needed extension of rationals. The roots would in the general case define
complex mass shells H3

c as complex variants of hyperbolic 3-spaces H3 in M4
c ⊂M8

c having
interpretation as a momentum space. M8−H duality serves as a generalization of momentum
position duality. The 3-D surfaces as subsets of these H3:s define the data of the associative
holography and are contained by the 4-surface Y 4.

5. Cognitive representation would be defined as a unique number theoretic discretization of
the 4-surface Y 4 of M8

c consisting of points, whose number theoretically preferred linear
Minkowski coordinates are algebraic integers in an extension defining the 4-surface in ques-
tion. This discretization induces discretization of the space-time surface via M8−H duality.
The cognitive representations are number-theoretically universal and belong to the intersec-
tions of realities and p-adicities.

6. The mass shells H3
c are very special since in the preferred Minkowski coordinates a cogni-

tive explosion takes place. All algebraic rationals, in particular integers, are points of H3
c .

Algebraic integers are physically favored and define components of four-momenta. Galois
confinement [L59] states that the total momenta have components which are ordinary inte-
gers when a suitable momentum unit is used.

6.8 Infinite primes as a basic mathematical building block

Infinite primes [K72, K36, K44] are one of the key ideas of TGD. Their precise physical interpre-
tation and the role in the mathematical structure of TGD has however remained unclear.

3 new ideas are be discussed. Infinite primes could define a generalization of the notion of
adele; quantum arithmetics could replace + and × with ⊕ and ⊗ and ordinary primes with p-adic
representations of say HFFs; the polynomial Q defining an infinite prime could be identified with
the polynomial P defining the space-time surface: P = Q.

6.8.1 Construction of infinite primes

Consider first the construction of infinite primes [K72].
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1. At the lowest level of hierachy, infinite primes (in real sense, p-adically they have unit norm)
can be defined by polynomials of the product X of all primes as an analog of Dirac vacuum.

The decomposition of the simplest infinite primes at the lowest level are of form aX + b,
where the terms have no common prime divisors. More concretely a = m1/nF b = m0nF ,
where nF is square free integer analogous and the integer m1 and nF have no common prime
divisors divisors. The divisors of m2 are divisors of nF and mi has interpretation as n-boson
state. Power pk corresponds to k-boson state with momenta p. nF =

∏
pi has interpretation

as many-fermion state satisfying Fermi-Dirac statistics.

The decomposition of lowest level infinite primes to infinite and finite part has a physical
analogy as kicking of fermions from Dirac sea to form the finite part of infinite prime. These
states have interpretation as analogs of free states of supersymmetric arithmetic quantum
field theory (QFT) There is a temptation to interpret the sum X/nF + nF as an analog of
quantum superposition. Fermion number is well-defined if one assigns the number of factors
of nF to both nF and X/nF .

2. More general infinite primes correspond to polynomials Q(X) =
∑
n qnX

n required to define
infinite integers which are not divisible by finite primes. Each summand qnX

n must be a
infinite integer. This requires that qn is given by qn = mB,n/

∏n
i1
nF,i of square free integers

nF,i having no common divisors.

The coefficients mB,n representing bosonic states have no common primes with
∏
nF,i and

there exists no prime dividing all coefficients mB,n: there is no boson with momentum p
present in all states in the sum.

These states have a formal interpretation as bound states of arithmetic supersymmetric QFT.
The degree k of Q determines the number of particles in the bound states.

The products of infinite primes at given level are infinite primes with respect to the primes
at the lower levels but infinite integers at their own level. Sums of infinite primes are not in
general infinite primes. For instance the sum and difference of X/nF + nF and X/nF − nF
are not infinite primes.

3. At the next step one can form the product of all finite primes and infinite primes constructed
in this manner and repeat the process as an analog to second quantization. This procedure
can be repeated indefinitely. This repeated quantization a hierarchy of infinite primes, which
could correspond to the hierarchy of space-time sheets.

At the n:th hierarchy level the polynomials are polynomials of n variables Xi. A possible
interpretation would be that one has families of infinite primes at the first level labelled
by n1 parameters. If the polynomials P (x) at the first level define space-time surfaces, the
interpretation at the level of WCW could be that one has an n − 1-D surface in WCW
parametrized by n − 1 parameters with rational values and defining a kind of sub-WCW.
The WCW spinor fields would be restricted to this surface of WCW.

The Dirac vacuum X brings in mind adele, which is roughly a product of p-adic number
fields. The primes of infinite prime could be interpreted as labels for p-adic number fields. Even
more generally, they could serve as labels for p-adic representations of various algebras and one
could even consider replacing the arithmetic operations with ⊕ and ⊗ to get the quantum variants
of various number fields and of adeles.

The quantum counterparts of nfinite primes at the lowest and also at the higher levels of
hierarchy could be seen as a generalization of adeles to quantum adeles.

6.8.2 Questions about infinite primes

One can ask several questions about infinite primes.

1. Could ⊕ and ⊗ replace + and − also for infinite primes. This would allow us to interpret the
primes p as labels for algebras realized p-adically. This would give rise to quantal counterparts
of infinite primes.
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2. What could + → ⊕ for infinite primes mean physically? Could it make sense in adelic
context? Infinite part has finite p-adic norms. The interpretation as direct sum conforms
with the fermionic interpretation if the product of all finite primes is interpreted as Dirac
sea. In this case, the finite and infinite parts of infinite prime would have the same fermion
number.

3. Could adelization relate to the notion of infinite primes? Could one generalize quantum
adeles based on ⊕ and ⊗ so that they would have parts with various degrees of infinity?

6.8.3 P = Q hypothesis

One cannot avoid the idea that that polynomial, call it Q(X), defining an infinite prime at the first
level of the hierarchy, is nothing but the polynomial P defining a 4-surface in M4 and therefore also
a space-time surface. P = Q would be a condition analogous to the variational principle defining
preferred extremals (PEs) at the level of H.

There is however an objection.

1. P = Q gives very powerful constraints on Q since it must define an infinite integer. The
prime polynomials P are expected to be highly non-unique and an entire class of polynomials
of fixed degree characterized by the Galois group as an invariant is in question. The same
applies to polynomials Q as is easy to see: the only condition is that powers of akX

k defining
infinite integers have no common prime factors.

2. It seems that a composite polynomial Pn ◦ ...◦P1 satisfying Pi = Qi cannot define an infinite
prime or even infinite integer. Even infinite integer property requires very special conditions.

3. There is however no need to assume Pi = Qi conditions. It is enough to require that there
exists a composite Pn ◦ ... ◦ P1 of prime polynomials satisfying Pn ◦ ... ◦ P1 = Q defining an
infinite prime.

The physical interpretation would be that the interaction spoils the infinite prime property
of the composites and they become analogs of off-mass-shell particles. Exactly this occurs for
bound many-particle states of particles represented by Pi represented composite polynomials
P1◦...Pn. The roots of the composite polynomials are indeed affected for the composite. Note
that also products of Qi are infinite primes and the interpretation is as a free many-particle
state formed by bound states Qi.

There is also a second objection against P = Q property.

1. The proposed physical interpretation is that the ramified primes associated with P = Q
correspond to the p-adic primes characterizing particles. This would mean that the ramimied
primes appearing in the infinite primes at the first level of the hierarchy should be physically
special.

2. The first naive guess is that for the simplest infinite primes Q(X) = (m1/nF )X + m2nF
at the first level, the finite part m2nF has an identification as the discriminant D of the
polynomial P (X) defining the space-time surface. This guess has no obvious generalization
to higher degree polynomials Q(X) and the following argument shows that it does not make
sense.

Since Q is a rational polynomial of degree 1 there is only a single rational root and discrim-
inant defined by the differences of distinct roots is ill-defined that Q = P condition would
not allow the simplest infinite primes.

Therefore one must give either of these conjectures and since P = Q conjecture dictates the
algebraic structure of the quantum theory for a given space-time surface, it is much more
attractive.

The following argument gives P = Q. One can assign to polynomial P invariants as sym-
metric functions of the roots. They are invariants under permutation group Sn of roots containing
Galois group and therefore also Galois invariants (for polynomials of second order correspond
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to sum and product of roots appearing as coefficients of the polynomial in the representation
x2 + bx+ cx). The polynomial Q having as coefficients these invariants is the original polynomial.
This interpretation gives P = Q.

6.9 Summary of the proposed big picture

In the previous sections the plausible looking building blocks of the bigger picture of the TGD
were discussed. Here I try to summarize a guess for the big picture.

6.9.1 The relation between M8 −H and M −M ′ dualities

The first question is whether M8 −H duality between number theoretical and geometric physics,
very probably relating to Langlands duality, corresponds to a duality betweenM and its commutant
M ′. Physical intuition suggests that these dualities are independent. M ′ would more naturally
correspond to classical description as dual to quantum description using M . One would assign
classical and quantum views to both number theoretic (M8) and geometric (H) descriptions.

1. At the geometric side M would be realized in terms of HFFs associated with SSAn, Affn
and I acting in H. At the number theoretic side, braided Galois group algebras would define
the HFFs and have natural action in SSAn, An and I .

2. The descriptions in terms of preferred extremals in H and of polynomials P defining 4-
surfaces in M8 would correspond to classical descriptions. P = Q condition would define
preferred polynomials and infinite primes.

3. At the geometric side, M ′ would correspond to scalar factors of WCW wave functions sym-
plectic invariants identifiable as Kähler magnetic fluxes at both M4 and CP2 sectors. They
are zero modes and therefore do not contribute to the WCW line element.

4. At the number theoretic side, the wave functions would depend on Galois invariants. Dis-
criminant D, set of roots to which braid strands can be assigned to define n-braid, and
ramified primes dividing it in the case of polynomials with rational/integer coefficients are
Galois invariants analogous to Kähler fluxes. They code information about the spectrum of
virtual mass squared values as roots of P . The strands of braid as Galois invariant correspond
to (possibly) monopole flux tubes and one assign them quantized magnetic fluxes as integer
valued symplectic invariants.

6.9.2 Basic mathematical building blocks

The basic mathematical building blocks of quantum aspects of TGD involve at least the following
ones.

1. The generalization of arithmetics and even number theory by replacing sum and product
by direct sum and tensor product for various algebras and associated representations is a
mathematical notion expected to be important and a straightforward generalization of adeles
and infinite primes to their quantum counterparts is highly suggestive.

2. Quantum version of adelic physics obtained by replacing ordinary arithmetic operations with
direct sum and tensor product relates closely to the fusion of real and various p-adic physics
at quantum level.

3. The hierarchy of infinite primes suggested by the many-sheeted space-time suggests a pro-
found generalization of the notion of adelic physics. Infinite primes are defined by polyno-
mials of several variables the basic equation in the general form would be Q(X1, ..., Xn) =
P (X1, ..., Xn).
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6.9.3 Basic algebraic structures at number theoretic side

Number theoretic side involves several key notions that must have counterparts at the geometric
side.

1. Number theoretic side involves Galois groups as counterparts of symplectic symmetries and
can be regarded as number theoretic variants of permutation symmetries and lead to the
notion of braided Galois group, whose group algebra defines HFF.

2. Galois groups can be decomposed to a hierarchy of normal subgroups, which are simple and
therefore primes in group theoretic sense. Simple Galois groups correspond to polynomial
primes with respect to functional composition, and one can assign to a given Galois group a
set of polynomials with fixed degrees although the polynomials and their order of polynomials
in composition are not unique.

3. There is a large class of polynomials giving rise to a given Galois group and they bring in
additional degrees of freedom. The variation of the polynomial coefficients corresponding to
the same Galois group is analogous to symplectic transformations leaving the induced Kähler
form invariant.

The roots of polynomials define analogs for the strands of n-braid, discriminant D, and
ramified primes dividing the discriminant. They are central Galois invariants analogous to
Kähler magnetic fluxes at the geometry side.

4. Ramified primes characterize polynomials P but are not fixed by the Galois group, are anal-
ogous to the zero modes at the level of H. Magnetic fluxes are their counterparts at the level
of H. I have proposed the interpretation of ramified primes p as p-adic primes characteriz-
ing elementary particles in the model of particle masses based on p-adic thermodynamics.
These primes are rather large: for instance, M127 = 2127 − 1 would characterize electrons.
It would however seem that the prime k in SSAk corresponds to the prime characterizing
simple Galois group.

Also affine algebras Affn assignable to the light-like partonic orbits and isometries of H are
present and also they appear in p-adic mass calculations based on p-adic thermodynamics.
Could the adelic hierarchy p-adic variants of algebras SSA, Aff and I have adelic factors
labelled by ramified primes p form also an adelic structure with respect to ⊕ and ⊗?

6.9.4 Basic algebraic structures at the geometric side

The symmetry algebras at the level of H define the key quantal structures.

1. The symmetries at the geometric side involve hierarchies An of algebras An ∈ SSAn, An, In
defining hierarchies of factor algebras. The condition that subalgebras An and [An, A] anni-
hilate physical states gives rise to hierarchies of algebras, which would correspond to those for
Galois groups for multiple extensions of rationals. The braided Galois groups for polynomials
of degree n n roots/braids would act naturally in An so that it would have number theoretic
braiding.

2. The decomposition of the Galois group to simple normal subgroups would correspond to a
functional composite of prime polynomials, which corresponds to the inclusion hierarchy of
HFFs associated with An with n identified as the degree of polynomial.

The polynomials Q(X) defining infinite prime have decomposition to polynomial primes but
the polynomial primes in the decomposition cannot define infinite primes.

Kähler magnetic fluxes for CP2 and M4 Kähler forms are symplectic invariants and represent
zero modes. At the number theoretic side the discriminant and root spectrum (mass squared
spectrum) are classical Galois invariants. States as Galois singlets are Galois invariants at
quantum level.

The key equation, not encountered before in the TGD framework, is P = Q motivated by
the notion of infinite prime. It would assign to polynomial P unique algebraic structures defining
what might be called its quantization. Without this structure one should give up the notion of
infinite prime and lose the notion of preferred P as analog of preferred extremal.
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6.10 Appendix: The reduction of quantum TGD to WCW
geometry and spinor structure

The first attempts to build quantum TGD were based on the standard method used to quantize
quantum field theories. The path integral over all possible space-time surfaces connecting initial
and final 3-surfaces for an action exponential using for instance Kähler action, would have given
the scattering amplitudes.

6.10.1 The problems

The first problem is that the integrand is a phase factor exp(iS), where S could be the Kähler
action. Phase factor has modulus 1 and the integral does not converge even formally. One would
need a real exponent to have any hopes of convergence. This problem can be circumvented in free
quantum field theory by algebraic tricks.

The second problem is that all conceivable actions are extremely nonlinear and new kinds of
divergences appear in each order of perturbation theory. This is essentially due to the locality of
the action principle involving interaction vertices with arbitrarily high numbers of particles. Also
ordinary QFTs meet the same problem and for renormalizable theories the addition of counterterms
with suitably infinite coefficients can cancel the divergences without the addition of an infinite
number of counter terms. It became clear that there are no hopes of getting rid of the divergences
in TGD by addition of counterterms. The situation is the same in general relativity although
heroic and ingenious attempts to calculate scattering amplitudes have been made.

Only N = 4 SUSY is a QFT that is hoped to be free of divergences without renormalization
but here the problem is caused by the non-planar Feynman diagrams, to which the twistor approach
does not apply.

6.10.2 3-D surfaces or 4-surfaces associated to them by holography re-
place point-like particles

The key idea of TGD is that point-like particles are replaced with 3-surfaces. This idea does not
favour path integral approach.

1. In TGD, point-like particles are replaced with 3-surfaces. Local interaction vertices are
smoothed out to non-local ones so that there should be no local divergences. Perhaps the
path integral, derived originally as a representation of Schrödinger equation, is not only
unnecessary but also a wrong way to compute anything in TGD. In superstring models,
the replacement of a point-like particle with string indeed allows elimination of the local
divergences.

3-D surface should be the basic dynamical object. One should therefore have a functional
integral over 3-surfaces, which is analogous to the Gaussian integral and converges.

2. This problem led to the idea of the ”world of classical worlds” (WCW). 4-D General Coor-
dinate Invariance implies that to a given 3-surface X3 one must be able to assign a 4-surface
X4(X3) at which the 4-D general coordinate transformations act.

Either 3-surfaces X3 or almost unique 4-surfaces X4(X3) are the fundamental objects so that
holography holds true. At that time I did not talk about holography, which was introduced
by Susskind much later, around 1995. Therefore the introduction of the path integral is not
necessary.

Later it became clear that the exact determinism of the classical dynamics can be lost,
at least for Kähler action having huge spin glass degeneracy. Later 4-D Käehler action
replaced in twistor lift of TGD by its sum with a volume term, and for this action the non-
determinism is analogous to that for soap films spanned by frames, that is finite, and has
physical interpretation.
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6.10.3 WCW Kähler geometry as s geometrization of the entire quan-
tum physics

This argument led to the vision about quantum TGD as WCW geometry, which generalizes Ein-
stein’s vision of geometrization of gravitational interaction to geometrization of all classical inter-
actions and then to the geometrization of the entire quantum theory.

1. WCW is the space of all 3-surfaces or almost equivalently the space of 4-surfaces. Physical
states correspond to WCW spinor fields.

2. WCW must have Kähler geometry since Kähler structure allows to geometrize the hermi-
tian conjugation which is fundamental for quantum theory. Imaginary unit is represented
geometrically by the Kähler form and the real unit by the Kähler metric. The tensor square
Kähler form as an imaginary unit is equal to the negative of the real unit, that is the negative
of the metric.

3. The construction of loop space geometries by Dan Freed [A54] led to a unique geometry of
loop space. The mere existence of Riemann connection requires that the metric has maximal
isometries and is unique apart from scaling. When basic objects are 3-D this condition is
even more stringent. The Kähler geometry of WCW and thus physics could be unique from
its mere mathematical existence!

Why H = M4 ×CP2? The existence of the twistor lift fixes H uniquely since only M4 (E4)
and CP2 allow a twistor space with Kähler structure [A79]. The necessarily dimensionally
reduced Kähler action at the twistor space level adds to the 4-D Kähler action a volume
term removing the non-determinism and explaining cosmological constant and its smallness
in long scales.

4. How is the Kähler geometry of WCW determined? The definition of the Kähler metric of
WCW must assign to a 3-surface X3 a more or less unique space-time surface X4(X3) in
order to have a general coordinate invariance. One must also have a connection with classical
physics: classical physics must be an exact part of quantum physics and thus the definition
of WCW Kähler geometry involves a classical action principle.

The Kähler metric is defined by the Kähler function K. The idea is that K is the value of
Kähler action SK or of a more general action for a more or less unique space-time surface
X4(X3) containing a given 3-surface X3.

5. It is convenient to speak of preferred extremal (PE) and there are several characterizations
of what PE is. M8 − H duality gives the most concrete one. Twistor lift gives the second
one and the gauge conditions associated with the WCW Dirac equation provide the third
characterization.

6.10.4 Quantum physics as physics of free, classical spinor fields in
WCW

How to develop quantum physics in WCW? The idea is that free, classical WCW spinor fields
define all possible quantum states of the Universe and interactions reduce to topology. There
would be no quantization at the level of WCW and the only genuinely quantal element of quantum
theory would be state function reduction giving rise to conscious experience.

1. In order to have spinor fields in WCW, one must have the notion of spinor structure. Spinor
structure is almost uniquely fixed by the metric and involves in an essential manner gamma
matrices, which anticommute to metric.

2. The second quantization of H spinor fields assigns to the modes of H spinor fields fermionic
oscillator operators. Why not build the conplexified gamma matrices of WCW (their her-
mitian conjugates) as linear combinations of the creation (annihilation) operators?! Second
quantization for the free H spinor field, is completely unique and straightforward and avoids
all problems of quantization in curved space-time.
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One could interpret the second quantization of free fermions and fermionic statistics in terms
of WCW geometry, which is something completely new.

3. WCW spinors (for given 4-surface as point of WCW) would be fermionic Fock states created
using fermionic oscillator operators and depend on the space-time surface X4(X3) as a 4-
surface almost uniquely determined by 3-surface X3.

The fermionic Fock state basis can be interpreted as a representation of Boolean logic so that
Boolean logic could be seen as a ”square root” of Kähler geometry.

The WCW spinor field would correspond to a superposition of preferred extremals X4 with
a WCW spinor assigned with each X4.

6.10.5 Dirac equation for WCW spinor fields

Free Dirac equation is the key equation for classical spinor fields.

1. In string models it corresponds to the analogs of super-Virasoro and super-Kac-Moody con-
ditions stating conformal invariance and Kac-Moody invariance analogous but not quite
equivalent with gauge symmetry.

2. In TGD, these conditions as a counterpart of the WCW Dirac equation generalize. Super
symplectic algebra associated with δM4

+×CP2 (δM4
+ denotes light-cone boundary) SSA, the

infinite-D algebras of conformal symmetries (Conf) and isometries (I) of δM4
+ (unique to

the 4-D Minkowski space), and the affine algebras Aff associated with the light-like orbits
of partonic 2-surfaces would be the basic algebras.

3. To each of these algebras, one can assign a generalization of the gauge conditions of conformal
field theories. What is new is that one obtains a hierarchy of gauge conditions. The algebra
in question, call it A, and sub-algebra An, n ≥ 0, with conformal weights coming as n-
multiples of weights for A, and the commutator [An, A] annihilate the physical states. Also
the corresponding classical Noether charges vanish, which gives strong conditions on space-
time surfaces and decomposes WCW to sectors characterized by n.

4. In superstring models one has only n = 0. In the number theoretic vision, the hierarchy of
values of n would actually correspond to the hierarchy of extensions of rationals. If M8 −H
duality holds true, n corresponds to the degree of polynomial P defining the space-time
surface and polynomials P would decompose WCW to sectors.

6.10.6 M8 −H duality at the level of WCW

WCW emerges in the geometric view of quantum TGD. M8 − H duality should lso work for
WCW. What is the number theoretic counterpart of WCW? What is the geometric counterpart of
the discretization characteristic to the number theoretic approach?

In the number theoretic vision in which WCW is discretized by replacing space-time surfaces
with their number theoretical discretizations determined by the points of X4 ⊂ M8 having the
octonionic coordinates of M8 in an extension of rationals and therefore making sense in all p-adic
number fields? How could an effective discretization of the real WCW at the geometric H level,
making computations easy in contrast to all expectations, take place?

1. The key observation is that any functional or path integral with integrand defined as ex-
ponent of action, can be formally calculated as an analog of Gaussian integral over the
extrema of the action exponential exp(S). The configuration space of fields would be effec-
tively discretized. Unfortunately, this holds true only for the so called integrable quantum
field theories and there are very few of them and they have huge symmetries. But could this
happen for WCW integration thanks to the maximal symmetries of the WCW metric?

2. For the Kähler function K, its maxima (or maybe extrema) would define a natural effective
discretization of the sector of WCW corresponding to a given polynomial P defining an
extension of rationals.
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The discretization of the WCW defined by polynomials P defining the space-time surfaces
should be equivalent with the number theoretical discretization induced by the number the-
oretical discretization of the corresponding space-time surfaces. Various p-adic physics and
corresponding discretizations should emerge naturally from the real physics in WCW.

3. The physical interpretation is clear. The TGD Universe is analogous to the spin glass
phase [L58]. The discretized WCW corresponds to the energy landscape of spin glass
having an ultrametric topology. Ultrametric topology of WCW means that discretized WCW
decomposes to p-adic sectors labelled by polynomials P . The ramified primes of P label
various p-adic topologies associated with P .
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Chapter 7

Category Theory, Quantum TGD,
and TGD Inspired Theory of
Consciousness

7.1 Introduction

Goro Kato has proposed an ontology of consciousness relying on category theory [A67, A98]. Physi-
cist friendly summary of the basic concepts of category theory can be found in [A83] ) whereas the
books [A36, A74] provide more mathematically oriented representations. Category theory has been
proposed as a new approach to the deep problems of modern physics, in particular quantization
of General Relativity. To mention only one example, C. J. Isham [A83] has proposed that topos
theory could provide a new approach to quantum gravity in which space-time points would be
replaced by regions of space-time and that category theory could geometrize and dynamicize even
logic by replacing the standard Boolean logic with a dynamical logic dictated by the structure of
the fundamental category purely geometrically [A116].

Although I am an innocent novice in this field and know nothing about the horrible tech-
nicalities of the field, I have a strong gut feeling that category theory might provide the desired
systematic approach to quantum TGD proper, the general theory of consciousness, and the theory
of cognitive representations [K52].

7.1.1 Category Theory As A Purely Technical Tool

Category theory could help to disentangle the enormous technical complexities of the quantum
TGD and to organize the existing bundle of ideas into a coherent conceptual framework. The
construction of the geometry of the configuration space (“world of classical worlds”) [K35, K20].
of classical configuration space spinor fields [K88]. and of S-matrix [K18] using a generalization
of the quantum holography principle are especially natural applications. Category theory might
also help in formulating the new TGD inspired view about number system as a structure obtained
by “gluing together” real and p-adic number fields and TGD as a quantum theory based on this
generalized notion of number [K73, K74, K72].

7.1.2 Category Theory Based Formulation Of The Ontology Of TGD
Universe

It is interesting to find whether also the ontology of quantum TGD and TGD inspired theory of
consciousness based on the trinity of geometric, objective and subjective existences [?] could be
expressed elegantly using the language of the category theory.

There are indeed natural and non-trivial categories involved with many-sheeted space-time
and the geometry of the configuration space (“the world of classical worlds”); with configuration
space spinor fields; and with the notions of quantum jump, self and self hierarchy. Functors
between these categories could express more precisely the quantum classical correspondences and
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self-referentiality of quantum states allowing them to express information about quantum jump
sequence.

1. Self hierarchy has a structure of category and corresponds functorially to the hierarchical
structure of the many-sheeted space-time.

2. Quantum jump sequence has a structure of category and corresponds functorially to the
category formed by a sequence of maximally deterministic regions of space-time sheet. Even
the quantum jump could have space-time correlates made possible by the generalization of
the Boolean logic to what might be space-time correlate of quantum logic and allowing to
identify space-time correlate for the notion of quantum superposition.

3. The category of light cones with inclusion as an arrow defining time ordering appears nat-
urally in the construction of the configuration space geometry and realizes the cosmologies
within cosmologies scenario. In particular, the notion of the arrow of psychological time finds
a nice formulation unifying earlier two different explanations.

4. In zero energy ontology (ZEO), which emerged many years after writing the first version
of this chapter, causal diamonds (CDs) defined in terms of intersection of future and past
directed light-cones form a category with arrow identified as inclusion.

5. The preferred extremals would form a category if the proposed duality mapping associative
(co-associative) 4-surfaces of embedding space respects associativity (co-associativity) [K74].
The duality would allow to construct new preferred extremals of Kähler action.

7.1.3 Other Applications

One can imagine also other applications.

1. Categories posses inherent logic [A116] based on the notion of sieves relying on the notion of
presheaf which generalizes Boolean logic based on inclusion. In TGD framework inclusion is
naturally replaced by topological condensation and this leads to a two-valued logic realizing
space-time correlate of quantum logic based on the notions of quantum sieve and quantum
topos.

This suggests the possibility to geometrize the logic of both geometric, objective and sub-
jective existences and perhaps understand why ordinary consciousness experiences the world
through Boolean logic and Zen consciousness experiences universe through logic in which the
law of excluded middle is not true. Interestingly, the p-adic logic of cognition is naturally
2-valued whereas the real number based logic of sensory experience allows excluded middle
(is the person at the door in or out, in and out, or neither in nor out?). The quantum logic
naturally associated with spinors (in the “world of classical worlds”) is consistent with the
logic based on quantum sieves.

2. Simple Boolean logic of right and wrong does not seem to be ideal for understanding moral
rules. Same applies to the beauty-ugly logic of aesthetic experience. The logic based on
quantum sieves would perhaps provide a more flexible framework.

3. Cognition is categorizing and category theory suggests itself as a tool for understanding cog-
nition and self hierarchies and the abstraction processes involved with conscious experience.
Here the new elements associated with the ontology of space-time due to the generalization
of number concept would be central. Category theory could be also helpful in the modelling
of conscious communications, in particular the telepathic communications based on sharing
of mental images involving the same mechanism which makes possible space-time correlates
of quantum logic and quantum superposition.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://tgdtheory.fi/cmaphtml.
html [L5]. Pdf representation of same files serving as a kind of glossary can be found at http:

//tgdtheory.fi/tgdglossary.pdf [L6].

http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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7.2 What Categories Are?

In the following the basic notions of category theory are introduced and the notion of presheaf and
category induced logic are discussed.

7.2.1 Basic Concepts

Categories [A36, A74, A83] are roughly collections of objects A, B, C... and morphisms f(A→ B)
between objects A and B such that decomposition of two morphisms is always defined. Iden-
tity morphisms map objects to objects. Topological/linear spaces form a category with continu-
ous/linear maps acting as morphisms. Also algebraic structures of a given type form a category:
morphisms are now homomorphisms. Practically any collection of mathematical structures can be
regarded as a category. Morphisms can can be very general: for instance, partial ordering a ≤ b
can define morphism f(A→ B).

Functors between categories map objects to objects and morphisms to morphisms so that a
product of morphisms is mapped to the product of the images and identity morphism is mapped
to identity morphism. Group representation is example of this kind of a functor: now group action
in group is mapped to a linear action at the level of the representations. Commuting square is an
easy visual manner to understand the basic properties of a functor, see Fig. 7.1.

The product C = AB for objects of categories is defined by the requirement that there
are projection morphisms πA and πB from C to A and B and that for any object D and pair of
morphisms f(D → A) and g(D → B) there exist morphism h(D → C) such that one has f = πAh
and g = πBh. Graphically (see Fig. 7.1 ) this corresponds to a square diagram in which pairs A,
B and C, D correspond to the pairs formed by opposite vertices of the square and arrows DA and
DB correspond to morphisms f and g, arrows CA and CB to the morphisms πA and πB and the
arrow h to the diagonal DC.

Examples of product categories are Cartesian products of topological and linear spaces, of
differentiable manifolds, groups, etc. Also tensor products of linear spaces satisfies these axioms.
One can define also more advanced concepts such as limits and inverse limits. Also the notions of
sheafs, presheafs, and topos are important.

Figure 7.1: Commuting diagram associated with the definition of a) functor, b) product of objects
of category, c) presheaf K as sub-object of presheaf X (“two pages of book”.)

7.2.2 Presheaf As A Generalization For The Notion Of Set

Presheafs can be regarded as a generalization for the notion of set. Presheaf is a functor X that
assigns to any object of a category C an object in the category Set (category of sets) and maps
morphisms to morphisms (maps between sets for C). In order to have a category of presheafs,
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also morphisms between presheafs are needed. These morphisms are called natural transformations
N : X(A)→ Y (A) between the images X(A) and Y (A) of object A of C. They are assumed to obey
the commutativity property N(B)X(f) = Y (f)N(A) which is best visualized as a commutative
square diagram. Set theoretic inclusion i : X(A) ⊂ Y (A) is obviously a natural transformation.

An easy manner to understand and remember this definition is commuting diagram con-
sisting of two pages of book with arrows of natural transformation connecting the corners of the
pages: see Fig. ??.

As noticed, presheafs are generalizations of sets and a generalization for the notion of subset
to a sub-object of presheaf is needed and this leads to the notion of topos [A116, A83]. In the
classical set theory a subset of given sets X can be characterized by a mapping from set X to the set
Ω = {true, false} of Boolean statements. Ω itself belongs to the category C. This idea generalizes
to sub-objects whose objects are collections of sets: Ω is only replaced with its Cartesian power. It
can be shown that in the case of presheafs associated with category C the sub-object classifier Ω
can be replaced with a more general algebra, so called Heyting algebra [A116, A83] possessing the
same basic operations as Boolean algebra (and, or, implication arrow, and negation) but is not in
general equivalent with any Boolean algebra. What is important is that this generalized logic is
inherent to the category C so that many-valued logic ceases to be an ad hoc construct in category
theory.

In the theory of presheafs sub-object classifier Ω, which belongs to Set, is defined as a par-
ticular presheaf. Ω is defined by the structure of category C itself so that one has a geometrization
of the notion of logic implied by the properties of category. The notion of sieve is essential here. A
sieve for an object A of category C is defined as a collection of arrows f(A→ ...) with the property
that if f(A → B) is an arrow in sieve and if g(B → C) is any arrow then gf(A → C) belongs to
sieve.

In the case that morphism corresponds to a set theoretic inclusion the sieve is just either
empty set or the set of all sets of category containing set A so that there are only two sieves
corresponding to Boolean logic. In the case of a poset (partially ordered set) sieves are sets for
which all elements are larger than some element.

7.2.3 Generalized Logic Defined By Category

The presheaf Ω : C → Set defining sub-object classifier and a generalization of Boolean logic is
defined as the map assigning to a given object A the set of all sieves on A. The generalization of
maps X → Ω defining subsets is based on the notion of sub-object K. K is sub-object of presheaf
X in the category of presheaves if there exist natural transformation i : K → X such that for each
A one has K(A) ⊂ X(A) (so that sub-object property is reduced to subset property).

The generalization of the map X → Ω defining subset is achieved as follows. Let K be a
sub-object of X. Then there is an associated characteristic arrow χK : X → Ω generalizing the
characteristic Boolean valued map defining subset, whose components χKA : X(A)→ Ω(A) in C is
defined as

χKA (x) = {f(A→ B)|X(f)(x) ∈ K(B)} .

By using the diagrammatic representation of Fig. 7.1 for the natural transformation i defining
sub-object, it is not difficult to see that by the basic properties of the presheaf K χKA (x) is a
sieve. When morphisms f are inclusions in category Set, only two sheaves corresponding to all
sets containing X and empty sheaf result. Thus binary valued maps are replaced with sieve-valued
maps and sieves take the role of possible truth values. What is also new that truths and logic are
in principle context dependent since each object A of C serves as a context and defines its own
collection of sieves.

The generalization for the notion of point of set X exists also and corresponds to a selection
of single element γA in the set X(A) for each A object of C. This selection must be consistent
with the action of morphisms f(A→ B) in the sense that the matching condition X(f)(γA) = γB
is satisfied. It can happen that category of presheaves has no points at all since the matching
condition need not be satisfied globally.

It turns out that TGD based notion of subsystem leads naturally to what might be called
quantal versions of topos, presheaves, sieves and logic.
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7.3 More Precise Characterization Of The Basic Categories
And Possible Applications

In the following the categories associated with self and quantum jump are discussed in more precise
manner and applications to communications and cognition are considered.

7.3.1 Intuitive Picture About The Category Formed By The Geometric
Correlates Of Selves

Space-time surface X4(X3) decomposes into regions obeying either real or p-adic topology and each
region of this kind corresponds to an unentangled subsystem or self lasting at least one quantum
jump. By the localization in the zero modes these decompositions are equivalent for all 3-surfaces
X3 in the quantum superposition defined by the prepared WCW spinor fields resulting in quantum
jumps. There is a hierarchy of selves since selves can contain sub-selves. The entire space-time
surface X4(X3) represents the highest level of the self hierarchy.

This structure defines in a natural manner a category. Objects are all possible sub-selves
contained in the self hierarchy: sub-self is set consisting of lower level sub-selves, which in turn have
a further decomposition to sub-selves, etc... The näıve expectation is that geometrically sub-self
belongs to a self as a subset and this defines an inclusion map acting as a natural morphism in this
category. This expectation is not quite correct. More natural morphisms are the arrows telling
that self as a set of sub-selves contains sub-self as an element. These arrows define a structure
analogous to a composite of hierarchy trees.

To be more precise, for a single space-time surface X4(X3) this hierarchy corresponds to
a subjective time slice of the self hierarchy defined by a single quantum jump. The sequence of
hierarchies associated with a sequence of quantum jumps is a natural geometric correlate for the
self hierarchy. This means that the objects are now sequences of submoments of consciousness.
Sequences are not arbitrary. Self must survive its lifetime although sub-selves at various levels
can disappear and reappear (generation and disappearance of mental images). Geometrically this
means typically a phase transition transforming real or p1-adic to p2-adic space-time region with
same topology as the environment. Also sub-selves can fuse to single sub-self. The constraints on
self sequences must be such that it takes these processes into account. Note that these constraints
emerge naturally from the fact that quantum jumps sequences define the sequences of surfaces
X4(X3).

By the rich anatomy of the quantum jump there is large number of quantum jumps leading
from a given initial quantum history to a given final quantum history. One could envisage quantum
jump also as a discrete path in the space of WCW spinor fields leading from the initial state to
the final state. In particular, for given self there is an infinite number of closed elementary paths
leading from the initial quantum history back to the initial quantum history and these paths in
principle give all possible conscious information about a given quantum history/idea: kind of self
morphisms are in question (analogous to, say, group automorhisms). Information about point of
space is obtained only by moving around and coming back to the point, that is by studying the
surroundings of the point. Self in turn can be seen as a composite of elementary paths defined by the
quantum jumps. Selves can define arbitrarily complex composite closed paths giving information
about a given quantum history.

7.3.2 Categories Related To Self And Quantum Jump

The categories defined by moments of consciousness and the notion of self

Since quantum jump involves state reduction and the sequence of self measurement reducing all
entanglement except bound state entanglement, it defines a hierarchy of unentangled subsystems
allowing interpretation as objects of a category. Arrows correspond to subsystem-system rela-
tionship and the two subsystems resulting in self measurement to the system. What subsystem
corresponds mathematically is however not at all trivial and the näıve description as a tensor factor
does not work. Rather, a definition relying on the notion of p-adic length scale cutoff identified as
a fundamental aspect of nature and consciousness is needed.
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It is not clear what the statement that self corresponds to a subsystem which remains un-
entangled in subsequent quantum jump means concretely since subsystem can certainly change in
some limits. What is clear that bound state entanglement between selves means a loss of con-
sciousness. Category theory suggests that there should exist a functor between categories defined
by two subsequent moments of consciousness. This functor maps submoments of consciousness to
submoments of consciousness and arrows to arrows. Two subsequent submoments of consciousness
belong to same sub-self is the functor maps the first one to the latter one. Thus category theory
would play essential role in the precise definition of the notion of self.

The sequences of moments of consciousness form a larger category containing sub-selves as
sequences of unentangled subsystems mapped to each other by functor arrows functoring subse-
quent quantum jumps to each other.

What might then be the ultimate characterizer of the self-identity? The theory of infinite
primes suggests that space-time surface decomposes into regions labelled by finite p-adic primes.
These primes must label also real regions rather than only p-adic ones. A p-adic space-time region
characterized by prime p can transform to a real one or vice versa in quantum jump if the sizes of
real and p-adic regions are characterized by the p-adic length scale Lp (or n-ary p-adic length scale
Lp(n). One can also consider the possibility that real region is accompanied by a p-adic region
characterized by a definite prime p and providing a cognitive self-representation of the real region.

If this view is correct, the p-adic prime characterizing a given real or p-adic space-time sheet
could be one characterizer of the self-identity. Self identity is lost in bound state entanglement
with another space-time sheet (at least when a space-time sheet with smaller value of the p-adic
prime joins by flux tube to a one with a higher value of the p-adic prime). Self identity is also lost
if a space-time sheet characterized by a given p-adic prime disappears in quantum jump.

The category associated with quantum jump sequences

There are several similarities between the ontologies and epistemologies of TGD and of category
theory. Conscious experience is always determined by the discrete paths in the space of configura-
tion space spinor fields defined by a quantum jump connecting two quantum histories (states) and
is never determined by single quantum history as such (quantum states are unconscious). Also
category theory is about relations between objects, not about objects directly: self-morphisms give
information about the object of category (in case of group composite paths would correspond to
products of group automorphisms). Analogously closed paths determined by quantum jump se-
quences give information about single quantum history. The point is however that it is impossible
to have direct knowledge about the quantum histories: they are not conscious.

One can indeed define a natural category, call it QSelf , applying to this situation. The
objects of the category QSelf are initial quantum histories of quantum jumps and correspond
to prepared quantum states. The discrete path defining quantum jump can be regarded as an
elementary morphism. Selves are composites of elementary morphisms of the initial quantum
history defined by quantum jumps: one can characterize the morphisms by the number of the
elementary morphisms in the product. Trivial self contains no quantum jumps and corresponds to
the identity morphism, null path. Thus the collection of all possible sequences of quantum jumps,
that is collections of selves allows a description in terms of category theory although the category
in question is not a subcategory of the category Set.

Category QSelf does not possess terminal and initial elements (for terminal (initial) element
T there is exactly one arrow A→ T (T → A) for every A: now there are always many paths between
quantum histories involved).

7.3.3 Communications In TGD Framework

Goro Kato identifies communications between conscious entities as natural maps between them
whereas in TGD natural maps bind submoments of consciousness to selves. In TGD framework
quantum measurement and the sharing of mental images are the basic candidates for communi-
cations. The problem is that the identification of communications as sharing of mental images is
not consistent with the näıve view about subsystem as a tensor factor. Many-sheeted space-time
however forces length scale dependent notion of subsystem at space-time level and this saves the
situation.
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What communications are?

Communication is essentially generation of desired mental images/sub-selves in receiver. Commu-
nication between selves need not be directly conscious: in this case communication would generate
mental images at some lower level of self hierarchy of receiver: for instance generate large number
of sub-sub-selves of similar type. This is like communications between organizations. Commu-
nication can be also vertical: self can generate somehow sub-self in some sub-sub....sub-self or
sub-sub...sub-self can generate sub-self of self somehow. This is communication from boss to the
lower levels organization or vice versa.

These communications should have direct topological counterparts. For instance, the com-
munication between selves could correspond to an exchange of mental image represented as a
space-time region of different topology inside sender self space-time sheet. The sender self would
simply throw this space-time region to a receiver self like a ball. This mechanism applies also to
vertical communications since the ball could be also thrown from a boss to sub...sub-self at some
lower level of hierarchy and vice versa.

The sequence of space-time surfaces provides a direct topological counterpart for commu-
nication as throwing balls representing sub-selves. Quantum jump sequence contains space-time
surfaces in which the regions corresponding to receiver and sender selves are connected by a flux
tube (perhaps massless extremal) representing classically the communication: during the commu-
nication the receiver and sender would form single self. The cartoon vision about rays connecting
the eyes of communication persons would make sense quite concretely.

More refined means of communication would generate sub-selves of desired type directly at
the end of receiver. In this case it is not so obvious how the sequence X(X3) of space-time surfaces
could represent communication. Of course, one can question whether communication is really what
happens in this kind of situation. For instance, sender can affect the environment of receiver to
be such that receiver gets irritated (computer virus is good manner to achieve this!) but one can
wonder whether this is real communication.

Communication as quantum measurement?

Quantum measurement generates one-one map between the states of the entangled systems re-
sulting in quantum measurement. Both state function reduction and self measurement give rise
to this kind of map. This map could perhaps be interpreted as quantum communication between
unentangled subsystems resulting in quantum measurement. For the state reduction process the
space-time correlates are the values of zero modes. For state preparation the space-time correlates
should correspond to classical spinor field modes correlating for the two subsystems generated in
self measurement.

Communication as sharing of mental images

It has become clear that the sharing of mental images induced by quantum entanglement of sub-
selves of two separate selves represents genuine conscious communication which is analogous telepa-
thy and provides general mechanism of remote mental interactions making possible even molecular
recognition mechanisms.

1. The sharing of mental images is not possible unless one assumes that self hierarchy is defined
by using the notion of length scale resolution defined by p-adic length scale. The notion
of scale of resolution is indeed fundamental for all quantum field theories (renormalization
group invariance) for all quantum field theories and without it the practical modelling of
physics would not be possible. The notion reflects directly the length scale resolution of
conscious experience. For a given sub-self of self the resolution is given by the p-adic length
scale associated with the sub-self space-time sheet.

2. Length scale resolution emerges naturally from the fact that sub-self space-time sheets having
Minkowskian signature of metric are separated from the one representing self by wormhole
contacts with Euclidian signature of metric. The signature of the induced metric changes from
Minkowskian signature to Euclidian signature at “elementary particle horizons” surrounding
the throats of the wormhole contacts and having degenerate induced metric. Elementary
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particle horizons are thus metrically two-dimensional light like surfaces analogous to the
boundary of the light cone and allow conformal invariance. Elementary particle horizons
act as causal horizons. Topologically condensed space-time sheets are analogous to black
hole interiors and due to the lack of the causal connectedness the standard description of
sub-selves as tensor factors of the state space corresponding to self is not appropriate.

Hence systems correspond, not to the space-time sheets plus entire hierarchy of space-time
sheets condensed to it, but rather, to space-time sheets with holes resulting when the space-
time sheets representing subsystems are spliced off along the elementary particle horizons
around wormhole contacts. This does not mean that all information about subsystem is lost:
subsystem space-time sheet is only replaced by the elementary particle horizon. In analogy
with the description of the black hole, some parameters (mass, charges, ...) characterizing
the classical fields created by the sub-self space-time sheet characterize sub-self.

One can say that the state space of the system contains “holes”. There is a hierarchy of
state spaces labelled by p-adic primes defining length scale resolutions. This picture resolves
a longstanding puzzle relating to the interpretation of the fact that particle is characterize by
both classical and quantum charges. Particle cannot couple simultaneously to both and this
is achieved if quantum charge is associated with the lowest level description of the particle
as CP2 extremal and classical charges to its description at higher levels of hierarchy.

3. The immediate implication indeed is that it is possible to have a situation in which two selves
are unentangled although their sub-selves (mental images) are entangled. This corresponds
to the fusion and sharing of mental images. The sharing of the mental images means that
union of disjoint hierarchy trees with levels labelled by p-adic primes p is replaced by a union
of hierarchy threes with horizontal lines connecting subsystems at the same level of hierarchy.
Thus the classical correspondence defines a category of presheaves with both vertical arrows
replaced by sub-self-self relationship, horizontal arrows representing sharing of mental images,
and natural maps representing binding of submoments of consciousness to selves.

Comparison with Goro Kato’s approach

It is of interest to compare Goro Kato’s approach with TGD approach. The following correspon-
dence suggests itself.

1. In TGD each quantum jumps defines a category analogous to the Goro Kato’s category
of open sets of some topological space but set theoretic inclusion replaced by topological
condensation. The category defined by a moment of consciousness is dynamical whereas the
category of open sets is non-dynamical.

2. The assignment of a 3-surface acting as a causal determinant to each unentangled subsystem
defined by a moment of consciousness defines a unique “quantum presheaf” which is the
counterpart of the presheaf in Goro Kato’s theory. The conscious entity of Kato’s theory
corresponds to the classical correlate for a moment of consciousness.

3. Natural maps between the causal determinants correspond to the space-time correlates for
the functor arrows defining the threads connecting submoments of consciousness to selves.
In Goro Kato’s theory natural maps are interpreted as communications between conscious
entities. The sharing of mental images by quantum entanglement between subsystems of
unentangled systems defines horizontal bi-directional arrows between subsystems associated
with same moment of consciousness and is counterpart of communication in TGD framework.
It replaces the union of disjoint hierarchy trees associated with various unentangled subsys-
tems with hierarchy trees having horizontal connections defining the bi-directional arrows.
The sharing of mental images is not possible if subsystem is identified as a tensor factor and
thus without taking into account length scale resolution.

7.3.4 Cognizing About Cognition

There are close connections with basic facts about cognition.



7.4. Logic And Category Theory 273

1. Categorization means classification and abstraction of common features in the class formed
by the objects of a category. Already quantum jump defines category with hierarchical
structure and can be regarded as consciously experienced analysis in which totally entangled
entire universe UΨi decomposes to a product of maximally unentangled subsystems. The
sub-selves of self are like elements of set and are experienced as separate objects whereas
sub-sub-selves of sub-self self experiences as an average: they belong to a class or category
formed by the sub-self. This kind of averaging occurs also for the contributions of quantum
jumps to conscious experience of self.

2. The notions of category theory might be useful in an attempt to construct a theory of
cognitive structures since cognition is indeed to high degree classification and abstraction
process. The sub-selves of a real self indeed have p-adic space-time sheets as geometric
correlates and thus correspond to cognitive sub-selves, thoughts. A meditative experience of
empty mind means in case of real self the total absence of thoughts.

3. Predicate logic provides a formalization of the natural language and relies heavily on the
notion of n-ary relation. Binary relations R(a, b) corresponds formally to the subset of the
product set A×B. For instance, statements like “A does something to B” can be expressed
as a binary relation, particular kind of arrow and morphism (A ≤ B is a standard example).
For sub-selves this relation would correspond to a dynamical evolution at space-time level
modelling the interaction between A and B. The dynamical path defined by a sequence
of quantum jumps is able to describe this kind of relationships too at level of conscious
experience. For instance, “A touches B” would involve the temporary fusion of sub-selves A
and B to sub-self C.

7.4 Logic And Category Theory

Category theory allows naturally more general than Boolean logics inherent to the notion of topos
associated with any category. Basic question is whether the ordinary notion of topos algebra based
on set theoretic inclusion or the notion of quantum topos based on topological condensation is
physically appropriate. Starting from the quasi-Boolean algebra of open sets one ends up to the
conclusion that quantum logic is more natural. Also WCW spinor fields lead naturally to the
notion of quantum logic.

7.4.1 Is The Logic Of Conscious Experience Based On Set Theoretic
Inclusion Or Topological Condensation?

The algebra of open sets with intersections and unions and complement defined as the interior
of the complement defines a modification of Boolean algebra having the peculiar feature that the
points at the boundary of the closure of open set cannot be said to belong to neither interior of
open set or of its complement. There are two options concerning the interpretation.

1. 3-valued logic could be in question. It is however not possible to understand this three-
valuedness if one defines the quasi-Boolean algebra of open sets as Heyting algebra. The
resulting logic is two-valued and the points at boundaries of the closure do not correspond
neither to the statement or its negation. In p-adic context the situation changes since p-adic
open sets are also closed so that the logic is strictly Boolean. That our ordinary cognitive
mind is Boolean provides a further good reason for why cognition is p-adic.

2. These points at the boundary of the closure belong to both interior and exterior in which case
a two-valued “quantum logic” allowing superposition of opposite truth values is in question.
The situation is indeed exactly the same as in the case of space-time sheet having wormhole
contacts to several space-time sheets.

The quantum logic brings in mind Zen consciousness [J6] (which I became fascinated of
while reading Hofstadter’s book “Gödel, Escher, Bach” [A53] ) and one can wonder whether selves
having real space-time sheets as geometric correlates and able to live simultaneously in many
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parallel worlds correspond to Zen consciousness and Zen logic. Zen logic would be also logic of
sensory experience whereas cognition would obey strictly Boolean logic.

The causal determinants associated with space-time sheets correspond to light like 3-surfaces
which could elementary particle horizons or space-time boundaries and possibly also 3-surfaces
separating two maximal deterministic regions of a space-time sheet. These surfaces act as 3-
dimensional quantum holograms and have the strange Zen property that they are neither space-like
nor time-like so that they represent both the state and the process. In the TGD based model for
topological quantum computation (TQC) light-like boundaries code for the computation so that
TQC program code would be equivalent with the running program [K4].

7.4.2 Do WCW Spinor Fields Define Quantum Logic And Quantum
Topos

I have proposed already earlier that WCW spinor fields define what might be called quantum
logic. One can wonder whether WCW spinor s could also naturally define what might be called
quantum topos since the category underlying topos defines the logic appropriate to the topos.
This question remains unanswered in the following: I just describe the line of though generalizing
ordinary Boolean logic.

Finite-dimensional spinors define quantum logic

Spinors at a point of an 2N -dimensional space span 2N -dimensional space and spinor basis is
in one-one correspondence with Boolean algebra with N different truth values (N bits). 2N=2-
dimensional case is simple: Spin up spinor= true and spin-dow spinor=false. The spinors for
2N -dimensional space are obtained as an N-fold tensor product of 2-dimensional spinors (spin up,
spin down): just like in the case of Cartesian power of Ω.

Boolean spinors in a given basis are eigen states for a set N mutually commuting sigma
matrices providing a representation for the tangent space group acting as rotations. Boolean
spinors define N Boolean statements in the set ΩN so that one can in a natural manner assign a
set with a Boolean spinor. In the real case this group is SO(2N) and reduces to SU(N) for Kähler
manifolds. For pseudo-euclidian metric some non-compact variant of the tangent space group is
involved. The selections of N mutually commuting generators are labelled by the flag-manifold
SO(2N)/SO(2)N in real context and by the flag-manifold U(N)/U(1)N in the complex case. The
selection of these generators defines a collection of N 2-dimensional linear subspaces of the tangent
space.

Spinors are in general complex superpositions of spinor basis which can be taken as the
product spinors. The quantum measurement of N spins representing the Cartan algebra of SO(2N)
(SU(N)) leads to a state representing a definite Boolean statement. This suggests that quantum
jumps as moments of consciousness quite generally make universe classical, not only in geometric
but also in logical sense. This is indeed what the state preparation process for WCW spinor field
seems to do.

Quantum logic for finite-dimensional spinor fields

One can generalize the idea of the spinor logic also to the case of spinor fields. For a given choice
of the local spinor basis (which is unique only modular local gauge rotation) spinor field assigns to
each point of finite-dimensional space a quantum superposition of Boolean statements decomposing
into product of N statements.

Also now one can ask whether it is possible to find a gauge in which each point corresponds to
definite Boolean statement and is thus an eigen state of a maximal number of mutually commuting
rotation generators Σij . This is not trivial if one requires that Dirac equation is satisfied. In the
case of flat space this is certainly true and constant spinors multiplied by functions which solve
d’Alembert equation provide a global basis.

The solutions of Dirac equation in a curved finite-dimensional space do not usually possess a
definite spin direction globally since spinor curvature means the presence of magnetic spin-flipping
interaction and since there need not exist a global gauge transformation leading to an eigen state
of the local Cartan algebra everywhere. What might happen is that the local gauge transformation
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becomes singular at some point: for instance, the direction of spin would be radial around given
point and become ill defined at the point. This is much like the singularities for vector fields
on sphere. The spinor field having this kind of singularity should vanish at singularity but the
local gauge rotation rotating spin in same direction everywhere is necessarily ill-defined at the
singularity.

In fact, this can be expressed using the language of category theory. The category in
question corresponds to a presheaf which assigns to the points of the base space the fiber space
of the spinor bundle. The presence of singularity means that there are no global section for this
presheaf, that is a continuous choice of a non-vanishing spinor at each point of the base space. The
so called Kochen-Specker theorem discussed in [A83] is closely related to a completely analogous
phenomenon involving non-existence of global sections and thus non-existence of a global truth
value.

Thus in case of curved spaces is not necessarily possible to have spinor field basis representing
globally Boolean statements and only the notion of locally Boolean logic makes sense. Indeed, one
can select the basis to be eigen state of maximal set of mutually commuting rotation generators in
single point of the compact space. Any such choice does.

Quantum logic and quantum topos defined by the prepared WCW spinor fields

The prepared WCW spinor fields occurring as initial and final states of quantum jumps are the
natural candidates for defining quantum logic. The outcomes of the quantum jumps resulting in
the state preparation process are maximally unentangled states and are as close to Boolean states
as possible.

WCW spinors correspond to fermionic Fock states created by infinite number of fermionic
(leptonic and quarklike) creation and annihilation operators. The spin degeneracy is replaced
by the double-fold degeneracy associated with a given fermion mode: given state either contains
fermion or not and these two states represent true and false now. If WCW were flat, the Fock
state basis with definite fermion and anti-fermion numbers in each mode would be in one-one
correspondence with Boolean algebra.

Situation is however not so simple. Finite-dimensional curved space is replaced with the
fiber degrees of freedom of WCW in which the metric is non-vanishing. The precise analogy with
the finite-dimensional case suggests that if the curvature form of the WCW spinor connection is
nontrivial, it is impossible to diagonalize even the prepared maximally unentangled WCW spinor
fields Ψi in the entire fiber of WCW (quantum fluctuating degrees of freedom) for given values of
the zero modes. Local singularities at which the spin quantum numbers of the diagonalized but
vanishing WCW spinor field become ill-defined are possible also now.

In the infinite-dimensional context the presence of the fermion-anti-fermion pairs in the state
means that it does not represent a definite Boolean statement unless one defines a more general
basis of WCW spinor s for which pairs are present in the states of the state basis: this generalization
is indeed possible. The sigma matrices of the WCW appearing in the spinor connection term of the
Dirac operator of WCW indeed create fermion-fermion pairs. What is decisive, is not the absence
of fermion-anti-fermion pairs, but the possibility that the spinor field basis cannot be reduced to
eigen states of the local Cartan algebra in fiber degrees of freedom globally.

Also for bound states of fermions (say leptons and quarks) it is impossible to reduce the
state to a definite Boolean statement even locally. This would suggest that fermionic logic does
not reduce to a completely Boolean logic even in the case of the prepared states.

Thus WCW spinor fields could have interpretation in terms of non-Boolean quantum logic
possessing Boolean logics only as sub-logics and define what might be called quantum topos.
Instead of ΩN -valued maps the values for the maps are complex valued quantum superpositions of
truth values in ΩN .

An objection against the notion of quantum logic is that Boolean algebra operationsandOR
do not preserve fermion number so that quantum jump sequences leading from the product state
defined by operands to the state representing the result of operation are therefore not possible.
One manner to circumvent the objection is to consider the sub-algebra spanned by fermion and
anti-fermion pairs for given mode so that fermion number conservation is not a problem. The
objection can be also circumvented for pairs of space-time sheets with opposite time orientations
and thus opposite signs of energies for particles. One can construct the algebra in question as pairs
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of many fermion states consisting of positive energy fermion and negative energy anti-fermion so
that all states have vanishing fermion number and logical operations become possible. Pairs of MEs
with opposite time orientations are excellent candidates for carries of these fermion-anti-fermion
pairs.

Quantum classical correspondence and quantum logic

The intuitive idea is that the global Boolean statements correspond to sections of Z2 bundle.
Möbius band is a prototype example here. The failure of a global statement would reduce to the
non-existence of global section so that true would transforms to false as one goes around full 2π
rotation.

One can ask whether fermionic quantum realization of Boolean logic could have space-time
counterpart in terms of Z2 fiber bundle structure. This would give some hopes of having some
connection between category theoretical and fermionic realizations of logic. The following argument
stimulated by email discussion with Diego Lucio Rapoport suggests that this might be the case.

1. The hierarchy of Planck constants realized using the notion of generalized embedding space
involves only groups Zna × Znb , na, nb 6= 2 if one takes Jones inclusions as starting point.
There is however no obvious reason for excluding the values na = 2 and nb = 2 and the
question concerns physical interpretation. Even if one allows only ni ≥ 3 one can ask for
the physical interpretation for the factorization Z2n = Z2 ×Zn. Could it perhaps relate to a
space-time correlates for Boolean two-valuedness?

2. An important implication of fiber bundle structure is that the partonic 2-surfaces have Zna×
Znb = Znanb as a group of conformal symmetries. I have proposed that na or nb is even for
fermions so that Z2 acts as a conformal symmetry of the partonic 2-surface. Both na and
nb would be odd for truly elementary bosons. Note that this hypothesis makes sense also for
ni ≥ 3.

3. Z2 conformal symmetry for fermions would imply that all partonic 2-surfaces associated with
fermions are hyper-elliptic. As a consequence elementary particle vacuum functionals defined
in modular degrees of freedom would vanish for fermions for genus g > 2 so that only three
fermion families would be possible in accordance with experimental facts. Since gauge bosons
and Higgs correspond to pairs of partonic 2-surfaces (the throats of the wormhole contact)
one has 9 gauge boson states labelled by the pairs (g1, g2) which can be grouped to SU(3)
singlet and octet. Singlet corresponds to ordinary gauge bosons.

super-symplectic bosons are truly elementary bosons in the sense that they do not consist of
fermion-anti-fermion pairs. For them both na and nb should be odd if the correspondence
is taken seriously and all genera would be possible. The super-conformal partners of these
bosons have the quantum numbers of right handed neutrino. Since both spin directions are
possible, one can ask whether Boolean Z2 must be present also now. This need not be the
case, νR generates only super-symmetries and does not define a family of fermionic oscillator
operators. The electro-weak spin of νR is frozen and it does not couple at all to electro-weak
intersections. Perhaps (only) odd values of ni are possible in this case.

4. If fermionic Boolean logic has a space-time correlate, one can wonder whether the fermionic
Z2 conformal symmetry might correspond to a space-time correlate for the Boolean true-false
dichotomy. If the partonic 2-surface contains points which are fixed points of Z2 symmetry,
there exists no everywhere non-vanishing sections. Furthermore, induced spinor fields should
vanish at the fixed points of Z2 symmetry since they correspond to singular orbifold points so
that one could not actually have a situation in which true and false are true simultaneously.
Global sections could however fail to exist since CP2 spinor bundle is non-trivial.

7.4.3 Category Theory And The Modelling Of Aesthetic And Ethical
Judgements

Consciousness theory should allow to model model the logics of ethics and aesthetics. Evolution
(representable as p-adic evolution in TGD framework) is regarded as something positive and is a
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good candidate for defining universal ethics in TGD framework. Good deeds are such that they
support this evolution occurring in statistical sense in any case. Moral provides a practical model for
what good deeds are and moral right-wrong statements are analogous to logical statements. Often
however the two-valued right-wrong logic seems to be too simplistic in case of moral statements.
Same applies to aesthetic judgements. A possible application of the generalized logics defined by
the inherent structure of categories relates to the understanding of the dilemmas associated with
the moral and aesthetic rules.

As already found, quantum versions of sieves provide a formal generalization of Boolean
truth values as a characteristic of a given category. Generalized moral rules could perhaps be seen
as sieve valued statements about deeds. Deeds are either right or wrong in what might be called
Boolean moral code. One can also consider Zen moral in which some deeds can be said to be right
and wrong simultaneously. Some deeds could also be such that there simply exists no globally
consistent moral rule: this would correspond to the non-existence of what is called global section
assigning to each object of the category consisting of the pairs formed by a moral agents and given
deed) a sieve simultaneously.

7.5 Platonism, Constructivism, And Quantum Platonism

During years I have been trying to understand how Category Theory and Set Theory relate to
quantum TGD inspired view about fundamentals of mathematics and the outcome section is added
to this chapter several years after its first writing. I hope that reader does not experience too
unpleasant discontinuity. I managed to clarify my thoughts about what these theories are by
reading the article Structuralism, Category Theory and Philosophy of Mathematics by Richard
Stefanik [A119]. Blog discussions and email correspondence with Sampo Vesterinen have been
very stimulating and inspired the attempt to represent TGD based vision about the unification of
mathematics, physics, and consciousness theory in a more systematic manner.

Before continuing I want to summarize the basic ideas behind TGD vision. One cannot
understand mathematics without understanding mathematical consciousness. Mathematical con-
sciousness and its evolution must have direct quantum physical correlates and by quantum classical
correspondence these correlates must appear also at space-time level. Quantum physics must allow
to realize number as a conscious experience analogous to a sensory quale. In TGD based ontology
there is no need to postulate physical world behind the quantum states as mathematical entities
(theory is the reality). Hence number cannot be any physical object, but can be identified as a
quantum state or its label and its number theoretical anatomy is revealed by the conscious ex-
periences induced by the number theoretic variants of particle reactions. Mathematical systems
and their axiomatics are dynamical evolving systems and physics is number theoretically universal
selecting rationals and their extensions in a special role as numbers, which can can be regarded
elements of several number fields simultaneously.

7.5.1 Platonism And Structuralism

There are basically two philosophies of mathematics.

1. Platonism assumes that mathematical objects and structures have independent existence.
Natural numbers would be the most fundamental objects of this kind. For instance, each
natural number has its own number-theoretical anatomy decomposing into a product of prime
numbers defining the elementary particles of Platonia. For quantum physicist this vision is
attractive, and even more so if one accepts that elementary particles are labelled by primes
(as I do)! The problematic aspects of this vision relate to the physical realization of the
Platonia. Neither Minkowski space-time nor its curved variants understood in the sense of
set theory have no room for Platonia and physical laws (as we know them) do not seem to
allow the realization of all imaginable internally consistent mathematical structures.

2. Structuralist believes that the properties of natural numbers result from their relations to
other natural numbers so that it is not possible to speak about number theoretical anatomy
in the Platonic sense. Numbers as such are structureless and their relationships to other
numbers provide them with their apparent structure. According to [A119] structuralism is
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however not enough for the purposes of number theory: in combinatorics it is much more
natural to use intensional definition for integers by providing them with inherent properties
such as decomposition into primes. I am not competent to take any strong attitudes on this
statement but my physicist’s intuition tells that numbers have number theoretic anatomy
and that this anatomy can be only revealed by the morphisms or something more general
which must have physical counterparts. I would like to regard numbers are analogous to
bound states of elementary particles. Just as the decays of bound states reveal their inner
structure, the generalizations of morphisms would reveal to the mathematician the inherent
number theoretic anatomy of integers.

7.5.2 Structuralism

Set theory and category theory represent two basic variants of structuralism and before continuing
I want to clarify to myself the basic ideas of structuralism: the reader can skip this section if it
looks too boring.

Set theory

Structuralism has many variants. In set theory [A20] the elements of set are treated as structureless
points and sets with the same cardinality are equivalent. In number theory additional structure
must be introduced. In the case of natural numbers one introduces the notion of successor and
induction axiom and defines the basic arithmetic operations using these. Set theoretic realization
is not unique. For instance, one can start from empty set Φ identified as 0, identify 1 as {Φ}, 2 as
{0, 1} and so on. One can also identify 0 as Φ, 1 as {0}, 2 as {{0}}, .... For both physicist and
consciousness theorist these formal definitions look rather weird.

The non-uniqueness of the identification of natural numbers as a set could be seen as a
problem. The structuralist’s approach is based on an extensional definition meaning that two
objects are regarded as identical if one cannot find any property distinguishing them: object is a
representative for the equivalence class of similar objects. This brings in mind gauge fixing to the
mind of physicists.

Category theory

Category theory [A3] represents a second form of structuralism. Category theorist does not worry
about the ontological problems and dreams that all properties of objects could be reduced to the
arrows and formally one could identify even objects as identity morphisms (looks like a trick to me).
The great idea is that functors between categories respecting the structure defined by morphisms
provide information about categories. Second basic concept is natural transformation which maps
functors to functors in a structure preserving manner. Also functors define a category so that one
can construct endless hierarchy of categories. This approach has enormous unifying power since
functors and natural maps systemize the process of generalization. There is no doubt that category
theory forms a huge piece of mathematics but I find difficult to believe that arrows can catch all
of it.

The notion of category can be extended to that of n-category. In the blog post “First
edge of the cube” (see http://tinyurl.com/yydjavv8) I have proposed a geometric realization of
this hierarchy in which one defines 1-morphisms by parallel translations, 2-morphisms by parallel
translations of parallel translations, and so on. In infinite-dimensional space this hierarchy would
be infinite. Abstractions about abstractions about.., thoughts about thoughts about, statements
about statements about..., is the basic idea behind this interpretation. Also the hierarchy of logics
of various orders corresponds to this hierarchy. This encourages to see category theoretic thinking
as being analogous to higher level self reflection which must be distinguished from the direct sensory
experience.

In the case of natural numbers category theoretician would identify successor function as
the arrow binding natural numbers to an infinitely long string with 0 as its end. If this approach
would work, the properties of numbers would reflect the properties of the successor function.

http://tinyurl.com/yydjavv8
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7.5.3 The View About Mathematics Inspired By TGD And TGD In-
spired Theory Of Consciousness

TGD based view might be called quantum Platonism. It is inspired by the requirement that both
quantum states and quantum jumps between them are able to represent number theory and that
all quantum notions have also space-time correlates so that Platonia should in some sense exist
also at the level of space-time. Here I provide a brief summary of this view as it is now.

Physics is fixed from the uniqueness of infinite-D existence and number theoretic
universality

1. The basic philosophy of quantum TGD relies on the geometrization of physics in terms of
infinite-dimensional Kähler geometry of WCW , whose uniqueness is forced by the mere
mathematical existence. Space-time dimension and embedding space H = M4 × CP2 are
fixed among other things by this condition and allow interpretation in terms of classical
number fields. Physical states correspond to WCW spinor fields with WCW spinor s having
interpretation as Fock states. Rather remarkably, WCW Clifford algebra defines standard
representation of so called hyper finite factor of II1, perhaps the most fascinating von Neu-
mann algebra.

2. Number theoretic universality states that all number fields are in a democratic position. This
vision can be realized by requiring generalization of notions of embedding space by gluing
together real and p-adic variants of embedding space along common algebraic numbers.
All algebraic extensions of p-adic numbers are allowed. Real and p-adic space-time sheets
intersect along common algebraics. The identification of the p-adic space-time sheets as
correlates of cognition and intentionality explains why cognitive representations at space-
time level are always discrete. Only space-time points belonging to an algebraic extension of
rationals associated contribute to the data defining S-matrix. These points define what I call
number theoretic braids. The interpretation in of algebraic discreteness terms of a physical
realization of axiom of choice is highly suggestive. The axiom of choice would be dynamical
and evolving quantum jump by quantum jump as the algebraic complexity of quantum states
increases.

Holy trinity of existence

In TGD framework one would have 3-levelled ontology numbers should have representations at all
these levels [L1].

1. Subjective existence as a sequence of quantum jumps giving conscious sensory representations
for numbers and various geometric structures would be the first level.

2. Quantum states would correspond to Platonia of mathematical ideas and mathematician- or
if one is unwilling to use this practical illusion- conscious experiences about mathematic ideas,
would be in quantum jumps. The quantum jumps between quantum states respecting the
symmetries characterizing the mathematical structure would provide conscious information
about the mathematical ideas not directly accessible to conscious experience. Mathematician
would live in Plato’s cave. There is no need to assume any independent physical reality behind
quantum states as mathematical entities since quantum jumps between these states give rise
to conscious experience. Theory-reality dualism disappears since the theory is reality or more
poetically: painting is the landscape.

3. The third level of ontology would be represented by classical physics at the space-time level
essential for quantum measurement theory. By quantum classical correspondence space-
time physics would be like a written language providing symbolic representations for both
quantum states and changes of them (by the failure of complete classical determinism of
the fundamental variational principle). This would involve both real and p-adic space-time
sheets corresponding to sensory and cognitive representations of mathematical concepts. This
representation makes possible the feedback analogous to formulas written by mathematician
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crucial for the ability of becoming conscious about what one was conscious of and the dynam-
ical character of this process allows to explain the self-referentiality of consciousness without
paradox.

This ontology releases a deep Platonistic sigh of relief. Since there are no physical objects,
there is no need to reduce mathematical notions to objects of the physical world. There are
only quantum states identified as mathematical entities labelled naturally by integer valued quan-
tum numbers; conscious experiences, which must represent sensations giving information about
the number theoretical anatomy of a given quantum number; and space-time surfaces providing
space-time correlates for quantum physics and therefore also for number theory and mathematical
structures in general.

Factorization of integers as a direct sensory perception?

Both physicist and consciousness theorist would argue that the set theoretic construction of natural
numbers could not be farther away from how we experience integers. Personally I feel that neither
structuralist’s approach nor Platonism as it is understood usually are enough. Mathematics is a
conscious activity and this suggests that quantum theory of consciousness must be included if one
wants to build more satisfactory view about fundamentals of mathematics.

Oliver Sack’s book The man who mistook his wife for a hat [J5] (see also [K65] ) contains
fascinating stories about those aspects of brain and consciousness which are more or less mysterious
from the view point of neuroscience. Sacks tells in his book also a story about twins who were
classified as idiots but had amazing number theoretical abilities. I feel that this story reveals
something very important about the real character of mathematical consciousness.

The twins had absolutely no idea about mathematical concepts such as the notion of prime-
ness but they could factorize huge numbers and tell whether they are primes. Their eyes rolled
wildly during the process and suddenly their face started to glow of happiness and they reported a
discovery of a factor. One could not avoid the feeling that they quite concretely saw the factoriza-
tion process. The failure to detect the factorization served for them as the definition of primeness.
For them the factorization was not a process based on some rules but a direct sensory perception.

The simplest explanation for the abilities of twins would in terms of a model of integers
represented as string like structures consisting of identical basic units. This string can decay to
strings. If string containing n units decaying into m > 1 identical pieces is not perceived, the
conclusion is that a prime is in question. It could also be that decay to units smaller than 2 was
forbidden in this dynamics. The necessary connection between written representations of numbers
and representative strings is easy to build as associations.

This kind theory might help to understand marvellous feats of mathematicians like Ra-
manujan who represents a diametrical opposite of Groethendienck as a mathematician (when
Groethendienck was asked to give an example about prime, he mentioned 57 which became known
as Groethendienck prime!).

The lesson would be that one very fundamental representation of integers would be, not as
objects, but conscious experiences. Primeness would be like the quale of redness. This of course
does not exclude also other representations.

Experience of integers in TGD inspired quantum theory of consciousness

In quantum physics integers appear very naturally as quantum numbers. In quantal axiomatization
or interpretation of mathematics same should hold true.

1. In TGD inspired theory of consciousness [L1] quantum jump is identified as a moment of
consciousness. There is actually an entire fractal hierarchy of quantum jumps consisting
of quantum jumps and this correlates directly with the corresponding hierarchy of physical
states and dark matter hierarchy. This means that the experience of integer should be
reducible to a certain kind of quantum jump. The possible changes of state in the quantum
jump would characterize the sensory representation of integer.

2. The quantum state as such does not give conscious information about the number theoretic
anatomy of the integer labelling it: the change of the quantum state is required. The above
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geometric model translated to quantum case would suggest that integer represents a mul-
tiplicatively conserved quantum number. Decays of this this state into states labelled by
integers ni such that one has n =

∏
i ni would provide the fundamental conscious represen-

tation for the number theoretic anatomy of the integer. At the level of sensory perception
based the space-time correlates a string-like bound state of basic particles representing n=1.

3. This picture is consistent with the Platonist view about integers represented as structured
objects, now labels of quantum states. It would also conform with the view of category
theorist in the sense that the arrows of category theorist replaced with quantum jumps are
necessary to gain conscious information about the structure of the integer.

Infinite primes and arithmetic consciousness

Infinite primes [K72] were the first mathematical fruit of TGD inspired theory of consciousness
and the inspiration for writing this posting came from the observation that the infinite primes
at the lowest level of hierarchy provide a representation of algebraic numbers as Fock states of a
super-symmetric arithmetic QFT so that it becomes possible to realize quantum jumps revealing
the number theoretic anatomy of integers, rationals, and perhaps even that of algebraic numbers.

1. Infinite primes have a representation as Fock states of super-symmetric arithmetic QFT and
at the lowest level of hierarchy they provide representations for primes, integers, rationals and
algebraic numbers in the sense that at the lowest level of hierarchy of second quantizations
the simplest infinite primes are naturally mapped to rationals whereas more complex infinite
primes having interpretation as bound states can be mapped to algebraic numbers. Conscious
experience of number can be assigned to the quantum jumps between these quantum states
revealing information about the number theoretic anatomy of the number represented. It
would be wrong to say that rationals only label these states: rather, these states represent
rationals and since primes label the particles of these states.

2. More concretely, the conservation of number theoretic energy defined by the logarithm of
the rational assignable with the Fock state implies that the allowed decays of the state to
a product of infinite integers are such that the rational can decompose only into a product
of rationals. These decays could provide for the above discussed fundamental realization
of multiplicative aspects of arithmetic consciousness. Also additive aspects are represented
since the exponents k in the powers pk appearing in the decomposition are conserved so that
only the partitions k =

∑
i ki are representable. Thus both product decompositions and

partitions, the basic operations of number theorist, are represented.

3. The higher levels of the hierarchy represent a hierarchy of abstractions about abstractions
bringing strongly in mind the hierarchy of n-categories and various similar constructions
including n: th order logic. It also seems that the n+1: th level of hierarchy provides
a quantum representation for the n: th level. Ordinary primes, integers, rationals, and
algebraic numbers would be the lowest level, -the initial object- of the hierarchy representing
nothing at low level. Higher levels could be reduced to them by the analog of category
theoretic reductionism in the sense that there is arrow between n: th and n+1: th level
representing the second quantization at this level. On can also say that these levels represent
higher reflective level of mathematical consciousness and the fundamental sensory perception
corresponds the lowest level.

4. Infinite primes have also space-time correlates. The decomposition of particle into partons
can be interpreted as a infinite prime and this gives geometric representations of infinite
primes and also rationals. The finite primes appearing in the decomposition of infinite prime
correspond to bosonic or fermionic partonic 2-surfaces. Many-sheeted space-time provides
a representation for the hierarchy of second quantizations: one physical prediction is that
many particle bound state associated with space-time sheet behaves exactly like a boson or
fermion. Nuclear string model is one concrete application of this idea: it replaces nucleon
reductionism with reductionism occurs first to strings consisting of A ≤ 4 nuclei and which in
turn are strings consisting of nucleons. A further more speculative representation of infinite
rationals as space-time surfaces is based on their mapping to rational functions.
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Number theoretic Brahman=Atman identity

The notion of infinite primes leads to the notion of algebraic holography in which space-time points
possess infinitely rich number-theoretic anatomy. This anatomy would be due to the existence of
infinite number of real units defined as ratios of infinite integers which reduce to unit in the real
sense and various p-adic senses. This anatomy is not visible in real physics but can contribute
directly to mathematical consciousness [K72].

The anatomies of single space-time point could represent the entire world of classical worlds
and quantum states of universe: the number theoretic anatomy is of course not visible in the
structure of these these states. Therefore the basic building brick of mathematics - point- would
become the Platonia able to represent all of the mathematics consistent with the laws of quantum
physics. Space-time points would evolve, becoming more and more complex quantum jump by
quantum jump. WCW and quantum states would be represented by the anatomies of space-time
points. Some space-time points are more “civilized” than others so that space-time decomposes
into “civilizations” at different levels of mathematical evolution.

Paths between space-time points represent processes analogous to parallel translations af-
fecting the structure of the point and one can also define n-parallel translations up to n = 4 at
level of space-time and n = 8 at level of embedding space. At level of world of classical worlds
whose points are representable as number theoretical anatomies arbitrary high values of n can be
realized.

It is fair to say that the number theoretical anatomy of the space-time point makes it
possible self-reference loop to close so that structured points are able to represent the physics of
associated with with the structures constructed from structureless points. Hence one can speak
about algebraic holography or number theoretic Brahman=Atman identity.

Finite measurement resolution, Jones inclusions, and number theoretic braids

In the history of physics and mathematics the realization of various limitations have been the
royal road to a deeper understanding (Uncertainty Principle, Gödel’s theorem). The precision of
quantum measurement, sensory perception, and cognition are always finite. In standard quantum
measurement theory this limitation is not taken into account but forms a corner stone of TGD
based vision about quantum physics and of mathematics too as I want to argue in the following.

The finite resolutions has representation both at classical and quantum level.

1. At the level of quantum states finite resolution is represented in terms of Jones inclusions
N subset M of hyper-finite factors of type II1 (HFFs) [K27]. N represents measurement
resolution in the sense that the states related by the action of N cannot be distinguished
in the measurement considered. Complex rays are replaced by N rays. This brings in non-
commutativity via quantum groups [K9]. Non-commutativity in TGD Universe would be
therefore due to a finite measurement resolution rather than something exotic emerging in
the Planck length scale. Same applies to p-adic physics: p-adic space-time sheets have
literally infinite size in real topology!

2. At the space-time level discretization implied by the number theoretic universality could be
seen as being due to the finite resolution with common algebraic points of real and p-adic
variant of the partonic 3-surface chosen as representatives for regions of the surface. The
solutions of Kähler-Dirac equation are characterized by the prime in question so that the
preferred prime makes itself visible at the level of quantum dynamics and characterizes the
p-adic length scale fixing the values of coupling constants. Discretization could be also under-
stood as effective non-commutativity of embedding space points due to the finite resolution
implying that second quantized spinor fields anti-commute only at a discrete set of points
rather than along stringy curve.

In this framework it is easy to imagine physical representations of number theoretical and
other mathematical structures.

1. Every compact group corresponds to a hierarchy of Jones inclusions corresponding to various
representations for the quantum variants of the group labelled by roots of unity. I would be
surprised if non-compact groups would not allow similar representation since HFF can be
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regarded as infinite tensor power of n-dimensional complex matrix algebra for any value of n.
Somewhat paradoxically, the finite measurement resolution would make possible to represent
Lie group theory physically [K27].

2. There is a strong temptation to identify the Galois groups of algebraic numbers as the
infinite permutation group S∞ consisting of permutations of finite number of objects, whose
projective representations give rise to an infinite braid group B∞. The group algebras of
these groups are HFFs besides the representation provided by the spinors of the world of
classical worlds having physical identification as fermionic Fock states. Therefore physical
states would provide a direct representation also for the more abstract features of number
theory [K38].

3. Number theoretical braids crucial for the construction of S-matrix provide naturally repre-
sentations for the Galois groups G associated with the algebraic extensions of rationals as
diagonal embeddings G×G× .... to the completion of S∞ representable also as the action on
the completion of spinors in the world of classical worlds so that the core of number theory
would be represented physically [K38]. At the space-time level number theoretic braid having
G as symmetries would represent the G. These representations are analogous to global gauge
transformations. The elements of S∞ are analogous to local gauge transformations having
a natural identification as a universal number theoretical gauge symmetry group leaving
physical states invariant.

Hierarchy of Planck constants and the generalization of embedding space

Jones inclusions inspire a further generalization of the notion of embedding space obtained by
gluing together copies of the embedding space H regarded as coverings H → H/Ga × Gb. In the
simplest scenario Ga ×Gb leaves invariant the choice of quantization axis and thus this hierarchy
provides embedding space correlate for the choice of quantization axes inducing these correlates
also at space-time level and at the level of world of classical worlds [K27].

Dark matter hierarchy is identified in terms of different sectors of H glued together along
common points of base spaces and thus forming a book like structure. For the simplest option
elementary particles proper correspond to maximally quantum critical systems in the intersection
of all pages. The field bodies of elementary particles are in the interiors of the pages of this “book”.

One can assign to Jones inclusions quantum phase q = exp(i2π/n) and the groups Zn acts
as exact symmetries both at level of M4 and CP2. In the case of M4 this means that space-time
sheets have exact Zn rotational symmetry. This suggests that the algebraic numbers qm could
have geometric representation at the level of sensory perception as Zn symmetric objects. We
need not be conscious of this representation in the ordinary wake-up consciousness dominated
by sensory perception of ordinary matter with q = 1. This would make possible the idea about
transcendentals like π, which do not appear in any finite-dimensional extension of even p-adic
numbers (p-adic numbers allow finite-dimensional extension by since ep is ordinary p-adic number).
Quantum jumps in which state suffers an action of the generating element of Zn could also provide
a sensory realization of these groups and numbers exp(i2π/n).

Planck constant is identified as the ratio na/nb of integers associated with M4 and CP2

degrees of freedom so that a representation of rationals emerge again. The so called ruler and
compass rationals whose definition involves only a repeated square root operation applied on ra-
tionals are cognitively the simplest ones and should appear first in the evolution of mathematical
consciousness. The successful [K25] quantum model for EEG is only one of the applications pro-
viding support for their preferred role. Other applications are to Bohr quantization of planetary
orbits interpreted as being induced by the presence of macroscopically quantum coherent dark
matter [K68].

7.5.4 Farey Sequences, Riemann Hypothesis, Tangles, And TGD

Farey sequences allow an alternative formulation of Riemann Hypothesis and subsequent pairs in
Farey sequence characterize so called rational 2-tangles. In TGD framework Farey sequences relate
very closely to dark matter hierarchy, which inspires “Platonia as the best possible world in the
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sense that cognitive representations are optimal” as the basic variational principle of mathematics.
This variational principle supports RH.

Possible TGD realizations of tangles, which are considerably more general objects than
braids, are considered. One can assign to a given rational tangle a rational number a/b and the
tangles labelled by a/b and c/d are equivalent if ad − bc = ±1 holds true. This means that the
rationals in question are neighboring members of Farey sequence. Very light-hearted guesses about
possible generalization of these invariants to the case of general N -tangles are made.

Farey sequences

Some basic facts about Farey sequences [A4] demonstrate that they are very interesting also from
TGD point of view.

1. Farey sequence FN is defined as the set of rationals 0 ≤ q = m/n ≤ 1 satisfying the conditions
n ≤ N ordered in an increasing sequence.

2. Two subsequent terms a/b and c/d in FN satisfy the condition ad − bc = 1 and thus define
and element of the modular group SL(2, Z).

3. The number |F (N)| of terms in Farey sequence is given by

|F (N)| = |F (N − 1)|+ φ(N − 1) . (7.5.1)

Here φ(n) is Euler’s totient function giving the number of divisors of n. For primes one has
φ(p) = 1 so that in the transition from p to p+ 1 the length of Farey sequence increases by
one unit by the addition of q = 1/(p+ 1) to the sequence.

The members of Farey sequence FN are in one-one correspondence with the set of quantum
phases qn = exp(i2π/n), 0 ≤ n ≤ N . This suggests a close connection with the hierarchy of
Jones inclusions, quantum groups, and in TGD context with quantum measurement theory
with finite measurement resolution and the hierarchy of Planck constants involving the gen-
eralization of the embedding space. Also the recent TGD inspired ideas about the hierarchy
of subgroups of the rational modular group with subgroups labelled by integers N and in
direct correspondence with the hierarchy of quantum critical phases [K19] would naturally
relate to the Farey sequence.

Riemann Hypothesis and Farey sequences

Farey sequences are used in two equivalent formulations of the Riemann hypothesis. Suppose the
terms of FN are an,N , 0 < n ≤ |FN |. Define

dn,N = an,N −
n

|FN |
.

In other words, dn,N is the difference between the n: th term of the N : th Farey sequence, and
the n: th member of a set of the same number of points, distributed evenly on the unit interval.
Franel and Landau proved that both of the following statements

∑
n=1,...,|FN |

|dn,N | = O(Nr) for any r > 1/2 ,

∑
n=1,...,|FN |

d2
n,N = O(Nr) for any r > 1 . (7.5.2)

are equivalent with Riemann hypothesis.
One could say that RH would guarantee that the numbers of Farey sequence provide the

best possible approximate representation for the evenly distributed rational numbers n/|FN |.
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Farey sequences and TGD

Farey sequences seem to relate very closely to TGD.

1. The rationals in the Farey sequence can be mapped to the roots of unity by the map q →
exp(i2πq). The numbers 1/|FN | are in turn mapped to the numbers exp(i2π/|FN |), which
are also roots of unity. The statement would be that the algebraic phases defined by Farey
sequence give the best possible approximate representation for the phases exp(in2π/|FN |)
with evenly distributed phase angle.

2. In TGD framework the phase factors defined by FN corresponds to the set of quantum phases
corresponding to Jones inclusions labelled by q = exp(i2π/n), n ≤ N , and thus to the N
lowest levels of dark matter hierarchy. There are actually two hierarchies corresponding to
M4 and CP2 degrees of freedom and the Planck constant appearing in Schrödinger equa-
tion corresponds to the ratio na/nb defining quantum phases in these degrees of freedom.
Zna×nb appears as a conformal symmetry of “dark” partonic 2-surfaces and with very general
assumptions this implies that there are only in TGD Universe [K19, K17].

3. The fusion of physics associated with various number fields to single coherent whole requires
algebraic universality. In particular, the roots of unity, which are complex algebraic numbers,
should define approximations to continuum of phase factors.

4. The subgroups of the hierarchy of subgroups of the modular group with rational matrix
elements are labelled by integer N and relate naturally to the hierarchy of Farey sequences.
The hierarchy of quantum critical phases is labelled by integers N with quantum phase
transitions occurring only between phases for which the smaller integer divides the larger
one [K19].

Interpretation of RH in TGD framework

Number theoretic universality of physics suggests an interpretation for the Riemann hypothesis
in TGD framework. RH would be equivalent to the statement that the Farey numbers provide
best possible approximation to the set of rationals k/|FN | or to the statement that the roots of
unity contained by FN define the best possible approximation for the roots of unity defined as
exp(ik2π/|FN |) with evenly spaced phase angles. The roots of unity allowed by the lowest N levels
of the dark matter hierarchy allows the best possible approximate representation for algebraic
phases represented exactly at |FN |: th level of hierarchy.

A stronger statement would be that the Platonia, where RH holds true would be the best
possible world in the sense that algebraic physics behind the cognitive representations would allow
the best possible approximation hierarchy for the continuum physics (both for numbers in unit
interval and for phases on unit circle). Platonia with RH would be cognitive paradise.

One could see this also from different view point. “Platonia as the cognitively best possible
world” could be taken as the “axiom of all axioms”: a kind of fundamental variational principle of
mathematics. Among other things it would allow to conclude that RH is true: RH must hold true
either as a theorem following from some axiomatics or as an axiom in itself.

Could rational N-tangles exist in some sense?

The article of Kauffman and Lambropoulou [A99] about rational 2-tangles having commutative
sum and product allowing to map them to rationals is very interesting from TGD point of view.
The illustrations of the article are beautiful and make it easy to get the gist of various ideas. The
theorem of the article states that equivalent rational tangles giving trivial tangle in the product
correspond to subsequent Farey numbers a/b and c/d satisfying ad − bc = ±1 so that the pair
defines element of the modular group SL(2, Z).

1. Rational 2-tangles

1. The basic observation is that 2-tangles are 2-tangles in both “s- and t-channels”. Product
and sum can be defined for all tangles but only in the case of 2-tangles the sum, which in this
case reduces to product in t-channel obtained by putting tangles in series, gives 2-tangle. The
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so called rational tangles are 2-tangles constructible by using addition of ±[1] on left or right
of tangle and multiplication by ±[1] on top or bottom. Product and sum are commutative
for rational 2-tangles but the outcome is not a rational 2-tangle in the general case. One can
also assign to rational 2-tangle its negative and inverse. One can map 2-tangle to a number
which is rational for rational tangles. The tangles [0], [∞], ±[1], ±1/[1], ±[2], ±[1/2] define
so called elementary rational 2-tangles.

2. In the general case the sum of M− and N−tangles is M+N−2-tangle and combines various
N−tangles to a monoidal structure. Tensor product like operation giving M+N -tangle looks
to me physically more natural than the sum.

3. The reason why general 2-tangles are non-commutative although 2-braids obviously commute
is that 2-tangles can be regarded as sequences of N−tangles with 2-tangles appearing only
as the initial and final state: N is actually even for intermediate states. Since N > 2-
braid groups are non-commutative, non-commutativity results. It would be interesting to
know whether braid group representations have been used to construct representations of
N−tangles.

2. Does generalization to N >> 2 case exist?

One can wonder whether the notion of rational tangle and the basic result of the article
about equivalence of tangles might somehow generalize to the N > 2 case.

1. Could the commutativity of tangle product allow to characterize the N > 2 generalizations
of rational 2-tangles. The commutativity of product would be a space-time correlate for
the commutativity of the S-matrices defining time like entanglement between the initial and
final quantum states assignable to the N -tangle. For 2-tangles commutativity of the sum
would have an analogous interpretation. Sum is not a very natural operation for N-tangles
for N > 2. Commutativity means that the representation matrices defined as products of
braid group actions associated with the various intermediate states and acting in the same
representation space commute. Only in very special cases one can expect commutativity for
tangles since commutativity is lost already for braids.

2. The representations of 2-tangles should involve the subgroups of N -braid groups of inter-
mediate braids identifiable as Galois groups of N : th order polynomials in the realization
as number theoretic tangles. Could non-commutative 2-tangles be characterized by alge-
braic numbers in the extensions to which the Galois groups are associated? Could the
non-commutativity reflect directly the non-commutativity of Galois groups involved? Quite
generally one can ask whether the invariants should be expressible using algebraic numbers
in the extensions of rationals associated with the intermediate braids.

3. Rational 2-tangles can be characterized by a rational number obtained by a projective identi-
fication [a, b]T → a/b from a rational 2-spinor [a, b]T to which SL(2(N-1), Z) acts. Equivalence
means that the columns [a, b]T and [c, d]T combine to form element of SL(2, Z) and thus defin-
ing a modular transformation. Could more general 2-tangles have a similar representation
but in terms of algebraic integers?

4. Could N -tangles be characterized by N − 1 2(N − 1)-component projective column-spinors

[a1
i , a

2
i , .., a

2(N−1)
i ]T , i = 1, ...N − 1 so that only the ratios aki /a

2(N−1)
i ≤ 1 matter? Could

equivalence for them mean that the N − 1 spinors combine to form N − 1 +N − 1 columns
of SL(2(N − 1), Z) matrix. Could N -tangles quite generally correspond to collections of
projective N − 1 spinors having as components algebraic integers and could ad − bc = ±1
criterion generalize? Note that the modular group for surfaces of genus g is SL(2g, Z) so that
N − 1 would be analogous to g and 1 ≤ N ≥ 3- braids would correspond to g ≤ 2 Riemann
surfaces.

5. Dark matter hierarchy leads naturally to a hierarchy of modular sub-groups of SL(2, Q)
labelled by N (the generator τ → τ + 2 of modular group is replaced with τ → τ + 2/N).
What might be the role of these subgroups and corresponding subgroups of SL(2(N −1), Q).
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Could they arise in “anyonization” when one considers quantum group representations of
2-tangles with twist operation represented by an N : th root of unity instead of phase U
satisfying U2 = 1?

How tangles could be realized in TGD Universe?

The article of Kauffman and Lambropoulou stimulated the question in what senses N -tangles could
be realized in TGD Universe as fundamental structures.

1. Tangles as number theoretic braids?

The strands of number theoretical N−braids correspond to roots of N: th order polynomial
and if one allows time evolutions of partonic 2-surface leading to the disappearance or appearance
of real roots N−tangles become possible. This however means continuous evolution of roots so
that the coefficients of polynomials defining the partonic 2-surface can be rational only in initial
and final state but not in all intermediate “virtual” states.

2. Tangles as tangled partonic 2-surfaces?

Tangles could appear in TGD also in second manner.

1. Partonic 2-surfaces are sub-manifolds of a 3-D section of space-time surface. If partonic
2-surfaces have genus g > 0 the handles can become knotted and linked and one obtains
besides ordinary knots and links more general knots and links in which circle is replaced by
figure eight and its generalizations obtained by adding more circles (eyeglasses for N−eyed
creatures).

2. Since these 2-surfaces are space-like, the resulting structures are indeed tangles rather than
only braids. Tangles made of strands with fixed ends would result by allowing spherical
partons elongate to long strands with fixed ends. DNA tangles would the basic example,
and are discussed also in the article. DNA sequences to which I have speculatively assigned
invisible (dark) braid structures might be seen in this context as space-like “written language
representations” of genetic programs represented as number theoretic braids.

7.6 Quantum Quandaries

John Baez’s [A87] discusses in a physicist friendly manner the possible application of category
theory to physics. The lessons obtained from the construction of topological quantum field theories
(TQFTs) suggest that category theoretical thinking might be very useful in attempts to construct
theories of quantum gravitation.

The point is that the Hilbert spaces associated with the initial and final state n-1-manifold
of n-cobordism indeed form in a natural manner category. Morphisms of Hilb in turn are unitary
or possibly more general maps between Hilbert spaces. TQFT itself is a functor assigning to a
cobordism the counterpart of S-matrix between the Hilbert spaces associated with the initial and
final n-1-manifold. The surprising result is that for n ≤ 4 the S-matrix can be unitary S-matrix only
if the cobordism is trivial. This should lead even string theorist to raise some worried questions.

In the hope of feeding some category theoretic thinking into my spine, I briefly summarize
some of the category theoretical ideas discussed in the article and relate it to the TGD vision, and
after that discuss the worried questions from TGD perspective. That space-time makes sense only
relative to embedding space would conform with category theoretic thinking.

7.6.1 The *-Category Of Hilbert Spaces

Baez considers first the category of Hilbert spaces. Intuitively the definition of this category
looks obvious: take linear spaces as objects in category Set, introduce inner product as additional
structure and identify morphisms as maps preserving this inner product. In finite-D case the
category with inner product is however identical to the linear category so that the inner product
does not seem to be absolutely essential. Baez argues that in infinite-D case the morphisms need
not be restricted to unitary transformations: one can consider also bounded linear operators as
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morphisms since they play key role in quantum theory (consider only observables as Hermitian
operators). For hyper-finite factors of type II1 inclusions define very important morphisms which
are not unitary transformations but very similar to them. This challenges the belief about the
fundamental role of unitarity and raises the question about how to weaken the unitarity condition
without losing everything.

The existence of the inner product is essential only for the metric topology of the Hilbert
space. Can one do without inner product as an inherent property of state space and reduce it to a
morphism? One can indeed express inner product in terms of morphisms from complex numbers to
Hilbert space and their conjugates. For any state Ψ of Hilbert space there is a unique morphisms
TΨ from C to Hilbert space satisfying TΨ(1) = Ψ. If one assumes that these morphisms have
conjugates T ∗Ψ mapping Hilbert space to C, inner products can be defined as morphisms T ∗ΦTΨ.
The Hermitian conjugates of operators can be defined with respect to this inner product so that
one obtains *-category. Reader has probably realized that TΨ and its conjugate correspond to ket
and bra in Dirac’s formalism.

Note that in TGD framework based on hyper-finite factors of type II1 (HFFs) the inclusions
of complex rays might be replaced with inclusions of HFFs with included factor representing the
finite measurement resolution. Note also the analogy of inner product with the representation of
space-times as 4-surfaces of the embedding space in TGD.

7.6.2 The Monoidal *-Category Of Hilbert Spaces And Its Counterpart
At The Level Of Ncob

One can give the category of Hilbert spaces a structure of monoid by introducing explicitly the
tensor products of Hilbert spaces. The interpretation is obvious for physicist. Baez describes the
details of this identification, which are far from trivial and in the theory of quantum groups very
interesting things happen. A non-commutative quantum version of the tensor product implying
braiding is possible and associativity condition leads to the celebrated Yang-Baxter equations:
inclusions of HFFs lead to quantum groups [K9] too.

At the level of nCob the counterpart of the tensor product is disjoint union of n-1-manifolds.
This unavoidably creates the feeling of cosmic loneliness. Am I really a disjoint 3-surface in
emptiness which is not vacuum even in the geometric sense? Cannot be true!

This horrifying sensation disappears if n-1-manifolds are n-1-surfaces in some higher-dimensional
embedding space so that there would be at least something between them. I can emit a little baby
manifold moving somewhere perhaps being received by some-one somewhere and I can receive
radiation from some-one at some distance and in some direction as small baby manifolds making
gentle tosses on my face!

This consoling feeling could be seen as one of the deep justifications for identifying funda-
mental objects as light-like partonic 3-surfaces in TGD framework. Their ends correspond to 2-D
partonic surfaces at the boundaries of future or past directed light-cones (states of positive and
negative energy respectively) and are indeed disjoint but not in the desperately existential sense
as 3-geometries of General Relativity.

This disjointness has also positive aspect in TGD framework. One can identify the color
degrees of freedom of partons as those associated with CP2 degrees of freedom. For instance, SU(3)
analogs for rotational states of rigid body become possible. 4-D space-time surfaces as preferred
extremals of Kähler action connect the partonic 3-surfaces and bring in classical representation of
correlations and thus of interactions. The representation as sub-manifolds makes it also possible
to speak about positions of these sub-Universes and about distances between them. The habitants
of TGD Universe are maximally free but not completely alone.

7.6.3 Tqft As A Functor

The category theoretic formulation of TQFT relies on a very elegant and general idea. Quantum
transition has as a space-time correlate an n-dimensional surface having initial final states as
its n-1-dimensional ends. One assigns Hilbert spaces of states to the ends and S-matrix would
be a unitary morphism between the ends. This is expressed in terms of the category theoretic
language by introducing the category nCob with objects identified as n-1-manifolds and morphisms
as cobordisms and *-category Hilb consisting of Hilbert spaces with inner product and morphisms
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which are bounded linear operators which do not however preserve the unitarity. Note that the
morphisms of nCob cannot anymore be identified as maps between n-1-manifolds interpreted as
sets with additional structure so that in this case category theory is more powerful than set theory.

TQFT is identified as a functor nCob→ Hilb assigning to n-1-manifolds Hilbert spaces, and
to cobordisms unitary S-matrices in the category Hilb. This looks nice but the surprise is that for
n ≤ 4 unitary S-matrix exists only if the cobordism is trivial so that topology changing transitions
are not possible unless one gives up unitarity.

This raises several worried questions.

1. Does this result mean that in TQFT sense unitary S-matrix for topology changing transitions
from a state containing ni closed strings to a state containing nf 6= ni strings does not exist?
Could the situation be same also for more general non-topological stringy S-matrices? Could
the non-converging perturbation series for S-matrix with finite individual terms matrix fail
to no non-perturbative counterpart? Could it be that M-theory is doomed to remain a dream
with no hope of being fulfilled?

2. Should one give up the unitarity condition and require that the theory predicts only the rel-
ative probabilities of transitions rather than absolute rates? What the proper generalization
of the S-matrix could be?

3. What is the relevance of this result for quantum TGD?

7.6.4 The Situation Is In TGD Framework

The result about the non-existence of unitary S-matrix for topology changing cobordisms allows
new insights about the meaning of the departures of TGD from string models.

Cobordism cannot give interesting selection rules

When I started to work with TGD for more than 28 years ago, one of the first ideas was that one
could identify the selection rules of quantum transitions as topological selection rules for cobor-
disms. Within week or two came the great disappointment: there were practically no selection
rules. Could one revive this näıve idea? Could the existence of unitary S-matrix force the topo-
logical selection rules after all? I am skeptic. If I have understood correctly the discussion of what
happens in 4-D case [A50] only the exotic diffeo-structures modify the situation in 4-D case.

Light-like 3-surfaces allow cobordism

In the physically interesting GRT like situation one would expect the cobordism to be mediated
by a space-time surface possessing Lorentz signature. This brings in metric and temporal distance.
This means complications since one must leave the pure TQFT context. Also the classical dynamics
of quantum gravitation brings in strong selection rules related to the dynamics in metric degrees
of freedom so that TQFT approach is not expected to be useful from the point of view of quantum
gravity and certainly not the limit of a realistic theory of quantum gravitation.

In TGD framework situation is different. 4-D space-time sheets can have Euclidian signa-
ture of the induced metric so that Lorentz signature does not pose conditions. The counterparts
of cobordisms correspond at fundamental level to light-like 3-surfaces, which are arbitrarily ex-
cept for the light-likeness condition (the effective 2-dimensionality implies generalized conformal
invariance and analogy with 3-D black-holes since 3-D vacuum Einstein equations are satisfied).
Field equations defined by the Chern-Simons action imply that CP2 projection is at most 2-D but
this condition holds true only for the extremals and one has functional integral over all light-like
3-surfaces. The temporal distance between points along light-like 3-surface vanishes. The con-
straints from light-likeness bring in metric degrees of freedom but in a very gentle manner and just
to make the theory physically interesting.

Feynman cobordism as opposed to ordinary cobordism

In string model context the discouraging results from TQFT hold true in the category of nCob,
which corresponds to trouser diagrams for closed strings or for their open string counterparts. In
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TGD framework these diagrams are replaced with a direct generalization of Feynman diagrams
for which 3-D light-like partonic 3-surfaces meet along their 2-D ends at the vertices. In honor
of Feynman one could perhaps speak of Feynman cobordisms. These surfaces are singular as 3-
manifolds but vertices are nice 2-manifolds. I contrast to this, in string models diagrams are nice
2-manifolds but vertices are singular as 1-manifolds (say eye-glass type configurations for closed
strings).

This picture gains a strong support for the interpretation of fermions as light-like throats
associated with connected sums of CP2 type extremals with space-time sheets with Minkowski
signature and of bosons as pairs of light-like wormhole throats associated with CP2 type extremal
connecting two space-time sheets with Minkowski signature of induced metric. The space-time
sheets have opposite time orientations so that also zero energy ontology emerges unavoidably.
There is also consistency TGD based explanation of the family replication phenomenon in terms
of genus of light-like partonic 2-surfaces.

One can wonder what the 4-D space-time sheets associated with the generalized Feynman
diagrams could look like? One can try to gain some idea about this by trying to assign 2-D surfaces
to ordinary Feynman diagrams having a subset of lines as boundaries. In the case of 2→2 reaction
open string is pinched to a point at vertex. 1→2 vertex, and quite generally, vertices with odd
number of lines, are impossible. The reason is that 1-D manifolds of finite size can have either 0 or
2 ends whereas in higher-D the number of boundary components is arbitrary. What one expects
to happen in TGD context is that wormhole throats which are at distance characterized by CP2

fuse together in the vertex so that some kind of pinches appear also now.

Zero energy ontology

Zero energy ontology gives rise to a second profound distinction between TGD and standard QFT.
Physical states are identified as states with vanishing net quantum numbers, in particular energy.
Everything is creatable from vacuum - and one could add- by intentional action so that zero energy
ontology is profoundly Eastern. Positive resp. negative energy parts of states can be identified
as states associated with 2-D partonic surfaces at the boundaries of future resp. past directed
light-cones, whose tips correspond to the arguments of n-point functions. Each incoming/outgoing
particle would define a mini-cosmology corresponding to not so big bang/crunch. If the time
scale of perception is much shorter than time interval between positive and zero energy states, the
ontology looks like the Western positive energy ontology. Bras and kets correspond naturally to the
positive and negative energy states and phase conjugation for laser photons making them indeed
something which seems to travel in opposite time direction is counterpart for bra-ket duality.

Finite temperature S-matrix defines genuine quantum state in zero energy ontology

In TGD framework one encounters two S-matrix like operators.

1. There is U-matrix acting in zero energy states. U-matrix is the analog of the ordinary
S-matrix and constructible in terms of it and orthonormal basis of square roots of density
matrices expressible as products of hermitian operators multiplied by unitary S-matrix [K48].

2. The S-matrix like operator describing what happens in laboratory corresponds to the time-like
entanglement coefficients between positive and negative energy parts of the state. Measure-
ment of reaction rates would be a measurement of observables reducing time like entanglement
and very much analogous to an ordinary quantum measurement reducing space-like entan-
glement. There is a finite measurement resolution described by inclusion of HFFs and this
means that situation reduces effectively to a finite-dimensional one.

p-Adic thermodynamics strengthened with p-adic length scale hypothesis predicts particle
masses with an amazing success. At first the thermodynamical approach seems to be in con-
tradiction with the idea that elementary particles are quantal objects. Unitarity is however not
necessary if one accepts that only relative probabilities for reductions to pairs of initial and final
states interpreted as particle reactions can be measured.

The beneficial implications of unitarity are not lost if one replaces QFT with thermal QFT.
Category theoretically this would mean that the time-like entanglement matrix associated with
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the product of cobordisms is a product of these matrices for the factors. The time parameter in
S-matrix would be replaced with a complex time parameter with the imaginary part identified as
inverse temperature. Hence the interpretation in terms of time evolution is not lost.

In the theory of hyper-finite factors of type III1 the partition function for thermal equilib-
rium states and S-matrix can be neatly fused to a thermal S-matrix for zero energy states and one
could introduce p-adic thermodynamics at the level of quantum states. It seems that this picture
applies to HFFs by restriction. Therefore the loss of unitarity S-matrix might after all turn to a
victory by more or less forcing both zero energy ontology and p-adic thermodynamics.

7.7 How To Represent Algebraic Numbers As Geometric
Objects?

Physics blogs are also interesting because they allow to get some grasp about very different styles of
thinking of a mathematician and physicist. For mathematician it is very important that the result
is obtained by a strict use of axioms and deduction rules. Physicist is a cognitive opportunist: it
does not matter how the result is obtained by moving along axiomatically allowed paths or not, and
the new result is often more like a discovery of a new axiom and physicist is ever-grateful for Gödel
for giving justification for what sometimes admittedly degenerates to a creative hand-waving. For
physicist ideas form a kind of bio-sphere and the fate of the individual idea depends on its ability
to survive, which is determined by its ability to become generalized, its consistency with other
ideas, and ability to interact with other ideas to produce new ideas.

7.7.1 Can One Define Complex Numbers As Cardinalities Of Sets?

During few days before writing this we have had in Kea’s blog a little bit of discussion inspired by
the problem related to the categorification of basic number theoretical structures. I have learned
that sum and product are natural operations for the objects of category. For instance, one can
define sum as in terms of union of sets or direct sum of vector spaces and product as Cartesian
product of sets and tensor product of vector spaces: rigs [A27] are example of categories for which
natural numbers define sum and product.

Subtraction and division are however problematic operations. Negative numbers and inverses
of integers do not have a realization as a number of elements for any set or as dimension of vector
space. The näıve physicist inside me asks immediately: why not go from statics to dynamics and
take operations (arrows with direction) as objects: couldn’t this allow to define subtraction and
division? Is the problem that the axiomatization of group theory requires something which purest
categorification does not give? Or aren’t the numbers representable in terms of operations of finite
groups not enough? In any case cyclic groups would allow to realize roots of unity as operations
(Z2 would give −1).

One could also wonder why the algebraic numbers might not somehow result via the rep-
resentations of permutation group of infinite number of elements containing all finite groups and
thus Galois groups of algebraic extensions as subgroups? Why not take the elements of this group
as objects of the basic category and continue by building group algebra and hyper-finite factors of
type II1 isomorphic to spinors of world of classical worlds, and so on.

After having written the first half of the section, I learned that something similar to the
transition from statics to dynamics is actually carried out but by manner which is by many orders
of magnitudes more refined than the proposal above and that I had never been able to imagine. The
article Objects of categories as complex numbers of Marcelo Fiore and Tom Leinster [A27] describes
a fascinating idea summarized also by John Baez [A25] about how one can assign to the objects of
a category complex numbers as roots of a polynomial Z = P (Z) defining an isomorphism of object.
Z is the element of a category called rig, which differs from ring in that integers are replaced with
natural numbers. One can replace Z with a complex number |Z| defined as a root of polynomial.
|Z| is interpreted formally as the cardinality of the object. It is essential to have natural numbers
and thus only product and sum are defined. This means a restriction: for instance, only complex
algebraic numbers associated with polynomials having natural numbers as coefficients are obtained.
Something is still missing.
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Note that this correspondence assumes the existence of complex numbers and one cannot
say that complex numbers are categorified. Maybe basic number fields must be left outside cate-
gorification. One can however require that all of them have a concrete set theoretic representation
rather than only formal interpretation as cardinality so that one still encounters the problem how
to represent algebraic complex number as a concrete cardinality of a set.

7.7.2 In What Sense A Set Can Have Cardinality -1?

The discussion in Kea’s blog led me to ask what the situation is in the case of p-adic numbers.
Could it be possible to represent the negative and inverse of p-adic integer, and in fact any p-adic
number, as a geometric object? In other words, does a set with −1 or 1/n or even

√
−1 elements

exist? If this were in some sense true for all p-adic number fields, then all this wisdom combined
together might provide something analogous to the adelic representation for the norm of a rational
number as product of its p-adic norms. As will be found, alternative interpretations of complex
algebraic numbers as p-adic numbers representing cardinalities of p-adic fractals emerge. The
fractal defines the manner how one must do an infinite sum to get an infinite real number but
finite p-adic number.

Of course, this representation might not help to define p-adics or reals categorically but
might help to understand how p-adic cognitive representations defined as subsets for rational
intersections of real and p-adic space-time sheets could represent p-adic number as the number of
points of p-adic fractal having infinite number of points in real sense but finite in the p-adic sense.
This would also give a fundamental cognitive role for p-adic fractals as cognitive representations
of numbers.

How to construct a set with -1 elements?

The basic observation is that p-adic -1 has the representation

−1 = (p− 1)/(1− p) = (p− 1)(1 + p+ p2 + p3....)

As a real number this number is infinite or -1 but as a p-adic number the series converges and has
p-adic norm equal to 1. One can also map this number to a real number by canonical identification
taking the powers of p to their inverses: one obtains p in this particular case. As a matter fact,
any rational with p-adic norm equal to 1 has similar power series representation.

The idea would be to represent a given p-adic number as the infinite number of points (in
real sense) of a p-adic fractal such that p-adic topology is natural for this fractal. This kind of
fractals can be constructed in a simple manner: from this more below. This construction allows to
represent any p-adic number as a fractal and code the arithmetic operations to geometric operations
for these fractals.

These representations - interpreted as cognitive representations defined by intersections of
real and p-adic space-time sheets - are in practice approximate if real space-time sheets are assumed
to have a finite size: this is due to the finite p-adic cutoff implied by this assumption and the
meaning a finite resolution. One can however say that the p-adic space-time itself could by its
necessarily infinite size represent the idea of given p-adic number faithfully.

This representation applies also to the p-adic counterparts of algebraic numbers in case
that they exist. For instance, roughly one half of p-adic numbers have square root as ordinary
p-adic number and quite generally algebraic operations on p-adic numbers can give rise to p-adic
numbers so that also these could have set theoretic representation. For p mod 4 = 1 also

√
(− 1)

exists: for instance, for p = 5: 22 = 4 = −1 mod 5 guarantees this so that also imaginary unit
and complex numbers would have a fractal representation. Also many transcendentals possess this
kind of representation. For instance exp(xp) exists as a p-adic number if x has p-adic norm not
larger than 1: also log(1 + xp) does so.

Hence a quite impressive repertoire of p-adic counterparts of real numbers would have repre-
sentation as a p-adic fractal for some values of p. Adelic vision would suggest that combining these
representations one might be able to represent quite a many real numbers. In the case of π I do not
find any obvious p-adic representation (for instance sin(π/6) = 1/2 does not help since the p-adic
variant of the Taylor expansion of π/6 = arcsin(1/2) does not converge p-adically for any value of
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p). It might be that there are very many transcendentals not allowing fractal representation for
any value of p.

Conditions on the fractal representations of p-adic numbers

Consider now the construction of the fractal representations in terms of rational intersections
of real real and p-adic space-time sheets. The question is what conditions are natural for this
representation if it corresponds to a cognitive representation is realized in the rational intersection
of real and p-adic space-time sheets obeying same algebraic equations.

1. Pinary cutoff is the analog of the decimal cutoff but is obtained by dropping away high
positive rather than negative powers of p to get a finite real number: example of pinary
cutoff is −1 = (p − 1)(1 + p + p2 + ...) → (p − 1)(1 + p + p2). This cutoff must reduce to
a fractal cutoff meaning a finite resolution due to a finite size for the real space-time sheet.
In the real sense the p-adic fractal cutoff means not forgetting details below some scale but
cutting out all above some length scale. Physical analog would be forgetting all frequencies
below some cutoff frequency in Fourier expansion.

The motivation comes from the fact that TGD inspired consciousness assigns to a given
biological body there is associated a field body or magnetic body containing dark matter with
large ~ and quantum controlling the behavior of biological body and so strongly identifying
with it so as to belief that this all ends up to a biological death. This field body has an onion
like fractal structure and a size of at least order of light-life. Of course, also larger onion layers
could be present and would represent those levels of cognitive consciousness not depending
on the sensory input on biological body: some altered states of consciousness could relate to
these levels. In any case, the larger the magnetic body, the better the numerical skills of the
p-adic mathematician.

2. Lowest pinary digits of x = x0 + x1p + x2p
2 + ..., xn ≤ p must have the most reliable

representation since they are the most significant ones. The representation must be also
highly redundant to guarantee reliability. This requires repetitions and periodicity. This is
guaranteed if the representation is hologram like with segments of length pn with digit xn
represented again and again in all segments of length pm, m > n.

3. The TGD based physical constraint is that the representation must be realizable in terms
of induced classical fields assignable to the field body hierarchy of an intelligent system
interested in artistic expression of p-adic numbers using its own field body as instrument. As
a matter, sensory and cognitive representations are realized at field body in TGD Universe
and EEG is in a fundamental role in building this representation. By p-adic fractality fractal
wavelets are the most natural candidate. The fundamental wavelet should represent the p
different pinary digits and its scaled up variants would correspond to various powers of p so
that the representation would reduce to a Fourier expansion of a classical field.

Concrete representation

Consider now a concrete candidate for a representation satisfying these constraints.

1. Consider a p-adic number

y = pn0x, x =
∑

xnp
n , n ≥ n0 = 0 .

If one has a representation for a p-adic unit x the representation of is by a purely geometric
fractal scaling of the representation by pn. Hence one can restrict the consideration to p-adic
units.

2. To construct the representation take a real line starting from origin and divide it into segments
with lengths 1, p, p2, .... In TGD framework this scalings come actually as powers of p1/2 but
this is just a technical detail.
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3. It is natural to realize the representation in terms of periodic field patterns. One can use
wavelets with fractal spectrum pnλ0 of “wavelet lengths”, where λ0 is the fundamental wave-
length. Fundamental wavelet should have p different patterns correspond to the p values of
pinary digit as its structures. Periodicity guarantees the hologram like character enabling to
pick n: th digit by studying the field pattern in scale pn anywhere inside the field body.

4. Periodicity guarantees also that the intersections of p-adic and real space-time sheets can
represent the values of pinary digits. For instance, wavelets could be such that in a given
p-adic scale the number of rational points in the intersection of the real and p-adic space-time
sheet equals to xn. This would give in the limit of an infinite pinary expansion a set theoretic
realization of any p-adic number in which each pinary digit xn corresponds to infinite copies
of a set with xn elements and fractal cutoff due to the finite size of real space-time sheet
would bring in a finite precision. Note however that p-adic space-time sheet necessarily has
an infinite size and it is only real world realization of the representation which has finite
accuracy.

5. A concrete realization for this object would be as an infinite tree with xn+1 ≤ p branches in
each node at level n (xn+1 is needed in order to avoid the splitting tree at xn = 0). In 2-adic
case -1 would be represented by an infinite pinary tree. Negative powers of p correspond to
the of the tree extending to a finite depth in ground.

7.7.3 Generalization Of The Notion Of Rig By Replacing Naturals With
P-Adic Integers

Previous considerations do not relate directly to category theoretical problem of assigning complex
numbers to objects. It however turns out that p-adic approach allows to generalize the proposal
of [A27] by replacing natural numbers with p-adic integers in the definition of rig so that any
algebraic complex number can define cardinality of an object of category allowing multiplication
and sum and that these complex numbers can be replaced with p-adic numbers if they make sense
as such so that previous arguments provide a concrete geometric representation of the cardinality.
The road to the realization this simple generalization required a visit to the John Baez’s Weekly
Finds (Week 102) [A25].

The outcome was the realization that the notion of rig used to categorify the subset of alge-
braic numbers obtained as roots of polynomials with natural number valued coefficients generalizes
trivially by replacing natural numbers by p-adic integers. As a consequence one obtains beautiful
p-adicization of the generating function F(x) of structure as a function which converges p-adically
for any rational x = q for which it has prime p as a positive power divisor.

Effectively this generalization means the replacement of natural numbers as coefficients
of the polynomial defining the rig with all rationals, also negative, and all complex algebraic
numbers find a category theoretical representation as “cardinalities”. These cardinalities have a
dual interpretation as p-adic integers which in general correspond to infinite real numbers but
are mappable to real numbers by canonical identification and have a geometric representation as
fractals.

Mapping of objects to complex numbers and the notion of rig

The idea of rig approach is to categorify the notion of cardinality in such a way that one obtains
a subset of algebraic complex numbers as cardinalities in the category-theoretical sense. One can
assign to an object a polynomial with coefficients, which are natural numbers and the condition
Z = P (Z) says that P (Z) acts as an isomorphism of the object. One can interpret the equation
also in terms of complex numbers. Hence the object is mapped to a complex number Z defining
a root of the polynomial interpreted as an ordinary polynomial: it does not matter which root is
chosen. The complex number Z is interpreted as the “cardinality” of the object but I do not really
understand the motivation for this. The deep further result is that also more general polynomial
equations R(|Z|) = Q(|Z|) satisfied by the generalized cardinality Z imply R(Z) = Q(Z) as
isomorphism.
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I try to reproduce what looks the most essential in the explanation of John Baez and relate
it to my own ideas but take this as my talk to myself and visit This Week’s Finds [A25], one of
the many classics of Baez, to learn of this fascinating idea.

1. Baez considers first the ways of putting a given structure to n-element set. The set of these
structures is denoted by Fn and the number of them by |Fn|. The generating function
|F |(x) =

∑
n |Fn|xn packs all this information to a single function.

For instance, if the structure is binary tree, this function is given by T (x) =
∑
n Cn−1x

n,
where Cn−1 are Catalan numbers and n¿0 holds true. One can show that T satisfies the
formula

T = X + T 2 ,

since any binary tree is either trivial or decomposes to a product of binary trees, where two
trees emanate from the root. One can solve this second order polynomial equation and the
power expansion gives the generating function.

2. The great insight is that one can also work directly with structures. For instance, by starting
from the isomorphism T = 1 + T 2 applying to an object with cardinality 1 and substituting
T 2 with (1 + T 2)2 repeatedly, one can deduce the amazing formula T 7(1) = T (1) mentioned
by Kea, and this identity can be interpreted as an isomorphism of binary trees.

3. This result can be generalized using the notion of rig category [A27]. In rig category one can
add and multiply but negatives are not defined as in the case of ring. The lack of subtraction
and division is still the problem and as I suggested in previous posting p-adic integers might
resolve the problem.

Whenever Z is object of a rig category, one can equip it with an isomorphism Z = P (Z)
where P (Z) is polynomial with natural numbers as coefficients and one can assign to ob-
ject “cardinality” as any root of the equation Z = P (Z). Note that set with n elements
corresponds to P (|Z|) = n. Thus subset of algebraic complex numbers receive formal iden-
tification as cardinalities of sets. Furthermore, if the cardinality satisfies another equation
Q(|Z|) = R(|Z|) such that neither polynomial is constant, then one can construct an isomor-
phism Q(Z) = R(Z). Isomorphisms correspond to equations!

4. This is indeed nice that there is something which is not so beautiful as it could be: why
should we restrict ourselves to natural numbers as coefficients of P (Z)? Could it be possible
to replace them with integers to obtain all complex algebraic numbers as cardinalities? Could
it be possible to replace natural numbers by p-adic integers?

p-Adic rigs and Golden Object as p-adic fractal

The notions of generating function and rig generalize to the p-adic context.

1. The generating function F (x) defining isomorphism Z in the rig formulation converges p-
adically for any p-adic number containing p as a factor so that the idea that all structures
have p-adic counterparts is natural. In the real context the generating function typically
diverges and must be defined by analytic continuation. Hence one might even argue that
p-adic numbers are more natural in the description of structures assignable to finite sets than
reals.

2. For rig one considers only polynomials P (Z) (Z corresponds to the generating function F )
with coefficients which are natural numbers. Any p-adic integer can be however interpreted
as a non-negative integer: natural number if it is finite and “super-natural” number if it
is infinite. Hence can generalize the notion of rig by replacing natural numbers by p-adic
integers. The rig formalism would thus generalize to arbitrary polynomials with integer
valued coefficients so that all complex algebraic numbers could appear as cardinalities of
category theoretical objects. Even rational coefficients are allowed. This is highly natural
number theoretically.
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3. For instance, in the case of binary trees the solutions to the isomorphism condition T = p+T 2

giving T = [1± (1− 4p)1/2]/2 and T would be complex number [p± (1− 4p)1/2]/2. T (p) can
be interpreted also as a p-adic number by performing power expansion of square root in case
that the p-adic square root exists: this super-natural number can be mapped to a real number
by the canonical identification and one obtains also the set theoretic representations of the
category theoretical object T (p) as a p-adic fractal. This interpretation of cardinality is much
more natural than the purely formal interpretation as a complex number. This argument
applies completely generally. The case x = 1 discussed by Baez gives T = [1 ± (−3)1/2]/2
allows p-adic representation if −3 == p − 3 is square mod p. This is the case for p = 7 for
instance.

4. John Baez [A25] poses also the question about the category theoretic realization of “Golden
Object”, his big dream. In this case one would have Z = G = −1 + G2 = P (Z). The
polynomial on the right hand side does not conform with the notion of rig since -1 is not
a natural number. If one allows p-adic rigs, x = −1 can be interpreted as a p-adic integer
(p− 1)(1 + p+ ...), positive and infinite and “super-natural”, actually largest possible p-adic
integer in a well defined sense.

A further condition is that Golden Mean converges as a p-adic number: this requires that
√

5
must exist as a p-adic number: (5 = 1 + 4)1/2 certainly converges as power series for p = 2
so that Golden Object exists 2-adically. By using [A18] of Euler, one finds that 5 is square
mod p only if p is square mod 5. To decide whether given p is Golden it is enough to look
whether p mod 5 is 1 or 4. For instance, p = 11, 19, 29, 31 (=M5) are Golden. Mersennes
Mk, k = 3, 7, 127 and Fermat primes are not Golden. One representation of Golden Object
as p-adic fractal is the p-adic series expansion of [1/2 ± 51/2]/2 representable geometrically
as a binary tree such that there are 0 ≤ xn+ 1 ≤ p branches at each node at height n if n: th
p-adic coefficient is xn. The “cognitive” p-adic representation in terms of wavelet spectrum
of classical fields is discussed in the previous posting.

5. It would be interesting to know how quantum dimensions of quantum groups assignable to
Jones inclusions [K87, K27, K9] relate to the generalized cardinalities. The root of unity
property of quantum phase (qn+1 = q) suggests Q = Qn+1 = P (Q) as the relevant isomor-
phism. For Jones inclusions the cardinality q = exp(i2π/n) would not be however equal to
quantum dimension D(n) = 4cos2(π/n).

Is there a connection with infinite integers?

Infinite primes [K72] correspond to Fock states of a super-symmetric arithmetic quantum field
theory and there is entire infinite hierarchy of them corresponding to repeated second quantization.
Also infinite primes and rationals make sense. Besides free Fock states spectrum contains at
each level also what might be identified as bound states. All these states can be mapped to
polynomials. Since the roots of polynomials represent complex algebraic numbers and as they
seem to characterize objects of categories, there are reasons to expect that infinite rationals might
allow also interpretation in terms of say rig categories or their generalization. Also the possibility to
identify space-time coordinate as isomorphism of a category might be highly interesting concerning
the interpretation of quantum classical correspondence.

7.8 Gerbes And TGD

The notion of gerbes has gained much attention during last years in theoretical physics and there
is an abundant gerbe-related literature in hep-th archives. Personally I learned about gerbes from
the excellent article of Jouko Mickelson [A91] (Jouko was my opponent in PhD dissertation for
more than two decades ago: so the time flows!).

I have already applied the notion of bundle gerbe in TGD framework in the construction of
the Dirac determinant which I have proposed to define the Kähler function for the WCW (see [K88]
). The insights provided by the general results about bundle gerbes discussed in [A91] led, not
only to a justification for the hypothesis that Dirac determinant exists for the Kähler-Dirac action,
but also to an elegant solution of the conceptual problems related to the construction of Dirac
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determinant in the presence of chiral symmetry. Furthermore, on basis of the special properties
of the Kähler-Dirac operator there are good reasons to hope that the determinant exists even
without zeta function regularization. The construction also leads to the conclusion that the space-
time sheets serving as causal determinants must be geodesic sub-manifolds (presumably light like
boundary components or “elementary particle horizons” ). Quantum gravitational holography is
realized since the exponent of Kähler function is expressible as a Dirac determinant determined
by the local data at causal determinants and there would be no need to find absolute minima of
Kähler action explicitly.

In the sequel the emergence of 2-gerbes at the space-time level in TGD framework is discussed
and shown to lead to a geometric interpretation of the somewhat mysterious cocycle conditions for
a wide class of gerbes generated via the ∧d products of connections associated with 0-gerbes. The
resulting conjecture is that gerbes form a graded-commutative Grassmman algebra like structure
generated by -1- and 0-gerbes. 2-gerbes provide also a beautiful topological characterization of
space-time sheets as structures carrying Chern-Simons charges at boundary components and the 2-
gerbe variant of Bohm-Aharonov effect occurs for perhaps the most interesting asymptotic solutions
of field equations especially relevant for anyonics systems, quantum Hall effect, and living matter
[K4].

7.8.1 What Gerbes Roughly Are?

Very roughly and differential geometrically, gerbes can be regarded as a generalization of con-
nection. Instead of connection 1-form (0-gerbe) one considers a connection n + 1-form defining
n-gerbe. The curvature of n-gerbe is closed n+2-form and its integral defines an analog of magnetic
charge. The notion of holonomy generalizes: instead of integrating n-gerbe connection over curve
one integrates its connection form over n+1-dimensional closed surface and can transform it to the
analog of magnetic flux.

There are some puzzling features associated with gerbes. Ordinary U(1)-bundles are defined
in terms of open sets Uα with gauge transformations gαβ = g−1

βα defined in Uα ∩ Uβ relating the
connection forms in the patch Uβ to that in patch Uα. The 3-cocycle condition

gαβgβγgγα = 1 (7.8.1)

makes it possible to glue the patches to a bundle structure.
In the case of 1-gerbes the transition functions are replaced with the transition functions

gαβγ = g−1
γβα defined in triple intersections Uα ∩ Uβ ∩ Uγ and 3-cocycle must be replaced with

4-cocycle:

gαβγgβγδgγδαgδαβ = 1 . (7.8.2)

The generalizations of these conditions to n-gerbes is obvious.
In the case of 2-intersections one can build a bundle structure naturally but in the case

of 3-intersections this is not possible. Hence the geometric interpretation of the higher gerbes
is far from obvious. One possible interpretation of non-trivial 1-gerbe is as an obstruction for
lifting projective bundles with fiber space CPn to vector bundles with fiber space Cn+1 [A91].
This involves the lifting of the holomorphic transition functions gα defined in the projective linear
group PGL(n + 1, C) to GL(n + 1, C). When the 3-cocycle condition for the lifted transition
functions gαβ fails it can be replaced with 4-cocycle and one obtains 1-gerbe.

7.8.2 How Do 2-Gerbes Emerge In TGD?

Gerbes seem to be interesting also from the point of view of TGD, and TGD approach allows a
geometric interpretation of the cocycle conditions for a rather wide class of gerbes.

Recall that the Kähler form J of CP2 defines a non-trivial magnetically charged and self-dual
U(1)-connection A. The Chern-Simons form ω = A ∧ J = A ∧ dA having CP2 Abelian instanton
density J ∧ J as its curvature form and can thus be regarded as a 3-connection form of a 2-gerbe.
This 2-gerbe is induced by 0-gerbe.
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The coordinate patches Uα are same as for U(1) connection. In the transition between
patches A and ω transform as

A → A+ dφ ,

ω → ω + dA2 ,

A2 = φ ∧ J .

(7.8.3)

The transformation formula is induced by the transformation formula for U(1) bundle. Somewhat
mysteriously, there is no need to define anything in the intersections of Uα in the recent case.

The connection form of the 2-gerbe can be regarded as a second ∧d power of Kähler con-
nection:

A3 ≡ A ∧ dA . (7.8.4)

The generalization of this observation allows to develop a different view about n-gerbes generated
as ∧d products of 0-gerbes.

The hierarchy of gerbes generated by 0-gerbes

Consider a collection of U(1) connections Ai). They generate entire hierarchy of gerbe-connections
via the ∧d product

A3 = A1) ∧ dA2) (7.8.5)

defining 2-gerbe having a closed curvature 4-form

F4 = dA1) ∧ dA2) . (7.8.6)

∧d product is commutative apart from a gauge transformation and the curvature forms of A1)∧dA2)

and A2) ∧ dA1) are the same.
Quite generally, the connections Am of m− 1 gerbe and An of n− 1-gerbe define m+ n+ 1

connection form and the closed curvature form of m+ n-gerbe as

Am+n+1 = A1)
m ∧ dA2)

n ,

Fm+n+2 = dA1)
m ∧ dA2)

n . (7.8.7)

The sequence of gerbes extends up to n = D − 2, where D is the dimension of the underlying
manifold. These gerbes are not the most general ones since one starts from 0-gerbes. One can of
course start from n > 0-gerbes too.

The generalization of the ∧d product to the non-Abelian situation is not obvious. The
problems stem from the that the Lie-algebra valued connection forms A1) and A2) appearing in
the covariant version D = d+A do not commute.

7.8.3 How To Understand The Replacement Of 3-Cycles With N-Cycles?

If n-gerbes are generated from 0-gerbes it is possible to understand how the intersections of the
open sets emerge. Consider the product of 0-gerbes as the simplest possible case. The crucial
observation is that the coverings Uα for A1) and Vβ for A2) need not be same (for CP2 this was
the case). One can form a new covering consisting of sets Uα ∩ Vα1 . Just by increasing the index
range one can replace V with U and one has covering by Uα ∩ Uα1

≡ Uαα1
.

The transition functions are defined in the intersections Uαα1 ∩Uββ1 ≡ Uαα1ββ1 and cocycle
conditions must be formulated using instead of intersections Uαβγ the intersections Uαα1ββ1γγ1 .
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Hence the transition functions can be written as gαα1ββ1
and the 3-cocycle are replaced with

5-cocycle conditions since the minimal co-cycle corresponds to a sequence of 6 steps instead of 4:

Uαα1ββ1
→ Uα1ββ1γ → Uββ1γγ1 → Uβ1γγ1α → Uγγ1αα1

.

The emergence of higher co-cycles is thus forced by the modification of the bundle covering neces-
sary when gerbe is formed as a product of lower gerbes. The conjecture is that any even gerbe is
expressible as a product of 0-gerbes.

An interesting application of the product structure is at the level of WCW (“world of
classical worlds” ). The Kähler form of WCW defines a connection 1-form and this generates
infinite hierarchy of connection 2n+ 1-forms associated with 2n-gerbes.

7.8.4 Gerbes As Graded-Commutative Algebra: Can One Express All
Gerbes As Products Of −1 And 0-Gerbes?

If one starts from, say 1-gerbes, the previous argument providing a geometric understanding of
gerbes is not applicable as such. One might however hope that it is possible to represent the
connection 2-form of any 1-gerbe as a ∧d product of a connection 0-form φ of “-1” -gerbe and
connection 1-form A of 0-gerbe:

A2 = φdA ≡ A ∧ dφ ,

with different coverings for φ and A. The interpretation as an obstruction for the modification of
the underlying bundle structure is consistent with this interpretation.

The notion of −1-gerbe is not well-defined unless one can define the notion of −1 form
precisely. The simplest possibility that 0-form transforms trivially in the change of patch is not
consistent. One could identify contravariant n-tensors as −n-forms and d for them as divergence
and d2 as the antisymmetrized double divergence giving zero. φ would change in a gauge trans-
formation by a divergence of a vector field. The integral of a divergence over closed M vanishes
identically so that if the integral of φ over M is non-vanishing it corresponds to a non-trivial
0-connection. This interpretation of course requires the introduction of metric.

The requirement that the minimal intersections of the patches for 1-gerbes are of form Uαβγ
would be achieved if the intersections patches can be restricted to the intersections Uαβγ defined by
Uα∩Vγ and Uβ ∩Vγ (instead of Uβ ∩Vδ), where the patches Vγ would be most naturally associated
with −1-gerbe. It is not clear why one could make this restriction. The general conjecture is that
any gerbe decomposes into a multiple ∧d product of −1 and 0-gerbes just like integers decompose
into primes. The ∧d product of two odd gerbes is anti-commutative so that there is also an
analogy with the decomposition of the physical state into fermions and bosons, and gerbes for a
graded-commutative super-algebra generalizing the Grassmann algebra of manifold to a Grassmann
algebra of gerbe structures for manifold.

7.8.5 The Physical Interpretation Of 2-Gerbes In TGD Framework

2-gerbes could provide some insight to how to characterize the topological structure of the many-
sheeted space-time.

1. The cohomology group H4 is obviously crucial in characterizing 2-gerbe. In TGD frame-
work many-sheetedness means that different space-time sheets with induced metric having
Minkowski signature are separated by elementary particle horizons which are light like 3-
surfaces at which the induced metric becomes degenerate. Also the time orientation of the
space-time sheet can change at these surfaces since the determinant of the induced metric
vanishes.

This justifies the term elementary particle horizon and also the idea that one should treat
different space-time sheets as generating independent direct summands in the homology group
of the space-time surface: as if the space-time sheets not connected by join along boundaries
bonds were disjoint. Thus the homology group H4 and 2-gerbes defining instanton numbers
would become important topological characteristics of the many-sheeted space-time.
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2. The asymptotic behavior of the general solutions of field equations can be classified by the
dimension D of the CP2 projection of the space-time sheet. For D = 4 the instanton density
defining the curvature form of 2-gerbe is non-vanishing and instanton number defines a topo-
logical charge. Also the values of the Chern-Simons invariants associated with the boundary
components of the space-time sheet define topological quantum numbers characterizing the
space-time sheet and their sum equals to the instanton charge. CP2 type extremals represent
a basic example of this kind of situation. From the physical view point D = 4 asymptotic
solutions correspond to what might be regarded chaotic phase for the flow lines of the Kähler
magnetic field. Kähler current vanishes so that empty space Maxwell’s equations are satisfied.

3. ForD = 3 situation is more subtle when boundaries are present so that the higher-dimensional
analog of Aharonov-Bohm effect becomes possible. In this case instanton density vanishes but
the Chern-Simons invariants associated with the boundary components can be non-vanishing.
Their sum obviously vanishes. The space-time sheet can be said to be a neutral C-S mul-
tipole. Separate space-time sheets can become connected by flux tubes in a quantum jump
replacing a space-time surface with a new one. This means that the cohomology group H4

as well as instanton charges and C-S charges of the system change.

Concerning the asymptotic dynamics of the Kähler magnetic field, D = 3 phase corresponds
to an extremely complex but highly organized phase serving as an excellent candidate for the
modelling of living matter. Both the TGD based description of anyons and quantum Hall effect
and the model for topological quantum computation based on the braiding of magnetic flux tubes
rely heavily on the properties D = 3 phase [K4].

The non-vanishing of the C-S form implies that the flow lines of the Kähler magnetic are
highly entangled and have as an analog mixing hydrodynamical flow. In particular, one cannot
define non-trivial order parameters, say phase factors, which would be constant along the lines.
The interpretation in terms of broken super-conductivity suggests itself. Kähler current can be
non-vanishing so that there is no counterpart for this phase at the level of Maxwell’s equations.

7.9 Appendix: Category Theory And Construction Of S-
Matrix

The construction of WCW geometry, spinor structure and of S-matrix involve difficult technical and
conceptual problems and category theory might be of help here. As already found, the application
of category theory to the construction of WCW geometry allows to understand how the arrow of
psychological time emerges.

The construction of the S-matrix involves several difficult conceptual and technical problems
in which category theory might help. The incoming states of the theory are what might be called
free states and are constructed as products of the WCW spinor fields. One can effectively regard
them as being defined in the Cartesian power of WCW divided by an appropriate permutation
group. Interacting states in turn are defined in the WCW .

Cartesian power of WCW of 3-surfaces is however in geometrical sense more or less identical
with WCW since the disjoint union of N 3-surfaces is itself a 3-surface in WCW . Actually it
differs from WCW itself only in that the 3-surfaces of many particle state can intersect each
other and if one allows this, one has paradoxical self-referential identification CH = CH2/S2 =

... = CHN/SN ..., where over-line signifies that intersecting 3-surfaces have been dropped from the
product.

Note that arbitrarily small deformation can remove the intersections between 3-surfaces and
four-dimensional general coordinate invariance allows always to use non-intersecting representa-
tives. In case of the spinor structure of the Cartesian power this identification means that the
tensor powers SCHN of the WCW spinor structure are in some sense identical with the spinor
structure SCH of the WCW . Certainly the oscillator operators of the tensor factors must be
assumed to be mutually anti-commuting.

The identities CH = CH2/S2 = .. and corresponding identities SCH = SCH2 = ... for the
space SCH of WCW spinor fields might imply very deep constraints on S-matrix. What comes into
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mind are counterparts for the Schwinger-Dyson equations of perturbative quantum field theory pro-
viding defining equations for the n-point functions of the theory [A84]. The isomorphism between
SCH2 and SCH is actually what is needed to calculate the S-matrix elements. Category theory
might help to understand at a general level what these self-referential and somewhat paradoxical
looking identities really imply and perhaps even develop TGD counterparts of Schwinger-Dyson
equations.

There is also the issue of bound states. The interacting states contain also bound states not
belonging to the space of free states and category theory might help also here. It would seem that
the state space must be constructed by taking into account also the bound states as additional
“free” states in the decomposition of states to product states.

A category naturally involved with the construction of the S-matrix (or U-matrix) is the
space of preferred extremals of the Kähler action which might be called interacting category. The
symplectic transformations acting as isometries of the configuration space geometry act naturally
as the morphisms of this category. The group Diff4 of general coordinate transformations in turn
acts as gauge symmetries.

S-matrix relates free and interacting states and is induced by the classical long range in-
teractions induced by the criticality of the preferred extremals in the sense of having an infinite
number of deformations for which the second variation of Kähler action vanishes S-matrix elements
are essentially Glebch-Gordan coefficients relating the states in the tensor power of the interacting
super-symplectic representation with the interacting super-symplectic representation itself. More
concretely, N -particle free states can be seen as WCW spinor fields in CHN obtained as tensor
products of ordinary WCW spinor fields. Free states correspond classically to the unions of space-
time surfaces associated with the 3-surfaces representing incoming particles whereas interacting
states correspond classically to the space-time surfaces associated with the unions of the 3-surfaces
defining incoming states. These two states define what might be called free and interacting cate-
gories with canonical transformations acting as morphisms.

The classical interaction is represented by a functor S : CHN/SN → CH mapping the

classical free many particle states, that is objects of the product category defined by CHN/SN
to the interacting category CH. This functor assigns to the union ∪iX4(X3

i ) of the absolute
minima X4(X3

i ) of Kähler action associated with the incoming, free states X3
i the preferred extreal

X4(∪X3
i ) associated with the union of 3-surfaces representing the outgoing interacting state. At

quantum level this functor maps the state space SCHN associated with ∪iX4(X3
i ) to SCH in a

unitary manner. An important constraint on S-matrix is that it acts effectively as a flow in zero
modes correlating the quantum numbers in fiber degrees of freedom in one-to-one manner with the
values of zero modes so that quantum jump UΨi → Ψ0... gives rise to a quantum measurement.



Chapter 8

Category Theory and Quantum
TGD

8.1 Introduction

TGD predicts several hierarchical structures involving a lot of new physics. These structures look
frustratingly complex and category theoretical thinking might help to build a bird’s eye view about
the situation. I have already earlier considered the question how category theory might be applied
in TGD [K18, K15]. Besides the far from complete understanding of the basic mathematical
structure of TGD also my own limited understanding of category theoretical ideas have been a
serious limitation. During last years considerable progress in the understanding of quantum TGD
proper has taken place and the recent formulation of TGD is in terms of light-like 3-surfaces, zero
energy ontology and number theoretic braids [K85, ?]. There exist also rather detailed formulations
for the fusion of p-adic and real physics and for the dark matter hierarchy. This motivates a fresh
look to how category theory might help to understand quantum TGD.

The fusion rules for the symplectic variant of conformal field theory, whose existence is
strongly suggested by quantum TGD, allow rather precise description using the basic notions of
category theory and one can identify a series of finite-dimensional nilpotent algebras as discretized
versions of field algebras defined by the fusion rules. These primitive fusion algebras can be used to
construct more complex algebras by replacing any algebra element by a primitive fusion algebra.
Trees with arbitrary numbers of branches in any node characterize the resulting collection of fusion
algebras forming an operad. One can say that an exact solution of symplectic scalar field theory
is obtained.

Conformal fields and symplectic scalar field can be combined to form symplecto-formal fields.
The combination of symplectic operad and Feynman graph operad leads to a construction of Feyn-
man diagrams in terms of n-point functions of conformal field theory. M-matrix elements with a
finite measurement resolution are expressed in terms of a hierarchy of symplecto-conformal n-point
functions such that the improvement of measurement resolution corresponds to an algebra homo-
morphism mapping conformal fields in given resolution to composite conformal fields in improved
resolution. This expresses the idea that composites behave as independent conformal fields. Also
other applications are briefly discussed.

Years after writing this chapter a very interesting new TGD related candidate for a category
emerged. The preferred extremals would form a category if the proposed duality mapping associa-
tive (co-associative) 4-surfaces of embedding space respects associativity (co-associativity) [K74].
The duality would allow to construct new preferred extremals of Kähler action.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://tgdtheory.fi/cmaphtml.
html [L5]. Pdf representation of same files serving as a kind of glossary can be found at http:

//tgdtheory.fi/tgdglossary.pdf [L6].
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8.2 S-Matrix As A Functor

John Baez’s [A94] discusses in a physicist friendly manner the possible application of category
theory to physics. The lessons obtained from the construction of topological quantum field theories
(TQFTs) suggest that category theoretical thinking might be very useful in attempts to construct
theories of quantum gravitation.

The point is that the Hilbert spaces associated with the initial and final state n-1-manifold
of n-cobordism indeed form in a natural manner category. Morphisms of Hilb in turn are unitary
or possibly more general maps between Hilbert spaces. TQFT itself is a functor assigning to a
cobordism the counterpart of S-matrix between the Hilbert spaces associated with the initial and
final n-1-manifold. The surprising result is that for n ≤ 4 the S-matrix can be unitary S-matrix only
if the cobordism is trivial. This should lead even string theorist to raise some worried questions.

In the hope of feeding some category theoretic thinking into my spine, I briefly summarize
some of the category theoretical ideas discussed in the article and relate it to the TGD vision, and
after that discuss the worried questions from TGD perspective. That space-time makes sense only
relative to embedding space would conform with category theoretic thinking.

8.2.1 The *-Category Of Hilbert Spaces

Baez considers first the category of Hilbert spaces. Intuitively the definition of this category
looks obvious: take linear spaces as objects in category Set, introduce inner product as additional
structure and identify morphisms as maps preserving this inner product. In finite-D case the
category with inner product is however identical to the linear category so that the inner product
does not seem to be absolutely essential. Baez argues that in infinite-D case the morphisms need
not be restricted to unitary transformations: one can consider also bounded linear operators as
morphisms since they play key role in quantum theory (consider only observables as Hermitian
operators). For hyper-finite factors of type II1 inclusions define very important morphisms which
are not unitary transformations but very similar to them. This challenges the belief about the
fundamental role of unitarity and raises the question about how to weaken the unitarity condition
without losing everything.

The existence of the inner product is essential only for the metric topology of the Hilbert
space. Can one do without inner product as an inherent property of state space and reduce it to a
morphism? One can indeed express inner product in terms of morphisms from complex numbers to
Hilbert space and their conjugates. For any state Ψ of Hilbert space there is a unique morphisms
TΨ from C to Hilbert space satisfying TΨ(1) = Ψ. If one assumes that these morphisms have
conjugates T ∗Ψ mapping Hilbert space to C, inner products can be defined as morphisms T ∗ΦTΨ.
The Hermitian conjugates of operators can be defined with respect to this inner product so that
one obtains *-category. Reader has probably realized that TΨ and its conjugate correspond to ket
and bra in Dirac’s formalism.

Note that in TGD framework based on hyper-finite factors of type II1 (HFFs) the inclusions
of complex rays might be replaced with inclusions of HFFs with included factor representing the
finite measurement resolution. Note also the analogy of inner product with the representation of
space-times as 4-surfaces of the embedding space in TGD.

8.2.2 The Monoidal *-Category Of Hilbert Spaces And Its Counterpart
At The Level Of Ncob

One can give the category of Hilbert spaces a structure of monoid by introducing explicitly the
tensor products of Hilbert spaces. The interpretation is obvious for physicist. Baez describes the
details of this identification, which are far from trivial and in the theory of quantum groups very
interesting things happen. A non-commutative quantum version of the tensor product implying
braiding is possible and associativity condition leads to the celebrated Yang-Baxter equations:
inclusions of HFFs lead to quantum groups too.

At the level of nCob the counterpart of the tensor product is disjoint union of n-1-manifolds.
This unavoidably creates the feeling of cosmic loneliness. Am I really a disjoint 3-surface in
emptiness which is not vacuum even in the geometric sense? Cannot be true!
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This horrifying sensation disappears if n-1-manifolds are n-1-surfaces in some higher-dimensional
embedding space so that there would be at least something between them. I can emit a little baby
manifold moving somewhere perhaps being received by some-one somewhere and I can receive
radiation from some-one at some distance and in some direction as small baby manifolds making
gentle tosses on my face!

This consoling feeling could be seen as one of the deep justifications for identifying funda-
mental objects as light-like partonic 3-surfaces in TGD framework. Their ends correspond to 2-D
partonic surfaces at the boundaries of future or past directed light-cones (states of positive and
negative energy respectively) and are indeed disjoint but not in the desperately existential sense
as 3-geometries of General Relativity.

This disjointness has also positive aspect in TGD framework. One can identify the color
degrees of freedom of partons as those associated with CP2 degrees of freedom. For instance, SU(3)
analogs for rotational states of rigid body become possible. 4-D space-time surfaces as preferred
extremals of Kähler action connect the partonic 3-surfaces and bring in classical representation of
correlations and thus of interactions. The representation as sub-manifolds makes it also possible
to speak about positions of these sub-Universes and about distances between them. The habitants
of TGD Universe are maximally free but not completely alone.

8.2.3 TSFT As A Functor

The category theoretic formulation of TQFT relies on a very elegant and general idea. Quantum
transition has as a space-time correlate an n-dimensional surface having initial final states as
its n-1-dimensional ends. One assigns Hilbert spaces of states to the ends and S-matrix would
be a unitary morphism between the ends. This is expressed in terms of the category theoretic
language by introducing the category nCob with objects identified as n-1-manifolds and morphisms
as cobordisms and *-category Hilb consisting of Hilbert spaces with inner product and morphisms
which are bounded linear operators which do not however preserve the unitarity. Note that the
morphisms of nCob cannot anymore be identified as maps between n-1-manifolds interpreted as
sets with additional structure so that in this case category theory is more powerful than set theory.

TQFT is identified as a functor nCob→ Hilb assigning to n-1-manifolds Hilbert spaces, and
to cobordisms unitary S-matrices in the category Hilb. This looks nice but the surprise is that for
n ≤ 4 unitary S-matrix exists only if the cobordism is trivial so that topology changing transitions
are not possible unless one gives up unitarity.

This raises several worried questions.

1. Does this result mean that in TQFT sense unitary S-matrix for topology changing transitions
from a state containing ni closed strings to a state containing nf 6= ni strings does not exist?
Could the situation be same also for more general non-topological stringy S-matrices? Could
the non-converging perturbation series for S-matrix with finite individual terms matrix fail
to no non-perturbative counterpart? Could it be that M-theory is doomed to remain a dream
with no hope of being fulfilled?

2. Should one give up the unitarity condition and require that the theory predicts only the rel-
ative probabilities of transitions rather than absolute rates? What the proper generalization
of the S-matrix could be?

3. What is the relevance of this result for quantum TGD?

8.2.4 The Situation Is In TGD Framework

The result about the non-existence of unitary S-matrix for topology changing cobordisms allows
new insights about the meaning of the departures of TGD from string models.

Cobordism cannot give interesting selection rules

When I started to work with TGD for more than 28 years ago, one of the first ideas was that one
could identify the selection rules of quantum transitions as topological selection rules for cobor-
disms. Within week or two came the great disappointment: there were practically no selection
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rules. Could one revive this näıve idea? Could the existence of unitary S-matrix force the topo-
logical selection rules after all? I am skeptic. If I have understood correctly the discussion of what
happens in 4-D case [A50] only the exotic diffeo-structures modify the situation in 4-D case.

Light-like 3-surfaces allow cobordism

In the physically interesting GRT like situation one would expect the cobordism to be mediated
by a space-time surface possessing Lorentz signature. This brings in metric and temporal distance.
This means complications since one must leave the pure TQFT context. Also the classical dynamics
of quantum gravitation brings in strong selection rules related to the dynamics in metric degrees
of freedom so that TQFT approach is not expected to be useful from the point of view of quantum
gravity and certainly not the limit of a realistic theory of quantum gravitation.

In TGD framework situation is different. 4-D space-time sheets can have Euclidian signa-
ture of the induced metric so that Lorentz signature does not pose conditions. The counterparts
of cobordisms correspond at fundamental level to light-like 3-surfaces, which are arbitrarily ex-
cept for the light-likeness condition (the effective 2-dimensionality implies generalized conformal
invariance and analogy with 3-D black-holes since 3-D vacuum Einstein equations are satisfied).
Field equations defined by the Chern-Simons action imply that CP2 projection is at most 2-D but
this condition holds true only for the extremals and one has functional integral over all light-like
3-surfaces. The temporal distance between points along light-like 3-surface vanishes. The con-
straints from light-likeness bring in metric degrees of freedom but in a very gentle manner and just
to make the theory physically interesting.

Feynman cobordism as opposed to ordinary cobordism

In string model context the discouraging results from TQFT hold true in the category of nCob,
which corresponds to trouser diagrams for closed strings or for their open string counterparts. In
TGD framework these diagrams are replaced with a direct generalization of Feynman diagrams
for which 3-D light-like partonic 3-surfaces meet along their 2-D ends at the vertices. In honor
of Feynman one could perhaps speak of Feynman cobordisms. These surfaces are singular as 3-
manifolds but vertices are nice 2-manifolds. I contrast to this, in string models diagrams are nice
2-manifolds but vertices are singular as 1-manifolds (say eye-glass type configurations for closed
strings).

This picture gains a strong support for the interpretation of fermions as light-like throats
associated with connected sums of CP2 type extremals with space-time sheets with Minkowski
signature and of bosons as pairs of light-like wormhole throats associated with CP2 type extremal
connecting two space-time sheets with Minkowski signature of induced metric. The space-time
sheets have opposite time orientations so that also zero energy ontology emerges unavoidably.
There is also consistency TGD based explanation of the family replication phenomenon in terms
of genus of light-like partonic 2-surfaces.

One can wonder what the 4-D space-time sheets associated with the generalized Feynman
diagrams could look like? One can try to gain some idea about this by trying to assign 2-D surfaces
to ordinary Feynman diagrams having a subset of lines as boundaries. In the case of 2→2 reaction
open string is pinched to a point at vertex. 1→2 vertex, and quite generally, vertices with odd
number of lines, are impossible. The reason is that 1-D manifolds of finite size can have either 0 or
2 ends whereas in higher-D the number of boundary components is arbitrary. What one expects
to happen in TGD context is that wormhole throats which are at distance characterized by CP2

fuse together in the vertex so that some kind of pinches appear also now.

Zero energy ontology

Zero energy ontology gives rise to a second profound distinction between TGD and standard QFT.
Physical states are identified as states with vanishing net quantum numbers, in particular energy.
Everything is creatable from vacuum - and one could add- by intentional action so that zero energy
ontology is profoundly Eastern. Positive resp. negative energy parts of states can be identified
as states associated with 2-D partonic surfaces at the boundaries of future resp. past directed
light-cones, whose tips correspond to the arguments of n-point functions. Each incoming/outgoing
particle would define a mini-cosmology corresponding to not so big bang/crunch. If the time
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scale of perception is much shorter than time interval between positive and zero energy states, the
ontology looks like the Western positive energy ontology. Bras and kets correspond naturally to the
positive and negative energy states and phase conjugation for laser photons making them indeed
something which seems to travel in opposite time direction is counterpart for bra-ket duality.

The new element would be quantum measurements performed separately for observables
assignable to positive and negative energy states. These measurements would be characterized in
terms of Jones inclusions. The state function reduction for the negative energy states could be
interpreted as a detection of a particle reaction.

Finite temperature S-matrix defines genuine quantum state in zero energy ontology

In TGD framework one encounters two S-matrix like operators.

1. U-matrix is the analog of the ordinary S-matrix and constructible in terms of it and orthonor-
mal basis of square roots of density matrices expressible as products of hermitian operators
multiplied by unitary S-matrix [K48].

2. The S-matrix like operator describing what happens in laboratory corresponds to the time-like
entanglement coefficients between positive and negative energy parts of the state. Measure-
ment of reaction rates would be a measurement of observables reducing time like entanglement
and very much analogous to an ordinary quantum measurement reducing space-like entan-
glement. There is a finite measurement resolution described by inclusion of HFFs and this
means that situation reduces effectively to a finite-dimensional one.

p-Adic thermodynamics strengthened with p-adic length scale hypothesis predicts particle
masses with an amazing success. At first the thermodynamical approach seems to be in con-
tradiction with the idea that elementary particles are quantal objects. Unitarity is however not
necessary if one accepts that only relative probabilities for reductions to pairs of initial and final
states interpreted as particle reactions can be measured.

The beneficial implications of unitarity are not lost if one replaces QFT with thermal QFT.
Category theoretically this would mean that the time-like entanglement matrix associated with
the product of cobordisms is a product of these matrices for the factors. The time parameter in
S-matrix would be replaced with a complex time parameter with the imaginary part identified as
inverse temperature. Hence the interpretation in terms of time evolution is not lost.

In the theory of hyper-finite factors of type III1 the partition function for thermal equilib-
rium states and S-matrix can be neatly fused to a thermal S-matrix for zero energy states and one
could introduce p-adic thermodynamics at the level of quantum states. It seems that this picture
applies to HFFs by restriction. Therefore the loss of unitarity S-matrix might after all turn to
a victory by more or less forcing both zero energy ontology and p-adic thermodynamics. Note
that also the presence of factor of type I coming from embedding space degrees of freedom forces
thermal S-matrix.

Time-like entanglement coefficients as a square root of density matrix?

All quantum states do not correspond to thermal states and one can wonder what might be the
most general identification of the quantum state in zero energy ontology. Density matrix formalism
defines a very general formulation of quantum theory. Since the quantum states in zero energy
ontology are analogous to operators, the idea that time-like entanglement coefficients in some sense
define a square root of density matrix is rather natural. This would give the defining conditions

ρ+ = SS† , ρ− = S†S ,

Tr(ρ±) = 1 . (8.2.1)

ρ± would define density matrix for positive/negative energy states. In the case HFFs of type II1
one obtains unitary S-matrix and also the analogs of pure quantum states are possible for factors
of type I. The numbers p+

m,n = |S2
m,n|/ρ+

m,m and p−m,n = |S2
n,m|/ρ−m,m give the counterparts of the

usual scattering probabilities.
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A physically well-motivated hypothesis would be that S has expression S =
√
ρS0 such that

S0 is a universal unitary S-matrix, and
√
ρ is square root of a state dependent density matrix.

Note that in general S is not diagonalizable in the algebraic extension involved so that it is not
possible to reduce the scattering to a mere phase change by a suitable choice of state basis.

What makes this kind of hypothesis aesthetically attractive is the unification of two fun-
damental matrices of quantum theory to single one. This unification is completely analogous to
the combination of modulus squared and phase of complex number to a single complex number:
complex valued Schrödinger amplitude is replaced with operator valued one.

S-matrix as a functor and the groupoid structure formed by S-matrices

In zero energy ontology S-matrix can be seen as a functor from the category of Feynman cobordisms
to the category of operators. S-matrix can be identified as a “square root” of the positive energy

density matrix S = ρ
1/2
+ S0, where S0 is a unitary matrix and ρ+ is the density matrix for positive

energy part of the zero energy state. Obviously one has SS† = ρ+. S†S = ρ− gives the density
matrix for negative energy part of zero energy state. Clearly, S-matrix can be seen as matrix valued
generalization of Schrödinger amplitude. Note that the “indices” of the S-matrices correspond to
WCW spinor s (fermions and their bound states giving rise to gauge bosons and gravitons) and
to WCW degrees of freedom. For hyper-finite factor of II1 it is not strictly speaking possible to
speak about indices since the matrix elements are traces of the S-matrix multiplied by projection
operators to infinite-dimensional subspaces from right and left.

The functor property of S-matrices implies that they form a multiplicative structure anal-
ogous but not identical to groupoid [A6]. Recall that groupoid has associative product and there
exist always right and left inverses and identity in the sense that ff−1 and f−1f are always defined
but not identical and one has fgg−1 = f and f−1fg = g.

The reason for the groupoid like property is that S-matrix is a map between state spaces
associated with initial and final sets of partonic surfaces and these state spaces are different so
that inverse must be replaced with right and left inverse. The defining conditions for groupoid
are replaced with more general ones. Also now associativity holds but the role of inverse is taken
by hermitian conjugate. Thus one has the conditions fgg† = fρg,+ and f†fg = ρf,−g, and the
conditions ff† = ρ+ and f†f = ρ− are satisfied. Here ρ± is density matrix associated with
positive/negative energy parts of zero energy state. If the inverses of the density matrices exist,
groupoid axioms hold true since f−1

L = f†ρ−1
f,+ satisfies ff−1

L = Id+ and f−1
R = ρ−1

f,−f
† satisfies

f−1
R f = Id−.

There are good reasons to believe that also tensor product of its appropriate generalization
to the analog of co-product makes sense with non-triviality characterizing the interaction between
the systems of the tensor product. If so, the S-matrices would form very beautiful mathematical
structure bringing in mind the corresponding structures for 2-tangles and N-tangles. Knowing
how incredibly powerful the group like structures have been in physics one has good reasons to
hope that groupoid like structure might help to deduce a lot of information about the quantum
dynamics of TGD.

A word about nomenclature is in order. S has strong associations to unitarity and it might
be appropriate to replace S with some other letter. The interpretation of S-matrix as a generalized
Schrödinger amplitude would suggest Ψ-matrix. Since the interaction with Kea’s M-theory blog at
(see http://tinyurl.com/yb3lsbjq (M denotes Monad or Motif in this context) was led ot the
realization of the connection with density matrix, also M -matrix might be considered. S-matrix as
a functor from the category of Feynman cobordisms in turn suggests C or F. Or could just Matrix
denoted by M in formulas be enough? Certainly it would inspire feeling of awe!

8.3 Further Ideas

The work of John Baez and students has inspired also the following ideas about the role of category
theory in TGD.

http://tinyurl.com/yb3lsbjq
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8.3.1 Operads, Number Theoretical Braids, And Inclusions Of HFFs

The description of braids leads naturally to category theory and quantum groups when the braiding
operation, which can be regarded as a functor, is not a mere permutation. Discreteness is a natural
notion in the category theoretical context. To me the most natural manner to interpret discreteness
is - not something emerging in Planck scale- but as a correlate for a finite measurement resolution
and quantum measurement theory with finite measurement resolution leads naturally to number
theoretical braids as fundamental discrete structures so that category theoretic approach becomes
well-motivated. Discreteness is also implied by the number theoretic approach to quantum TGD
from number theoretic associativity condition [L2] central also for category theoretical thinking
as well as from the realization of number theoretical universality by the fusion of real and p-adic
physics to single coherent whole.

Operads are formally single object multi-categories [A12, A112]. This object consist of an
infinite sequence of sets of n-ary operations. These operations can be composed and the com-
positions are associative (operations themselves need not be associative) in the sense that the is
natural isomorphism (symmetries) mapping differently bracketed compositions to each other. The
coherence laws for operads formulate the effect of permutations and bracketing (association) as
functors acting as natural isomorphisms. A simple manner to visualize the composition is as an
addition of n1, ...nk leaves to the leaves 1, ..., k of k-leaved tree.

An interesting example of operad is the braid operad formulating the combinatorics for a
hierarchy of braids formed from braids by grouping subsets of braids having n1, ...nk strands and
defining the strands of a k-braid. In TGD framework this grouping can be identified in terms
of the formation bound states of particles topologically condensed at larger space-time sheet and
coherence laws allow to deduce information about scattering amplitudes. In conformal theories
braided categories indeed allow to understand duality of stringy amplitudes in terms of associativity
condition.

Planar operads [A39] define an especially interesting class of operads. The reason is that
the inclusions of HFFs give rise to a special kind of planar operad [A15]. The object of this multi-
category [A11] consists of planar k-tangles. Planar operads are accompanied by planar algebras.
It will be found that planar operads allow a generalization which could provide a description for
the combinatorics of the generalized Feynman diagrams and also rigorous formulation for how the
arrow of time emerges in TGD framework and related heuristic ideas challenging the standard
views.

8.3.2 Generalized Feynman Diagram As Category?

John Baez has proposed a category theoretical formulation of quantum field theory as a functor
from the category of n-cobordisms to the category of Hilbert spaces [A94, A38]. The attempt to
generalize this formulation looks well motivated in TGD framework because TGD can be regarded
as almost topological quantum field theory in a well defined sense and braids appear as fundamental
structures. It however seems that formulation as a functor from nCob to Hilb is not general enough.

In zero energy ontology events of ordinary ontology become quantum states with positive
and negative energy parts of quantum states localizable to the upper and lower light-like boundaries
of causal diamond (CD).

1. Generalized Feynman diagrams associated with a given CD involve quantum superposition
of light-like 3-surfaces corresponding to given generalized Feynman diagram. These super-
positions could be seen as categories with 3-D light-like surfaces containing braids as arrows
and 2-D vertices as objects. Zero energy states would represent quantum superposition of
categories (different topologies of generalized Feynman diagram) and M-matrix defined as
Connes tensor product would define a functor from this category to the Hilbert space of zero
energy states for given CD (tensor product defines quite generally a functor).

2. What is new from the point of view of physics that the sequences of generalized lines would
define compositions of arrows and morphisms having identification in terms of braids which
replicate in vertices. The possible interpretation of the replication is in terms of copying of
information in classical sense so that even elementary particles would be information carrying
and processing structures. This structure would be more general than the proposal of John
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Baez that S-matrix corresponds to a function from the category of n-dimensional cobordisms
to the category Hilb.

3. p-Adic length scale hypothesis follows if the temporal distance between the tips of CD mea-
sured as light-cone proper time comes as an octave of CP2 time scale: T = 2nT0. This
assumption implies that the p-adic length scale resolution interpreted in terms of a hierarchy
of increasing measurement resolutions comes as octaves of time scale. A weaker condition
would be Tp = pT0, p prime, and would assign all p-adic time scales to the size scale hierarchy
of CDs.

This preliminary picture is of course not far complete since it applies only to single CD.
There are several questions. Can one allow CDs within CDs and is every vertex of generalized
Feynman diagram surrounded by this kind of CD. Can one form unions of CDs freely?

1. Since light-like 3-surfaces in 8-D embedding space have no intersections in the generic posi-
tion, one could argue that the overlap must be allowed and makes possible the interaction of
between zero energy states belonging to different CDs. This interaction would be something
new and present also for sub-CDs of a given CD.

2. The simplest guess is that the unrestricted union of CDs defines the counterpart of tensor
product at geometric level and that extended M-matrix is a functor from this category to
the tensor product of zero energy state spaces. For non-overlapping CDs ordinary tensor
product could be in question and for overlapping CDs tensor product would be non-trivial.
One could interpret this M-matrix as an arrow between M-matrices of zero energy states
at different CDs: the analog of natural transformation mapping two functors to each other.
This hierarchy could be continued ad infinitum and would correspond to the hierarchy of
n-categories.

This rough heuristics represents of course only one possibility among many since the no-
tion of category is extremely general and the only limits are posed by the imagination of the
mathematician. Also the view about zero energy states is still rather primitive.

8.4 Planar Operads, The Notion Of Finite Measurement
Resolution, And Arrow Of Geometric Time

In the sequel the idea that planar operads or their appropriate generalization might allow to
formulate generalized Feynman diagrammatics in zero energy ontology will be considered. Also a
description of measurement resolution and arrow of geometric time in terms of operads is discussed.

8.4.1 Zeroth Order Heuristics About Zero Energy States

Consider now the existing heuristic picture about the zero energy states and coupling constant
evolution provided by CDs.

1. The tentative description for the increase of the measurement resolution in terms CDs is
that one inserts to the upper and/or lower light-like boundary of CD smaller CDs by gluing
them along light-like radial ray from the tip of CD. It is also possible that the vertices of
generalized Feynman diagrams belong inside smaller CD: s and it turns out that these CD:
s must be allowed.

2. The considerations related to the arrow of geometric time suggest that there is asymmetry
between upper and lower boundaries of CD. The minimum requirement is that the measure-
ment resolution is better at upper light-like boundary.

3. In zero energy ontology communications to the direction of geometric past are possible and
phase conjugate laser photons represent one example of this.



310 Chapter 8. Category Theory and Quantum TGD

4. Second law of thermodynamics must be generalized in such a way that it holds with respect
to subjective time identified as sequence of quantum jumps. The arrow of geometric time
can however vary so that apparent breaking of second law is possible in shorter time scales at
least. One must however understand why second law holds true in so good an approximation.

5. One must understand also why the contents of sensory experience is concentrated around a
narrow time interval whereas the time scale of memories and anticipation are much longer.
The proposed mechanism is that the resolution of conscious experience is higher at the upper
boundary of CD. Since zero energy states correspond to light-like 3-surfaces, this could be a
result of self-organization rather than a fundamental physical law.

(a) CDs define the perceptive field for self. Selves are curious about the space-time sheets
outside their perceptive field in the geometric future of the embedding space and per-
form quantum jumps tending to shift the superposition of the space-time sheets to the
direction of geometric past (past defined as the direction of shift!). This creates the
illusion that there is a time=snapshot front of consciousness moving to geometric future
in fixed background space-time as an analog of train illusion.

(b) The fact that news come from the upper boundary of CD implies that self concentrates
its attention to this region and improves the resolutions of sensory experience and
quantum measurement here. The sub-CD: s generated in this manner correspond to
mental images with contents about this region. As a consequence, the contents of
conscious experience, in particular sensory experience, tend to be about the region
near the upper boundary.

(c) This mechanism in principle allows the arrow of the geometric time to vary and depend
on p-adic length scale and the level of dark matter hierarchy. The occurrence of phase
transitions forcing the arrow of geometric time to be same everywhere are however
plausible for the reason that the lower and upper boundaries of given CD must possess
the same arrow of geometric time.

(d) If this is the mechanism behind the arrow of time, planar operads can provide a de-
scription of the arrow of time but not its explanation.

This picture is certainly not general enough, can be wrong at the level of details, and at
best relates to the whole like single particle wave mechanics to quantum field theory.

8.4.2 Planar Operads

The geometric definition of planar operads [A16, A12, A15, A39] without using the category the-
oretical jargon goes as follows.

1. There is an external disk and some internal disks and a collection of disjoint lines connecting
disk boundaries.

2. To each disk one attaches a non-negative integer k, called the color of disk. The disk with
color k has k points at each boundary with the labeling 1, 2, ...k running clockwise and starting
from a distinguished marked point, decorated by “*”. A more restrictive definition is that
disk colors are correspond to even numbers so that there are k = 2n points lines leaving the
disk boundary boundary. The planar tangles with k = 2n correspond to inclusions of HFFs.

3. Each curve is either closed (no common points with disk boundaries) or joins a marked point
to another marked point. Each marked point is the end point of exactly one curve.

4. The picture is planar meaning that the curves cannot intersect and diks cannot overlap.

5. Disks differing by isotopies preserving *’s are equivalent.
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Given a planar k-tangle-one of whose internal disks has color ki- and a ki-tangle S, one can
define the tangle T ◦i S by isotoping S so that its boundary, together with the marked points and
the *’s co-incides with that of Di and after that erase the boundary of Di. The collection of planar
tangle together with the composition defined in this manner- is called the colored operad of planar
tangles.

One can consider also generalizations of planar operads.

1. The composition law is not affected if the lines of operads branch outside the disks. Branching
could be allowed even at the boundaries of the disks although this does not correspond to a
generic situation. One might call these operads branched operads.

2. The composition law could be generalized to allow additional lines connecting the points at
the boundary of the added disk so that each composition would bring in something genuinely
new. Zero energy insertion could correspond to this kind of insertions.

3. TGD picture suggests also the replacement of lines with braids. In category theoretical
terms this means that besides association one allows also permutations of the points at the
boundaries of the disks.

The question is whether planar operads or their appropriate generalizations could allow
a characterization of the generalized Feynman diagrams representing the combinatorics of zero
energy states in zero energy ontology and whether also the emergence of arrow of time could be
described (but probably not explained) in this framework.

8.4.3 Planar Operads And Zero Energy States

Are planar operads sufficiently powerful to code the vision about the geometric correlates for
the increase of the measurement resolution and coupling constant evolution formulated in terms
of CDs? Or perhaps more realistically, could one improve this formulation by assuming that
zero energy states correspond to wave functions in the space of planar tangles or of appropriate
modifications of them? It seems that the answer to the first question is almost affirmative.

1. Disks are analogous to the white regions of a map whose details are not visible in the measure-
ment resolution used. Disks correspond to causal diamonds (CDs) in zero energy ontology.
Physically the white regions relate to the vertices of the generalized Feynman diagrams and
possibly also to the initial and final states (strictly speaking, the initial and final states
correspond to the legs of generalized Feynman diagrams rather than their ends).

2. The composition of tangles means addition of previously unknown details to a given white
region of the map and thus to an increase of the measurement resolution. This conforms
with the interpretation of inclusions of HFFs as a characterization of finite measurement
resolution and raises the hope that planar operads or their appropriate generalization could
provide the proper language to describe coupling constant evolution and their perhaps even
generalized Feynman diagrams.

3. For planar operad there is an asymmetry between the outer disk and inner disks. One might
hope that this asymmetry could explain or at least allow to describe the arrow of time. This
is not the case. If the disks correspond to causal diamonds (CDs) carrying positive resp.
negative energy part of zero energy state at upper resp. lower light-cone boundary, the TGD
counterpart of the planar tangle is CD containing smaller CD: s inside it. The smaller CD:
s contain negative energy particles at their upper boundary and positive energy particles at
their lower boundary. In the ideal resolution vertices represented 2-dimensional partonic at
which light-like 3-surfaces meet become visible. There is no inherent asymmetry between
positive and negative energies and no inherent arrow of geometric time at the fundamental
level. It is however possible to model the arrow of time by the distribution of sub-CD: s. By
previous arguments self-organization of selves can lead to zero energy states for which the
measurement resolution is better near the upper boundary of the CD.

4. If the lines carry fermion or anti-fermion number, the number of lines entering to a given CD
must be even as in the case of planar operads as the following argument shows.
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(a) In TGD framework elementary fermions correspond to single wormhole throat associ-
ated with topologically condensed CP2 type extremal and the signature of the induced
metric changes at the throat.

(b) Elementary bosons correspond to pairs of wormhole throats associated with wormhole
contacts connecting two space-time sheets of opposite time orientation and modellable
as a piece of CP2 type extremal. Each boson therefore corresponds to 2 lines within
CP2 radius.

(c) As a consequence the total number of lines associated with given CD is even and the
generalized Feynman diagrams can correspond to a planar algebra associated with an
inclusion of HFFs.

5. This picture does not yet describe zero energy insertions.

(a) The addition of zero energy insertions corresponds intuitively to the allowance of new
lines inside the smaller CD: s not coming from the exterior. The addition of lines
connecting points at the boundary of disk is possible without losing the basic geometric
composition of operads. In particular one does not lose the possibility to color the added
tangle using two colors (colors correspond to two groups G and H which characterize
an inclusion of HFFs [A39] ).

(b) There is however a problem. One cannot remove the boundaries of sub-CD after the
composition of CDs since this would give lines beginning from and ending to the interior
of disk and they are invisible only in the original resolution. Physically this is of course
what one wants but the inclusion of planar tangles is expected to fail in its original
form, and one must generalize the composition of tangles to that of CD: s so that the
boundaries of sub-CD: s are not thrown away in the process.

(c) It is easy to see that zero energy insertions are inconsistent with the composition of
planar tangles. In the inclusion defining the composition of tangles both sub-tangle and
tangle induce a color to a given segment of the inner disk. If these colors are identical,
one can forget the presence of the boundary of the added tangle. When zero energy
insertions are allowed, situation changes as is easy to see by adding a line connecting
points in a segment of given color at the boundary of the included tangle. There exists
no consistent coloring of the resulting structure by using only two colors. Coloring is
however possible using four colors, which by four-color theorem is the minimum number
of colors needed for a coloring of planar map: this however requires that the color can
change as one moves through the boundary of the included disk - this is in accordance
with the physical picture.

(d) Physical intuition suggests that zero energy insertion as an improvement of measure-
ment resolution maps to an improved color resolution and that the composition of
tangles generalizes by requiring that the included disk is colored by using new nuances
of the original colors. The role of groups in the definition of inclusions of HFFs is
consistent with idea that G and H describe color resolution in the sense that the colors
obtained by their action cannot be resolved. If so, the improved resolution means that
G and H are replaced by their subgroups G1 ⊂ G and H1 ⊂ H. Since the elements
of a subgroup have interpretation as elements of group, there are good hopes that
by representing the inclusion of tangles as inclusion of groups, one can generalize the
composition of tangles.

6. Also CD: s glued along light-like ray to the upper and lower boundaries of CD are possible in
principle and -according the original proposal- correspond to zero energy insertions according.
These CD: s might be associated with the phase transitions changing the value of ~ leading
to different pages of the book like structure defined by the generalized embedding space.

7. p-Adic length scale hypothesis is realized if the hierarchy of CDs corresponds to a hierarchy
of temporal distances between tips of CDs given as a = Tn = 2−nT0 using light-cone proper
time.
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8. How this description relates to braiding? Each line corresponds to an orbit of a partonic
boundary component and in principle one must allow internal states containing arbitrarily
high fermion and anti-fermion numbers. Thus the lines decompose into braids and one must
allow also braids of braids hierarchy so that each line corresponds to a braid operad in
improved resolution.

8.4.4 Relationship To Ordinary Feynman Diagrammatics

The proposed description is not equivalent with the description based on ordinary Feynman dia-
grams.

1. In standard physics framework the resolution scale at the level of vertices of Feynman di-
agrams is something which one is forced to pose in practical calculations but cannot pose
at will as opposed to the measurement resolution. Light-like 3-surfaces can be however re-
garded only locally orbits of partonic 2-surfaces since generalized conformal invariance is true
only in 3-D patches of the light-like 3-surface. This means that light-like 3-surfaces are in
principle the fundamental objects so that zero energy states can be regarded only locally as
a time evolutions. Therefore measurement resolution can be applied also to the distances
between vertices of generalized Feynman diagrams and calculational resolution corresponds
to physical resolution. Also the resolution can be better towards upper boundary of CD so
that the arrow of geometric time can be understood. This is a definite prediction which can
in principle kill the proposed scenario.

2. A further counter argument is that generalized Feynman diagrams are identified as light-
like 3-surfaces for which Kähler function defined by a preferred extremal of Kähler action is
maximum. Therefore one cannot pose any ad hoc rules on the positions of the vertices. One
can of course insist that maximum of Kähler function with the constraint posed by Tn = 2nT0

(or Tp = pnT0) hierarchy is in question.

It would be too optimistic to believe that the details of the proposal are correct. However,
if the proposal is on correct track, zero energy states could be seen as wave functions in the operad
of generalized tangles (zero energy insertions and braiding) as far as combinatorics is involved and
the coherence rules for these operads would give strong constraints on the zero energy state and
fix the general structure of coupling constant evolution.

8.5 Category Theory And Symplectic QFT

Besides the counterpart of the ordinary Kac-Moody invariance quantum TGD possesses so called
super-symplectic conformal invariance. This symmetry leads to the proposal that a symplectic
variant of conformal field theory should exist. The n-point functions of this theory defined in S2

should be expressible in terms of symplectic areas of triangles assignable to a set of n-points and
satisfy the duality rules of conformal field theories guaranteeing associativity. The crucial predic-
tion is that symplectic n-point functions vanish whenever two arguments co-incide. This provides a
mechanism guaranteeing the finiteness of quantum TGD implied by very general arguments relying
on non-locality of the theory at the level of 3-D surfaces.

The classical picture suggests that the generators of the fusion algebra formed by fields at
different point of S2 have this point as a continuous index. Finite quantum measurement resolution
and category theoretic thinking in turn suggest that only the points of S2 corresponding the strands
of number theoretic braids are involved. It turns out that the category theoretic option works and
leads to an explicit hierarchy of fusion algebras forming a good candidate for so called little disk
operad whereas the first option has difficulties.

8.5.1 Fusion Rules

Symplectic fusion rules are non-local and express the product of fields at two points sk an sl of S2

as an integral over fields at point sr, where integral can be taken over entire S2 or possibly also
over a 1-D curve which is symplectic invariant in some sense. Also discretized version of fusion
rules makes sense and is expected serve as a correlate for finite measurement resolution.
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By using the fusion rules one can reduce n-point functions to convolutions of 3-point func-
tions involving a sequence of triangles such that two subsequent triangles have one vertex in
common. For instance, 4-point function reduces to an expression in which one integrates over
the positions of the common vertex of two triangles whose other vertices have fixed. For n-point
functions one has n-3 freely varying intermediate points in the representation in terms of 3-point
functions.

The application of fusion rules assigns to a line segment connecting the two points sk and sl
a triangle spanned by sk, sl and sr. This triangle should be symplectic invariant in some sense and
its symplectic area Aklm would define the basic variable in terms of which the fusion rule could
be expressed as Cklm = f(Aklm), where f is fixed by some constraints. Note that Aklm has also
interpretations as solid angle and magnetic flux.

8.5.2 What Conditions Could Fix The Symplectic Triangles?

The basic question is how to identify the symplectic triangles. The basic criterion is certainly
the symplectic invariance: if one has found N-D symplectic algebra, symplectic transformations
of S2 must provide a new one. This is guaranteed if the areas of the symplectic triangles remain
invariant under symplectic transformations. The questions are how to realize this condition and
whether it might be replaced with a weaker one. There are two approaches to the problem.

Physics inspired approach

In the first approach inspired by classical physics symplectic invariance for the edges is interpreted
in the sense that they correspond to the orbits of a charged particle in a magnetic field defined
by the Kähler form. Symplectic transformation induces only a U(1) gauge transformation and
leaves the orbit of the charged particle invariant if the vertices are not affected since symplectic
transformations are not allowed to act on the orbit directly in this approach. The general functional
form of the structure constants Cklm as a function f(Aklm) of the symplectic area should guarantee
fusion rules.

If the action of the symplectic transformations does not affect the areas of the symplectic
triangles, the construction is invariant under general symplectic transformations. In the case of
uncharged particle this is not the case since the edges are pieces of geodesics: in this case however
fusion algebra however trivializes so that one cannot conclude anything. In the case of charged
particle one might hope that the area remains invariant under general symplectic transformations
whose action is induced from the action on vertices. The equations of motion for a charged particle
involve a Kähler metric determined by the symplectic structure and one might hope that this is
enough to achieve this miracle. If this is not the case - as it might well be - one might hope
that although the areas of the triangles are not preserved, the triangles are mapped to each other
in such a way that the fusion algebra rules remain intact with a proper choice of the function
f(Aklm). One could also consider the possibility that the function f(Aklm) is dictated from the
condition that the it remains invariant under symplectic transformations. It however turns that
this approach does not work as such.

Category theoretical approach

The second realization is guided by the basic idea of category theoretic thinking: the properties
of an object are determined its relationships to other objects. Rather than postulating that the
symplectic triangle is something which depends solely on the three points involved via some geo-
metric notion like that of geodesic line of orbit of charged particle in magnetic field, one assumes
that the symplectic triangle reflects the properties of the fusion algebra, that is the relations of the
symplectic triangle to other symplectic triangles. Thus one must assign to each triplet (s1, s2, s3)
of points of S2 a triangle just from the requirement that braided associativity holds true for the
fusion algebra.

All symplectic transformations leaving the N points fixed and thus generated by Hamilto-
nians vanishing at these points would give new gauge equivalent realizations of the fusion algebra
and deform the edges of the symplectic triangles without affecting their area. One could even say
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that symplectic triangulation defines a new kind geometric structure in S2. The quantum fluctu-
ating degrees of freedom are parameterized by the symplectic group of S2 × CP2 in TGD so that
symplectic the geometric representation of the triangulation changes but its inherent properties
remain invariant.

The elegant feature of category theoretical approach is that one can in principle construct the
fusion algebra without any reference to its geometric realization just from the braided associativity
and nilpotency conditions and after that search for the geometric realizations. Fusion algebra has
also a hierarchy of discrete variants in which the integral over intermediate points in fusion is
replaced by a sum over a fixed discrete set of points and this variant is what finite measurement
resolution implies. In this case it is relatively easy to see if the geometric realization of a given
abstract fusion algebra is possible.

The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time cor-
relate for the finite measurement resolution. The notion of braid was inspired by the idea about
quantum TGD as almost topological quantum field theory. Although the original form of this
idea has been buried, the notion of braid has survived: in the decomposition of space-time sheets
to string world sheets, the ends of strings define representatives for braid strands at light-like
3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of
number theoretic braid requiring that the points in the intersection of the braid with the partonic
2-surface correspond to rational or at most algebraic points of H in preferred coordinates fixed by
symmetry considerations. The challenge has been to find a unique identification of the number
theoretic braid or at least of the end points of the braid. The following consideration suggest that
the number theoretic braids are not a useful notion in the generic case but make sense and are
needed in the intersection of real and p-adic worlds which is in crucial role in TGD based vision
about living matter [K45].

It is only the braiding that matters in topological quantum field theories used to classify
braids. Hence braid should require only the fixing of the end points of the braids at the intersection
of the braid at the light-like boundaries of CDs and the braiding equivalence class of the braid
itself. Therefore it is enough is to specify the topology of the braid and the end points of the braid
in accordance with the attribute “number theoretic”. Of course, the condition that all points of
the strand of the number theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-
adic sense using appropriate algebraic extension of p-adic number field is central in the TGD
based vision about living matter [K45]. The reason is that in this case the notion of number
entanglement theoretic entropy having negative values makes sense and entanglement becomes
information carrying. This motivates the identification of life as something in the intersection of
real and p-adic worlds. In this situation the identification of the ends of the number theoretic braid
as points belonging to the intersection of real and p-adic worlds is natural. These points -call them
briefly algebraic points- belong to the algebraic extension of rationals needed to define the algebraic
extension of p-adic numbers. This definition however makes sense also when the equations defining
the partonic 2-surfaces fail to make sense in both real and p-adic sense. In the generic case the set
of points satisfying the conditions is discrete. For instance, according to Fermat’s theorem the set
of rational points satisfying Xn +Y n = Zn reduces to the point (0, 0, 0) for n = 3, 4, .... Hence the
constraint might be quite enough in the intersection of real and p-adic worlds where the choice of
the algebraic extension is unique.

One can however criticize this proposal.

1. One must fix the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition
suggests that the points of braid define carriers of quantum numbers assignable to second
quantized induced spinor fields so that the total number of fermions anti-fermions would
define the number of braids. In the intersection the highly non-trivial implication is that this
number cannot exceed the number of algebraic points.
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2. In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in the
generic case. If the notion of number theoretical braid is meant to be practical, must be able
to decompose WCW to open sets inside which the numbers of algebraic points of braid at its
ends are constant. For real topology this is expected to be impossible and it does not make
sense to use p-adic topology for WCW whose points do not allow interpretation as p-adic
partonic surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW
, the situation is different. Since the coefficients of polynomials involved with the definition
of the partonic 2-surface must be rational or at most algebraic, continuous deformations are
not possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could
however allow the construction of the elements of M -matrix describing quantum transitions
changing p-adic to real surfaces and vice versa as realizations of intentions and generation of
cognitions. In this the case it is natural that only the data from the intersection of the two
worlds are used. In [K45] I have sketched the idea about number theoretic quantum field
theory as a description of intentional action and cognition.

There is also the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

1. Infinite number of non-equivalent braidings are possible. Should one allow all possible braid-
ings for a fixed light-like 3-surface and say that their existence is what makes the dynamics
essentially three-dimensional even in the topological sense? In this case there would be no
problems with the condition that the points at both ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and
corresponding 4-D tangent space distributions? The slicing of the space-time sheet by par-
tonic 2-surfaces and string word sheets suggests that the ends of string world sheets could
define the braid strands in the generic context when there is no algebraicity condition in-
volved. This could be taken as a very natural manner to fix the topology of braid but leave
the freedom to choose the representative for the braid. In the intersection of real and p-adic
worlds there is no good reason for the end points of strands in this case to be algebraic at
both ends of the string world sheet. One can however start from the braid defined by the end
points of string world sheets, restrict the end points to be algebraic at the end with a smaller
number of algebraic pointsandthen perform a topologically non-trivial deformation of the
braid so that also the points at the other end are algebraic? Non-trivial deformations need
not be possible for all possible choices of algebraic braid points at the other end of braid and
different choices of the set of algebraic points would give rise to different braidings. A further
constraint is that only the algebraic points at which one has assign fermion or anti-fermion
are used so that the number of braid points is not always maximal.

3. One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.

Symplectic triangulations and braids

The identification of the edges of the symplectic triangulation as the end points of the braid
is favored by conceptual economy. The nodes of the symplectic triangulation would naturally
correspond to the points in the intersection of the braid with the light-like boundaries of CD
carrying fermion or anti-fermion number. The number of these points could be arbitrarily large in
the generic case but in the intersection of real and p-adic worlds these points correspond to subset
of algebraic points belonging to the algebraic extension of rationals associated with the definition of
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partonic 2-surfaces so that the sum of fermion and anti-fermion numbers would be bounded above.
The presence of fermions in the nodes would be the physical prerequisite for measuring the phase
factors defined by the magnetic fluxes. This could be understood in terms of gauge invariance
forcing to assign to a pair of points of triangulation the non-integrable phase factor defined by the
Kähler gauge potential.

The remaining problem is how uniquely the edges of the triangulation can be determined.

1. The allowance of all possible choices for edges would bring in an infinite number of degrees
of freedom. These curves would be analogous to freely vibrating strings. This option is not
attractive. One should be able to pose conditions on edges and whatever the manner to
specify the edges might be, it must make sense also in the intersection of real and p-adic
worlds. In this case the total phase factor must be a root of unity in the algebraic extension
of rationals involved and this poses quantization rules analogous to those for magnetic flux.
The strongest condition is that the edges are such that the non-integrable phase factor is
a root of unity for each edge. It will be found that similar quantization is implied also by
the associativity conditions and this justifies the interpretation of phase factors defining the
fusion algebra in terms of the Kähler magnetic fluxes. This would pose strong constraints
on the choice of edges but would not fix completely the phase factors, and it seems that
one must allow all possible triangulations consistent with this condition and the associativity
conditions so that physical state is a quantum superposition over all possible symplectic
triangulations characterized by the fusion algebras.

2. In the real context one would have an infinite hierarchy of symplectic triangulations and
fusion algebras satisfying the associativity conditions with the number of edges equal to the
total number N of fermions and anti-fermions. Encouragingly, this hierarchy corresponds
also to a hierarchy of N = N SUSY algebras [?] (large values of N are not a catastrophe
in TGD framework since the physical content of SUSY symmetry is not the same as that in
the standard approach). In the intersection of real and p-adic worlds the value of N would
be bounded by the total number of algebraic points. Hence the notion of finite measurement
resolution, cutoff in N and bound on the total fermion number would make physics very
simple in the intersection of real and p-adic worlds.

Two kinds of symplectic triangulations are possible since one can use the symplectic forms
associated with CP2 and rM = constant sphere S2 of light-cone boundary. For a given collection
of nodes the choices of edges could be different for these two kinds of triangulations. Physical state
would be proportional to the product of the phase factors assigned to these triangulations.

8.5.3 Associativity Conditions And Braiding

The generalized fusion rules follow from the associativity condition for n-point functions modulo
phase factor if one requires that the factor assignable to n-point function has interpretation as n-
point function. Without this condition associativity would be trivially satisfied by using a product
of various bracketing structures for the n fields appearing in the n-point function. In conformal
field theories the phase factor defining the associator is expressible in terms of the phase factor
associated with permutations represented as braidings and the same is expected to be true also
now.

1. Already in the case of 4-point function there are three different choices corresponding to the 4
possibilities to connect the fixed points sk and the varying point sr by lines. The options are
(1-2, 3-4), (1-3, 2-4), and (1-4, 2-3) and graphically they correspond to s-, t-, and u-channels
in string diagrams satisfying also this kind of fusion rules. The basic condition would be that
same amplitude results irrespective of the choice made. The duality conditions guarantee
associativity in the formation of the n-point amplitudes without any further assumptions.
The reason is that the writing explicitly the expression for a particular bracketing of n-point
function always leads to some bracketing of one particular 4-point function and if duality
conditions hold true, the associativity holds true in general. To be precise, in quantum
theory associativity must hold true only in projective sense, that is only modulo a phase
factor.
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2. This framework encourages category theoretic approach. Besides different bracketing there
are different permutations of the vertices of the triangle. These permutations can induce
a phase factor to the amplitude so that braid group representations are enough. If one
has representation for the basic braiding operation as a quantum phase q = exp(i2π/N),
the phase factors relating different bracketings reduce to a product of these phase factors
since (AB)C is obtained from A(BC) by a cyclic permutation involving to permutations
represented as a braiding. Yang-Baxter equations express the reduction of associator to
braidings. In the general category theoretical setting associators and braidings correspond
to natural isomorphisms leaving category theoretical structure invariant.

3. By combining the duality rules with the condition that 4-point amplitude vanishes, when
any two points co-incide, one obtains from sk = sl and sm = sn the condition stating that
the sum (or integral in possibly existing continuum version) of U2(Aklm)|f |2(xkmr) over the
third point sr vanishes. This requires that the phase factor U is non-trivial so that Q must be
non-vanishing if one accepts the identification of the phase factor as Bohm-Aharonov phase.

4. Braiding operation gives naturally rise to a quantum phase. A good guess is that braiding
operation maps triangle to its complement since only in this manner orientation is preserved
so that area is Aklm is mapped to Aklm − 4π. If the f is proportional to the exponent
exp(−AklmQ), braiding operation induces a complex phase factor q = exp(−i4πQ).

5. For half-integer values of Q the algebra is commutative. For Q = M/N , where M and
N have no common factors, only braided commutativity holds true for N ≥ 3 just as for
quantum groups characterizing also Jones inclusions of HFFs. For N = 4 anti-commutativity
and associativity hold true. Charge fractionization would correspond to non-trivial braiding
and presumably to non-standard values of Planck constant and coverings of M4 or CP2

depending on whether S2 corresponds to a sphere of light-cone boundary or homologically
trivial geodesic sphere of CP2.

8.5.4 Finite-Dimensional Version Of The Fusion Algebra

Algebraic discretization due to a finite measurement resolution is an essential part of quantum
TGD. In this kind of situation the symplectic fields would be defined in a discrete set of N points
of S2: natural candidates are subsets of points of p-adic variants of S2. Rational variant of S2 has
as its points points for which trigonometric functions of θ and φ have rational values and there
exists an entire hierarchy of algebraic extensions. The interpretation for the resulting breaking
of the rotational symmetry would be a geometric correlate for the choice of quantization axes
in quantum measurement and the book like structure of the embedding space would be direct
correlate for this symmetry breaking. This approach gives strong support for the category theory
inspired philosophy in which the symplectic triangles are dictated by fusion rules.

General observations about the finite-dimensional fusion algebra

1. In this kind of situation one has an algebraic structure with a finite number of field values
with integration over intermediate points in fusion rules replaced with a sum. The most
natural option is that the sum is over all points involved. Associativity conditions reduce
in this case to conditions for a finite set of structure constants vanishing when two indices
are identical. The number M(N) of non-vanishing structure constants is obtained from the
recursion formula M(N) = (N−1)M(N−1)+(N−2)M(N−2)+ ...+3M(3) = NM(N−1),
M(3) = 1 given M(4) = 4, M(5) = 20, M(6) = 120, ... With a proper choice of the set of
points associativity might be achieved. The structure constants are necessarily complex so
that also the complex conjugate of the algebra makes sense.

2. These algebras resemble nilpotent algebras (xn = 0 for some n) and Grassmann algebras
(x2 = 0 always) in the sense that also the products of the generating elements satisfy x2 = 0
as one can find by using duality conditions on the square of a product x = yz of two
generating elements. Also the products of more than N generating elements necessary vanish
by braided commutativity so that nilpotency holds true. The interpretation in terms of
measurement resolution is that partonic states and vertices can involve at most N fermions
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in this measurement resolution. Elements anti-commute for q = −1 and commute for q = 1
and the possibility to express the product of two generating elements as a sum of generating
elements distinguishes these algebras from Grassman algebras. For q = −1 these algebras
resemble Lie-algebras with the difference that associativity holds true in this particular case.

3. I have not been able to find whether this kind of hierarchy of algebras corresponds to some
well-known algebraic structure with commutativity and associativity possibly replaced with
their braided counterparts. Certainly these algebras would be category theoretical gener-
alization of ordinary algebras for which commutativity and associativity hold true in strict
sense.

4. One could forget the representation of structure constants in terms of triangles and think
these algebras as abstract algebras. The defining equations are x2

i = 0 for generators plus
braided commutativity and associativity. Probably there exists solutions to these conditions.
One can also hope that one can construct braided algebras from commutative and associative
algebras allowing matrix representations. Note that the solution the conditions allow scalings
of form Cklm → λkλlλmCklm as symmetries.

Formulation and explicit solution of duality conditions in terms of inner product

Duality conditions can be formulated in terms of an inner product in the function space associated
with N points and this allows to find explicit solutions to the conditions.

1. The idea is to interpret the structure constants Cklm as wave functions Ckl in a discrete space
consisting of N points with the standard inner product

〈Ckl, Cmn〉 =
∑
r CklrCmnr . (8.5.1)

2. The associativity conditions for a trivial braiding can be written in terms of the inner product
as

〈Ckl, Cmn〉 = 〈Ckm, Cln〉 = 〈Ckn, Cml〉 . (8.5.2)

3. Irrespective of whether the braiding is trivial or not, one obtains for k = m the orthogonality
conditions

〈Ckl, Ckn〉 = 0 . (8.5.3)

For each k one has basis of N − 1 wave functions labeled by l 6= k, and the conditions state
that the elements of basis and conjugate basis are orthogonal so that conjugate basis is the
dual of the basis. The condition that complex conjugation maps basis to a dual basis is very
special and is expected to determine the structure constants highly uniquely.

4. One can also find explicit solutions to the conditions. The most obvious trial is based on
orthogonality of function basis of circle providing representation for ZN−2 and is following:

Cklm = Eklm × exp(iφk + φl + φm) , φm = n(m)2π
N−2 . (8.5.4)

Here Eklm is non-vanishing only if the indices have different values. The ansatz reduces the
conditions to the form
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∑
r EklrEmnrexp(i2φr) =

∑
r EkmrElnrexp(i2φr) =

∑
r EknrEmlrexp(i2φr) . (8.5.5)

In the case of braiding one can allow overall phase factors. Orthogonality conditions reduce
to

∑
r EklrEknrexp(i2φr) = 0 . (8.5.6)

If the integers n(m), m 6= k, l span the range (0, N − 3) ortogonality conditions are satisfied
if one has Eklr = 1 when the indices are different. This guarantees also duality conditions
since the inner products involving k, l,m, n reduce to the same expression

∑
r 6=k,l,m,n exp(i2φr) . (8.5.7)

5. For a more general choice of phases the coefficients Eklm must have values differing from
unity and it is not clear whether the duality conditions can be satisfied in this case.

Do fusion algebras form little disk operad?

The improvement of measurement resolution means that one adds further points to an existing set
of points defining a discrete fusion algebra so that a small disk surrounding a point is replaced with
a little disk containing several points. Hence the hierarchy of fusion algebras might be regarded
as a realization of a little disk operad [A10] and there would be a hierarchy of homomorphisms
of fusion algebras induced by the fusion. The inclusion homomorphism should map the algebra
elements of the added points to the algebra element at the center of the little disk.

A more precise prescription goes as follows.

1. The replacement of a point with a collection of points in the little disk around it replaces
the original algebra element φk0 by a number of new algebra elements φK besides already
existing elements φk and brings in new structure constants CKLM , CKLk for k 6= k0, and
CKlm.

2. The notion of improved measurement resolution allows to conclude

CKLk = 0 , k 6= k0 , CKlm = Ck0lm . (8.5.8)

3. In the homomorphism of new algebra to the original one the new algebra elements and their
products should be mapped as follows:

φK → φk0 ,
φKφL → φ2

k0
= 0 , φKφl → φk0φl .

(8.5.9)

Expressing the products in terms of structure constants gives the conditions

∑
M CKLM = 0 ,

∑
r CKlr =

∑
r Ck0lr = 0 . (8.5.10)

The general ansatz for the structure constants based on roots of unity guarantees that the
conditions hold true.
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4. Note that the resulting algebra is more general than that given by the basic ansatz since
the improvement of the measurement resolution at a given point can correspond to different
value of N as that for the original algebra given by the basic ansatz. Therefore the original
ansatz gives only the basic building bricks of more general fusion algebras. By repeated local
improvements of the measurement resolution one obtains an infinite hierarchy of algebras
labeled by trees in which each improvement of measurement resolution means the splitting
of the branch with arbitrary number N of branches. The number of improvements of the
measurement resolution defining the height of the tree is one invariant of these algebras. The
fusion algebra operad has a fractal structure since each point can be replaced by any fusion
algebra.

How to construct geometric representation of the discrete fusion algebra?

Assuming that solutions to the fusion conditions are found, one could try to find whether they
allow geometric representations. Here the category theoretical philosophy shows its power.

1. Geometric representations for Cklm would result as functions f(Aklm) of the symplectic area
for the symplectic triangles assignable to a set of N points of S2.

2. If the symplectic triangles can be chosen freely apart from the area constraint as the category
theoretic philosophy implies, it should be relatively easy to check whether the fusion condi-
tions can be satisfied. The phases of Cklm dictate the areas Aklm rather uniquely if one uses
Bohm-Aharonov ansatz for a fixed the value of Q. The selection of the points sk would be
rather free for phases near unity since the area of the symplectic triangle associated with a
given triplet of points can be made arbitrarily small. Only for the phases far from unity the
points sk cannot be too close to each other unless Q is very large. The freedom to chose the
points rather freely conforms with the general view about the finite measurement resolution
as the origin of discretization.

3. The remaining conditions are on the moduli |f(Aklm)|. In the discrete situation it is rather
easy to satisfy the conditions just by fixing the values of f for the particular triangles involved:
|f(Aklm)| = |Cklm|. For the exact solution to the fusion conditions |f(Aklm)| = 1 holds true.

4. Constraints on the functional form of |f(Aklm)| for a fixed value of Q can be deduced from
the correlation between the modulus and phase of Cklm without any reference to geometric
representations. For the exact solution of fusion conditions there is no correlation.

5. If the phase of Cklm has Aklm as its argument, the decomposition of the phase factor to a sum
of phase factors means that the Aklm is sum of contributions labeled by the vertices. Also
the symplectic area defined as a magnetic flux over the triangle is expressible as sum of the
quantities

∫
Aµdx

µ associated with the edges of the triangle. These fluxes should correspond
to the fluxes assigned to the vertices deduced from the phase factors of Ψ(sk). The fact
that vertices are ordered suggest that the phase of Ψ(sj) fixes the value of

∫
Aµdx

µ for an
edge of the triangle starting from sk and ending to the next vertex in the ordering. One
must find edges giving a closed triangle and this should be possible. The option for which
edges correspond to geodesics or to solutions of equations of motion for a charged particle in
magnetic field is not flexible enough to achieve this purpose.

6. The quantization of the phase angles as multiples of 2π/(N−2) in the case of N -dimensional
fusion algebra has a beautiful geometric correlate as a quantization of symplecto-magnetic
fluxes identifiable as symplectic areas of triangles defining solid angles as multiples of 2π/(N−
2). The generalization of the fusion algebra to p-adic case exists if one allows algebraic
extensions containing the phase factors involved. This requires the allowance of phase factors
exp(i2π/p), p a prime dividing N −2. Only the exponents exp(i

∫
Aµdx

µ) = exp(in2π/(N −
2)) exist p-adically. The p-adic counterpart of the curve defining the edge of triangle exists
if the curve can be defined purely algebraically (say as a solution of polynomial equations
with rational coefficients) so that p-adic variant of the curve satisfies same equations.
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Does a generalization to the continuous case exist?

The idea that a continuous fusion algebra could result as a limit of its discrete version does not
seem plausible. The reason is that the spatial variation of the phase of the structure constants
increases as the spatial resolution increases so that the phases exp(iφ(s) cannot be continuous at
continuum limit. Also the condition Eklm = 1 for k 6= l 6= m satisfied by the explicit solutions to
fusion rules fails to have direct generalization to continuum case.

To see whether the continuous variant of fusion algebra can exist, one can consider an
approximate generalization of the explicit construction for the discrete version of the fusion algebra
by the effective replacement of points sk with small disks which are not allowed to intersect.
This would mean that the counterpart E(sk, sl, sm) vanishes whenever the distance between two
arguments is below a cutoff a small radius d. Puncturing corresponds physically to the cutoff
implied by the finite measurement resolution.

1. The ansatz for Cklm is obtained by a direct generalization of the finite-dimensional ansatz:

Cklm = κsk,sl,smΨ(sk)Ψ(sl)Ψ(sm) . (8.5.11)

where κsk,sl,sm vanishes whenever the distance of any two arguments is below the cutoff
distance and is otherwise equal to 1.

2. Orthogonality conditions read as

Ψ(sk)Ψ(sl)

∫
κsk,sl,srκsk,sn,srΨ

2(sm)dµ(sr) = Ψ(sk)Ψ(sl)

∫
S2(sk,sl,sn)

Ψ2(sr)dµ(sr) = 0 .(8.5.12)

The resulting condition reads as

∫
S2(sk,sl,sn)

Ψ2(sr)dµ(sr) = 0 (8.5.13)

This condition holds true for any pair sk, sl and this might lead to difficulties.

3. The general duality conditions are formally satisfied since the expression for all fusion prod-
ucts reduces to

Ψ(sk)Ψ(sl)Ψ(sm)Ψ(sn)X ,

X =

∫
S2

κsk,sl,sm,snΨ(sr)dµ(sr)

=

∫
S2(sk,sl,sm,sn)

Ψ(sm)dµ(sr)

= −
∫
D2(si)

Ψ2(sr)dµ(sr) , i = k, l, s,m . (8.5.14)

These conditions state that the integral of Ψ2 any disk of fixed radius d is same: this result
follows also from the orthogonality condition. This condition might be difficult to satisfy
exactly and the notion of finite measurement resolution might be needed. For instance, it
might be necessary to restrict the consideration to a discrete lattice of points which would
lead back to a discretized version of algebra. Thus it seems that the continuum generalization
of the proposed solution to fusion rules does not work.
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8.6 Could Operads Allow The Formulation Of The Gener-
alized Feynman Rules?

The previous discussion of symplectic fusion rules leaves open many questions.

1. How to combine symplectic and conformal fields to what might be called symplecto-conformal
fields?

2. The previous discussion applies only in super-symplectic degrees of freedom and the question
is how to generalize the discussion to super Kac-Moody degrees of freedom. One must of
course also try to identify more precisely what Kac-Moody degrees of freedom are!

3. How four-momentum and its conservation in the limits of measurement resolution enters
this picture? Could the phase factors assocaited with the symplectic triangulation carry
information about four-momentum?

4. At least two operads related to measurement resolution seem to be present: the operads
formed by the symplecto-conformal fields and by generalized Feynman diagrams. For gener-
alized Feynman diagrams causal diamond (CD) is the basic object whereas disks of S2 are
the basic objects in the case of symplecto-conformal QFT with a finite measurement reso-
lution. Could these two different views about finite measurement resolution be more or less
equivalent and could one understand this equivalence at the level of details.

5. Is it possible to formulate generalized Feynman diagrammatics and improved measurement
resolution algebraically?

8.6.1 How To Combine Conformal Fields With Symplectic Fields?

The conformal fields of conformal field theory should be somehow combined with symplectic scalar
field to form what might be called symplecto-conformal fields.

1. The simplest thing to do is to multiply ordinary conformal fields by a symplectic scalar field
so that the fields would be restricted to a discrete set of points for a given realization of
N-dimensional fusion algebra. The products of these symplecto-conformal fields at different
points would define a finite-dimensional algebra and the products of these fields at same
point could be assumed to vanish.

2. There is a continuum of geometric realizations of the symplectic fusion algebra since the edges
of symplectic triangles can be selected rather freely. The integrations over the coordinates zk
(most naturally the complex coordinate of S2 transforming linearly under rotations around
quantization axes of angular momentum) restricted to the circle appearing in the definition of
simplest stringy amplitudes would thus correspond to the integration over various geometric
realizations of a given N -dimensional symplectic algebra.

Fusion algebra realizes the notion of finite measurement resolution. One implication is that
all n-point functions vanish for n > N . Second implication could be that the points appearing in
the geometric realizations of N -dimensional symplectic fusion algebra have some minimal distance.
This would imply a cutoff to the multiple integrals over complex coordinates zk varying along circle
giving the analogs of stringy amplitudes. This cutoff is not absolutely necessary since the integrals
defining stringy amplitudes are well-defined despite the singular behavior of n-point functions.
One can also ask whether it is wise to introduce a cutoff that is not necessary and whether fusion
algebra provides only a justification for the 1 + iε prescription to avoid poles used to obtain finite
integrals.

The fixed values for the quantities
∫
Aµdx

µ along the edges of the symplectic triangles could
indeed pose a lower limit on the distance between the vertices of symplectic triangles. Whether
this occurs depends on what one precisely means with symplectic triangle.

1. The conformally invariant condition that the angles between the edges at vertices are smaller
than π for triangle and larger than π for its conjugate is not enough to exclude loopy edges
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and one would obtain ordinary stringy amplitudes multiplied by the symplectic phase factors.
The outcome would be an integral over arguments z1, z2, ..zn for standard stringy n-point am-
plitude multiplied by a symplectic phase factor which is piecewise constant in the integration
domain.

2. The condition that the points at different edges of the symplectic triangle can be connected by
a geodesic segment belonging to the interior of the triangle is much stronger and would induce
a length scale cutoff since loops cannot be used to create large enough value of

∫
Aµdx

µ for a
given side of triangle. Symplectic invariance would be obtained for small enough symplectic
transformations. How to realize this cutoff at the level of calculations is not clear. One
could argue that this problem need not have any nice solution and since finite measurement
resolution requires only finite calculational resolution, the approximation allowing loopy edges
is acceptable.

3. The restriction of the edges of the symplectic triangle within a tubular neighborhood of a
geodesic -more more generally an orbit of charged particle - with thickness determined by
the length scale resolution in S2 would also introduce the length scale cutoff with symplectic
invariance within measurement resolution.

Symplecto-conformal should form an operad. This means that the improvement of measure-
ment resolution should correspond also to an algebra homomorphism in which super-symplectic
symplecto-conformal fields in the original resolution are mapped by algebra homomorphism into
fields which contain sum over products of conformal fields at different points: for the symplectic
parts of field the products reduces always to a sum over the values of field. For instance, if the field
at point s is mapped to an average of fields at points sk, nilpotency condition x2 = 0 is satisfied.

8.6.2 Symplecto-Conformal Fields In Super-Kac-Moody Sector

The picture described above applies only in super-symplectic degrees of freedom. The vertices of
generalized Feynman diagrams are absent from the description and CP2 Kähler form induced to
space-time surface which is absolutely essential part of quantum TGD is nowhere visible in the
treatment.

How should one bring in Super Kac-Moody (SKM) algebra? The condition that the basic
building bricks are same for the treatment of these degrees of freedom is a valuable guideline.

What does SKM algebra mean?

The first thing to consider is what SKM could mean. The recent view is that symplectic algebra
corresponds to symplectic transformations for the boundary of causal diamond CD which looks
locally like δM4

± × CP2. For this super-algebra fermionic generators would be contractions of co-
variantly constant right-handed neutrino with the second quantized induced spinor field to which
the contractionjkAΓk of symplectic vector field with gamma matrices acts. For SKM algebra corre-
sponding generators would be similar contractions of other spinor modes but involving only Killing
vectors fields that is symplectic isometries.

The recent view about quantum criticality strongly suggests that the conformal symmetries
act as almost gauge symmetries producing from a given preferred extremal new ones with same
action and conserved charges. “Almost” means that sub-algebra of conformal algebra annihilates
the physical states. The subalgebras in question form a fractal hierarchy and are isomorphic with
the conformal algebra itself. They contain generators for which the conformal weight is multiple
of integer n characterizing also the value of Planck constant given by heff = n× h. n defines the
number of conformal equivalence classes of space-time surfaces connecting fixed 3-surfaces at the
boundaries of CD (see Fig. http://tgdtheory.fi/appfigures/planckhierarchy.jpg or Fig.
?? in the appendix of this book).

Since Kähler action reduces for the general ansatz for the preferred extremals to 3-D Chern-
Simons terms, the action of the conformal symmetries reduces also to the 3-D space-like surfaces
where it is trivial by definition and to non-trivial action to the light-like 3-surfaces at which the
signature of the induced metric changes: I have used to call this surface partonic orbits.

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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It must be however observed that one can consider also the possibility that SKM algebra
corresponds to the isometries of δM4±×CP2 continued to the space-time surface by field equations.
These isometries are conformal transformations of S2 (δM4

± = S2 × R+) with conformal scaling
compensated by the local scaling of the light-like radial coordinate rM to guarantee that the metric
reducing to that for S2 apart from conformal scaling factor R2

M remains invariant. If this is the
case the SKM contains also other than symplectic isometries.

Attempt to formulate symplectic triangulation for SKM algebra

The analog of symplectic triangulation for SKM algebra obviously requires that SKM algebra
corresponds to symplectic isometries rather than including all δM4

± = S2 × R+ isometries in
one-one correspondence with conformal transformations of S2.

1. In the transition from super-symplectic to SKM degrees of freedom the light-cone boundary
is naturally replaced with the light-like 3-surface X3 representing the light-like random orbit
of parton and serving as the basic dynamical object of quantum TGD. The sphere S2 of
light-cone boundary is in turn replaced with a partonic 2-surface X2. This suggests how to
proceed.

2. In the case of SKM algebra the symplectic fusion algebra is represented geometrically as
points of partonic 2-surface X2 by replacing the symplectic form of S2 with the induced CP2

symplectic form at the partonic 2-surface and defining U(1) gauge field. This gives similar
hierarchy of symplecto-conformal fields as in the super-symplectic case. This also realizes the
crucial aspects of the classical dynamics defined by Kähler action. In particular, for vacuum
2-surfaces symplectic fusion algebra trivializes since Kähler magnetic fluxes vanish identically
and 2-surfaces near vacua require a large value of N for the dimension of the fusion algebra
since the available Kähler magnetic fluxes are small.

3. In super-symplectic case the projection along light-like ray allows to map the points at the
light-cone boundaries of CD to points of same sphere S2. In the case of light-like 3-surfaces
light-like geodesics representing braid strands allow to map the points of the partonic two-
surfaces at the future and past light-cone boundaries to the partonic 2-surface representing
the vertex. The earlier proposal was that the ends of strands meet at the partonic 2-surface
so that braids would replicate at vertices. The properties of symplectic fields would however
force identical vanishing of the vertices if this were the case. There is actually no reason
to assume this condition and with this assumption vertices involving total number N of
incoming and outgoing strands correspond to symplecto-conformal N -point function as is
indeed natural. Also now Kähler magnetic flux induces cutoff distance.

4. SKM braids reside at light-like 3-surfaces representing lines of generalized Feynman diagrams.
If super-symplectic braids are needed at all, they must be assigned to the two light-like
boundaries of CD meeting each other at the sphere S2 at which future and past directed
light-cones meet.

8.6.3 The Treatment Of Four-Momentum

Four-momentum enjoys a special role in super-symplectic and SKM representations in that it does
not correspond to a quantum number assignable to the generators of these algebras. It would be
nice if the somewhat mysterious phase factors associated with the representation of the symplectic
algebra could code for the four-momentum - or rather the analogs of plane waves representing
eigenstates of four-momentum at the points associated with the geometric representation of the
symplectic fusion algebra.

Also the vision about TGD as almost topological QFT suggests that the symplectic degrees
of freedom added to the conformal degrees of freedom defining alone a mere topological QFt
somehow code for the physical degrees of freedom should and also four-momentum. If so, the
symplectic triangulation might somehow code for four-momentum.
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The representation of longitudinal momentum in terms of phase factors

The following argument suggests that S2 and X2 triangulations cannot naturally represent four-
momentum and that one needs extension into 3-D light-like triangulation to achieve this.

1. The basic question is whether four-momentum could be coded in terms of non-integrable
phase factors appearing in the representations of the symplectic fusion algebras.

2. In the symplectic case S2 triangulation suggests itself as a representation of angular momen-
tum only: it would be kind of spin network. In the SKM case X2 would suggest representation
of color hyper charge and isospin in terms of phases since CP2 symmetries act non-trivially
in Chern-Simons action. Does this mean that symplectic and SKM triangulations must be
extended so that they are 3-D and defined for space-like 3-surface and the light-like orbit
of partonic 2-surface. This would give additional phase factors assignable to presumably
light-like edges. Ligh-like momentum would be natural and the recent twistorial formulation
of quantum TGD indeed assigns massless momenta to fermion lines.

Suppose that one has 3-D light-like triangulation eith at δCD or at light-like orbits of
partonic 2-surface. Consider first coding of four-momentum assuming only Kähler gauge potential
of CP2 possibly having M4 part which is pure gauge.

1. Four different phase factors are needed if all components of four-momentum are to be coded.
Both number theoretical vision about quantum TGD and the realization of the hierarchy
of Planck constants assign to each point of space-time surface the same plane M2 ⊂ M4

having as the plane of non-physical polarizations. This condition allows to assign to a given
light-like partonic 3-surface unique extremal of Kähler action defining the Kähler function as
the value of Kähler action.

Also p-adic mass calculations support the view that the physical states correspond to eigen
states for the components of longitudinal momentum only (also the parton model for hadrons
assumes this). This encourages to think that only M2 part of four-momentum is coded by
the phase factors. Transversal momentum squared would be a well defined quantum number
and determined from mass shell conditions for the representations of super-symplectic (or
equivalently SKM) conformal algebra much like in string model.

2. The phase factors associated with the 3-D symplectic fusion algebra in S2 ×R+ mean a de-
viation from conformal n-point functions, and the innocent question is whether these phase
factors could be identified as plane-wave phase factors in S2 could be associated with the
transversal part of the four-momentum so that the n-point functions would be strictly anal-
ogous with stringy amplitudes. Alternative, and perhaps more natural, interpretation is in
terms of spin and angular momentum.

3. Suppose one allows a gauge transformation of Kähler gauge potential inducing a pure gauge
M4 component to the Kähler gauge potential expressible as scalar function of M4 coor-
dianates. This kind of term might allow to achieve the vanishing of jαAα term of at least
its integral over space-time surface in Kähler action implying reduction of Kähler action to
Chern-Simons terms if weak form of electric magnetic duality holds true. The scalar func-
tion can be interpreted as integral of a position dependent momentum along curve defined by
S2 × R+ triangulation and gives hopes of coding four-momentum in terms of Kähler gauge
potential.

In fact, the identification of the phase factors exp(i
∫
Aµdx

µ/~) along a path as phase factors
exp(ipL,k∆mk) defined by the ends of the path and associated with the longitudinal part
of four-momentum would correspond to an integral form of covariant constancy condition
dxµ

ds (∂µ − iAµ)Ψ = 0 along the edge of the symplectic triangle of more general path.

4. For the SKM triangulation associated with the light-like orbit X3
l of partonic 2-surface anal-

ogous phase factor would come from the integral along the (most naturally) light-like curve
defining braid strand associated with the point in question. A geometric representation for
the two projections of the four-momentum would thus result in SKM degrees of freedom
and apart from the non-uniqueness related to the multiples of a 2π the components of M2
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momentum could be deduced from the phase factors. If one is satisfied with the projection
of momentum in M2, this is enough.

5. Neither of these phase factors is able to code all components of four-momentum. One might
however hope that together they could give enough information to deduce the four-momentum
if it is assumed to correspond to the rest system.

6. The phase factors assignable to the symplectic triangles in S2 and X2 have nothing to do with
momentum. Because the space-like phase factor exp(iSz∆φ/~) associated with the edge of
the symplectic triangle is completely analogous to that for momentum, one can argue that the
symplectic triangulation could define a kind of spin network utilized in discretized approaches
to quantum gravity. The interpretation raises the question about the interpretation of the
quantum numbers assignable to the Lorentz invariant phase factors defined by the CP2 Kähler
gauge potential.

The quantum numbers associated with phase factors for CP2 parts of Kähler gauge
potentials

Suppose that it is possible to assign two independent and different phase factors to the same
geometric representation, in other words have two independent symplectic fields with the same
geometric representation. The product of two symplectic fields indeed makes sense and satisfies the
defining conditions. One can define prime symplectic algebras and decompose symplectic algebras
to prime factors. Since one can allow permutations of elements in the products it becomes possible
to detect the presence of product structure experimentally by detecting different combinations for
products of phases caused by permutations realized as different combinations of quantum numbers
assigned with the factors. The geometric representation for the product of n symplectic fields
would correspond to the assignment of n edges to any pair of points. The question concerns the
interpretation of the phase factors assignable to the CP2 parts of Kähler gauge potentials of S2

and CP” Kähler form.

1. The natural interpretation for the two additional phase factors would be in terms of color
quantum numbers. Color hyper charge and isospin are mathematically completely analogous
to the components of four-momentum so that a possible identification of the phase factors is
as a representation of these quantum numbers. The representation of plane waves as phase
factors exp(ipk∆mk/~) generalizes to the representation exp(iQA∆ΦA/~), where ΦA are the
angle variables conjugate to the Hamiltonians representing color hyper charge and isospin.
This representation depends on end points only so that the crucial symplectic invariance with
respect to the symplectic transformations respecting the end points of the edge is not lost
(U(1) gauge transformation is induced by the scalar jkAk, where jk is the symplectic vector
field in question).

2. One must be cautious with the interpretation of the phase factors as a representation for
color hyper charge and isospin since a breaking of color gauge symmetry would result since
the phase factors associated with different values of color isospin and hypercharge would be
different and could not correspond to same edge of symplectic triangle. This is questionable
since color group itself represents symplectic transformations. The construction of CP2 as a
coset space SU(3)/U(2) identifies U(2) as the holonomy group of spinor connection having
interpretation as electro-weak group. Therefore also the interpretation of the phase factors
in terms of em charge and weak charge can be considered. In TGD framework electro-weak
gauge potential indeed suffer a non-trivial gauge transformation under color rotations so that
the correlation between electro-weak quantum numbers and non-integrable phase factors in
Cartan algebra of the color group could make sense. Electro-weak symmetry breaking would
have a geometric correlate in the sense that different values of weak isospin cannot correspond
to paths with same values of phase angles ∆ΦA between end points.

3. If the phase factors associated with the M4 and CP2 are assumed to be identical, the existence
of geometric representation is guaranteed. This however gives constraints between rest mass,
spin, and color (or electro-weak) quantum numbers.
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Some general comments

Some further comments about phase factors are in order.

1. By number theoretical universality the plane wave factors associated with four-momentum
must have values coming as roots of unity (just as for a particle in box consisting of discrete
lattice of points). At light-like boundary the quantization conditions reduce to the condition
that the value of light-like coordinate is rational of form m/N , if N : th roots of unity are
allowed.

2. In accordance with the finite measurement resolution of four-momentum, four-momentum
conservation is replaced by a weaker condition stating that the products of phase factors
representing incoming and outgoing four-momenta are identical. This means that positive
and negative energy states at opposite boundaries of CD would correspond to complex con-
jugate representations of the fusion algebra. In particular, the product of phase factors in
the decomposition of the conformal field to a product of conformal fields should correspond
to the original field value. This would give constraints on the trees physically possible in the
operad formed by the fusion algebras. Quite generally, the phases expressible as products
of phases exp(inπ/p), where p ≤ N is prime must be allowed in a given resolution and this
suggests that the hierarchy of p-adic primes is involved. At the limit of very large N exact
momentum conservation should emerge.

3. Super-conformal invariance gives rise to mass shell conditions relating longitudinal and
transversal momentum squared. The massivation of massless particles by Higgs mechanism
and p-adic thermodynamics pose additional constraints to these phase factors.

8.6.4 What Does The Improvement Of Measurement Resolution Really
Mean?

To proceed one must give a more precise meaning for the notion of measurement resolution. Two
different views about the improvement of measurement resolution emerge. The first one relies on
the replacement of braid strands with braids applies in SKM degrees of freedom and the homo-
morphism maps symplectic fields into their products. The homomorphism based on the averaging
of symplectic fields over added points consistent with the extension of fusion algebra described in
previous section is very natural in super-symplectic degrees of freedom. The directions of these
two algebra homomorphisms are different. The question is whether both can be involved with
both super-symplectic and SKM case. Since the end points of SKM braid strands correspond to
both super-symplectic and SKM degrees of freedom, it seems that division of labor is the only
reasonable option.

1. Quantum classical correspondence requires that measurement resolution has a purely geo-
metric meaning. A purely geometric manner to interpret the increase of the measurement
resolution is as a replacement of a braid strand with a braid in the improved resolution. If one
assigns the phase factor assigned with the fusion algebra element with four-momentum, the
conservation of the phase factor in the associated homomorphism is a natural constraint. The
mapping of a fusion algebra element (strand) to a product of fusion algebra elements (braid)
allows to realize this condition. Similar mapping of field value to a product of field values
should hold true for conformal parts of the fields. There exists a large number equivalent
geometric representations for a given symplectic field value so that one obtains automatically
an averaging in conformal degrees of freedom. This interpretation for the improvement of
measurement resolution looks especially natural for SKM degrees of freedom for which braids
emerge naturally.

2. One can also consider the replacement of symplecto-conformal field with an average over the
points becoming visible in the improved resolution. In super-symplectic degrees of freedom
this looks especially natural since the assignment of a braid with light-cone boundary is not
so natural as with light-like 3-surface. This map does not conserve the phase factor but this
could be interpreted as reflecting the fact that the values of the light-like radial coordinate
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are different for points involved. The proposed extension of the symplectic algebra proposed
in the previous section conforms with this interpretation.

3. In the super-symplectic case the improvement of measurement resolution means improvement
of angular resolution at sphere S2. In SKM sector it means improved resolution for the
position at partonic 2-surface. This generalizes also to the 3-D symplectic triangulations. For
SKM algebra the increase of the measurement resolution related to the braiding takes place
inside light-like 3-surface. This operation corresponds naturally to an addition of sub-CD
inside which braid strands are replaced with braids. This is like looking with a microscope a
particular part of line of generalized Feynman graph inside CD and corresponds to a genuine
physical process inside parton. In super-symplectic case the replacement of a braid strand
with braid (at light-cone boundary) is induced by the replacement of the projection of a
point of a partonic 2-surface to S2 with a a collection of points coming from several partonic
2-surfaces. This replaces the point s of S2 associated with CD with a set of points sk of
S2 associated with sub-CD. Note that the solid angle spanned by these points can be rather
larger so that zoom-up is in question.

4. The improved measurement resolution means that a point of S2 (X2) at boundary of CD is
replaced with a point set of S2 (X2) assignable to sub-CD. The task is to map the point set
to a small disk around the point. Light-like geodesics along light-like X3 defines this map
naturally in both cases. In super-symplectic case this map means scaling down of the solid
angle spanned by the points of S2 associated with sub-CD.

8.6.5 How Do The Operads Formed By Generalized Feynman Diagrams
And Symplecto-Conformal Fields Relate?

The discussion above leads to following overall view about the situation. The basic operation
for both symplectic and Feynman graph operads corresponds to an improvement of measurement
resolution. In the case of planar disk operad this means to a replacement of a white region of a map
with smaller white regions. In the case of Feynman graph operad this means better space-time
resolution leading to a replacement of generalized Feynman graph with a new one containing new
sub-CD bringing new vertices into daylight. For braid operad the basic operation means looking a
braid strand with a microscope so that it can resolve into a braid: braid becomes a braid of braids.
The latter two views are equivalent if sub-CD contains the braid of braids.

The disks D2 of the planar disk operad has natural counterparts in both super-symplectic
and SKM sector.

1. For the geometric representations of the symplectic algebra the image points vary in con-
tinuous regions of S2 (X2) since the symplectic area of the symplectic triangle is a highly
flexible constraint. Posing the condition that any point at the edges of symplectic triangle
can be connected to any another edge excludes symplectic triangles with loopy sides so that
constraint becomes non-trivial. In fact, since two different elements of the symplectic alge-
bra cannot correspond to the same point for a given geometric representation, each element
must correspond to a connected region of S2 (X2). This allows a huge number of repre-
sentations related by the symplectic transformations S2 in super-symplectic case and by the
symplectic transformations of CP2 in SKM case. In the case of planar disk operad different
representations are related by isotopies of plane.

This decomposition to disjoint regions naturally correspond to the decomposition of the disk
to disjoint regions in the case of planar disk operad and Feynman graph operad (allowing
zero energy insertions). Perhaps one might say that N -dimensional elementary symplectic
algebra defines an N -coloring of S2 (S2) which is however not the same thing as the 2-
coloring possible for the planar operad. TGD based view about Higgs mechanism leads to
a decomposition of partonic 2-surface X2 (its light-like orbit X3) into conformal patches.
Since also these decompositions correspond to effective discretizations of X2 (X3), these two
decompositions would naturally correspond to each other.

2. In SKM sector disk D2 of the planar disk operad is replaced with the partonic 2-surface X2

and since measurement resolution is a local notion, the topology of X2 does not matter. The
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improvement of measurement resolution corresponds to the replacement of braid strand with
braid and homomorphism is to the direction of improved spatial resolution.

3. In super-symplectic case D2 is replaced with the sphere S2 of light-cone boundary. The
improvement of measurement resolution corresponds to introducing points near the original
point and the homomorphism maps field to its average. For the operad of generalized Feyn-
man diagrams CD defined by future and past directed light-cones is the basic object. Given
CD can be indeed mapped to sphere S2 in a natural manner. The light-like boundaries of
CDs are metrically spheres S2. The points of light-cone boundaries can be projected to any
sphere at light-cone boundary. Since the symplectic area of the sphere corresponds to solid
angle, the choice of the representative for S2 does not matter. The sphere defined by the
intersection of future and past light-cones of CD however provides a natural identification of
points associated with positive and negative energy parts of the state as points of the same
sphere. The points of S2 appearing in n-point function are replaced by point sets in a small
disks around the n points.

4. In both super-symplectic and SKM sectors light-like geodesic along X3 mediate the analog of
the map gluing smaller disk to a hole of a disk in the case of planar disk operad defining the
decomposition of planar tangles. In super-symplectic sector the set of points at the sphere
corresponding to a sub-CD is mapped by SKM braid to the larger CD and for a typical
braid corresponds to a larger angular span at sub-CD. This corresponds to the gluing of D2

along its boundaries to a hole in D2 in disk operad. A scaling transformation allowed by the
conformal invariance is in question. This scaling can have a non-trivial effect if the conformal
fields have anomalous scaling dimensions.

5. Homomorphisms between the algebraic structures assignable to the basic structures of the
operad (say tangles in the case of planar tangle operad) are an essential part of the power
of the operad. These homomorphisms associated with super-symplectic and SKM sector
code for two views about improvement of measurement resolution and might lead to a highly
unique construction of M-matrix elements.

The operad picture gives good hopes of understanding how M-matrices corresponding to a
hierarchy of measurement resolutions can be constructed using only discrete data.

1. In this process the n-point function defining M-matrix element is replaced with a superposi-
tion of n-point functions for which the number of points is larger: n →

∑
k=1,...,m nk. The

numbers nk vary in the superposition. The points are also obtained by downwards scaling
from those of smaller S2. Similar scaling accompanies the composition of tangles in the case
of planar disk operad. Algebra homomorphism property gives constraints on the composite-
ness and should govern to a high degree how the improved measurement resolution affects
the amplitude. In the lowest order approximation the M-matrix element is just an n-point
function for conformal fields of positive and negative energy parts of the state at this sphere
and one would obtain ordinary stringy amplitude in this approximation.

2. Zero energy ontology means also that each addition in principle brings in a new zero energy
insertion as the resolution is improved. Zero energy insertions describe actual physical pro-
cesses in shorter scales in principle affecting the outcome of the experiment in longer time
scales. Since zero energy states can interact with positive (negative) energy particles, zero
energy insertions are not completely analogous to vacuum bubbles and cannot be neglected.
In an idealized experiment these zero energy states can be assumed to be absent. The homo-
morphism property must hold true also in the presence of the zero energy insertions. Note
that the Feynman graph operad reduces to planar disk operad in absence of zero energy
insertions.

8.7 Possible Other Applications Of Category Theory

It is not difficult to imagine also other applications of category theory in TGD framework.
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8.7.1 Categorification And Finite Measurement Resolution

I read a very stimulating article by John Baez with title “Categorification” (see http://tinyurl.

com/ych6a8oa) [A86] about the basic ideas behind a process called categorification. The process
starts from sets consisting of elements. In the following I describe the basic ideas and propose how
categorification could be applied to realize the notion of finite measurement resolution in TGD
framework.

What categorification is?

In categorification sets are replaced with categories and elements of sets are replaced with objects.
Equations between elements are replaced with isomorphisms between objects: the right and left
hand sides of equations are not the same thing but only related by an isomorphism so that they
are not tautologies anymore. Functions between sets are replaced with functors between categories
taking objects to objects and morphisms to morphisms and respecting the composition of mor-
phisms. Equations between functions are replaced with natural isomorphisms between functors,
which must satisfy certain coherence laws representable in terms of commuting diagrams expressing
conditions such as commutativity and associativity.

The isomorphism between objects represents equation between elements of set replaces iden-
tity. What about isomorphisms themselves? Should also these be defined only up to an isomor-
phism of isomorphism? And what about functors? Should one continue this replacement ad
infinitum to obtain a hierarchy of what might be called n-categories, for which the process stops
after n: th level. This rather fuzzy buisiness is what mathematicians like John Baez are actually
doing.

Why categorification?

There are good motivations for the categofication. Consider the fact that natural numbers. Math-
ematically oriented person would think number “3” in terms of an abstract set theoretic axioma-
tization of natural numbers. One could also identify numbers as a series of digits. In the real life
the representations of three-ness are more concrete involving many kinds of associations. For a
child “3” could correspond to three fingers. For a mystic it could correspond to holy trinity. For a
Christian “faith, hope, love”. All these representations are isomorphic representation of threeness
but as real life objects three sheeps and three cows are not identical.

We have however performed what might be called decategorification: that is forgitten that
the isomorphic objects are not equal. Decatecorification was of course a stroke of mathematical
genius with enormous practical implications: our information society represents all kinds of things
in terms of numbers and simulates successfully the real world using only bit sequences. The dark
side is that treating people as mere numbers can lead to a rather cold society.

Equally brilliant stroke of mathematical genius is the realization that isomorphic objects
are not equal. Decategorization means a loss of information. Categorification brings back this
information by bringing in consistency conditions known as coherence laws and finding these laws
is the hard part of categorization meaning discovery of new mathematics. For instance, for braid
groups commutativity modulo isomorphisms defines a highly non-trivial coherence law leading
to an extremely powerful notion of quantum group having among other things applications in
topological quantum computation.

The so called associahedrons (see http://tinyurl.com/ng2fqro) [A35] emerging in n-
category theory could replace space-time and space as fundamental objects. Associahedrons are
polygons used to represent geometrically associativity or its weaker form modulo isomorphism for
the products of n objects bracketed in all possible ways. The polygon defines a hierarchy contain-
ing sub-polygons as its edges containing.... Associativity states the isomorphy of these polygons.
Associahedrons and related geometric representations of category theoretical arrow complexes in
terms or simplexes allow a beautiful geometric realization of the coherence laws. One could per-
haps say that categories as discrete structures are not enough: only by introducing the continuum
allowing geometric representations of the coherence laws things become simple.

No-one would have proposed categorification unless it were demanded by practical needs of
mathematics. In many mathematical applications it is obvious that isomorphism does not mean
identity. For instance, in homotopy theory all paths deformable to each other in continuous manner

http://tinyurl.com/ych6a8oa
http://tinyurl.com/ych6a8oa
http://tinyurl.com/ng2fqro


332 Chapter 8. Category Theory and Quantum TGD

are homotopy equivalent but not identical. Isomorphism is now homotopy. These paths can be
connected and form a groupoid. The outcome of the groupoid operation is determined up to
homotopy. The deformations of closed path starting from a given point modulo homotopies form
homotopy group and one can interpret the elements of homotopy group as copies of the point which
are isomorphic. The replacement of the space with its universal covering makes this distinction
explicit. One can form homotopies of homotopies and continue this process ad infinitum and obtain
in this manner homotopy groups as characterizes of the topology of the space.

Cateforification as a way to describe finite measurement resolution?

In quantum physics gauge equivalence represents a standard example about equivalence modulo
isomorphisms which are now gauge transformations. There is a practical strategy to treat the
situation: perform a gauge choice by picking up one representative amongst infinitely many iso-
morphic objects. At the level of natural numbers a very convenient gauge fixing would correspond
the representation of natural number as a sequence of decimal digits rather than image of three
cows.

In TGD framework a excellent motivation for categorification is the need to find an elegant
mathematical realization for the notion of finite measurement resolution. Finite measurement
resolutions (or cognitive resolutions) at various levels of information transfer hierarchy imply accu-
mulation of uncertainties. Consider as a concrete example uncertainty in the determination of basic
parameters of a mathematical model. This uncertainty is reflected to final outcome as via a long
sequence of mathematical maps and additional uncertainties are produced by the approximations
at each step of this process.

How could onbe describe the finite measurement resolution elegantly in TGD Universe?
Categorification suggests a natural method. The points equivalent with measurement resolution
are isomorphic with each other. A natural guess inspired by gauge theories is that one should
perform a gauge choice as an analog of decategorification. This allows also to avoid continuum of
objects connected by arrows not n spirit with the discreteness of category theoretical approach.

1. At space-time level gauge choice means discretization of partonic 2-surfaces replacing them
with a discrete set points serving as representatives of equivalence classes of points equivalent
under finite measurement resolution. An especially interesting choice of points is as rational
points or algebraic numbers and emerges naturally in p-adicization process. One can also
introduce what I have called symplectic triangulation of partonic 2-surfaces with the nodes
of the triangulation representing the discretization and carrying quantum numbers of various
kinds.

2. At the level of “world classical worlds” ( WCW ) this means the replacement of the sub-group
if the symplectic group of δM4 × CP2 -call it G - permuting the points of the symplectic
triangulation with its discrete subgroup obtained as a factor group G/H, where H is the
normal subgroup of G leaving the points of the symplectic triangulation fixed. One can also
consider subgroups of the permutation group for the points of the triangulation. One can
also consider flows with these properties to get braided variant of G/H. It would seem that
one cannot regard the points of triangulation as isomorphic in the category theoretical sense.
This because, one can have quantum superpositions of states located at these points and the
factor group acts as the analog of isometry group. One can also have many-particle states
with quantum numbers at several points. The possibility to assign quantum numbers to a
given point becomes the physical counterpart for the axiom of choice.

The finite measurement resolution leads to a replacement of the infinite-dimensional world
of classical worlds with a discrete structure. Therefore operation like integration over entire
“world of classical worlds” is replaced with a discrete sum.

3. What suggests itself strongly is a hierarchy of n-categories as a proper description for the
finite measurement resolution. The increase of measurement resolution means increase for
the number of braid points. One has also braids of braids of braids structure implied by
the possibility to map infinite primes, integers, and rationals to rational functions of several
variables and the conjecture possibility to represent the hierarchy of Galois groups involved
as symplectic flows. If so the hierarchy of n-categories would correspond to the hierarchy
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of infinite primes having also interpretation in terms of repeated second quantization of an
arithmetic SUSY such that many particle states of previous level become single particle states
of the next level.

The finite measurement resolution has also a representation in terms of inclusions of hy-
perfinite factors of type II1 defined by the Clifford algebra generated by the gamma matrices of
WCW [K87]

1. The included algebra represents finite measurement resolution in the sense that its action
generates states which are cannot be distinguished from each other within measurement
resolution used. The natural conjecture is that this indistuinguishability corresponds to
a gauge invariance for some gauge group and that TGD Universe is analogous to Turing
machine in that almost any gauge group can be represented in terms of finite measurement
resolution.

2. Second natural conjecture inspired by the fact that symplectic groups have enormous rep-
resentabive power is that these gauge symmetries allow representation as subgroups of the
symplectic group of δM4×CP2. A nice article about universality of symplectic groups is the
article “The symplectification of science” (see http://tinyurl.com/y8us9sgw) by Mark. J.
Gotay [A22].

3. An interesting question is whether there exists a finite-dimensional space, whose symplecto-
morphisms would allow a representation of any gauge group (or of all possible Galois groups
as factor groups) and whether δM4 × CP2 could be a space of this kind with the smallest
possible dimension.

8.7.2 Inclusions Of HFFs And Planar Tangles

Finite index inclusions of HFFs are characterized by non-branched planar algebras for which only
an even number of lines can emanate from a given disk. This makes possible a consistent coloring
of the k-tangle by black and white by painting the regions separated by a curve using opposite
colors. For more general algebras, also for possibly existing branched tangle algebras, the minimum
number of colors is four by four-color theorem. For the description of zero energy states the 2-
color assumption is not needed so that the necessity to have general branched planar algebras is
internally consistent. The idea about the inclusion of positive energy state space into the space of
negative energy states might be consistent with branched planar algebras and the requirement of
four colors since this inclusion involves also conjugation and is thus not direct.

In [A16] if was proposed that planar operads are associated with conformal field theories at
sphere possessing defect lines separating regions with different color. In TGD framework and for
branched planar algebras these defect lines would correspond to light-like 3-surfaces. For fermions
one has single wormhole throat associated with topologically condensed CP2 type extremal and
the signature of the induced metric changes at the throat. Bosons correspond to pairs of wormhole
throats associated with wormhole contacts connecting two space-time sheets modellable as a piece
of CP2 type extremal. Each boson thus corresponds to 2 lines within CP2 radius so that in purely
bosonic case the planar algebra can correspond to that associated with an inclusion of HFFs.

8.7.3 2-Plectic Structures And TGD

Chris Rogers and Alex Hoffnung have demonstrated [A123] that the notion of symplectic structure
generalizes to n-plectic structure and in n = 2 case leads to a categorification of Lie algebra to
2-Lie-algebra. In this case the generalization replaces the closed symplectic 2-form with a closed 3-
form ω and assigns to a subset of one-forms defining generalized Hamiltonians vector fields leaving
the 3-form invariant.

There are two equivalent definitions of the Poisson bracket in the sense that these Poisson
brackets differ only by a gradient, which does not affect the vector field assignable to the Hamilto-
nian one-form. The first bracket is simply the Lie-derivate of Hamiltonian one form G with respect
to vector field assigned to F . Second bracket is contraction of Hamiltonian one-forms with the
three-form ω. For the first variant Jacobi identities hold true but Poisson bracket is antisymmetric

http://tinyurl.com/y8us9sgw
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only modulo gradient. For the second variant Jacobi identities hold true only modulo gradient but
Poisson bracket is antisymmetric. This modulo property is in accordance with category theoretic
thinking in which commutativity, associativity, antisymmetry, ... hold true only up to isomorphism.

For 3-dimensional manifolds n=2-plectic structure has the very nice property that all one-
forms give rise to Hamiltonian vector field. In this case any 3-form is automatically closed so that
a large variety of 2-plectic structures exists. In TGD framework the natural choice for the 3-form
ω is as Chern-Simons 3-form defined by the projection of the Kähler gauge potential to the light-
like 3-surface. Despite the fact the induced metric is degenerate, one can deduce the Hamiltonian
vector field associated with the one-form using the general defining conditions

ivF ω = dF (8.7.1)

since the vanishing of the metric determinant appearing in the formal definition cancels out in the
expression of the Hamiltonian vector field.

The explicit formula is obtained by writing ω as

ω = Kεαβγ × εµνδAµJνδ
√
g = εαβγ × C − S ,

C − S = KEαβγAαJβγ .
(8.7.2)

Here Eαβγ = εαβγ holds true numerically and metric determinant, which vanishes for light-like
3-surfaces, has disappeared.

The Hamiltonian vector field is the curl of F divided by the Chern-Simons action density
C − S:

vαF = 1
2 ×

εαβγ(∂βFγ−∂γFβ)
√
g

C−S√g = 1
2 ×

Eαβγ(∂βFγ−∂γFβ)
C−S . (8.7.3)

The Hamiltonian vector field multiplied by the dual of 3-form multiplied by the metric determinant
has a vanishing divergence and is analogous to a vector field generating volume preserving flow.
and the value of Chern Simons 3-form defines the analog of the metric determinant for light-like 3-
surfaces. The generalized Poisson bracket for Hamiltonian 1-forms defined in terms of the action of
Hamiltonian vector field on Hamiltonian as Jβ1 DβF2α−Jβ2 DβH2α is Hamiltonian 1-form. Here Ji
denotes the Hamiltonian vector field associated with Fi. The bracked unique apart from gradient.
The corresponding vector field is the commutator of the Hamiltonian vector fields.

The objection is that gauge invariance is broken since the expression for the vector field
assigned to the Hamiltonian one-form depends on gauge. In TGD framework there is no need to
worry since Kähler gauge potential has unique natural expression and the U(1) gauge transfor-
mations of Kähler gauge potential induced by symplectic transformations of CP2 are not genuine
gauge transformations but dynamical symmetries since the induced metric changes and space-time
surface is deformed. Another important point is that Kähler gauge potential for a given CD has
M4 part which is “pure gauge” constant Lorentz invariant vector and proportional to the inverse
of gravitational constant G. Its ratio to CP2 radius squared is determined from electron mass by
p-adic mass calculations and mathematically by quantum criticality fixing also the value of Kähler
coupling strength.

8.7.4 TGD Variant For The Category Ncob

John Baez has suggested that quantum field theories could be formulated as functors from the
category of n-cobordisms to the category of Hilbert spaces [A94, A38]. In TGD framework light-
like 3-surfaces containing the number theoretical braids define the analogs of 3-cobordisms and
surface property brings in new structure. The motion of topological condensed 3-surfaces along
4-D space-time sheets brings in non-trivial topology analogous to braiding and not present in
category nCob.

Intuitively it seems possible to speak about one-dimensional orbits of wormhole throats and
-contacts (fermions and bosons) in background space-time (homological dimension). In this case
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linking or knotting are not possible since knotting is co-dimension 2 phenomenon and only objects
whose homological dimensions sum up to D− 1 can get linked in dimension D. String like objects
could topologically condense along wormhole contact which is string like object. The orbits of
closed string like objects are homologically co-dimension 2 objects and could get knotted if one
does not allow space-time sheets describing un-knotting. The simplest examples are ordinary knots
which are not allowed to evolve by forming self intersections. The orbits of point like wormhole
contact and closed string like wormhole contact can get linked: a point particle moving through
a closed string is basic dynamical example. There is no good reason preventing unknotting and
unlinking in absolute sense.

8.7.5 Number Theoretical Universality And Category Theory

Category theory might be also a useful tool to formulate rigorously the idea of number theoretical
universality and ideas about cognition. What comes into mind first are functors real to p-adic
physics and vice versa. They would be obtained by composition of functors from real to rational
physics and back to p-adic physics or vice versa. The functors from real to p-adic physics would
provide cognitive representations and the reverse functors would correspond to the realization
of intentional action. The functor mapping real 3-surface to p-adic 3-surfaces would be simple:
interpret the equations of 3-surface in terms of rational functions with coefficients in some algebraic
extension of rationals as equations in arbitrary number field. Whether this description applies or
is needed for 4-D space-time surface is not clear.

At the Hilbert space level the realization of these functors would be quantum jump in
which quantum state localized to p-adic sector tunnels to real sector or vice versa. In zero energy
ontology this process is allowed by conservation laws even in the case that one cannot assign
classical conserved quantities to p-adic states (their definition as integrals of conserved currents
does not make sense since definite integral is not a well-defined concept in p-adic physics). The
interpretation would be in terms of generalized M-matrix applying to cognition and intentionality.
This M-matrix would have values in the field of rationals or some algebraic extension of rationals.
Again a generalization of Connes tensor product is suggestive.

8.7.6 Category Theory And Fermionic Parts Of Zero Energy States As
Logical Deductions

Category theory has natural applications to quantum and classical logic and theory of computa-
tion [A38]. In TGD framework these applications are very closely related to quantum TGD itself
since it is possible to identify the positive and negative energy pieces of fermionic part of the zero
energy state as a pair of Boolean statements connected by a logical deduction, or rather- quantum
superposition of them. An alternative interpretation is as rules for the behavior of the Universe
coded by the quantum state of Universe itself. A further interpretation is as structures analo-
gous to quantum computation programs with internal lines of Feynman diagram would represent
communication and vertices computational steps and replication of classical information coded by
number theoretical braids.

8.7.7 Category Theory And Hierarchy Of Planck Constants

Category theory might help to characterize more precisely the proposed geometric realization of the
hierarchy of Planck constants explaining dark matter as phases with non-standard value of Planck
constant. The situation is topologically very similar to that encountered for generalized Feynman
diagrams. Singular coverings and factor spaces of M4 and CP2 are glued together along 2-D
manifolds playing the role of object and space-time sheets at different vertices could be interpreted
as arrows going through this object.



Chapter 9

Could categories, tensor networks,
and Yangians provide the tools for
handling the complexity of TGD?

9.1 Introduction

The dynamics of TGD is extremely simple locally: space-times are surfaces of 8-D embedding space
so that only four field-like dynamical variables are present and preferred extremals satisfy strong
form of holography (SH) meaning that almost 2-D data determine them. TGD Universe looks
however also extremely complex. There is a hierarchy of space-times sheets, hierarchy of p-adic
length scales, hierarchy of dark matters labelled by the values of Planck constant heff/h = n,
hierarchy of extensions of rationals defining hierarchy of adeles in adelic physics view about TGD,
hierarchy of infinite primes (and rationals), and also the hierarchy of conscious entities (quantum
measurement theory in zero energy ontology can be seen as theory of consciousness [L27]).

During years it has become gradually clear that category theory could be the mathematical
language of quantum TGD [K15, K14, K9]. Only category theory gives hopes about unifying
various hierarchies making TGD Universe to look so horribly complex. Hierarchy formed by
categories, categories of categories, .... could be the mathematics needed to keep book about
this complexity and provide also otherwise unexpected constraints.

The arguments developed in the sequel suggest the following overall view.

1. Positive and negative energy parts of zero energy states can be regarded as tensor networks
[L10] identifiable as categories. The new element is that one does not have only particles
(objects) replaced with partonic 2-surfaces but also strings connecting them (morphisms).
Morphisms and functors provide a completely new element not present in the standard model.
For instance, S-matrix would be a functor between categories. Various hierarchies of of TGD
would in turn translate to hierarchies of categories.

2. The recent view about generalized Feynman diagrams [K29, K8, L26] is inspired by two
general ideas. First, the twistor lift of TGD replaces space-time surfaces with their twistor-
spaces getting their twistor structure as induced twistor structure from the product of twistor
spaces of M4 and CP2. Secondly, topological scattering diagrams are analogous to compu-
tations and can be reduced to minimal diagrams, which are tree diagrams with braiding.
This picture fits very nicely with the picture provided by fusion categories. At fermionic
level the basic interaction is 2+2 scattering of fermions occurring at the vertices identifiable
as partonic 2-surface and re-distributes the fermion lines between partonic 2-surfaces. This
interaction is highly analogous to what happens in braiding interaction defining basic gate
in topological quantum computation [K4] but vertices expressed in terms of twistors depend
on momenta of fermions.

3. Braiding transformations for fermionic lines identified as boundaries of string world sheets can
take place inside the light-like orbits of partonic 2-surfaces defining boundaries of space-time
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regions with Minkowskian and Euclidian signature of induced metric respectively. Braiding
transformation is essentially a permutation for two braid strands mapping tensor product
A⊗B to B⊗A. R-matrix satisfying Yang-Baxter equation [B33] characterizes this operation
algebraically.

4. Reconnections of fermionic strings connecting partonic 2-surfaces are possible and suggest
interpretation in terms of 2-braiding generalizing ordinary braiding. I have2-braiding in
[K37]: string world sheets get knotted in 4-D space-time forming 2-knots and strings form
1-knots in 3-D space. I do not actually know whether my intuitive believe that 2-braiding
reduces to reconnections is correct. Reconnection induces an exchange of braid strands
defined by boundaries of the string world sheet and therefore exchange of fermion lines
defining boundaries string world sheets. This requires a generalization of quantum algebras
to include also algebraic representation for reconnection: this representation could reduce to
a representation in terms of an analog of R-matrix.

Yangians [B14] seem to be especially natural quantum algebras from TGD point of view
[K77, L26]. Quantum algebras are bi-algebras having co-product ∆, which in well-defined sense is
the inverse of the product. This makes the algebra multi-local: this feature is very attractive as
far as understanding of bound states is considered. ∆-iterates of single particle system would give
many-particle systems with non-trivial interactions reducing to kinematics.

One should assign Yangian to various Super-Kac-Moody algebras (SKMAs) involved and
even with super-symplectic algebra (SSA) [K20, K88, K63], which however reduces effectively to
SKMA for finite-dimensional Lie group if the proposed gauge conditions meaning vanishing of
Noether charges for some sub-algebra H of SSA isomorphic to it and for its commutator [SSA,H]
with the entire SSA. Strong form of holography (SH) implying almost 2-dimensionality motivates
these gauge conditions. Each SKMA would define a direct summand with its own parameter
defining coupling constant for the interaction in question. There is also extended SKMA associated
with the light-like orbits of partonic 2-surfaces and it seems natural to identify appropriate sub-
algebras of these two algebras as duals in Yangian sense.

There is also partonic super-Kac-Moody algebra (PSKMA) associated with partonic 2-
surfaces extending ordinary SKMA. On old conjecture is that SSA and PSKMA are physically
dual in the same sense as the conformal algebra and its dual in twistor Grassmannian approach
and that this generalizes equivalence principle (EP) to all conserved charges.

The plan of the article is following.

1. The basic notions and ideas about tensor networks as categories and about Yangians as
multi-local symmetries and fundamental description of interactions are described.

2. The questions related to the Yangianization in TGD framework are considered. Yangianiza-
tion of four-momentum and mass squared operator are discussed as examples.

3. The next section is devoted to category theory as tool of TGD: braided categories and fusion
categories are briefly described and the notion of category with reconnection is considered.

4. The last section tries to represent the “great vision” in more detail.

9.2 Basic vision

The existing vision about TGD is summarized first and followed by a proposal about tensor net-
works as categories and Yangians as a multi-local generalization of symmetries with partonic sur-
faces replacing point like particles.

9.2.1 Very concise summary about basic notions and ideas of TGD

Let us briefly summarize the basic notions and ideas of TGD.

1. Space-times are regarded as 4-surfaces in H = M4 × CP2, which is fixed uniquely by the
condition that the factors ofH = M4×S allow twistor space with Kähler structure [A79]. The
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twistor spaces of dynamically allowed space-time surfaces are assumed to be representable
as 6-D surfaces in twistor space T (H) = T (M4)× T (CP2) getting their twistor structure by
induction from that of T (H). T (M4) is identified as its purely geometric variant T (M4) =
M4 × CP1. At the level of momentum space the usual identification is more appropriate.
It is also assumed that these space-time surfaces are obtained as extremals of 6-D Kähler
action [K77, K8, L26]. At space-time level this gives rise to dimensionally reduced Kähler
action equal to the sum of volume term and 4-D Kähler action. Either the entire action or
volume term would correspond to vacuum energy parameterized by cosmological constant in
standard cosmology. Planck length corresponds to the radius of twistor sphere of M4.

2. Strong form of holography (SH) implied by strong form of general coordinate invariance
(SGCI) stating that light-like 3-surfaces defined by parton orbits and 3-D space-like ends
of space-time surface at boundaries of CD separately code 3-D holography. SH states that
2-D data at string world sheets plus condition fixing the points of space-time surface with
H-coordinates in extension of rationals fix the real space-time surface.

(a) SH strongly suggests that the preferred extremals of the dimensionally reduced ac-
tion satisfy gauge conditions (vanishing Noether charges) for a subalgebra H of super-
symplectic algebras (SSA) isomorphic to it and its commutator [H,SSA] with SSA:
this effectively reduces SSA to a finite-dimensional Kac-Moody algebra.

(b) Similar dimensional reduction would take place in fermionic degrees of freedom, where
super-conformal symmetry fixes 4-D Dirac action, when bosonic action is known [K88,
K63]. This involves the new notion of modified gamma matrices determined in terms
of canonical momentum currents associated with the action.

Quantum classical correspondence (QCC) states that classical Cartan charges for SSA
are equal to the eigenvalues of corresponding fermionic charges. This gives a correlation
between space-time dynamics and quantum numbers of positive (negative) parts of zero
energy states.

(c) SH implies that fermions are effectively localized at string world sheets: in other words,
the induced spinor fields Ψint in space-time interior are determined their values Ψstring

at string world sheets. There are two options: Ψint is either continuation of Ψstring or
Ψstring serves as the source of Ψint [L13].

3. At space-time level the dynamics is extremely simple locally since by general coordinate
invariance (GCI) only 4 field-like variables are dynamical, and one has also SH by SGCI.
Topologically the situation is rather complex: one has many-sheeted space-time having hier-
archical structure. The GRT limit of TGD [K80] is obtained in long length scales by mapping
the many-sheeted structure to a slightly curved piece of M4 by demanding that the defor-
mation of M4 metric is sum of the deformation of he induced metrics of space-time surface
from M4 metric. Similar description implies to gauge potentials in terms of induced gauge
potentials. The many-sheetedness is visible as anomalies of GRT and plays central role in
quantum biology [K58].

4. Zero energy ontology (ZEO) means that one consider space-time surfaces inside causal di-
amonds (CDs defined as intersections of future and past directed light-cones with points
replaced with CP2) forming a scale hierarchy. Zero energy states are tensor products of pos-
itive and negative energy parts at opposite boundaries of CD. Zero energy property means
that the total conserved quantum numbers are opposite at the opposite boundaries of CD
so that one has consistency with ordinary positive energy ontology. Zero energy states are
analogous to physical events in the usual ontology but is much more flexible since given zero
energy energy states is in principle creatable from vacuum.

5. The “world of classical worlds” (WCW) [K35, K20, K63] generalizes the superspace of
Wheeler. WCW decomposes to sub-WCWs assignable to CDs forming a scale hierarchy.
Note that 3-surface in ZEO corresponds to a pair of disjoint collections 3-surfaces at opposite
boundaries of CD- initial and final state in standard ontology. Super-symplectic symmetries
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(SCA) act as isometries of WCW. Zero energy states correspond to WCW spinor fields and
the gamma matrices of WCW are expressible as linear combinations of fermionic oscillator
operators for induced spinor fields. Besides SCA there is partonic super-Kac-Moody algebra
(PSCA) acting on light-like orbits of partonic 2-surfaces and these algebras are suggested to
be dual physically (generalized EP).

6. One ends up with an extension of real physics to adelic physics [L22]. p-Adic physics for
various primes are introduced as physical correlates of cognition and imagination: the origi-
nal motivation come from p-adic mass calculations [K41]. p-Adic non-determinism (pseudo
constants) [K50, K73] strongly suggests that one can always assign to 2-D holographic data
a p-adic variant of space-time surface as a preferred extremal. In real case this need not be
the case so that the space-time surface realized as preferred extremal is imaginable but not
necessarily realizable.

p-Adic physics and real physics are fused to adelic physics: space-time surface isa book-like
structure with pages labelled by real number field and p-adic number fields in an extension
induced by some extension of rationals. Planck constants heff = n × h corresponds to the
dimension of the extension dividing the order of its Galois group and favored p-adic primes
correspond to ramified primes for favored extensions. Evolution corresponds to increasing
complexity of extension of rationals and favored extensions are the survivors in fight for
number theoretic survival.

7. Twistor lift of TGD leads to a proposal for the construction of scattering amplitudes assuming
Yangian symmetry assignable to Kac-Moody algebras for embedding space isometries, with
electroweak gauge group, and for finite-D Lie dynamically generated Lie group selected by
conditions on SSA algebra. 2+2 fermion vertex analogous to braiding interaction serves as
the basic vertex in the formulation of [L26].

9.2.2 Tensor networks as categories

The challenge has been the identification of relevant categories and physical realization of them.
One can imagine endless number of identifications but the identification of absolutely convincing
candidate has been difficult. Quite recently an astonishingly simple proposal emerged.

1. The notion of tensor network [B23] has emerged in condensed matter physics to describe
strongly entangled systems and complexity associated with them. Holography is in an es-
sential role in this framework. In TGD framework tensor network is realized physically at
the level of the topology and geometry of many-sheeted space-time [L10]. Nodes would cor-
respond to objects and links between them to morphisms. This structure would be realized
as partonic 2-surfaces - objects - connected by fermionic strings - morphisms - assignable to
magnetic flux tubes. Morphisms would be realized as Hilbert space isometries defined by
entanglement. Physical state would be category or set of them!

Functors are morphisms of categories mapping objects to objects and morphisms to mor-
phisms and respecting the composition of morphisms so that the structure of the category
is preserved. For instance, in zero energy ontology (ZEO) S-matrix for given space-time
surface could be a unitary functor assigning to an initial category final category: they would
be represented as quantum states at the opposite boundaries of causal diamond (CD). Also
quantum states could be categories of categories of in accordance with various hierarchies.

2. Skeptic could argue as follows. The passive part of zero energy states for which active part
evolves by unitary time evolutions following by state function reductions inducing time local-
ization in moduli space of CDs, could be category. But isn’t the active path more naturally
a quantum superposition of categories? Should one replace time evolution as a functor with
its quantum counterpart, which generates a quantum superposition of categories? If so, then
state function reduction to opposite boundary of CD would mean localization in the set of
categories! This is quite an abstraction from simple localization in 3-space in wave mechanics.

3. Categories form categories with functors between categories acting as morphisms. In principle
one obtains an infinite hierarchy of categories identifiable as quantum states. This would fit
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nicely with various hierarchies associated with TGD, most of which are induced by the
hierarchy of extensions of rationals.

4. The language of categories fits like glove also to TGD inspired theory of consciousness. The
fermionic strings and associated magnetic flux tubes would serve as correlates of attention.
The associated morphism would define the direction of attention and also define sensory
maps as morphisms. Conscious intelligence relies crucially on analogies and functors realize
mathematically the notion of analogy. Categorification means basically classification and
this is what cognition does all the time.

9.2.3 Yangian as a generalization of symmetries to multilocal symme-
tries

Mere networks of arrows are not enough. One needs also symmetry algebra associated with them
giving flesh around the bones.

1. Various quantum algebras, in particular Yangians are naturally related to physically inter-
esting categories. The article of Jimbo [B33], one of the pioneers of quantum algebras, gives
a nice summary of Yang-Baxter equation central in the construction of quantum algebras.
R-matrix performs is an endomorphism permuting two tensor factors in quantal matter.

2. One of the nice features of Yangian is that it gives hopes for a proper description of bound
states problematic in quantum field theories (one can argue that QCD cannot really describe
hadrons and already QED has problems with Bethe-Salpeter equation for hydrogen atom).
The idea would be simple. Yangian would provide many-particle generalization of single
particle symmetry algebra and give formulas for conserved charges of many-particle states
containing also interaction terms. Interactions would reduce to kinematics. This - as I think
- is a new idea.

The iteration of the co-product ∆ would map single particle symmetry operator by homo-
morphism to operator acting in N-parton state space and one would obtain a hierarchy of
algebra generators labelled by N and Yangian inariance would dictate the interaction terms
completely (as it indeed does in N = 4 SUSY in twistor Grassmannian approach [B15]).

3. There is however a delicacy involved. There is a mysterious looking doubling of the symmetry
generators. One has besides ordinary local generators TA0 generators TA1 : in twistor Grass-
mann approach the latter correspond to dual conformal symmetries. For TA0 the co-product
is trivial: ∆(JA0 ) = JA0 ⊗ 1 + 1⊗ JA0 , just like in non-interacting theory. This is true for all
iterates of ∆.

For JA1 one has ∆(JA1 ) = JA1 ⊗ 1 + 1 ⊗ JA1 + fABCJ
B
0 ⊗ JC0 . One has two representations

and the duality suggests that the eigenvalues JA0 and JA1 are same (note that in Witten’s
approach [B14] JA1 = 0 holds true so that it does not apply as such to TGD). The differences
TA0 − TA1 would give a precise meaning for “interaction charges” if the duality holds true,
and more generally, to the perturbation theory formed by a pair of free and interacting
theory. This picture raises hopes about first principle description of bound states: interactions
described in wave mechanics in terms of phenomenological interaction Hamiltonians and
interaction potentials would be reduced to kinematics.

For instance, for four-momentum ∆(P k1 ) would contain besides free particle term P k0 ⊗ 1 +
1⊗ P k0 also the interaction term involving generators of - say - conformal group.

4. What about the physical interpretation of the doubling? The most natural interpretation
would be in terms of SSA and the extended super-conformal algebra assignable to the light-
like orbits of partonic 2-surfaces. An attractive interpretation is in terms of a generalization
of Equivalence Principle (EP) stating that inertial and gravitational charges are identical for
the physical states.

5. The tensor summands of Kac-Moody algebra would have different coupling constants ki
perhaps assignable to the 4 fundamental interactions and to the dynamical gauge group
emerging from the SCA would give further coupling constant. This would give 5 tensor
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factors strongly suggested by p-adic mass calculations - p-adic masses depend only on the
number of tensor factors [K41].

9.3 Some mathematical background about Yangians

In the following necessary mathematical background about Yangians are summarized.

9.3.1 Yang-Baxter equation (YBE)

Yang-Baxter equation (YBE) has been used for more than four decades in integrable models of
statistical mechanics of condensed matter physics and of 2-D quantum field theories (QFTs) [A114].
It appears also in topological quantum field theories (TQFTs) used to classify braids and knots
[B14] (see http://tinyurl.com/mcvvcqp) and in conformal field theories and models for anyons.
Yangian symmetry appears also in twistor Grassmann approach to scattering amplitudes [B15, B20]
and thus involves YBE. At the same time new invariants for links were discovered and new braid-
type relation was found. YBEs emerged also in 2-D conformal field theories.

Yang-Baxter equation (YBE) has a long history described in the excellent introduction
to YBE by Jimbo [B33] (see http://tinyurl.com/l4z6zyr, where one can also find a list of
references). YBE was first discovered by McGuire (1964) and 3 years later by Yang in quantum
mechanical many-body problem involving delta function potential

∑
i<j δ(xi − xj). Using Bethe’s

Ansatz for building wave functions they found that the scattering matrix factorized that it could
be constructed using as building brick 2-particle scattering matrix - R-matrix. YBE emerged for
R-matrix as a consistency condition for factorization. Baxter discovered 1972 solution of the eight
vertex model in terms of YBE. Zamolodchikov pointed ot that the algebraic mechanism behind
factorization of 2-D QFTs is same as in condensed matter models.

1978-1979 Faddeev, Sklyanin, and Takhtajan proposed quantum inverse scattering method
as a unification of classical and quantum integrable models. Eventually the work with YBE led to
the discovery of the notion of quantum group by Drinfeld. Quantum group can be regarded as a
deformation Uq(g) of the universal enveloping algebra U(g) of Lie algebra. Drinfeld also introduced
the universal R-matrix, which does not depend on the representation of algebra used.

R-matrix satisfying YBE is now the common aspect of all quantum algebras. I am not a
specialist in YBE and can only list the basic points of Jimbo’s article. Interested reader can look
for details and references in the article of Jimbo.

In 2-D quantum field theories R-matrix R(u) depends on one parameter u identifiable as
hyperbolic angle characterizing the velocity of the particle. R(u) characterizes the interaction
experienced by two particles having delta function potential passing each other (see the figure of
http://tinyurl.com/kyw6xu6). In 2-D quantum field theories and in models for basic gate in
topological quantum computation (for early TGD vision see [K4] were also R-matrix is discussed
in more detail) the R-matrix is unitary. One can interpret R-matrix as endomorphism mapping
V1 ⊗ V2 to V2 ⊗ V1 representing permutation of the particles.

YBE

R-matrix satisfies Yang-Baxter equation (YBE)

R23(u)R13(u+ v)R12(v) = R12(v)R13(u+ v)R23(u) (9.3.1)

having interpretation as associativity condition for quantum algebras.
At the limit u, v → ∞ one obtains R-matrix characterizing braiding operation of braid

strands. Replacement of permutation of the strands with braid operations replaces permutation
group for n strands with its covering group. YBE states that the braided variants of identical
permutations (23)(13)(12) and (12)(13)(23) are identical.

The equations represent n6 equations for n4 unknowns and are highly over-determined so
that solving YBE is a difficult challenge. Equations have symmetries, which are obvious on basis
of the topological interpretation. Scaling and automorphism induced by linear transformations of

http://tinyurl.com/mcvvcqp
http://tinyurl.com/l4z6zyr
http://tinyurl.com/kyw6xu6
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V act as symmetries, and the exchange of tensor factors in V ⊗V and transposition are symmetries
as also shift of all indices by a constant amount (using modulo N arithmetics).

One can pose to the R-matrix some boundary condition. For V ⊗ V the condition states
that R(0) is proportional to permutation matrix P for the factors.

General results about YBE

The following lists general results about YBE.

1. Belavin and Drinfeld proved that the solutions of YBE can be continued meromorphic func-
tions to complex plane and define with poles forming an Abelian group. R-matrices can be
classified to rational, trigonometric, and elliptic R-matrices existing only for sl(n). Ratio-
nal and trigonometric solutions have pole at origin and elliptic solutions have a lattice of
poles. In [B33] (see http://tinyurl.com/l4z6zyr) simplest examples about R-matrices for
V1 = V2 = C2 are discussed, one of each type.

2. In [B33] it is described how the notions of R-matrix can be generalized to apply to a collection
of vector spaces, which need not be identical. The interpretation is as commutation relations
of abstract algebra with co-product ∆ - say quantum algebra or Yangian algebra. YBE
guarantees the associativity of the algebra.

3. One can define quasi-classical R-matrices as R-matrices depending on Planck constant like
parameter ~ (which need have anything to do with Planck constant) such that small values
of u one has R = constant× (I+~r(u)+O(~2)). r(u) is called classical r-matrix and satisfies
CYBE conditions

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0

obtained by linearizing YBE. r(u) defines a deformation of Lie-algebra respecting Jacobi-
identities. There are also non-quasi-classical solutions. The universal solution for r-matrix is
formulated in terms of Lie-algebra so that the representation spaces Vi can be any represen-
tation spaces of the Lie-algebra.

4. Drinfeld constructed quantum algebras Uq(g) as quantized universal enveloping algebras
Uq(g) of Lie algebra g. One starts from a classical r-matrix r and Lie algebra g. The
idea is to perform a “quantization” of the Lie-algebra as a deformation of the universal en-
veloping algebra Uq(g) of U(g) by r. Drinfeld introduces a universal R-matrix independent
of the representation used. This construction will not be discussed here since it does not
seem to be so interesting as Yangian: in this case co-product ∆ does not seem to have a
natural interpretation as a description of interaction. The quantum groups are characterized
by parameter q ∈ C.

For a generic value the representation theory of q-groups does not differ from the ordinary
one. For roots of unity situation changes due to degeneracy caused by the fact qN = 1 for
some N .

5. The article of Jimbo discusses also fusion procedure initiated by Kulish, Restetikhin, and
Sklyanin allowing to construct new R-matrices from existing one. Fusion generalizes the
method used to construct group representation as powers of fundamental representation.
Fusion procedure constructs R-matrix in W ⊗ V 2, where one has W = W1 ⊗W2 ⊂ V ⊗ V 1.
Picking W is analogous to picking a subspace of tensor product representation V ⊗ V 1.

9.3.2 Yangian

Yangian algebra Y (g(u)) is associative Hopf algebra (see http://tinyurl.com/qfl8dwu) that is
bi-algebra consisting of associative algebra characterized by product µ: A ⊗ A → A with unit
element 1 satisfying µ(1, a) = a and co-associative co-algebra consisting of co-product ∆A ∈ A⊗A
and co-unit ε : A→ C satisfying ε◦∆(a) = a. Product and co-product are “time reversals” of each
other. Besides this one has antipode S as algebra anti-homomorphism S(ab) = S(b)S(a). YBE

http://tinyurl.com/l4z6zyr
http://tinyurl.com/qfl8dwu
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has interpretation as an associativity condition for co-algebra (∆ ⊗ 1) ◦∆ = (1 ⊗∆) ◦∆. Also ε
satisfies associativity condition (ε⊗ 1) ◦∆ = (1⊗ ε) ◦∆.

There are many alternative formulations for Yangian and twisted Yangian listed in the
slides of Vidas Regelskis at http://tinyurl.com/ms9q8u4. Drinfeld has given two formulations
and there is FRT formulation of Faddeev, Restetikhin and Takhtajan.

Drinfeld’s formulation [B33] (see http://tinyurl.com/qfl8dwu) involves the notions of Lie
bi-algebra and Manin triple, which corresponds to the triplet formed by half-loop algebras with
positive and negative conformal weights, and full loop algebra. There is isomorphism mapping
the generating elements of positive weight and negative weight loop algebra to the elements of
loop algebra with conformal weights 0 and 1. The integer label n for positive half loop algebra
corresponds in the formulation based on Manin triple to conformal weight. The alternative inter-
pretation for n + 1 would be as the number of factors in the tensor power of algebra and would
in TGD framework correspond to the number of partonic 2-surfaces. In this interpretation the
isomorphism becomes confusing.

In any case, one has two interpretations for n + 1 ≥ 1: either as parton number or as
occupation number for harmonic oscillator having interpretation as bosonic occupation number in
quantum field theories. The relationship between Fock space description and classical description
for n-particle states has remained somewhat mysterious and one can wonder whether these two
interpretation improve the understanding of classical correspondence (QCC).

Witten’s formulation of Yangian

The following summarizes my understanding about Witten’s formulation of Yangian in N = 4
SUSYs [B14], which does not mention explicitly the connection with half loop algebras and loop
algebra and considers only the generators of Yangian and the relations between them. This formu-
lation gives the explicit form of ∆ and looks natural, when n corresponds to parton number. Also
Witten’s formulation for Super Yangian will be discussed.

It must be however emphasized that Witten’s approach is not general enough for the pur-
poses of TGD. Witten uses the identification ∆(JA1 ) = fABCJ

B
0 × JC0 instead of the general expres-

sion ∆(JA1 ) = JA1 ⊗ 1 + 1 × JA1 + fABCJ
B
0 × JC0 needed in TGD strongly suggested by the dual

roles of the super-symplectic conformal algebra and super-conformal algebra associated with the
light-like partonic orbits realizing generalized EP. There is also a nice analogy with the conformal
symmetry and its dual twistor Grassmann approach.

The elements of Yangian algebra are labelled by non-negative integers so that there is a
close analogy with the algebra spanned by the generators of Virasoro algebra with non-negative
conformal weight. The Yangian symmetry algebra is defined by the following relations for the
generators labeled by integers n = 0 and n = 1. The first half of these relations discussed in very
clear manner in [B14] follows uniquely from the fact that adjoint representation of the Lie algebra
is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (9.3.2)

Besides this Serre relations are satisfied. These have more complex form and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
(fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(9.3.3)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor gAB
or gAB . {A,B,C} denotes the symmetrized product of three generators.

http://tinyurl.com/ms9q8u4
http://tinyurl.com/qfl8dwu
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The right hand sides have often as a coefficient ~2 instead of 1/24. ~ need not have anything
to do with Planck constant. The Serre relations give constraints on the commutation relations of

J (1)A. For J (1)A=JA the first Serre relation reduces to Jacobi identity and second to antisymmetry
of Lie bracket. The right hand sided involved completely symmetrized trilinears {JD, JE , JF }
making sense in the universal covering of the Lie algebra defined by JA.

Repeated commutators allow to generate the entire algebra whose elements are labeled by
non-negative integer n. The generators obtain in this manner are n-local operators arising in
(n− 1)-commutator of J (1): s. For SU(2) the Serre relations are trivial. For other cases the first
Serre relation implies the second one so the relations are redundant. Why Witten includes it is
for the purposed of demonstrating the conditions for the existence of Yangians associated with
discrete one-dimensional lattices (Yangians exists also for continuum one-dimensional index).

Discrete one-dimensional lattice provides under certain consistency conditions a representa-
tion for the Yangian algebra. One assumes that each lattice point allows a representation R of JA

so that one has JA =
∑
i J

A
i acting on the infinite tensor power of the representation considered.

The expressions for the generators J1A in Witten’s approach are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (9.3.4)

This formula gives the generators in the case of conformal algebra. This representation exists if
the adjoint representation of G appears only one in the decomposition of R ⊗R. This is the case
for SU(N) if R is the fundamental representation or is the representation of by kth rank completely
antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-
product ∆ is given by

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC

(9.3.5)

∆ allows to imbed Lie algebra to the tensor product in non-trivial manner and the non-triviality
comes from the addition of the dual generator to the trivial co-product. In the case that the single
spin representation of J (1)A is trivial, the co-product gives just the expression of the dual generator
using the ordinary generators as a non-local generator. This is assumed in the recent case and also
for the generators of the conformal Yangian.

Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics especially
interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4) (P
refers to “projective” ) acting as super-conformal symmetries of N = 4 SYM and this super group
is a real form of PSU(4|4). The main point of interest is whether this algebra allows Yangian
representation and Witten demonstrated that this is indeed the case [B14].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with
the fermionic part dictates the commutation relations between bosonic and fermionic generators.
The anti-commutator of fermionic generators can contain besides identity also bosonic generators
if the symmetrized tensor product in question contains adjoint representation. This is the case
if fermions are in the fundamental representation and its conjugate. For SU(3) the symmetrize
tensor product of adjoint representations contains adjoint (the completely symmetric structure
constants dabc) and this might have some relevance for the super SU(3) symmetry.
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The elements of these algebras in the matrix representation (no Grassmann parameters
involved) can be written in the form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m × m matrices
corresponding to the dimensions of bosonic and fermionic representations. b and c are fermionic
matrices are n×m and m×n matrices, whose anti-commutator is the direct sum of n×n and n×n
matrices. For n = m bosonic generators transform like Lie algebra generators of SU(n) × SU(n)
whereas fermionic generators transform like n ⊗ n ⊕ n ⊗ n under SU(n) × SU(n). Supertrace is
defined as Str(x) = Tr(a) − Tr(b). The vanishing of Str defines SU(n|m). For n 6= m the super
trace condition removes identity matrix and PU(n|m) and SU(n|m) are same. That this does not
happen for n = m is an important delicacy since this case corresponds to N = 4 SYM. If any two
matrices differing by an additive scalar are identified (projective scaling as now physical effect) one
obtains PSU(n|n) and this is what one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product R⊗
R holds true for the physically interesting representations of PSU(2, 2|4) so that the generalization
of the bilinear formula can be used to define the generators of J (1)A of super Yangian of PU(2, 2|4).
The defining formula for the generators of the Super Yangian reads as

J
(1)
C = gCC′J

(1)C′ = gCC′f
C′

AB

∑
i<j

JAi J
B
j

= gCC′f
C′

ABg
AA′gBB

′∑
i<j

J iA′J
j
B′ .

(9.3.6)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4)
and PSU(2, 2|4). In this formula both generators and super generators appear.

9.4 Yangianization in TGD framework

Yangianization of quantum TGD is quite challenging. Super-conformal algebras are much larger
than in say N = 4 SUSY and even in superstring models and reconnection and 2-braiding are new
topological elements.

9.4.1 Geometrization of super algebras in TGD framework

Super-conformal algebras allow a geometrization in TGD framework and this should be of consid-
erable help in the Yangianization.

1. The basic generators of various Super-algebras follow from modified Dirac action as Noether
charges and their super counterparts obtained by replacing fermion field Ψ (its conjugate Ψ)
by a mode um (un) of the induced spinor field [K88, K63]. The anti-commutators of these
Noetherian super charges labelled by n define WCW gamma matrices. The replacement of
both Ψ and Ψ with modes um and un gives a collection of conserved c-number currents and
charges labelled by (n,m). These c-number charges define the anti-commutation relations
for the induced spinor fields so that quantization reduces to dynamics thanks to the notion
of modified gamma matrices forced by super-conformal symmetry.

2. The natural generalization of Sugawara formula to the level of Yangian of SKMA starts from
the Dirac operator for WCW defined like ordinary Dirac operator in terms of the contrac-
tions of WCW gamma matrices with the isometry generators (SCA) replacing the Super
Virasoro generators Gr and WCW d’Alembert operator defined as its square replacing Vira-
soro generators Ln. Anti-commutators of WCW gamma matrices defined by super charges for
super-symplectic generators define WCW Kähler metric [K88] for which action for preferred
extremal would define Kähler function for WCW metric [K35].
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3. Quarks and leptons give rise to a doubling of WCW metric if associated with same space-time
sheet that is with the same sector of WCW. The duplication of the super algebra generators
- in particular WCW gamma matrices - does not seem to make sense. Do quarks and leptons
therefore correspond to different sectors of WCW and live at different space-time surfaces?
But what could distinguish between 3-surfaces associated with quarks and leptons?

Could quarks be associated with homologically non-trivial partonic 2-surfaces with CP2 ho-
mology charges 2,-1,-1 proportional to color hypercharges 2/3,−1/3,−1/3 and leptons with
partonic 2-surfaces with vanishing homology charges coming as multiples of 3? Vanishing of
color hypercharge for color-confined states would topologize to a vanishing of total homology
charge. Could spin/isospin half property of fundamental fermions topologize to 2-sheeted
structure of the space-time surface representing elementary particle consisting of elementary
fermions?

SSA acting as isometries of WCW is not the only super-conformal algebra involved.

1. Partonic 2-surfaces are ends of light-like 3-surfaces- partonic orbits - and give rise to a gen-
eralization of SKMA of isometries of H so that they act as local isometries preserving the
light-likeness property of the orbits. At the ends of the partonic 2-surface SKMA is associated
with complex coordinate of partonic 2-surface. What is the role of this algebra, which is also
extended SKMA (already christened PSCA) but with light-like coordinate parameterizing
the SKMA generators?

Is it an additional symmetry combining with string world sheet symmetries to a symmetry
involving complex coordinate and complex or hypercomplex coordinate? Or is it dual to
the string world sheet symmetry? How do these symmetries relate to SSA? Does SGCI
implying SH leave only SKMAs associated with isometries, holonomies of CP2 (electroweak
interactions) and dynamical SKMA remaining as remnant of SCA.

2. I have earlier proposed that Equivalence Principle (EP) as identity of inertial and gravi-
tational charges could reduce to the duality between these SSA assignable to strings and
the partonic super-conformal algebra. This picture conforms with the expected form of
the generators associated with these algebras. The dual generating elements TA0 resp. TA1
associated with generic Yangian could naturally correspond to isomorphic sub-algebras of
super-conformal algebra associated with orbits of partonic 2-surfaces resp. super-symplectic
algebra assignable to string world sheets.

9.4.2 Questions

There are many open questions to be answered.
Q1: What Yangianization could mean in TGD framework? The answer is not obvious and

one can consider two options.

1. Assuming that SH leads to an effective reduction of super-symplectic algebra to finite-D
Kac-Moody algebra, assign to partonic 2-surfaces direct sum of Kac-Moody type algebras
L(g) = g(z, z−1) assigned with complex coordinate z of partonic 2-surface. One could perform
Yangianization for this algebra meaning that these symmetries become multi-local with locus
identified as partonic 2-surface.

In Drinfeld’s approach this would mean Yangianization of L(g) rather than g and would in-
volve double loop algebra L(L(g)) and its positive and negative energy parts. In Minkowskian
space-time regions the generators would be functions of complex coordinate z and hypercom-
plex coordinate u associated with string world sheet: in Euclidian space-time regions one
would have 2 complex coordinates z and w. This would conform with holography. I do not
know whether mathematicians have considered this generalization and whether it is possible.
In the following this is assumed.

2. Physical states at partonic 2-surfaces consist of pointlike fermions and one can ask whether
this actually means that one can consider just the Lie algebra g so that in Drinfeld’s ap-
proach one would have just string world sheets and Y (g). Already this option requires the
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algebraization of reconnection mechanism as a new element. Whether this simpler approach
make sense for fermions and by QQC for quantum TGD, is not clear.

Q2: Can one really follow the practice of Grassmannian twistor approach and say that TA1
and TA0 are dual?

One has [TA0 , T
B
1 ] = fABC TC1 . Witten’s definition TA1 = fABCT

B ⊗ TC ≡ TA1 = fABCT
BTC

with TA1 identified as total charges for lattice, identifies TA1 as 2-particle generators of Yangian.
One the other hand, in TGD TA0 would correspond to partonic super-conformal algebra and TA1
to bi-local super-symplectic algebra and the general definition to be used regards also TA1 as single
particle generators in Yangian sense and defines the generators at 2-particle level as ∆(TA0 ) =
TA0 ⊗ 1 + 1⊗ TA0 and ∆(TA1 ) = TA1 ⊗ 1 + 1⊗ TA1 + fABCT

B
0 ⊗ TC0 .

For the Witten’s definition one cannot demand that TA0 and TA1 have same eigenvalues for
the physical states. For the more general definition of ∆ to be followed in the sequel it seems to
be possible require that TA0 and TA1 obey the same commutation relations for appropriate sub-
algebras at least, and that it is possible to diagonalize Cartan algebras simultaneously and even
require same total Cartan charges. This issue is not however well-understood.

Q3: What algebras are Yangianized in TGD framework?

The Yangians of SKMAs associated with isometries of M4 × CP2 and with the holonomy
group SU(2)× U(1) of CP2 appear as symmetries. M4 should give SKMA in transversal degrees
of freedom for fermionic string. CP2 isometries would give SKMA associated with SU(3). SU(2)×
U(1) would be assignable to electroweak symmetries. This gives 4 tensor factors.

Five of them are required by p-adic mass calculations [K41], whose outcome depends only
on the number of tensor factors in Virasoro algebra. The estimates for the number of tensor factors
has been a chronic head ache: in particular, do M4 SKMA correspond to single tensor factor or
two tensor factors assignable to 2 transversal degrees of freedom.

Supersymplectic algebra (SSA) is assumed to define maximal possible isometry group of
WCW guaranteeing the existence of Kähler metric with a well-defined Riemann connection. The
Yangian of SSA could be the ultimate symmetry group, which could realize the dream about the
reduction of all interactions to mere kinematics. If SSA effectively reduces to a finite-D SKMA for
fermionic strings, one would have 5 tensor factors.

Q4: What does SSA mean?

1. SSA is associated with light-cone boundary δM4
± with one light-like direction. The generators

(to be distinguished from generating elements) are products of Hamiltonians of symplectic
transformations of CP2 assignable to representations of color SU(3) and Hamiltonians for
the symplectic transformations of light-cone boundary, which reduce to Hamiltonians for
symplectic transformations of sphere S2 depending parametrically on the light-like radial
coordinate r. This algebra is generalized to analog of Kac-Moody algebra defined by finite-
dimensional Lie algebra.

2. The radial dependence of Hamiltonians of form rh. The näıve guess that conformal weights
are integers for the bosonic generators of SSA is not correct. One must allow complex
conformal weights of form h = 1/2 + iy: 1/2 comes from the scaling invariant inner product
for functions at δM4

± defined by integration measure dr/r [K20, K63].

3. An attractive guess [L9] is that there is an infinite number of generating elements with radial
conformal weights given by zeros of zeta. Conformal confinement must holds true meaning
that the total conformal weights are real and thus half-odd integers. The operators creating
physical states form a sub-algebra assignable by SH and QCC to fermionic string world sheets
connecting partonic 2-surfaces.

4. SH inspires the assumption that preferred extremal property requires that sub-algebra H of
SSA isomorphic to itself (conformal weights are integer multiples of SSA) and its commutator
SH with SH annihilate physical states and classical Noether charges vanish. This could
reduce the symmetry algebra to SKMA for a finite-dimensional Lie group. SSA could be
replaced also with the sub-algebra creating physical states having half-odd integer valued
radial conformal weights.
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Similar conditions could make sense for the generalization of super-conformal KM algebra
associated with light-like partonic orbits.

Q5: What is the precise meaning of SH in the fermionic sector?

Are string world sheets with their ends behaving like pointlike particles enough or are also
partonic 2-surface needed. For the latter option a generalization of conformal field theory (CFT)
would be needed assigning complex coordinate with partonic 2-surfaces and hyper-complex or
complex coordinates with string world sheets. Elementary particle vacuum functionals depend on
conformal moduli of partonic 2-surface [K17], which supports the latter option.

There could be however duality between partonic 2-surfaces and string world sheets so that
either of them could be enough [L26]. There is also uncertainty about the relationship between
induced spinor fields at string world sheets and space-time interior. Are 4-D induced spinor fields
obtained by process analogous to analytic continuation in 2-complex dimensional space-time or do
2-D induced spinor fields serve as sources for 4-D induced spinor fields?

Quantum algebras are characterized by parameters such as complex parameter q characteriz-
ing R-matrices for quantum groups. Adelic physics [L22] demands number theoretical universality
and in particular demands that the parameters - say q - of quantum algebraic structures involved
are products q = em/nxU , where U is root of unity (note that ep exists as ordinary p-adic number
for Qp) and x is real number in the extension. This guarantees that the induced extensions of p-
adic numbers are finite-dimensional (the hypothesis is that the correlates of cognition are finite-D
extensions of p-adic number fields) [K63].

In the recent view about twistorial scattering amplitudes [L26] the fundamental fermionic
vertices are 2 → 2 vertices. There is no fermionic contact interaction in the sense of QFT but
the fermions coming to the topological vertex defined by partonic 2-surface at which 3 partonic
orbits meet (analogy for the 3-vertex for Feynman diagram) are re-distributed between partonic
two surfaces. Also in integrable 2-D QFTs in M2 the vertices are 2→ 2 vertices characterized by
R-matrix. The twistorial vertex is however not topological.

9.4.3 Yangianization of four-momentum

The QFT picture about bound states is unsatisfactory. The basic question to be answered is
whether one should approach the problem in terms of Lorentz invariant mass squared natural in
conformal field theories or in terms of Poincare algebra. It is quite possible that the fundamental
formulation allowing to understand binding energies is in terms of SCA and PSCA.

Twistor lift of TGD [L26] however suggests that Poincare and even finite-D conformal trans-
formations associated with M2 could play important role. These longitudinal degrees of freedom
are non-dynamical in string dynamics. Maybe there is kind of sharing of labor between these
degrees of freedom. In the following we consider two purely pedagogical examples about Yangian-
ization of four-momentum in M4 and in 8-D context regarding four-momentum as quaternionic
8-momentum in M8.

Yangianization of four-momentum in conformal algebra of M4

Consider as an example what the Yangianization for four-momentum P k could mean. This is a
pedagogical example.

1. The first thing to notice is that the commutation relations between P k0 and P k1 are inherited
from those between P k0 and force P k1 and P k0 to commute. This holds true quite generally for
Cartan algebra so that if the correspondence between TA0 and TA1 respects Cartan algebra
property then Cartan algebras of TA0 and TA1 can be simultaneously diagonalized for the
physical states. The Serre relations of Eq. 9.3.3 are identically satisfied for Cartan algebra
and its image. This is consistent with the assumption that Cartan algebra is mapped to
Cartan algebra but does not prove it.

2. The formula fABCT
A
0 ⊗ TC0 for the interaction term appearing in the expresion of ∆ should

be non-trivial also when TA corresponds to four-momentum. Already the Poincare algebra
gives this kind of term built from Lorentz generators and translation generators.
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The extension of Poincare algebra extended to contain dilatation operator D can be consid-
ered as also M4 conformal algebra with generators of special conformal transformations MA

included (see http://tinyurl.com/nxlmfug). One has doubling of all algebra generators.
The interpretation as gravitational and inertial momenta is one possibility, and EP suggests
that the two momenta have same values. In twistor Grassmannian approach the conformal
algebras are regarded as dual and suggests the same. Hence one would have P k0 = P k1 at the
level of eigenvalues.

3. For conformal group the proposed co-product for P ki would read as

∆(P k0 ) = P k0 ⊗ 1 + 1⊗ P k0 ,

∆(P k1 ) = P k1 ⊗ 1 + 1⊗ P k1 +KfkAl(L
A
0 ⊗ P l0 − P k0 ⊗ LA0 ) +KfkAl(M

A
0 ⊗ P l0 − P l0 ⊗MA

0 )

+ K(D0 × P k0 − P k0 ×D0) .

(9.4.1)

This condition could be combined with the condition for mass squared operator. For K = 0
one would have additivity of mass squared requiring that P1 and P2 are parallel and light-like.
For K 6= 0 it might be possible to have a simultaneous solution to the both conditions with
massive total momentum.

The ∆-iterates of P k0 contain no interaction terms. For P1 one has interaction term. This
holds true for all symmetry generators. Assume P0 = P1: does this mean that the interacting
theory associated with P1 is dual to free theory? The difference ∆P k0 −∆(P k1 ) defines the analog
interaction Hamilton, which would therefore be not due to a somewhat arbitrary decomposition
of four-momentum to free and interaction parts. It should be possible to possible to measure this
difference and its counterpart for other quantum numbers. One can only make questions about
the interpretation for this duality applying to all quantum numbers.

1. In Drinfeld’s construction the negative and positive energy parts of loop algebra would be
related by the duality. In ZEO it might be possible to relate them to positive and negative
energy parts of zero energy states at the opposite boundaries of CD.

2. If n is interpreted as number of partonic surfaces and the generators are interpreted as in
Witten’s construction then the duality could be seen as a geometric duality in plane mapping
edges and vertices (partonic 2-surfaces ordered in sequence and string between them) to each
other. In super-conformal algebra of twistor Grassmannian approach the generators TA0 and
TA1 are associated with vertices and edges of the polygon defining the scattering diagram and
this suggests that TA0 corresponds to partonic 2-surfaces and TA1 to the strings world sheets.

3. Could the duality be a generalization of for Equivalence Principle identifying inertial and
gravitational quantum numbers? This interpretation is encouraged by the presence of SSA
action on space-like 3-surfaces at the ends of CDs and extended super-conformal algebra
associated with the light-like orbits of partons: SGCI would suggest that these algebras or
at least their appropriate sub-algebra are dual. This interpretation conforms also with the
above geometric interpretation and twistor Grassmannian interpretation.

Consider for simplicity the situation in which only scaling generator D is present in the
extension.

1. Suppose that one has eigenstate of total momentum ∆(P k0 ) resp. ∆(P k1 ) with eigenvalue ptot0

resp. ptot1 and that

ptot0 = ptot1 (9.4.2)

holds true.

http://tinyurl.com/nxlmfug
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2. Since D0 and P k0 do not commute, the action of D0 must be realized as differential operator
D0 = ipk0d/dp

k
0 so that one has following eigenvalue equations

∆(P k0 )Ψ = (pk0,1 + pk0,2)Ψ = ptot0 Ψ ,

∆(P k1 )Ψ = (pk1,1 + pk1,2)Ψ +K(ipk0,1 ⊗ pr0,2
d

dpr0,2
− ipr0,1

d

dpr0,1
⊗ pk0,2)Ψ = ptot1 Ψ .(9.4.3)

Ψ must be a superposition of states |p0,1, p0,2〉. One has non-trivial interaction. Analogous
interaction terms mixing states with different momenta emerge from the terms involving
Lorentz generators and special conformal generators.

Four-momenta as quaternionic 8-momenta in octonionic 8-space

In octonionic approach to twistorial scattering amplitudes particles can be regarded as massless in
8-D sense [L26]. The light-like octonionic momenta are actually quaternionic and one would obtain
massive states in 4-D sense. Different 4-D masses would correspond to discrete set of quaternionic
momenta for 8-D massless particle. Could the above conditions generalize to this case?

1. Suppose that the symmetries reduce to Poincare symmetry and to a number theoretic color
symmetry acting as automorphisms of octonions. In this case the four-momentum for a given
M4 ⊂ M8 decomposes to a sum of to a direct sum of M2 invariant under SU(3) and E2

invariant under SU(2)× U(1) ⊂ SU(3) ⊂ G2. ∆P1 would be non-trivial for the transversal
momentum and of form

∆(PL,k0 )Ψ = (pL,k0,1 + pL,k0,2 )Ψ = ptot0 Ψ ,

∆(PT,k0 )Ψ = (PT,k0 ⊗ 1 + 1⊗ PT,k0 )Ψ ,

∆(PL,k1 )Ψ = (pL,k1,1 + pL,k1,2 )Ψ = PL,tot1 Ψ ,

∆(PT,k1 )Ψ = (PT,k1 ⊗ 1 + 1⊗ PT,k1 +KfkAl(ip
l
0,1 ⊗ tA0,2 − i(ipl0,2 ⊗ tA0,2)Ψ . (9.4.4)

Here PL0 resp. PT0 represents longitudinal resp. transversal momentum and T b0 denotes
SU(2) ⊂ SU(3) generator representable as differential operator acting on complexified mo-

mentum and pT0 = pT,x0 + ipT,y0 and its conjugate.

2. In transversal degrees of freedom the assumption about momentum eigenstates would be
probably too strong. String model suggests Gaussian in transversal oscillator degrees of
freedom. Hadronic physics suggests an eigenstate of transversal momentum squared. TGD
based number theoretic considerations suggest that the transversal state is characterized by
color quantum numbers.

Hence the conditions

pL,tot0 = pL,tot1 , (pT,tot0 )2 = (pT,tot1 )2 (9.4.5)

are natural. It would be nice if the momenta p01 and p02 could be chosen to be on mass shell
and satisfy stringy formula for mass squared where transverse momentum squared would
correspond to stringy contribution.

One can also add to ∆(P ) the terms coming from conformal group of M4 or its subgroup.
Since octonionic momentum is light-like M2 momentum for a suitable choice of M2, one must
consider the possibility that the conformal group is that of M2 ⊂M4. Twistorialization supports
this view [L26]. The action of conformal generations would be on longitudinal momentum only.

One can wonder how gauge interactions and gravitational interaction do fit to this picture.
Is the extension to super-conformal algebra and supersymplectic algebra the only manner to obtain
gauge interactions and gravitation into the picture?
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9.4.4 Yangianization for mass squared operator

It would be nice to have universal mass formulas as a generalization of mass squared formula for
string models in terms of the conformal scaling generator L0 = zd/dz. This operator should have
besides single particle contributions also many particle contributions in bound states analogous to
interaction Hamiltonian and interaction potential. Yangian as an algebra containing multi-local
generators is a natural candidate in this respect.

One can consider Yangianization of Super Virasoro algebra (SVA). The Yangianization of
various Super Kac-Moody algebras (SKMA) seems however more elegant if it induces the Yangian-
ization of SVA. Consider first direct Yangianization of SVA. The commutation relations for SVA
will be used in the sequel. They can be found in Wikipedia (see http://tinyurl.com/klsgquz) so
that I do not bother to write them here. It must be emphasized that there might be delicate math-
ematical constraints on algebras which allow Yangianization as the article of Witten [B14] shows.
The considerations here rely on physical intuition with unavoidable grain of wishful thinking.

What about the Yangian variant of mass squared operator m2in terms of the conformal
scaling generator L0 = zd/dz? Consider first the definition of various Super algebras in TGD
framework.

1. In standard approach the basic condition at single particle level L0Ψ = hvacΨ giving the
eigenvalues of m2. Massless in generalize sense requires hvac = 0. One would have m2

op =

Lvib0 + hvacId, where “vib” refers to vibrational degrees of freedom of Kac-Moody algebra
(KMA). Sugawara construction [A75] allows to express the left-hand side of this formula in
terms of Kac-Moody generators - one has sum over squares T anT

−n
a . One can say that mass

squared is Casimir operator vibrational degrees of freedom for KMA

2. In absence of interactions - and always for L0,0 - mass squared formula gives m2
1 + m2

2 =

Lvib,10 +Lvib,20 for vanishing vacuum weights. It is important to notice that this does not imply
the additivity of mass squared since one does not have (p1 +p2)2 = m2

1 +m2
2, which can hold

true only for massless and parallel four-momenta. I have considered the possible additivity
of mass mass squared for mesons [K51] but it of course fails for systems like hydrogen atom.

One can look what Yangianization of Super Virasoro algebra could mean.

1. One would have doubling of the generators of SKMA and SVA: one possible explanation
is in terms of generalized EP. The difference ∆(TA0 ) − ∆(TA1 ) would define the analog of
interaction Hamiltonian of the duality holds true.

One has L0 = G2
0/2. Quite generally, one has {Gr, G−r} = 2L0 apart from the central

extension term. Generalization Yangian to Super Algebra suggests that one has

∆(L0,0) = L0,0 ⊗ 1 + 1⊗ L0,0 ,

∆(L1,0) = L1,0 ⊗ 1 + 1⊗ L1,0 +K
∑
n

G0,r ⊗G0,−r

(9.4.6)

Both operators give the value of hvac expected to vanish when acting on physical states
and the eigenvalues of the interaction mass squared K

∑
nG2 ⊗G−r/2 would represent the

difference m2
0,1 +m2

0,2−m2
2,1−m2

2,2. By Lorentz invariance the interaction energy is expected
to be proportional to the inner product P1 ·P2 and the interpretation in terms of gravitational
interaction energy is attractive. The size scale of K would be determined by l2P /R

2 ' 2−12,
where lP is Planck length and R is CP2 radius gravitational constant [K8, L26].

2. The action of k
∑
nG0,n ⊗ G0,−n/2 on state |p1, p2〉 is analogous to the action of a ten-

sor product of Dirac operators on tensor product of spinors. Since Dirac operator changes
chirality, this suggests that the states are superpositions of eigenstates of chirality of form

Ψ = G0,0Ψ1 ⊗Ψ2 + ε×Ψ1 ⊗G0,0Ψ2 , ε = ±1 .

http://tinyurl.com/klsgquz
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L0,0Ψi = 0 and ∆(L0,0)Ψ = 0 holds true. ∆(G0,0) and ∆(G1,0) are given by

∆(G0,0) = G0,0 ⊗ 1− ε× 1⊗G0,0 ,

∆(G1, 0) = G1,0 ⊗ 1− ε× 1⊗G1,0 − 3K
2

∑
r r(L0,r ⊗G0,−r − (G0,−r ⊗ L0,r) ,

(9.4.7)

and should annihilate Ψ. This is true if L1,r and L0,r annihilate the states.

3. Perhaps the correct approach reduces to the Yangianization of SKMAs (including the dy-
namically generated SKM two which SSA effectively reduces by gauge conditions) provided
that it induces Yangianization of SVA. Momentum components would be associated with KM
generators for M4 excitations of strings such that only transversal excitations are dynamical.

For fermionic and bosonic generators of SKMA one would have

∆(F a0 ) = F a0 ⊗ 1 + 1× F a0 ,

(F a1 ) = F a1 ⊗ 1 + 1× F a1 +KfAba (TA0 ⊗ F b0 − F b0 ⊗ TA0 ) ,

∆(TA0 ) = TA0 ⊗ 1 + 1⊗ TA0 ,

∆(TA1 ) = TA1 ⊗ 1 + 1⊗ TA1 + fABC(TB0 ⊗ TC0 .

(9.4.8)

Yangianization of SKMA would introduce interaction terms.

9.5 Category theory as a basic tool of TGD

I have already earlier developed ideas about the role of category theory in TGD [K15, K14, K9].
The hierarchy formed by categories, categories of categories, .... could allow to keep book about
the complexity due to various hierarchies. WCW geometry with its huge symmetries combined
with adelic physics; quantum states identified in ZEO as WCW spinor fields having topological
interpretation as braided fusion categories with reconnection; the local symmetry algebras of quan-
tum TGD extended to Yangians realizing elegantly the construction of interacting many-particle
states in terms of iterated ∆ operation assigning fundamental interactions to tensor summands of
SKMAs: these could be the pillars of the basic vision.

9.5.1 Fusion categories

While refreshing my rather primitive physicist’s understanding of categories, I found an excellent
representation of fusion categories and braided categories [B2] introduced in topological condensed
matter physics. The idea about product and co-product as fundamental vertices is not new in
TGD [K9, K77, L26] but the physicist’s view described in the article provided new insights.

Consider first fusion categories.

1. In TGD framework scattering diagrams generalize Feynman diagrams in the sense that in
3-vertices the 2-D ends for orbits of 3 partonic 2-surfaces are glued together like the ends
of lines in 3-vertex of Feynman diagram. One can say that particles fuse or decay. 3-
vertex would be fundamental vertex since higher vertices are unstable against splitting to
3-vertices. Braiding and reconnection would bring in additional topological vertices. Note
that reconnection represents basic vertex in closed string theory and appears also in open
string theory.

Also fusions and splittings of 3-surfaces analogous to stringy trouser vertex appear as topo-
logical vertices but they do not represent particle decays but give rise to two paths along,
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which particles travel simultaneously: they appear in the TGD based description of double
slit experiment. This is a profound departure from string models.

The key idea is that scattering diagrams are analogous to algebraic computations: the sim-
plest computation corresponds to tree diagram apart from possible braiding and reconnec-
tions to be discussed below giving rise to purely topological dynamics. One has a general-
ization of the duality of the hadronic string model: one does not sum over all diagrams but
takes only one of them, most naturally the simplest one. This is highly reminiscent to what
happens for twistor Grassmann amplitudes.

One can eliminate all loops by moves and modify the tree diagram by moving lines along
lines [?] Scattering diagrams would reduce to tree diagrams having in given vertex either
product µ or its time reversal ∆ plus propagator factors connecting them. The scattering
amplitudes associated with tree diagrams related by these moves were earlier assumed to
be identical. With better understanding of fusion categories I realized that the amplitudes
corresponding to equivalent computations need not be numerically identical but only unitarily
related and in this sense physically equivalent in ZEO.

2. Fusion categories indeed realize algebraically in very simple form the idea that all scattering
diagrams reduce to tree diagrams with 3-vertices as basic vertices. Fusion categories [B2]
(the illustrations http://tinyurl.com/l2jsrzc are very helpful) involve typically tensor
product a⊗ b of irreducible representations a and b of an algebraic structure decomposed to
irreducible representations c. This product is counterpart for the 3-parton vertex generalizing
Feynmanian 3-vertex.

The article gives a graphical representation for various notions involved and these help enor-
mously to concretize the notions. Fusion coefficients in a⊗ b = N c

abc must satisfy consistency
conditions coming from commutativity and associativity forcing the matrices (Na)bc = N c

ab

to commute. One can diagonalize Na simultaneously and their largest eigenvalues da are so
called quantum dimensions. Fusion category contains also identity object and its presence
leads to the identification of gauge invariants defining also topological invariants.

The fusion product a⊗ b has decomposition V cαab |c, α〉 for each c. Co-product is an analog of
the decay of particle to two particles and product and co-product are inverses of each other
in a well-defined sense expressed as an algebraic identities. This gives rise to completeness
relations from the condition stating that states associated with various c form a complete
basis for states for a⊗ b and orthogonality relations for the states of associated with various
c coefficients. Square roots of quantum dimensions da appear as normalization factors in the
equations.

Diagrammatically the completeness relation means that scattering ab → c → cd is trivial.
This cannot be the case and the completeness relation must be more general. One would
expect unitary S-matrix instead of identity matrix. The orthogonality relation says that loop
diagram for c→ ab→ c gives identity so that one can eliminate loops.

Further conditions come from the fact that the decay of particle to 3 particles can occur in
two ways, which must give the same outcome apart from a unitary transformation denoted by
matrix F (see Eq. (106) of http://tinyurl.com/l2jsrzc). Similar consistency conditions
for decay to 4 particles give so called pentagon equation as a consistency condition (see Eq.
(107) and Fig. 9 of http://tinyurl.com/l2jsrzc). These equations are all that is needed
to get an internally consistent category.

In TGD framework the fusion algebra would be based on Super Yangian with super Variant
of Lie-algebra commutator as product and Yangian co-product of form already discussed and
determining the basic interaction vertices in amplitudes. Perhaps the scattering amplitude for a
given space-time surface transforming two categories at boundaries of CD to each other could be
seen as a diagrammatic representation of category defined by zero energy state.

9.5.2 Braided categories

Braided categories [B2] (see http://tinyurl.com/l2jsrzc) are fusion categories with braiding
relevant in condensed matter physics and also in TGD.

http://tinyurl.com/l2jsrzc
http://tinyurl.com/l2jsrzc
http://tinyurl.com/l2jsrzc
http://tinyurl.com/l2jsrzc
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1. Braiding operation means exchange of braid strands defining particle world-lines at 3-D
light-like orbits of partonic 2-surfaces (wormhole throats) defining the boundaries between
Minkowskian and Euclidian regions of space-time surface. Braid operation is naturally re-
alized in TGD for fermion lines at orbits of partonic 2-surfaces since braiding occurs in
codimension 2.

2. For quantum algebras braiding operation is algebraically realized as R-matrix satisfying YBE
(see http://tinyurl.com/l4z6zyr). R-matrix is a representation for permutation of two
objects represented quantally. Group theoretically the braid group for n-braid system is
covering group of the ordinary permutation group.

In 2-D QFTs braiding operation defines the fundamental 2→ 2 scattering defining R-matrix
as a building brick of S-matrix. This scattering matrix is trivial in the sense that the scat-
tering involves only a phase lag but no exchange of quantum numbers: particles just pass by
each other in the 2-particle scattering. This kind of S-matrix characterizes also topological
quantum field theories used to deduce knot invariants as its quantum trace [A59, A23, A68].
I have considered knots from TGD point of view in [K37] [L3].

3. For braided fusion categories one obtains additional conditions known as hexagon conditions
since there are two ways to end up from 1 → 3 fusion diagram involving two 3-vertices and
2 braidings to an equivalent diagram using sliding of lines along lines and braiding operation
(see Fig. 10 of http://tinyurl.com/l2jsrzc).

9.5.3 Categories with reconnections

Fusion and braiding are not enough to satisfy the needs of TGD.

1. In TGD one does not have just objects - point like particles, whose world lines define braid
strands in time direction. One has also the morphisms represented by the strings between
the particles. Partonic 2-surfaces are connected by strings and these strings have topological
interaction: they can reconnect or just go through each other. Reconnection is in key role in
TGD inspired theory of consciousness and quantum biology [K58].

Reconnection is an additional topological reaction besides braiding and one must assign to
it a generalization of R-matrix. Reconnection and going through each other are just the
basic operations used to unknot ordinary knots in the construction of knot invariants in
topological quantum field theories. Now topological time evolution would be a generalization
of this process connecting the knotted and linked structures at boundaries of CD and allowing
both knotting and un-knotting.

2. Although 2-knots and braids are difficult to construct and visualize, it seems rather obvi-
ous (to me at least) that the reconnections correspond in 4-D space-time surface to basic
operations giving rise to 2-knots [A48] - a generalization of ordinary knot that is 1-knot.
2-knots could be seen as a cobordism between 1-knots and this suggests a construction of
2-knot invariants as generalization of that for 1-knots [K37]. 2-knot would be the process
transforming 1-knot by re-connections and “going through” the second 1-knot. The trace of
the topological unitary S-matrix associated with it would give a knot invariant. If this view
is correct, a generalization of TQFT for ordinary braids to include reconnection could give
a TQFT for 2-braids with invariants as invariants of knot-cobordism. It must be however
emphasized that the identification of 2-braids as knot-cobordisms is only an intuitive guess.

3. From the point of view of braid strands at the ends of strings, reconnection means exchange of
braid strands. Composite particles consisting of strands would exchange their building bricks
- the analogy with a chemical reaction is obvious and various reactions could be interpreted
as knot cobordisms. Since exchange is involved also now, one expects that the generalization
of R-matrix to algebraically describe this process should obey the analog of YBE stating that
the two braided versions of permutation abc→ cba are identical.

If the strings are oriented, one could have YBEs separately for left and right ends such that
braid operation would correspond to the exchange of braid between braid pairs. The topo-
logical interaction for strings AB and CD could correspond to a) trivial operation “going

http://tinyurl.com/l4z6zyr
http://tinyurl.com/l2jsrzc
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through” (AB + CD → AB+CD) visible in in the topological intersection matrix charac-
terizing the union of string world sheets, exchanges of either left (AB+CD→ CB+AD) or
right ends (AB+CD→ AD+CB), or exchange or right and left ends (AB+CD→ CD+AB)
representable as composition of braid operation for string ends and exchange of right or left
ends and giving rise to braiding operation for pairs AB and CD.

The following braiding operations would be involved.

(a) Internal braiding operation A⊗B → B ⊗A for string like object.

(b) Braiding operation (A⊗B)⊗ (C⊗D)→ (C⊗D)⊗ (A⊗B) for two string like objects.

(c) Reconnection as braiding operation: (A ⊗ B) ⊗ (C ⊗ D) → (A ⊗ D) ⊗ (C ⊗ B) and
(A⊗B)⊗ (C ⊗D)→ (C ⊗B)⊗ (A⊗D).

I have not found by web search whether this generalization of YBE exists in mathematics
literature or whether it indeed reduces to ordinary braiding for the exchanged braids for
different options emerging in reconnection. One can ask whether the fusion procedure for
R-matrices as an analog for the formation of tensor products already briefly discussed could
allow to construct the R-matrix for the reconnection of 2 strings with braids as boundaries.

4. The intersections of braid strands are stable against small perturbations unless one modifies
the space-time surface itself (in TGD 2-braids are 2-surfaces inside 4-surfaces). Also the
intersections of world lines in M2 integrable theories are stable. Hence it would be natural
to assign analog of R-matrix also to the intersections.

5. Light-like 3-D partonic orbits can contain several fermion lines identifiable as boundaries of
string world sheets so that reconnections could induce also more complex reactions in which
partonic 2-surfaces exchange fermions. Quite generally one would have braid of braids able
to braid and also exchange their constituent braids. This would give rise to a hierarchy of
braids within braids and presumably to a hierarchy of categories. This might provide a first
principle topological description of both hadronic, nuclear, and (bio-)chemical reactions. For
instance, the mysterious looking ability of bio-molecules to find each other in dense molecular
soup could rely on magnetic flux tubes (and associated strings) connecting them [K58].

6. Reconnection requires a generalization of various quantum algebras, in particular Yangian,
which seems to be especially relevant to TGD since it generalizes local symmetries to multi-
local symmetries with locus identifiable as partonic 2-surface in TGD. Since braid strands are
replaced with pairs of them, one might expect that the generalization of R-matrix involves
two parameters instead of one.

9.6 Trying to imagine the great vision about categorifica-
tion of TGD

The following tries to summarize the ideas described. This is mostly free play with the ideas in
order to see what objects and arrows might be relevant physically and whether category theory
might be of help in understanding poorly understood issues related to various hierarchies of TGD.

9.6.1 Different kind of categories

Category theory could be much more than mere book keeping device in TGD. Morphisms and
functors could allow to see deep structural similarities between different levels of TGD remaining
otherwise hidden.
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Geometric and number theoretic categories

There are three geometric levels involved: space-time, CDs at embedding space level, sectors of
WCW assignable with CDs their subsectors characterized by a point for moduli space of CDs with
second boundary fixed.

There are also number theoretic categories.

1. Adelic physics would define a hierarchy of categories defined by extensions of rationals and
identifiable as an evolutionary hierarchy in TGD inspired theory of consciousness. Inclusion
of extensions parameterized by Galois group and ramified primes defining preferred p-adic
primes would define a functor. The parameters of quantum algebras should be number
theoretically universal and belong to the extension of rationals defining the adele in question.
Powers or roots of e, roots of unity, and algebraic numbers would appear as building bricks.
The larger the p-adic prime p the higher the dimension of extension containing e and possibly
also some of its roots, the better the accuracy of the cognitive representation.

2. These inclusions should relate closely to the inclusions of hyperfinite factors of type II1

assignable to finite measurement resolution [K87]. The measurement resolution at space-
time level would characterize the cognitive representation defined in terms of points with
embedding space coordinates in the extension of rationals defining the adele. The larger
the extension, the larger the cognitive representation and the higher the accuracy of the
representation.

Should the points of cognitive representation be assigned

(a) only with partonic 2-surfaces (each point of representation is accompanied by fermion)

(b) or also with the interior of space-time surface (it is not natural to assign fermion
to the point unless the point belongs to string world sheet, even in this case this is
questionable)?

Many-fermion states define naturally a tensor product of quantum Boolean algebras at the
opposite boundaries of CD in ZEO and the interpretation of time evolution as morphism of
quantum Boolean algebras is natural. If cognition is always Boolean then the first option is
more plausible.

3. The hierarchy of Planck constants heff/h = n with n ≤ ord(G) naturally the number of
sheets and dividing the order ord(G) of the Galois group G of the extension would relate
closely to the hierarchy of extensions. n would be dimension of the covering of space-time
surface defined by the action of Galois group to space-time sheet. Ramified primes for
extensions are in special position for given extension. The conjecture is that p-adic primes
near powers of two or more generally of small primes ramified primes for extensions, which
are winners in number theoretic fight for survival [L22].

4. The hierarchy of infinite primes [K72] might characterize many-sheeted space-time and leads
to a generalization of number concept with infinitely complex number theoretic anatomy
provided by infinite rationals, which correspond to real and p-adic units. The inclusion of
lower level primes to the higher level primes would define morphism now. One can assign
hierarchy of infinite primes with primes of any extension of rationals.

Consciousness and categories

Categories are especially natural from the point of view of cognition. Classification is the basic
cognitive function and category is nothing but classification by defining objects as equivalence
classes. Morphisms and functors serve as correlates for analogies and would provide the tool
of understanding the power of analogies in conscious intelligence. Also attention could involve
morphism and its direction would correlate with the direction of attention. Perhaps isomorphism
corresponds to the state of consciousness in which the distinction between observer and observed
is reported by meditators to cease. Cognitive representations would be provided by adelic physics
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at both space-time level, embedding space level, and WCW level (the preferred coordinates for
WCW would be in extension of rationals defining the adele).

One would have a hierarchy of increasingly complex cognitive representations with inclusions
as arrows and their sub-WCWs labelled by moduli of CDs and arrow of geometric time telling which
boundary is affected in the sequence of state function reductions defining self as generalized Zeno
effect [L27].

9.6.2 Geometric categories

Geometric categories appear at WCW level, embedding space level, and space-time level.

WCW level

The hierarchies formed by the categories defined by the hierarchies of adeles, space-time sheets
and hierarchy of CDs would be mapped also to the level of WCW. The preferred coordinates of
WCW points would be in extension of rationals defining the adele and one would form inclusion
hierarchy. The extension at the level of WCW would induce that at the level of embedding space
and space-time surface. Sub-CDs would correspond to sub-WCWs and the moduli space for given
CD would correspond to moduli space for corresponding sub-WCWs. The different arrows of
embedding space time would correspond to sub-WCW and its time reflection. By the breaking of
CP,T, and P the space-time surfaces within time reversed sub-WCWs would not be mere CP, T
and P mirror images of each other [L25, L15].

Embedding space level

ZEO emerges naturally at embedding space level and CDs are key notion at this level. Consider
next the categories that might be natural in ZEO [K48].

1. Hierarchy of CDs could allow interpretation as hierarchy of categories. Overlapping CDs
would define an analog of covering of manifold by open sets: one might speak of atlas
with CDs defining conscious maps. Chart maps would be morphisms between different CDs
assignable to common pieces of space-time surfaces. These morphisms would be also realized
at the level of conscious experience. The sub-CD associated with CD would correspond to
mental image defined by sub-self as image of the morphism.

2. Quantum state of single space-time sheet at boundary of CD would define a geometric and
topological representation for categories. States at partonic 2-surfaces would be the objects
connected by fermionic strings and the associated flux tubes would serve as space-time cor-
relates of attention in TGD inspired theory of consciousness. The arrows represented by
fermionic strings would correspond to some morphisms, at least thre Hilbert space isometries
defined by entanglement with coefficients in an extension of rationals. Unitary entanglement
gives rise to a density matrix proportional to unitary matrix and maximal entanglement in
both real and p-adic sense. Much more general entanglement gives rise to maximal entan-
glement in p-adic sense for some primes.

3. Zero energy states the states at passive boundary would be naturally identifiable as categories.
At active boundary quantum superpositions of categories could be in question. Maybe one
should talk about quantum categories defined by the superposition of space-time sheets with
category assigned with an equivalence class of space-time sheets satisfying the conditions for
preferred extremal.

4. One can imagine a hierarchy of zero energy states corresponding to the hierarchy of space-
time sheets. One can build zero energy states also by adding zero energy states associated
with smaller sub-CDs near the boundaries of CD to get an infinite hierarchy of zero energy
states. The interpretation as a hierarchy of reflective levels of consciousness would be natural.

5. Zero energy states would correspond to generalized Feynman diagrams interpreted as unitary
functors between initial and final state categories. Scattering diagram would be seen as
algebraic computation in a fusion category defined by Yangian. All diagrams would be
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reducible to braided tree diagrams with braidings and reconnections. The time evolution
between boundaries could be seen as a topological evolution a of tensor net [L10].

Category theory would provide cognitive representations as morphisms. Morphisms would
become the key element of physics completely discarded in the existing billiard ball view about
Universe: Universe would be like Universal computer mimicking itself at all hierarchy levels. This
extends dramatically the standard view about cognition where brain is seen as an isolated seat of
cognition.

Space-time level

Many-sheeted space-time is the most obvious application for categorification.

1. Smaller space-time sheets condensed at large space-time surface regarded as categories be-
come objects at the level of larger space-time sheet. Functors between the categories defined
by smaller space-time sheets define morphisms between them. Also now fermion lines and
flux tubes connecting the condensed space-time sheets to each other via wormhole contacts
with flux going along another space-time sheet could define functors. Closed loops involv-
ing larger space-time sheets and smaller space-time sheets are needed if monopole flux in
question. The loop could visitat smaller space-time sheets.

2. Interactions would reduce to product and co-product. Interaction term in ∆ for generalized
Yangian would characterize fundamental interactions with dynamically generated SKMAs
assignable to SSA as additional interactions. The coupling parameters with ∆ assigned to a
direct sum of SKMAs would define coupling constants of fundamental interactions. Iteration
of the co-product ∆ would give rise to a hierarchy of many-particle states. The fact that
morphism is in question would map the structure of single particle states to that of many-
particle states.

SH would involve a functor mapping the category of string world sheets (and partonic
2-surfaces) to that of space-time surfaces having same points with coordinates in extension of
rationals. In p-adic sectors this morphism presumably exists for all p-adic primes thanks to p-adic
pseudo-constants. In real sector this need not be the case: all imaginations are not realizable.

The morphisms would be mediated by either continuation of strings world sheets (and par-
tonic 2-surfaces) to space-time interiors (morphism would be analogous to a continuation of holo-
morphic functions of two complex coordinates from 2-D data at surfaces, where the functions are
real). Possible quaternion analyticity [K77] encourages to consider even continuation of 1-D data
to 4-D surfaces and twistor lift gives some support for this idea.

In the fermionic sector one must continue induced spinor fields at string world sheets to
those at space-time surfaces. The 2-D induced spinor fields could also serve as sources for 4-D
spinor fields.



Chapter 10

Are higher structures needed in
the categorification of TGD?

10.1 Introduction

I encountered a very interesting work by Urs Schreiber related to so called higher structures and
realized that these structures are part of the mathematical language for formulating quantum TGD
in terms of Yangians and quantum algebras in a more general way.

10.1.1 Higher structures and categorification of physics

What theoretical physicist Urs Screiber calls “higher structures” are closely related to the cat-
egorification program of physics. Baez, David Corfield and Urs Schreiber founded a group blog
n-Category Cafe about higher category theory and its applications. John Baez is a mathematical
physicists well-known from is pre-blog “This Week’s Finds” (see http://tinyurl.com/yddcabfl)
explaining notions of mathematical physics.

Higher structures or n-structures involve “higher” variants of various mathematical struc-
tures such as groups, algebras, homotopy theory, and also category theory (see http://tinyurl.

com/ydz9mbtp. One can assign a higher structure to practically anything. Typically one loosens
some conditions on the structure such as commutativity or associativity: a good example is the
product for octonionic units which is associative only apart from sign factors [K74]. Braid groups
and fusion algebras [L16], which seem to play crucial role in TGD can be seen as higher structures.

The key idea is simple: replace “=” with homotopy understood in much more general
sense than in topology and identified as the procedure proving A = B! Physicist would call this
operationalism. I would like a more concrete interpretation: “=” is replaced with “=” in a given
measurement resolution. Even homotopies can be defined only modulo homotopies of homotopies
- that is within measurement resolution - and one obtains a hierarchy of homotopies and at the
highest level coherence conditions state that one has “=” almost in the good old sense. This kind
of hierarchical structures are characteristic for TGD: hierarchy of space-time sheet, hierarchy of
p-adic length scales, hierarchy of Planck constants and dark matters, hierarchy of inclusions of
hyperfinite factors, hierarchy of extensions of rationals defining adels in adelic TGD, hierarchy of
infinite primes, self hierarchy, etc...

10.1.2 Evolution of Schreiber’s ideas

One of Schreiber’s articles in Physics Forum articles has title “Why higher category theory in
physics?” (see http://tinyurl.com/ydcylrun) telling his personal history concerning the notion
of higher category theory. Supersymmetric quantum mechanics and string theory/M-theory are
strongly involved with his story.
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Wheeler’s superspace and its deformations as starting point

Schreiber started with super variant of Wheeler’s super-space. Intriguingly, also the “world of
classical worlds” (WCW) of TGD [K35, K20, K63] emerged as a counterpart of superspace of
Wheeler in which the generalization of super-symmetries is geometrized in terms of spinor structure
of WCW expressible in terms of fermionic oscillator operators so that there is something common
at least.

Screiber consider deformation theory of this structure. Deformations appear also in the
construction of various quantum structures such as quantum groups and Yangians. Both quantum
groups characterized by quantum phase, which is root of unity, and Yangians ideal for reduction
of many-particle states and their interactions to kinematics seem to be the most important from
the TGD point of view [L16].

These deformations are often called “quantizations” but this nomenclature is to my opinion
misleading. In TGD framework the basic starting point is “Do not quantize” meaning the reduction
of the entire quantum theory to classical physics at the level of WCW: modes of a formally classical
WCW spinor fields correspond to the states of the Universe.

This does not however prevent the appearance of the deformations of basic structures also
in TGD framework and they might be the needed mathematical tool to describe the notions of
finite measurement resolution and cognitive resolution appearing in the adelic version of TGD. I
proposed more than decade ago that inclusions of hyperfinite factors of II1 (HFFs) [K87, K28]
might provide a natural description of finite measurement resolution: the action of included factor
would generate states equivalent under the measurement resolution used.

The description of non-point-like objects in terms of higher structures

Schreiber ends up with the notion of higher gauge field by considering the space of closed loops
in 4-D target space [B35]. At the level of target space the loop space connection (1-form in loop
space) corresponds to 2-form at the level of target space. At space-time level 1- form A defines
gauge potentials in ordinary gauge theory and non-abelian 2-form B as its generalization with
corresponding higher gauge field identified as 3-form F = dB.

The idea is that the values of 2-form B are defined for a string world sheet connecting
two string configuration just like the values of 1-form are defined for a world-line connecting two
positions of a point-like particle. The new element is that the ordinary curvature form does not
anymore satisfy the usual Bianchi identities stating that magnetic monopole currents are vanishing
(see http://tinyurl.com/ya3ur2ad).

It however turns out that one has B = DA = F (D denotes covariant derivative) so that
B is flat by the usual Bianchi-identities implying dB = 0 so that higher gauge field vanishes. B
also turns out to be Abelian. In the Abelian case the value of 2-form would be magnetic flux
depending only on the boundary of string world sheet. By dB = 0 gauge fields in loop space would
vanish and only topology of field configurations would make itself manifest as for locally trivial
gauge potentials in topological quantum field theories (TQFT): a generalization of Aharonov-Bohm
effect would be in question. Schreiber calls this “fake flatness condition”. This could be seen as
an unsatisfactory outcome since dynamics would reduce to topological dynamics.

The assumption that loop space gauge fields reduce to those in target space could be argued
to be non-realistic in TGD framework . For instance, high mass excitations of theories of extended
structures like strings would be lost. In the case of loop spaces there is also problem with general
coordinate invariance (GCI): one would like to have 2-D GCI assignable to string world sheets. In
TGD the realization that one must have 4-D GCI for 3-D fundamental objects was a breakthrough,
which occurred around 1990 about 12 years after the discovery of the basic idea of TGD and led
to the discovery of WCW Kähler geometry and to “Do not quantize”.

Understanding “fake flatness” condition

Schreiber tells how he encountered the article of John Baez titled “Higher Yang-Mills Theory” [B30]
(see http://tinyurl.com/yagkqsut) based on the notion of 2-category and was surprised to find
that also now the “fake flatness condition” emerged.

Schreiber concludes that the “fake flatness condition” results from “a kind of choice of
coordinate composition”: non-Abelian higher gauge field would reduce to Abelian gauge field over

http://tinyurl.com/ya3ur2ad
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a background of ordinary non-Abelian gauge fields. Schreiber describes several string theory related
examples involving branes and introduces connection with modern mathematics. Since branes in
the stringy sense are not relevant to TGD and I do not know much about them, I will not discuss
these here.

However, dimensional hierarchies formed by fermions located to points at partonic 2-surfaces,
their world lines at 3-D light-like orbits of partons, strings and string world sheets as their orbits,
and space-time surfaces as 4-D orbits of 3-surfaces definitely define a TGD analog for the brane
hierarchy of string models. It is not yet completely clear whether strong form of holography (SH)
implies that string world sheets and strings provide dual descriptions of 4-D physics or whether
one could regard all levels of this hierarchy independent to some degree at least [L13].

Since the motion of measurement resolution is fundamental in TGD [K87, K28], it is in-
teresting to see whether n-structures could emerge naturally also in TGD framework. There is
also second aspect involved: various hierarchies appearing in TGD have basically the structure
of abstraction hierarchy of statements about statements and higher structures seem to define just
this kind of hierarchies. Of course, human mind - at least my mind - is in grave difficulties already
with few lowest levels but here category theory and its computerization might come into a rescue.

10.1.3 What higher structures are?

Schreiber describes in very elegant and comprehensible way the notion of higher structures (see
http://tinyurl.com/ydfspcld). This description is a real gem for a physicists frustrated to the
impenetrable formula jungle of the usual mathematical prose. Just the basic ideas and the reader
can start to think using his/her own brains. The basic ideas ideas are very simple and general.
Even if one were not enthusiastic about the notion of higher gauge field, the notion of higher
structure is extremely attractive concerning the mathematical realization of the notion of finite
measurement resolution.

1. The idea is to reconsider the meaning of “=”. Usually it is understood as equivalence:
A = B if A and B belong to same equivalence class defined by equivalence relation. The
idea is to replace “=” with its operational definition, with the proof of equivalence. This
could be seen as operationalism of physics applied to mathematics. Schreiber calls this proof
homotopy identified as a generalization of a map ft: S → X depending on parameter t ∈ [0, 1]
transforming two objects of a topological space X to each other in continuous way: f0(S) is
the initial object and f1(S) is the final object. Now homotopy would be much more general.

2. One can also improve the precision of “=” meaning that equivalence classes decompose to
smaller ones and equivalent homotopies decompose to subclasses of equivalent homotopies
related by homotopies. One might say that “=” is deconstructed to more precise “=”.
Physicist would see this as a partial opening of a black box by improving the measurement
resolution. This gives rise to n-variants of various algebraic structures.

3. This hierarchy would have a finite number of levels. At highest level the accuracy would be
maximal and “=” would have almost its usual meaning. This idea is formulated in terms of
coherence conditions. Braiding involving R-matrix represents one example: permutations are
replaced by braidings and permutation group is lifted to braid group but associativity still
holds true for Yang-Baxter equation (YBE). Second example is 2-group for which associativity
holds true only modulo homotopy so that (x ◦ y) ◦ z is related to x ◦ (y ◦ z) by homotopy
ax,y,z depending on x, y, z and called an associator. For 2-group the composite homotopy
((w ◦ x) ◦ y) ◦ z → w ◦ (x ◦ (y ◦ z)) is however unique albeit non-trivial.

This gives rise to the so called pentagon identity encountered also in the theory of quantum
groups and Yangians. The outcome is that all homotopies associated with re-bracketings of
an algebraic expression are identical. One can define in similar way n-group and formally
even infinity-group.

10.1.4 Possible applications of higher structures to TGD

Before listing some of the applications of higher structures imaginable in TGD framework, let us
summarize the basic principles.

http://tinyurl.com/ydfspcld
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1. Physics as WCW geometry [K78, K35, K20, K63] having super-symplectic algebra (SSA)
and partonic super-conformal algebra (PSCA) as fundamental symmetries involving a gen-
eralization of ordinary conformal invariance to that for light-like 3-surfaces defined by the
boundary of CD and by the light-like orbits of partonic 2-surfaces at which the signature of
the induced metric changes from Minkowskian to Euclidian.

2. Physics as generalized number theory [K53] [L22] leading to the notion of adelic physics with
a hierarchy of adeles defined by the extensions of rationals.

3. In adelic physics finite resolutions for sensory and cognitive representations (see the glossary
of Appendix) could would characterize “=”. Hierarchies of resolutions meaning hierarchies of
n-structures rather than single n-structure would give inclusion hierarchies for HFFs, SSA,
and PSCA, and extensions of rationals characterized by Galois groups with order identifiable
as heff/h = n and ramified primes of extension defining candidates for preferred p-adic
primes.

Finite measurement resolution defined by SSA and its isomorphic sub-algebra acting as pure
gauge algebra would reduce SSA to finite-dimensional SKMA. WCW could become effectively
a coset space of Kac-Moody group or of even Lie group associated with it. Same would take
place for PSCA. This would give rise to n-structures. Quantum groups and Yangians would
indeed represent examples of n-structures.

In TGD the “conformal weight” of Yangian however corresponds to the number of partonic
surfaces - parton number - whereas for quantum groups and Kac-Moody algebras it is anal-
ogous to harmonic oscillator quantum number n, which however has also interpretation as
boson number. Maybe this co-incidence involves something much deeper and relates to quan-
tum classical correspondence (QCC) remaining rather mysterious in quantum field theories
(QFTs).

4. An even more radical reduction of degrees of freedom can be imagined. Cognitive represen-
tations could replace space-time surfaces with discrete structures and points of WCW could
have cognitive representations as disretized WCW coordinates.

5. Categorification requires morphisms and homomorphisms mapping group to sub-group hav-
ing normal sub-group defining the resolution as kernel would define “resolution morphisms”.
This normal sub-group principle would apply quite generally. One expects that the repre-
sentations of the groups involved are those for quantum groups with quantum phase q equal
to a root of unity.

Some examples helps to make this more concrete.

Scattering amplitudes as computations

The deterministic time devolution connecting two field patterns could define analog of homotopy in
generalized sense. In TGD framework space-time surface (preferred extremals) having 3-D space-
like surfaces at the opposite boundaries of causal diamond (CD) could therefore define analog of
homotopy.

1. Preferred extremal defines a topological scattering diagram in which 3-vertices of Feynman
diagram are replaced with partonic 2-surfaces at which the ends of light-like orbits of par-
tonic 2-surfaces meet and fermions moving along lines defined by string world sheets scatter
classically, and are redistributed between partonic orbits [K77, K8, L26]. Also braidings and
reconnections of strings are possible. It is important to notice that one does not sum over
these topological diagrams. They are more like possible classical backgrounds.

The conjecture is that scattering diagrams are analogous to algebraic computations so that
one can find the shortest computation represented by a tree diagram. Homotopy in the
roughest sense could mean identification of topological scattering diagrams connecting two
states at boundaries of CD and differing by addition of topological loops. The functional
integral in WCW is proposed to trivialize in the sense that loop corrections vanish as a
manifestation of quantum criticality of Kähler coupling strength and one obtains an exponent
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of Kähler function which however cancels in scattering amplitudes if only single maximum
of Kähler function contributes.

2. In the optimal situation one could eliminate all loops of these diagrams and also move line
ends along the lines of diagrams to get tree diagrams as representations of scattering dia-
grams. Similar conditions hold for fusion algebras. This might however hold true only in
the minimal resolution. In an improved measurement resolution the diagrams could become
more complex. For instance, one might obtain genuine topological loops.

3. The diagrams and state spaces with different measurement resolutions could be related by
Hilbert space isometries but would not be unitarily equivalent: Hilbert space isometries are
also defined by entanglement in tensor nets [L10]. This would give an n-levelled hierarchy
of higher structures (rather than single n-structure!) and at the highest level with best
resolution one would have coherence rules. Generalized fusion algebras would partially realize
this vision. In improved measurement resolution the diagrams would not be identical anymore
and equivalence class would decompose to smaller equivalence classes. This brings in mind
renormalization group equations with cutoff.

4. Intuitively the improvement of the accuracy corresponds to addition of sub-CDs of CDs and
smaller space-time sheets glued to the existing space-time sheets.

Zero energy ontology (ZEO)

In ZEO [K48] “=” could mean the equivalence of two zero energy states indistinguishable in given
measurement resolution. Could one say that the 3-surfaces at the ends of space-time surface are
equivalent in the sense that they are connected by preferred extremal and have thus same total
Noether charges, or that entangled many-fermion states at the boundaries of CD correspond to
quantal logical equivalences (fermionic oscillator algebra defines a quantum Boolean algebra)?

In the case of zero energy states “=” could tolerate a modification of zero energy state by
zero energy state in smaller scale analogous to a quantum fluctuation in quantum field theories
(QFTs). One could add to a zero energy state for given CD zero energy states associated with
smaller CDs within it.

In TGD inspired theory of consciousness [L27] sub-CDs are correlates for the perceptive
fields of conscious entities and the states associated with sub-CDs would correspond to sub-selves
of self defining its mental images. Also this could give rise to hierarchies of n-structures with
n characterizing the number of CDs with varying sizes. An interesting proposal is the distance
between the tips of CD is integer multiple of CP2 for number theoretic reasons. Primes and primes
near powers of 2 are suggested by p-adic length scale hypothesis [K41, K46, K47] [L22].

“World of classical worlds” (WCW)

At the level of “world of classical worlds” (WCW) “=” could have both classical meaning and
meaning in terms of quantum state defining the measurement resolution. At the level of WCW
geometry n-levelled hierarchies formed by the isomorphic sub-algebras of SSA and PSCA are
excellent candidates for n-structures. The sub-SCA or sub-PSCA would define the measurement
resolution. The smaller the sub-SSA or sub-PSCA, the better the resolution.

This could correspond to a hierarchy of inclusions of HFFs [K87, K28] to which one can
assign ADE SKMA by McKay correspondence or its generalization allowing also other Lie groups
suggested by the hierarchy of extensions of rationals with Galois groups that are groups of Lie type.
The conjecture generalizing McKay correspondence is that the Galois group Gal is representable
as a subgroup of G in the case that it is of Lie type.

An attractive idea is that WCW is effectively reduced to a finite-dimensional coset space of
the Kac-Moody group defined by the gauge conditions. Number theoretic universality requires that
these parameters belong to the extension of rationals considered so that the Kac-Moody group G
is discretized and also homotopies are discretized. SH raises the hope that it is enough to consider
string world sheets with parameters (WCW coordinates) in the extension of rationals.

One can define quite concretely the action of elements of homotopy groups of Kac-Moody
Lie groups G on space-time surfaces as induced action changing the parameters characterizing
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the space-time surface. n + 1-dimensional homotopy would be 1-dimensional homotopy of n-
dimensional homotopy. Also the spheres defining homotopies could be discretized so that the
coordinates of its points would belong to the extension of rationals.

These kind of homotopy sequences could define analogs of Berry phases (see http://

tinyurl.com/yd4agwnt) in Kac-Moody group. Could gauge theory for Kac-Moody group give
an approximate description of the dynamical degrees of freedom besides the standard model de-
grees of freedom? This need not be a good idea. It is better to base the considerations of the
physical picture provided by TGD. I have however discussed the TGD analog of the fake flatness
condition in the Appendix.

Adelic physics

Also number theoretical meaning is possible for “=”. It is good to start with an objection against
adelic physics. The original belief was that adelic physics forces preferred coordinates. Indeed,
the property of belonging to an extension of rationals does not conform with general coordinate
invariance (GCI). Coordinate choice however matters cognitively as any mathematical physicist
knows! One can therefore introduce preferred coordinates at the embedding space level as cogni-
tively optimal coordinates: they are dictated to a high degree by the isometries of H. One can
use a sub-set of these coordinates also for space-time surfaces, string world sheets, and partonic
2-surfaces.

1. Space-time surfaces can be regarded as multi-sheeted Galois coverings of a representative
sheet [L22]. Minimal resolution means that quantum state is Galois singlet. Improving
resolution means requiring that singlet property holds true only for normal sub-group H of
Galois group Gal and states belong to the representations of Gal/H. Maximal resolution
would mean that states are representations of the entire Gal. The hierarchy of normal sub-
groups of Gal would define a resolution hierarchy and perhaps an analog of n-structure.
heff/h = n hypothesis suggests hierarchies of Galois groups with dimensions ni dividing
ni+1. The number of extensions in the hierarchy would characterize n-structure.

2. The increase of the complexity for the extension of rationals would bring new points in the
cognitive representations defined by the points of the space-time surface with embedding space
coordinates in the extension of rationals used (see the glossary in Appendix). Also the size
of the Gal would increase and higher-D representations would become possible. The value
of heff/h = n identifiable as dimension of Gal would increase. The cognitive representation
would become more precise and the topology of the space-time surface would become more
complex.

3. In adelic TGD “=” could have meaning at the level of cognitive representations. One could
go really radical and ask whether discrete cognitive representations replacing space-time
surfaces with the set of points with H-coordinates in an extension of rationals (see the
glossary in Appendix) defining the adele should provide the fundamental data and that all
group representations involved should be realized as representations of Gal. This might apply
in cognitive sector.

This would also replace space-time surfaces as points of WCW with their cognitive repre-
sentations defining their WCW coordinates! All finite groups can appear as Galois groups
for some number field. Whether this is case when one restricts the consideration to the
extensions of rationals, is not known. Most finite groups are groups of Lie type and thus
representable as rational points of some Lie group. Note that rational point can also mean
rational point in extension of rationals as ratio of corresponding algebraic integers identifiable
as roots of monic polynomials Pn(x) = xn + .... having rational coefficients.

4. By SH space-time surface would in information theoretic sense effectively reduce to string
world sheets and even discrete set of points with H-coordinates in extension of rationals.
These points could even belong to the partonic 2-surface at the ends of strings at ends
of CD carrying fermions and the partonic 2-surfaces defining topological vertices. If only
this data is available, the WCW coordinates of space-time surface would reduce to these
points of H = M4 × CP2 and to the direction angles of strings emerging from these points

http://tinyurl.com/yd4agwnt
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and connecting them to the corresponding points at other partonic 2-surfaces besides Gal
identifiable as sub-group of Lie group G of some Kac-Moody group! Not all pairs Gal − G
are possible.

5. Could these data be enough to describe mathematically what one knows about space-time
surface as point of WCW and the physics? One could indeed deduce heff/h = n as the
order of Gal and preferred p-adic primes as ramified primes of extension. The Galois rep-
resentations acting on the covering defining space-time surface or string world sheets should
be identifiable as representations of physical states. There is even number theoretical vision
about coupling constant evolution relying on zeros of Riemann zeta [L9],

6. This sounds fine but one must notice that there is also the global information about the
conformal moduli of partonic 2-surfaces and the elementary particle vacuum functionals
defined in this moduli space [K17] explain family replication phenomenon. There is also
information about moduli of CDs. Also the excitations of SKMA representations with higher
conformal weights are present and play a crucial role in p-adic thermodynamics predicting
particle masses [K41]. It is far from clear whether the approach involving only cognitive
representation is able to describe them.

To help the reader I have included a vocabulary at the end of the article and include here a
list of the abbreviations used in the text.

General abbreviations: Quantum field theory (QFT); Topological quantum field theory
(TQFT); Hyper-finite factor of type II1 (HFF); General coordinate invariance (GCI); Equivalence
Principle (EP).

TGD related abbreviations: Topological Geometrodynamics (TGD); General Relativity
Theory (GRT); Zero energy ontology (ZEO); Strong form of holography (SH); Strong form of gen-
eral coordinate invariance (SGCI); Quantum classical correspondence (QCC); Negentropy Maxi-
mization Principle (NMP); Negentropic entanglement (NE); Causal diamond (CD); Super-symplectic
algebra (SSA); Partonic superconformal algebra (PSCA); Super Virasoro algebra (SVA); Kac-
Moody algebra (KMA); Super-Kac-Moody algebra (SKMA);

10.2 TGD very briefly

TGD is a fusion of two approaches to physics. Physics as infinite-dimensional geometry based
on the notion of “(” []WCW) [K78] and physics as generalized number theory [K53]. Here some
aspects of the vision about physics as WCW geometry are discussed very briefly.

10.2.1 World of classical worlds (WCW)

TGD is a fusion of two approaches to physics. Physics as infinite-dimensional geometry based
on the notion of “(” []WCW) [K78] and physics as generalized number theory [K53]. Here some
aspects of the vision about physics as WCW geometry are discussed very briefly.

Construction of WCW geometry briefly

In the following the vision about physics in terms of classical physics of spinor fields of WCW is
briefly summarized.

1. The idea is to geometrize not only the classical physics in terms of geometry of space-time
surfaces but also quantum physics in terms of WCW [K63]. Quantum states of the Universe
would be modes of classical spinor fields in WCW and there would be no quantization. One
must construct Kähler metric and Kähler form of WCW: in complex coordinates they differ
by a multiplicative imaginary unit. Kähler geometry makes possible to geometrize hermitian
conjugation fundamental for quantum theory.

2. One manner to build WCW metric this is via the construction of gamma matrices of WCW in
terms of second quantized oscillator operators for fermions described by induced spinor fields
at space-time surfaces. By strong form of holography this would reduce to the construction
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of second quantized induced spinor fields at string world sheets. The anti-commutators of
of WCW gamma matrices expressible in terms of oscillator operators would define WCW
metric with maximal isometry group (SCA) [K88, K63].

3. Second manner to achieve the geometrization is to construct Kähler metric and Kähler form
directly [K35, K20, K63]. The idea is to induce WCW geometry from the Kähler form J of
the embedding space H = M4 ×CP2. The mere existence of the Riemann connection forces
a maximal group of isometries. In fact, already in the case of loop space the Kähler geometry
is essentially unique.

The original construction used only the Kähler form of CP2. The twistor lift of TGD [L26]
forces to endow also M4 with the Minkowskian analog of Kähler form involving complex and
hypercomplex part and the sum of the two Kähler forms can be used to define what might be
called flux Hamiltonians. They would define the isometries of WCW as symplectic transfor-
mations. What was surprising and also somewhat frustrating was that what I called almost
2-dimensionality of 3-surfaces emerges from the condition of general coordinate invariance
and absence of dimensional parameters apart from the size scale of CP2.

In the recent formulation this corresponds to SH: 2-D string world sheets and 2-D partonic 2-
surfaces would contain data allowing to construct space-time surfaces as preferred extremals.
In adelic physics also the specification of points of space-time surface belonging to extension
of rationals defining the adele would be needed. There are several options to consider but
the general idea is clear.

SH is analogous to a construction of analytic function of 2-complex from its real values at
2-D surface and the analogy at the level of twistor lift is holomorphy as generalization of
holomorphy of solutions gauge fields in the twistor approach of Penrose. Also quaternionic
analyticity [K77] is suggestive and might mean even stronger form of holography in which
1-D data allow to construct space-time surfaces as preferred extremals and quantum states.

I have proposed formulas for the Kähler form of WCW in terms of flux Hamiltonians but
the construction as anti-commutators of gamma matrices is the more convincing definition.
Fermions and second quantize induced spinor fields could be an absolutely essential part of
WCW geometry.

4. WCW allows as infinitesimal isometries huge super-symplectic algebra (SSA) [K35, K20]
acting on space-like 3-surfaces at the ends of space-time surfaces inside causal diamond (CD)
and also generalization of Kac-Moody and conformal symmetries acting on the 3-D light-like
orbits of partonic 2-surfaces (partonic super-conformal algebra (PSCA)). These symmetry
algebras have a fractal structure containing a hierarchy of sub-algebras isomorphic to the full
algebra. Even ordinary conformal algebra with non-negative conformal weights has similar
fractal structure as also Yangian. In fact, quantum algebras are formulated in terms of these
half algebras.

The proposal is that sub-algebra of SSA (with non-negative conformal weights) and isomor-
phic to entire SSA and its commutator with the full algebra annihilate the physical states.
What remains seems to be finite-D Kac-Moody algebra as an effective “coset” algebra ob-
tained. Note that the resulting normal sub-group is actually quantum group.

There is direct analogy with the decomposition of a group Gal to a product of sub-group
and normal sub-group H. If the normal sub-group H acts trivially on the representation the
representation of Gal reduces to that of the group Gal/H. Now one works at Lie algebra
level: Gal is replaced with SSA and H with its sub-algebra with conformal weights multiples
of those for SSA.

Super-symplectic conformal weights, zeros of Riemann zeta, and quantum phases?

In [L9] I have considered the possibility that the generators of super-symplectic algebra could
correspond to zeros h = 1/2 + iy of zeta. The hypothesis has several variants.

1. The simplest variant is that the non-trivial zeros of zeta are labelling the generators of SSA
associated with Hamiltonians proportional to the functions f(rM ) of the light-like radial
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coordinate of light-cone boundary as f(rM ) = (rM/0)h ≡ exp(hu), u = log(rM/r0), h =
−1/2 + iy. For infinitely large size of CD the plane waves are orthogonal but for finite-sized
CD orthogonality is lost. Orthogonality requires periodic boundary conditions and these are
simultanwously possible only for a finite number of zeros of zeta.

2. One could modify the hypothesis by allowing superpositions of zeros of zeta but with a
subtraction of half integer to make the real part of ih equal to 1/2 so that one obtains an
analog of plane-wave when using u = log(rM/r0) as a radial coordinate. Equivalently, one
can take drM/rM out as integration measure and assume h = iy plus the condition that
the Riemannian plane waves are orthogonal and satisfy periodic boundary conditions for the
allowed zeros z = 1/2 + iy.

3. Periodic boundary conditions can be satisfied for given zero of zeta if the condition rmax/rmin =
pn holds true and the additional conjecture that given non-trivial zeros of zeta correspond to
prime p(y) and piy is a root of unity. Given basis of f(rM ) would correspond to n-ary p-adic
length scales and also the size scales of CDs would correspond to powers of p-adic primes.
This conjecture is rather attractive physically and I have not been able to prove it wrong.

One can associate to given zero z = 1/2 + iy single and only single prime p(y) by demanding
that piy = exp(i2πq), q = m/n rational, implying log(p)y = 2πq. If there were two primes
p1 and p2 of this kind, one one ends up with contradiction pm1 = pn2 for some integers m and
n.

One could however associate several zeros yi(p) to the same prime p as discussed in [L9].
If N =

∏
i ni is the smallest common denominator of qi allowed conformal weights would

be superpositions ih = iN
∑
niyi(p) and conformal weights would form higher dimensional

lattice rather than 1-D lattice as usually. If only single prime p(y) can be associated to given
y, then the original hypothesis identifying h = 1/2+iy as conformal weight would be natural.

4. The understanding of the p-adic length scale hypothesis is far from complete and one can
ask whether preferred p-adic primes near powers of 2 and possibly also other small primes
could be primes for which there are several roots yi(p).

10.2.2 Strong form of holography (SH)

There are several reasons why string world sheets and partonic 2-surfaces should code for physics.
One reason for SH comes from M8 −H correspondence [K86]. Second motivation comes from the
condition that spinor modes at string world sheets are eigenstates of em charge [K88]. The third
reason could come the requirement that the notion of commutative quantum sub-manifold [A29]
is equivalent with its number theoretic variant.

SH and M8 −H correspondence

The strongest form of M8 −H correspondence [K74, K86, L26] assumes that the 4-surfaces X4 ⊂
M8 have fixed M2 ⊂ M4 ⊂ M8 as part of tangent space. A weaker form states that these 2-D
subspaces M2 define an integrable distribution and therefore 2-D surface in M4. This condition
guarantees that the quaternionic (associative) tangent space of X4 is parameterized by a point of
CP2 so that the map of X4 to a 4-surface in M4 × CP2 is possible. One can consider also co-
associative space-time surfaces having associative normal spaces. m Note that M8−H [K74, K86]
correspondence respects commutativity and quaternionic property by definition since it maps space-
time surfaces having quaternionic tangent space having fixed M2 as sub-set of tangent space.

What could be the relationship between SH and M8−H correspondence? Number theoretic
vision suggests rather obvious conjectures.

1. Could the tangent spaces of string world sheets in H be commutative in the sense of complex-
ified octonions and therefore be hyper-complex in Minkowskian regions. By M8−H duality
the commutative sub-manifolds would correspond to those of octonionic M8 and finding of
these could be the first challenge. The co-commutative manifolds in quaternionic X4 would
have commutative normal spaces. Could they correspond to partonic 2-surfaces?
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2. There is however a delicacy involved. Could world sheets and partonic 2-surfaces correspond
to hyper-complex and co-hyper-complex sub-manifolds of space-time surface X4 identifiable
as quaternionic surface in octonionic M8 mappable to similar surfaces in H. Or could their
M4 (CP2) projections define hypercomplex (co-hypercomplex) 2-manifolds?

3. Could co-commutativity condition for a foliation by partonic 2-surfaces select preferred string
world sheets as normal spaces integrable to 2-surfaces identifiable as string world sheets? Note
that induced gauge field on 2-surface is always Abelian so that QFT and number theory based
views about commutativity co-incide.

Preferred choices for these 2-surfaces would serve as natural representatives for the equiva-
lence classes of string world sheets and partonic 2-surfaces with fermions at the boundaries of
string world sheets serving as markers for the representatives? The end points of the string
orbits would belong to extension of rationals or even correspond to singular points at which
the different sheets co-incide and have rational coordinates: this possibility was considered
in [L28].

Real curves correspond to the lowest level of the dimensional hierarchy of continuous sur-
faces. Could string world lines along light-like partonic orbits correspond to real sub-manifolds of
octonionic M8 mapped to M4 × CP2 by M8 −H correspondence and carrying fermion number?

What about the set of points with coordinates in the extension of rationals? Do all these
points carry fermion number? If so they must correspond to the edges of the boundaries of string
world sheets at partonic 2-surfaces at the boundaries of CD or edges at the partonic 2-surfaces
defining generalized vertices to which sub-CDs could be assigned.

Well-definedness of em charge forces 2-D fundamental objects

The proposal has been that the representative string world sheets should have vanishing induced
W fields so that induced spinors could have well-defined em and Z0 charges and partonic 2-surfaces
would correspond to the ends of 3-D boundaries between Euclidian and Minkowskian space-time
regions [K88, K63].

As a matter of fact, the projections of electroweak gauge fields to 2-D surfaces are always
Abelian and by using a suitable SU(2)L × U(1) rotation one can always find a gauge in which
the induced W fields and even Z0 field vanish. The highly non-trivial conclusion is that string
world sheets as fundamental dynamical objects coding 4-D physics by SH would guarantee well-
definedness of em charge as fermionic quantum number. Also the projections of all classical color
gauge fields, whose components are proportional to HAJ , where HA is color Hamiltonian and J
is Kähler form of CP2, are Abelian and in suitable gauge correspond to hypercharge and isospin.

One can imagine a foliation of space-time surfaces by string world sheets and partonic 2-
surfaces. Could there be a U(1) gauge invariance allowing to chose partonic 2-surfaces and string
world sheets arbitrarily? If so, the assignment of the partonic 2-surfaces to the light-like boundaries
between Minkowskian and Euclidian space-time regions would be only one - albeit very convenient
- choice. I have proposed that this choice is equivalent with the choice of complex coordinates
of WCW. The change of complex coordinates would introduce a U(1) transformation of Kähler
function of WCW adding to it a real part of holomorphic function and of Kähler gauge potential
leaving the Kähler form and Kähler metric of WCW invariant.

String world sheets as sub-manifolds of quantum spaces for which commuting sub-set
of coordinates are diagonalized?

The third notion of commutativity relates to the notion of non-commutative geometry. Unfortu-
nately, I do not know much about non-commutative geometry.

1. Should one follow Connes [A29] and replace string world sheets with non-commutative ge-
ometries with quantum dimension identifiable as fractal dimension. I must admit that I have
felt aversion towards non-commutative geometries. For linear structures such as spinors the
quantum Clifford algebra looks natural as a “coset space” obtained by taking the orbits of
included factor as elements of quantum Clifford algebra. The application of this idea to string
world sheets does not look attractive to me.
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2. The basic reason for my aversion is that non-commutative quantum coordinates lead to
problems with general coordinate invariance (GCI). There is however a possible loophole here.
One can approach the situation from two angles: number theoretically and from the point
view of non-commutative space. Commutativity could mean two things: number theoretic
commutativity and commutativity of quantum coordinates for H seen as observables. Could
these two meanings be equivalent as quantum classical correspondence (QCC) encourages to
think?

Could the discreteness for cognitive representations correspond to a discretization of the
eigenvalue spectrum of the coordinates as quantum operators? The choice of the coefficient
number field for Hilbert space as extension of rationals would automatically imply this and
resolve the problems related to continuous spectra.

Quantum variant of string world sheet could correspond to a quantization using a sub-set
of embedding space coordinates as quantum commutative coordinates as coordinates for
string world sheet. H-coordinates for string world sheet would correspond to eigenvalues of
commuting quantum coordinates.

The above three views about SH suggests that Abelianity at the fundamental level is unavoid-
able because basic observable objects are 2-dimensional. This would correspond A = J = −B = 0
for non-Abelian gauge fields reducing to Abelian ones in Schreiber’s approach. Also Schreiber
finds that with suitable choice of coordinates this holds true always. In TGD this choice would
correspond to gauge choice in which all induced gauge fields are Abelian (see Appendix).

Ordinary twistorialization maps points of M4 to bi-spinors allowing quantum variants.
Could twistorialization of M4 and CP2 allow something analogous?

10.3 The notion of finite measurement resolution

Finite measurement resolution [K87, K28] is central in TGD. It has several interpretations and the
challenge is to unify the mutually consistent views.

10.3.1 Inclusions of HFFs, finite measurement resolution and quantum
dimensions

Concerning measurement resolution the first proposal was that the inclusions of HFFs chacterize
it.

1. The key idea is simple. Yangians and/or quantum algebras associated with the dynami-
cal SKMAs defined by pairs of SSA and its isomorphic sub-algebra acting as pure gauge
transformations are characterized by quantum phases [L16] characterizing also inclusions of
HFFs [K87, K28]. Quantum parameter would characterize the measurement resolution.

The Lie group characterizing SKMA would be replaced by its quantum counterpart. Quan-
tum groups involve quantum parameter q ∈ C involved also with n-structures. This param-
eter - in particular its phase- should belong to the extension of rationals considered. Notions
like braiding making sense for 2-D structures are crucial. Remarkably, the representation
theory for quantum groups with q different from a root of unity does not differ from that for
ordinary groups. For the roots of unity the situation is different.

2. The levels in the hierarchy of inclusions for HFFs [K87] are labelled by integer n ∈ [3,∞)
or equivalenly by quantum phases q = exp(iπ/n) and quantum dimension is given by dq =
4cos2(π/n). n = 3 gives d = 2 that is ideal SH with minimal measurement resolution. For
instance, in extension of rationals only phases, which are powers of exp(iπ/3) are represented
p-adically so that angle measurement is very imprecise. The hierarchy would correspond to
an increasing measurement resolution and at the level n→∞ one would have dq → 4. Could
the interpretation be that one sees space-time as 4-dimensional? This strongly suggests that
the hierarchy of Lie groups characterizing SKMAs are characterized by the same quantum
phase as inclusions of HFFs.

How does quantal dimension show itself at space-time level?
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1. Could SH reduce the 4-surfaces to effectively fractal objects with quantum dimension dq?
Could one speak of quantum variant of SH perhaps describe finite measurement resolution.
In adelic picture this limit could correspond to an extension of rational consists of algebraic
numbers extended by all rational powers of e. How much does this limit deviate from real
numbers?

2. McKay correspondence (see http://tinyurl.com/z48d92t) states that the hierarchy of fi-
nite sub-groups of SU(2) corresponds to the hierarchy ADE Kac-Moody algebras in the
following sense. The so called McKay graph codes for the information about the multi-
plicities of the tensor products of given representation of finite group (spin 1/2 doublet) -
obviously one can assign McKay graph to any Galois group. McKay correspondence says
that the McKay graph for the so called canonical representation of finite sub-group of SU(2)
co-incides with the Dynkin diagram for ADE type Kac-Moody algebra.

3. A physically attractive idea is that these algebras correspond to a hierarchy of reduced SSAs
and PSCAs defined by the gauge conditions of SSA and PSCA. The breaking of maximal
effective gauge symmetry characterizing measurement resolution to isomorphic sub-algebra
would bring in additional degrees of freedom increasing the quantum dimension of string
world sheets from the minimal value dq = 2.

My näıve physical intuition suggests that McKay correspondence generalizes to a much wider
class of Galois groups identifiable as finite groups of Lie type identifiable as sub-groups of Lie
groups (for the periodic table of finite groups see (see http://tinyurl.com/y75r68hp)). In
general, the irreducible representation (irrep) of group is reducible representation of subgroup.
The rule could be that the representations of the quantum Lie groups allowed as ground states
of SKMA representations are irreducible also as representations of Galois group in case that
it is Lie-type subgroup.

What about the concrete geometric interpretation of dq? Two interpretations, which do not
exclude each other, suggest themselves.

1. A very näıve idea is that string world sheets effectively fill the space-time surface as the
measurement accuracy increases. The idea about fractal string world sheets does not however
conform with the fact that preferred extremals must be rather smooth.

String world sheets could be however locally smooth if they define an analog of discretization
for the space-time surface. At the limit dq → 4 string world sheets would fill space-time sur-
face. Analogously, strings (string orbits) would fill the space-like 3-surfaces at the boundaries
of CD (the light-like 3-surfaces connecting the partonic 2-surfaces at boundaries of CD). The
number of fermions at partonic 2-surfaces would increase and lead to an increased measure-
ment resolution at the level of physics. For anyonic systems [K55] one indeed would have
have large number of fermions at 2-D surfaces.

2. An alternative idea is that quantum dimension is temperature like parameter coding for
the ignorance about the details of space-time surface and string world sheet due to finite
cognitive resolution. Cognitive representation consists of a discrete set of points of H in
an extension of rationals defining the adele and quantum dimension would represent this
ignorance. A precise mathematical representation of ignorance can be extremely successful
trick as ordinary thermodynamics and also p-adic thermodynamics for particle masses [K41]
demonstrate!

10.3.2 Three options for the identification of quantum dimension

The quantum dimension would increase as the measurement accuracy increases but what quantum
dimension of string world sheets could mean at space-time level? Identification of quantum dimen-
sion as fractal dimension could be the answer but how could one concretely define this notion?
Could one find an elegant formulation for the fractality at space-time level.

http://tinyurl.com/z48d92t
http://tinyurl.com/y75r68hp
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Option I

One could argue that quantum dimension is temperature like parameter coding for the ignorance
about the details of space-time surface and string world sheet due to finite cognitive resolution.
Cognitive representation consists of a discrete set of points of H in an extension of rationals defining
the adele and quantum dimension would represent this ignorance. One would give up the attempts
to represent quantum superposition of space-time surfaces with single classical surface. This option
would use only the discrete cognitive representations (see the glossary in Appendix).

1. This would mean a radical simplification and could make sense for cognitive representations.
String world sheet would be replaced by this discrete cognitive representation and one should
be able to deduce its quantum dimension. Gal acts on this representation.

2. Could one imagine q-variants of the representations of Gal defining also representations of
the Lie group defining KMA? If one can imbed Gal to Lie-group as discrete sub-group then
the q-representation of the Lie-group would define a q-representation of discrete group and
one might be able to talk about q-Galois groups.

3. On the other hand, the condition that these representations restricted to representations of
Galois group remain irreducible poses similar condition. Are these two criteria equivalent?
Could this allow to identify the value of root of unity associated with given Galois group and
corresponding Lie group defining SKMA in case that it contains representations that remain
irreps of Galois group? If so, the notion of quantum group would follow from adelic physics
in a natural manner.

This would allow to assign quantum dimension to the discretized string world sheet without
clumsy fractal constructions at space-time level involving a lot of redundant information. The
really nice thing would be that one would use only the information defining the cognitive rep-
resentations and the fact that one does not know about the rest. Just as in thermodynamics,
things would become extremely simple!

4. One might argue that giving just discrete points at partonic 2-surfaces gives very little in-
formation. If one however assumes that also the functions characterizing space-time surfaces
as points of sub-WCW involved are constructed from rational polynomials with roots in the
extension of rationals used, the situation improves dramatically.

Option II

A very näıve idea is that string world sheets effectively fill the space-time surface as the measure-
ment accuracy increases. Smooth strings would fill the space-like 3-surfaces at the boundaries of
CD and light-like 3-surface connecting the partonic 2-surfaces at boundaries of CD. The number
of fermions at partonic 2-surfaces would increase and lead to an increased measurement resolution.
For anyonic systems one indeed would have have large number of fermions at 2-D surfaces.

This option would be based on fractal dimension of some kind. Most naturally the fractal
dimension would be that of space-time surface discretized using string world sheets and possibly
also partonic 2-surface instead of points. It is however difficult to imagine a practical realization
for fractal dimension in this sense.

1. Assume reference string world sheets in the minimal resolution defined by an extension of
rationals with total area S0. Study the total area S associated with string world sheets as
function of the extension of rationals.

2. As the size of the extension grows, new points of extension emerge at partonic 2-surfaces and
therefore also new string world sheets and the total area of string worlds sheets increases.
Twistor lift suggests that one can take the area S1 defined by Planck length squared and the
area S2 of CP2 geodesic sphere as units. Suppose that one has S/S0 = (S1/S2)d, where d
depends on the extension and equals to d = 0 for rationals, holds true. Could d+2 define the
fractal dimension equal to dq for Jones inclusions in the range [2, 4)? If the proposed notion
of quantum Galois group makes sense this could be the case.

One must admit that the hopes of proving this picture works in practice are rather meager.
Too much redundant information is involved.
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Option III

One can also imagine an approach quantum dimension identifying quantum dimension as fractal
dimension for space-time surface. If SH makes sense, one can consider the possibility that this
dimension determined by the geometry of space-time surface as Riemann manifold has fractal
dimension equal to the fractal dimension of string world sheets as sub-manifold.

1. The spectral dimension of classical geometry is discussed in http://tinyurl.com/yadcmjd6).
One considers heat equation describing essentially random walk in a given metric and con-
structs so called heat kernel as a solution of the heat equation. The Laplacian depends on
metric only - now the induced metric. The trace of heat kernel characterizes the probability
to return to the original position. The derivative of the logarithm of the heat trace with
respect to the logarithm of fictive time coordinate gives time dependent spectral dimension,
which for short times approaches to topological dimension and for flat space equals to it
always. For long times the dimension is smaller than the topological dimension due to curva-
ture effects and SH raises the hope that this dimension corresponds to the fractal dimension
of string world sheets identified as quantum dimension.

2. This approach can be criticized for the introduction of fictive time coordinate. Furthermore,
Laplacian would be replaced with d’Alembertian in Minkowskian regions so that one can-
not speak about diffusion anymore. Could one replace the heat equation with 4-D spinor
d’Alembertian or modified Dirac operator so that also the induced gauge fields would appear
in the equation? Artificial time coordinate would be replaced with some time coordinate for
M4 - light-cone proper time is the most natural choice. The probability would be defined as
modulus squared for the fermionic propagator integrated over space-time surface.

The problem is that this approach is rather formal and might be of little practical value.

10.3.3 n-structures and adelic physics

TGD involves several concepts, which could relate to n-structures. The notion of finite measure-
ment resolution realized in terms of HFFs is the oldest notion [K87, K28]. Adelic physics suggests
that the measurement resolution could be realized in terms of a hierarchy of extensions of ratio-
nals [L22]. The parameters characterizing space-time surfaces and by SH the string world sheets
would belong to the extension. Also the points of space-time surface in the extension would be
data coding for the preferred extremals. The reconnection points and intersection points would
belong to the extension [L16]. n-structures relate closely to the notion of non-commutative space
and strings world sheets could be such. Also the role of classical number fields - in particular
M8 −H correspondence suggest the same. The challenge is to develop a coherent view about all
these structures.

1. There should be also a connection with the adelic view. In this picture string world sheets
and points of space-time surface with coordinates in the extension of rationals defining the
adele code for the data for preferred extremals and quantum states. What these points
are - could they correspond to points of partonic 2-surfaces carrying fermions or could the
correspond also to the points in the interior of space-time surface is not clear. The larger the
extension of rationals, the larger the number of these points, and the better the resolution
and the larger the deviation of SH from ideal. The hierarchy of Galois groups of extension
of rationals should relate closely to the inclusion hierarchies.

2. Galois extension with given Galois group Gal allows hierarchy of intermediate extensions
defining inclusion sequence for Galois groups. Besides inclusion homomorphisms there exists
homomorphisms from Galois group Gal with order heff/h = n to its sub-groups H ⊂ Gal
with order heff/h = m < n dividing n. If it exists the sub-group mapped to identity
element is normal sub-group H for which right and left cosets gH and Hg are identical.
These homomorphisms to sub-groups identify the sheets of Galois covering of the space-
time surface transformed to each other by H and thus define different number theoretical
resolutions: measurement resolution would have precise geometric meaning. This would
mean looking states with heff/h = n in poorer resolution defined by heff/h = m < n.

http://tinyurl.com/yadcmjd6
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These arrows would define “resolution morphisms” in category theoretic description. Also
the analogy with the homotopies of n-structures is obvious. There would be a finite number
of normal sub-groups with order dividing n for given higher structure. Quantum phase equal
to root of unity (q = exp(i2π/k)) could appear in these representations and distinguish them
from ordinary group representations.

10.3.4 Could normal sub-groups of symplectic group and of Galois groups
correspond to each other?

Measurement resolution realized in terms of various inclusion is the key principle of quantum TGD.
There is an analogy between the hierarchies of Galois groups, of fractal sub-algebras of SSA, and
of inclusions of HFFs. The inclusion hierarchies of isomorphic sub-algebras of SSA and of Galois
groups for sequences of extensions of extensions should define hierarchies for measurement reso-
lution. Also the inclusion hierarchies of HFFs are proposed to define hierarcies of measurement
resolutions. How closely are these hierarchies related and could the notion of measurement reso-
lution allow to gain new insights about these hierarchies and even about the mathematics needed
to realize them?

1. As noticed, SSA and its isomorphic sub-algebras are in a relation analogous to the between
normal sub-group H of group Gal (analog of isomorphic sub-algebra) and the group G/H.
One can assign to given Galois extension a hierarchy of intermediate extensions such that one
proceeds from given number field (say rationals) to its extension step by step. The Galois
groups H for given extension is normal sub-group of the Galois group of its extension. Hence
Gal/H is a group. The physical interpretation is following. Finite measurement resolution
defined by the condition that H acts trivially on the representations of Gal implies that they
are representations of Gal/H. Thus Gal/H is completely analogous to the Kac-Moody type
algebra conjecture to result from the analogous pair for SSA.

2. How does this relate to McKay correspondence stating that inclusions of HFFs correspond
to finite discrete sub-groups of SU(2) acting as isometries of regular n-polygons and Pla-
tonic solids correspond to Dynkin diagrams of ADE type SKMAs determined by ADE Lie
group G. Could one identify the discrete groups as Galois groups represented geometrically
as sub-groups of SU(2) and perhaps also those of corresponding Lie group? Could the rep-
resentations of Galois group correspond to a sub-set of representations of G defining ground
states of Kac-Moody representations. This might be possible. The sub-groups of SU(2) can
however correspond only to a very small fraction of Galois groups.

Can one imagine a generalization of ADE correspondence? What would be required that
the representations of Galois groups relate in some natural manner to the representations as Kac-
Moody groups.

Some basic facts about Galois groups and finite groups

Some basic facts about Galois groups mus be listed before continuing. Any finite group can appear
as a Galois group for an extension of some number field. It is known whether this is true for
rationals (see http://tinyurl.com/hus4zso).

Simple groups appear as building bricks of finite groups and are rather well understood. One
can even speak about periodic table for simple finite groups (see http://tinyurl.com/y75r68hp).
Finite groups can be regarded as a sub-group of permutation group Sn for some n. They can be
classified to cyclic, alternating , and Lie type groups. Note that alternating group An is the
subgroup of permutation group Sn that consists of even permutations. There are also 26 sporadic
groups and Tits group.

Most simple finite groups are groups of Lie type that is rational sub-groups of Lie groups.
Rational means ordinary rational numbers or their extension. The groups of Lie type (see http:

//tinyurl.com/k4hrqr6) can be characterized by the analogs of Dynkin diagrams characterizing
Lie algebras. For finite groups of Lie type the McKay correspondence could generalize.

http://tinyurl.com/hus4zso
http://tinyurl.com/y75r68hp
http://tinyurl.com/k4hrqr6
http://tinyurl.com/k4hrqr6
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Representations of Lie groups defining Kac-Moody ground states as irreps of Galois
group?

The goal is to generalize the McKay correspondence. Consider extension of rationals with Galois
group Gal. The ground staes of KMA representations are irreps of the Lie group G defining KMA.
Could the allow ground states for given Gal be irreps of also Gal?

This constraint would determine which group representations are possible as ground states
of SKMA representations for a given Gal. The better the resolution the larger the dimensions of
the allowed representations would be for given G. This would apply both to the representations
of the SKMA associated with dynamical symmetries and maybe also those associated with the
standard model symmetries. The idea would be quantum classical correspondence (QCC) space-
time sheets as coverings would realize the ground states of SKMA representations assignable to
the various SKMAs.

This option could also generalize the McKay correspondence since one can assign to finite
groups of Lie type an analog of Dynkin diagram (see http://tinyurl.com/k4hrqr6). For Galois
groups, which are discrete finite groups of SU(2) the hypothesis would state that the Kac-Moody
algebra has same Dynkin diagram as the finite group in question.

To get some perspective one can ask what kind of algebraic extensions one can assign to ADE
groups appearing in the McKay correspondence? One can get some idea about this by studying
the geometry of Platonic solids (see http://tinyurl.com/p4rwc76). Also the geometry of Dynkin
diagrams telling about the geometry of root system gives some idea about the extension involved.

1. Platonic solids have p vertices and q faces. One has {p, q} ∈ {{3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}}.
Tetrahedron is self-dual (see http://tinyurl.com/qdl4sss object whereas cube and octa-
hedron and also dodecahedron and icosahedron are duals of each other. From the table of
http://tinyurl.com/p4rwc76 one finds that the cosines and sines for the angles between
the vectors for the vertices of tetrahedron, cube, and octahedron are rational numbers. For
icosahedron and dodecahedron the coordinates of vertices and the angle between these vec-
tors involve Golden Mean φ = (1 +

√
5)/2 so that algebraic extension must involve

√
5 at

least.

The dihedral angle θ between the faces of Platonic solid {p, q} is given by sin(θ/2) =
cos(π/q)/sin(π/p). For tetrahedron, cube and octahedron sin(θ) and cos(θ) involve

√
3.

For icosahedron dihedral angle is tan(θ/2) = φ. For instance, the geometry of tetrahedron
involves both

√
2 and

√
3. For dodecahedron more complex algebraic numbers are involved.

2. The rotation matrices for for the triangles of tetrahedron and icosahedron involve cos(2π/3)
and sin(2π/3) associated with the quantum phase q = exp(i2π/3) associated with it. The ro-
tation matrices performing rotation for a pentagonal face of dodecahedron involves cos(2π/5)
and sin(2π/5) and thus q = exp(i2π/5) characterizing the extension. Both q = exp(i2π/3)
and q = exp(i2π/5) are thus involved with icosahedral and dodecahedral rotation matrices.
The rotation matrices for cube and for octahedron have rational matrix elements.

3. The Dynkin diagrams characterize both the finite discrete groups of SU(2) and those of ADE
groups. The Dynkin diagrams of Lie groups reflecting the structure of corresponding Weyl
groups involve only the angles π/2, 2π/3, π − π/6, 2π − π/6 between the roots. They would
naturally relate to quadratic extensions.

For ADE Lie groups the diagram tells that the roots associated with the adjoint representa-
tion are either orthogonal or have mutual angle of 2π/3 and have same length so that length
ratios are equal to 1. One has sin(2π/3) =

√
3/2. This suggests that

√
3 belongs to the

algebraic extension associated with ADE group always. For the non-simply laced Lie groups
of type B, C, F, G the ratios of some root lengths can be

√
2 or

√
3.

For ADE groups assignable to n-polygons (n > 5) Galois group must involve the cyclic
extension defined by exp(i2π/n). The simplest option is that the extension corresponds to the
roots of the polynomial xn = 1.

http://tinyurl.com/k4hrqr6
http://tinyurl.com/p4rwc76
http://tinyurl.com/qdl4sss
http://tinyurl.com/p4rwc76
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10.3.5 A possible connection with number theoretic Langlands corre-
spondence

I have discussed number theoretic version of Langlands correspondence in [K38, L11] trying to
understand it using physical intuition provided by TGD (the only possible approach in my case).
Concerning my unashamed intrusion to the territory of real mathematicians I have only one excuse:
the number theoretic vision forces me to do this.

Number theoretic Langlands correspondence relates finite-dimensional representations of
Galois groups and so called automorphic representations of reductive algebraic groups defined
also for adeles, which are analogous to representations of Poincare group by fields. This is kind
of relationship can exist follows from the fact that Galois group has natural action in algebraic
reductive group defined by the extension in question.

The “Resiprocity conjecture” of Langlands states that so called Artin L-functions assignable
to finite-dimensional representations of Galois group Gal are equal to L-functions arising from so
called automorphic cuspidal representations of the algebraic reductive group G. One would have
correspondence between finite number of representations of Galois group and finite number of
cuspidal representations of G.

This is not far from what I am näıvely conjecturing on physical grounds: finite-D represen-
tations of Galois group are reductions of certain representations of G or of its subgroup defining the
analog of spin for the automorphic forms in G (analogous to classical fields in Minkowski space).
These representations could be seen as induced representations familiar for particle physicists deal-
ing with Poincare invariance. McKay correspondence encourages the conjecture that the allowed
spin representations are irreducible also with respect to Gal. For a childishly näıve physicist know-
ing nothing about the complexities of the real mathematics this looks like an attractive starting
point hypothesis.

In TGD framework Galois group could provide a geometric representation of “spin” (maybe
even spin 1/2 property) as transformations permuting the sheets of the space-time surface identifi-
able as Galois covering. This geometrization of number theory in terms of cognitive representations
analogous to the use of algebraic groups in Galois correspondence might provide a totally new ge-
ometric insights to Langlands correpondence. One could also think that Galois group represented
in this manner could combine with the dynamical Kac-Moody group emerging from SSA to form
its Langlands dual.

Skeptic physicist taking mathematics as high school arithmetics might argue that algebraic
counterparts of reductive Lie groups are rather academic entities. In adelic physics the situation
however changes completely. Evolution corresponds to a hierarchy of extensions of rationals re-
flected directly in the physics of dark matter in TGD sense: that is as phases of ordinary matter
with heff/h = n identifiable as divisor of the order of Galois group for an extension of rationals.
Algebraic groups and their representations get physical meaning and also the huge generalization
of their representation to adelic representations makes sense if TGD view about consciousness and
cognition is accepted.

In attempts to understand what Langlands conjecture says one should understand first the
rough meaning of many concepts. Consider first the Artin L-functions appearing at the number
theoretic side. Consider first the Artin L-functions appearing at the number theoretic side.

1. L-functions (see http://tinyurl.com/y8dc4zv9) are meromorphic functions on complex
plane that can be assigned to number fields and are analogs of Riemann zeta function fac-
torizing into products of contributions labelled by primes of the number field. The defini-
tion of L-function involves Direchlet characters: character is very general invariant of group
representation defined as trace of the representation matrix invariant under conjugation of
argument.

2. In particular, there are Artin L-functions (see http://tinyurl.com/y7thhodk) assignable
to the representations of non-Abelian Galois groups. One considers finite extension L/K of
fields with Galois group G. The factors of Artin L-function are labelled by primes p of K.
There are two cases: p is un-ramified or ramified depending on whether the number of primes
of L to which p decomposes is maximal or not. The number of ramified primes is finite and in
TGD framework they are excellent candidates for physical preferred p-adic primes for given
extension of rationals.

http://tinyurl.com/y8dc4zv9
http://tinyurl.com/y7thhodk
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These factors labelled by p analogous to the factors of Riemann zeta are identified as char-
acteristic polynomials for a representation matrix associated with any element in a preferred
conjugacy class of G. This preferred conjugacy class is known as Frobenius element Frob(p)
for a given prime ideal p , whose action on given algebraic integer in OL is represented as its
p:th power. For un-ramified p the characteristic polynomial is explicitly given as determinant
det[I − tρ(Frob(p))]−1, where one has t = N(p)−s and N(p) is the field norm of p in the
extension L (see http://tinyurl.com/o4saw2l).

In the ramified case one must restrict the representation space to a sub-space invariant under
inertia subgroup, which by definition leaves invariant integers of OL/p that is the lowest part
of integers in expansion of powers of p.

At the other side of the conjecture appear representations of algebraic counterparts of reduc-
tive Lie groups and their L-functions and the two number theoretic and automorphic L-functions
would be identical.

1. Automorphic form F generalizes the notion of plane wave invariant under discrete subgroup
of the group of translations and satisfying Laplace equation defining Casimir operator for
translation group. Automorphic representations can be seen as analogs for the modes of
classical fields with given mass having spin characterized by a representation of subgroup of
Lie group G (SO(3) in case of Poincare group).

Automorphic functions as field modes are eigen modes of some Casimir operators assignable
to G. Algebraic groups would in TGD framework relate to adeles defined by the hierarchy of
extensions of rationals (also roots of e can be considered in extensions). Galois groups have
natural action in algebraic groups.

2. Automorphic form (see http://tinyurl.com/create.php) is a complex vector valued func-
tion F from topological group to some vector space V . F is an eigen function of certain
Casimir operators of G. In the simplest situation these function are invariant under a dis-
crete subgroup Γ ⊂ G identifiable as the analog of the subgroup defining spin in the case of
induced representations.

In general situation the automorphic form F transforms by a factor j of automorphy under Γ.
The factor can also act in a finite-dimensional representation of group Γ, which would suggest
that it reduces to a subgroup of Γ obtained by dividing with a normal subgroup. j satisfies
1-cocycle condition j(g1, g2g3) = j(g1g2, g3) in group cohomology guaranteeing associativity
(see http://tinyurl.com/on7ffy9). Cuspidality relates to the conditions on the growth of
F at infinity.

3. Elliptic functions in complex plane characterized by two complex periods are meromor-
phic functions of this kind. A less trivial situation corresponds to non-compact group
G = SL(2, R) and Γ ⊂ SL(2, Q).

There are more groups involved: Langlands group LF and Langlands dual group LG. A
more technical formulation says that the automorphic representations of a reductive Lie group
G correspond to homomorphisms from so called Langlands group LF (see http://tinyurl.com/

ycnhkvm2) at the number theoretic side to L-group LG or Langlands dual of algebraic G at group
theory side (see http://tinyurl.com/ycnk9ga5). It is important to notice that LG is a complex
Lie group. Note also that homomorphism is a representation of Langlands group LF in L-group
LG. In TGD this would be analogous to a homomorphism of Galois group defining it as subgroup
of the group G defining Kac-Moody algebra.

1. Langlands group LF of number field is a speculative notion conjectured to be a extension of
the Weil group of extension, which in turn is a modification of the absolute Galois group.
Unfortunately, I was not able to really understand the Wikipedia definition of Weil group
(http://tinyurl.com/hk74sw7). If E/F is finite extension as it is now, the Weil group
would be WE/F = WF /W

c
E , W c

E refers to the commutator subgroup WE defining a normal
subgroup, and the factor group is expected to be finite. This is not Galois group but should
be closely related to it.

http://tinyurl.com/o4saw2l
http://tinyurl.com/create.php
http://tinyurl.com/on7ffy9
http://tinyurl.com/ycnhkvm2
http://tinyurl.com/ycnhkvm2
http://tinyurl.com/ycnk9ga5
http://tinyurl.com/hk74sw7
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Only finite-D representations of Langlands group are allowed, which suggests that the rep-
resentations are always trivial for some normal subgroup of LF For Archimedean local fields
LF is Weil group, non-Archimedean local fields LF is the product of Weil group of L and of
SU(2). The first guess is that SU(2) relates to quaternions. For global fields the existence of
LF is still conjectural.

2. I also failed to understand the formal Wikipedia definition of the L-group LG appearing
at the group theory side. For a reductive Lie group one can construct its root datum
(X∗,∆, X∗,∆

c), where X∗ is the lattice of characters of a maximal torus, X∗ its dual, ∆ the
roots, and ∆c the co-roots. Dual root datum is obtained by switching X∗ and X∗ and ∆
and ∆c. The root datum for G and LG are related by this switch.

For a reductive G the Dynkin diagram of LG is obtained from that of G by exchanging the
components of type Bn with components of type Cn. For simple groups one has Bn ↔ Cn.
Note that for ADE groups the root data are same for G and its dual and it is the Kac-Moody
counterparts of ADE groups, which appear in McKay correspondence. Could this mean that
only these are allowed physically?

3. Consider now a reductive group over some field with a separable closure K (say k for rationals
and K for algebraic numbers). Over K G as root datum with an action of Galois group of
K/k. The full group LG is the semi-direct product LG0oGal(K/k) of connected component
as Galois group and Galois group. Gal(K/k) is infinite (absolute group for rationals). This
looks hopelessly complicated but it turns it that one can use the Galois group of a finite
extension over whichG is split. This is what gives the action of Galois group of extension (l/k)
in LG having now finitely many components. The Galois group permutes the components.
The action is easy to understand as automorphism on Gal elements of G.

Could TGD picture provide additional insights to Langlands duality or vice versa?

1. In TGD framework the action of Gal on algebraic group G is analogous to the action of Gal
on cognitive representation at space-time level permuting the sheets of the Galois covering,
whose number in the general case is the order of Gal identifiable as heff/h = n. The
connected component LG0 would correspond to one sheet of the covering.

2. What I do not understand is whether LG = G condition is actually forced by physical
contraints for the dynamical Kac-Moody algebra and whether it relates to the notion of
measurement resolution and inclusions of HFFs.

3. The electric-magnetic duality in gauge theories suggests that gauge group action of G on
electric charges corresponds in the dual phase to the action of LG on magnetic charges. In
self-dual situation one would have G =L G. Intriguingly, CP2 geometry is self-dual (Kähler
form is self-dual so that electric and magnetic fluxes are identical) but induced K̈ahler form
is self-dual only at the orbits of partonic 2-surfaces if weak form of electric-magnetic duality
holds true. Does this condition leads to LG = G for dynamical gauge groups? Or is it
possible to distinguish between the two dynamical descriptions so that Langlands duality
would correspond to electric-magnetic duality. Could this duality correspond to the proposed
duality of two variants of SH: namely, the electric description provided by string world sheets
and magnetic description provided by partonic 2-surfaces carrying monopole fluxes?

10.3.6 A formulation of adelic TGD in terms of cognitive representa-
tions?

The vision about p-adic physics as cognitive representations of real physics [L22] encourages to
consider an amazingly simple formulation of TGD diametrically opposite to but perhaps consistent
with the vision based on the notion of WCW and WCW spinor fields. Finiteness of cognitive and
measurement resolutions would not be enemies of the theoretician but could make possible to
deduce highly non-trivial predictions from the theory by getting rid of all irrelevant information
and using only the most significant bits. Number theoretic physics need not of course cover the
entire quantum physics and could be analogous to topological quantum field theories: even this
might provide huge amounts of precise information about the quantum physics of TGD Universe.
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Could the discrete variant of WCW geometry make sense?

The first thing that one can imagine is number theoretic discretization of WCW by assuming that
WCW coordinates belong to an extension of rationals. Integration would reduce to a summation
but the problem is that there are too many points in the extension so that sums do not make
sense in real sense. In the case of space-time surfaces the problems are solved by the fact that
space-time surfaces have dimension lower than the embedding space and the number of points with
coordinates in the extension is in typical case finite: exceptions are surfaces such as canonically
imbedded M4 or CP2. This option does not work at the level of WCW.

Cognitive representations however carry information about the points with coordinates in
the extension of rationals defining the adele and possibly about the directions of strings emanating
from these points. The effective WCW is kind of coset space with most of degrees of freedom not
visible in the cognitive representation. Cognitive representations would specify the points in the
extension of rationals for space-time surface, string world sheets, or even for their intersection with
partonic surfaces at the ends of CD carrying fermion number plus those at the ends of sub-CDs
forming a hierarchy.

Could one use the points of cognitive representation as coordinates for this effective WCW
so that everything including WCW integration would reduce to well-defined summations? This
would solve the problem of too many points in sub-WCW associated with the extension. Could one
formulate everything that one can know at given level of cognitive hierarchy defined by extensions?

This idea was already suggested by the interpretation of p-adic mass calculations.

1. p-Adic mass calculations would correspond to cognitive representation of real physics [K17,
K41]. For large p-adic primes p-adic thermodynamics converges extremely rapidly as powers
p−n/2 and the results from two lowest orders are practically exact.

2. What is however required is a justification for the map of p-adic mass squared values to
real numbers by canonical identification. Quite generally this map makes sense for group
invariants - say Lorentz invariants defined by inner products of momenta. As a matter of
fact, the construction of quantum algebras and Yangians demands p-adic topology for the
antipode to exist mathematically so that this approach could be forced by mathematical
consistency [B1].

Could scattering amplitudes be constructed in terms of cognitive representations?

The crazy looking idea that cognitive representations defined by common points of real and p-adic
variants of space-time surfaces or even partonic 2-surfaces is at least worth of showing to be wrong.
If the idea works, cognitive representations could code what can be known about classical and even
quantum dynamics and reduce physics to number theory. Also WCW would be discretized with
points of discretized space-time surface defining WCW coordinates. Functional integral over WCW
would reduce to a converging sum over cognitive representations.

It is interesting to look what this could mean if scattering amplitudes correspond in some
sense to algebraic computations in bi-algebra besides product also co-product as its time reversal
and interpreted as 3-vertex physically.

1. For the simplest option fermions would reside at the intersection points of partonic 2-surfaces
and string world sheets. One possibility considered earlier is that at these points the Galois
coverings are singular meaning that all sheets co-incide. This might be too strong condition
and might be replacable by a weaker condition that Galois group at these points reduces to
its sub-group and normal subgroup leaves amplitudes invariant. A reduction of measurement
resolution would be in question.

2. If the basic computational operation involves a fusion of representations of Galois group, fu-
sion algebra could describe the situation [L16]. The Galois groups assignable to the incoming
lines of 3-vertex must correspond to Galois groups, which define groups of 3-levelled hierarchy
of extension of rationals allowing inclusion homomorphism. Therefore the values of Planck
constant would be of from heff/h ∈ {n1, n1n2, n1n2n3}. The tensor product decomposition
would tell the outcome of tensor product. One can consider also 2-vertices corresponding to
a phase transition n1 ↔ n1n2 changing the value of heff/h.
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McKay graphs (see http://tinyurl.com/z48d92t) for Galois groups describe the decom-
position of the tensor products of representations of Galois groups. In general the tensor
products for corresponding KMAs restricted to Galois group are not irreducible. What could
this mean? Are they allowed to occur? Are there general results allowing to conclude how
do the analogs of McKay graphs for the tensor products of the irreps of the group defining
Kac-Moody group relate to the McKay graphs for its finite discrete sub-groups?

Possible problems relate to the description of momenta and higher excitations of SKMAs.
In topological QFTs one loses information about metric properties such as mass but what happens
in number theoretic QFT? Could the Galois approach expanded to include also discrete variants
of quaternions and octonions assigna ble to extensions of rationals allow also the number theoretic
description of also momenta?

1. Octonions and quaternions have G(2) and SO(3) as automorphisms groups (analogs of Ga-
lois groups). The octonionic automorphisms respecting chosen imaginary consist of SU(3)
rotations. These groups would be replaced with their dicrete variants with matrix elements
in an extension of rationals.

The automorphism group Gal for the extension of rationals and automorphism group Aut ∈
{G2, SU(3), SO(3)} for octonions/for octonions with fixed unit/for quaternions form a semi-
direct product GaloAut with multiplication rule (g1, ga) ◦ (g2, gb) = (g1g2, g2g1(gb)), where
g1(gb) represents the element of Aut obtained by performing Gal automorphism g1 for gb.
For rational elements gb one has (g1, ga) ◦ (g2, gb) = (g1g2, gagb) so that Gal AutQ commute.
An interesting possibility is that the automorphisms of Aut ∈ {SU(3), SO(3)} can be inter-
preted in terms of standard model symmetries whereas Gal would relate to the dynamical
symmetries.

In M8 picture one has naturally wave functions in the space of quaternionic light-like 8-
momenta and it is natural to decompose quaternionic momenta to longitudinal M2 piece
and transversal E2 piece. The physical interpretation of this condition has been discussed
thoroughly in [L26]. One has thus more than mere analog of TQFT.

2. If fermions propagate along the lines of the TGD analogs twistor graphs, one must have
an analog of propagator. Twistor approach [L26] implies that the propagator is replaced
with the inverse of the fermion propagator for quaternionic 8-momentum as a residue with
sigma matrices representing the quaternionic units. This is non-vanishing only if the fermion
chirality is “wrong”. This has co-homological interpretation: for external lines the inverse of
the propagator would annihilate the state (co-closedness) unlike for internal lines.

3. Triality holds true for the octonionic vector representation assignable to momenta and octo-
nionic spinors and their conjugates. All these should be quaternionic, in other words belong
to some complexified quaternionic M4 ⊂M8. The components of these spinors should belong
to an extension of rational used with imaginary unit commuting with octonionic imaginary
units.

4. The condition that the amplitudes belong to an extension of rationals could be extremely
powerful when combined with category theoretic view implying the Hilbert space isometries
allowing to relate amplitudes at different levels of the hierarchy. This conditions should
be true also for the twistors in terms which momenta can be expressed. Also the space
SU(3)/U(1) × U(1) of CP2 twistors would be replaced with a sub-space with points in an
extension of rationals.

10.4 Could McKay correspondence generalize in TGD frame-
work?

McKay correspondence is rather mysterious looking correspondence appearing in several fields.
This correspondence is extremely interesting from point of view of adelic TGD [L24] [L22].

http://tinyurl.com/z48d92t
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1. McKay graphs code for the fusion algebra of irreducible representations (irreps) of finite
groups (see http://tinyurl.com/z48d92t). For finite subgroups of G ⊂ SU(2) McKay
graphs are extended Dynkin diagrams for affine (Kac-Moody) algebras of ADE type coding
the structure of the root diagram for these algebras. The correspondence looks mysterious
since Dynkin diagrams have quite different geometric interpretation.

2. McKay graphs for finite subgroups of G ⊂ SU(2) characterize also the fusion rules of minimal
conformal field theories (CFTs) having Kac-Moody algebra (KMA) of SU(2) as symmetries
(see http://tinyurl.com/y7doftpe). Fusion rules characterize the decomposition of the
tensor products of primary fields in CFT. For minimal CFTs the primary fields belonging
to the irreps of SU(2) are in 1-1 correspondence with irreps of G, and the fusion rules for
primary fields are same as for the irreps of G. The irreps of SU(2) are also irreps of G.

Could the ADE type affine algebra appear as dynamical symmetry algebra too? Could the
primary fields for ADE defining extended ADE Cartan algebra be constructed as G-invariants
formed from the irreps of G and be exponentiated using the standard free field construction
using the roots of the ADE KMA a give ADE KMA acting as dynamical symmetries?

3. McKay graphs for G ⊂ SU(2) characterize also the double point singularities of algebraic
surfaces of real dimension 4 in C3 (or CP 3 , one variant of twistor space!) with real dimension
6 (see http://tinyurl.com/ydz93hle). The subgroup G ⊂ SU(2) has a natural action in
C2 and it appears in the canonical representation of the singularity as orbifold C2/G. This
partially explains the appearance of the McKay graph of G. The resolved singularities are
characterized by a set of projective lines CP1 with intersection matrix in CP2 characterized
by McKay graph of G. Why the number of spheres is the number of irreps for G is not
obvious to me.

The double point singularities of C2 ⊂ C3 allow thus ADE classification. The number of
added points corresponds to the dimension of Cartan algebra for ADE type affine algebra,
whose Dynkin diagram codes for the finite subgroup G ⊂ SU(2) leaving the algebraic surface
looking locally like C2 invariant and acting as isotropy group of the singularity.

These results are highly inspiring concerning adelic TGD.

1. The appearance of Dynkin diagrams in the classification of minimal CFTs inspires the con-
jecture that in adelic physics Galois groups Gal or semi-direct products G /Gal of Gal with
a discrete subgroup G of automorphism group SO(3) (having SU(2) as double covering!)
classifies TGD generalizations of minimal CFTs. Also discrete subgroups of octonionic au-
tomorphism group can be considered. The fusion algebra of irreps of Gal would define also
the fusion algebra for KMA for the counterparts of minimal fields. This would provide deep
insights to the general structure of adelic physics.

2. One cannot avoid the question whether the extended ADE diagram could code for a dy-
namical symmetry of a minimal CFT or its modification? If the Gal singlets formed from
the primary fields of minimal model define primary fields in Cartan algebra of ADE type
KMA, then standard free field construction would give the charged KMA generators. In
TGD framework this conjecture generalizes.

3. A further conjecture is that the singularities of space-time surface imbedded as 4-surface in
its 6-D twistor bundle with twistor sphere as fiber could be classified by McKay graph of Gal.
The singular intersection of the Euclidian and Minkowskian regions of space-time surface is
especially interesting: the twistor spheres at the common points defining light-like partonic
orbits need not be same but have intersections with intersection matrix given by McKay
graph for Gal. The basic information about adelic CFT would be coded by the general
character of singularities for the twistor bundle.

4. In TGD also singularities in which the group Gal is reduced to its subgroup Gal/H, where
H is normal group are possible and would correspond to phase transition reducing the value
of Planck constant. What happens in these phase transitions to single particle states would
be dictated by the decomposition of representations of Gal to those of Gal/H and transition
matrix elements could be evaluated.

http://tinyurl.com/z48d92t
http://tinyurl.com/y7doftpe
http://tinyurl.com/ydz93hle
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One can find from web excellent articles about the topics to be discussed in this article.

1. The article ”Cartan matrices, finite groups of quaternions, and Kleinian singularities” of
John McKay [A90] (see http://tinyurl.com/ydygjgge) summarizes McKay correspon-
dence.

2. Miles Reid has written an article ” The Du Val singularities An, Dn, E6, E7, E8” [A107]
(see http://tinyurl.com/ydz93hle). Also the article ” Chapters on algebraic surfaces”
[A109](see http://tinyurl.com/yaty9rzy) of Reid should be helpful. There is also an
article ”Resolution of Singularities in Algebraic Varieties” [A58] (see http://tinyurl.com/

yb7cuwkf) of Emma Whitten about resolution of singularities.

3. Andrea Cappelli and Jean-Benard Zuber have written an article ”A-D-E Classification of
Conformal Field Theories” [B12] about ADE classification of minimal CFT models (see
http://tinyurl.com/y7doftpe).

4. McKay correspondence appears also in M-theory, and the thesis ”On Algebraic Singularities,
Finite Graphs and D-Brane Gauge Theories: A String Theoretic Perspective” [B27] (see
http://tinyurl.com/ycmyjukn) of Yang-Hui He might be helful for the reader. In this
work the possible generalization of McKay correspondence so that it would apply form finite
subgroups of SU(n) is discussed. SU(3) acting as subgroup of automorphism group G2

of octonions is especially interesting in this respect. The idea is rather obvious: the fusion
diagram for the theory in question would be the McKay graph for the finite group in question.

10.4.1 McKay graphs in mathematics and physics

McKay graphs for subgroups of SU(2) reducing to Dynkin diagrams for affine Lie algebras of ADE
type appear in several ways in mathematics and physics.

McKay graphs

McKay graphs [A90] (see http://tinyurl.com/ydygjgge) code for the fusion algebra of irrpes
of finite groups G (for Wikipedia article see http://tinyurl.com/z48d92t). One considers the
tensor products of irreps with the canonical representation (doublet representation for the finite
sub-groups of SU(2)), call it V . The irreps Vi correspond to nodes and their number is equal to
the number of irreps G.

Two nodes i and j are no connected if the decomposition of V ⊗Vi to irreps does not contain
Vj . There is arrow pointing from i→ j in this case. The number nij > 0 or number of arrows tells
how many times j is contained in V ⊗ Vj . For nij = nji there is no arrow.

One can characterize the fusion rules by matrix A = dδij − nij , where d is the dimension
of the canonical representation. The eigenvalues of this matrix turn out to be given by d− ξV (g),
where ξV (g) is the character of the canonical representation, which depends on the conjugacy class
of g only. The number of eigenvalues is therefore equal to the number n(class,G) of conjugacy
classes. The components of eigenvectors in turn are given by the values χi(g) of characters of
irreps.

MacKay graphs and Dynkin diagrams

The nodes of the Dynkin diagram (see http://tinyurl.com/hpm5y9s) are positive simple root
vectors identified as vectors formed by the eigenvalues of the Cartan sub-algebra generators under
adjoint action on Lie algebra. In the case of affine Lie algebra the Cartan algebra contains besides
the Cartan algebra of the Lie group also scaling generator L0 = td/dt and the number of nodes
increases by one.

The number of positive simple roots equals to the dimension of the root space. The number
nij codes now for the angle between positive simple roots. The number of edges connecting root
vectors is n = 0, 1, 2, 3 depending on whether the angle between root vectors is π/2, 2π/3, 3π/4, or
5π/6. The ratios of lengths of connected roots can have values

√
n, n ∈ {1, 2, 3}, and the number n

of edges corresponds to this ratio. The arrow is directed to the shorter root if present. For simply
laced Lie groups (ADE groups) the roots have unit length so that only single undirected edge can

http://tinyurl.com/ydygjgge
http://tinyurl.com/ydz93hle
http://tinyurl.com/yaty9rzy
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/y7doftpe
http://tinyurl.com/ycmyjukn
http://tinyurl.com/ydygjgge
http://tinyurl.com/z48d92t
http://tinyurl.com/hpm5y9s
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connect the roots. Weyl group acts as symmetries of the root diagram as reflections in hyperplanes
orthogonal to the roots.

The Dynkin diagrams of affine algebras are obtained by adding to the Cartan algebra a
generator which corresponds to the scaling generator L0 = td/dt of affine algebra assumed to act
via adjoint action to the Lie algebra. Depending on the position of the added node one obtains
also twisted versions of the KMA.

For the finite subgroups of SU(2) the McKay graphs reduce to Dynkin diagrams of affine Lie
algebras of ADE type [A90] (see http://tinyurl.com/ydygjgge) so that one has either nij = 0
or nij = 1 for i 6= j. There are no self-loops (nii 6= 0). The result looks mysterious since the
two diagrams describe quite different things. One can also raise the question whether ADE type
affine algebra might somehow emerge in minimal CFT involving SU(2) KMA for which ADE
classification emerges.

In TGD framework the interpretation of finite groups G ⊂ SU(2) in terms of quaternions
is an attractive possibility since rotation group SO(3) acts as automorphisms of quaternions and
has SU(2) as its covering group.

ADE diagrams and subfactors

ADE classification emerges also naturally for the inclusions of hyper-finite factors of type II1
[K87, K28]. Subfactors with index smaller than four have so called principal graphs characterizing
the sequence of inclusions equal to one of the A, D or E Coxeter-Dynkin diagrams: see the article
“In and around the origin of quantum groups” of Vaughan Jones [A131] (see http://tinyurl.

com/ycbbbvpq). As a matter of fact, only the D2n and E6 and E8 do occur. It is also possible to
construct M : N = 4 sub-factor such that the principle graph is that for any subgroup G ⊂ SU(2).
This suggests that the subfactors M : N = 4cos2(π/n) < 4 correspond to quantum groups. The
basic objects can be seen as quantum spinors so that again the appearance of subgroups of SU(2)
looks natural. One can still wonder whether ADE KMAs might be involved.

ADE classification for minimal CFTs

.
CFTs on torus [B12] are characterized by modular invariant partition functions, which can

be expressed in terms of characters of the scaling generator L0 of Virasoro algebra (VA) given by

Z(τ) = Tr(X) , X = exp{i2π
[
τ(L0 − c/24)− τ(L0 − c/24)

]
} . (10.4.1)

Modular invariance requires that Z(τ) is invariant under modular transformations leaving the
conformal equivalence class of torus invariant. Modular group equals to SL(2, Z) has as generators
the transformations T : τ → τ + 1 and S : τ → −1/τ . The partition function can be expressed as

Z(τ) =
∑
Njjχj(q)χj(q) , q = exp(i2πτ) , q = exp(−i2πτ) . (10.4.2)

Here χj corresponds to the trace of L0 − c/24 for a representation of KMA inducing the VA
representation. Modular invariance of the partition function requires SNS† = N and TNT † = N .

The ADE classification for minimal conformal models summarized in [B12] (see http:

//tinyurl.com/y7doftpe) involves SU(2) affine algebra with central extension parameter k. The
central extension parameter for the VA is c < 1. The fusion algebra for primary fields in represen-
tations of SU(2) KMA characterizes the CFT to a high degree.

The fusion rules characterized the decomposition of the tensor product of representation Di

with representation Dj as i⊗ j = Nk
ijDk. Due to the properties of the tensor product the matrices

Ni = Nk
ij form and associative and commutative algebra and one can diagonalize these matrices

simultaneously. This algebra is known as Verlinde algebra and its elements can be expressed in
terms of unitary modular matrix Sij representing the transformation of characters in the modular
transformation τ → −1/τ .

The generator of the Verlinde algebra is fusion algebra for the 2-D representation of SU(2)
generating the fusion algebra (this corresponds to the fact that tensor powers of this representations

http://tinyurl.com/ydygjgge
http://tinyurl.com/ycbbbvpq
http://tinyurl.com/ycbbbvpq
http://tinyurl.com/y7doftpe
http://tinyurl.com/y7doftpe
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give rise to all representations of SU(2)). It turns out that for minimal models with a finite number
of primary fields (KMA representations) the fusion algebra of KMA reduces to that for a finite
subgroup of SU(2) and thus corresponds to ADE KMA. The natural interpretation is that the
condition that the number of primary fields is finite is realized if the primary fields correspond also
to the irreps of finite subgroup of SU(2).

Could the ADE type KMA actually correspond to a genuine dynamical symmetry of minimal
CFT? For this conjecture makes sense, the roots of ADE type KMA should be in 1-1 correspondence
with the irreps of G ⊂ SU(2) assignable to primary fields. How could this be possible? In the free
field construction of ADE type KMA generators one constructs charged KMA generators from free
fields in Cartan algebra by exponentiating the quantities α·φ, where α is the root and φ is a primary
field corresponding to the element of Cartan algebra of KMA. Could SU(2) invariants formed from
the primary fields defined by each G- (equivalently SU(2)-) multiplet give rise to SU(2) neutral
multiplet of primary fields of ADE type Cartan algebra and could their exponentiation give rise
to ADE type KMA acting as dynamical symmetries of a minimal CFT?

The resolution of singularities of algebraic surfaces and extended Dynkin diagrams of
ADE type

The classification of singularities of algebraic surfaces leads also to extended Dynkin diagrams of
ADE type.

1. Classification of singularities

In algebraic geometry the classification of singularities of algebraic varieties [A58] is a central
task. The singularities of curves in plane represent simplest singularities (see http://tinyurl.

com/y8ub2c4s). The resolution of singularities of complex curves in C3 is less trivial task.
The resolution of singularity (http://tinyurl.com/y8veht3p) is a central concept and

means elimination of singularity by modifying it locally. There is extremely general theorem by
Hiroka stating that the resolution of singularities of algebraic varieties is always possible for fields
with characteristic zero (reals and p-adic number fields included) using a sequence of birational
transformations. For finite groups the situation is unclear for dimensions d > 3.

The articles of Reid [A107] and Whitten [A58] describe the resolution for algebraic surfaces
(2-D surfaces with real dimension equal to four). The article of Reid describes how the resolutions
of double-point singularities of m = dc = 2-D surfaces in n = dc = 3-D C3 or CP3 (dc refers to
complex dimension) are classified by ADE type extended Dynkin diagrams. Subgroups G ⊂ SU(2)
appear naturally because the surface has dimension dc = 2. This is the simplest non-trivial
situation since for Riemann surface with (m,n) = (1, 2) the group would be discrete subgroup of
U(1).

2. Singularity and Jacobians

What does one mean with singularity and its resolution? Reid [A107] (see http://tinyurl.
com/ydz93hle) discusses several examples. The first example is the singularity of the surface
P (x1, x2, x3) = x2

1 − x2x3 = 0.

1. One can look the situation from the point of view of embedding of the 2-surface to C3: one
considers map from tangent space of the surface to the embedding space C3. The Jacobian
of the embedding map (x2, x3)→ (x1, x2, x3) = ±√x2x3, x2, x3) becomes ill-defined at origin

since the partial derivatives ∂x1/∂x2 = (
√
x3/x2)/2 and ∂x1/∂x3 = (

√
x2/x3)/2 have all

possible limiting values at singularity. The resolution of singularity must as a coordinate
transformation singular at the origin should make the Jacobian well-defined. Obviously this
must mean addition of points corresponding to the directions of various lines of the surface
through origin.

2. A more elegant dual approach replaces parametric representation with representation in
terms of conditions requiring function to be constant on the surface. Now the Jacobian of
a map from C3 to the 1-D normal space of the singularity having polynomial P (x1, x2, x3)
as coordinate is considered. Singularity corresponds to the situation when the rank of the
Jacobian defined by partial derivatives is less than maximal so that one has ∂P/∂xi = 0.
The resolution of singularity means that the rank becomes maximal. Quite generally, for

http://tinyurl.com/y8ub2c4s
http://tinyurl.com/y8ub2c4s
http://tinyurl.com/y8veht3p
http://tinyurl.com/ydz93hle
http://tinyurl.com/ydz93hle
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co-dimension m algebraic surface the vanishing of polynomials Pi, i = 1, ...,m defines the
surface. At the singularity the reduction of the rank for the matrix ∂Pi/∂xn from its maximal
value takes place.

3. Blowing up of singularity

Codimension one algebraic surface is defined by the condition P (x1, x2, ..., xn) = 0, where
P (x1, ..., xn) is polynomial. For higher codimensions one needs more polynomials and the situation
is not so neat anymore since so called complete intersection property need not hold anymore. Reid
[A107] gives an easy-to- understand introduction to the blowing up of double-point singularities.
Also the article “Resolution of Singularities in Algebraic Varieties” of Emma Whitten [A58] (see
http://tinyurl.com/yb7cuwkf) is very helpful.

1. Coordinates are chosen such that the singularity is at the origin (x, y, z) = (0, 0, 0) of com-
plex coordinates. The polynomial has vanishing linear terms at singularity and the first
non-vanishing term is second power of some coordinate, say x1, so that one has x1 =
±
√
P1(x1, x2, x3, where x1 in P1 appears in powers higher than 2. At the singularity the two

roots co-incide. One can of course have also more complex singularities such as triple-points.

2. The simplest example P (x1, x2, x3) = x2
1 − x2x3 = 0 has been already mentioned. This

singularity has the structure of double cone since one as x1 = ±√x2x3. At (0, 0, 0) the
vertices of the two cones meet.

3. One can look this particular situation from the perspective of projective geometry. Homoge-
nous polynomials define a surface invariant under scalings of coordinates so that modulo
scalings the surface can be regarded also as complex curve in CP2. The conical surface can
be indeed seen as a union of lines (x1 = k2x3, x2 = kx3), where k is complex number. The
ratio x1 : x2 : x3 for the coordinates at given line is determined by x1 : x2 = k and x2 : x3 = k
so that the surface can be parameterized by k and the coordinate along given line.

In this perspective the singularity decomposes to the directions of the lines going through
it and the situation becomes non-singular. The replacement of the original view with this
gives a geometric view idea about the resolution of singularity: the 2-surface is replaced by
a bundle lines of surfaces going through the singularity and singularity is replaced with a
union of directions for these lines.

Quite generally, in the resolution of singularity, origin is replaced by a set of points (x1, x2, x3)
with a well-defined ratio (x1 : x2 : x3). This interpretation applies also to more general singular-
ities. One can say that origin is replaced with a projective sub-manifold of 2-D projective space
CP2 (very familiar to me)! This procedure is known as blowing up. Strictly speaking, one only
replaces origin with the directions of lines in C3.

Remark: In TGD the wormhole contacts connecting space-time sheets of many-sheeted
space-time could be seen as outcomes of blowing up procedure.

Blowing up replaces the singular point with projective space CP1 for which points with same
value of (x1 : x2 : x3) are identified. Blowing up can be also seen as a process analogous to seeing
the singularity such as self-intersection of curve as an illusion: the curve is actually a projection of
a curve in higher dimensional space to which it is lifted so that the intersection disappears [A58]
(see http://tinyurl.com/yb7cuwkf). Physicist can of course protest by saying that in space-time
physics is is not allowed to introduce additional dimensions in this manner!

There is an analytic description for what happens at the singular point in blowing up process
[A58] (see http://tinyurl.com/yb7cuwkf).

1. In blowing up one lifts the surface in higher-dimensional space C3×CP2 (C3 can be replaced
by any affine space). The blowing up of the singularity would be the set of lines q of the
surface S going through the singularity that is the set B = {(q, q)|q ∈ S}. This set can be seen
as a subset of C3 × CP2 and one can represent it explicitly by using projective coordinates
(y1, y2, y3) for CP2. Consider points of C3 and CP2 with coordinates z = (x1, x2, x3) and
y = (y1, y2, y3). The coordinate vectors must be parallel x is to be at line y. This requires
that all 2× 2 sub-determinants of the matrix

http://tinyurl.com/yb7cuwkf
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/yb7cuwkf


10.4. Could McKay correspondence generalize in TGD framework? 385

[
x1 x2 x3

y1 y2 y3

]
(10.4.3)

vanish: that is xiyj − xjyi = 0 for all pairs i < j. This description generalizes to the higher-
dimensional case. The added CP1s defined what is called exceptional divisor in the blown up
surface. Recall that divisors (see http://tinyurl.com/yc7x3ohx) are by definition formal
combinations of points of algebraic surface with integer coefficients. The principal divisors
defined by functions are sums over their zeros and poles with integer weight equal to the
order of zero (negative for pole).

The above example considers a surface x2
1 − x2x3 = 0 which allows interpretation as a

projective surface. The method however works also for more general case since the idea
about replacing point with directions is applied only at origin.

2. One can consider a more practical resolution of singularity by performing a bi-rational coordi-
nate transformation becoming singular at the singular point. This can improve the singularity
by blowing it up or make it worse by inducing blowing down. The idea is to perform a se-
quence of this kind of coordinate changes inducing blowing ups so that final outcome is free
of singularities.

Since one considers polynomial equations both blowing up and its reversal must map poly-
nomials to polynomials. Hence a bi-rational transformation b acting as a surjection from
the modified surface to the original one must be in question (for bi-rational geometry see
http://tinyurl.com/yadoo3ot). At the singularity b is many-to-one y so that at this point
inverse image is multivalued and gives rise to the blowing up.

The equation P (x1, x2, x3) = 0 combined with the equations xiyj − xjyi = 0 by putting
y3 = 1 (the coordinates are projective) leads to a parametric representation of S using y1

and y2 as coordinates instead of x1 and x2. Origin is replaced with CP1. This representation
is actually much more general. Whitten [A58] gives a systematic description of resolution of
singularities using this representation. For instance, cusp singularity P (x1, x2) = x2

1−x3
2 = 0

is discussed as a special case.

3. Topologically the blow up process corresponds to the gluing of CP2 to the algebraic surface
A : A→ A#CP2 and clearly makes it more complex. One can say that gluing occurs along
sphere CP1 and since the process involves several steps several spheres are involved with the
resolution of singularities.

4. ADE classification for resolutions of double point singularities of algebraic surfaces

ADE classification emerges for co-dimension one double point singularities of complex sur-
faces in C3 known as Du Val singularities. The surface itself can be seen locally as C2. These
surfaces are 4-D in real sense can have self-intersections with real dimension 2. In the singular point
the dimension of the intersection is reduced and the dimension of tangent space is reduced (the
rank of Jacobian is not maximal). The vertices of cone and cusp are good examples of singularities.

The subgroup G ⊂ SU(2) has a natural action in C2 and it appears in the canonical
representation of the singularity as orbifold C2/G. This helps to understand the appearance of
the McKay graph of G. The resolved singularities are characterized by a set of projective lines
CP1 with intersection matrix in CP2 characterized by McKay graph of G. Why the number of
projective lines equals to the number of irrepss of G appearing as nodes in McKay graph looks to
me rather mysterious. Reid’s article [A107] gives the characterization of groups G and canonical
forms of the polynomials defining the singular surfaces.

The reason why Du Val singularities are so interesting from TGD point of view is that
complex surfaces in Du Val theory have real dimension 4 and are surfaces in space of real dimension
6. The intersections of the branches of the 4-surfaces have real dimension D = 2 in the generic
case. In TGD space-time surfaces as preferred extremals have real dimension 4 and assumed
possess complex structure or its Minkowskian generalization that I have called Hamilton-Jacobi
structure [K80].

http://tinyurl.com/yc7x3ohx
http://tinyurl.com/yadoo3ot
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10.4.2 Do McKay graphs of Galois groups give overall view about clas-
sical and quantum dynamics of quantum TGD?

McKay graphs for Galois groups are interesting from TGD view point for several reasons. Galois
groups are conjectured to be the number theoretical symmetries for the hierarchy of extensions
of rationals defining hierarchy of adelic physics [L24] [L22] and the notion of CFT is expected to
generalize in TGD framework so that ADE classification for minimal CFTs might generalize to a
classification of minimal number theoretic CFTS by Galois groups.

1. Vision

The arguments leading to the vision are roughly following.

1. Adelic physics postulates a hierarchy of quantum physics with adeles at given level associated
with extension of rationals characterized partially by Galois group and ramified primes of
extension. The dimension of the extensions dividing the order of Galois group is excellent
candidate for defining the value of Planck constant heff/h = n and ramified primes could
correspond to preferred p-adic primes. The discrete sets of points of space-time surface for
which embedding space coordinates are in the extension define what I have interpreted as
cognitive representations and can be said to be in the intersection of all number fields involved
forming kind of book like structure with pages intersecting at the points with coordinates in
extension.

Galois groups would define a hierarchy of theories and the natural first guess is that Galois
groups take the role of subgroups of SU(2) in CFTs with SU(2) KMA as symmetry. Could
the MacKay graphs defining the fusion algebra of Galois group define the fusion algebra of
corresponding minimal number theoretic QFTs in analogy with minimal conformal models?
This would fix the primary fields of theories assignable to given level of adele hierarchy to
be minimal representations of Gal perhaps having also interpretation as representations of
KMAs or their generalization to TGD framework.

2. The analogies between TGD and the theory of Du Val singularities is intriguing. Complex
surfaces in Du Val theory have real dimension 4 and are surfaces in space of real dimension 6.
The intersections of the branches of the 4-surfaces have real dimension D = 2 in the generic
case. In TGD space-time surfaces have real dimension 4 and possess complex structure or
its Minkowskian generalization that I have called Hamilton-Jacobi structure.

The twistor bundle of space-time surface has 2-sphere CP1 as a fiber and space-time surface
as base [K8, L26]. Space-time surfaces can be realized as sections in their own 6-D twistor
bundle obtained by inducing twistor structure from the product T (M4)× T (CP2) of twistor
bundles of M4 and CP2. Section is fixed only modulo gauge choice, which could correspond to
the choice of the Kähler form defining twistor structure from quaternionic units represented
as points of S2. Even if this choice is made, U(1) gauge transformations remain and could
correspond to gauge transformations of WCW changing its Kähler gauge potential by gradient
and adding to Kähler function a real part of holomorphic function of WCW coordinates.

If the embedding of 4-D space-time surface as section can become singular in given gauge,
it will have self-intersections with dimension 2 possibly assignable to partonic 2-surfaces and
maybe also string world sheets playing a key role in strong form of holography (SH). Could
SH mean that information about classical and quantum theory is coded by singularities of
the embedding of space-time surface to twistor bundle. This would be highly analogous to
what happens in the case of complex functions and also in twistor Grassmann theory whether
the amplitudes are determined by the data at singularities.

3. Where would the intersections take place? Space-time regions with Minkowskian and Eu-
clidian signature of metric have light-like orbits of partonic 2-surfaces as intersections. These
surfaces are singular in the sense that the metric determinant vanishes and tangent space of
space-time surface becomes effectively 3-D: this would correspond to the reduction of tangent
space dimension of algebraic surface at singularity. It is attractive to think that the lifts of
Minkowskian and Euclidian space-time sheets have twistor spheres, which only intersect and
have intersection matrix represented by McKay graph of Gal.
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What about string world sheets? Does it make sense to regard them as intersections of 4-D
surfaces? This does not look plausible idea but there are also other characterizations of string
world sheets. One can also ask about the interpretation of the boundaries of string world
sheets, in particular the points at the partonic 2-surfaces. How could they relate to singular-
ities? The points of cognitive representation at partonic 2-surfaces carrying fermion number
should belong to cognitive representation with embedding space coordinates belonging to an
extension of rationals.

4. In Du Val theory the resolution of singularity means that one adds additional points to a
double singularity: the added points form projective sphere CP1. The blowing up process
is like lifting self-intersecting curve to a non-singular curve by embedding it into 3-D space
so that the original curve is its projection. Could singularity disappear as one looks at 6-D
objects instead of 4-D object? Could the blowing up correspond in TGD to a transition
to a new gauge in which the self intersection disappears or is shifted on new place? The
intersections of 4-surfaces in 6-space analogous to roots of polynomial are topologically stable
suggesting that they can be only shifted by a new choice of gauge.

Self-intersection be a genuine singularity if the spheres CP1 defining the fibers of the twistor
bundles of branches of the space-time surface do not co-incide in the 2-D intersection. In
the generic case they would only intersect in the intersection. Could the McKay diagram of
Galois group characterize the intersection matrix?

5. The big vision could be following. Galois groups characterize the singularities at given level
of the adelic hierarchy and code for the multiplets of primary fields and for the analogs of
their fusion rules for TGD counterparts of minimal CFTs. Note that singularities themselves
identified as partonic 2-surfaces and possibly also light partonic orbits and possibly even
string world sheets are not restricted in any manner.

This idea need not be so far-fetched as it might look at first.

1. One considers twistor lift and self-intersections indeed occur also in twistor theory. When
the M4 projections of two spheres of twistor space CP3 (to which the geometric twistor space
T (M4) = M4 × S2 has a projection) have light-like separation, they intersect. In twistor
diagrams the intersection corresponds to an emission of massless particle.

2. The physical expectation is that this kind of intersections could occur also for the twistor
bundle associated with the space-time surface. Most naturally, they could occur along the
light-like boundary of causal diamond (CD) for points with light-like separation. They could
also occur along the partonic orbits which are light-like 3-surfaces defining the boundaries
between Minkowskian and Euclidian space-time regions. The twistor spheres at the ends of
light-like curve could intersect.

Why the number of intersecting twistor spheres should reduce to the number n(irred,Gal) of
irreducible representations (irreps) of Gal, which equals to n(Gal) in Abelian case but is otherwise
smaller? This question could be seen as a serious objection.

1. Does it make sense to think that although there are n(Gal) in the local fiber of twistor bundle,
the part of Galois fiber associated with the twistor fiber CP1 has only n(irrep,Gal) CP1:s
and even that the spheres could correspond to irreps of Gal. I cannot invent any obvious
objection against this. What would happen that Could this mean realization of quantum
classical correspondence at space-time level.

2. There are n(irrep,G) irreps and
∑
i n

2
i = n(G). n2

i points at corresponding sheet labelled by
irrep. The number of twistor spheres collapsing to single one would be ni for ni-D irrep so
that instead of states of representations the twistor spheres would correspond to irrep. One
would have analogy with the fractionization of quantum numbers. The points assignable to
ni-D representations would become effectively 1/ni-fractionized. At the level of base space
this would not happen.
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Phase transitions reducing heff/h

In TGD framework one can imagine also other kinds of singularities. The reduction of Gal to its
subgroup Gal/H, where H is normal subgroup defining Galois group for the Gal as extension of
Gal/H is one such singularity meaning that the H orbits of space-time sheets become trivial.

1. The action of Gal could reduce locally to a normal subgroup H so that Gal would be replaced
with Gal/H. In TGD framework this would correspond to a phase transition reducing
the value of Planck constant heff/h = n(Gal) labelling dark matter phases to heff/h =
n(Gal/H) = n(Gal)/n(H). The reduction to Gal/H would occur automatically for the
points of cognitive representation belonging to a lower dimensional extension having Gal/H
as Galois group. The singularity would occur for the cognitive points of both space-time
surface and twistor sphere and would be analogous to n(H)-point singularity.

2. A singularity of the discrete bundle defined by Galois group would be in question and is
assumed to induce similar singularity of n(Gal) -sheeted space-time surface and its twistor
lift. Although the singularity would occur for the ends of strings it would induce reduction
of the extension of rationals to Gal/H, which should also mean that string world sheets have
representation with WCW coordinates in smaller extension of rationals.

3. This would be visible as a reduction in the spectrum of primary fields of number theoretic
variant of minimal model. I have considered the possibility that the points at partonic 2-
surfaces carrying fermions located at the ends of string world sheets could correspond to
singularities of this kind. Could string world sheets could correspond to this kind of bundle
singularities? This singularity would not have anything to do with the above described self-
interactions of the twistor spheres associated with the Minkowskian and Euclidian regions
meeting at light-like orbits of partonic 2-surfaces.

4. This provides a systematic procedure for constructing amplitudes for the phase transitions
reducing heff/h = n(Gal) to heff/h = n(Gal/H). The representations of Gal would be
simply decomposed to the representations of Gal(G/H) in the vertex describing the phase
transition. In the simplest 2-particle vertex the representation of Gal remains irreducible as
representation of Gal/H. Transition amplitudes are given by overlap integrals of represen-
tation functions of group algebra representations of Gal restricted to Gal/H with those of
Gal/H.

The description of transitions in which particles with different Galois groups arrive in same
diagram would look like follows. The Galois groups must form an increasing sequence
... ⊂ Gali = Gali+1/Hi+1 ⊂ .... The representations of the largest Galois group would
be decomposed to the representations of smallest Galois group so that the scattering am-
plitudes could be constructed using the fusion algebra of the smallest Galois group. The
decomposition to should be associative and commutative and could be carried in many ways
giving the same outcome at the final step.

Also quaternionic and octonionic automorphisms might be important

What about the role of subgroups of SU(2)? What roles they could have? Could also they classify
singularities in TGD framework?

1. SU(2) is indeed realize as multiplication of quaternions. M8 − H correspondence suggests
that space-time surfaces in M8 can be regarded as associative or co-associative (normal space-
is associative. Associative translates to quaternionic. Associativity makes sense also at the
level of H although it is not necessary. This would mean that the tangent space of space-time
surface has quaternionic structure and the multiplication by quaternions is makes sense.

2. The Galois group of quaternions is SO(3) and has discrete subgroups having discrete sub-
groups of SU(2) as covering groups. Quaternions have action on the spinors from which
twistors are formed as pairs of spinors. Could quaternionic automorphisms be lifted to a an
SU(2) action on these spinors by quaternion multiplication? Could one imagine that the
representations formed as tensor powers of these representations give finite irreps of discrete
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subgroups of SU(2) defining ground states of SU(2) KMA a representations and define the
primary fields of minimal models in this manner?

3. Galois groups for extensions of rationals have automorphic action on SO(3) and its algebraic
subgroups replacing matrix elements with their automorphs: for subgroups represented by
rational matrices the action is trivial. One would have analogs of representations of Lorentz
group SL(2, C) induced from spin representations of finite subgroups G ⊂ SU(2) by Lorentz
transformations realizing the representation in Lobatchevski space. Lorentz group would be
replaced by Gal and the Lobatchevski spaces as orbit with the representation of Gal in its
group algebra. An interesting question is whether the hierarchy of discrete subgroups of
SU(2) in McKay correspondence relates to quaternionicity.

G2 acts as octonionic automorphisms and SU(3) appears as its subgroup leaving on octo-
nionic imaginary unit invariant. Could these semi-direct products of Gal with these automorphism
groups have some role in adelic physics?

About TGD variant of ADE classification for minimal models

I already considered the ADE classification of minimal models. The first question is whether the
finite subgroups G ⊂ SU(2) are replaced in TGD context with Galois groups or with their semi-
direct products G / Gal. Second question concerns the interpretation of the Dynkin diagram of
affine ADE type Lie algebra. Does it correspond to a real dynamical symmetries.

1. Could the MacKay correspondence and ADE classification generalize? Could fusion algebras
of minimal models for KMA associated with general compact Lie group G be classified by
the fusion algebras of the finite subgroups of G. This generalization seems to be discussed
in [B27] (see http://tinyurl.com/ycmyjukn).

2. Could the fusion algebra of Galois group Gal give rise to a generalization of the minimal
model associated with a KMA of Lie group G ⊃ Gal. The fusion algebra of Gal would be
identical with that for the primary fields of KMA for G. Galois groups could be also grouped
to classes consisting of Galois groups appearing as a subgroup of a given Lie group G.

3. In TGD one has a fractal hierarchy of isomorphic supersymplectic algebras (SSAs) (the con-
formal weights of sub-algebra are integer multiples of those of algebra) with gauge conditions
stating that given sub-algebra of SSA and its commutator with the entire algebra annihilates
the physical states. The remnant of the full SSA symmetry algebra would be naturally KMA.

The pair formed by full SSA and sub-SSA would correspond to pair formed by group G and
normal subgroup H and the dynamical KMA would correspond to the factor group G/H.
This conjecture generalizes: one can replace G with Galois group and SU(2) KMA with a
KMA continuing Gal as subgroup. One the other hand, one has also hierarchies of extensions
of rationals such that i + 1:th extension of rationals is extension of i:th extension. Gi is a
normal subgroup of Gi+1 so that the group Gali+1,i = Gali+1/Gali acts as the relative Galois
group for i+ 1:th extension as extensions of i:th extension.

This suggest the conjecture that the Galois groups Gali for extension hierarchies correspond
to the inclusion hierarchies SSAi ⊃ SSAi+1 of fractal sub-algebras of SSA such that the
gauge conditions for SSAi define a hierarchy KMAi of dynamical KMAs acting as dynamical
symmetries of the theory. The fusion algebra of KMAi theory would be characterized by
Galois group Gali.

4. I have considered the possibility that the McKay graphs for finite subgroups G ⊂ SU(2)
indeed code for root diagrams of ADE type KMAs acting as dynamical symmetries to be dis-
tinguished from SU(2) KMA symmetry and from fundamental KMA symmetries assignable
to the isometries and holonomies of M4 × CP2.

One can of course ask whether also the fundamental symmetries could have a representation
in terms of Gal or its semi-direct product G / Gal with a finite sub-group automorphism
group SO(3) of quaternions lifting to finite subgroup G ⊂ SU(2) acting on spinors. This is
not necessary since Gal can form semidirect products with the algebraic subgroups of Lie

http://tinyurl.com/ycmyjukn
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groups of fundamental symmetries (Langlands program relies on this). In the generic case
the algebraic subgroups spanned by given extension of rationals are infinite. When the finite
subgroup G ⊂ SU(2) is closed under Gal automorphism, the situation changes, and these
extensions are expected to be in a special role physically.

The number theoretic generalization of the idea that affine ADE group acts as symmetries
would be roughly like following. The nodes of the McKay graph of G / Gal label its irreps,
which should be in 1-1 correspondence with the Cartan algebra of the KMA. The KMA
counterparts of the local bilinearGal invariants associated withGal irreps would give currents
of dynamical KMA having unit conformal weight. The convolution of primary fields with
respect to conformal weight would be completely analogous to that occurring in the expression
of energy momentum tensor as local bilinears of KMA currents.

If the free field construction using the local invariants as Cartan algebra defined by the irreps
of G / Gal works, it gives rise to charged primary fields for the dynamical KMA labelled by
roots of the corresponding Lie algebra. For trivial Gal one would have ADE group acting as
dynamical symmetries of minimal model associated with G ⊂ SU(2).

5. Number theoretic Langlands conjecture [L14] [L11] generalizes this to the semidirect product
G0 / Gal algebraic subgroup G0 of the original KMA Lie group (p-adicization allows also
powers of roots of e in extension). One can imagine a hierarchy of KMA type algebras
KMAn obtained by repeating the procedure for the G1 /Gal, where G1 is discrete subgroup
of the new KMA Lie group.

6. In CFTs are also other ways to extend VA or SVA (Super-Virasoro algebra) to a larger algebra
by discovering new dynamical symmetries. The hope is that symmetries would allow to solve
the CFT in question. The general constraint is that the conformal weights of symmetry
generators are integer or half-integer valued. For the energy momentum tensor defining VA
the conformal weight is h = 2 whereas the conformal weights of primary fields for minimal
models are rational numbers.

The simplest extension is SVA involving super generators with h = 3/2. Extension of
(S)VA by (S)KMA so that (S)VA acts by semidirect product on (S)KMA means adding
(S)KMA generators with with h = 1 (and 1/2). The generators of Wn-algebras (see http:

//tinyurl.com/y93f6eoo) have either integer or half integer conformal weights and the
algebraic operations are defined as ordered products (an associative operation). These ex-
tensions are different from the proposed number theoretic extension for which the restriction
to a discrete subgroup of KMA Lie group is essential.

10.5 Appendix

I have left the TGD counterpart of fake flatness condition in Appendix. Also a little TGD glossary
is included.

10.5.1 What could be the counterpart of the fake flatness in TGD frame-
work?

Schreiber considers the n-variant of gauge field concept with gauge potential A and gauge field
F = DA replaced with a hierarchy of gauge potential like entities Ak), k = 1, .., n with DAn) = 0
and ends up in n = 2 case to what he calls fake flatness condition DA1) = A2). This raises a chain
of questions.

Could higher gauge fields of Schreiber and Baez [B35, B30] provide a proper description of
the situation in finite measurement resolution? Could induction procedure make sense for them?
Should one define the projections of the classical fields by replacing ordinary H-coordinates with
their quantum counterparts? Could these reduce to c-numbers for number-theoretically commuta-
tive 2-surfaces with commutative tangent space? What about second fundamental form orthogonal
to the string world sheet? Must its trace vanish so that one would have minimal 2-surface?

http://tinyurl.com/y93f6eoo
http://tinyurl.com/y93f6eoo
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The proposal of Schreiber is a generalization of a massless gauge theory. My gut feeling is
that the non-commutative counterpart of space-time surface is not promising in TGD framework.
My feelings are however mixed.

1. The effective reduction of SSA and PSCA to quantal variants of Kac-Moody algebras gives
rise to a theory much more complex than gauge theory. On the other hand, the reduction to
Galois groups by finiteness of measurement resolution would paradoxically reduce TGD to
extremely simple theory.

2. Analog of Yang Mills theory is not enough since it describes massless particles. Massless
states in 4-D sense are only a very small portion of the spectrum of states in TGD. Stringy
mass squared spectrum characterizes these theories rather than massless spectrum. On the
other hand, in TGD particles are massless in 8-D sense and this is crucial for the success of
generalized twistor approach.

3. To define a generalization of gauge theory in WCW one needs homology and cohomology
for differential forms and their duals. For infinite-dimensional WCW the notion of dual
is difficult to define. The effective reduction of SSA and PSCA to SKMAs could however
effectively replace WCW with a coset space of the Lie-group associated with SKMA and
finite dimension would allow tod define dual.

4. The idea about non-Abelian counterparts of Kähler gauge potential A and J in WCW does
not look promising and the TGD counterpart of the fake flatness condition does not however
encourage this.

Just for curiosity one could however ask whether one could generalize the Kähler structure
of WCW to n-Kähler structure to describe finite measurement resolution at the level of WCW and
whether also now something analogous to the fake flatness condition emerges. The “fake flatness”
condition has interesting analogy in TGD framework starting from totally different geometric
vision.

1. SSA acts as dynamical symmetries on fermions at string world sheets. Gauge condition
would make the situation effectively finite-dimensional and allow to define if the effectively
finite-D variant of WCW n-structures using ordinary homotopies and homology and coho-
mology. Also n-gauge fields could be defined in this effectively finite-D WCW and they would
allow a description in terms of string world sheets. The interpretation could be in terms of
generalization of Bohm-Aharonov phase from space-time level to Berry phase in abstract
configuration space defined now in reduced WCW.

2. The Kähler form of H = M4 × CP2 (involving also the analog of Kähler form for M4) can
be induced to space-time level. When limited to the string world sheet is both the curvature
form of Kähler potential and the analog of flat 2-connection defining the 1-connection in the
approaches of Schreiber’s and Baez so that one would have B = J and dB = 0.

3. 2-form J as it is interpreted in Screiber’s approach is hwoever not enough to construct
WCW geometry. The generalization of the geometry of M4×CP2 (involving also the analog
of Kähler form for M4) to involve higher forms and its induction to the space-time level and
level of WCW looks rather awkward idea and does not bring in anything new.

10.5.2 A little glossary

Topological Geometrodynamics (TGD): TGD can be regarded as a unified theory of funda-
mental interactions. In General Relativity space-time time is abstract pseudo-Riemannian manifold
and the dynamical metric of the space-time describes gravitational interactions. In TGD space-
time is a 4-dimensional surface of certain 8-dimensional space, which is non-dynamical and fixed
by either physical or purely mathematical requirements. Hence space-time has shape besides met-
ric properties. This identification solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity. Even more, sub-manifold geometry, being considerably
richer in structure than the abstract manifold geometry behind General Relativity, leads to a
geometrization of known fundamental interactions and elementary particle quantum numbers.
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Many-sheeted space-time, topological quantization, quantum classical corre-
spondence (QCC): TGD forces the notion of many-sheeted space-time (see http://tinyurl.

com/mf99gpv) with space-time sheets identified as geometric correlates of various physical objects
(elementary particles, atoms, molecules, cells, ..., galaxies, ...). Quantum-classical correspondence
(QCC) states that all quantum notions have topological correlates at the level of many-sheeted
space-time.

Topological quantization: Topological field quantization is one of the basic distinctions
between TGD and Maxwell’s electrodynamics and GRT and means that various fields decompose
to topological field quanta: radiation fields to “topological light rays”; magnetic fields to flux tube
structures; and electric fields to electric flux quanta (electrets). Topological field quantization
means that one can assign to every material system a field (magnetic) body, usually much larger
than the material system itself, and providing a representation for various quantum aspects of the
system.

Strong form of holography (SH): SH states that space-time surfaces as preferred ex-
tremals can be constructed from the data given at 2-D string world sheets and by a discrete
set of points defining the cognitive representation of the space-time surface as points common
to real and various p-adic variants of the space-time surface (intersection of realities and various
p-adicities). Points of the cognitive representation have embedding space coordinates in the ex-
tension of rationals defining the adele in question. Effective 2-dimensionality is a direct analogy
for the continuation of 2-D data to analytic function of two complex variables.

Zero energy ontology (ZEO): In ZEO quantum states are replaced by pairs of positive
and negative energy states having opposite total quantum numbers. The pair corresponds to the
pair of initial and final state for a physical event in classical sense. The members of the pair
are at opposite boundaries of causal diamond (CD) (see http://tinyurl.com/mh9pbay), which is
intersection of future and past directed light-cones with each point replaced with CP2. Given CD
can be regarded as a correlate for the perceptive field of conscious entity.

p-Adic physics, adelic physics, hierarchy of Planck constants, p-adic length scale
hypothesis: p-Adic physics is a generalization of real number based physics to p-adic number
fields and interpreted as a correlate for cognitive representations and imagination. Adelic physics
fuses real physics with various p-adic physics (p = 2, 3, 5, ...) to adelic physics. Adele is structure
formed by reals and extensions of various p-adic number fields induced by extensions of rationals
forming an evolutionary hierarchy. Hierarchy of Planck constants corresponds to the hierarchy of
orders of Galois groups for these extensions. Preferred p-adic primes satisfying p-adic length scale
hypothesis p ' 2k, are so called ramified primes for certain extension of rationals appearing as
winners in algebraic evolution.

Cognitive representation: Cognitive representation corresponds to the intersection of
the sensory and cognitive worlds - realities and p-adicities - defined by real and p-adic space-
time surfaces. The points of the cognitive representation have H-coordinates which belong to
an extension of rationals defining the adele. The choice of H-coordinates is in principle free but
symmetries of H define preferred coordinates especially suitable for cognitive representations. The
Galois group of the extension of rationals has natural action in the cognitive representation, and
one can decompose it into orbits, whose points correspond the sheets of space-time surface as Galois
covering. The number n of sheets equals to the dimension of the Galois group in the general case
and is identified as the value heff/h = n of effective Planck constant characterizing levels in the
dark matter hierarchy. One can also consider replacing space-time surfaces as points of WCW with
their cognitive representations defined by the cognitive representation of the space-time surface and
defining the natural coordinates of WCW point.

Quantum entanglement, negentropic entanglement (NE), Negentropy maximiza-
tion principle (NMP): Quantum entanglement does not allow any concretization in terms
of everyday concepts. Schrödinger cat is the classical popularization of the notion (see http:

//tinyurl.com/lpjcjm9): the quantum state, which is a superposition of the living cat + the
open bottle of poison and the dead cat + the closed bottle of poison represents quantum entangled
state. Schrödinger cat has clearly no self identity in this state.

In adelic physics one can assign to the same entanglement both real entropy and various p-
adic negentropies identified as measures of conscious information. p-Adic negentropy - unlike real
- can be positive, and one can speak of negentropic entanglement (NE). Negentropy Maximization
Principle (NMP) states that it tends to increase. In the adelic formulation NMP holding true only

http://tinyurl.com/mf99gpv
http://tinyurl.com/mf99gpv
http://tinyurl.com/mh9pbay
http://tinyurl.com/lpjcjm9
http://tinyurl.com/lpjcjm9
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in statistical sense is a consequence rather than separate postulate.
Self, subself, self hierarchy: In ZEO self is generalized Zeno effect. At the passive

boundary nothing happens to the members of state pairs and the boundary remains unaffected.
At active boundary members of state pairs change and boundary itself moves farther away from the
passive boundary reduction by reduction inducing localization of the active boundary in the moduli
space of CDs after unitary evolution inducing delocalization in it. Self dies as the first reduction
takes place at opposite boundary. A self hierarchy extending from elementary particle level to the
level of the entire Universe is predicted. Selves can have sub-selves which they experience as mental
images. Sub-selves of two separate selves can quantum entangle and this gives rise to fusion of the
mental images and the fused mental image is shared by both selves.

Sensory representations: The separation of data processing and its representation is
highly desirable. In computers processing of the data is performed inside CPU and representation
is realized outside it (monitor screen, printer,...). In standard neuroscience it is however believed
that both data processing and representations are realized inside brain. TGD leads the separation
of data processing and representations: the “manual” of the material body provided by field (or
magnetic) body serves as the counterpart of the computer screen at which the sensory and other
representations of the data processed in brain are realized. Various attributes of the objects of the
perceptive field processed by brain are quantum entangled with simple “something exists” mental
images at the MB. The topological rays of EEG serve are the electromagnetic bridges serving as
the topological correlates for this entanglement.



Chapter 11

Is Non-associative Physics and
Language Possible only in
Many-Sheeted Space-time?

11.1 Introduction

In Thinking Allowed Original (see https://www.facebook.com/groups/thinkallowed/) there
was very interesting link added by Ulla about the possibility of non-associative quantum mechanics
(see http://phys.org/news/2015-12-physicists-unusual-quantum-mechanics.html#jCp).

Also I have been forced to consider this possibility.

1. The 8-D embedding space of TGD has octonionic tangent space structure and octonions are
non-associative. Octonionic quantum theory however has serious mathematical difficulties
since the operators of Hilbert space are by definition associative. The representation of say
octonionic multiplication table by matrices is possible but is not faithful since it misses the
associativity. More concretely, so called associators associated with triplets of representation
matrices vanish. One should somehow transcend the standard quantum theory if one wants
non-associative physics.

2. Associativity seems to be fundamental in quantum theory as we understand it recently.
Associativity is a fundamental and highly non-trivial constraint on the correlation functions
of conformal field theories. It could be however broken in weak sense: as a matter of fact,
Drinfeld’s associator emerges in conformal field theory context. In TGD framework classical
physics is an exact part of quantum theory so that quantum classical correspondence suggests
that associativity could play a highly non-trivial role in classical TGD. The conjecture is
that associativity requirement fixes the dynamics of space-time sheets - preferred extremals
of Kähler action - more or less uniquely. One can endow the tangent space of 8-D imbedding
H = M4 × CP2 space at given point with octonionic structure: the 8 tangent vectors of the
tangent space basis obey octonionic multiplication table.

Space-time realized as n-D surface in 8-D H must be either associative or co-associative:
this depending on whether the tangent space basis or normal space basis is associative. The
maximal dimension of space-time surface is predicted to be the observed dimension D = 4
and tangent space or normal space allows a quaternionic basis.

3. There are also other conjectures [K77] about what the preferred extremals of Kähler action
defining space-time surfaces are.

(a) A very general conjecture states that strong form of holography allows to determine
space-time surfaces from the knowledge of partonic 2-surfaces and 2-D string world
sheets.
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(b) Second conjecture involves quaternion analyticity and generalization of complex struc-
ture to quaternionic structure involving generalization of Cauchy-Riemann conditions.

(c) M8 −M4 × CP2 duality stating that space-time surfaces can be regarded as surfaces
in either M8 or M4 × CP2 is a further conjecture.

(d) Twistorial considerations select M4×CP2 as a completely unique choice since M4 and
CP2 are the only spaces allowing twistor space with Kähler structure. The conjecture
is that preferred extremals can be identified as base spaces of 6-D sub-manifolds of
the product CP3 × SU(3)/U(1)× U(1) of twistor spaces associated with M4 and CP2

having the property that it makes sense to speak about induced twistor structure.

The “super(optimistic)” conjecture is that all these conjectures are equivalent.

The motivation for what follows emerged from the observation that language is an essentially
non-associative structure as the necessity to parse linguistic expressions essential also for computa-
tion using the hierarchy of brackets makes obvious. Hilbert space operators are however associative
so that non-associative quantum physics does not seem plausible without an extension of what one
means with physics. Associativity of the classical physics at the level of single space-time sheet in
the sense that tangent or normal spaces of space-time sheets are associative as sub-spaces of the
octonionic tangent space of 8-D embedding space M4×CP2 is one of the key conjectures of TGD.

But what about many-sheeted space-time? The sheets of the many-sheeted space-time form
hierarchies labelled by p-adic primes and values of Planck constants heff = n × h. Could these
hierarchies provide space-time correlates for the parsing hierarchies of language and music, which
in TGD framework can be seen as kind of dual for the spoken language? For instance, could
the braided flux tubes inside larger braided flux tubes inside... realize the parsing hierarchies of
language, in particular topological quantum computer programs? And could the great differences
between organisms at very different levels of evolution but having very similar genomes be under-
stood in terms of widely different numbers of levels in the parsing hierarchy of braided flux tubes-
that is in terms of magnetic bodies as indeed proposed. If the intronic portions of DNA connected
by magnetic flux tubes to the lipids of lipid layers of nuclear and cellular membranes make them
topological quantum computers, the parsing hierarchy could be realized at the level of braided
magnetic bodies of DNA.

Fortunately the mathematics needed to describe the breaking of associativity at fundamental
level seems to exist. The hierarchy of braid group algebras forming an operad combined with the
notions of quasi-bialgebra and quasi-Hopf algebra discovered by Drinfeld are highly suggestive
concerning the realization of weak breaking of associativity. With good luck this breaking of
associativity is all that is needed. With not so good luck this breaking of associativity takes
place already at the level of single space-time sheets and something else is needed in many-sheeted
space-time.

11.2 Is Non-associative Physics Possible In Many-sheeted
Space-time?

The key question in the sequel is whether non-associative physics could emerge in TGD via many-
sheeted space-time as an outcome of many-sheetedness and therefore distinguishing TGD from
GRT and various QFTs.

11.2.1 What Does Non-associativity Mean?

To answer this question one must first understand what non-associativity could mean.

1. In non-associative situation brackets matter. A(BC) is different from (AB)C. Here AB
need not be restricted to a product or sum: it can be anything depending on A and B.
From schooldays or at least from the first year calculus course one recalls the algorithm:
when calculating the expression involving brackets one first finds the innermost brackets
and calculates what is inside them, then proceed to the next innermost brackets, etc... In
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computer programs the realization of the command sequences involving brackets is called
parsing and compilers perform it. Parsing involves decomposition of program to modules
calling modules calling.... Quite generally, the analysis of linguistic expressions involves
parsing. Bells start to ring as one realizes that parsings form a hierarchy as also do the
space-time sheets!

2. More concretely, there is hierarchy of brackets and there is also a hierarchy of space-time
sheets labelled by p-adic primes and perhaps also by Planck constants heff = n× h. B and
C inside brackets form (BC), something analogous to a bound state or chemical compound.
In TGD this something could correspond to a “glueing” space-time sheets B and C at the
same larger space-time sheet. More concretely, (BC) could correspond to braided pair of
flux tubes B and C inside larger flux tube, whose presence is expressed as brackets (..). As
one forms A(BC) one puts flux tube A and flux tube (BC) containing braided flux tubes B
and C inside larger flux tube. For (AB)C flux one puts tube (AB) containing braided flux
tubes A and B and tube C inside larger flux tube. The outcomes are obviously different.

3. Non-associativity in this sense would be a key signature of many-sheeted space-time. It could
show itself in say molecular chemistry, where putting on same sheet could mean formation
of chemical compound AB from A and B. Another highly interesting possibility is hierarchy
of braids formed from flux tubes: braids can form braids, which in turn can form braids,...
Flux tubes inside flux tubes inside... Maybe this more refined breaking of associativity could
underly the possible non-associativity of biochemistry: biomolecules looking exactly the same
would differ in subtle manner.

4. What about quantum theory level? Non-associativity at the level of quantum theory could
correspond to the breaking of associativity for the correlation functions of n fields if the
fields are not associated with the same space-time sheet but to space-time sheets labelled by
different p-adic primes. At QFT limit of TGD giving standard model and GRT the sheets are
lumped together to single piece of Minkowski space and all physical effects making possible
non-associativity in the proposed sense are lost. Language would be thus possible only in
TGD Universe!

11.2.2 Language And Many-sheeted Physics?

Non-associativity is an essentially linguistic phenomenon and relates therefore to cognition. p-Adic
physics labelled by p-adic primes fusing with real physics to form adelic physics are identified as
the physics of cognition in TGD framework.

1. Could many-sheeted space-time of TGD provides the geometric realization of language like
structures? Could sentences and more complex structures have many-sheeted space-time
structures as geometrical correlates? p-Adic physics as physics of cognition would suggest
that p-adic primes label the sheets in the parsing hierarchy. Could bio-chemistry with the
hierarchy of magnetic flux tubes added, realize the parsing hierarchies?

2. DNA is a language and might provide a key example about parsing hierarchy. The mystery
is that human DNA and DNAs of most simplest creatures do not differ much. Our cousins
have almost identical DNA with us. Why do we differ so much? Could the number of parsing
levels be the reason- p-adic primes labelling space-time sheets? Could our DNA language
be much more structured than that of our cousins. At the level of concrete language the
linguistic expressions of our cousin are indeed simple signals rather than extremely complex
sentences of old-fashioned German professor forming a single lecture each. Could these
parsing hierarchies realize themselves as braiding hierarchies of magnetic flux tubes physically
and - more abstractly - as analos of parsing hierarchies for social structures. Indeed, I
have proposed that the presence of collective levels of consciousness having the hierarchy
of magnetic bodies as a space-time correlates distinguishes us from our cousins so that this
explanation is consistent with more quantitative one relying on language.

3. I have also proposed that intronic portion of DNA is crucial for understanding why we differ
so much from our cousins [K3, K81]. How does this view relate to the above proposal? In the
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simplest model for DNA as topological quantum computer introns would be connected by
flux tubes to the lipids of nuclear and cell membranes. This would make possible topological
quantum computations with the braiding of flux tubes defining the topological quantum
computer program.

Ordinary computer programs rely on computer language. Same should be true about quan-
tum computer programs realized as braidings. Now the hierarchical structure of parsings
would correspond to that of braidings: one would have braids, braids of braids, etc... This
kind of structure is also directly visible as the multiply coiled structure of DNA. The braids
beginning from the intronic portion of DNA would form braided flux tubes inside larger
braided flux tubes inside.... defining the parsing of the topological quantum computer pro-
gram. The higher the number of parsing levels, the higher the position in the evolutionary
hierarchy. Each braiding would define one particular fundamental program module and tak-
ing this kind of braided flux tubes and braiding them would give a program calling these
programs as sub-programs.

4. The phonemes of language have no meaning to us (at our level of self hierarchy) but the
words formed by phonemes and involving at basic level the braiding of “phoneme flux tubes”
would have. Sentences and their substructures would in turn involve braiding of “word flux
tubes”. Spoken language would correspond to temporal sequences of braidings of flux tubes
at various hierarchy levels.

5. The difference between us and our cousins (or other organisms) would not be at the level of
visible DNA but at the level of magnetic body. Magnetic bodies would serve as correlates also
for social structures and associated collective levels of consciousness. The degree of braiding
would define the level in the evolutionary hierarchy. This is of course the basic vision of
TGD inspired quantum biology and quantum bio-chemistry in which the double formed by
organism and environment is completed to a triple by adding the magnetic body.

11.2.3 What About The Hierarchy Of Planck Constants?

p-Adic hierarchy is not the only hierarchy in TGD Universe: there is also the hierarchy of Planck
constants heff = n×h giving rise to a hierarchy of intelligences. What is the relationship between
these hierarchies?

1. I have proposed that speech and music are fundamental aspects of conscious intelligence and
that DNA realizes what I call bio-harmonies in quite concrete sense [L7] [K61]: DNA codons
would correspond to 3-chords. DNA would both talk and sing. Both language and music are
highly structured. Could the relation of heff hierarchy to language be same as the relation
of music to speech?

2. Are both musical and linguistic parsing hierarchies present? Are they somehow dual? What
does parsing mean for music? How musical heard sounds could give rise to the analog of
braided strands? Depending on the situation we hear music both as separate notes and as
chords as separate notes fuse in our mind to a larger unit like phonemes fuse to a word. Could
chords played by single instrument correspond to braidings of flux tubes at the same level?
Could the duality between linguistic and musical intelligence (analogous to that between
function and its Fourier transform) be very concrete and detailed and reflect itself also as
the possibility to interpret DNA codons both as three letter words and as 3-chords [L7]?

11.3 Braiding Hierarchy Mathematically

More precise formulation of the braided flux tube hierarchy leads naturally to the notions of braid
group and operad that I have considered earlier. They have a close relationship with quantum
groups - more precisely, bialgebras and Hopf algebras and their generalizations quasi-bialgebras and
quasi-Hopf algebras, which in turn allow to characterize what might be called minimal breaking of
associativity in terms of Drinfeld associator. These notions are already familiar from conformal field
theories and string theories them so that there are good hopes that no completely new mathematics
is not needed.
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It must be made clear that I am not a mathematician and the following is just a modest
attempt to understand what the problem is. I try to identify the algebraic structure possibly
allowing to realize the big vision and gather some results about these structures from Wikipedia:
I confess that I do not understand the formulas at the deeper level and my goal is to find their
physical interpretation in TGD framework.

11.3.1 How To Represent The Hierarchy Of Braids?

Before going to web to see how modern mathematics could help in the problem, try first to formulate
the situation more concretely. One must consider a more detailed representation for braids and
for their hierarchy.

Consider first rough physical geometric view about braids of braids represented in terms of
flux tubes.

1. Braid strands have two ends: one can label them as “lower” and “upper”. Flux tubes can be
labelled by p-adic prime p and heff = n×h. Magnetic flux tubes can carry monopole flux and
this could be crucial for the breaking of associativity - at least it is so in the proposed model
(see http://tinyurl.com/y7oom5kh). The possibility of apparent magnetic monopoles in
TGD framework indeed involves many-sheetedness in an essential manner: monopole flux
flows from space-time sheet to another one through wormhole contact. This can be taken as
one possible hint about the concrete physics involved.

2. One can get more precise picture by using formulas. One has labelling of flux tubes by primes
p and Planck constants heff : to be short call this label a, b, c, ... Since the values of p and
heff are graded one could also speak of grading. The states for given value of a assignable to
braid strands are labelled by the quantum states A,B, ... associated with them and analogous
to algebra elements. One must however consider all possible situations so that has operators
Aa, Ba, ... analogous to algebra elements of a graded algebra about which Clifford algebras
and super-algebras are familiar examples.

3. Consider now the physical interpretation for the breaking of associativity. For ordinary
associative algebra one considers A(BC) = (AB)C. This condition as such make sense if
A(BC) and (AB)C are inside same flux tube and perhaps also that the strands A,B,C are
not braids. In the general case one must must add the labels a, b, c, d and a, b1, c1, d1 and one
obtains ((AdBd)c)Cb)a and (Ab1(Bd1Cd1))c1)a. Obviously, these two states need not identical
unless one has a = b = c = d = b1 = c1 = d1, which is also possible and means that all
strands are at the same flux tube labelled by a. The challenge is to combine various almost
copies of algebraic structure defined by braidings and labelled by a, b, .. to larger algebraic
structure and formulate the breaking of associativity for this structure.

11.3.2 Braid Groups As Coverings Of Permutation Groups

Consider next the definition of braid group.

1. The notion of braiding can be algebraized using the notion of braid group Bn of n strands,
which is covering of the permutation group Sn. For ordinary permutations generating per-
mutations are exchanges of Pi two neighboring elements in the ordered set (a1, ..., an):
(ai, ai+1) → (ai+1, ai). Obviously one has P 2

i so that permutation is analogous to reflec-
tion. For braid group permutation is replaced to twisting of neighboring braid strand. It
looks like permutation if one looks at the ends of strands only. If one looks entire strands,
there is no reason to have P 2

i = 1 except possibly for the representation of braid group.
For arbitrarily large n that one has Pni 6= 1. 2-D braid group Bn can be represented as a
homotopies of 2-D plane with n punctures identifiable as ends of braid strands defined by
their non-intersecting orbits.

2. At the level of quantum description one must allow quantum superpositions of different braid-
ings and must describe the quantum state of braid as wave function in braid group: one has
element of group algebra of braid group. To each element of braid group one can assign
unitary matrix representing the braiding and this unitary matrix would define a “topological

http://tinyurl.com/y7oom5kh
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time evolution” defined by braiding transforming the initial state at the lower end of braid to
the state at upper end of braid. Hence it seems that braid group algebra is the proper math-
ematical notion. One has quantum superposition of topological time evolutions: something
rather abstract.

11.3.3 Braid Having Braids As Strands

Many-sheeted space-time makes possible fractal hierarchy of braids. Braid group in above sense
would act on flux tubes at the same space-time sheets or space-time of QFT and GRT. Braids can
have as strands braids so that there is hierarchy of braiding levels. The hierarchy of coilings of
DNA provides a simple example (very simple having not much to do with the hierarchy of braidings
for flux tubes).

1. Suppose that one has only two levels in the hierarchy. One has n braid strands/flux tubes
altogether and there are k larger flux tubes containing ni, i = 1, .., k flux tubes so that one
has

∑k
i=1 ni = n. One can imagine a coloring of the braid strands inside given flux tube

characterizing it. Only braid strands inside same flux tube - with the same color - can be
braided. The full braid group Bn braiding freely all n braid strands is restricted to a subg-
broup Bn1× ....×Bn2 . This group can be regarded as subgroup of Bn so that permutations of
Bni have a well-defined outcome, which seems however to be trivial classically. In quantum
situation the exchange of the factors Bni however corresponds to braiding and for non-trivial
quantum deformations its action is non-trivial. One has braided commutativity instead of
commutativity.

2. Besides this there are braidings for the k braids of braids and this gives braid group Bk
acting at upper level of hierarchy. Clearly the higher level braids bi, i = 1, ..., k and lower
level braids bij , j = 1, ..., ni form a two-levelled entity. The braid groups Bk and Bni form an
algebraic entity such that Bk acts by permuting the entities. Same holds true for the braid
group algebras. This structure generalizes to an entire hierarchy of braid groups and their
group algebras.

The hierarchy of braid group algebras seems to closely relate to a very general notion known
as operad (see http://tinyurl.com/yavyhcsk). The key motivation of the operad theory is to
model the computational trees resulting from parsing. The action of permutations/braidings on
the basic objects is central notion and one indeed has hierarchy of symmetric groups/braid groups
such that the symmetric/braid group at n + 1:th level permutes/braids the objects at n:th level.
Now the objects would be braids whose strands are braided. The braids can be strands of higher
level braids and these strands can be braided. The action of braidings extends to that on braid
group algebras defining candidates for wave functions.

11.4 General Formulation For The Breaking Of Associativ-
ity In The Case Of Operads

The formulas characterizing weak form of associativity by Drinfeld and others look rather myste-
rious without understanding of their origins. This understanding emerges from very simple but
general basic arguments. Instead of studying given algebra one transcends to a higher abstraction
level and studies - not the results of algebraic expressions - but the very process how the algebraic
expression is evaluated and what kind of rules one can pose on it. The rules can be abstracted to
what is called algebraic coherence.

The evaluation process - parsing - starts from inner most brackets and proceeds outwards
so that eventually all brackets have disappeared and one has the value for the expression. This
process can be regarded as a tree which starts from n inputs which are algebra elements, in the
recent case they could be braid group algebra elements.

For instance, (AB)C corresponds to an tree in which A,B,C are the branches. As one comes
downwards, A and B fuse in the upper node and AB and C in the lower node. One manner to see
this is as particle reaction proceeding backwards in time. For A(BC) B and C fuse to BC in the
upper node and A and BC at the lower node. Associativity says that the two trees give the same

http://tinyurl.com/yavyhcsk
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result. “Braided associativity” would say that these trees give results differing by an isomorphism
just as braided commutativity says that AB and BA give results differing by isomorphism.

One can formulate this more concretely by denoting algebra decomposition A⊗B ∈ V ⊗V →
AB ∈ V by θ. In associativity condition one has 3 inputs so that 3-linear map V ⊗ V ⊗ V → V
is in question. (AB)C corresponds to θ ◦ (θ, 1) applied to (A ⊗ B ⊗ C). Indeed, (θ, 1) gives
(AB,C) ∈ V ⊗ V . Second step θ◦ applied to this gives (AB)C. In the same manner, A(BC)
corresponds to (θ ◦ (1, θ) and associativity condition can be expressed as

θ ◦ (θ, 1) = θ ◦ (1, θ) .

An important delicacy should be mentioned. Although operations can be non-associative,
the composition of operations is assumed to be associative. One can imagine obtaining ((ab)c)d
either by θ ◦ (θ, 1) ◦ (θ, 1, 1)) or by (θ ◦ (θ, 1)) ◦ (θ, 1, 1)). The condition that these expressions are
identical is completely analogous to the associativity for the composition of functions f ◦ (g ◦ h) =
(f ◦ g) ◦ h and this axiom looks obvious becomes one is used to define f ◦ g using this formula
(starting from rightmost brackets). One could however imagine starting the evaluation of the
composition of operators also from leftmost brackets. This makes sense if the composition can be
done without the substitution of the value of argument.

11.4.1 How Associativity Could Be Broken?

How to obtain the breaking of associativity? The first thing is to get some idea about what (weak)
breaking of associativity could mean.

Breaking of associativity at the level of algebras

Basic examples about breaking of associativity might help in the attempts to understand how
many-sheetedness could induce the breaking of associativity. The intuitive feeling is that the effect
is not large and disappears at QFT limit of TGD.

In the case of algebras one has bilinear map V ⊗V → V . Now this map is from V ⊗V → V ⊗V
so that the two situations need not have much common. Despite this one can look the situation
in the case of algebras.

Lie-algebras and Jordan algebras represent key examples about non-associative algebras.
Associative algebras, Lie-algebras, and Jordan algebras can be unified by weakning the associativity
condition A(BC) = (AB)C to a condition obtained by cyclically symmetrizing this condition to
get the condition

A(BC) +B(CA) + C(AB) = (AB)C + (BC)A+ (CA)B

plus the condition

(A2B)A = A2(BA)

defining together with commutativity condition AB = BA Jordan algebra (http://tinyurl.com/
y8n9ol9p). Note that Jordan algebra with multiplication A · B is realized in terms of associative
algebra product as A ·B = (AB+BA)/2. A good guess is that the non-associative Malcev algebra
formed by imaginary octonions with product xy − yx satisfies these conditions.

Could the analog of the condition A(BC) +B(CA) +C(AB) = (AB)C + (BC)A+ (CA)B
make sense also for the braiding group algebra assignable to quantum states of braids? The
condition would say that cyclic symmetrization by superposing different braiding topologies gives
a quantum state, which is in well-defined sense associative. Cyclic symmetry looks attractive
because it plays also a key role in twistor Grassmannian approach.

Bi-algebras and Hopf algebras

One must start from bi-algebra (B,∇, η,∆, ε). One has product ∇ and co-product ∆ analogous to
replication of algebra element: particle physicists has tendency to see it as “time reversal” of prod-
uct analogous to particle decay as reversal of particle fusion. The key idea is that co-multiplication

http://tinyurl.com/y8n9ol9p
http://tinyurl.com/y8n9ol9p
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is algebra homomorphism for multiplication and multiplication algebra homomorphism for co-
multiplication. This leads to four commutative diagrams essentially expressing this property (see
http://tinyurl.com/y897z3es).

Instead of giving the general definitions it is easier to consider concrete example of bi-algebra
defined by group algebra. Bi-algebra has product ∇ : H⊗H → H and co-product ∆ : H → H⊗H,
which intuitively corresponds to inverse or time reversal of product. In the case of group algebra
this holds true in very precise sense since one has ∆(g) = g⊗g: ∆ is clearly analogous to replication.
Besides this one has map ε : H → K assigning to the algebra element a scalar and inverse map
taking the unit 1 of the field to unit element of H, called also 1 in the following. For group algebra
one has ε(g) = 1. Bi-algebras are associative and co-associative. Commutativity is however only
braided commutativity.

Hopf algebra (H,∇, η,∆, ε, S) is special case of bi-algebra and often loosely called quantum
group. The additional building brick is algebra anti-homomorphism S : H → H known as antipode.
S is analogous to mapping element of h to its inverse (it need not exist always). For group
algebra one indeed has S(g) = g−1. Besides the four commuting diagrams for bi-algebra one has
commutative diagrams ∇(S, 1)∆ = ηε and ∇(1, S)∆ = ηε, where ε is co-unit. The right hand side
gives a scalar depending on h multiplied by unit element of H. For group algebra this gives unit at
both sides. In the general case the situation ∆(h) = h⊗ h is true for group like element only and
one has more complex formula ∆(h) =

∑
i ai⊗ bi. One also defines primitive elements as elements

satisfying ∆(h) = h⊗ 1 + 1⊗ h. Also Hopf algebras are associative and co-associative.

Quasi-bialgebras and quasi-Hopf algebras

Quasi-bi-algebras giving as special case quasi-Hopf algebras were discovered by Russian mathe-
matician Drinfeld (for technical definition, which does not say much to non-specialist see http:

//tinyurl.com/y7b6lpop and http://tinyurl.com/y89cs5oy). They are non-associative or as-
sociative modulo isomoprhism.

Consider first quasi-bi-algebra (B,∆, ε,Φ, l, r). ∆ and ε are as for bi-algebra. Besides this
one has invertible elements Φ (Drinfeld associator) and r, l called right and lef unit constraints.
The conditions satisfied are following

•
(1⊗∆) ◦∆(a) = Φ[((∆⊗ 1) ◦∆(a)]Φ−1 .

For Φ = 1⊗ 1⊗ 1 one obtains associativity.

•
[(1⊗ 1×∆)(Φ)][(∆⊗ 1⊗ 1)(Φ)] = (1⊗ Φ)[1⊗∆⊗ 1)(Φ)(Φ⊗ 1) .

•
(ε⊗ 1)(∆(a)) = l−1al , (1⊗ ε)(∆(a)) = r−1ar .

•
1⊗ ε⊗ 1)(Φ) = 1⊗ 1 .

These mysterious looking conditions express the fact that Drinfeld associator is a bialgebra co-cycle.
Quasi-bialgebra is braided if it has universal R-matrix which is invertible element in B ⊗B

such that the following conditions hold true.

(∆op)(a) = R∆(a)R−1 . (11.4.1)

Note that for group algebra with ∆g = g ⊗ g one has ∆op = ∆ so that R must commute with ∆.
Whether this forces R to be trivial is unclear to me. Certainly there are also other homomorphisms.
A good candidate for a non-symmetric co-product is ∆g = g × h(g) where h is a homomorpism of
the braid group. This requires the replacement S(g) → S(h−1g) in order to obtain unitarity for
∇(1, S)∆ loop removing the braiding.

(1⊗∆)(R) = Φ−1
231R13Φ213R12Φ−1

213 . (11.4.2)

http://tinyurl.com/y897z3es
http://tinyurl.com/y7b6lpop
http://tinyurl.com/y7b6lpop
http://tinyurl.com/y89cs5oy
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(∆⊗ 1)(R) = Φ−1
321R13Φ−1

213R23Φ123 . (11.4.3)

This and second condition imply for trivial R that also Φ is trivial.

For Φ = 1 ⊗ 1 ⊗ 1 the conditions reduces to those for ordinary braiding. The universal R-matrix
satisfies the non-associative version of Yang-Baxter equation

R12Φ321R13(Φ132)−1R23Φ123 = Φ321R23(Φ231)−1R13Φ213R12 . (11.4.4)

Quasi-Hopf algebra is a special case of quasi-bialgebra. Also now one has product ∇, co-
product ∆, antipode S not present in bialgebra, and maps ε and η. Besides this one has two special
elements α and β of H such that the conditions ∇(S, α) · ∆ = α and ∇(1, βS) · ∆ = α. To my
understanding these conditions generalize the conditions ∇(S, 1)∆ = ηε and ∇(1, S)∆ = ηε.

Associativity holds but only modulo a morphism in the same way as commutativity becomes
braided commutativity in the case of quantum groups. The braided commutativity is characterized
by R-matrix. The morphism defining “braided associativity” is characterized by the product Φ =∑
iXi⊗Yi⊗Zi acting on triple tensor product V ⊗V ⊗V and satisfying certain algebraic conditions.

Φ has “inverse” Φ−1 =
∑
i Pi⊗Qi⊗Ri The conditions (1, βS, α)Φ = 1 and (S, α, βS)Φ = 1. Here

the action of S is that of algebra anti-homomorphism rather than algebra multiplication.

Drinfeld associator, which is a non-abelian bi-algebra 3-cocycle satisfying conditions analo-
gous to the condition for weakened associativity holding true for Lie and Jordan algebras. These
quasi-Hopf algebras are known in conformal field theory context and appear in Knizhnik-Zamolodchikov
equations so that a lot of mathematical knowhow exists. According to Wikipedia, quasi-Hopf alge-
bras are associated with finite-D irreps of quantum affine algebras in terms of F-matrices used to
factorize R-matrix. The representations give rise to solutions of Quantum Yang-Baxter equation.
The generalization of conformal invariance in TGD framework strongly suggests the relevance of
Quasi-Hopf algebras in the realization of non-associativity in TGD framework.

Drinfeld double

Drinfeld double provides a concrete example about breaking of associativity. It can be formulated
for finite groups as well as discrete groups. Drinfeld’s approach is essentially algebraic: one works
at the level of group algebra. In TGD framework the approach is geometric: algebraic constructs
should emerge naturally from geometry. Braiding operations should induce algebras.

The basic notions involved are following.

1. One begins from a trivial tensor product of Hopf algebras and modified. In trivial case
algebra product is tensor product of products, co-product is tensor product of co-products,
antipode is tensor product of antipodes, map ε is product of the maps from the factors of
the tensor product and delta maps unit element of field K to a product of unit elements.
Drinfeld double represents a non-trivial tensor product of Hopf algebras.

2. One application of Drinfeld double construction is tensor product of group algebra and its
dual. One can also interpret it as tensor product of braids as non-closed paths and closed
braids (knots) as closed paths: in TGD framework this interpretation is suggestive and will
be discussed later.

3. Drinfeld double allows breaking of associativity. It can be broken by introducing 3-cocycle
(see http://tinyurl.com/y9vcsmyg) of group cohomology (see http://tinyurl.com/y755gd36).
In the recent case group cohomology relies on homomorphism of group braid G to abelian
group U(1). n-cocycle is a map Gn → U(1) satisfying the condition that its derivation
vanishes dnf = 0. dn ◦ dn−1 = 0 holds true identically.

The explicit definition of n-cocycle is in additive notion for U(1) product (usually multiplica-
tive notation is used is) given by to illustrate that dn acts like exterior derivative.

http://tinyurl.com/y9vcsmyg
http://tinyurl.com/y755gd36
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(dnf)(g1, g2, gn, gn+1) = g1f(g1, ...gn)− f(g1g2, g2, ..., gn+1) + f(g1, g2g3, ..., gn+1)

−...+ (−1)nf(g1, g2...gngn+1) + (−1)n+1f(g1, g2...gn) .

(11.4.5)

This formula is easy to translate to multiplicative notion. The fact that group cohomology
is universal concept strongly suggests that 3 co-cycle can be introduced quite generally to
break associativity in the sense that different associations differ only by isomorphism.

The construction of quantum double of Hopf algebras is discussed in detail at http://

tinyurl.com/ybbvjaw5. Here however non-associative option is not discussed. In http://tinyurl.

com/ya8n98o5 one finds explicit formula for Drinfeld double for the Drinfeld double formed by
group algebra and its dual. Just to give some idea what is involved the following gives the formula
for the product:

(h, y) ◦ (g, x) =
ω(h, g, x)ω(hgx((hg)−1, h, g)

ω(h, gx(g)−1, h, g)
(hg, x) . (11.4.6)

Without background it does not tell much. What is essential however that the starting
point is algebraic. The product is non-vanishing only between (g, x) and (h, gxg−1). For gauge
group like structure one would have x instead of g−1xg−1. ω is 3-cocycle: it it is non-trivial one
as associativity modulo isomorphism.

I do not have any detailed understanding of quasi-Hopf algebras but to me they seem to
provide a very promising approach in attempts to understand the character of non-associativity
associated with the braiding hierarchy. The algebraic construction of Drinfeld double does not
seem interesting from TGD point of view but the idea that group cocycle is behind the breaking
of associativity is attractive. Also the generalization of construction of Drinfeld double to code
what happens in braiding geometrically is attractive. One of the many difficult challenges is to
understand the role of the varying parameters p, heff , q at the level of braid group algebras and
their projective representations characterized by quantum phase q.

11.4.2 Construction Of Quantum Braid Algebra In TGD Framework

It seems that there is no hope that näıve application of existing formulas makes sense. The variety
of different variants of quantum algebras is huge and one should have huge mathematical knowledge
and understanding in order to find the correct option if it exists at all. Therefore I bravely take the
approach of physicists. I try to identify the physical picture and then look whether I can identify
the algebraic structure satisfying the axioms of Hopf algebra. In the following I first list various
inputs which help to identify constraints on the algebraic structure, which should be simple if it is
to be fundamental.

Trying to map out the situation

Usually physicists have enough trouble when dealing with single algebraic structure: say group
and its representations. Unfortunately, this does not seem to be possible now. It seems that one
must deal with entire collection of algebraic structures defined by braid groups Bn with varying
value of n forming a hierarchy in which braid groups act on lower level braid groups.

1. What is clear that the algebraic operation (A⊗B)→ AB is somehow related to the braiding of
flux tubes or fermionic strings connecting partonic 2-surfaces. One can also consider strings
connecting the ends of light-like 3-surfaces so that one has both space-like and time-like
braiding. One has flux tubes inside flux tubes.

The challenge is to identify the natural algebra. It seems best to work with the braiding
operations themselves - analogs of linguistic expressions - than the states to which they act.
Braiding operations form discrete group, braid group. One must deal with the quantum

http://tinyurl.com/ybbvjaw5
http://tinyurl.com/ybbvjaw5
http://tinyurl.com/ya8n98o5
http://tinyurl.com/ya8n98o5
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superpositions of braidings so that one has wave functions in braid group identifiable as
elements of discrete group algebra of braid group Bn. One can multiply group algebra
elements and include the group algebra of Bm to that of Bn m a factor of n so that the
desired product structure is obtained. The group algebras associated with various braid
numbers can be organized to operad.

The operad formed by the braid group algebras has the desired hierarchical structure, and
braid group algebra is one of the basic structures and quantum groups can be assigned with
its projective representations.

2. For a given flux tube (and perhaps also for the fermionic string(s) assigned with it) one has
degrees of freedom due different values of the quantum deformation parameter q for which
roots of unity define preferred values in TGD framework. In TGD framework also hierarchy
heff/h = n of Planck constants brings in additional complexity. Also the p-adic prime p is
expected to characterize the situation: preferred p-adic primes can be interpreted as so called
ramified primes in the adelic vision about quantum TGD [K86] unifying real and various p-
adic physics to a coherent whole. This brings in new elements. It is still unclear how closely
n and q = exp(i2π/m) are related and whether one might have m = n. Also the relationship
of p to n is not well-understood. For instance, could p divide n.

3. Geometrically the association of braid strands means that they belong to the same flux
tube. Moving the brackets in expression to transform say (A(BC)) to ((AB)C) means that
strands are transferred from flux tube another one. Hence the breaking of associativity should
take place at all hierarchy levels except the lowest one for which flux tube contains single
irreducible braid strand - fermion line.

The general mechanism for a weak breaking of associativity is describable in terms of Drin-
feld’s associator for quasi-bialgebras and known in some cases explicitly - in particular, shown
by Drinfeld to exists when the number field used is rational numbers - is the first guess for the
mechanism of the breaking of associativity. Drinfeld’s associator is determined completely
by group cohomology, which encourages to think that it can be used as such as as a multipler
in the definition of product in suitable tensor product algebra. How the Drinfeld’s associator
depends on the p,n, and q is the basic question.

4. Besides the geometric action of braidings it is important to understand how the braidings act
on the fundamental fermions. An attractive idea is that the representation is as holonomies
defined by the induced weak gauge potentials as non-integrable phase factors at the bound-
aries of string world sheets defining fermion lines. The vanishing of electroweak gauge fields
at them implies that the non-Abelian part of holonomy is pure gauge as in topological gauge
field theories for which the classical solutions have vanishing gauge field. The em part of the
induce spinor curvature is however non-vanishing unless one poses the vanishing of electro-
magnetic field at the boundaries of string world sheets as boundary condition. This seems
un-necessary. The outcome would be non-trivial holonomy and restriction to a particular
representation of quantum group with quantum phase q coming as root of unity means con-
ditions on the boundaries of string world sheets. Quantum phase would make itself visible
also classically as properties of string world sheets which together with partonic 2-surfaces
determined space-time surface by strong form of holography. An interesting question relates
to the possibility of non-commutative statistics: it should come from the weak part of in-
duced connection which is pure gauge and seems possible as it is possible also in topological
QFTs based on Chern-Simons action.

Hints about the details of the braid structure

Concerning the details of the braid structure one has also strong hints.

1. There two are two basic types of braids: I have called them time-like and space-like braids.
Time-like (or rather light-like) braids are associated with the 3-D light-like orbits of partonic
2-surfaces at which the signature of the induced metric changes signature from Minkowskian
to Euclidian. Braid strands correspond to fermionic lines identifiable as parts of boundaries
of string world sheets. Space-like braids are associated with the space-like 3-surfaces at the
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ends of causal diamond (CD). Also they consist of fermionic lines. These braids could be
called fundamental.

If these braids are associated with magnetic flux tubes carrying monopole flux, the flux
tubes are closed. Typically they connect wormhole throats at first space-time sheet, go to
the second space-time sheet and return. Hence two-sheeted objects are in question. The
braids in question can closed to knots and could correspond to closed loops assigned with
the Drinfeld quantum double. The tensor product of the groupoid algebra associated with
time-like braids and group algebra associated with space-like braids is highly suggestive as
the analog of Drinfeld double.

Also magnetic flux tubes and light-like orbits of partonic 2-surfaces can become braided and
one obtains the hierarchies of braids.

2. Since strong world sheets and partonic 2-surfaces have co-dimension 2 as sub-manifolds of
space-time surface they can also get braided and knotted and give rise to 2-braids and 2-
knots. This is something totally new. The unknotting of ordinary knots would take place
via reconnections and the reconnections could correspond to the basic vertices for 2-knots
analogous to the crossing of the plane projections of ordinary knot. Reconnections actually
correspond to string vertices. A fascinating mathematical challenge is to generalize existing
theories so that they apply to 2-braids and 2-knots.

3. Dance metaphor emerged in the model for DNA-lipid membrane system as topological quan-
tum computer [K3, K81]. Dancers whose feet are connected to wall by threads define time-like
braiding and also space-like braiding through the resulting entanglement of threads. The as-
sumption was that DNA codons or nucleotides are connected by space-like flux tubes to the
lipids of lipid layer of cell membrane or nuclear membrane.

If they carry monopolo flux they make closed loops at the structure formed by two space-time
sheets. The lipid layer of cell membrane is 2-dimensional and can be in liquid crystal state.
The 2-D liquid flow of lipids induces braiding of both space-like braids if the DNA end is
fixed and of time-like braids. This leads to the dance metaphor: the liquid flow is stored at
space-time level to the topology of space-time as a space-like braiding of flux tubes induced
by it. Space-like braiding would be like written text. Time-like braiding would be like spoken
language.

4. If the space-like braids are closed, they form knots and the flow caused at the second end
of braid by liquid flow must be compensated at the parallel flux tube by its reversal since
braid strands cannot be cut. The isotopy equivalence class of knot remains unchanged since
knots get gg−1 piece which can be deformed away. Second interpretation is that the braid X
transforms to gXg−1. This kind of transformation appears also in Drinfeld construction. This
suggests that the purely algebraic tensor product of braid algebra and its dual corresponds
in TGD framework semi-direct tensor product of the groupoid of time-like braids and space-
like braids associated with closed knots. The semi-direct tensor product would define the
fundamental topological interaction between braids.

5. One can also consider sequence of n tensor factors each consisting of time-like and space-like
braids. This require a generalization of the product of two tensor factors to 2n tensor factors.
Dance metaphor suggests that a kind of chain reaction occurs.

What the structure of the algebra could be?

With this background one can try to guess what the structure of the algebra in question is. Cer-
tainly the algebra is semi-direct product of above defined braid group algebras. The multiplication
rule would have purely geometric interpretation.

1. The multiplication rule inspired by dance metaphor for 2 tensor factors would be

(a1, a2) ◦ (b1, b2) = (a1a2b1a
−1
2 , a2b2) . (11.4.7)
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Here a1, b1 correspond label elements of time-like braid groupoid and a2, b2 the elements
of braid group associated with the space-like braid. This would replace the trivial product
rule (a1, a2)(b1g) = (a1b1, a2b2) for the trivial tensor product. The structure is same as for
Poincare group as semi-direct product of Lorentz group and translation group: (Λ1, T1)(Λ2, T2) =
(Λ1Λ2, T1 + Λ1(T2)).

It is easy to check that this product is associative. One can however add exactly the same
3-cocycle factor

(h, y) ◦ (g, x) =
ω(h, g, x)ω(hgx((hg)−1, h, g)

ω(h, gx(g)−1, h, g)
(hg, x) . (11.4.8)

Here (h, y) corresponds to (a1, a2) and (g, x) to (b1, b2). This should give breaking of non-
associativity and third group cohomology of braid group Bn would characterize the non-
equivalent associators.

2. The product rule generalizes to n factors. This generalization could be relevant for the
understanding of braid hierarchy.

(a1, a2, ...an) ◦ (b1, b2, ...bn) ≡ (c1, ..., cn) ,

(11.4.9)

where one has

cn = anbn , cn−1 = an−1Adan(bn−1) , cn−2 = an−2Adan−1an(bn−2) ,
cn−3 = an−3Adan−2an−1an(bn−3) , .... c1 = a1Ada2.....an(b1) .
Adx(y) = xyx−1 .

(11.4.10)

In this case a good guess for the breaking of associativity is that the associator is defined in
terms of n-cocyle in group cohomology.

What is remarkable that this formula guarantees without any further assumptions the con-
dition

∇1⊗2(∆1(a),∆2(b)) = ∇1(∆1(a))∇2(∆2(b)) =
∑
(a)

a1a2

∑
(b)

b1b2 ,

∆1(a) =
∑
(a)

a1 ⊗ a2 , ∆2(b) =
∑
(b)

b1 ⊗ b2

(11.4.11)

as a little calculation shows. For group algebra one has ∆(a) = g ⊗ g. ∇1⊗2 refers to the
product defined above.

3. The formula for ∆1⊗2 is also needed. The simplest guess is that it corresponds to replication
for both factors. This would mean ∆op = ∆: non-symmetric form guaranteeing non-trivial
braiding is however desirable. A candidate satisfying this condition in n = 2 case is asym-
metric replication:

∆1⊗2(bab−1, b)⊗ (a, b)

∆op
1⊗2(a, b)⊗ (bab−1, b) .

(11.4.12)
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4. In n = 2 case the formula for antipode would read as

S(a1, a2) = (a−1
2 a−1

1 a2, a
−1
2 )

(11.4.13)

instead of S(a1, a2) = (a−1
1 , a−1

2 ). Again the semi-direct structure would be involved. One
can check that the formula

∇1⊗2(1, S)∆1⊗2 = 1⊗ 1 (11.4.14)

holds true.

11.4.3 Should One Quantize Complex Numbers?

The TGD inspired proposal for the concrete realization of quantum groups might help in attempts
to understand the situation. The approach relies on what might be regarded as quantization of
complex numbers appearing as matrix elements of ordinary matrices.

1. Quantum matrices are obtained by replacing complex number valued of matrix elements of
ordinary matrices with operators. They are are products of hermitian non-negative matrix
P analogous to modulus of complex number and unitary matrix S analogous to its phase.
One can also consider the condition [P, S] = iS inspired by the idea that radial momentum
and phase angle define analog of phase space.

2. The notions of eigenvalue and eigenstate are generalized. Hermitian operator or equivalently
the spectrum of its eigenvalues replaces real number. The condition that eigenvalue problem
generalizes, demands that the symmetric functions formed from the elements of quantum
matrix commute and can be diagonalized simultaneously. The commutativity of symmetric
functions holds also for unitary matrices. These conditions is highly non-trivial, and consis-
tent with quantum group conditions if quantum phases are roots of unity. In this framework
also Planck constant is replaced by a hermitian operator having heff = n×h as its spectrum.
Also q = exp(in2π/m) generalizes to a unitary operator with these eigenvalues.

3. This leads to a possible concrete representation of quantum group in TGD framework allowing
to realize the hierarchy of inclusions of hyperfinite factors obtained by repeatedly replacing
the operators appearing as matrix elements with quantum matrices.

4. This procedure can be repeated. One might speak of a fractal quantization. At the first
step one obtains what might be called 1-hermitian operators with eigenvalues replaced with
hermitian operators. For 1-unitary matrices eigenvalues, which are phases are replaced with
unitary operators. At the next step one considers what might be called 2-hermitian and
2-unitary operators. An abstraction hierarchy in which instance (localization to a point as
member of class) is replaced with wave function in the class. This hierarchy is analogous
to that formed by infinite primes and by the sheets of the many-sheeted space-time. Also
braids of braids of ... form this kind of abstraction hierarchy as also the parsing hierarchy
for linguistic expressions.

I have proposed that generalized Feynman diagrams or rather - TGD analogs of twistor
diagrams - should have interpretation as sequences of arithmetic operators with each vertex repre-
senting product or co-product and having interpretation as time reversal of the product operation.

1. The arithmetic operations could be induced by the algebraic operations for Yangian algebra
[A26] [B20, B14, B15] assignable to the super-symplectic algebra. I have also proposed
that there TGD allows a very powerful symmetry generalizing the duality symmetry of old-
fashioned string models relating s- and t-channel exchanges. This symmetry would state
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that one can freely move the ends of the propagator lines around the diagrams and that one
can remove loops by transforming the loop to tadpole and snipping it away. This symmetry
would allow to consider only tree diagrams as shortest representations for computations:
this would reduce enormously the calculational complexity. The TGD view about coupling
constant evolution allows still to have discrete coupling constant evolution induced by the
spectrum of critical values of Kähler coupling strength: an attractive conjecture is that the
critical values can be expressed in terms of zeros of Riemann zeta [L9].

2. One can represent the tree representing a sequence of computations in algebra as an analog of
twistor diagram and the proposed symmetry implies associativity since moving the line ends
induces motion of brackets. If co-algebra operations are allowed also loops become possible
and can be eliminated by this symmetry provided the loop acts as identity transformation.
This would suggest strong form of associativity at the level of single sheet and weaker form
at the level of many-sheeted space-time. One could however still hope that loops can be
cancelled so that one would still have only tree diagrams in the simplest description. One
would have however sum over amplitudes with different association structures.

3. Co-product could be associated with the basic vertices of TGD, which correspond to a fusion
of light-like parton orbits along their ends having no counterpart in super-string models
(tensor product vertex) or the decay of light-like parton orbit analogous to a splitting of
closed string (direct sum vertex). For the direct sum vertex one has direct sum (unlike string
models): one can say that the particle propagates along two path in the sense of superposition
as photons in double slit experiment. For the tensor product vertex D(g) = ∆(g) = g × g
is the first guess. D(g) = (1, S)∆(g) = g ⊗ Sg or D(g) = Sg ⊗ g or their sum suitably
normalized is natural second guess. Unitarity allows only the latter option since ∇∆ does
not conserve probability for probability amplitudes unlike ∇(1, S)∆ although it does so for
probability distributions. For the direct sum vertex ∆(g) = 1⊗ g⊕ g⊗1 suitably normalized
is the natural first guess.

4. Co-product ∆ might allow interpretation as annihilation vertex in particle physics context.
Co-product might also allow interpretation in terms of replication - at least at the level of
topological dynamics of braiding. The possible application of co-product to the replication
occurring biology assumed to be induce by replication of magnetic flux tubes in TGD based
vision is highly suggestive idea. Is the identification of co-product as replication consistent
with its identification as particle annihilation?

Second question relates to the antipode S, which is anti-homomorphism and brings in mind
time reversal. Could one interpret also S as an operation, which should be included to the
braid group algebra in the same way as the inclusion of complex conjugation to the algebra
of complex numbers produces quaternions? Could one interpret the identity ∇(1⊗S)∆(g) =
ηε(g) = 1 by saying that the annihilation to g⊗S(g) followed by fusion produces braid wave
function concentrated on trivial braiding and destroying the information associated with
braiding completely. The fusion would produce non-braided particle rather than destroying
particles altogether.

5. The condition that loop involving product and annihilation does not affect braid group wave
function would require that it takes g to g. For the standard realization of co-product ∆
of group algebra g → g ⊗ g → g2 so that this is not the case. The condition defining
∆ is not easy to modify since one loses homomorphism property of ∆. The repetitions of
loops would give sequence of powers g2n. For wave function

∑
D(g)g this would give the

sequence
∑
D(g)g →

∑
D(g)g2 → ....→

∑
D(g)g2n: since given group element has typically

several roots one expects that eventually the wave function becomes concentrated to unity
with coefficient

∑
D(g)! For wave functions one has

∑
D(g) = 0 if they are orthogonal to

D(g) = constant as is natural to require. Almost all wave functions would approach to zero
so that unitary would be lost. For probability distributions the evolution would make sense
since the normalization condition would be respected.

Also the irreversible behaviour looks strange from particle physics perspective unless D(g)
is concentrated on identity so that braiding is trivial. Topological dissipation might take
care that this is the case. For elementary particles partonic 2-surfaces carry in the first
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approximation only single fermion so that braid group would be trivial. Braiding effects
become interesting only for strand number larger than 2. The situations in which partonic
surface carries large number of fermion lines would be more interesting. Anyonic systems
to which TGD based model assigns large heff and parton surfaces of nanoscopic size could
represent a condensed matter example of this situation.

6. Does the behavior of ∆ force to regard generalized Feynman diagrams representing computa-
tions with different numbers of self-energy loops non-equivalent and to sum over self-energy
loops in the construction of scattering amplitudes? The time evolution implied by topological
self energy loops is not unitary which suggest that one must perform the sum. There are
hopes that the sum converges since the contributions approaches to

∑
D(g) = 0. This does

not however look elegant and is in conflict with the general vision.

Particle physics intuition tells that in pair annihilation second line has opposite time direction.
Should one therefore identify annihilation g → g ⊗ S(g). Antiparticles would differ from
particles by conjugation in braid group. The self energy loop would give trivial braiding with
coefficient

∑
D(g)D(g−1) =

∑
D(g)D(g)∗ = 1 so that unitarity would be respected and

higher self energy loops would be trivial. The conservation of fermion number at fundamental
level could also prevent the decays g → g ⊗ g.

One could also take biological replication as a guide line.

1. In biological scales replication by g → g ⊗ g vertex might not be prevented by fermion
number conservation but probability conservation favors g → g ⊗ Sg. Braid replication
might be perhaps said to provide replicas of information: whether this conforms with no-
cloning theorem remains to be seen. Braid replication followed by fusion means topological
dissipation by a loss of braiding and loss of information. Could the fusion of reproduction
cells corresponds to product and that replication to co-product possibly involving the action
of S one the second line. Fusion followed by replication would lead to a loss of braiding: for
g → g ⊗ g perhaps making sense in probabilistic description gradually and for g → g ⊗ Sg
instantaneously: a reset for memory? Could these mechanisms serve as basic mechanisms of
evolution?

2. There might be also a connection with the p-adic length scale hypothesis. The näıve expec-
tation is that g → g2 in fusion followed by ∆ means the increase of the length of braid by
factor 2 - kind of ageing? Could the appearance of powers of two for the length of braid
relate to the p-adic length scale hypothesis stating that primes p near powers of 2 are of
special importance?

To summarize, the proposed framework gives hopes about description of braids of braids
of .... Abstraction would mean transition from classical to quantum: from localized state to a
de-localized one: from configuration space to the space of complex valued wave functions in con-
figuration space. Now the configuration space would involve different braidings and corresponding
evolutions, and various values of p, heff and q. If this general framework is to be useful it should
be able to tell how the braiding matrices depend on p and heff : note that p and heff would
be fixed only at the highest abstraction level - the largest flux tubes. This indeterminacy could
be interpreted in terms of finite measurement resolution and inclusions of HFFs should help to
describe the situation. Indeterminacy could also be interpreted in terms of abstraction in a way
similar to the interpretation of negentropically entangled state as a rule for which the state pairs
in the superposition represent instances of the rule.



Chapter i

Appendix

A-1 Introduction

Originally this appendix was meant to be a purely technical summary of basic facts but in its
recent form it tries to briefly summarize those basic visions about TGD which I dare to regarded
stabilized. I have added illustrations making it easier to build mental images about what is involved
and represented briefly the key arguments. This chapter is hoped to help the reader to get fast
grasp about the concepts of TGD.

The basic properties of embedding space and related spaces are discussed and the relation-
ship of CP2 to the standard model is summarized. The basic vision is simple: the geometry of the
embedding space H = M4 ×CP2 geometrizes standard model symmetries and quantum numbers.
The assumption that space-time surfaces are basic objects, brings in dynamics as dynamics of 3-D
surfaces based on the induced geometry. Second quantization of free spinor fields of H induces
quantization at the level of H, which means a dramatic simplification.

The notions of induction of metric and spinor connection, and of spinor structure are dis-
cussed. Many-sheeted space-time and related notions such as topological field quantization and the
relationship many-sheeted space-time to that of GRT space-time are discussed as well as the recent
view about induced spinor fields and the emergence of fermionic strings. Also the relationship to
string models is discussed briefly.

Various topics related to p-adic numbers are summarized with a brief definition of p-adic
manifold and the idea about generalization of the number concept by gluing real and p-adic number
fields to a larger book like structure analogous to adele [L23, L24]. In the recent view of quantum
TGD [L72], both notions reduce to physics as number theory vision, which relies on M8 − H
duality [L45, L46] and is complementary to the physics as geometry vision.

Zero energy ontology (ZEO) [L38] [K89] has become a central part of quantum TGD and
leads to a TGD inspired theory of consciousness as a generalization of quantum measurement
theory having quantum biology as an application. Also these aspects of TGD are briefly discussed.

A-2 Embedding space M 4 × CP2

Space-times are regarded as 4-surfaces inH = M4×CP2 the Cartesian product of empty Minkowski
space - the space-time of special relativity - and compact 4-D space CP2 with size scale of order
104 Planck lengths. One can say that embedding space is obtained by replacing each point m of
empty Minkowski space with 4-D tiny CP2. The space-time of general relativity is replaced by a
4-D surface in H which has very complex topology. The notion of many-sheeted space-time gives
an idea about what is involved.

Fig. 1. Embedding space H = M4 × CP2 as Cartesian product of Minkowski space M4

and complex projective space CP2. http://tgdtheory.fi/appfigures/Hoo.jpg

Denote by M4
+ and M4

− the future and past directed lightcones of M4. Denote their intersec-
tion, which is not unique, by CD. In zero energy ontology (ZEO) [L38, L57] [K89] causal diamond
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(CD) is defined as cartesian product CD × CP2. Often I use CD to refer just to CD × CP2 since
CP2 factor is relevant from the point of view of ZEO.

Fig. 2. Future and past light-cones M4
+ and M4

−. Causal diamonds (CD) are defined as
their intersections. http://tgdtheory.fi/appfigures/futurepast.jpg

Fig. 3. Causal diamond (CD) is highly analogous to Penrose diagram but simpler. http:

//tgdtheory.fi/appfigures/penrose.jpg

A rather recent discovery was that CP2 is the only compact 4-manifold with Euclidian
signature of metric allowing twistor space with Kähler structure. M4 is in turn is the only 4-D
space with Minkowskian signature of metric allowing twistor space with Kähler structure [A79] so
that H = M4 × CP2 is twistorially unique.

One can loosely say that quantum states in a given sector of “world of classical worlds”
(WCW) are superpositions of space-time surfaces inside CDs and that positive and negative energy
parts of zero energy states are localized and past and future boundaries of CDs. CDs form a
hierarchy. One can have CDs within CDs and CDs can also overlap. The size of CD is characterized
by the proper time distance between its two tips. One can perform both translations and also
Lorentz boosts of CD leaving either boundary invariant. Therefore one can assign to CDs a
moduli space and speak about wave function in this moduli space.

In number theoretic approach it is natural to restrict the allowed Lorentz boosts to some
discrete subgroup of Lorentz group and also the distances between the tips of CDs to multiples of
CP2 radius defined by the length of its geodesic. Therefore the moduli space of CDs discretizes.
The quantization of cosmic recession velocities for which there are indications, could relate to this
quantization.

A-2.1 Basic facts about CP2

CP2 as a four-manifold is very special. The following arguments demonstrate that it codes for the
symmetries of standard models via its isometries and holonomies.

CP2 as a manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying the points
of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-2.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset space
SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart for CP2.
As j runs from 1 to 3 one obtains an atlas of three coordinate charts covering CP2, the charts
being holomorphically related to each other (e.g. CP2 is a complex manifold). The points z3 6= 0
form a subset of CP2 homoeomorphic to R4 and the points with z3 = 0 a set homeomorphic to
S2. Therefore CP2 is obtained by “adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ξi = zi/z3, i = 1, 2 the coordinates of Eguchi and
Freund [A61] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-2.2)

These are related to the “spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-2.3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.

http://tgdtheory.fi/appfigures/futurepast.jpg
http://tgdtheory.fi/appfigures/penrose.jpg
http://tgdtheory.fi/appfigures/penrose.jpg
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Considered as a real four-manifold CP2 is compact and simply connected, with Euler number
Euler number 3, Pontryagin number 3 and second b = 1.

Fig. 4. CP2 as manifold. http://tgdtheory.fi/appfigures/cp2.jpg

Metric and Kähler structure of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of the
orbits of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of CP2 is

obtained by projecting the metric of S5 orthogonally to the orbits of the isometries. Therefore the
distance between the points of CP2 is that between the representative orbits on S5.

The line element has the following form in the complex coordinates

ds2 = gab̄dξ
adξ̄b , (A-2.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-2.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-2.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2 related to its
standard form in spherical coordinates by the coordinate transformation (r, φ) = (tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting
the angle coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-2.7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-2.8)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the defining
relation

skl = R2
∑
A

eAk e
A
l , (A-2.9)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-2.10)

The explicit representations of vierbein vectors are given by

http://tgdtheory.fi/appfigures/cp2.jpg
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e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-2.11)

The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-2.12)

From this expression one finds that at coordinate infinity r =∞ line element reduces to r2

4F (dΘ2 +
sin2ΘdΦ2) of S2 meaning that 3-sphere degenerates metrically to 2-sphere and one can say that
CP2 is obtained by adding to R4 a 2-sphere at infinity.

The vierbein connection satisfying the defining relation

deA = −V AB ∧ eB , (A-2.13)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-2.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-2.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −isab̄dξadξ̄b , (A-2.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it satisfies
the condition

JkrJ
rl = −skl . (A-2.17)

The condition states that J and g give representations of real unit and imaginary units related by
the formula i2 = −1.

Kähler form is expressible locally in terms of Kähler gauge potential

J = dB , (A-2.18)

where B is the so called Kähler potential, which is not defined globally since J describes homological
magnetic monopole.

dJ = ddB = 0 gives the topological half of Maxwell equations (vanishing of magnetic charges
and Faraday’s induction law) and self-duality ∗J = J reduces the remaining equations to dJ = 0.
Hence the Kähler form can be regarded as a curvature form of a U(1) gauge potential B carrying
a magnetic charge of unit 1/2g (g denotes the gauge coupling).
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The magnetic flux of J through a 2-surface in CP2 is proportional to its homology equivalence
class, which is integer valued. The explicit representations of J and B are given by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘ ∧ dΦ .

(A-2.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex
coordinates only components of type (1, 1).

Useful coordinates for CP2 are the so called canonical (or symplectic or Darboux) coordinates
in which the Kähler potential and Kähler form have very simple expressions

B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-2.20)

The relationship of the canonical coordinates to the “spherical” coordinates is given by the equa-
tions

P1 = − 1

1 + r2
,

P2 = − r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-2.21)

Spinors In CP2

CP2 doesn’t allow spinor structure in the conventional sense [A45]. However, the coupling of
the spinors to a half odd multiple of the Kähler potential leads to a respectable spinor structure.
Because the delicacies associated with the spinor structure of CP2 play a fundamental role in TGD,
the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel
transport of the vierbein in a simply connected space M . The parallel propagation around a
closed curve with a base point x leads to a rotated vierbein at x: eA = RABe

B and one can
associate to each closed path an element of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base
point x and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and the
element RAB(v) defines a closed path in SO(4). When the sphere S2 is contractible to a point e.g.,
homologically trivial, the path in SO(4) is also contractible to a point and therefore represents a
trivial element of the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homo-
topically nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4)
(leading from the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also
spinors and by the above construction associate a closed path of Spin(4) to the surface S2. Now,
however this path corresponds to a lift of the corresponding SO(4) path and cannot be closed.
Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1-
factor associated with the parallel transport of the spinor around the sphere S2 by coupling it
to a gauge potential in such a way that in the parallel transport the gauge potential introduces
a compensating −1-factor. For a U(1) gauge potential this factor is given by the exponential



A-2. Embedding space M4 × CP2 415

exp(i2Φ), where Φ is the magnetic flux through the surface. This factor has the value −1 provided
the U(1) potential carries half odd multiple of Dirac charge 1/2g. In case of CP2 the required
gauge potential is half odd multiple of the Kähler potential B defined previously. In the case of
M4×CP2 one can in addition couple the spinor components with different chiralities independently
to an odd multiple of B/2.

Geodesic sub-manifolds of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the em-
bedding space. As a consequence the second fundamental form of the geodesic manifold vanishes,
which means that the tangent vectors hkα (understood as vectors of H) are covariantly constant
quantities with respect to the covariant derivative taking into account that the tangent vectors are
vectors both with respect to H and X4.

In [A125] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric
space G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple
systems of the Lie-algebra g of the group G. The Lie triple system t is defined as a subspace of g
characterized by the closedness property with respect to double commutation

[X, [Y, Z]] ∈ t for X,Y, Z ∈ t . (A-2.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres.
This is understood by observing that SU(3) allows two nonequivalent SU(2) algebras corresponding
to subgroups SO(3) (orthogonal 3×3 matrices) and the usual isospin group SU(2). By taking any
subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating
this system, one obtains a 2-dimensional geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as
holomorphic transformations in CP2. The vanishing of the second fundamental form is also easy
to verify. The first geodesic manifold is homologically trivial: in fact, the induced Kähler form
vanishes identically for S2

I . S2
II is homologically nontrivial and the flux of the Kähler form gives

its homology equivalence class.

A-2.2 CP2 geometry and Standard Model symmetries

Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First, the
coupling of the spinors to the U(1) gauge potential defined by the Kähler structure provides the
missing U(1) factor in the gauge group. Secondly, it is possible to couple different H-chiralities
independently to a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct
spectrum for the electromagnetic charge are considerable. In the following it will be demonstrated
that the couplings of the induced spinor connection are indeed those of the GWS model [B31] and in
particular that the right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors.
Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined by the
condition

ΓΨ = eΨ ,

e = ±1 , (A-2.23)

where Γ denotes the matrix Γ9 = γ5 ⊗ γ5, 1 ⊗ γ5 and γ5 ⊗ 1 respectively. Clearly, for a fixed
H-chirality CP2- and M4-chiralities are correlated.
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The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors
respectively. The separate conservation of baryon and lepton numbers can be understood as a
consequence of generalized chiral invariance if this identification is accepted. For the spinors with
a definite H-chirality one can identify the vielbein group of CP2 as the electro-weak group: SO(4)
having as its covering group SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-2.24)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and
1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the requirement of
a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-2.25)

and

B = 2re3 , (A-2.26)

respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples purely left handedly.

Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that
the charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-2.27)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-2.28)

Ach is clearly left handed so that one can perform the identification of the gauge potential as

W± =
2(e1 ± ie2)

r
, (A-2.29)

where W± denotes the charged intermediate vector boson.
The covariantly constant curvature tensor is given by

R01 = −R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = −R31 = e0 ∧ e2 − e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 ,
R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-2.30)

The charged part of the curvature tensor is left handed.
This is to be compared with the Weyl tensor, which defines a representation of quaternionic

imaginary units.
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W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,
W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,
W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 .

(A-2.31)

The charged part of the Weyl tensor is right-handed and that the relative sign of the two terms in
the curvature tensor and Weyl tensor are opposite.

Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear
combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-2.32)

appearing in the neutral part of the spinor connection. We show first that the mere requirement
that photon couples vectorially implies the basic coupling structure of the GWS model leaving
only the value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-2.33)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization factors.
Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-2.34)

Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra generators, respectively,
the requirement that γ couples vectorially leads to the condition

c = −d . (A-2.35)

Using this result plus previous equations, one obtains for the neutral part of the connection the
expression

Anc = γQem + Z0(I3
L − sin2θWQem) . (A-2.36)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-2.37)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-2.38)
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The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-2.39)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the
electro-weak interactions.

The determination of the value of the Weinberg angle is a dynamical problem. The original
approach was based on the assumption that it makes sense to talk about electroweak action defined
at fundamental level and introduce a symmetry breaking by adding an additional term proportional
to Kähler action. The recent view is that Kähler action plus volume term defines the fundamental
action.

The Weinberg angle is completely fixed if one requires that the electroweak action contains
no cross term of type γZ0. This leads to a definite value for the Weinberg angle.

One can however add a symmetry breaking term proportional to Kähler action and this
changes the value of the Weinberg angle. As a matter fact, color gauge action identifying color
gauge field as proportional to HAJαβ is proportional to Kähler action. A possible interpretation
would be as a sum of electroweak and color gauge interactions.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the
induced gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-2.40)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-2.41)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-2.42)

Evaluating the expressions above, one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR12 ,

Z0 = 2R03 . (A-2.43)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-2.44)

Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-2.45)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the coefficient
X of the γZ0 cross term (this coefficient must vanish) the expression
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X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-2.46)

This parameter can be calculated by substituting the values of quark and lepton charges and weak
isospins.

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-2.47)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni is the
integer describing the coupling of the spinor field to the Kähler potential. The cross term vanishes
provided the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-2.48)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg
angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-2.49)

The bare value of the Weinberg angle is 9/28 in this scenario, which is not far from the typical value
9/24 of GUTs at high energies [B6]. The experimental value at the scale length scale of the electron
can be deduced from the ratio of W and Z boson masses as sin2θW = 1 − (mW /mZ)2 ' .22290.
This ratio and also the weak boson masses depend on the length scale.

If one interprets the additional term proportional to J as color action, one could perhaps
interpret the value of Weinberg angle as expressing a connection between strong and weak coupling
constant evolution. The limit f → 0 should correspond to an infinite value of color coupling
strength and at this limit one would have sin2θW = 9

28 for f/g2 → 0. This does not make sense
since the Weinberg angle is in the standard model much smaller in QCD scale Λ corresponding
roughly to pion mass scale. The Weinberg angle is in principle predicted by the p-adic coupling
constant evolution fixed by the number theoretical vision of TGD.

One could however have a sum of electroweak action, correction terms changing the value
of Weinberg angle, and color action and coupling constant evolution could be understood in terms
of the coupling parameters involved.

Electroweak symmetry breaking

One of the hardest challenges in the development of the TGD based view of weak symmetry break-
ing was the fact that classical field equations allow space-time surfaces with finite but arbitrarily
large size. For a fixed space-time surface, the induced gauge fields, including classical weak fields,
are long ranged. On the other hand, the large mass for weak bosons would require a short cor-
relation length. How can one understand this together with the fact that a photon has a long
correlation length?

In zero energy ontology quantum states are superpositions of space-time surfaces as analogs
of almost unique Bohr orbits of particles identified as 3-D surfaces. For some reason the superpo-
sition should be such that the quantum averages of weak gauge boson fields vanish below the weak
scale whereas the quantum average of electromagnetic fields is non-vanishing.

This is indeed the case.
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1. The supersymplectic symmetries form isometries of the world of classical worlds (WCW) and
they act in CP2 degrees of freedom as symplectic transformations leaving the CP2 symplectic
form J invariant and therefore also its contribution to the electromagnetic field since this
part is the same for all space-time surfaces in the superposition of space-time surfaces as a
representation of supersymplectic isometry group (as a special case a representation of color
group).

2. In TGD, color and electroweak symmetries acting as holonomies are not independent and
for the SU(2)L part of induced spinor connection the symplectic transformations induces
SU(2)L × U(1)R gauge transformation. This suggests that the quantum expectations of the
induced weak fields over the space-time surfaces vanish above the quantum coherence scale.
The averages of W and of the left handed part of Z0 should therefore vanish.

3. 〈Z0〉 should vanish. For U(1)R part of Z0, the action of gauge transformation is trivial in
gauge theory. Now however the space-time surface changes under symplectic transformations
and this could make the average of the right-handed part of Z0 vanishing. The vanishing of
the average of the axial part of the Z0 is suggested by the partially conserved axial current
hypothesis.

One can formulate this picture quantitatively.

1. The electromagnetic field [L77] contains, besides the induced Kähler form, also the induced
curvature form R12, which couples vectorially. Conserved vector current hypothesis suggests
that the average of R12 is non-vanishing. One can express the neutral part of the induced
gauge field in terms of induced spinor curvature and Kähler form J as

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) = J + 2e0 ∧ e3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) = 3J − 2e0 ∧ e3 , (A-2.50)

2. The induced fields γ and Z0 (photon and Z- boson) can be expressed as

γ = 3J − sin2θWR12 ,

Z0 = 2R03 = 2(J + 2e0 ∧ e3) (A-2.51)

per. (A-2.52)

The condition 〈Z0〉 = 0 gives 2〈e0 ∧ e3〉 = −2J and this in turn gives 〈R12〉 = 4J . The
average over γ would be

〈γ〉 = (3− 4sin2θW )J .

For sin2θW = 3/4 langleγ〉 would vanish.

The quantum averages of classical weak fields quite generally vanish. What about correlation
functions?

1. One expects that the correlators of classical weak fields as color invariants, and perhaps
even symplectic invariants, are non-vanishing below the Compton length since in this kind
of situation the points in the correlation function belong to the same 3-surface representing
particle, such as hadron.
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2. The intuitive picture is that in longer length scales one has disjoint 3-surfaces with a size
scale of Compton length. If the states associated with two disjoint 3-surfaces are separately
color invariant there are no correlations in color degrees of freedom and correlators reduce to
the products of expectations of classical weak fields and vanish. This could also hold when
the 3-surfaces are connected by flux tube bonds.

Below the Compton length weak bosons would thus behave as correlated massless fields. The
Compton lengths of weak bosons are proportional to the value of effective Planck constant
heff and in living systems the Compton lengths are proposed to be even of the order of
cell size. This would explain the mysterious chiral selection in living systems requiring large
parity violation.

3. What about the averages and correlators of color gauge fields? Classical color gauge fields are
proportional to the products of Hamiltonians of color isometries induced Kähler form and
the expectations of color Hamiltonians give vanishing average above Compton length and
therefore vanishing average. Correlators are non-vanishing below the hadron scale. Gluons
do not propagate in long scales for the same reason as weak bosons. This is implied by color
confinement, which has also classical description in the sense that 3-surfaces have necessarily
a finite size.

A large value of heff allows colored states even in biological scales below the Compton
length since in this kind of situation the points in the correlation function belong to the same
3-surface representing particle, such as dark hadron.

Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:

1. Symmetries must be realized as purely geometric transformations.

2. Transformation properties of the field variables should be essentially the same as in the
conventional quantum field theories [B9] .

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-2.53)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed that W
and Z0 bosons break parity symmetry as they should since their charge matrices do not commute
with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the
physicist turns out to be correct. One can verify by a direct calculation that pure Dirac action is
invariant under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-2.54)

The operation bearing closest resemblance to the ordinary charge conjugation corresponds
geometrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-2.55)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.
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A-3 Induction procedure and many-sheeted space-time

Since the classical gauge fields are closely related in TGD framework, it is not possible to have
space-time sheets carrying only single kind of gauge field. For instance, em fields are accompanied
by Z0 fields for extremals of Kähler action.

Classical em fields are always accompanied by Z0 field and some components of color gauge
field. For extremals having homologically non-trivial sphere as a CP2 projection em and Z0 fields
are the only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields
are non-vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although
the net gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color gauge
field has U(1) holonomy for all space-time surfaces and quantum classical correspondence suggest a
weak form of color confinement meaning that physical states correspond to color neutral members
of color multiplets.

A-3.1 Induction procedure for gauge fields and spinor connection

Induction procedure for gauge potentials and spinor structure is a standard procedure of bundle
theory. If one has embedding of some manifold to the base space of a bundle, the bundle structure
can be induced so that it has as a base space the imbedded manifold, whose points have as fiber
the fiber if embedding space at their image points. In the recent case the embedding of space-time
surface to embedding space defines the induction procedure. The induced gauge potentials and
gauge fields are projections of the spinor connection of the embedding space to the space-time
surface (see http://tgdtheory.fi/appfigures/induct.jpg).

Induction procedure makes sense also for the spinor fields of embedding space and one
obtains geometrization of both electroweak gauge potentials and of spinors. The new element is
induction of gamma matrices which gives their projections at space-time surface.

As a matter fact, the induced gamma matrices cannot appear in the counterpart of massless
Dirac equation. To achieve super-symmetry, Dirac action must be replaced with Kähler-Dirac
action for which gamma matrices are contractions of the canonical momentum currents of Kähler
action with embedding space gamma matrices. Induced gamma matrices in Dirac action would
correspond to 4-volume as action.

Fig. 9. Induction of spinor connection and metric as projection to the space-time surface.
http://tgdtheory.fi/appfigures/induct.jpg.

A-3.2 Induced gauge fields for space-times for which CP2 projection is
a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP2

projection, only vacuum extremals and space-time surfaces for which CP2 projection is a geodesic
sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields
and homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z0. This can
be verified by explicit examples.

r =∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3

vanish imply the vanishing of W field. For space-time sheets for which CP2 projection is r = ∞
homologically non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by
SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coordinates
constant values. In this case e1 and e3 vanish so that the induced em, Z0, and Kähler fields vanish
but induced W fields are non-vanishing. This holds also for surfaces obtained by color rotation.
Hence one can say that for non-vacuum extremals with 2-D CP2 projection color rotations and
weak symmetries commute.

http://tgdtheory.fi/appfigures/induct.jpg
http://tgdtheory.fi/appfigures/induct.jpg
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A-3.3 Many-sheeted space-time

TGD space-time is many-sheeted: in other words, there are in general several space-sheets which
have projection to the same M4 region. Second manner to say this is that CP2 coordinates are
many-valued functions of M4 coordinates. The original physical interpretation of many-sheeted
space-time time was not correct: it was assumed that single sheet corresponds to GRT space-time
and this obviously leads to difficulties since the induced gauge fields are expressible in terms of
only four embedding space coordinates.

Fig. 10. Illustration of many-sheeted space-time of TGD. http://tgdtheory.fi/appfigures/
manysheeted.jpg

Superposition of effects instead of superposition of fields

The first objection against TGD is that superposition is not possible for induced gauge fields and
induced metric. The resolution of the problem is that it is effects which need to superpose, not
the fields.

Test particle topologically condenses simultaneously to all space-time sheets having a pro-
jection to same region of M4 (that is touches them). The superposition of effects of fields at various
space-time sheets replaces the superposition of fields.This is crucial for the understanding also how
GRT space-time relates to TGD space-time, which is also in the appendix of this book).

Wormhole contacts

Wormhole contacts are key element of many-sheeted space-time. One does not expect them to be
stable unless there is non-trivial Kähler magnetic flux flowing through then so that the throats
look like Kähler magnetic monopoles.

Fig. 11. Wormhole contact. http://tgdtheory.fi/appfigures/wormholecontact.jpg
Since the flow lines of Kähler magnetic field must be closed this requires the presence of

another wormhole contact so that one obtains closed monopole flux tube decomposing to two
Minkowskian pieces at the two space-time sheets involved and two wormhole contacts with Eu-
clidian signature of the induced metric. These objects are identified as space-time correlates of
elementary particles and are clearly analogous to string like objects.

The relationship between the many-sheeted space-time of TGD and of GRT space-
time

The space-time of general relativity is single-sheeted and there is no need to regard it as surface
in H although the assumption about representability as vacuum extremal gives very powerful
constraints in cosmology and astrophysics and might make sense in simple situations.

The space-time of GRT can be regarded as a long length scale approximation obtained by
lumping together the sheets of the many-sheeted space-time to a region of M4 and providing it
with an effective metric obtained as sum of M4 metric and deviations of the induced metrics of
various space-time sheets from M4 metric. Also induced gauge potentials sum up in the similar
manner so that also the gauge fields of gauge theories would not be fundamental fields.

Fig. 12. The superposition of fields is replaced with the superposition of their effects in
many-sheeted space-time. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg

Space-time surfaces of TGD are considerably simpler objects that the space-times of general
relativity and relate to GRT space-time like elementary particles to systems of condensed matter
physics. Same can be said about fields since all fields are expressible in terms of embedding
space coordinates and their gradients, and general coordinate invariance means that the number
of bosonic field degrees is reduced locally to 4. TGD space-time can be said to be a microscopic
description whereas GRT space-time a macroscopic description. In TGD complexity of space-time
topology replaces the complexity due to large number of fields in quantum field theory.

Topological field quantization and the notion of magnetic body

Topological field quantization also TGD from Maxwell’s theory. TGD predicts topological light rays
(“massless extremals (MEs)”) as space-time sheets carrying waves or arbitrary shape propagating

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/wormholecontact.jpg
http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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with maximal signal velocity in single direction only and analogous to laser beams and carrying
light-like gauge currents in the generi case. There are also magnetic flux quanta and electric flux
quanta. The deformations of cosmic strings with 2-D string orbit as M4 projection gives rise to
magnetic flux tubes carrying monopole flux made possible by CP2 topology allowing homological
Kähler magnetic monopoles.

Fig. 13. Topological quantization for magnetic fields replaces magnetic fields with bundles of
them defining flux tubes as topological field quanta. http://tgdtheory.fi/appfigures/field.

jpg

The imbeddability condition for say magnetic field means that the region containing constant
magnetic field splits into flux quanta, say tubes and sheets carrying constant magnetic field. Unless
one assumes a separate boundary term in Kähler action, boundaries in the usual sense are forbidden
except as ends of space-time surfaces at the boundaries of causal diamonds. One obtains typically
pairs of sheets glued together along their boundaries giving rise to flux tubes with closed cross
section possibly carrying monopole flux.

These kind of flux tubes might make possible magnetic fields in cosmic scales already during
primordial period of cosmology since no currents are needed to generate these magnetic fields:
cosmic string would be indeed this kind of objects and would dominated during the primordial
period. Even superconductors and maybe even ferromagnets could involve this kind of monopole
flux tubes.

A-3.4 Embedding space spinors and induced spinors

One can geometrize also fermionic degrees of freedom by inducing the spinor structure of M4×CP2.
CP2 does not allow spinor structure in the ordinary sense but one can couple the opposite

H-chiralities of H-spinors to an n = 1 (n = 3) integer multiple of Kähler gauge potential to obtain
a respectable modified spinor structure. The em charges of resulting spinors are fractional (integer
valued) and the interpretation as quarks (leptons) makes sense since the couplings to the induced
spinor connection having interpretation in terms electro-weak gauge potential are identical to those
assumed in standard model.

The notion of quark color differs from that of standard model.

1. Spinors do not couple to color gauge potential although the identification of color gauge
potential as projection of SU(3) Killing vector fields is possible. This coupling must emerge
only at the effective gauge theory limit of TGD.

2. Spinor harmonics of embedding space correspond to triality t = 1 (t = 0) partial waves.
The detailed correspondence between color and electroweak quantum numbers is however
not correct as such and the interpretation of spinor harmonics of embedding space is as
representations for ground states of super-conformal representations. The wormhole pairs
associated with physical quarks and leptons must carry also neutrino pair to neutralize weak
quantum numbers above the length scale of flux tube (weak scale or Compton length). The
total color quantum numbers or these states must be those of standard model. For instance,
the color quantum numbers of fundamental left-hand neutrino and lepton can compensate
each other for the physical lepton. For fundamental quark-lepton pair they could sum up to
those of physical quark.

The well-definedness of em charge is crucial condition.

1. Although the embedding space spinor connection carries W gauge potentials one can say that
the embedding space spinor modes have well-defined em charge. One expects that this is true
for induced spinor fields inside wormhole contacts with 4-D CP2 projection and Euclidian
signature of the induced metric.

2. The situation is not the same for the modes of induced spinor fields inside Minkowskian
region and one must require that the CP2 projection of the regions carrying induced spinor
field is such that the induced W fields and above weak scale also the induced Z0 fields vanish
in order to avoid large parity breaking effects. This condition forces the CP2 projection to
be 2-dimensional. For a generic Minkowskian space-time region this is achieved only if the

http://tgdtheory.fi/appfigures/field.jpg
http://tgdtheory.fi/appfigures/field.jpg
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spinor modes are localized at 2-D surfaces of space-time surface - string world sheets and
possibly also partonic 2-surfaces.

3. Also the Kähler-Dirac gamma matrices appearing in the modified Dirac equation must vanish
in the directions normal to the 2-D surface in order that Kähler-Dirac equation can be
satisfied. This does not seem plausible for space-time regions with 4-D CP2 projection.

4. One can thus say that strings emerge from TGD in Minkowskian space-time regions. In
particular, elementary particles are accompanied by a pair of fermionic strings at the opposite
space-time sheets and connecting wormhole contacts. Quite generally, fundamental fermions
would propagate at the boundaries of string world sheets as massless particles and wormhole
contacts would define the stringy vertices of generalized Feynman diagrams. One obtains
geometrized diagrammatics, which brings looks like a combination of stringy and Feynman
diagrammatics.

5. This is what happens in the the generic situation. Cosmic strings could serve as examples
about surfaces with 2-D CP2 projection and carrying only em fields and allowing delocaliza-
tion of spinor modes to the entire space-time surfaces.

A-3.5 About induced gauge fields

In the following the induced gauge fields are studied for general space-time surface without assum-
ing the preferred extremal property (Bohr orbit property). Therefore the following arguments are
somewhat obsolete in their generality.

Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial
geodesic sphere and extremal property are not assumed. It must be emphasized that this case is
possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-3.1)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-3.2)

where ΘW denotes Weinberg angle.

1. The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-3.3)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral
space-time is 2-dimensional. Solving the differential equation one obtains
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r =

√
X

1−X
,

X = D

[
|k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-3.4)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r. r = 0
would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞ to X = 1
giving |u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.

The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-3.5)

The components of the electromagnetic field generated by varying vacuum parameters are
proportional to the components of the Kähler field: in particular, the magnetic field is parallel
to the Kähler magnetic field. The generation of a long range Z0 vacuum field is a purely
TGD based feature not encountered in the standard gauge theories.

2. The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2
as becomes clear by considering the condition stating that Z0 field vanishes identically. Also

the relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.

3. The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral space-
times. In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-3.6)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field remains
as a long range gauge field. Vacuum extremals for which long range Z0 field vanishes but
em field is non-vanishing are not possible.
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The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler field is
of practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-3.7)

and is useful in the construction of vacuum embedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions characterized
by six vacuum parameters: two of these quantum numbers (ω1 and ω2) are frequency type param-
eters, two (k1 and k2 ) are wave vector like quantum numbers, two of the quantum numbers (n1

and n2) are integers. The parameters ωi and ni will be referred as electric and magnetic quantum
numbers. The existence of these quantum numbers is not a feature of these solutions alone but
represents a much more general phenomenon differentiating in a clear cut manner between TGD
and Maxwell’s electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the
derivatives of CP2 coordinates on the common boundary of two neighboring regions with differ-
ent vacuum quantum numbers is topological field quantization, 3-space decomposes into disjoint
topological field quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-3.8)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that one has
k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given values of the
vacuum parameters ωi,ki and ni and m and C are bounded by the surfaces at which space-time
surface becomes ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the
vacuum parameters r0 and Θ0. At r = ∞ surfaces n2,ω2 and m can change since all values of
Ψ correspond to the same point of CP2: at r = 0 surfaces also n1 and ω1 can change since all
values of Φ correspond to same point of CP2, too. If r = 0 or r = ∞ is not in the allowed range
space-time surface develops a boundary.

This implies what might be called topological quantization since in general it is not possible
to find a smooth global embedding for, say a constant magnetic field. Although global embedding
exists it decomposes into regions with different values of the vacuum parameters and the coordinate
u in general possesses discontinuous derivative at r = 0 and r = ∞ surfaces. A possible manner
to avoid edges of space-time is to allow field quantization so that 3-space (and field) decomposes
into disjoint quanta, which can be regarded as structurally stable units a 3-space (and of the gauge
field). This doesn’t exclude partial join along boundaries for neighboring field quanta provided
some additional conditions guaranteeing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-3.9)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically neutral
regions of space-time surface. The change of the parameter n1 and n2 (ω1 and ω2) in general
generates magnetic field and therefore these integers will be referred to as magnetic (electric)
quantum numbers.
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A-4 The relationship of TGD to QFT and string models

The recent view of the relationship of TGD to QFT and string models has developed slowly during
years and it seems that in a certain sense TGD means a return to roots: instead of QFT like
description involving path integral one would have wave mechanics for 3-surfaces.

A-4.1 TGD as a generalization of wave mechanism obtained by replacing
point-like particles with 3-surfaces

The first vision of TGD was as a generalization of quantum field theory (string models) obtained
by replacing pointlike particles (strings) as fundamental objects with 3-surfaces.

The later work has revealed that TGD could be seen as a generalization of the wave mecha-
nism based on the replacement of a point-like particle with 3-D surface. This is due to holography
implied by general coordinate invariance. The definition of the metric of the ”world of classical
worlds” (WCW) must assign a unique or at least almost unique space-time surface to a given
3-surface. This 4-surface is analogous to Bohr orbit so that also Bohr orbitology becomes an exact
part of quantum physics. The failure of strict determinism forces to replace 3-surfaces with 4-
surfaces and this leads to zero energy ontology (ZEO) in which quantum states are superpositions
of space-time surfaces [K35, K20, K63] [L60, L72].

Fig. 5. TGD replaces point-like particles with 3-surfaces. http://tgdtheory.fi/appfigures/
particletgd.jpg

A-4.2 Extension of superconformal invariance

The fact that light-like 3-surfaces are effectively metrically 2-dimensional and thus possess gen-
eralization of 2-dimensional conformal symmetries with light-like radial coordinate defining the
analog of second complex coordinate suggests that this generalization could work and extend the
super-conformal symmetries to their 4-D analogs.

The boundary δM4
+ = S2 ×R+- of 4-D light-cone M4

+ is also metrically 2-dimensional and
allows extended conformal invariance. Also the group of isometries of light-cone boundary and of
light-like 3-surfaces is infinite-dimensional since the conformal scalings of S2 can be compensated
by S2-local scaling of the light-like radial coordinate of R+. These simple facts mean that 4-
dimensional Minkowski space and 4-dimensional space-time surfaces are in a completely unique
position as far as symmetries are considered.

In fact, this leads to a generalization of the Kac-Moody type symmetries of string models.
δM4

+ × CP2 allows huge supersymplectic symmetries for which the radial light-like coordinate of
δM4

+ plays the role of complex string coordinate in string models. These symmetries are assumed
to act as isometries of WCW.

A-4.3 String-like objects and strings

String like objects obtained as deformations of cosmic strings X2×Y 2, where X2 is minimal surface
in M4 and Y 2 a holomorphic surface of CP2 are fundamental extremals of Kähler action having
string world sheet as M4 projections. Cosmic strings dominate the primordial cosmology of the
TGD Universe and the inflationary period corresponds to the transition to radiation dominated
cosmology for which space-time sheets with 4-D M4 projection dominate.

Also genuine string-like objects emerge from TGD. The conditions that the em charge
of modes of induces spinor fields is well-defined requires in the generic case the localization of
the modes at 2-D surfaces -string world sheets and possibly also partonic 2-surfaces. This in
Minkowskian space-time regions.

Fig. 6. Well-definedness of em charge forces the localization of induced spinor modes to 2-D
surfaces in generic situations in Minkowskian regions of space-time surface. http://tgdtheory.

fi/appfigures/fermistring.jpg

A-4.4 TGD view of elementary particles

The TGD based view about elementary particles has two key aspects.

http://tgdtheory.fi/appfigures/particletgd.jpg
http://tgdtheory.fi/appfigures/particletgd.jpg
http://tgdtheory.fi/appfigures/fermistring.jpg
http://tgdtheory.fi/appfigures/fermistring.jpg
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1. The space-time correlates of elementary particles are identified as pairs of wormhole contacts
with Euclidean signature of metric and having 4-D CP2 projection. Their throats behave
effectively as Kähler magnetic monopoles so that wormhole throats must be connected by
Kähler magnetic flux tubes with monopole flux so that closed flux tubes are obtained.

2. At the level of H Fermion number is carried by the modes of the induced spinor field. In
space-time regions with Minkowski signature the modes are localized at string world sheets
connecting the wormhole contacts.

Fig. 7. TGD view about elementary particles. a) Particle orbit corresponds to a 4-D
generalization of a world line or b) with its light-like 3-D boundary (holography). c) Particle
world lines have Euclidean signature of the induced metric. d) They can be identified as wormhole
contacts. e) The throats of wormhole contacts carry effective Kähler magnetic charges so that
wormhole contacts must appear as pairs in order to obtain closed flux tubes. f) Wormhole contacts
are accompanied by fermionic strings connecting the throats at the same sheet: the strings do not
extend inside the wormhole contacts. http://tgdtheory.fi/appfigures/elparticletgd.jpg

Particle interactions involve both stringy and QFT aspects.

1. The boundaries of string world sheets correspond to fundamental fermions. This gives rise to
massless propagator lines in generalized Feynman diagrammatics. One can speak of “long”
string connecting wormhole contacts and having a hadronic string as a physical counterpart.
Long strings should be distinguished from wormhole contacts which due to their super-
conformal invariance behave like “short” strings with length scale given by CP2 size, which
is 104 times longer than Planck scale characterizing strings in string models.

2. Wormhole contact defines basic stringy interaction vertex for fermion-fermion scattering. The
propagator is essentially the inverse of the superconformal scaling generator L0. Wormhole
contacts containing fermion and antifermion at its opposite throats behave like virtual bosons
so that one has BFF type vertices typically.

3. In topological sense one has 3-vertices serving as generalizations of 3-vertices of Feynman
diagrams. In these vertices 4-D “lines” of generalized Feynman diagrams meet along their
3-D ends. One obtains also the analogs of stringy diagrams but stringy vertices do not have
the usual interpretation in terms of particle decays but in terms of propagation of particles
along two different routes.

Fig. 8. a) TGD analogs of Feynman and string diagrammatics at the level of space-
time topology. b) The 4-D analogs of both string diagrams and QFT diagrams appear but the
interpretation of the analogs stringy diagrams is different. http://tgdtheory.fi/appfigures/

tgdgraphs.jpg

A-5 About the selection of the action defining the Kähler
function of the ”world of classical worlds” (WCW)

The proposal is that space-time surfaces correspond to preferred extremals of some action principle,
being analogous to Bohr orbits, so that they are almost deterministic. The action for the preferred
extremal would define the Kähler function of WCW [K35, K63].

How unique is the choice of the action defining WCW Kähler metric? The problem is that
twistor lift strongly suggests the identification of the preferred extremals as 4-D surfaces having
4-D generalization of complex structure and that a large number of general coordinate invariant
actions constructible in terms of the induced geometry have the same preferred extremals.

A-5.1 Could twistor lift fix the choice of the action uniquely?

The twistor lift of TGD [L26] [L60, L62, L63] generalizes the notion of induction to the level of
twistor fields and leads to a proposal that the action is obtained by dimensional reduction of the
action having as its preferred extremals the counterpart of twistor space of the space-time surface
identified as 6-D surface in the product T (M4)× T (CP2) twistor spaces of T (M4) and T (CP2)

http://tgdtheory.fi/appfigures/elparticletgd.jpg
http://tgdtheory.fi/appfigures/tgdgraphs.jpg
http://tgdtheory.fi/appfigures/tgdgraphs.jpg
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of M4 and CP2. Only M4 and CP2 allow a twistor space with Kähler structure [A79] so that
TGD would be unique. Dimensional reduction is forced by the condition that the 6-surface
has S2-bundle structure characterizing twistor spaces and the base space would be the space-time
surface.

1. Dimensional reduction of 6-D Kähler action implies that at the space-time level the funda-
mental action can be identified as the sum of Kähler action and volume term (cosmological
constant). Other choices of the action do not look natural in this picture although they
would have the same preferred extremals.

2. Preferred extremals are proposed to correspond to minimal surfaces with singularities such
that they are also extremals of 4-D Kähler action outside the singularities. The physical
analogue are soap films spanned by frames and one can localize the violation of the strict
determinism and of strict holography to the frames.

3. The preferred extremal property is realized as the holomorphicity characterizing string world
sheets, which generalizes to the 4-D situation. This in turn implies that the preferred ex-
tremals are the same for any general coordinate invariant action defined on the induced gauge
fields and induced metric apart from possible extremals with vanishing CP2 Kähler action.

For instance, 4-D Kähler action and Weyl action as the sum of the tensor squares of the
components of the Weyl tensor of CP2 representing quaternionic imaginary units constructed
from the Weyl tensor of CP2 as an analog of gauge field would have the same preferred
extremals and only the definition of Kähler function and therefore Kähler metric of WCW
would change. One can even consider the possibility that the volume term in the 4-D action
could be assigned to the tensor square of the induced metric representing a quaternionic or
octonionic real unit.

Action principle does not seem to be unique. On the other hand, the WCW Kähler form
and metric should be unique since its existence requires maximal isometries.

Unique action is not the only way to achieve this. One cannot exclude the possibility that
the Kähler gauge potential of WCW in the complex coordinates of WCW differs only by a complex
gradient of a holomorphic function for different actions so that they would give the same Kähler
form for WCW. This gradient is induced by a symplectic transformation of WCW inducing a
U(1) gauge transformation. The Kähler metric is the same if the symplectic transformation is an
isometry.

Symplectic transformations of WCW could give rise to inequivalent representations of the
theory in terms of action at space-time level. Maybe the length scale dependent coupling parame-
ters of an effective action could be interpreted in terms of a choice of WCW Kähler function, which
maximally simplifies the computations at a given scale.

1. The 6-D analogues of electroweak action and color action reducing to Kähler action in 4-D
case exist. The 6-D analog of Weyl action based on the tensor representation of quaternionic
imaginary units does not however exist. One could however consider the possibility that only
the base space of twistor space T (M4) and T (CP2) have quaternionic structure.

2. Kähler action has a huge vacuum degeneracy, which clearly distinguishes it from other actions.
The presence of the volume term removes this degeneracy. However, for minimal surfaces
having CP2 projections, which are Lagrangian manifolds and therefore have a vanishing
induced Kähler form, would be preferred extremals according to the proposed definition. For
these 4-surfaces, the existence of the generalized complex structure is dubious.

For the electroweak action, the terms corresponding to charged weak bosons eliminate these
extremals and one could argue that electroweak action or its sum with the analogue of color
action, also proportional Kähler action, defines the more plausible choice. Interestingly, also
the neutral part of electroweak action is proportional to Kähler action.

Twistor lift strongly suggests that also M4 has the analog of Kähler structure. M8 must be
complexified by adding a commuting imaginary unit i. In the E8 subspace, the Kähler structure
of E4 is defined in the standard sense and it is proposed that this generalizes to M4 allowing also
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generalization of the quaternionic structure. M4 Kähler structure violates Lorentz invariance but
could be realized at the level of moduli space of these structures.

The minimal possibility is that the M4 Kähler form vanishes: one can have a different
representation of the Kähler gauge potential for it obtained as generalization of symplectic trans-
formations acting non-trivially in M4. The recent picture about the second quantization of spinors
of M4 × CP2 assumes however non-trivial Kähler structure in M4.

A-5.2 Two paradoxes

TGD view leads to two apparent paradoxes.

1. If the preferred extremals satisfy 4-D generalization of holomorphicity, a very large set of
actions gives rise to the same preferred extremals unless there are some additional conditions
restricting the number of preferred extremals for a given action.

2. WCW metric has an infinite number of zero modes, which appear as parameters of the metric
but do not contribute to the line element. The induced Kähler form depends on these degrees
of freedom. The existence of the Kähler metric requires maximal isometries, which suggests
that the Kähler metric is uniquely fixed apart from a conformal scaling factor Ω depending
on zero modes. This cannot be true: galaxy and elementary particle cannot correspond to
the same Kähler metric.

Number theoretical vision and the hierarchy of inclusions of HFFs associated with supersym-
plectic algebra actings as isometries of WcW provide equivalent realizations of the measurement
resolution. This solves these paradoxes and predicts that WCW decomposes into sectors for which
Kähler metrics of WCW differ in a natural way.

The hierarchy subalgebras of supersymplectic algebra implies the decomposition of
WCW into sectors with different actions

Supersymplectic algebra of δM4
+ ×CP2 is assumed to act as isometries of WCW [L72]. There are

also other important algebras but these will not be discussed now.

1. The symplectic algebra A of δM4
+×CP2 has the structure of a conformal algebra in the sense

that the radial conformal weights with non-negative real part, which is half integer, label the
elements of the algebra have an interpretation as conformal weights.

The super symplectic algebra A has an infinite hierarchy of sub-algebras [L72] such that the
conformal weights of sub-algebras An(SS) are integer multiples of the conformal weights of
the entire algebra. The superconformal gauge conditions are weakened. Only the subalgebra
An(SS) and the commutator [An(SS), A] annihilate the physical states. Also the corresponding
classical Noether charges vanish for allowed space-time surfaces.

This weakening makes sense also for ordinary superconformal algebras and associated Kac-
Moody algebras. This hierarchy can be interpreted as a hierarchy symmetry breakings,
meaning that sub-algebra An(SS) acts as genuine dynamical symmetries rather than mere
gauge symmetries. It is natural to assume that the super-symplectic algebra A does not
affect the coupling parameters of the action.

2. The generators of A correspond to the dynamical quantum degrees of freedom and leave the
induced Kähler form invariant. They affect the induced space-time metric but this effect is
gravitational and very small for Einsteinian space-time surfaces with 4-D M4 projection.

The number of dynamical degrees of freedom increases with n(SS). Therefore WCW decom-
poses into sectors labelled by n(SS) with different numbers of dynamical degrees of freedom
so that their Kähler metrics cannot be equivalent and cannot be related by a symplectic
isometry. They can correspond to different actions.
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Number theoretic vision implies the decomposition of WCW into sectors with different
actions

The number theoretical vision leads to the same conclusion as the hierarchy of HFFs. The number
theoretic vision of TGD based on M8−H duality [L72] predicts a hierarchy with levels labelled by
the degrees n(P ) of rational polynomials P and corresponding extensions of rationals characterized
by Galois groups and by ramified primes defining p-adic length scales.

These sequences allow us to imagine several discrete coupling constant evolutions realized
at the level H in terms of action whose coupling parameters depend on the number theoretic
parameters.

1. Coupling constant evolution with respect to n(P )

The first coupling constant evolution would be with respect to n(P ).

1. The coupling constants characterizing action could depend on the degree n(P ) of the poly-
nomial defining the space-time region by M8 −H duality. The complexity of the space-time
surface would increase with n(P ) and new degrees of freedom would emerge as the number
of the rational coefficients of P .

2. This coupling constant evolution could naturally correspond to that assignable to the in-
clusion hierarchy of hyperfinite factors of type II1 (HFFs). I have indeed proposed [L72]
that the degree n(P ) equals to the number n(braid) of braids assignable to HFF for which
super symplectic algebra subalgebra An(SS) with radial conformal weights coming as n(SS)-
multiples of those of entire algebra A. One would have n(P ) = n(braid) = n(SS). The
number of dynamical degrees of freedom increases with n which just as it increases with
n(P ) and n(SS).

3. The actions related to different values of n(P ) = n(braid) = n(SS) cannot define the same
Kähler metric since the number of allowed space-time surfaces depends on n(SS).

WCW could decompose to sub-WCWs corresponding to different actions, a kind of theory
space. These theories would not be equivalent. A possible interpretation would be as a
hierarchy of effective field theories.

4. Hierarchies of composite polynomials define sequences of polynomials with increasing values
of n(P ) such that the order of a polynomial at a given level is divided by those at the lower
levels. The proposal is that the inclusion sequences of extensions are realized at quantum
level as inclusion hierarchies of hyperfinite factors of type II1.

A given inclusion hierarchy corresponds to a sequence n(SS)i such that n(SS)i divides
n(SS)i+1. Therefore the degree of the composite polynomials increases very rapidly. The
values of n(SS)i can be chosen to be primes and these primes correspond to the degrees
of so called prime polynomials [L66] so that the decompositions correspond to prime fac-
torizations of integers. The ”densest” sequence of this kind would come in powers of 2 as
n(SS)i = 2i. The corresponding p-adic length scales (assignable to maximal ramified primes

for given n(SS)i) are expected to increase roughly exponentially, say as 2r2
i

. r = 1/2 would
give a subset of scales 2r/2 allowed by the p-adic length scale hypothesis. These transitions
would be very rare.

A theory corresponding to a given composite polynomial would contain as sub-theories the
theories corresponding to lower polynomial composites. The evolution with respect to n(SS)
would correspond to a sequence of phase transitions in which the action genuinely changes.
For instance, color confinement could be seen as an example of this phase transition.

5. A subset of p-adic primes allowed by the p-adic length scale hypothesis p ' 2k defining the
proposed p-adic length scale hierarchy could relate to nS changing phase transition. TGD
suggests a hierarchy of hadron physics corresponding to a scale hierarchy defined by Mersenne
primes and their Gaussian counterparts [K46, K47]). Each of them would be characterized
by a confinement phase transition in which nS and therefore also the action changes.
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2. Coupling constant evolutions with respect to ramified primes for a given value of n(P )

For a given value of n(P ), one could have coupling constant sub-evolutions with respect to
the set of ramified primes of P and dimensions n = heff/h0 of algebraic extensions. The action
would only change by U(1) gauge transformation induced by a symplectic isometry of WCW.
Coupling parameters could change but the actions would be equivalent.

The choice of the action in an optimal manner in a given scale could be seen as a choice
of the most appropriate effective field theory in which radiative corrections would be taken into
account. One can interpret the possibility to use a single choice of coupling parameters in terms
of quantum criticality.

The range of the p-adic length scales labelled by ramified primes and effective Planck con-
stants heff/h0 is finite for a given value of n(SS).

The first coupling constant evolution of this kind corresponds to ramified primes defining
p-adic length scales for given n(SS).

1. Ramified primes are factors of the discriminantD(P ) of P , which is expressible as a product of
non-vanishing root differents and reduces to a polynomial of the n coefficients of P . Ramified
primes define p-adic length scales assignable to the particles in the amplitudes scattering
amplitudes defined by zero energy states.

P would represent the space-time surface defining an interaction region in N−-particle scat-
tering. The N ramified primes dividing D(P ) would characterize the p-adic length scales
assignable to these particles. If D(P ) reduces to a single ramified prime, one has elementary
particle [L66], and the forward scattering amplitude corresponds to the propagator.

This would give rise to a multi-scale p-adic length scale evolution of the amplitudes analogous
to the ordinary continuous coupling constant evolution of n-point scattering amplitudes with
respect to momentum scales of the particles. This kind of evolutions extend also to evolutions
with respect to n(SS).

2. According to [L66], physical constraints require that n(P ) and the maximum size of the
ramified prime of P correlate.

A given rational polynomial of degree n(P ) can be always transformed to a polynomial with
integer coefficients. If the integer coefficients are smaller than n(P ), there is an upper bound
for the ramified primes. This assumption also implies that finite fields become fundamental
number fields in number theoretical vision [L66].

3. p-Adic length scale hypothesis [L73] in its basic form states that there exist preferred primes
p ' 2k near some powers of 2. A more general hypothesis states that also primes near some
powers of 3 possibly also other small primes are preferred physically. The challenge is to
understand the origin of these preferred scales.

For polynomials P with a given degree n(P ) for which discriminant D(P ) is prime, there
exists a maximal ramified prime. Numerical calculations suggest that the upper bound
depends exponentially on n(P ).

Could these maximal ramified primes satisfy the p-adic length scale hypothesis or its general-
ization? The maximal prime defines a fixed point of coupling constant evolution in accordance
with the earlier proposal. For instance, could one think that one has p ' 2k, k = n(SS)? Each
p-adic prime would correspond to a p-adic coupling constant sub-evolution representable in
terms of symplectic isometries.

Also the dimension n of the algebraic extension associated with P , which is identified in
terms of effective Planck constant heff/h0 = n labelling different phases of the ordinary matter
behaving like dark matter, could give rise to coupling constant evolution for given n(SS). The
range of allowed values of n is finite. Note however that several polynomials of a given degree can
correspond to the same dimension of extension.

Number theoretic discretization of WCW and maxima of WCW Kähler function

Number theoretic approach involves a unique discretization of space-time surface and also of WCW.
The question is how the points of the discretized WCW correspond to the preferred extremals.
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1. The exponents of Kähler function for the maxima of Kähler function, which correspond to
the universal preferred extremals, appear in the scattering amplitudes. The number theo-
retical approach involves a unique discretization of space-time surfaces defining the WCW
coordinates of the space-time surface regarded as a point of WCW.

In [L72] it is assumed that these WCW points appearing in the number theoretical discretiza-
tion correspond to the maxima of the Kähler function. The maxima would depend on the
action and would differ for ghd maxima associated with different actions unless they are not
related by symplectic WCW isometry.

2. The symplectic transformations of WCW acting as isometries are assumed to be induced by
the symplectic transformations of δM4

+×CP2 [K35, K20]. As isometries they would naturally
permute the maxima with each other.

A-6 Number theoretic vision of TGD

Physics as number theory vision is complementary to the physics as geometry vision and has
developed gradually since 1993. Langlands program is the counterpart of this vision in mathematics
[L70].

The notion of p-adic number fields emerged with the motivation coming from the observation
that elementary particle mass scales and mass ratios could be understood in terms of the so-called
p-adic length scale hypothesis [K49, K41, K17]. The fusion of the various p-adic physics leads to
what I call adelic physics [L23, L24]. Later the hypothesis about hierarchy of Planck constants
labelling phases of ordinary matter behaving like dark matter emerged [K22, K23, K24, K24].

Eventually this led to that the values of effective Planck constant could be identified as the
dimension of an algebraic extension of rationals assignable to polynomials with rational coefficients.
This led to the number theoretic vision in which so-called M8 −H duality [L45, L46] plays a key
role. M8 (actually a complexification of real M8) is analogous to momentum space so that the
duality generalizes momentum position duality for point-like particles. M8 has an interpretation
as complexified octonions.

The dynamics of 4-surfaces in M8 is coded by polynomials with rational coefficients, whose
roots define mass shells H3 of M4 ⊂M8. It has turned out that the polynomials satisfy stringent
additional conditions and one can speak of number theoretic holography [L66, L70]. Also the
ordinary 3→ 4 holography is needed to assign 4-surfaces with these 3-D mass shells. The number
theoretic dynamics is based on the condition that the normal space of the 4-surface in M8 is
associative (quaternionic) and contains a commutative complex sub-space. This makes it possible
to assign to this surface space-time surface in H = M4 × CP2.

At the level of H the space-time surfaces are by holography preferred extremals and are
assumed to be determined by the twistor lift of TGD [L26] giving rise to an action which is sum
of the Kähler action and volume term. The preferred extremals would be minimal surfaces
analogous to soap films spanned by frames. Outside frames they would be simultaneous extremals
of the Kähler action, which requires a generalization of the holomorphy characterizing string
world sheets.

In the following only p-adic numbers and hierarchy of Planck constants will be discussed.

A-6.1 p-Adic numbers and TGD

p-Adic number fields

p-Adic numbers (p is prime: 2, 3, 5, ...) can be regarded as a completion of the rational numbers
using a norm, which is different from the ordinary norm of real numbers [A40]. p-Adic numbers
are representable as power expansion of the prime number p of form

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-6.1)

The norm of a p-adic number is given by
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|x| = p−k0(x) . (A-6.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the
p-adic number only. Arbitrarily high powers in the expansion are possible since the norm of the
p-adic number is finite also for numbers, which are infinite with respect to the ordinary norm. A
convenient representation for p-adic numbers is in the form

x = pk0ε(x) , (A-6.3)

where ε(x) = k+ .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x− y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-6.4)

The properties of the distance function make it possible to decompose Rp into a union of disjoint
sets using the criterion that x and y belong to same class if the distance between x and y satisfies
the condition

d(x, y) ≤ D . (A-6.5)

This division of the metric space into classes has following properties:

1. Distances between the members of two different classes X and Y do not depend on the choice
of points x and y inside classes. One can therefore speak about distance function between
classes.

2. Distances of points x and y inside single class are smaller than distances between different
classes.

3. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin
glasses and is believed to have also applications in biology [B25]. The emergence of p-adic topology
as the topology of the effective space-time would make ultra-metricity property basic feature of
physics.

Canonical correspondence between p-adic and real numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the p-adic
physics to real numbers. p-Adic probabilities provide a basic example in this respect. Identification
via common rationals and canonical identification and its variants have turned out to play a key
role in this respect.

1. Basic form of the canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative
real numbers given by the “pinary” expansion of the real number for x ∈ R and y ∈ Rp this
correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-6.6)
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This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also decimal expansion is not
unique (1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of
pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-6.7)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-6.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite pinary
digits or single valued and discontinuous and non-surjective if one makes pinary expansion unique
by choosing the one with finite pinary digits. The finite pinary digit expansion is a natural choice
since in the numerical work one always must use a pinary cutoff on the real axis.

2. The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers
differs from the ordinary topology. The difference is easily understood by interpreting the p-adic
norm as a norm in the set of the real numbers. The norm is constant in each interval [pk, pk+1)
(see Fig. A-6.1 ) and is equal to the usual real norm at the points x = pk: the usual linear norm
is replaced with a piecewise constant norm. This means that p-adic topology is coarser than the
usual real topology and the higher the value of p is, the coarser the resulting topology is above a
given length scale. This hierarchical ordering of the p-adic topologies will be a central feature as
far as the proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topol-
ogy is rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from right as
is clear already from the properties of the p-adic norm (the graph of the norm is indeed continuous
from right). This feature is one clear signature of the p-adic topology.

Fig. 14. The real norm induced by canonical identification from 2-adic norm. http:

//tgdtheory.fi/appfigures/norm.png

The linear structure of the p-adic numbers induces a corresponding structure in the set of
the non-negative real numbers and p-adic linearity in general differs from the ordinary concept
of linearity. For example, p-adic sum is equal to real sum only provided the summands have no
common pinary digits. Furthermore, the condition x+p y < max{x, y} holds in general for the p-
adic sum of the real numbers. p-Adic multiplication is equivalent with the ordinary multiplication
only provided that either of the members of the product is power of p. Moreover one has x×p y <
x × y in general. The p-Adic negative −1p associated with p-adic unit 1 is given by (−1)p =∑
k(p− 1)pk and defines p-adic negative for each real number x. An interesting possibility is that

p-adic linearity might replace the ordinary linearity in some strongly nonlinear systems so these
systems would look simple in the p-adic topology.

These results suggest that canonical identification is involved with some deeper mathematical
structure. The following inequalities hold true:

http://tgdtheory.fi/appfigures/norm.png
http://tgdtheory.fi/appfigures/norm.png
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(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-6.9)

where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n (a linear

vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-6.10)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space
suggests the definition

(xR)2 = (
∑
n

x2
n)R . (A-6.11)

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of
linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the
original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might
have a generalization and physically the generalization might apply to the description of some
non-linear systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm
under scaling.

3. Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symme-
tries even approximately. This led to a search of variants which would do better in this respect.
The modification of the canonical identification applying to rationals only and given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-6.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under exchange
of target and domain. This map reduces to a direct identification of rationals for 0 ≤ r < p and
0 ≤ s < p. It has turned out that it is this map which most naturally appears in the applications.
The map is obviously continuous locally since p-adically small modifications of r and s mean small
modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle
masses. The predictions for the light elementary particle masses are within extreme accuracy same
for I and IQ but IQ is theoretically preferred since the real probabilities obtained from p-adic ones
by IQ sum up to one in p-adic thermodynamics.

4. Generalization of number concept and notion of embedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic
number fields along common rationals is in question. This induces a similar fusion of real and
p-adic embedding spaces. Since finite p-adic numbers correspond always to non-negative reals
n-dimensional space Rn must be covered by 2n copies of the p-adic variant Rnp of Rn each of which
projects to a copy of Rn+ (four quadrants in the case of plane). The common points of p-adic and
real embedding spaces are rational points and most p-adic points are at real infinity.

Real numbers and various algebraic extensions of p-adic number fields are thus glued together
along common rationals and also numbers in algebraic extension of rationals whose number belong
to the algebraic extension of p-adic numbers. This gives rise to a book like structure with rationals
and various algebraic extensions of rationals taking the role of the back of the book. Note that
Neper number is exceptional in the sense that it is algebraic number in p-adic number field Qp
satisfying ep mod p = 1.
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Fig. 15. Various number fields combine to form a book like structure. http://tgdtheory.
fi/appfigures/book.jpg

For a given p-adic space-time sheet most points are literally infinite as real points and the
projection to the real embedding space consists of a discrete set of rational points: the interpretation
in terms of the unavoidable discreteness of the physical representations of cognition is natural.
Purely local p-adic physics implies real p-adic fractality and thus long range correlations for the
real space-time surfaces having enough common points with this projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface
X4 are related by a direct identification whereas CP2 coordinates of X4 at these points are related
by I, IQ or some of its variants implying long range correlates for CP2 coordinates. Since only
a discrete set of points are related in this manner, both real and p-adic field equations can be
satisfied and there are no problems with symmetries. p-Adic effective topology is expected to be
a good approximation only within some length scale range which means infrared and UV cutoffs.
Also multi-p-fractality is possible.

The notion of p-adic manifold

The notion of p-adic manifold is needed in order to fuse real physics and various p-adic physics to
a larger structure which suggests that real and p-adic number fields should be glued together along
common rationals bringing in mind adeles. The notion is problematic because p-adic topology
is totally disconnected implying that p-adic balls are either disjoint or nested so that ordinary
definition of manifold using p-adic chart maps fails. A cure is suggested to be based on chart maps
from p-adics to reals rather than to p-adics (see the appendix of the book)

The chart maps are interpreted as cognitive maps, “thought bubbles”.
Fig. 16. The basic idea between p-adic manifold. http://tgdtheory.fi/appfigures/

padmanifold.jpg

There are some problems.

1. Canonical identification does not respect symmetries since it does not commute with second
pinary cutoff so that only a discrete set of rational points is mapped to their real counterparts
by chart map arithmetic operations which requires pinary cutoff below which chart map takes
rationals to rationals so that commutativity with arithmetics and symmetries is achieved in
finite resolution: above the cutoff canonical identification is used

2. Canonical identification is continuous but does not map smooth p-adic surfaces to smooth
real surfaces requiring second pinary cutoff so that only a discrete set of rational points is
mapped to their real counterparts by chart map requiring completion of the image to smooth
preferred extremal of Kähler action so that chart map is not unique in accordance with finite
measurement resolution

3. Canonical identification violates general coordinate invariance of chart map: (cognition-
induced symmetry breaking) minimized if p-adic manifold structure is induced from that
for p-adic embedding space with chart maps to real embedding space and assuming preferred
coordinates made possible by isometries of embedding space: one however obtains several in-
equivalent p-adic manifold structures depending on the choice of coordinates: these cognitive
representations are not equivalent.

A-6.2 Hierarchy of Planck constants and dark matter hierarchy

Hierarchy of Planck constants was motivated by the “impossible” quantal effects of ELF em fields
on vertebrate cyclotron energies E = hf = ~× eB/m are above thermal energy is possible only if
~ has value much larger than its standard value. Also Nottale’s finding that planetary orbits migh
be understood as Bohr orbits for a gigantic gravitational Planck constant.

Hierachy of Planck constant would mean that the values of Planck constant come as integer
multiples of ordinary Planck constant: heff = n× h. The particles at magnetic flux tubes charac-
terized by heff would correspond to dark matter which would be invisible in the sense that only
particle with same value of heff appear in the same vertex of Feynman diagram.

http://tgdtheory.fi/appfigures/book.jpg
http://tgdtheory.fi/appfigures/book.jpg
http://tgdtheory.fi/appfigures/padmanifold.jpg
http://tgdtheory.fi/appfigures/padmanifold.jpg
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Hierarchy of Planck constants would be due to the non-determism of the Kähler action
predicting huge vacuum degeneracy allowing all space-time surfaces which are sub-manfolds of any
M4×Y 2, where Y 2 is Lagrangian sub-manifold of CP2. For agiven Y 2 one obtains new manifolds
Y 2 by applying symplectic transformations of CP2.

Non-determinism would mean that the 3-surface at the ends of causal diamond (CD) can
be connected by several space-time surfaces carrying same conserved Kähler charges and having
same values of Kähler action. Conformal symmetries defined by Kac-Moody algebra associated
with the embedding space isometries could act as gauge transformations and respect the light-
likeness property of partonic orbits at which the signature of the induced metric changes from
Minkowskian to Euclidian (Minkowskianb space-time region transforms to wormhole contact say).
The number of conformal equivalence classes of these surfaces could be finite number n and define
discrete physical degree of freedom and one would have heff = n × h. This degeneracy would
mean “second quantization” for the sheets of n-furcation: not only one but several sheets can be
realized.

This relates also to quantum criticality postulated to be the basic characteristics of the
dynamics of quantum TGD. Quantum criticalities would correspond to an infinite fractal hierar-
chy of broken conformal symmetries defined by sub-algebras of conformal algebra with conformal
weights coming as integer multiples of n. This leads also to connections with quantum critical-
ity and hierarchy of broken conformal symmetries, p-adicity, and negentropic entanglement which
by consistency with standard quantum measurement theory would be described in terms of den-
sity matrix proportional n× n identity matrix and being due to unitary entanglement coefficients
(typical for quantum computing systems).

Formally the situation could be described by regarding space-time surfaces as surfaces in
singular n-fold singular coverings of embedding space. A stronger assumption would be that they
are expressible as as products of n1 -fold covering of M4 and n2-fold covering of CP2 meaning
analogy with multi-sheeted Riemann surfaces and that M4 coordinates are n1-valued functions
and CP2 coordinates n2 -valued functions of space-time coordinates for n = n1 × n2. These
singular coverings of embedding space form a book like structure with singularities of the coverings
localizable at the boundaries of causal diamonds defining the back of the book like structure.

Fig. 17. Hierarchy of Planck constants. http://tgdtheory.fi/appfigures/planckhierarchy.
jpg

A-6.3 M8 −H duality as it is towards the end of 2021

The view of M8−H duality (see Appendix ??) has changed considerably towards the end 2021 [L60]
after the realization that this duality is the TGD counterpart of momentum position duality of
wave mechanics, which is lost in QFTs. Therefore M8 and also space-time surface is analogous
to momentum space. This forced us to give up the original simple identification of the points
M4 ⊂M4 × E4 = M8 and of M4 × CP2 so that it respects Uncertainty Principle (UP).

The first improved guess for the duality map was the replacement with the inversion pk →
mk = ~effpk/p2 conforming in spirit with UP but turned out to be too naive.

The improved form [L60] of the M8−H duality map takes mass shells p2 = m2 of M4 ⊂M8

to cds with size L(m) = ~eff/m with a common center. The slicing by mass shells is mapped to
a Russian doll like slicing by cds. Therefore would be no CDs in M8 contrary to what I believed
first.

Quantum classical correspondence (QCC) inspires the proposal that the point pk ∈ M8 is
mapped to a geodesic line corresponding to momentum pk starting from the common center of cds.
Its intersection with the opposite boundary of cd with size L(m) defines the image point. This is
not yet quite enough to satisfy UP but the additional details [L60] are not needed in the sequel.

The 6-D brane-like special solutions in M8 are of special interest in the TGD inspired
theory of consciousness. They have an M4 projection which is E = En 3-ball. Here En is a
root of the real polynomial P defining X4 ⊂ M8

c (M8 is complexified to M8
c ) as a ”root” of its

octonionic continuation [L45, L46]. En has an interpretation as energy, which can be complex.
The original interpretation was as moment of time. For this interpretation, M8−H duality would
be a linear identification and these hyper planes would be mapped to hyperplanes in M4 ⊂ H.

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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This motivated the term ”very special moment in the life of self” for the image of the E = En
section of X4 ⊂M8 [L34]. This notion does not make sense at the level M8 anymore.

The modified M8−H duality forces us to modify the original interpretation [L60]. The point
(En, p = 0) is mapped (tn = ~eff/En, 0). The momenta (En, p) in E = En plane are mapped to
the boundary of cd and correspond to a continuous time interval at the boundary of CD: ”very
special moment” becomes a ”very special time interval”.

The quantum state however corresponds to a set of points corresponding to quark momenta,
which belong to a cognitive representation and are therefore algebraic integers in the extension de-
termined by the polynomial. These active points in En are mapped to a discrete set at the boundary
of cd(m). A ”very special moment” is replaced with a sequence of ”very special moments”.

So called Galois confinement [L53] forces the total momenta for bound states of quarks and
antiquarks to be rational integers invariant under Galois group of extension of rationals determined
by the polynomial P [L60]. These states correspond to states at boundaries of sub-CDs so that
one obtains a hierarchy. Galois confinement provides a universal number theoretic mechanism for
the formation of bound states.

A-7 Zero energy ontology (ZEO)

ZEO is implied by the holography forced in the TGD framework by general coordinate invariance.

A-7.1 Basic motivations and ideas of ZEO

The following gives a brief summary of ZEO [L38] [K89].

1. In ZEO quantum states are not 3-dimensional but superpositions of 4-dimensional determin-
istic time evolutions connecting ordinary initial 3-dimensional states. By holography they
are equivalent to pairs of ordinary 3-D states identified as initial and final states of time
evolution. One can say that in the TGD framework general coordinate invariance implies
holography and the slight failure of its determinism in turn forces ZEO.

Quantum jumps replace this state with a new one: a superposition of deterministic time
evolutions is replaced with a new superposition. Classical determinism of individual time
evolution is not violated and this solves the basic paradox of quantum measurement the-
ory. There are two kinds of quantum jumps: ordinary (”big”) state function reductions
(BSFRs) changing the arrow of time and ”small” state function reductions (SSFRs) (weak
measurements) preserving it and giving rise to the analog of Zeno effect [L38].

2. To avoid getting totally confused it is good to emphasize some aspects of ZEO.

(a) ZEO does not mean that physical states in the usual 3-D sense as snapshots of time
evolution would have zero energy state pairs defining zero energy states as initial and
final states have same conserved quantities such as energy. Conservation implies that
one can adopt the conventions that the values of conserved quantities are opposite for
these states so that their sum vanishes: one can think that incoming and outgoing
particles come from geometric past and future is the picture used in quantum field
theories.

(b) ZEO means two times: subjective time as sequence of quantum jumps and geometric
time as space-time coordinate. These times are identifiable but are strongly correlated.

3. In BSFRs the arrow of time is changed and the time evolution in the final state occurs
backwards with respect to the time of the external observer. BSFRs can occur in all scales
since TGD predicts a hierarchy of effective Planck constants with arbitrarily large values.
There is empirical support for BSFRs.

(a) The findings of Minev et al [L32] in atomic scale can be explained by the same mecha-
nism [L32]. In BSFR a final zero energy state as a superposition of classical determin-
istic time evolutions emerges and for an observer with a standard arrow of time looks
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like a superposition of deterministic smooth time evolutions leading to the final state.
Interestingly, once this evolution has started, it cannot be stopped unless one changes
the stimulus signal inducing the evolution in which case the process does not lead to
anywhere: the interpretation would be that BSFR back to the initial state occurs!

(b) Libets’ experiments about active aspects of consciousness [J3] can be understood. Sub-
ject person raises his finger and neural activity starts before the conscious decision to
do so. In the physicalistic framework it is thought to lead to raising of the finger. The
problem with the explanation is that the activity beginning .5 seconds earlier seems to
be dissipation with a reversed arrow of time: from chaotic and disordered to ordered
at around .15 seconds. ZEO explanation is that macroscopic quantum jump occurred
and generated a signal proceeding backwards in time and generated neural activity and
dissipated to randomness.

(c) Earthquakes involve a strange anomaly: they are preceded by ELF radiation. One
would expect that they generate ELF radiation. The identification as BSFR would
explain the anomaly [L33]. In biology the reversal of the arrow of time would occur
routinely and be a central element of biological self-organization, in particular self-
organized quantum criticality (see [L36, L81].

A-7.2 Some implications of ZEO

ZEO has profound implications for understanding self-organization and self-organized quantum
criticality in terms of dissipation with non-standard arrow of time looking like generation of struc-
tures [L36, L81]. ZEO could also allow understanding of what planned actions - like realizing the
experiment under consideration - could be.

1. Second law in the standard sense does not favor - perhaps even not allow - realization of
planned actions. ZEO forces a generalization of thermodynamics: dissipation with a non-
standard arrow of time for a subsystem would look like self-organization and planned action
and its realization.

Could most if not all planned action be like this - induced by BSFR in the geometric future
and only apparently planned? There would be however the experience of planning and
realizing induced by the signals from geometric future by a higher level in the hierarchy of
conscious entities predicted by TGD! In long time scales we would be realizing our fates or
wishes of higher level conscious entities rather than agents with completely free will.

2. The notion of magnetic body (MB) serving as a boss of ordinary matter would be central. MB
carries dark matter as heff = nh0 phases of ordinary matter with n serving as a measure
for algebraic complexity of extension of rationals as its dimension and defining a kind of
universal IQ. There is a hierarchy of these phases and MBs labelled by extension of rationals
and the value of n.

MBs would form a hierarchy of bosses - a realization for master slave hierarchy. Ordinary
matter would be at the bottom and its coherent behavior would be induced from quantum
coherence at higher levels. BSFR for higher level MB would give rise to what looks like
planned actions and experienced as planned action at the lower levels of hierarchy. One
could speak of planned actions inducing a cascade of planned actions in shorter time scales
and eventually proceeding to atomic level.

A-8 Some notions relevant to TGD inspired consciousness
and quantum biology

Below some notions relevant to TGD inspired theory of consciousness and quantum biology.



442 Chapter i. Appendix

A-8.1 The notion of magnetic body

Topological field quantization inspires the notion of field body about which magnetic body is espe-
cially important example and plays key role in TGD inspired quantum biology and consciousness
theory. This is a crucial departure fromt the Maxwellian view. Magnetic body brings in third level
to the description of living system as a system interacting strongly with environment. Magnetic
body would serve as an intentional agent using biological body as a motor instrument and sensory
receptor. EEG would communicated the information from biological body to magnetic body and
Libet’s findings from time delays of consciousness support this view.

The following pictures illustrate the notion of magnetic body and its dynamics relevant for
quantum biology in TGD Universe.

Fig. 18. Magnetic body associated with dipole field. http://tgdtheory.fi/appfigures/
fluxquant.jpg

Fig. 19. Illustration of the reconnection by magnetic flux loops. http://tgdtheory.fi/

appfigures/reconnect1.jpg

Fig. 20. Illustration of the reconnection by flux tubes connecting pairs of molecules. http:
//tgdtheory.fi/appfigures/reconect2.jpg

Fig. 21. Flux tube dynamics. a) Reconnection making possible magnetic body to “rec-
ognize” the presence of another magnetic body, b) braiding, knotting and linking of flux tubes
making possible topological quantum computation, c) contraction of flux tube in phase transition
reducing the value of heff allowing two molecules to find each other in dense molecular soup.
http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg

A-8.2 Number theoretic entropy and negentropic entanglement

TGD inspired theory of consciousness relies heavily p-Adic norm allows an to define the notion of
Shannon entropy for rational probabilities (and even those in algebraic extension of rationals) by
replacing the argument of logarithm of probability with its p-adic norm. The resulting entropy can
be negative and the interpretation is that number theoretic entanglement entropy defined by this
formula for the p-adic prime minimizing its value serves as a measure for conscious information.
This negentropy characterizes two-particle system and has nothing to do with the formal negative
negentropy assignable to thermodynamic entropy characterizing single particle. Negentropy Maxi-
mization Principle (NMP) implies that number theoretic negentropy increases during evolution by
quantum jumps. The condition that NMP is consistent with the standard quantum measurement
theory requires that negentropic entanglement has a density matrix proportional to unit matrix so
that in 2-particle case the entanglement matrix is unitary.

Fig. 22. Schrödinger cat is neither dead or alive. For negentropic entanglement this state
would be stable. http://tgdtheory.fi/appfigures/cat.jpg

A-8.3 Life as something residing in the intersection of reality and p-
adicities

In TGD inspired theory of consciousness p-adic space-time sheets correspond to space-time corre-
lates for thoughts and intentions. The intersections of real and p-adic preferred extremals consist
of points whose coordinates are rational or belong to some extension of rational numbers in pre-
ferred embedding space coordinates. They would correspond to the intersection of reality and
various p-adicities representing the “mind stuff” of Descartes. There is temptation to assign life to
the intersection of realities and p-adicities. The discretization of the chart map assigning to real
space-time surface its p-adic counterpart would reflect finite cognitive resolution.

At the level of “world of classical worlds” ( WCW ) the intersection of reality and various
p-adicities would correspond to space-time surfaces (or possibly partonic 2-surfaces) representable
in terms of rational functions with polynomial coefficients with are rational or belong to algebraic
extension of rationals.

http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/reconnect1.jpg
http://tgdtheory.fi/appfigures/reconnect1.jpg
http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg
http://tgdtheory.fi/appfigures/cat.jpg
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The quantum jump replacing real space-time sheet with p-adic one (vice versa) would cor-
respond to a buildup of cognitive representation (realization of intentional action).

Fig. 23. The quantum jump replacing real space-time surface with corresponding p-
adic manifold can be interpreted as formation of though, cognitive representation. Its reversal
would correspond to a transformation of intention to action. http://tgdtheory.fi/appfigures/
padictoreal.jpg

A-8.4 Sharing of mental images

The 3-surfaces serving as correlates for sub-selves can topologically condense to disjoint large
space-time sheets representing selves. These 3-surfaces can also have flux tube connections and
this makes possible entanglement of sub-selves, which unentangled in the resolution defined by
the size of sub-selves. The interpretation for this negentropic entanglement would be in terms
of sharing of mental images. This would mean that contents of consciousness are not completely
private as assumed in neuroscience.

Fig. 24. Sharing of mental images by entanglement of subselves made possible by flux tube
connections between topologically condensed space-time sheets associated with mental images.
http://tgdtheory.fi/appfigures/sharing.jpg

A-8.5 Time mirror mechanism

Zero energy ontology (ZEO) is crucial part of both TGD and TGD inspired consciousness and leads
to the understanding of the relationship between geometric time and experience time and how the
arrow of psychological time emerges. One of the basic predictions is the possibiity of negative energy
signals propagating backwards in geometric time and having the property that entropy basically as-
sociated with subjective time grows in reversed direction of geometric time. Negative energy signals
inspire time mirror mechanism (see Fig. http://tgdtheory.fi/appfigures/timemirror.jpg or
Fig. 24 in the appendix of this book) providing mechanisms of both memory recall, realization
of intentational action initiating action already in geometric past, and remote metabolism. What
happens that negative energy signal travels to past and is reflected as positive energy signal and
returns to the sender. This process works also in the reverse time direction.

Fig. 25. Zero energy ontology allows time mirror mechanism as a mechanism of memory
recall. Essentially “seeing” in time direction is in question. http://tgdtheory.fi/appfigures/

timemirror.jpg
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