TGD: QUANTUM PHYSICS AS GEOMETRY

Matti Pitkänen

Rinnekatu 2-4 A 8, Karkkila, 03620, Finland

January 13, 2025

0.1 PREFACE

Brief summary of TGD

Towards the end of the year 2023 I became convinced that it would be appropriate to prepare collections about books related to TGD and its applications. The finiteness of human lifetime was my first motivation. My second motivation was the deep conviction that TGD will mean a revolution of the scientific world view and I must do my best to make it easier.

The first collection would relate to the TGD proper and its applications to physics. Second collection would relate to TGD inspired theory of consciousness and the third collection to TGD based quantum biology. The books in these collections would focus on much more precise topics than the earlier books and would be shorter. This would make it much easier for the reader to understand what TGD is, when the time is finally mature for the TGD to be taken seriously. This particular book belongs to a collection of books about TGD proper.

The basic ideas of TGD

TGD can be regarded as a unified theory of fundamental interactions but is not the kind of unified theory as so called GUTs constructed by graduate students in the seventies and eighties using detailed recipes for how to reduce everything to group theory. Nowadays this activity has been completely computerized and it probably takes only a few hours to print out the predictions of this kind of unified theory as an article in the desired format. TGD is something different and I am not ashamed to confess that I have devoted the last 45 years of my life to this enterprise and am still unable to write The Rules.

If I remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1977, perhaps it was October. What I realized was that the representability of physical space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space with some very small compact internal space could resolve the conceptual difficulties of general relativity related to the definition of the notion of energy. This belief was too optimistic and only with the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance has become satisfactory. This required also the understanding of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time with particles being represented by space-time surfaces with finite size so that TGD could be also seen as a generalization of the string model. Much later it became clear that this generalization is consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of the embedding space is 4-dimensional. During last year it became clear that 4-D Minkowski space and 4-D complex projective space CP_2 are completely unique in the sense that they allow twistor space with Kähler structure.

It took some time to discover that also the geometrization of also gauge interactions and elementary particle quantum numbers could be possible in this framework: it took two years to find the unique internal space (CP_2) providing this geometrization involving also the realization that family replication phenomenon for fermions has a natural topological explanation in TGD framework and that the symmetries of the standard model symmetries are much more profound than pragmatic TOE builders have believed them to be. If TGD is correct, the mainstream particle physics chose the wrong track leading to the recent deep crisis when people decided that quarks and leptons belong to the same multiplet of the gauge group implying instability of the proton.

Instead of trying to describe in detail the path, which led to TGD as it is now with all its side tracks, it is better to summarize the recent view which of course need not be final.

TGD can be said to be a fusion of special and general relativities. The Relativity Principle (Poincare Invariance) of Special Relativity is combined with the General Coordinate Invariance and Equivalence Principle of General Relativity. TGD involves 3 views of physics: physics geometry, physics as number theory and physics as topological physics in some sense.

Physics as geometry

"Geometro-" in TGD refers to the idea about the geometrization of physics. The geometrization program of Einstein is extended to gauge fields allowing realization in terms of the geometry of surfaces so that Einsteinian space-time as abstract Riemann geometry is replaced with sub-manifold geometry. The basic motivation is the loss of classical conservation laws in General Relativity Theory (GRT)(see **Fig. 1**). Also the interpretation as a generalization of string models by replacing string with 3-D surface is natural.

- Standard model symmetries uniquely fix the choice of 8-D space in which space-time surfaces live to $H = M^4 \times CP_2$ [L57]. Also the notion of twistor is geometrized in terms of surface geometry and the existence of twistor lift fixes the choice of H completely so that TGD is unique [L20, L24](see **Fig. 2**). The geometrization applies even to the quantum theory itself and the space of space-time surfaces - "world of classical worlds" (WCW) - becomes the basic object endowed with Kähler geometry (see **Fig. 3**). The mere mathematical existence of WCW geometry requires that it has maximal isometries, which together twistor lift and number theoretic vision fixes it uniquely [L58].
- General Coordinate Invariance (GCI) for space-time surfaces has dramatic implications. A given 3-surface fixes the space-time surface almost completely as analog of Bohr orbit (preferred extremal). This implies holography and leads to zero energy ontology (ZEO) in which quantum states are superpositions of space-time surfaces [K86, L31].
- From the beginning it was clear that the theory predicts the presence of long ranged classical electro-weak and color gauge fields and that these fields necessarily accompany classical electromagnetic fields in all scales. It took about 26 years to gain the maturity to admit the obvious: these fields are classical correlates for long range color and weak interactions assignable to the phases of ordinary matter predicted by the number theoretic vision and behaving like dark matter but identifiable as matter explaining the missing baryon problem whereas the galactic dark matter would correspond to the dark energy assignable monopole flux tubes as deformations of cosmic strings. The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal copies of standard model physics. Also the understanding of electro-weak massivation and screening of weak charges has been a long standing problem and p-adic physics solved this problem in terms of p-adic thermodynamics [K16, K39] [L50].
- One of the most recent discoveries of classical TGD is exact general solution of the field equations. Holography can be realized as a generalized holomorphy realized in terms of what I call Hamilton-Jacobi structure [L53]. Space-time surfaces correspond to holomorphic imbeddings of the space-time surface to H with a generalized complex structure defined by the vanishing of 2 analytic functions of 4 generalized complex coordinates of H. These surfaces are automatically minimal surfaces. This is true for any general coordinate invariant action constructed in terms of the induced geometric structures so that the dynamics is universal. Different actions differ only in the sense that singularities at which the minimal surface property fails depend on the action. This affects the scattering amplitudes, which can be constructed in terms of the data related to the singularities [L65].
- Generalized conformal symmetries define an extension of conformal symmetries and one can assign to them Noether charges. Besides this the so called super-symplectic symmetries associated with $\delta M_+^4 \times CP_2$ define isometries of the "world of classical worlds" (WCW), which by holography is essentially the space of Bohr orbits of 3-surfaces as particles so that quantum TGD is expected to reduce to a generalization of wave mechanics.

Physics as number theory

During these years TGD led to a rather profound generalization of the space-time concept. Quite general properties of the theory led to the notion of many-sheeted space-time with sheets representing physical subsystems of various sizes. At the beginning of 90s I became dimly aware of the importance of p-adic number fields and soon ended up with the idea that p-adic thermodynamics for a conformally invariant system allows to understand elementary particle massivation with amazingly few input assumptions. The attempts to understand p-adicity from basic principles led gradually to the vision about physics as a generalized number theory as an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW approach. One of its elements was a generalization of the number concept obtained by fusing real numbers and various p-adic numbers along common rationals. The number theoretical trinity involves besides p-adic number fields also quaternions and octonions and the notion of infinite prime.

Adelic physics [L18, L19] fusing real and various p-adic physics is part of the number theoretic vision, which provides a kind of dual description for the description based on space-time geometry and the geometry of "world of classical words". Adelic physics predicts two fractal length scale hierarchies: p-adic length scale hierarchy and the hierarchy of dark length scales labelled by $h_{eff} = nh_0$, where n is the dimension of extension of rational. The interpretation of the latter hierarchy is as phases of ordinary matter behaving like dark matter. Quantum coherence is possible in arbitarily long scales. These two hierarchies are closely related. p-Adic primes correspond to ramified primes for a polynomial, whose roots define the extension of rationals: for a given extension this polynomial is not unique.

$M^8 - H$ duality

The concrete realization of the number theoretic vision is based on $M^8 - H$ duality (see Fig. 4). What the precise form is this duality is, has been far from clear but the recent form is the simplest one and corresponds to the original view [L59]. M^8 corresponds to octonions O but with the number theoretic metric defined by $Re(o^2)$ rather than the standard norm and giving Minkowskian signature.

The physics in M^8 can be said to be algebraic whereas in H field equations are partial differential equations. The dark matter hierarchy corresponds to a hierarchy of algebraic extensions of rationals inducing that for adeles and has interpretation as an evolutionary hierarchy (see Fig. 5). p-Adic physics is an essential part of number theoretic vision and the space-time surfaces are such that at least their M^8 counterparts exists also in p-adic sense. This requires that the analytic function defining the space-time surfaces are polynomials with rational coefficients.

 $M^8 - H$ duality relates two complementary visions about physics (see **Fig. 6**), and can be seen as a generalization of the momentum-position duality of wave mechanics, which fails to generalize to quantum field theories (QFTs). $M^8 - H$ duality applies to particles which are 3-surfaces instead of point-like particles.

p-Adic physics

The idea about p-adic physics as physics of cognition and intentionality emerged also rather naturally and implies perhaps the most dramatic generalization of the space-time concept in which most points of p-adic space-time sheets are infinite in real sense and the projection to the real imbedding space consists of discrete set of points. One of the most fascinating outcomes was the observation that the entropy based on p-adic norm can be negative. This observation led to the vision that life can be regarded as something in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various positively colored aspects of conscious experience and means also the possibility of strongly correlated states stable under state function reduction and different from the conventional bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Principle with standard measurement theory, negentropic entanglement defined in terms of number theoretic negentropy is necessarily associated with a density matrix proportional to unit matrix and is maximal and is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal for a p-adic unique prime dividing n.

Hierarchy of Planck constants labelling phases ordinary matter dark matter behaving like dark matter

One of the latest threads in the evolution of ideas is not more than nine years old. Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical correspondence and the fact that space-time sheets identifiable as quantum coherence regions can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants comes from bio-electromagnetism suggesting that in living systems Planck constant could have large values making macroscopic quantum coherence possible. The interpretation of dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpretation of TGD emerged. One of these insights was the realization that the postulated hierarchy of Planck constants might follow from the basic structure of quantum TGD. The point is that due to the extreme non-linearity of the classical action principle the correspondence between canonical momentum densities and time derivatives of the imbedding space coordinates is one-to-many and the natural description of the situation is in terms of local singular covering spaces of the imbedding space. One could speak about effective value of Planck constant $h_{eff} = n \times h$ coming as a multiple of minimal value of Planck constant. Quite recently it became clear that the non-determinism of Kähler action is indeed the fundamental justification for the hierarchy: the integer n can be also interpreted as the integer characterizing the dimension of unit matrix characterizing negentropic entanglement made possible by the many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets must be replaced with conformal equivalence classes of space-time sheets and conformal transformations correspond to quantum critical deformations leaving the ends of space-time surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which conformal weights are divisible by n act as gauge symmetries. Thus deep connections between conformal invariance related to quantum criticality, hierarchy of Planck constants, negentropic entanglement, effective p-adic topology, and non-determinism of Kähler action perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the significance of the reduction of this hierarchy to the basic mathematical structure distinguishing between TGD and competing theories cannot be under-estimated.

TGD as an analog of topological QFT

Consider next the attribute "Topological". In condensed matter physical topological physics has become a standard topic. Typically one has fields having values in compact spaces, which are topologically non-trivial. In the TGD framework space-time topology itself is non-trivial as also the topology of $H = M^4 \times CP_2$. Since induced metric is involved with TGD, it is too much to say that TGD is topological QFT but one can for instance say, that space-time surfaces as preferred extremals define representatives for 4-D homological equivalence classes.

The space-time as 4-surface $X^4 \subset H$ has a non-trivial topology in all scales and this together with the notion of many-sheeted space-time brings in something completely new. Topologically trivial Einsteinian space-time emerges only at the QFT limit in which all information about topology is lost (see **Fig. 7**).

Any GCI action satisfying holography=holomorphy principle has the same universal basic extremals: CP_2 type extremals serving basic building bricks of elementary particles, cosmic strings and their thickenings to flux tubes defining a fractal hierarchy of structure extending from CP_2 scale to cosmic scales, and massless extremals (MEs) define space-time correletes for massless particles. World as a set or particles is replaced with a network having particles as nodes and flux tubes as bonds between them serving as correlates of quantum entanglement.

"Topological" could refer also to p-adic number fields obeying p-adic local topology differing radically from the real topology (see **Fig. 8**).

Zero energy ontology

TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book about consciousness. Gradually it became difficult to say where physics ends and consciousness theory begins since consciousness theory could be seen as a generalization of quantum measurement theory by identifying quantum jump as a moment of consciousness and by replacing the observer with the notion of self identified as a system which is conscious as long as it can avoid entanglement with environment. The somewhat cryptic statement "Everything is conscious and consciousness can be only lost" summarizes the basic philosophy neatly.

General coordinate invariance leads to the identification of space-time surfaces are analogous to Bohr orbits inside causal diamond (CD). CD obtained as intersection of future and past directed light-cones (with CP_2 factor included). By the already described hologamphy, 3-dimensional data replaces the boundary conditions at single 3-surface involving also normal derivatives with conditions involving no derivates.

In zero energy ontology (ZEO), the superpositions of space-time surfaces inside causal diamond (CD) having their ends at the opposite light-like boundaries of CD, define quantum states. CDs form a scale hierarchy (see **Fig. 9** and **Fig. 10**). Quantum states are modes of WCW spinor fields, essentially wave functions in the space WCW consisting of Bohr orbit-like 4-surfaces.

Quantum jumps occur between these and the basic problem of standard quantum measurement theory disappears. Ordinary state function reductions (SFRs) correspond to "big" SFRs (BSFRs) in which the arrow of time changes (see **Fig. 11**). This has profound thermodynamic implications and the question about the scale in which the transition from classical to quantum takes place becomes obsolete. BSFRs can occur in all scales but from the point of view of an observer with an opposite arrow of time they look like smooth time evolutions.

In "small" SFRs (SSFRs) as counterparts of "weak measurements" the arrow of time does not change and the passive boundary of CD and states at it remain unchanged (Zeno effect).

Equivalence Principle in TGD framework

There have been also longstanding problems related to the relationship between inertial mass and gravitational mass, whose identification has been far from obvious.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence the conservation of the inertial energy does not seem to be consistent with the Equivalence Principle. In this framework the quantum numbers are assigned with zero energy states located at the boundaries of CDs defined as intersections of future and past directed lightcones. The notion of energy-momentum becomes length scale dependent since one has a scale hierarchy for causal diamonds. This allows to understand the non-conservation of energy as apparent.

Equivalence Principle in the form expressed by Einstein's equations follows from Poincare invariance once it is realized that GRT space-time is obtained from the many-sheeted spacetime of TGD by lumping together the space-time sheets to a region Minkowski space and endowing it with an effective metric given as a sum of Minkowski metric and deviations of the metrices of space-time sheets from Minkowski metric. Similar description relates classical gauge potentials identified as components of induced spinor connection to Yang-Mills gauge potentials in GRT space-time. Various topological inhomogenities below resolution scale identified as particles are described using energy momentum tensor and gauge currents.

At quantum level, the Equivalence Principle has a surprisingly strong content. In linear Minkowski coordinates, space-time projection of the M^4 spinor connection representing gravitational gauge potentials the coupling to induced spinor fields vanishes. Also the modified Dirac action for the solutions of the modified Dirac equation seems to vanish identically and in TGD perturbative approach separating interaction terms is not possible.

The modified Dirac equation however fails at the singularities of the minimal surface representing space-time surface and Dirac action reduces to an integral over singularities for the trace of the second fundamental form slashed between the induced spinor field and its conjugate. Also the M^4 part of the trace is non-vanishing and gives rise to the gravitational coupling. The trace gives both standard model vertices and graviton emission vertices. One could say that at the quantum level gravitational and gauge interactions are eliminated everywhere except at the singularities identifiable as defects of the ordinary smooth structure. The exotic smooth structures [L47], possible only in dimension 4, are ordinary smooth structures apart from these defects serving as vertex representing a creation of a fermion-antifermion pair in the induced gauge potentials. The vertex is universal and essentially the trace of the second fundamental form as an analog of the Higgs field and the gravitational constant is proportional to the square of CP_2 radius.

• There is a delicate difference between inertial and gravitational masses. One can assume that the modes of the imbedding space spinor fields are solutions of massles Dirac equation in either $M^4 \times CP_2$ and therefore eigenstates of inertial momentum or in $CD = cd \times CP_2$: in this case they are only mass eigenstates. The mass spectra are identical for these options. Inertial momenta correspond naturally to the Poincare charges in the space of CDs. For the CD option the spinor modes correspond to mass squared eigenstates for which the mode for H^3 with a given value of light-proper time is a unitary irreducible SO(1,3) representation rather than a representation of translation group. These two eigenmode basis correspond to gravitational basis for spinor modes.

Quantum TGD as a generalization of Einstein's geometrization program

I started the serious attempts to construct quantum TGD after my thesis around 1982. The original optimistic hope was that path integral formalism or canonical quantization might be enough to construct the quantum theory but it turned that this approach fails due to the extreme non-linearity of the theory.

It took some years to discover that the only working approach is based on the generalization of Einstein's program. Quantum physics involves the geometrization of the infinite-dimensional "world of classical worlds" (WCW) identified as the space of 3-dimensional surfaces. Later 3-surfaces where replaced with 4-surfaces satifying holography and therefore as analogs of Bohr orbits.

- If one assumes Bohr orbitology, then strong correlations between the 3-surfaces at the ends of CD follow and mean holography. It is natural to identify the quantum states of the Universe (and sub-Univeverses) as modes of a formally classical spinor field in WCW. WCW gamma matrices are expressible in terms of oscillator operators of free second quantized spinor fields of *H*. The induced spinor fields identified projections of *H* spinor fields to the space-time surfaces satisfy modified Dirac equation for the modified Dirac equation. Only quantum jump remains the genuinely quantal aspect of quantum physics.
- Quantum TGD can be seen as a theory for free spinor fields in WCW having maximal isometries and the generalization of the Super Virasoro conditions gives rise to the analog massless Dirac equation at the level of WCW.

The world of classical worlds and its symmetries

The notion of "World of Classical Worlds" (WCW) emerged around 1985 but found its basic form around 1990. Holography forced by the realization of General Coordinate Invariance forced/allowed to give up the attempts to make sense of the path integral.

A more concrete way to express this view is that WCW does not consist of 3-surfaces as particle-like entities but almost deterministic Bohr orbits assignable to them as preferred extremals of Kähler action so that quantum TGD becomes wave mechanics in WCW combined with Bohr orbitology. This view has profound implications, which can be formulated in terms of zero energy ontology (ZEO), solving among other things the basic paradox of quantum measurement theory. ZEO forms also the backbone of TGD inspired theory of consciousness and quantum biology.

WCW geometry exists only if it has maximal isometries: this statement is a generalization of the discovery of Freed for loop space geometries [A40]. I have proposed [K35, K19, K84, K61, L58] that WCW could be regarded as a union of generalized symmetric spaces labelled by zero modes which do not contribute to the metric. The induced Kähler field is invariant under symplectic transformations of CP_2 and would therefore define zero mode degrees of freedom if one assumes that WCW metric has symplectic transformations as isometries. In particular, Kähler magnetic fluxes would define zero modes and are quantized closed 2-surfaces. The induced metric appearing in Kähler action is however not zero mode degree of freedom. If the action contains volume term, the assumption about union of symmetric spaces is not well-motivated.

Symplectic transformations are not the only candidates for the isometries of WCW. The basic picture about what these maximal isometries could be, is partially inspired by string models.

- A weaker proposal is that the symplectomorphisms of H define only symplectomorphisms of WCW. Extended conformal symmetries define also a candidate for isometry group. Remarkably, light-like boundary has an infinite-dimensional group of isometries which are in 1-1 correspondence with conformal symmetries of $S^2 \subset S^2 \times R_+ = \delta M_+^4$.
- Extended Kac Moody symmetries induced by isometries of δM_+^4 are also natural candidates for isometries. The motivation for the proposal comes from physical intuition deriving from string models. Note they do not include Poincare symmetries, which act naturally as isometries in the moduli space of causal diamonds (CDs) forming the "spine" of WCW.
- The light-like orbits of partonic 2-surfaces might allow separate symmetry algebras. One must however notice that there is exchange of charges between interior degrees of freedom and partonic 2-surfaces. The essential point is that one can assign to these surface conserved charges when the dual light-like coordinate defines time coordinate. This picture also assumes a slicing of space-time surface by by the partonic orbits for which partonic orbits associated with wormrhole throats and boundaries of the space-time surface would be special. This slicing would correspond to Hamilton-Jacobi structure.
- Fractal hierarchy of symmetry algebras with conformal weights, which are non-negative integer multiples of fundamental conformal weights, is essential and distinguishes TGD from string models. Gauge conditions are true only the isomorphic subalgebra and its commutator with the entire algebra and the maximal gauge symmetry to a dynamical symmetry with generators having conformal weights below maximal value. This view also conforms with p-adic mass calculations.
- The realization of the symmetries for 3-surfaces at the boundaries of CD and for light-like orbits of partonic 2-surfaces is known. The problem is how to extend the symmetries to the interior of the space-time surface. It is natural to expect that the symmetries at partonic orbits and light-cone boundary extend to the same symmetries.

After the developments towards the end of 2023, it seems that the extension of conformal and Kac-Moody symmetries of string models to the TGD framework is understood. What about symplectic symmetries, which were originally proposed as isometries of WCW? In this article this question is discussed in detail and it will be found that these symmetries act naturally on 3-D holographic data and one can identify conserved charges. By holography this is in principle enough and might imply that the actions of holomorphic and symplectic symmetry algebras are dual. Holography=holomorphy hypothesis is discussed also in the case of the modified Dirac equation.

About the construction of scattering amplitudes

From the point of view of particle physics the ultimate goal is of course a practical construction recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking into account how far-reaching re-structuring and generalization of the basic mathematical structure of quantum physics is required. After having made several guesses for what the counterpart of S-matrix could be, it became clear that the dream about explicit formulas is unrealistic before one has understood what happens in quantum jump.

• In ZEO [K86, L31] one must distinguish between "small" state function reductions (SSFRs) and "big" SFRs (BSFRs). BSFR is the TGD counterpart of the ordinary SFRs and the arrow of the geometric time changes in it. SSFR follows the counterpart of a unitary time evolution and the arrow of the geometric time is preserved in SSFR. The sequence of SSFRs

is the TGD counterpart for the sequence of repeated quantum measurements of the same observables in which nothing happens to the state. In TGD something happens in SSFRs and this gives rise to the flow of consciousness. When the set of the observables measured in SSFR does not commute with the previous set of measured observables, BSFR occurs.

The evolution by SSFRs means that also the causal diamond changes. At quantum level one has a wave function in the finite-dimensional moduli space of CDs which can be said to form a spine of WCW [L56]. CDs form a scale hierarchy. SSFRs are preceded by a dispersion in the moduli space of CDs and SSFR means localization in this space.

• There are several S-matrix like entities. One can assign an analog of the S-matrix to each analog of unitary time evolution preceding a given SSFR. One can also assign an analog S-matrix between the eigenstate basis of the previous set of observables and the eigenstate basis of new observers: this S-matrix characterizes BSFR. One can also assign to zero energy states an S-matrix like entity between the states assignable to the two boundaries of CD. These S-matrix like objects can be interpreted as a complex square root of the density matrix representable as a diagonal and positive square root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to define a square root of thermodynamics at least formally.

In standard QFTs Feynman diagrams provide the description of scattering amplitudes. The beauty of Feynman diagrams is that they realize unitarity automatically via the so-called Cutkosky rules. In contrast to Feynman's original beliefs, Feynman diagrams and virtual particles are taken only as a convenient mathematical tool in quantum field theories. The QFT approach is however plagued by UV and IR divergences and one must keep mind open for the possibility that a genuine progress might mean opening of the black box of the virtual particle.

In the TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.

• The counterparts of elementary particles can be identified as closed monopole flux tubes connecting two parallel Minkowskian space-time sheets and have effective ends which are Euclidean wormhole contacts. The 3-D light-like boundaries of wormhole contacts as orbits of partonic 2-surfaces.

The intuitive picture is that the 3-D light-like partonic orbits replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic 2-surfaces. A stronger condition is that fermion number is carried by light-like fermion lines at the partonic orbits, which can be identified as boundaries string world sheets.

- The localization of the nodes of induced spinor fields to 2-D string world sheets (and possibly also to partonic 2-surfaces) implies a stringy formulation of the theory analogous to stringy variant of twistor formalism with string world sheets having interpretation as 2-braids. In the TGD framework, the fermionic variant of twistor Grassmann formalism combined with the number theoretic vision [L42, L43] led to a stringy variant of the twistor diagrammatics.
- Fundamental fermions are off-mass-shell in the sense that their momentum components are real algebraic integers in an extension of rationals associated with the space-time surfaces inside CD with a momentum unit determined by the CD size scale. Galois confinement states that the momentum components are integer valued for the physical states.
- The twistorial approach suggests also the generalization of the Yangian symmetry to infinitedimensional super-conformal algebras, which would determine the vertices and scattering amplitudes in terms of poly-local symmetries.

The twistorial approach is however extremely abstract and lacks a concrete physical interpretation. The holography=holomorphy vision led to a breakthough in the construction of the scattering amplitudes by solving the problem of identifying interaction vertices [L65].

1. The basic prediction is that space-time surfaces as analogs of Bohr orbits are holomorphic in a generalized sense and are therefore minimal surfaces. The minimal surface property fails at lower-dimensional singularities and the trace of the second fundamental form (SFF) analogous to acceleration associated with the Bohr orbit of the particle as 3-surface has a delta function like singularity but vanishes elsewhere.

- 2. The minimal surface property expressess masslessness for both fields and particles as 3surfaces. At singularities masslessness property fails and singularities can be said to serve as sources which also in QFT define scattering amplitudes.
- 3. The singularities are analogs of poles and cuts for the 4-D generalization of the ordinary holomorphic functions. Also for the ordinary holomorphic functions the Laplace equation as analog massless field equation and expressing analyticity fails. Complex analysis generalizes to dimension 4.
- 4. The conditions at the singularity give a generalization of Newton's "F=ma"! I ended up where I started more than 50 years ago!
- 5. In dimension 4, and only there, there is an infinite number of exotic diff structures [?], which differ from ordinary ones at singularities of measure zero analogous to defects. These defects correspond naturally to the singularities of minimal surfaces. One can say that for the exotic diff structure there is no singularity.
- 6. Group theoretically the trace of the SFF can be regarded as a generalization of the Higgs field, which is non-vanishing only at the vertices and this is enough. Singularities take the role of generalized particle vertices and determine the scattering amplitudes. The second fundamental form contracted with the embedding space gamma matrices and slashed between the second quantized induced spinor field and its conjugate gives the universal vertex involving only fermions (bosons are bound states of fermions in TGD). It contains both gauge and gravitational contributions to the scattering amplitudes and there is a complete symmetry between gravitational and gauge interactions. Gravitational couplings come out correctly as the radius squared of CP_2 as also in the classical picture.
- 7. The study of the modified Dirac equation leads to the conclusion that vertices as singularities and defects contain the standard electroweak gauge contribution coming from the induced spinor connection and a contribution from the M^4 spinor connection. M^4 part of the generalized Higgs can give rise to a graviton as an L = 1 rotational state of the flux tube representing the graviton. It is not clear whether M^4 Kähler gauge potential can give rise to a spin 1 particle. The vielbein part of M^4 spinor connection is pure gauge and could give rise to gravitational topological field theory.

Figures

What I have said above is strongly biased view about the recent situation in quantum TGD. This vision is single man's view and doomed to contain unrealistic elements as I know from experience. My dream is that young critical readers could take this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to develop an alternative based on these or better premises. I must be however honest and tell that 45 years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks. The books provide a view of how TGD evolved rather than the final theory and there are archeological layers containing mammoth bones, which reflect earlier views not necessarily consistent with the recent view.

Karkkila, April 21, 2024, Finland

Matti Pitkänen

Figure 1: The problems leading to TGD as their solution.

Figure 2: Twistor lift

Figure 3: Geometrization of quantum physics in terms of WCW

Figure 4: $M^8 - H$ duality

Figure 5: Number theoretic view of evolution

Figure 6: TGD is based on two complementary visions: physics as geometry and physics as number theory.

Figure 7: Questions about classical TGD.

Figure 8: p-Adic physics as physics of cognition and imagination.

CAUSAL DIAMOND (CD)

Figure 9: Causal diamond

Figure 10: CDs define a fractal "conscious atlas"

Figure 11: Time reversal occurs in BSFR

ACKNOWLEDGEMENTS

Neither TGD nor these books would exist without the help and encouragement of many people. The friendship with Heikki and Raija Haila and their family and Kalevi and Ritva Tikkanen and their family have been kept me in contact with the everyday world and without this friendship I would not have survived through these lonely 45 lonely years most of which I have remained unemployed as a scientific dissident. I am happy that my children have understood my difficult position and like my friends have believed that what I am doing is something valuable although I have not received any official recognition for it.

During the last decade Tapio Tammi has helped me quite concretely by providing the necessary computer facilities and being one of the few persons in Finland with whom to discuss my work. Pertti Kärkkäinen is my old physicist friend and has provided continued economic support for a long time. I have also had stimulating discussions with Samuli Penttinen who has also helped to get through the economical situations in which there seemed to be no hope. The continual updating of fifteen online books means quite a heavy bureaucracy at the level of bits and without a systemization one ends up with endless copying and pasting and internal consistency is soon lost. Tommi Ullgren has provided both economic support and encouragement during years. Pekka Rapinoja has offered his help in this respect and I am especially grateful to him for my Python skills.

During the last five years I have had inspiring discussions with many people in Finland interested in TGD. We have had video discussions with Sini Kunnas and had podcast discussions with Marko Manninen related to the TGD based view of physics and consciousness. Marko has also helped in the practical issues related to computers and quite recently he has done a lot of testing of chatGPT helping me to get an overall view of what it is. The discussions in a Zoom group involving Marko Manninen, Tuomas Sorakivi and Rode Majakka have given me the valuable opportunity to clarify my thoughts.

The collaboration with Lian Sidorov was extremely fruitful and she also helped me to survive economically through the hardest years. The participation in CASYS conferences in Liege has been an important window to the academic world and I am grateful for Daniel Dubois and Peter Marcer for making this participation possible. The discussions and collaboration with Eduardo de Luna and Istvan Dienes stimulated the hope that the communication of new vision might not be a mission impossible after all. Also blog discussions have been very useful. During these years I have received innumerable email contacts from people around the world. I am grateful to Mark McWilliams, Paul Kirsch, Gary Ehlenberg, and Ulla Matfolk and many others for providing links to possibly interesting websites and articles. We have collaborated with Peter Gariaev and Reza Rastmanesh. These contacts have helped me to avoid the depressive feeling of being some kind of Don Quixote of Science and helped me to widen my views: I am grateful for all these people.

In the situation in which the conventional scientific communication channels are strictly closed it is important to have some loop hole through which the information about the work done can at least in principle leak to the public through the iron wall of academic censorship. Without any exaggeration I can say that without the world wide web I would not have survived as a scientist nor as an individual. Homepage and blog are however not enough since only the formally published result is a result in recent day science. Publishing is however impossible without direct support from power holders- even in archives like arXiv.org.

Situation changed as Andrew Adamatsky proposed the writing of a book about TGD when I had already gotten used to the thought that my work would not be published during my lifetime. The Prespacetime Journal and two other journals related to quantum biology and consciousness all of them founded by Huping Hu - have provided this kind of loophole. In particular, Dainis Zeps, Phil Gibbs, and Arkadiusz Jadczyk deserve my gratitude for their kind help in the preparation of an article series about TGD catalyzing a considerable progress in the understanding of quantum TGD. Also the viXra archive founded by Phil Gibbs and its predecessor Archive Freedom have been of great help: Victor Christianto deserves special thanks for doing the hard work needed to run Archive Freedom. Also the Neuroquantology Journal founded by Sultan Tarlaci deserves a special mention for its publication policy.

And last but not least: there are people who experience as a fascinating intellectual challenge to spoil the practical working conditions of a person working with something which might be called unified theory: I am grateful for the people who have helped me to survive through the virus attacks, an activity which has taken roughly one month per year during the last half decade and given a strong hue of grey to my hair.

For a person approaching his 73th birthday it is somewhat easier to overcome the hard feelings due to the loss of academic human rights than for an inpatient youngster. Unfortunately the economic situation has become increasingly difficult during the twenty years after the economic depression in Finland which in practice meant that Finland ceased to be a constitutional state in the strong sense of the word. It became possible to depose people like me from society without fear about public reactions and the classification as dropout became a convenient tool of ridicule to circumvent the ethical issues. During the period when the right wing held political power this trend was steadily strengthening and the situation is the same as I am writing this. In this kind of situation the concrete help from individuals has been and will be of utmost importance. Against this background it becomes obvious that this kind of work is not possible without the support from outside and I apologize for not being able to mention all the people who have helped me during these years.

Karkkila, August 30, 2023, Finland

Matti Pitkänen

Contents

	0.1	PREFACE	iii
A	ckno	ledgements	xxiii
1	Inti	duction	1
	1.1	Basic Ideas of Topological Geometrodynamics (TGD)	1
		1.1.1 Geometric Vision Very Briefly	1
		1.1.2 Two Visions About TGD as Geometrization of Physics and Their Fusion .	4
		1.1.3 Basic Objections	6
		1.1.4 Quantum TGD as Spinor Geometry of World of Classical Worlds	7
		1.1.5 Construction of scattering amplitudes	10
		1.1.6 TGD as a generalized number theory	11
		1.1.7 An explicit formula for $M^8 - H$ duality $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
		1.1.8 Hierarchy of Planck Constants and Dark Matter Hierarchy	19
		1.1.9 Twistors in TGD and connection with Veneziano duality	20
	1.2	Bird's Eye of View about the Topics of "TGD: Quantum Physics as Geometry"	24
		1.2.1 The organization of "Quantum Physics as Infinite-Dimensional Geometry"	25
	1.3	Sources	27
		1.3.1 PART I: PHYSICS AS GEOMETRY OF THE "WORLD OF CLASSICAL	
		WORLDS""	27
		1.3.2PART II: TOPOLOGY OF WCW	34
Ι	PI	YSICS AS GEOMETRY OF WCW	37
2	Abo	it Identification of the Preferred extremals of Kähler Action	39
	2.1	Introduction	39
		2.1.1 Preferred Extremals As Critical Extremals	40
		2.1.2 Construction Of Preferred Extremals	40
	2.2	Weak Form Electric-Magnetic Duality And Its Implications	41
		2.2.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?	42
		2.2.2 Magnetic Confinement, The Short Range Of Weak Forces, And Color Con-	
		finement \ldots	47
		2.2.3 Could Quantum TGD Reduce To Almost Topological QFT?	49
	2.3	An attempt to understand preferred extremals of Kähler action	52
		2.3.1 What "preferred" could mean?	53
		2.3.2 What is known about extremals?	53
		2.3.3 Basic ideas about preferred extremals	54
		2.3.4 What could be the construction recipe for the preferred extremals assuming	
		$CP_2 = CP_2^{mod}$ identification?	58
	2.4	In What Sense TGD Could Be An Integrable Theory?	61
		2.4.1 What Integrable Theories Are?	61
		2.4.2 Why TGD Could Be Integrable Theory In Some Sense?	64
		2.4.3 Could TGD Be An Integrable Theory?	65
	2.5	Do Geometric Invariants Of Preferred Extremals Define Topological Invariants Of	
		Space-time Surface And Code For Quantumphysics?	66

		2.5.1	Preferred Extremals Of Kähler Action As Manifolds With Constant Ricci Scalar Whose Geometric Invariants Are TopologicalInvariants	67
		2.5.2	Is There A Connection Between Preferred Extremals And AdS_4/CFT Correspondence?	68
		2.5.3	Generalizing Ricci Flow To Maxwell Flow For 4-Geometries And Kähler Flow For Space-Time Surfaces	70
		2.5.4	Could Correlation Functions, S-Matrix, And Coupling Constant Evolution Be Coded The Statistical Properties Of Preferred Extremals?	75
	2.6	About	Deformations Of Known Extremals Of Kähler Action	78
		2.6.1	What Might Be The Common Features Of The Deformations Of Known Extremals	78
		2.6.2	What Small Deformations Of CP_2 Type Vacuum Extremals Could Be?	81
		2.6.3	Hamilton-Jacobi Conditions In Minkowskian Signature	84
		2.6.4	Deformations Of Cosmic Strings	85
		2.6.5	Deformations Of Vacuum Extremals?	86
		2.6.6	About The Interpretation Of The Generalized Conformal Algebras	87
	2.7	About	TGD counterparts of classical field configurations in Maxwell's theory	88
		2.7.1	About differences between Maxwell's ED and TGD	88
		2.7.2	CP_2 type extremals as ultimate sources of fields and singularities	90
		2.7.3	Delicacies associated with M^4 Kähler structure	91
		2.7.4	About TGD counterparts for the simplest classical field patterns	94
	2.8	Minim	al surfaces and TGD	97
		2.8.1	Space-time surfaces as singular minimal surfaces	98
		2.8.2	Kähler action as Morse function in the space of minimal 4-surfaces	99
		2.8.3	Kähler function as Morse function in the space of 3-surfaces	100
		2.8.4	Kähler calibrations: an idea before its time?	101
	2.9	Are sp	ace-time boundaries possible in the TGD framework?	103
		2.9.1	Light-like 3-surfaces from $det(g_4) = 0$ condition	104
		2.9.2	Can one allow macroscopic Euclidean space-time regions	105
		2.9.3	But are the normal components of isometry currents finite?	106
		2.9.4	$det(g_4) = 0$ condition as a realization of quantum criticality	106
3	Ide	ntificat	ion of WCW Kähler Function	108
	3.1	Introd		108
		3.1.1	"World Of Classical Worlds"	108
		3.1.2	WCW Kähler Metric From Kähler Function	109
		3.1.3	WCW Kahler Metric From Symmetries	109
		3.1.4	WCW Kahler Metric As Anti-commutators Of Super-Symplectic Super Noether Charges	er 110
		3.1.5	What Principle Selects The Preferred Extremals?	110
	3.2	WCW		111
		3.2.1	Basic Notions	111
		3.2.2	Constraints On WCW Geometry	116
	3.3	Identif	ication Of The Kähler Function	120
		3.3.1	Definition Of Kähler Function	120
		3.3.2	The Values Of The Kähler Coupling Strength?	124
		3.3.3	What Conditions Characterize The Preferred Extremals?	125
		3.3.4	Why Non-Local Kähler Function?	127
	3.4	Some	Properties Of Kähler Action	128
		3.4.1	Vacuum Degeneracy And Some Of Its Implications	128
		3.4.2	Four-Dimensional General Coordinate Invariance	130
		3.4.3	WCW Geometry, Generalized Catastrophe Theory, And Phase Transitions	132

4	Cor	nstruct	tion of WCW Kähler Geometry from Symmetry Principles	136
	4.1	Introd	luction	136
		4.1.1	General Coordinate Invariance And Generalized Quantum Gravitational Holog	<u>s</u> _
			raphy	136
		4.1.2	Light Like 3-D Causal Determinants And Effective 2-Dimensionality	137
		4.1.3	Magic Properties Of Light Cone Boundary And Isometries Of WCW	138
		4.1.4	Symplectic Transformations Of $\Delta M_{\perp}^4 \times CP_2$ As Isometries Of WCW	139
		4.1.5	Does The Symmetric Space Property Reduce To Coset Construction For	
			Super Virasoro Algebras?	139
		4.1.6	What Effective 2-Dimensionality And Holography Really Mean?	140
		4.1.7	For The Reader	140
	42	How '	To Generalize The Construction Of WCW Geometry To Take Into Account	110
	1.2	The C	Classical Non-Determinism?	141
		4 2 1	Quantum Holography In The Sense Of Quantum Gravity Theories	141
		422	How Does The Classical Determinism Fail In TGD?	141
		423	The Notions Of Embedding Space 3-Surface And Configuration Space	142
		4.2.0	The Treatment Of Non-Determinism Of Kähler Action In Zero Energy On-	174
		4.2.4	tology	145
		125	Catagory Theory And WCW Coometry	140
	13	Idonti	fication Of The Symmetries And Coset Space Structure Of WCW	140
	4.0	131	Reduction To The Light Cone Boundary	147
		4.3.1	WCW As A Union Of Symmetric Spaces	1/19
	4.4	4.3.2 Comp	VOW AS A Union Of Symmetric Spaces	140
	4.4	00mp	Why Complexification Is Needed?	151
		4.4.1	The Matrie Conformal And Sumpleatic Structures Of The Light Cone Dourd	101
		4.4.2	The Metric, Conformal And Symplectic Structures Of The Light Cone Bound-	159
		4 4 9	ary	152
		4.4.3	Complexingation And The Special Properties Of The Light Cone Boundary	154
		4.4.4	How TO FIX The Complex And Symplectic Structures in A Lorentz invariant	150
		4.4.5		150
		4.4.5	The General Structure Of The Isometry Algebra	157
		4.4.6	Representation Of Lorentz Group And Conformal Symmetries At Light Cone	150
		4.4.7	Boundary	159
		4.4.7	How The Complex Eigenvalues Of The Radial Scaling OperatorRelate To	100
			Symplectic Conformal Weights?	163
	4.5	Magn	etic And Electric Representations Of WCW Hamiltonians	163
		4.5.1	Radial Symplectic Invariants	164
		4.5.2	Kähler Magnetic Invariants	165
		4.5.3	Isometry Invariants And Spin Glass Analogy	166
		4.5.4	Magnetic Flux Representation Of The Symplectic Algebra	166
		4.5.5	Symplectic Transformations Of $\Delta M_{\pm}^4 \times CP_2$ As Isometries And Electric-	
			Magnetic Duality	168
		4.5.6	Quantum Counterparts Of The Symplectic Hamiltonians	168
	4.6	Gener	al Expressions For The Symplectic And Kähler Forms	169
		4.6.1	Closedness Requirement	169
		4.6.2	Matrix Elements Of The Symplectic Form As Poisson Brackets	169
		4.6.3	General Expressions For Kähler Form, Kähler Metric And Kähler Function	171
		4.6.4	$Diff(X^3)$ Invariance And Degeneracy And Conformal Invariances Of The	
			Symplectic Form	171
		4.6.5	Complexification And Explicit Form Of The Metric And Kähler Form	172
		4.6.6	Comparison Of CP_2 Kähler Geometry With Configuration Space Geometry	173
		4.6.7	Comparison With Loop Groups	174
		4.6.8	Symmetric Space Property Implies Ricci Flatness And Isometric Action Of	
			Symplectic Transformations	175
	4.7	Ricci	Flatness And Divergence Cancelation	176
		4.7.1	Inner Product From Divergence Cancelation	176
		4.7.2	Why Ricci Flatness	178
		4.7.3	Ricci Flatness And Hyper Kähler Property	179

		$4.7.4 \\ 4.7.5$	The Conditions Guaranteeing Ricci Flatness	180 184
5	WC	W Spi	nor Structure	188
	5.1	Introd	uction	188
		5.1.1	Basic Principles	188
		5.1.2	Kähler-Dirac Action	190
	5.2	WCW	Spinor Structure: General Definition	192
		5.2.1	Defining Relations For Gamma Matrices	192
		5.2.2	General Vielbein Representations	193
		5.2.3	Inner Product For WCW Spinor Fields	194
		5.2.4	Holonomy Group Of The Vielbein Connection	194
		5.2.5	Realization Of WCW Gamma Matrices In Terms Of Super Symmetry Gen-	104
		500	erators	194
		5.2.0	WCW Clifford Algebra A. Alleman Einite Easter Of Turne II	195
	59	0.2.7 Under	What Conditions Electric Charge Is Conserved For The Kähler Direc Equation?	190
	0.5	Under E 2 1	Concernetion Of EM Change Equivilian Direct Equation:	200
		0.3.1 F 2 0	About The Calutions of Kähler Direc Equation	200
		0.5.2 E 9 9	About The Solutions Of Kamer Dirac Equation For Known Extremals	202
		0.0.0 5.2.4	Connection With Number Theoretic Vision?	204
	5.4	0.0.4 Dopros	Connection With Number Theoretic Vision:	200
	0.4	tified 4	As Symplectic Super-Charges	207
		5 4 1	Expression For WCW Kähler Metric As Anticommutators As Symplectic	201
		0.4.1	Super Charges	207
		542	Handful Of Problems With A Common Resolution	201
	5.5	Quanti	um Criticality And Kähler-Dirac Action	214
	0.0	5.5.1	What Quantum Criticality Could Mean?	214
		5.5.2	Quantum Criticality And Fermionic Representation Of Conserved Charges	
			Associated With Second Variations Of Kähler Action	216
		5.5.3	Preferred Extremal Property As Classical Correlate For Quantum Criticality,	
			Holography, And Quantum Classical Correspondence	222
		5.5.4	Quantum Criticality And Electroweak Symmetries	223
		5.5.5	The Emergence Of Yangian Symmetry And Gauge Potentials As Duals Of	
			Kac-Moody Currents	228
	5.6	Kähler	-Dirac Equation And Super-Symmetries	230
		5.6.1	Super-Conformal Symmetries	230
		5.6.2	WCW Geometry And Super-Conformal Symmetries	231
		5.6.3	The Relationship Between Inertial Gravitational Masses	233
		5.6.4	Realization Of Space-Time SUSY In TGD	236
		5.6.5	Comparison Of TGD And Stringy Views About Super-Conformal Symmetries	5238
	5.7	Still al	bout induced spinor fields and TGD counterpart for Higgs	240
		5.7.1	More precise view about modified Dirac equation	241
		5.7.2	A more detailed view about string world sheets	243
		5.7.3	Classical Higgs field again	244
6	Rec	ent Vi	ew about Kähler Geometry and Spin Structure of WCW	247
	6.1	Introd	uction	247
	6.2	WCW	As A Union Of Homogenous Or Symmetric Spaces	248
		6.2.1	Basic Vision	249
		6.2.2	Equivalence Principle And WCW	250
		6.2.3	Equivakence Principle At Quantum And Classical Level	250
		6.2.4	Criticism Of The Earlier Construction	251
		6.2.5	Is WCW Homogenous Or Symmetric Space?	252
		6.2.6	Symplectic And Kac-Moody Algebras As Basic Building Bricks	253
	6.3	Update	ed View About Kähler Geometry Of WCW	253
		6.3.1	Kähler Function, Kähler Action, And Connection With String Models	254

		6.3.2	Symmetries of WCW	255
		6.3.3	Interior Dynamics For Fermions, The Role Of Vacuum Extremals, And Dark	
			Matter	263
		6.3.4	Classical Number Fields And Associativity And Commutativity As Funda-	
			mental Law Of Physics	264
	6.4	About	some unclear issues of TGD	269
		6.4.1	Adelic vision and symmetries	269
		6.4.2	Quantum-classical correspondence for fermions	269
		6.4.3	Strong form of holography for fermions	269
		6.4.4	The relationship between spinors in space-time interior and at boundaries	
			between Euclidian and Minkoskian regions	270
		6.4.5	About second quantization of the induced spinor fields	271
		6.4.6	Is statistical entanglement "real" entanglement?	271
	6.5	About	The Notion Of Four-Momentum In TGD Framework	272
		6.5.1	Scale Dependent Notion Of Four-Momentum In Zero Energy Ontology	272
		6.5.2	Are The Classical And Quantal Four-Momenta Identical?	273
		6.5.3	What Equivalence Principle (EP) Means In Quantum TGD?	273
		6.5.4	TGD-GRT Correspondence And Equivalence Principle	275
		6.5.5	How Translations Are Represented At The Level Of WCW ?	275
		6.5.6	Yangian And Four-Momentum	277
	6.6	Genera	alization Of Ads/CFT Duality To TGD Framework	279
		6.6.1	Does The Exponent Of Chern-Simons Action Reduce To The Exponent Of	
			The Area Of Minimal Surfaces?	280
		6.6.2	Does Kähler Action Reduce To The Sum Of Areas Of Minimal Surfaces In	
			Effective Metric?	280
		6.6.3	Surface Area As Geometric Representation Of Entanglement Entropy?	282
		6.6.4	Related Ideas	285
		6.6.5	The Importance Of Being Light-Like	286
	6.7	Could	One Define Dynamical Homotopy Groups In WCW?	287
		6.7.1	About Cobordism As A Concept	288
		6.7.2	Prastaro's Generalization Of Cobordism Concept To The Level Of Partial	
			Differential Equations	288
		6.7.3	Why Prastaro's Idea Resonates So Strongly With TGD	289
		6.7.4	What Preferred Extremals Are?	290
		6.7.5	Could Dynamical Homotopy/Homology Groups Characterize WCW Topology	?292
		6.7.6	Appendix: About Field Equations Of TGD In Jet Bundle Formulation	294
	6.8	Twiste	or lift of TGD and WCW geometry	298
		6.8.1	Possible weak points of the earlier vision	298
		6.8.2	Twistor lift of TGD and ZEO	299
		6.8.3	The revised view about WCW metric and spinor structure	300
	6.9	Does 4	L-D action generate lower-dimensional terms dynamically?	301
		6.9.1	Can Option II generate separate 2-D action dynamically?	301
		6.9.2	Kähler calibrations: an idea before its time?	305
	6.10	Could	metaplectic group have some role in TGD framework?	307
		6.10.1	Heisenberg group, symplectic group, and metaplectic group	307
		6.10.2	Symplectic group in TGD	309
		6.10.3	Kac-Moody type approach to representations of symplectic/metaplectic group	p310
		6.10.4	Relationship to modular functions	312
-	C		a_{1} and C_{2} are structure of the $2^{3}W_{2}$ and c_{1} and c_{2} and c_{2} and c_{3}	914
(Sym	Introdu	es and Geometry of the " world of Classical Worlds"	314 914
	1.1 7.9	The re	duction of holography to a generalized holography	ง14 จาะ
	1.4	791	The conserved charges associated with belomerphies	919 315
		1.4.1 7.9.9	Could generalized holomorphy allow to sharpen the existing views?	910 916
	73	The t_{T}	vistor space of $H - M^4 \times CP_2$ allows Lagrangian 6 surfaces: what does this	910
	1.0	mean r	$\sim 11^{\circ}$ $\sim 12^{\circ}$ and $\sim 12^{\circ}$	318
		731	Lagrangian surfaces in the twistor space of $H = M^4 \times CP_2$	318

7.4	Modif	ied Dirac equation and the holography=holomorphy hypothesis	322
	7.4.1	How to meet the challenges?	323
	7.4.2	Fermionic oscillator operators in X^4 as fermionic supersymmetry generators	
		acting as gamma matrices of the "world of classical worlds" (WCW) \ldots	325
	7.4.3	About the relationship between supercharges and spinor modes of H	327
7.5	Challe	enging the existing view of symplectic symmetries in relation to WCW geometry	/328
	7.5.1	About extremals of Chern-Simons-Kähler action	329
	7.5.2	Can one assign conserved charges with symplectic transformations or par-	
		tonic orbits and 3-surfaces at light-cone boundary?	329
	7.5.3	The TGD counterparts of the gauge conditions of string models	333
	7.5.4	Could space-time or the space of space-time surfaces be a Lagrangian mani-	
		fold in some sense?	333

II TOPOLOGY OF WCW

336

8	Hon	nology	of WCW in relation to Floer homology and quantum homology	338
	8.1	Introd	uction	338
	8.2	Some	background	339
		8.2.1	The basic ideas of Morse theory	339
		8.2.2	The basic ideas of Floer homology	340
		8.2.3	Floer homology	340
		8.2.4	The generalization of Floer homology by Abouzaid and Blumberg	341
		8.2.5	Gromow-Witten invariants	342
	8.3	About	the generalization of Floer homology in the TGD framework	343
		8.3.1	Key ideas behind WCW homology	343
		8.3.2	A more concrete proposal for WCW homology as a generalization of the	
			Floer homology	345
9	Inte	ersectio	on form for 4-manifolds, knots and 2-knots, smooth exotics, and TGD)348
	9.1	Introd	uction	348
		9.1.1	The role of intersection forms in TGD	348
		9.1.2	Why exotic smooth structures are not possible in TGD?	348
	9.2	Interse	ection form in the case of 4-surfaces	349
		9.2.1	Intersection form form 2-D manifolds	349
		9.2.2	Intersection forms for 4-surfaces	349
		9.2.3	About ordinary knots	350
		9.2.4	What about 2-knots and their cobordisms?	351
	9.3	Could	the existence of exotic smooth structures pose problems for TGD?	352
		9.3.1	Smooth anomaly	352
		9.3.2	Can embedding space and related spaces have exotic smooth structure?	353
		9.3.3	Could TGD eliminate the smoothness anomaly or provide a physical inter-	
			pretation for it?	353
		9.3.4	Is a master formula for the scattering amplitudes possible?	358
		9.3.5	Fundamental fermion pair creation vertices as local defects of the standard	
			smooth structure of the space-time surface?	360
		9.3.6	Master formula for the scattering amplitudes: finally?	360
10	Kno	ots and	l TGD	363
	10.1	Introd	uction	363
	10.2	Some	TGD Background	364
		10.2.1	Time-Like And Space-Like Braidings For Generalized Feynman Diagrams .	365
		10.2.2	Dance Metaphor	365
		10.2.3	DNA As Topological Quantum Computer	365
	10.3	Could	Braid Cobordisms Define More General Braid Invariants?	366
		10.3.1	Difference Between Knotting And Linking	366
		10.3.2	Topological Strings In 4-D Space-Time Define Knot Cobordisms	366

i

10.4 Invariants 2-Knots As Vacuum Expectations Of Wilson Loops In 4-D Space-Tim	me? 367
10.4.1 What 2-Knottedness Means Concretely?	368
10.4.2 Are All Possible 2-Knots Possible For Stringy WorldSheets?	368
10.4.3 Are Wilson Loops Enough For 2-Knots?	369
10.5 TGD Inspired Theory Of Braid Cobordisms And 2-Knots	370
10.5.1 Weak Form Of Electric-Magnetic Duality And Duality Of Space-Like	And
Time-Like Braidings	370
10.5.2 Could Kähler Magnetic Fluxes Define Invariants Of Braid Cobordisms?	370
10.5.3 Classical Color Gauge Fields And Their Generalizations Define Gerbe Ga	unae
Potentials Allowing To Replace Wilson Loops With Wilson Sheets	
10.5.4 Summing Sup The Basic Ideas	373
10.6 Witten's Approach To Khovanov Homology From TGD Point Of View	373
10.6.1 Intersection Form And Space Time Topology	374
10.6.2 Framing Anomaly	
10.6.2 Flamming Anomaly	374
10.0.3 Knovanov Homology Brieny \ldots	374
10.0.4 Surface Operators And The Unoice Of The Preferred 2-Surfaces	373 975
10.0.5 The Identification Of Charges Q, P And F Of Knovanov Homology .	377
10.6.6 What Does The Replacement Of Topological Invariance With Symple	ctic
Invariance Mean?	378
10.7 Algebraic Braids, Sub-Manifold Braid Theory, And Generalized Feynman Diag	rams 379
10.7.1 Generalized Feynman Diagrams, Feynman Diagrams, And Braid Diagra	ms 379
10.7.2 Brief Summary Of Algebraic Knot Theory	382
10.7.3 Generalized Feynman Diagrams As Generalized Braid Diagrams?	384
10.7.4 About String World Sheets, Partonic 2-Surfaces, And Two-Knots	389
10.7.5 What Generalized Feynman Rules Could Be?	397
10.8 Electron As A Trefoil Or Something More General?	403
10.8.1 Space-Time As 4-Surface And The Basic Argument	403
10.8.2 What Is The Origin Of Strings Going Around The Magnetic Flux Tube	? . 404
10.8.3 How Elementary Particles Interact As Knots?	405
10.9 Could $\mathcal{N} = 4$ Super-Conformal Symmetry Be Realized In TGD?	408
10.9.1 Large $\mathcal{N} = 4$ SCA	408
10.9.2 Overall View About How Different $\mathcal{N} = 4$ SCAs Could Emerge In T	GD
Framework	410
10.9.3 How Large $\mathcal{N} = 4$ SCA Could Emerge In Quantum TGD?	412
10.9.4 Relationship To Super String Models. M-theory And WZW Model	415
10.9.5 The Interpretation Of The Critical Dimension $D = 4$ And The Object	tion
Related To The Signature Of The Space-Time Metric	417
10.9.6 How Could Exotic Kac-Moody Algebras Emerge From Jones Inclusions	2 410
10.3.0 How Could Exotic Mac-moody Algebras Emerge 110m Jones metasions:	••• 410
Appendix	421
A-1 Introduction	421
A-2 Embedding space $M^4 \times CP_2$	421
A-2.1 Basic facts about CP_2	422
A-2.2 $CP_{\rm p}$ geometry and Standard Model symmetries	426
A-3 Induction procedure and many-sheeted space-time	433
A_{-3} 1 Induction procedure for gauge fields and spinor connection	/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Λ 3.2 Induced gauge fields for space times for which CP ₂ projection is a good	logic
A-5.2 Induced gauge neids for space-times for which Of 2 projection is a geod	122
A 2.2 Manu abastad grass time	400
A-0.0 Many-sneeted space-time	434
A 25 About induced spinors and induced spinors	435
A-5.5 About induced gauge fields	436
A-4 Inerelationship of IGD to QFT and string models	439
A-4.1 TGD as a generalization of wave mechanism obtained by replacing point-	·like
particles with 3-surfaces	439
A-4.2 Extension of superconformal invariance	439
A-4.3 String-like objects and strings	439
A-4.4 TGD view of elementary particles	439

A-5	About	the selection of the action defining the Kähler function of the "world of	
	classic	al worlds" (WCW)	440
	A-5.1	Could twistor lift fix the choice of the action uniquely?	440
	A-5.2	Two paradoxes	442
A-6	Numb	er theoretic vision of TGD	445
	A-6.1	p-Adic numbers and TGD	445
	A-6.2	Hierarchy of Planck constants and dark matter hierarchy	449
	A-6.3	$M^8 - H$ duality as it is towards the end of 2021	450
A-7	Zero e	nergy ontology (ZEO)	451
	A-7.1	Basic motivations and ideas of ZEO	451
	A-7.2	Some implications of ZEO	452
A-8	Some	notions relevant to TGD inspired consciousness and quantum biology	452
	A-8.1	The notion of magnetic body	453
	A-8.2	Number theoretic entropy and negentropic entanglement	453
	A-8.3	Life as something residing in the intersection of reality and p-adicities	453
	A-8.4	Sharing of mental images	454
	A-8.5	Time mirror mechanism	454

List of Figures

1	The problems leading to TGD as their solution	xii
2	Twistor lift	xiii
3	Geometrization of quantum physics in terms of WCW	xiv
4	$M^8 - H$ duality	xv
5	Number theoretic view of evolution	xvi
6	TGD is based on two complementary visions: physics as geometry and physics as	
	number theory.	xvii
7	Questions about classical TGD	xviii
8	p-Adic physics as physics of cognition and imagination.	xix
9	Causal diamond	XX
10	CDs define a fractal "conscious atlas"	xxi
11	Time reversal occurs in BSFR	xxii
3.1	Cusp catastrophe	134
4.1	Conformal symmetry preserves angles in complex plane	153

Chapter 1

Introduction

1.1 Basic Ideas of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees them as totally separate and contains a large number of parameters which it is not able to predict. For about four decades ago unified theories known as Grand Unified Theories (GUTs) trying to understand electroweak interactions and strong interactions as aspects of the same fundamental gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying to unify even gravitation and strong and weak interactions emerged. The shortcomings of both GUTs and superstring models are now well-known. If TGD - whose basic idea emerged towards the end of 1977 - would emerge now it would be seen as an attempt to solve the difficulties of these approaches to unification.

The basic physical picture behind the geometric vision of TGD corresponds to a fusion of two rather disparate approaches: namely TGD as a Poincare invariant theory of gravitation and TGD as a generalization of the old-fashioned string model. After 1995 number theoretic vision started to develop and was initiated by the success of mass calculations based on p-adic thermodynamics. Number theoretic vision involves all number fields and is complementary to the geometric vision: one can say that this duality is analogous to momentum-position duality of wave mechanics. TGD can be also regarded as topological quantum theory in a very general sense as already the attribute "Topological" in "TGD" makes clear. Space-time surfaces as minimal surfaces can be regarded as representatives of homology equivalence classes and p-adic topologies generalize the notion of local topology and apply to the description of correlates of cognition.

1.1.1 Geometric Vision Very Briefly

 $T(opological) \ G(eometro)D(ynamics)$ is one of the many attempts to find a unified description of basic interactions. The development of the basic ideas of TGD to a relatively stable form took time of about half decade [K2].

The basic vision and its relationship to existing theories is now rather well understood.

- 1. Space-times are representable as 4-surfaces in the 8-dimensional embedding space $H = M^4 \times CP_2$, where M^4 is 4-dimensional (4-D) Minkowski space and CP_2 is 4-D complex projective space (see Appendix).
- 2. Induction procedure (a standard procedure in fiber bundle theory, see Appendix) allows to geometrize various fields. Space-time metric characterizing gravitational fields corresponds to the induced metric obtained by projecting the metric tensor of H to the space-time surface. Electroweak gauge potentials are identified as projections of the components of CP_2 spinor connection to the space-time surface, and color gauge potentials as projections of CP_2 Killing vector fields representing color symmetries. Also spinor structure can be induced: induced spinor gamma matrices are projections of gamma matrices of H and induced spinor fields just H spinor fields restricted to space-time surface. Spinor connection is also projected. The interpretation is that distances are measured in embedding space metric and parallel translation using spinor connection of embedding space.

Twistor lift of TGD means that one can lift space-time surfaces in H to 6-D surfaces a analogs of twistor space of space-time surface in the Cartesian product of the twistor spaces of M^4 and CP_2 , which are the only 4-manifolds allowing twistor space with Kähler structure [A58]. The twistor structure would be induced in some sense, and should coincide with that associated with the induced metric. Clearly, the 2-spheres defining the fibers of twistor spaces of M^4 and CP_2 must allow identification: this 2-sphere defines the S^2 fiber of the twistor space of the space-time surface. This poses a constraint on the embedding of the twistor space of space-time surfaces as sub-manifold in the Cartesian product of twistor spaces. The existence of Kähler structure allows to lift 4-D Kähler action to its 6-D counterparts and the 6-D counterpart of twistor space is obtained by its dimensional reduction so that one obtains a sphere bundle. This makes possible twistorialization for all space-time surfaces: in general relativity the general metric does not allow this.

3. A geometrization of quantum numbers is achieved. The isometry group of the geometry of CP_2 codes for the color gauge symmetries of strong interactions. Vierbein group codes for electroweak symmetries, and explains their breaking in terms of CP_2 geometry so that standard model gauge group results. There are also important deviations from the standard model: color quantum numbers are not spin-like but analogous to orbital angular momentum: this difference is expected to be seen only in CP_2 scale. In contrast to GUTs, quark and lepton numbers are separately conserved and family replication has a topological explanation in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

 M^4 and CP_2 are unique choices for many other reasons. For instance, they are the unique 4-D space-times allowing twistor space with Kähler structure. M^4 light-cone boundary allows a huge extension of 2-D conformal symmetries. M^4 and CP_2 allow quaternionic structures. Therefore standard model symmetries have number theoretic meaning.

4. Induced gauge potentials are expressible in terms of embedding space coordinates and their gradients and general coordinate invariance implies that there are only 4 field-like variables locally. Situation is thus extremely simple mathematically. The objection is that one loses linear superposition of fields. The resolution of the problem comes from the generalization of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time regions with Euclidian signature of the induced metric (temporal and spatial dimensions in the same role) emerge and have interpretation as lines of generalized Feynman diagrams. Particles in space-time can be identified as a topological inhomogeneities in background space-time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with space-time sheets having extremely small distances of about 10^4 Planck lengths (CP_2 size). As one adds a particle to this kind of structure, it touches various space-time sheets and thus interacts with the associated classical fields. Their effects superpose linearly in good approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time of general relativity and quantum field theories emerges from TGD space-time as effective space-time when the sheets of many-sheeted space-time are lumped together to form a region of Minkowski space with metric replaced with a metric identified as the sum of empty Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric. Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore a microscopic theory from which the standard model and general relativity follow as a topological simplification, however forcing a dramatic increase of the number of fundamental field variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long ranged and should cause large parity breaking effects due to weak interactions. These effects are indeed observed but only in living matter. The basic problem is that one has long ranged classical electroweak gauge fields. The resolution of the problem is that the quantum averages of induced weak and color gauge fields vanish due to the fact that color rotations affect both space-time surfaces and induced weak and color fields. Only the averages of
electromagnetic fields are nonvanishing. The correlations functions for weak fields are nonvanishing below Compton lengths of weak bosons. In living matter large values of effective Planck constant labelling phases of ordinary matter identified as dark matter make possible long ranged weak fields and color fields.

- 6. General coordinate invariance requires holography so that space-time surfaces are analogous to Bohr orbits for particles identified as 3-surfaces. Bohr orbit property would be naturally realized by a 4-D generalization of holomorphy of string world sheets and implies that the space-time surfaces are minimal surfaces apart from singularities. This holds true for any action as long as it is general coordinate invariant and constructible in terms of the induced geometry. String world sheets and light-like orbits of partonic 2-surfaces correspond to singularities at which the minimal surface property of the space-time surfaces realizing the preferred extremal property fails. Preferred extremals are not completely deterministic, which implies what I call zero energy ontology (ZEO) meaning that the Bohr orbits are the fundamental objects. This leads to a solution of the basic paradox of quantum measurement theory. Also the mathematically ill-defined path integral disappears and leaves only the well-defined functional integral over the Bohr orbits.
- 7. A string model-like picture emerges from TGD and one ends up with a rather concrete view about the topological counterpart of Feynman diagrammatics. The natural stringy action would be given by the string world sheet area, which is present only in the space-time regions with Minkowskian signature. Gravitational constant could be present as a fundamental constant in string action and the ratio $\hbar/G/R^2$ would be determined by quantum criticality conditions. The hierarchy of Planck constants $h_{eff}/h = n$ assigned to dark matter in TGD framework would allow to circumvent the objection that only objects of length of order Planck length are possible since string tension given by $T = 1/\hbar_{eff}G$ apart from numerical factor could be arbitrary small. This would make possible gravitational bound states as partonic 2-surfaces as structures connected by strings and solve the basic problem of superstring theories. This option allows the natural interpretation of M^4 type vacuum extremals with CP_2 projection, which is Lagrange manifold as good approximations for space-time sheets at macroscopic length scales. String area does not contribute to the Kähler function at all.

Whether induced spinor fields associated with Kähler-Dirac action and de-localized inside the entire space-time surface should be allowed remains an open question: super-conformal symmetry strongly suggests their presence. A possible interpretation for the corresponding spinor modes could be in terms of dark matter, sparticles, and hierarchy of Planck constants.

It is perhaps useful to make clear what TGD is not and also what new TGD can give to physics.

1. TGD is *not* just General Relativity made concrete by using embeddings: the 4-surface property is absolutely essential for unifying standard model physics with gravitation and to circumvent the incurable conceptual problems of General Relativity. The many-sheeted space-time of TGD gives rise only at the macroscopic limit to GRT space-time as a slightly curved Minkowski space. TGD is *not* a Kaluza-Klein theory although color gauge potentials are analogous to gauge potentials in these theories.

TGD space-time is 4-D and its dimension is due to completely unique conformal properties of light-cone boundary and 3-D light-like surfaces implying enormous extension of the ordinary conformal symmetries. Light-like 3-surfaces represent orbits of partonic 2-surfaces and carry fundamental fermions at 1-D boundaries of string world sheets. TGD is *not* obtained by performing Poincare gauging of space-time to introduce gravitation and is plagued by profound conceptual problems.

2. TGD is *not* a particular string model although string world sheets emerge in TGD very naturally as loci for spinor modes: their 2-dimensionality makes among other things possible quantum deformation of quantization known to be physically realized in condensed matter, and conjectured in TGD framework to be crucial for understanding the notion of finite measurement resolution. Hierarchy of objects of dimension up to 4 emerge from TGD: this obviously means analogy with branes of super-string models.

TGD is *not* one more item in the collection of string models of quantum gravitation relying on Planck length mystics. Dark matter becomes an essential element of quantum gravitation and quantum coherence in astrophysical scales is predicted just from the assumption that strings connecting partonic 2-surfaces are responsible for gravitational bound states.

TGD is *not* a particular string model although AdS/CFT duality of super-string models generalizes due to the huge extension of conformal symmetries and by the identification of WCW gamma matrices as Noether super-charges of super-symplectic algebra having a natural conformal structure.

- 3. TGD is *not* a gauge theory. In TGD framework the counterparts of also ordinary gauge symmetries are assigned to super-symplectic algebra (and its Yangian [A26] [B22, B19, B20]), which is a generalization of Kac-Moody algebras rather than gauge algebra and suffers a fractal hierarchy of symmetry breakings defining hierarchy of criticalities. TGD is *not* one more quantum field theory like structure based on path integral formalism: path integral is replaced with functional integral over 3-surfaces, and the notion of classical space-time becomes an exact part of the theory. Quantum theory becomes formally a purely classical theory of WCW spinor fields: only state function reduction is something genuinely quantal.
- 4. TGD view about spinor fields is *not* the standard one. Spinor fields appear at three levels. Spinor modes of the embedding space are analogs of spinor modes characterizing incoming and outgoing states in quantum field theories. Induced second quantized spinor fields at space-time level are analogs of stringy spinor fields. Their modes are localized by the welldefinedness of electro-magnetic charge and by number theoretic arguments at string world sheets. Kähler-Dirac action is fixed by supersymmetry implying that ordinary gamma matrices are replaced by what I call Kähler-Dirac gamma matrices - this something new. WCW spinor fields, which are classical in the sense that they are not second quantized, serve as analogs of fields of string field theory and imply a geometrization of quantum theory.
- 5. TGD is in some sense an extremely conservative geometrization of entire quantum physics: no additional structures such as gauge fields as independent dynamical degrees of freedom are introduced: Kähler geometry and associated spinor structure are enough. "Topological" in TGD should not be understood as an attempt to reduce physics to torsion (see for instance [B17]) or something similar. Rather, TGD space-time is topologically non-trivial in all scales and even the visible structures of the everyday world represent non-trivial topology of spacetime in the TGD Universe.
- 6. Twistor space or rather, a generalization of twistor approach replacing masslessness in 4-D sense with masslessness in 8-D sense and thus allowing description of also massive particles emerged originally as a technical tool, and its Kähler structure is possible only for $H = M^4 \times CP_2$. It however turned out that much more than a technical tool is in question. What is genuinely new is the infinite-dimensional character of the Kähler geometry making it highly unique, and its generalization to p-adic number fields to describe correlates of cognition. Also the hierarchy of Planck constants $h_{eff} = n \times h$ reduces to the quantum criticality of the TGD Universe and p-adic length scales and Zero Energy Ontology represent something genuinely new.

The great challenge is to construct a mathematical theory around these physically very attractive ideas and I have devoted the last 45 years to the realization of this dream and this has resulted in 26 online books about TGD and nine online books about TGD inspired theory of consciousness and of quantum biology.

A collection of 30 online books is now (August 2023) under preparation. The goal is to minimize overlap between the topics of the books and make the focus of a given book sharper.

1.1.2 Two Visions About TGD as Geometrization of Physics and Their Fusion

As already mentioned, TGD as a geometrization of physics can be interpreted both as a modification of general relativity and generalization of string models.

TGD as a Poincare Invariant Theory of Gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation. Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is regarded as a surface in the 8-dimensional space $H = M_{\times}^4 CP_2$, where M^4 denotes Minkowski space and $CP_2 = SU(3)/U(2)$ is the complex projective space of two complex dimensions [A45, A57, A36, A52].

The identification of the space-time as a sub-manifold [A46, A71] of $M^4 \times CP_2$ leads to an exact Poincare invariance and solves the conceptual difficulties related to the definition of the energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in structure than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the geometrization of the elementary particle quantum numbers is achieved. The geometry of CP_2 explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The projections of the CP_2 spinor connection, Killing vector fields of CP_2 and of H-metric to four-surface define classical electro-weak, color gauge fields and metric in X^4 .

The choice of H is unique from the condition that TGD has standard model symmetries. Also number theoretical vision selects $H = M^4 \times CP_2$ uniquely. M^4 and CP_2 are also unique spaces allowing twistor space with Kähler structure.

TGD as a Generalization of the Hadronic String Model

The second approach was based on the generalization of the mesonic string model describing mesons as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in the sense that the quantum numbers of the elementary particles reside on the boundaries. Various boundary topologies (number of handles) correspond to various fermion families so that one obtains an explanation for the known elementary particle quantum numbers. This approach leads also to a natural topological description of the particle reactions as topology changes: for instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of string models. Indeed, the important difference between TGD and string models is that the analogs of string world sheet diagrams do not describe particle decays but the propagation of particles via different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Quite recently, it has turned out that fermionic strings inside space-time surfaces define an exact part of quantum TGD and that this is essential for understanding gravitation in long length scales. Also the analog of AdS/CFT duality emerges in that the Kähler metric can be defined either in terms of Kähler function identifiable as Kähler action assignable to Euclidian space-time regions or Kähler action + string action assignable to Minkowskian regions.

The recent view about construction of scattering amplitudes is very "stringy". By strong form of holography string world sheets and partonic 2-surfaces provide the data needed to construct scattering amplitudes. Space-time surfaces are however needed to realize quantum-classical correspondence necessary to understand the classical correlates of quantum measurement. There is a huge generalization of the duality symmetry of hadronic string models.

The proposal is that scattering amplitudes can be regarded as sequences of computational operations for the Yangian of super-symplectic algebra. Product and co-product define the basic vertices and realized geometrically as partonic 2-surfaces and algebraically as multiplication for the elements of Yangian identified as super-symplectic Noether charges assignable to strings. Any computational sequences connecting given collections of algebraic objects at the opposite boundaries of causal diamond (CD) produce identical scattering amplitudes.

Fusion of the Two Approaches via a Generalization of the Space-Time Concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically

trivial macroscopic space-time of General Relativity. The unification of these approaches forces a considerable generalization of the conventional space-time concept. First, the topologically trivial 3-space of General Relativity is replaced with a "topological condensate" containing matter as particle like 3-surfaces "glued" to the topologically trivial background 3-space by connected sum operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the "topological condensate" there could be "vapor phase" that is a "gas" of particle like 3-surfaces and string like objects (counterpart of the "baby universes" of GRT) and the non-conservation of energy in GRT corresponds to the transfer of energy between different sheets of the space-time and possible existence vapour phase.

. What one obtains is what I have christened as many-sheeted space-time (see Fig. http: //tgdtheory.fi/appfigures/manysheeted.jpg or Fig. ?? in the appendix of this book). One particular aspect is topological field quantization meaning that various classical fields assignable to a physical system correspond to space-time sheets representing the classical fields to that particular system. One can speak of the field body of a particular physical system. Field body consists of topological light rays, and electric and magnetic flux quanta. In Maxwell's theory the physical system does not possess this kind of field identity. The notion of the magnetic body is one of the key players in TGD inspired theory of consciousness and quantum biology. The existence of monopole flux tubes requiring no current as a source of the magnetic field makes it possible to understand the existence of magnetic fields in cosmological and astrophysical scales.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP_2 and of the intersection of future and past directed light-cones and having scale coming as an integer multiple of CP_2 size is fundamental. CDs form a fractal hierarchy and zero energy states decompose to products of positive and negative energy parts assignable to the opposite boundaries of CD defining the ends of the space-time surface. The counterpart of zero energy state in positive energy ontology is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the opposite light-like boundaries of CD. Since the extremals of Kähler action connect these, one can say that by holography the basic dynamical objects are the space-time surface connecting these 3-surfaces and identifiable as analogs of Bohr orbits. This changes totally the vision about notions like self-organization: self-organization by quantum jumps does not take for a 3-D system but for the entire 4-D field pattern associated with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as space-like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that space-time surface is analogous to Bohr orbit. An alternative identification of the lines of generalized Feynman diagrams is as light-like 3-surfaces at which the signature of the induced metric changes from Minkowskian to Euclidian . Also the Euclidian 4-D regions can have a similar interpretation. The requirement that the two interpretations are equivalent, leads to a strong form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in question is due to the effects caused by the failure of strict determinism of Kähler action. In finite length scale resolution these effects can be neglected below UV cutoff and above IR cutoff. One can also speak about a strong form of holography.

The understanding of the super symplectic invariance leads to the proposal that super symplectic algebra and other Kac-Moody type algebras labelled by non-negative multiples of basic conformal weights allow a hierarchy of symmetry breakings in which the analog of gauge symmetry breaks down to a genuine dynamical symmetry. This gives rise to fractal hierarchies of algebras and symmetry breakings. This breaking can occur also for ordinary conformal algebras if one restricts the conformal weights to be non-negative integers.

1.1.3 Basic Objections

Objections are the most powerful tool in theory building. The strongest objection against TGD is the observation that all classical gauge fields are expressible in terms of four embedding space coordinates only- essentially CP_2 coordinates. The linear superposition of classical gauge fields taking place independently for all gauge fields is lost. This would be a catastrophe without many-

sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed. Particles topologically condense to several space-time sheets simultaneously and experience the sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified theory the number of primary field variables is countered in hundreds if not thousands, now it is just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-time due to the embeddability to 8-D embedding space. One can also argue that Poincare invariant theory of gravitation cannot be consistent with General Relativity. The above interpretation makes it possible to understand the relationship to GRT space-time and how the Equivalence Principle (EP) follows from Poincare invariance of TGD. The interpretation of GRT space-time is as effective space-time obtained by replacing many-sheeted space-time with Minkowski space with effective metric determined as a sum of Minkowski metric. Poincare invariance strongly suggests classical EP for the GRT limit in long length scales at least. One can also consider other kinds of limits such as the analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case deformations of CP_2 metric define a natural starting point and CP_2 indeed defines a gravitational instanton with a very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials of the standard model correspond classically to superpositions of induced gauge potentials over space-time sheets.

Topological Field Quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian - notion of field. In Maxwell's fields created by separate systems superpose and one cannot tell which part of field comes from which system except theoretically. In TGD these fields correspond to different space-time sheets and only their effects on test particle superpose. Hence physical systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck constant has become central concept in TGD inspired theory of consciousness and living matter, and by starting from various anomalies of biology one ends up to a rather detailed view about the role of magnetic body as intentional agent receiving sensory input from the biological body and controlling it using EEG and its various scaled up variants as a communication tool. Among other thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 Quantum TGD as Spinor Geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years from the birth of TGD. The great insight was "Do not quantize". The basic ingredients to the new approach have served as the basic philosophy for the attempt to construct Quantum TGD since then and have been the following ones.

World of Classical Worlds

The notion of WCW reduces the interacting quantum theory to a theory of free WCW spinor fields.

- 1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized Schrödinger amplitude identified as WCW spinor in the configuration space CH ("world of classical worlds", WCW) consisting of all possible 3-surfaces in H. "All possible" means that surfaces with arbitrary many disjoint components and with arbitrary internal topology and also singular surfaces topologically intermediate between two different manifold topologies are included.
- 2. 4-D general coordinate invariance forces holography and replaces the ill-defined path integral over all space-time surfaces with a discrete sum over 4-D analogs of Bohr orbits for particles identified as 3-surfaces. Holography means that basic objects are these analogs of Bohr orbits. Since there is no quantization at the level of WCW, one has an analog of wave mechanics with point-like particles replaced with 4-D Bohr orbits.

3. One must geometrize WCW as the space of Bohr orbits. In an infinite-dimensional situation the existence of geometry requires maximal symmetries already in the case of loop spaces. Physics is unique from its mathematical existence.

WCW is endowed with metric and spinor structure so that one can define various metric related differential operators, say Dirac operators, appearing in the field equations of the theory ¹

Identification of Kähler function

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful vision. One of the key problems has been the definition of Kähler function. Kähler function is Kähler action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is? The obvious first guess was as absolute minimum of Kähler action but could not be proven to be right or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost topological QFT in which braids would replace 3-surfaces in finite measurement resolution, which could be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete points carrying fermion number.

It took long time to realize that there is no discretization in 4-D sense - this would lead to difficulties with basic symmetries. Rather, the discretization occurs for the parameters characterizing co-dimension 2 objects representing the information about space-time surface so that they belong to some algebraic extension of rationals. These 2-surfaces - string world sheets and partonic 2-surfaces - are genuine physical objects rather than a computational approximation. Physics itself approximates itself, one might say! This is of course nothing but strong form of holography.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time (recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and Euclidian regions would give at wormhole throats the same contribution apart from coefficients and in Minkowskian regions the $\sqrt{g_4}$ factorc coming from metric would be imaginary so that one would obtain sum of real term identifiable as Kähler function and imaginary term identifiable as the ordinary Minkowskian action giving rise to interference effects and stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could also have topological interpretation as a Morse function. On physical side the emergence of Euclidian space-time regions is something completely new and leads to a dramatic modification of the ideas about black hole interior.

2. The way to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulomb contribution to Kähler action is required and is true for all known extremals if one makes a general ansatz about the form of classical conserved currents. The so called weak form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons terms. In this way almost topological QFT results. But only "almost" since the Lagrange multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred extremals depends on metric.

WCW spinor fields

Classical WCW spinor fields are analogous to Schrödinger amplitudes and the construction of WCW Kähler geometry reduces to the second quantization of free spinor fields of H.

¹There are four kinds of Dirac operators in TGD. The geometrization of quantum theory requires Kähler metric definable either in terms of Kähler function identified as a the bosonic action for Euclidian space-time regions or as anti-commutators for WCW gamma matrices identified as conformal Noether super-charges associated with the second quantized modified Dirac action consisting of string world sheet term and possibly also modified Dirac action in Minkowskian space-time regions. These two possible definitions reflect a duality analogous to AdS/CFT duality.

- 1. The WCW metric is given by anticommutators of WCW gamma matrices which also have interpretation as supercharges assignable to the generators of WCW isometries and allowing expression as non-conserved Noether charges. Holography implies zero energy ontology (ZEO) meaning that zero energy states are superpositions of Bohr orbits connecting boundaries of causal diamond (CD). CDs form a fractal hierarchy and their space forming the spine of WCW is finite-dimensional and can be geometrized. The alternative interpretation is as a superposition of pairs of ordinary 3-D fermionic states assignable to the ends of the space-time surfaces.
- 2. There are several Dirac operators. WCW Dirac operator D_{WCW} appears in Super-symplectic gauge conditions analogous to Super Virasoro conditions. The algebraic variant of the HDirac operator D_H appears in fermionic correlation functions: this is due to the fact that free fermions appearing as building bricks of WCW gamma matrices are modes of D_H . The modes of $_DH$ define the ground states of super-symplectic representations. There is also the modified Dirac operator D_{X^4} acting on the induced spinors at space-time surfaces and it is dictated by symmetry one the action fixing the space-time surfaces as Bohr orbits is fixed. D_H is needed since it determines the expressions of WCW gamma matrices as Noether charges assignable to 3-surfaces at the ends of WCW.

The role of modified Dirac action

1. By quantum classical correspondence, the construction of WCW spinor structure in sectors assignable to CDs reduces to the second quantization of the induced spinor fields of *H*. The basic action is so called modified Dirac action in which gamma matrices are replaced with the modified) gamma matrices defined as contractions of the canonical momentum currents of the bosonic action defining the space-time surfaces with the embedding space gamma matrices. In this way one achieves super-conformal symmetry and conservation of fermionic currents among other things and a consistent Dirac equation.

Modified Dirac action is needed to define WCW gamma matrices as super charges assignable to WCW isometry generators identified as generators of symplectic transformations and by holography are needed only at the 3-surface at the boundaries of WCW. It is important to notice that the modified Dirac equation does not determine propagators since induced spinor fields are obtained from free second quantized spinor fields of H. This means enormous simplification and makes the theory calculable.

2. An important interpretational problem relates to the notion of the induced spinor connection. The presence of classical W boson fields is in conflict with the classical conservation of em charge since the coupling to classical W fields changes em charge.

One way out of the problem is the fact that the quantum averages of weak and gluon fields vanish unlike the quantum average of the em field. This leads to a rather precise understanding of electroweak symmetry breaking as being due the fact that color symmetries rotate space-time surfaces and also affect the induced weak fields.

One can also consider a stronger condition. If one requires that the spinor modes have welldefined em charge, one must assume that the modes in the generic situation are localized at 2-D surfaces - string world sheets or perhaps also partonic 2-surfaces - at which classical W boson fields vanish. Covariantly constant right handed neutrinos generating super-symmetries forms an exception. The vanishing of the Z^0 field is possible for Kähler-Dirac action and should hold true at least above weak length scales. This implies that the string model in 4-D space-time becomes part of TGD. Without these conditions classical weak fields can vanish above weak scale only for the GRT limit of TGD for which gauge potentials are sums over those for space-time sheets.

The localization would simplify the mathematics enormously and one can solve exactly the Kähler-Dirac equation for the modes of the induced spinor field just like in super string models.

At the light-like 3-surfaces the signature of the induced metric changes from Euclidian to Minkowskian so that $\sqrt{g_4}$ vanishes. One can pose the condition that the algebraic analog of

the massless Dirac equation is satisfied by the modes of the modified-Dirac action assignable to the Chern-Simons-Kähler action.

1.1.5 Construction of scattering amplitudes

Reduction of particle reactions to space-time topology

Particle reactions are identified as topology changes [A63, A75, A83]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay $A \rightarrow B + C$. Classically this corresponds to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All coupling constants should result as predictions of the theory since no nonlinearities are introduced.

During years this naïve and very rough vision has of course developed a lot and is not anymore quite equivalent with the original insight. In particular, the space-time correlates of Feynman graphs have emerged from theory as Euclidian space-time regions and the strong form of General Coordinate Invariance has led to a rather detailed and in many respects un-expected visions. This picture forces to give up the idea about smooth space-time surfaces and replace spacetime surface with a generalization of Feynman diagram in which vertices represent the failure of manifold property. I have also introduced the word "world of classical worlds" (WCW) instead of rather formal "configuration space". I hope that "WCW" does not induce despair in the reader having tendency to think about the technicalities involved!

Construction of the counterparts of S-matrices

What does one mean with the counterpart of S-matrix in the TGD framework has been a long standing problem. The development of ZEO based quantum measurement theory has led to a rough overall view of the situation.

- 1. There are two kinds of state function reductions (SFRs). "Small" SFRs (SSFRs) following the TGD counterpart of a unitary time evolution defines a sequence of SFRs, which is analogous to a sequence of repeated quantum measurements associated with the Zeno effect. In wave mechanics nothing happens in these measurements. In quantum optics these measurements correspond to weak measurements. In TGD SSFR affects the zero energy state but leaves the 3-D state at the passive boundary of CD unaffected.
- 2. In TGD framework each SSFR is preceded by a counterpart of a unitary time evolution, which means dispersion in the space of CDs and unitary time evolution in fermionic degrees of freedom such that the passive boundary of CDs and 3-D states at it are unaffected but a superposition of CDs with varying active boundaries in the space of CDs is formed. In SSFR a localization in the space of CDs occurs such that the active is fixed. In a statistical sense the size of the CD increases and the increasing distance between the tips of the CD gives rise to the arrow of geometric time.
- 3. Also "big" SFRS (BSFRs) can occur and they correspond to ordinary SFRs. In BSFR the roles of the active and passive boundary are changed and this means that the arrow of time is changed. Big SFR occurs when the SSFR corresponds to a quantum measurement, which does not commute with the operators, which define the states at the passive boundary of CD as their eigenstates. This means a radical deviation from standard quantum measurement theory and has predictions in all scales.
- 4. One can assign the counterpart of S-matrix to the unitary time evolution between two subsequent SSFRs and also to the counterpart of S-matrix associated with BSFR. At least in the latter case the dimension of the state space can increase since at least BSFRs lead to the increase of the dimension of algebraic extension of rationals assignable to the space-time surface by $M^8 - H$ duality. Unitarity is therefore replaced with isometry.
- 5. I have also considered the possibility that unitary S-matrix could be replaced in the fermionic degrees of freedom with Kähler metric of the state space satisfying analogs of unitarity conditions but it seems that this is un-necessary and also too outlandish an idea.

The notion of M-matrix

- 1. The most ambitious dream is that zero energy states correspond to a complete solution basis for the Dirac operators associated with WCWs associated with the spaces of CDs with fixed passive boundary: this would define an S-matrix assignable to SFR. Also the analog of Smatrix for the localizations of the states to the active boundary assignable to the BSFR changing the state at the passive boundary of CD is needed.
- 2. If one allows entanglement between positive and energy parts of the zero energy state but assumes that the states at the passive boundary are fixed, one must introduce the counterpart of the density matrix, or rather its square root. This classical free field theory would dictate what I have called M-matrices defined between positive and negative energy parts of zero energy states which form orthonormal rows of what I call U-matrix as a matrix defined between zero energy states. A biven M-matrix in turn would decompose to a product of a hermitian square root of density matrix and unitary S-matrix.
- 3. M-matrix would define time-like entanglement coefficients between positive and negative energy parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix. Quantum theory would be in a well-defined sense a square root of thermodynamics. The orthogonality and hermiticity of the M-matrices commuting with S-matrix means that they span infinite-dimensional Lie algebras acting as symmetries of the S-matrix. Therefore quantum TGD would reduce to group theory in a well-defined sense.
- 4. In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers of S-matrix is possible and would correspond to a hierarchy of CDs with the temporal distances between tips coming as integer multiples of the CP_2 time.

The M-matrices associated with CDs are obtained by a discrete scaling from the minimal CD and characterized by integer n are naturally proportional to a representation matrix of scaling: $S(n) = S^n$, where S is unitary S-matrix associated with the minimal CD [K46]. This conforms with the idea about unitary time evolution as exponent of Hamiltonian discretized to integer power of S and represented as scaling with respect to the logarithm of the proper time distance between the tips of CD.

5. I have also considered the notion of U-matrix. U-matrix elements between M-matrices for various CDs are proportional to the inner products $Tr[S^{-n_1} \circ H^i H^j \circ S^{n_2} \lambda]$, where λ represents unitarily the discrete Lorentz boost relating the moduli of the active boundary of CD and H^i form an orthonormal basis of Hermitian square roots of density matrices. \circ tells that S acts at the active boundary of CD only. I have proposed a general representation for the U-matrix, reducing its construction to that of the S-matrix.

1.1.6 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configuration space ("world of classical worlds", WCW), p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD. The fourth thread deserves the name "TGD as a generalized number theory". It involves three separate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring number theoretic universality discussed already, the formulation of quantum TGD in terms of complexified counterparts of classical number fields, and the notion of infinite prime. Note that one can identify subrings such as hyper-quaternions and hyper-octonions as sub-spaces of complexified classical number fields with Minkowskian signature of the metric defined by the complexified inner product.

The Threads in the Development of Quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinitedimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following these threads are briefly described.

- 1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinitedimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness and of quantum biology have been for last decade of the second millenium the basic three strongly interacting threads in the tapestry of quantum TGD.
- 2. The discussions with Tony Smith initiated a fourth thread which deserves the name "TGD as a generalized number theory". The basic observation was that classical number fields might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a deep generalization of quantum TGD. This led to a thorough and rather fruitful revision of the basic views about what the final form and physical content of quantum TGD might be. Together with the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads fused to the "physics as generalized number theory" thread.
- 3. A further thread emerged from the realization that by quantum classical correspondence TGD predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynamical quantized Planck constant might be necessary and strongly suggested by the failure of strict determinism for the fundamental variational principle. The identification of hierarchy of Planck constants labelling phases of dark matter would be natural. This also led to a solution of a long standing puzzle: what is the proper interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus TGD Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is much more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes as sub-threads of a thread which might be called "physics as a generalized number theory". In the following I adopt this view. This reduces the number of threads to three corresponding to geometric, number theoretic and topological views of physics.

TGD forces the generalization of physics to a quantum theory of consciousness, and TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics of cognitive representations.

Number theoretic vision very briefly

Number theoretic vision about quantum TGD involves notions like a delic physics, $M^8 - H$ duality and number theoretic universality. A short review of the basic ideas that have developed during years is in order.

- 1. The physical interpretation of M^8 is as an analog of momentum space and $M^8 H$ duality is analogous to momentum-position duality of ordinary wave mechanics.
- 2. Adelic physics means that all classical number fields, all p-adic number fields and their extensions induced by extensions of rationals and defining adeles, and also finite number fields are basic mathematical building bricks of physics.

The complexification of M^8 , identified as complexified octonions, would provide a realization of this picture and $M^8 - H$ duality would map the algebraic physics in M^8 to the ordinary physics in $M^4 \times CP_2$ described in terms of partial differential equations. 3. Negentropy Maximization Principle (NMP) states that the conscious information assignable with cognition representable measured in terms of p-adic negentropy increases in statistical sense.

NMP is mathematically completely analogous to the second law of thermodynamics and number theoretic evolution as an unavoidable statistical increase of the dimension of the algebraic extension of rationals characterizing a given space-time region implies it. There is no paradox involved: the p-adic negentropy measures the conscious information assignable to the entanglement of two systems regarded as a conscious entity whereas ordinary entropy measures the lack of information about the quantums state of either entangled system.

- 4. Number theoretical universality requires that space-time surfaces or at least their $M^8 H$ duals in M_c^8 are defined for both reals and various p-adic number fields. This is true if they are defined by polynomials with integer coefficients as surfaces in M^8 obeying number theoretic holography realized as associativity of the normal space of 4-D surface using as holographic data 3-surfaces at mass shells identified in terms of roots of a polynomial. A physically motivated additional condition is that the coefficients of the polynomials are smaller than their degrees.
- 5. Galois confinement is a key piece of the number theoretic vision. It states that the momenta of physical states are algebraic integers in the extensions of rationals assignable to the space-time region considered. These numbers are in general complex and are not consistent with particle in box quantization. The proposal is that physical states satisfy Galois confinement being thus Galois singlets and having therefore total momenta, whose components are ordinary integers, when momentum unit defined by the scale of causal diamond (CD) is used.
- 6. The notion of p-adic prime was introduced in p-adic mass calculations that started the developments around 1995. p-Adic length scale hypothesis states that p-adic primes near powers of 2 have a special physical role (as possibly also the powers of other small primes such as p = 3).

The proposal is that p-adic primes correspond to ramified primes assignable to the extension and identified as divisors of the polynomial defined by the products of the root differences for the roots of the polynomial defining space-time space and having interpretation as values of, in general complex, virtual mass squared.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group. Although the details of the calculations have varied from year to year, it was clear that p-adic physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary particle mass scales, to number theory if one assumes that primes near prime powers of two are in a physically favored position. Why this is the case, became one of the key puzzles and led to a number of arguments with a common gist: evolution is present already at the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic length scales varying to even cosmological length scales. The idea about the connection of p-adics with cognition motivated already the first attempts to understand the role of the p-adics and inspired "Universe as Computer" vision but time was not ripe to develop this idea to anything concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive representations for real regions had to wait for almost a decade for the access into my consciousness.

In string model context one tries to reduces the physics to Planck scale. The price is the inability to say anything about physics in long length scales. In TGD p-adic physics takes care of this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

- 1. What is the relationship of p-adic non-determinism to the classical non-determinism of the basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic topology only serve as an effective topology? If p-adic physics is direct image of real physics, how the mapping relating them is constructed so that it respects various symmetries? Is the basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both, how should one glue the physics in different number field together to get *the* Physics? Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization at the level of super-conformal representation is necessary for the p-adic mass calculations.
- 2. Perhaps the most basic and most irritating technical problem was how to precisely define padic definite integral which is a crucial element of any variational principle based formulation of the field equations. Here the frustration was not due to the lack of solution but due to the too large number of solutions to the problem, a clear symptom for the sad fact that clever inventions rather than real discoveries might be in question. Quite recently I however learned that the problem of making sense about p-adic integration has been for decades central problem in the frontier of mathematics and a lot of profound work has been done along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly the notion of algebraic continuation from the world of rationals belonging to the intersection of real world and various p-adic worlds.

Despite various uncertainties, the number of the applications of the poorly defined p-adic physics has grown steadily and the applications turned out to be relatively stable so that it was clear that the solution to these problems must exist. It became only gradually clear that the solution of the problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structure. This has inspired a proposal for a generalization of the notion of number field by fusing real numbers and various p-adic number fields and their extensions along rationals and possible common algebraic numbers. This leads to a generalization of the notions of embedding space and space-time concept and one can speak about real and p-adic space-time sheets. One can talk about adelic space-time, embedding space, and WCW.

The corresponds of real 4-surfaces with the p-adic ones is induced by number theoretical discretization using points of 4-surfaces $Y^4 \subset M_c^8$ identifiable as 8-momenta, whose components are assumed to be algebraic integers in an extension of rationals defined by the extension of rationals associated with a polynomial P with integer coefficients smaller than the degree of P. These points define a cognitive representation, which is universal in the sense that it exists also in the algebraic extensions of p-adic numbers. The points of the cognitive representations associated with the mass shells with mass squared values identified as roots of P are enough since $M^8 - H$ duality can be used at both M^8 and H sides and also in the p-adic context. The mass shells are special in that they allow for Minkowski coordinates very large cognitive representations unlike the interiors of the 4-surfaces determined by holography by using the data defined by the 3-surfaces at the mass shells. The higher the dimension of the algebraic extension associated with P, the better the accuracy of the cognitive representation.

Adelization providing number theoretical universality reduces to algebraic continuation for the amplitudes from this intersection of reality and various p-adicities - analogous to a back of a book - to various number fields. There are no problems with symmetries but canonical identification is needed: various group invariant of the amplitude are mapped by canonical identification to various p-adic number fields. This is nothing but a generalization of the mapping of the p-adic mass squared to its real counterpart in p-adic mass calculations.

This leads to surprisingly detailed predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy concept allows negentropic entanglement central for the applications to living matter (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or Fig. ?? in the appendix of this book). One can also understand how preferred p-adic primes could

emerge as so called ramified primes of algebraic extension of rationals in question and characterizing string world sheets and partonic 2-surfaces. Preferred p-adic primes would be ramified primes for extensions for which the number of p-adic continuations of two-surfaces to space-time surfaces (imaginations) allowing also real continuation (realization of imagination) would be especially large. These ramifications would be winners in the fight for number theoretical survival. Also a generalization of p-adic length scale hypothesis emerges from NMP [K42].

The characteristic non-determinism of the p-adic differential equations suggests strongly that p-adic regions correspond to "mind stuff", the regions of space-time where cognitive representations reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is probably a brilliant simulator of Nature, the natural idea is to study the p-adic physics of the cognitive representations to derive information about the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly representable as surfaces geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from algebraic physics as various completions of the algebraic extensions of complexified quaternions and octonions. Complete algebraic, topological and dimensional democracy would characterize the theory.

The infinite primes at the first level of hierarchy, which represent analogs of bound states, can be mapped to irreducible polynomials, which in turn characterize the algebraic extensions of rationals defining a hierarchy of algebraic physics continuable to real and p-adic number fields. The products of infinite primes in turn define more general algebraic extensions of rationals. The interesting question concerns the physical interpretation of the higher levels in the hierarchy of infinite primes and integers mappable to polynomials of n > 1 variables.

1.1.7 An explicit formula for $M^8 - H$ duality

 $M^8 - H$ duality is a generalization of momentum-position duality relating the number theoretic and geometric views of physics in TGD and, despite that it still involves poorly understood aspects, it has become a fundamental building block of TGD. One has 4-D surfaces $Y^4 \subset M_c^8$, where M_c^8 is complexified M^8 having interpretation as an analog of complex momentum space and 4-D spacetime surfaces $X^4 \subset H = M^4 \times CP_2$. M_c^8 , equivalently E_c^8 , can be regarded as complexified octonions. M_c^8 has a subspace M_c^4 containing M^4 .

Comment: One should be very cautious with the meaning of "complex". Complexified octonions involve a complex imaginary unit i commuting with the octonionic imaginary units I_k . i is assumed to also appear as an imaginary unit also in complex algebraic numbers defined by the roots of polynomials P defining holographic data in M_c^8 .

In the following $M^8 - H$ duality and its twistor lift are discussed and an explicit formula for the dualities are deduced. Also possible variants of the duality are discussed.

Holography in H

 $X^4 \subset H$ satisfies holography and is analogous to the Bohr orbit of a particle identified as a 3surface. The proposal is that holography reduces to a 4-D generalization of holomorphy so that X^4 is a simultaneous zero of two functions of complex CP_2 coordinates and of what I have called Hamilton-Jacobi coordinates of M^4 with a generalized Kähler structure.

The simplest choice of the Hamilton-Jacobi coordinates is defined by the decomposition $M^4 = M^2 \times E^2$, where M^2 is endowed with hypercomplex structure defined by light-like coordinates (u, v), which are analogous to z and \overline{z} . Any analytic map $u \to f(u)$ defines a new set

of light-like coordinates and corresponds to a solution of the massless d'Alembert equation in M^2 . E^2 has some complex coordinates with imaginary unit defined by *i*.

The conjecture is that also more general Hamilton-Jacobi structures for which the tangent space decomposition is local are possible. Therefore one would have $M^4 = M^2(x) \times E^2(x)$. These would correspond to non-equivalent complex and Kähler structures of M^4 analogous to those possessed by 2-D Riemann surfaces and parametrized by moduli space.

Number theoretic holography in M_c^8

 $Y^4 \subset M_c^8$ satisfies number theoretic holography defining dynamics, which should reduce to associativity in some sense. The Euclidian complexified normal space $N^4(y)$ at a given point y of Y^4 is required to be associative, i.e. quaternionic. Besides this, $N^4(i)$ contains a preferred complex Euclidian 2-D subspace $Y^2(y)$. Also the spaces $Y^2(x)$ define an integrable distribution. I have assumed that $Y^2(x)$ can depend on the point y of Y^4 .

These assumptions imply that the normal space N(y) of Y^4 can be parameterized by a point of $CP_2 = SU(3)/U(2)$. This distribution is always integrable unlike quaternionic tangent space distributions. $M^8 - H$ duality assigns to the normal space N(y) a point of CP_2 . M_c^4 point y is mapped to a point $x \in M^4 \subset M^4 \times CP_2$ defined by the real part of its inversion (conformal transformation): this formula involves effective Planck constant for dimensional reasons.

The 3-D holographic data, which partially fixes 4-surfaces Y^4 is partially determined by a polynomial P with real integer coefficients smaller than the degree of P. The roots define mass squared values which are in general complex algebraic numbers and define complex analogs of mass shells in $M_c^4 \,\subset\, M_c^8$, which are analogs of hyperbolic spaces H^3 . The 3-surfaces at these mass shells define 3-D holographic data continued to a surface Y^4 by requiring that the normal space of Y^4 is associative, i.e. quaternionic. These 3-surfaces are not completely fixed but an interesting conjecture is that they correspond to fundamental domains of tessellations of H^3 .

What does the complexity of the mass shells mean? The simplest interpretation is that the space-like M^4 coordinates (3-momentum components) are real whereas the time-like coordinate (energy) is complex and determined by the mass shell condition. One would have $Re^2(E) - Im(E)^2 - p^2 = Re(m^2)$ and $2Re(E)Im(E) = Im(m^2)$. The condition for the real parts gives H^3 when $\sqrt{Re^2(E) - Im(E)^2}$ is taken as a time coordinate. The second condition allows to solve Im(E) in terms of Re(E) so that the first condition reduces to an equation of mass shell when $\sqrt{(Re(E)^2 - Im(E)^2)}$, expressed in terms of Re(E), is taken as new energy coordinate $E_{eff} = \sqrt{(Re(E)^2 - Im(E)^2)}$. Is this deformation of H^3 in imaginary time direction equivalent with a region of the hyperbolic 3-space H^3 ?

One can look at the formula in more detail. Mass shell condition gives $Re^2(E) - Im(E)^2 - p^2 = Re(m^2)$ and $2Re(E)Im(E) = Im(m^2)$. The condition for the real parts gives H^3 , when $\sqrt{Re^2(E) - Im(E)^2}$ is taken as an effective energy. The second condition allows to solve Im(E) in terms of Re(E) so that the first condition reduces to a dispersion relation for $Re(E)^2$.

$$Re(E)^{2} = \frac{1}{2} (Re(m^{2}) - Im(m^{2}) + p^{2})(1 \pm \sqrt{1 + \frac{2Im(m^{2})^{2}}{(Re(m^{2}) - Im(m^{2}) + p^{2})^{2}}} .$$
(1.1.1)

Only the positive root gives a non-tachyonic result for $Re(m^2) - Im(m^2) > 0$. For real roots with $Im(m^2) = 0$ and at the high momentum limit the formula coincides with the standard formula. For $Re(m^2) = Im(m^2)$ one obtains $Re(E)^2 \to Im(m^2)/\sqrt{2}$ at the low momentum limit $p^2 \to 0$. Energy does not depend on momentum at all: the situation resembles that for plasma waves.

Can one find an explicit formula for $M^8 - H$ duality?

The dream is an explicit formula for the $M^8 - H$ duality mapping $Y^4 \subset M_c^8$ to $X^4 \subset H$. This formula should be consistent with the assumption that the generalized holomorphy holds true for X^4 .

The following proposal is a more detailed variant of the earlier proposal for which Y^4 is determined by a map g of $M_c^4 \to SU(3)_c \subset G_{2,c}$, where $G_{2,c}$ is the complexified automorphism group of octonions and $SU(3)_c$ is interpreted as a complexified color group.

This map defines a trivial $SU(3)_c$ gauge field. The real part of g however defines a non-trivial real color gauge field by the non-linearity of the non-abelian gauge field with respect to the gauge potential. The quadratic terms involving the imaginary part of the gauge potential give an additional condition to the real part in the complex situation and cancel it. If only the real part of g contributes, this contribution would be absent and the gauge field is non-vanishing.

How could the automorphism $g(x) \subset SU(3) \subset G_2$ give rise to $M^8 - H$ duality?

- 1. The interpretation is that g(y) at given point y of Y^4 relates the normal space at y to a fixed quaternionic/associative normal space at point y_0 , which corresponds is fixed by some subgroup $U(2)_0 \subset SU(3)$. The automorphism property of g guarantees that the normal space is quaternionic/associative at y. This simplifies the construction dramatically.
- 2. The quaternionic normal sub-space (which has Euclidian signature) contains a complex subspace which corresponds to a point of sphere $S^2 = SO(3)/O(2)$, where SO(3) is the quaternionic automorphism group. The interpretation could be in terms of a selection of spin quantization axes. The local choice of the preferred complex plane would not be unique and is analogous to the possibility of having non-trivial Hamilton Jacobi structures in M^4 characterized by the choice of $M^2(x)$ and equivalently its normal subspace $E^2(x)$.

These two structures are independent apart from dependencies forced by the number theoretic dynamics. Hamilton-Jacobi structure means a selection of the quantization axis of spin and energy by fixing a distribution of light-like tangent vectors of M^4 and the choice of the quaternionic normal sub-space fixes a choice of preferred quaternionic imaginary unit defining a quantization axis of the weak isospin.

- 3. The real part Re(g(y)) defines a point of SU(3) and the bundle projection $SU(3) \rightarrow CP_2$ in turn defines a point of $CP_2 = SU(3)/U(2)$. Hence one can assign to g a point of CP_2 as $M^8 - H$ duality requires and deduce an explicit formula for the point. This means a realization of the dream.
- 4. The construction requires a fixing of a quaternionic normal space N_0 at y_0 containing a preferred complex subspace at a single point of Y^4 plus a selection of the function g. If M^4 coordinates are possible for Y^4 , the first guess is that g as a function of complexified M^4 coordinates obeys generalized holomorphy with respect to complexified M^4 coordinates in the same sense and in the case of X^4 . This might guarantee that the $M^8 H$ image of Y^4 satisfies the generalized holomorphy.
- 5. Also space-time surfaces X^4 with M^4 projection having a dimension smaller than 4 are allowed. I have proposed that they might correspond to singular cases for the above formula: a kind of blow-up would be involved. One can also consider a more general definition of Y^4 allowing it to have a M^4 projection with dimension smaller than 4 (say cosmic strings). Could one have implicit equations for the surface Y^4 in terms of the complex coordinates of $SU(3)_c$ and M^4 ? Could this give for instance cosmic strings with a 2-D M^4 projection and CP_2 type extremals with 4-D CP_2 projection and 1-D light-like M^4 projection?

What could the number theoretic holography mean physically?

What could be physical meaning of the number theoretic holography? The condition that has been assumed is that the CP_2 coordinates at the mass shells of $M_c^4 \,\subset M_c^8$ mapped to mass shells H^3 of $M^4 \subset M^4 \times CP_2$ are constant at the H^3 . This is true if the g(y) defines the same CP_2 point for a given component X_i^3 of the 3-surface at a given mass shell. g is therefore fixed apart from a local U(2) transformation leaving the CP_2 point invariant. A stronger condition would be that the CP_2 point is the same for each component of X_i^3 and even at each mass shell but this condition seems to be unnecessarily strong.

Comment: One can o criticize this condition as too strong and one can consider giving up this condition. The motivation for this condition is that the number of algebraic points at the 3-surfaces associated with H^3 explodes since the coordinates associated with normal directions vanish. Kind of cognitive explosion would be in question.

SU(3) corresponds to a subgroup of G_2 and one can wonder what the fixing of this subgroup could mean physically. G_2 is 14-D and the coset space $G_2/SU(3)$ is 6-D and a good guess is that

it is just the 6-D twistor space $SU(3)/U(1) \times U(1)$ of CP_2 : at least the isometries are the same. The fixing of the SU(3) subgroup means fixing of a CP_2 twistor. Physically this means the fixing of the quantization axis of color isospin and hypercharge.

Twistor lift of the holography

What is interesting is that by replacing SU(3) with G_2 , one obtains an explicit formula form the generalization of $M^8 - H$ duality to that for the twistorial lift of TGD!

One can also consider a twistorial generalization of the above proposal for the number theoretic holography by allowing local G_2 automorphisms interpreted as local choices of the color quantization axis. G_2 elements would be fixed apart from a local SU(3) transformation at the components of 3-surfaces at mass shells. The choice of the color quantization axes for a connected 3-surface at a given mass shell would be the same everywhere. This choice is indeed very natural physically since 3-surface corresponds to a particle.

Is this proposal consistent with the boundary condition of the number theoretical holography mean in the case of 4-surfaces in M_c^8 and $M^4 \times CP_2$?

- 1. The selection of $SU(3) \subset G_2$ for ordinary $M^8 H$ duality means that the $G_{2,c}$ gauge field vanishes everywhere and the choice of color quantization axis is the same at all points of the 4-surface. The fixing of the CP_2 point to be constant at H^3 implies that the color gauge field at $H^3 \subset M_c^8$ and its image $H^3 \subset H$ vanish. One would have color confinement at the mass shells H_i^3 , where the observations are made. Is this condition too strong?
- 2. The constancy of the G_2 element at mass shells makes sense physically and means a fixed color quantization axis. The selection of a fixed $SU(3) \subset G_2$ for entire space-time surface is in conflict with the non-constancy of G_2 element unless G_2 element differs at different points of 4-surface only by a multiplication of a local $SU(3)_0$ element, that is local SU(3) transformation. This kind of variation of the G_2 element would mean a fixed color group but varying choice of color quantization axis.
- 3. Could one consider the possibility that the local $G_{2,c}$ element is free and defines the twistor lift of $M^8 - H$ duality as something more fundamental than the ordinary $M^8 - H$ duality based on $SU(3)_c$. This duality would make sense only at the mass shells so that only the spaces $H^3 \times CP_2$ assignable to mass shells would make sense physically? In the interior CP_2 would be replaced with the twistor space $SU(3)/U(1) \times U(1)$. Color gauge fields would be non-vanishing at the mass shells but outside the mass shells one would have G_2 gauge fields.

There is also a physical objection against the G_2 option. The 14-D Lie algebra representation of G_2 acts on the imaginary octonions which decompose with respect to the color group to $1 \oplus 3 \oplus \overline{3}$. The automorphism property requires that 1 can be transformed to 3 or $\overline{3}$ to themselves: this requires that the decomposition contains $3 \oplus \overline{3}$. Furthermore, it must be possible to transform 3 and $\overline{3}$ to themselves, which requires the presence of 8. This leaves only the decomposition $8 \oplus 3 \oplus \overline{3}$. G_2 gluons would both color octet and triplets. In the TDG framework the only conceivable interpretation would be in terms of ordinary gluons and leptoquark-like gluons. This does not fit with the basic vision of TGD.

The choice of twistor as a selection of quantization axes should make sense also in the M^4 degrees of freedom. M^4 twistor corresponds to a choice of light-like direction at a given point of M^4 . The spatial component of the light-like vector fixes the spin quantization axis. Its choice together with the light-likeness fixes the time direction and therefore the rest system and energy quantization axis. Light-like vector fixes also the choice of M^2 and of E^2 as its orthogonal complement. Therefore the fixing of M^4 twistor as a point of $SU(4)/SU(3) \times U(1)$ corresponds to a choice of the spin quantization axis and the time-like axis defining the rest system in which the energy is measured. This choice would naturally correspond to the Hamilton-Jacobi structure fixing the decompositions $M^2(x) \times E^2(x)$. At a given mass shell the choice of the quantization axis would be constant for a given X_i^3 .

1.1.8 Hierarchy of Planck Constants and Dark Matter Hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions. Hence the fact that they have all possible size scales more or less unavoidably implies that Planck constant must be quantized and have arbitrarily large values. If one accepts this then also the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark Matter as Large \hbar Phases

D. Da Rocha and Laurent Nottale [E1] have proposed that Schrödinger equation with Planck constant \hbar replaced with what might be called gravitational Planck constant $\hbar_{gr} = \frac{GmM}{v_0}$ ($\hbar = c = 1$). v_0 is a velocity parameter having the value $v_0 = 144.7 \pm .7$ km/s giving $v_0/c = 4.6 \times 10^{-4}$. This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v_0 seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics. Many-sheeted space-time however suggests that astrophysical systems are at some levels of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets in question would carry dark matter.

Nottale's hypothesis would predict a gigantic value of h_{gr} . Equivalence Principle and the independence of gravitational Compton length on mass m implies however that one can restrict the values of mass m to masses of microscopic objects so that h_{gr} would be much smaller. Large h_{gr} could provide a solution of the black hole collapse (IR catastrophe) problem encountered at the classical level. The resolution of the problem inspired by TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which is quantum coherent in the required time scale [K64].

It is natural to assign the values of Planck constants postulated by Nottale to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology. The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension would give rise to negative "pressure" forcing accelerate cosmological expansion. This leads to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary and dark matter inside magnetic flux tubes identifiable as dark energy.

Certain experimental findings suggest the identification $h_{eff} = n \times = h_{gr}$. The large value of h_{gr} can be seen as a way to reduce the string tension of fermionic strings so that gravitational (in fact all!) bound states can be described in terms of strings connecting the partonic 2-surfaces defining particles (analogous to AdS/CFT description). The values $h_{eff}/h = n$ can be interpreted in terms of a hierarchy of breakings of super-conformal symmetry in which the super-conformal generators act as gauge symmetries only for a sub-algebras with conformal weights coming as multiples of n. Macroscopic quantum coherence in astrophysical scales is implied. If also Kähler-Dirac action is present, part of the interior degrees of freedom associated with the Kähler-Dirac part of conformal algebra become physical. A possible is that tfermionic oscillator operators generate super-symmetries and sparticles correspond almost by definition to dark matter with $h_{eff}/h = n > 1$. One implication would be that at least part if not all gravitons would be dark and be observed only through their decays to ordinary high frequency graviton ($E = hf_{high} = h_{eff}f_{low}$) of bunch of n low energy gravitons.

Hierarchy of Planck Constants from the Anomalies of Neuroscience and Biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies. ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5 times that of Earth for biologically important ions have physiological effects and affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies for the photons of ELF em fields are extremely low - about 10^{-10} times

lower than thermal energy at physiological temperatures- so that quantal effects are impossible in the framework of standard quantum theory. The values of Planck constant would be in these situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large a value of Planck constant that the energy of photons is above the thermal energy. The proposed interpretation was as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-standard value of Planck constant. If only particles with the same value of Planck constant can appear in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark relative to each other. The phase transitions changing Planck constant can however make possible interactions between phases with different Planck constant but these interactions do not manifest themselves in particle physics. Also the interactions mediated by classical fields should be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis $h_{eff} = h_{gr}$ - at least for microscopic particles - implies that cyclotron energies of charged particles do not depend on the mass of the particle and their spectrum is thus universal although corresponding frequencies depend on mass. In bio-applications this spectrum would correspond to the energy spectrum of bio-photons assumed to result from dark photons by h_{eff} reducing phase transition and the energies of bio-photons would be in visible and UV range associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K57, K58, K56]) support the view that dark matter might be a key player in living matter.

Dark Matter as a Source of Long Ranged Weak and Color Fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The identification explains chiral selection in living matter and unbroken $U(2)_{ew}$ invariance and free color in bio length scales become characteristics of living matter and of biochemistry and bio-nuclear physics.

The recent view about the solutions of Kähler- Dirac action assumes that the modes have a well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z^0 field can vanish. The latter would guarantee the absence of large parity breaking effects above intermediate boson scale scaling like h_{eff} .

1.1.9 Twistors in TGD and connection with Veneziano duality

The twistorialization of TGD has two aspects. The attempt to generalize twistor Grassmannian approach emerged first. It was however followed by the realization that also the twistor lift of TGD at classical space-time level is needed. It turned out that the progress in the understanding of the classical twistor lift has been much faster - probably this is due to my rather limited technical QFT skills.

Twistor lift at space-time level

8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [L12]. The reason is that M^4 and CP_2 are completely exceptional in the sense that they are the only 4-D manifolds allowing twistor space with Kähler structure [A58]. The twistor space of $M^4 \times CP_2$ is Cartesian product of those of M^4 and CP_2 . The obvious idea is that space-time surfaces allowing twistor structure if they are orientable are representable as surfaces in H such that the properly induced twistor structure coincides with the twistor structure defined by the induced metric.

In fact, it is enough to generalize the induction of spinor structure to that of twistor structure so that the induced twistor structure need not be identical with the ordinary twistor structure possibly assignable to the space-time surface. The induction procedure reduces to a dimensional reduction of 6-D Kähler action giving rise to 6-D surfaces having bundle structure with twistor sphere as fiber and space-time as base. The twistor sphere of this bundle is imbedded as sphere in the product of twistor spheres of twistor spaces of M^4 and CP_2 .

This condition would define the dynamics, and the original conjecture was that this dynamics is equivalent with the identification of space-time surfaces as preferred extremals of Kähler action. The dynamics of space-time surfaces would be lifted to the dynamics of twistor spaces, which are sphere bundles over space-time surfaces. What is remarkable that the powerful machinery of complex analysis becomes available.

It however turned out that twistor lift of TGD is much more than a mere technical tool. First of all, the dimensionally reduction of 6-D Kähler action contained besides 4-D Kähler action also a volume term having interpretation in terms of cosmological constant. This need not bring anything new, since all known extremals of Kähler action with non-vanishing induced Kähler form are minimal surfaces. There is however a large number of embeddings of twistor sphere of spacetime surface to the product of twistor spheres. Cosmological constant has spectrum and depends on length scale, and the proposal is that coupling constant evolution reduces to that for cosmological constant playing the role of cutoff length. That cosmological constant could transform from a mere nuisance to a key element of fundamental physics was something totally new and unexpected.

1. The twistor lift of TGD at space-time level forces to replace 4-D Kähler action with 6-D dimensionally reduced Kähler action for 6-D surface in the 12-D Cartesian product of 6-D twistor spaces of M^4 and CP_2 . The 6-D surface has bundle structure with twistor sphere as fiber and space-time surface as base.

Twistor structure is obtained by inducing the twistor structure of 12-D twistor space using dimensional reduction. The dimensionally reduced 6-D Kähler action is sum of 4-D Kähler action and volume term having interpretation in terms of a dynamical cosmological constant depending on the size scale of space-time surface (or of causal diamond CD in zero energy ontology (ZEO)) and determined by the representation of twistor sphere of space-time surface in the Cartesian product of the twistor spheres of M^4 and CP_2 .

2. The preferred extremal property as a representation of quantum criticality would naturally correspond to minimal surface property meaning that the space-time surface is separately an extremal of both Kähler action and volume term almost everywhere so that there is no coupling between them. This is the case for all known extremals of Kähler action with non-vanishing induced Kähler form.

Minimal surface property could however fail at 2-D string world sheets, their boundaries and perhaps also at partonic 2-surfaces. The failure is realized in minimal sense if the 3-surface has 1-D edges/folds (strings) and 4-surface 2-D edges/folds (string world sheets) at which some partial derivatives of the embedding space coordinates are discontinuous but canonical momentum densities for the entire action are continuous.

There would be no flow of canonical momentum between interior and string world sheet and minimal surface equations would be satisfied for the string world sheet, whose 4-D counterpart in twistor bundle is determined by the analog of 4-D Kähler action. These conditions allow the transfer of canonical momenta between Kähler- and volume degrees of freedom at string world sheets. These no-flow conditions could hold true at least asymptotically (near the boundaries of CD).

 $M^8 - H$ duality suggests that string world sheets (partonic 2-surfaces) correspond to images of complex 2-sub-manifolds of M^8 (having tangent (normal) space which is complex 2-plane of octonionic M^8).

3. Cosmological constant would depend on p-adic length scales and one ends up to a concrete model for the evolution of cosmological constant as a function of p-adic length scale and other number theoretic parameters (such as Planck constant as the order of Galois group): this conforms with the earlier picture.

Inflation is replaced with its TGD counterpart in which the thickening of cosmic strings to flux tubes leads to a transformation of Kähler magnetic energy to ordinary and dark matter. Since the increase of volume increases volume energy, this leads rapidly to energy minimum at some flux tube thickness. The reduction of cosmological constant by a phase transition however leads to a new expansion phase. These jerks would replace smooth cosmic expansion of GRT. The discrete coupling constant evolution predicted by the number theoretical vision could be understood as being induced by that of cosmological constant taking the role of cutoff parameter in QFT picture [L22].

Twistor lift at the level of scattering amplitudes and connection with Veneziano duality

The classical part of twistor lift of TGD is rather well-understood. Concerning the twistorialization at the level of scattering amplitudes the situation is much more difficult conceptually - I already mentioned my limited QFT skills.

1. From the classical picture described above it is clear that one should construct the 8-D twistorial counterpart of theory involving space-time surfaces, string world sheets and their boundaries, plus partonic 2-surfaces and that this should lead to concrete expressions for the scattering amplitudes.

The light-like boundaries of string world sheets as carriers of fermion numbers would correspond to twistors as they appear in twistor Grassmann approach and define the analog for the massless sector of string theories. The attempts to understand twistorialization have been restricted to this sector.

2. The beautiful basic prediction would be that particles massless in 8-D sense can be massive in 4-D sense. Also the infrared cutoff problematic in twistor approach emerges naturally and reduces basically to the dynamical cosmological constant provided by classical twistor lift.

One can assign 4-momentum both to the spinor harmonics of the embedding space representing ground states of super-conformal representations and to light-like boundaries of string world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identical by quantum classical correspondence: this could be seen as a concretization of Equivalence Principle. Also a connection with string model emerges.

- 3. As far as symmetries are considered, the picture looks rather clear. Ordinary twistor Grassmannian approach boils down to the construction of scattering amplitudes in terms of Yangian invariants for conformal group of M^4 . Therefore a generalization of super-symplectic symmetries to their Yangian counterpart seems necessary. These symmetries would be gigantic but how to deduce their implications?
- 4. The notion of positive Grassmannian is central in the twistor approach to the scattering amplitudes in calN = 4 SUSYs. TGD provides a possible generalization and number theoretic interpretation of this notion. TGD generalizes the observation that scattering amplitudes in twistor Grassmann approach correspond to representations for permutations. Since 2-vertex is the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering amplitudes are representations for braidings.

Braid interpretation encourages the conjecture that non-planar diagrams can be reduced to ordinary ones by a procedure analogous to the construction of braid (knot) invariants by gradual un-braiding (un-knotting).

This is however not the only vision about a solution of non-planarity. Quantum criticality provides different view leading to a totally unexpected connection with string models, actually with the Veneziano duality, which was the starting point of dual resonance model in turn leading via dual resonance models to super string models.

1. Quantum criticality in TGD framework means that coupling constant evolution is discrete in the sense that coupling constants are piecewise constant functions of length scale replaced by dynamical cosmological constant. Loop corrections would vanish identically and the recursion formulas for the scattering amplitudes (allowing only planar diagrams) deduced in twistor Grassmann would involve no loop corrections. In particular, cuts would be replaced by sequences of poles mimicking them like sequences of point charge mimic line charges. In momentum discretization this picture follows automatically.

- 2. This would make sense in finite measurement resolution realized in number theoretical vision by number-theoretic discretization of the space-time surface (cognitive representation) as points with coordinates in the extension of rationals defining the adele [L19]. Similar discretization would take place for momenta. Loops would vanish at the level of discretization but what would happen at the possibly existing continuum limit: does the sequence of poles integrate to cuts? Or is representation as sum of resonances something much deeper?
- 3. Maybe it is! The basic idea of behind the original Veneziano amplitudes (see http:// tinyurl.com/yyhwvbqb) was Veneziano duality. This 4-particle amplitude was generalized by Yoshiro Nambu, Holber-Beck Nielsen, and Leonard Susskind to N-particle amplitude (see http://tinyurl.com/yyvkx7as) based on string picture, and the resulting model was called dual resonance model. The model was forgotten as QCD emerged. Later came superstring models and led to M-theory. Now it has become clear that something went wrong, and it seems that one must return to the roots. Could the return to the roots mean a careful reconsideration of the dual resonance model?
- 4. Recall that Veneziano duality (1968) was deduced by assuming that scattering amplitude can be described as sum over s-channel resonances or t-channel Regge exchanges and Veneziano duality stated that hadronic scattering amplitudes have representation as sums over s- or tchannel resonance poles identified as excitations of strings. The sum over exchanges defined by t-channel resonances indeed reduces at larger values of s to Regge form.

The resonances had zero width, which was not consistent with unitarity. Further, there were no counterparts for the *sum* of s-, t-, and u-channel diagrams with continuous cuts in the kinematical regions encountered in QFT approach. What puts bells ringing is the u-channel diagrams would be non-planar and non-planarity is the problem of twistor Grassmann approach.

5. Veneziano duality is true only for s- and t- channels but not been s- and u-channel. Stringy description makes t-channel and s-channel pictures equivalent. Could it be that in fundamental description u-channels diagrams cannot be distinguished from s-channel diagrams or t-channel diagrams? Could the stringy representation of the scattering diagrams make u-channel twist somehow trivial if handles of string world sheet representing stringy loops in turn representing the analog of non-planarity of Feynman diagrams are absent? The permutation of external momenta for tree diagram in absence of loops in planar representation would be a twist of π in the representation of planar diagram as string world sheet and would not change the topology of the string world sheet and would not involve non-trivial world sheet topology.

For string world sheets loops would correspond to handles. The presence of handle would give an edge with a loop at the level of 3-surface (self energy correction in QFT). Handles are not allowed if the induced metric for the string world sheet has Minkowskian signature. If the stringy counterparts of loops are absent, also the loops in scattering amplitudes should be absent.

This argument applies only inside the Minkowskian space-time regions. If string world sheets are present also in Euclidian regions, they might have handles and loop corrections could emerge in this manner. In TGD framework strings (string world sheets) are identified to 1-D edges/folds of 3-surface at which minimal surface property and topological QFT property fails (minimal surfaces as calibrations). Could the interpretation of edge/fold as discontinuity of some partial derivatives exclude loopy edges: perhaps the branching points would be too singular?

A reduction to a sum over s-channel resonances is what the vanishing of loops would suggest. Could the presence of string world sheets make possible the vanishing of continuous cuts even at the continuum limit so that continuum cuts would emerge only in the approximation as the density of resonances is high enough?

The replacement of continuous cut with a sum of *infinitely* narrow resonances is certainly an approximation. Could it be that the stringy representation as a sum of resonances with *finite* width is an essential aspect of quantum physics allowing to get rid of infinities necessarily accompanying loops? Consider now the arguments against this idea.

1. How to get rid of the problems with unitarity caused by the zero width of resonances? Could *finite* resonance widths make unitarity possible? Ordinary twistor Grassmannian approach predicts that the virtual momenta are light-like but complex: obviously, the imaginary part of the energy in rest frame would have interpretation as resonance with.

In TGD framework this generalizes for 8-D momenta. By quantum-classical correspondence (QCC) the classical Noether charges are equal to the eigenvalues of the fermionic charges in Cartan algebrable (maximal set of mutually commuting observables) and classical TGD indeed predicts complex momenta (Kähler coupling strength is naturally complex). QCC thus supports this proposal.

2. Sum over resonances/exchanges picture is in conflict with QFT picture about scattering of particles. Could *finite* resonance widths due to the complex momenta give rise to the QFT type scattering amplitudes as one develops the amplitudes in Taylor series with respect to the resonance width? Unitarity condition indeed gives the first estimate for the resonance width.

QFT amplitudes should emerge in an approximation obtained by replacing the discrete set of finite width resonances with a cut as the distance between poles is shorter than the resolution for mass squared.

In superstring models string tension has single very large value and one cannot obtain QFT type behavior at low energies (for instance, scattering amplitudes in hadronic string model are concentrated in forward direction). TGD however predicts an entire hierarchy of p-adic length scales with varying string tension. The hierarchy of mass scales corresponding roughly to the lengths and thickness of magnetic flux tubes as thickened cosmic strings and characterized by the value of cosmological constant predicted by twistor lift of TGD. Could this give rise to continuous QCT type cuts at the limit when measurement resolution cannot distinguish between resonances?

The dominating term in the sum over sums of resonances in t-channel gives near forward direction approximately the lowest mass resonance for strings with the smallest string tension. This gives the behavior $1/(t - m_{min}^2)$, where m_{min} corresponds to the longest mass scale involved (the largest space-time sheet involved), approximating the 1/t-behavior of massless theories. This also brings in IR cutoff, the lack of which is a problem of gauge theories. This should give rise to continuous QFT type cuts at the limit when measurement resolution cannot distinguish between resonances.

1.2 Bird's Eye of View about the Topics of "TGD: Quantum Physics as Geometry"

The topics of this book are the purely geometric aspects of the vision about physics as an infinitedimensional Kähler geometry of the "world of classical worlds", with classical world identified either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions of space-like surfaces with time like separations must be allowed. Zero energy ontology allows to formulate this picture elegantly in terms of causal diamonds defined as intersections of future and past directed light-cones. Also a a geometric realization of coupling constant evolution and finite measurement resolution emerges.

There are two separate tasks involved.

- 1. Provide WCW of 3-surfaces with Kähler geometry which is consistent with 4-dimensional general coordinate invariance so that the metric is Diff⁴ degenerate. General coordinate invariance implies that the definition of metric must assign to a given light-like 3-surface X^3 a 4-surface as a kind of Bohr orbit $X^4(X^3)$.
- 2. Provide the WCW with a spinor structure. The great idea is to identify WCW gamma matrices in terms of super algebra generators expressible using second quantized fermionic oscillator operators for induced free spinor fields at the space-time surface assignable to a

given 3-surface. The isometry generators and contractions of Killing vectors with gamma matrices would thus form a generalization of Super Kac-Moody algebra.

The condition of mathematical existence poses surprisingly strong conditions on WCW metric and spinor structure.

- 1. From the experience with loop spaces one can expect that there is no hope about existence of well-defined Riemann connection unless this space is union of infinite-dimensional symmetric spaces with constant curvature metric and simple considerations requires that vacuum Einstein equations are satisfied by each component in the union. The coordinates labeling these symmetric spaces are zero modes having interpretation as genuinely classical variables which do not quantum fluctuate since they do not contribute to the line element of the WCW.
- 2. The construction of the Kähler structure involves also the identification of complex structure. Direct construction of Kähler function as action associated with a preferred Bohr orbit like extremal for some physically motivated action action leads to a unique result. Second approach is group theoretical and is based on a direct guess of isometries of the infinite-dimensional symmetric space formed by 3-surfaces with fixed values of zero modes. The group of isometries is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie group with the group of symplectic transformations of $\delta M_+^4 \times CP_2$, where δM_+^4 is the boundary of 4-dimensional future light-cone. A crucial role is played by the generalized conformal invariance assignable to light-like 3-surfaces and to the boundaries of causal diamond. Contrary to the original belief, the coset construction does not provide a realization of Equivalence Principle at quantum level. The proper realization of EP at quantum level seems to be based on the identification of classical Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts assignable to Kähler-Dirac action. At classical level EP follows at GRT limit obtained by lumping many-sheeted space-time to M^4 with effective metric satisfying Einstein's equations as a reflection of the underlying Poincare invariance.
- 3. Fermionic statistics and quantization of spinor fields can be realized in terms of WCW spinors structure. Quantum criticality and the idea about space-time surfaces as analogs of Bohr orbits have served as basic guiding lines of Quantum TGD. These notions can be formulated more precisely in terms of the modified Dirac equation for induced spinor fields allowing also realization of super-conformal symmetries and quantum gravitational holography. A rather detailed view about how WCW Kähler function emerges as Dirac determinant allowing a tentative identification of the preferred extremals of Kähler action as surface for which second variation of Kähler action vanishes for some deformations of the surface. The catastrophe theoretic analog for quantum critical space-time surfaces are the points of space spanned by behavior and control variables at which the determinant defined by the second derivatives of potential function with respect to behavior variables vanishes. Number theoretic vision leads to rather detailed view about preferred extremals of Kähler action. In particular, preferred extremals should be what I have dubbed as hyper-quaternionic surfaces. It it still an open question whether this characterization is equivalent with quantum criticality or not.

1.2.1 The organization of "Quantum Physics as Infinite-Dimensional Geometry"

The book is divided into 2 parts. The chapters of the book are written decades agot, the first ones about 25 years ago and are in some respects out-of-date. The following represents a summary of the recent understanding.

In the first part the Kähler " geometry of the "world of classical worlds" (WCW) is discussed. Originally I considered two alternative approaches: the Kähler geometry of WCW could be constructed by identifying the Kähler function giving the Kähler metric or by starting from symmetry principles. The third approach would reduce the construction to that for the spinor structure of WCW: the WCW Kähler metric would be given by anticommutations of the gamma matrices of WCW in turn determined by symmetry principles. 1. The first two chapters are devoted to the construction of the Kähler geometry of WCW from a proposal for the Kähler function (note that the volume term for twistor lift implies a modification) or from symmetry principles.

In the geometric vision, general coordinate invariance forces the notion of holography: spacetime surface is analogous to Bohr orbit for a particle identified as 3-surface but is not completely unique so that the WCW must be identified as the space of these 4-D Bohr orbits rather than 3-surfaces. Quantum TGD would be analogous to wave mechanics for non-pointlike particles.

In zero energy ontology (ZEO) these Bohr orbits connect boundaries of a causal diamond (CD). By Bohr orbit property the path integral reduces to a sum. Kähler function is identified as an action for its preferred extremal, which by Bohr orbit property is conjectured to be a minimal surface with singularities analogous to frames of soap-film. The condition that the simplest kinds of divergences are absent in the functional integral over the Bohr orbits forces Kähler geometry.

Second chapter represents a summary of the picture about preferred extremals. This picture is somewhat out-of-date since the action is identified as Kähler action. It took decades to end up with the conjecture that preferred extremals are always minimal surfaces with singularities for any general coordinate invariant action constructed in terms of the induced geometry. Only the singularities depend and the value of the action depends on the details of the action.

A generalization of 2-D complex structure realizing holography would imply the minimal surface property and it corresponds to the universality of quantum criticality. In accordance with the conformal invariance of criticality, these minimal surfaces are analogs of massless geodesics and induced fields inside them are analogs of massless fields.

2. In the approach relying on symmetries, the basic idea is a generalization of the discovery of Freed that the geometry of loop spaces is unique from its mere existence, which requires maximal isometries. Thus the mere existence of Kähler geometry requires in infinite-dimensional context maximal symmetries. Physics would be unique from its mere existence.

The symplectic transformations of CP_2 and contact transformations of light-cone boundary for a given causal diamond (CD) would form subgroups of WCW isometries. Also Kac-Moody type symmetry algebras assignable to the light-like partonic objects are good candidates for symmetries, most naturally holonomies.

3. The twistor lift of TGD assumes that the twistor space of the embedding space has Kähler structure making it possible to identify the analog of twistor space of 4-D surface as 6-D surfaces in this twistor space having induced twistor structure. This works only for $H = M^4 \times CP_2$. The induction of twistor structure requires the analog of dimensional reduction and adds to the 4-D action a volume term having interpretation in terms of length scale dependent cosmological constant.

All known extremals of Kähler action having a non-vanishing induced Kähler form are however minimal surfaces so that twistor lift means only the loss of these vacuum extremals and for vanishing dynamically determined value of cosmological constant (also possible) also they are obtained: this limit corresponds to infinite size scale for the space-time surfaces. The twistor lift suggests that also M^4 possesses the analog of Kähler structure.

4. There are two chapters about the construction geometry and spin structure of WCW. The construction of the spin structure reduces basically to second quantization of free spinor fields of $H0M^4 \times CP_2$ and WCW gamma matrices are linear combinations of fermionic oscillator operators. They also have an interpretation as super-generators of the super-symmetrized isometry group of WCW and one can derive explicit expressions for them as Noether super-charges.

The second part of the book contains considerations related to the topology of WCW. Here I must confess that I am moving at the boundaries of my mathematical understanding and skills. The first chapter discusses a proposal for the homology of WCW compared with Floer homology and quantum homology. Second chapter discusses the intersection form for 4-manifolds, knots and 2knots, smooth exotics for 4-manifolds from the TGD point of view. There is also a chapter about knots in the TGD framework.

1.3 Sources

The eight online books about TGD [K80, K75, K60, K50, K15, K47, K34, K67] and nine online books about TGD inspired theory of consciousness and quantum biology [K72, K12, K55, K11, K30, K38, K40, K66, K71] are warmly recommended for the reader willing to get overall view about what is involved.

My homepage (http://tinyurl.com/ybv8dt4n) contains a lot of material about TGD. In particular, a TGD glossary at http://tinyurl.com/yd6jf3o7).

I have published articles about TGD and its applications to consciousness and living matter in Journal of Non-Locality (http://tinyurl.com/ycyrxj4o founded by Lian Sidorov and in Prespacetime Journal (http://tinyurl.com/ycvktjhn), Journal of Consciousness Research and Exploration (http://tinyurl.com/yba4f672), and DNA Decipher Journal (http://tinyurl. com/y9z52khg), all of them founded by Huping Hu. One can find the list about the articles published at http://tinyurl.com/ybv8dt4n. I am grateful for these far-sighted people for providing a communication channel, whose importance one cannot overestimate.

1.3.1 PART I: PHYSICS AS GEOMETRY OF THE "WORLD OF CLASSICAL WORLDS""

About Identification of the Preferred extremals of Kähler Action

Preferred extremal of Kähler action have remained one of the basic poorly defined notions of TGD. There are pressing motivations for understanding what the attribute "preferred" really means. Symmetries give a clue to the problem. The conformal invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex coordinates and therefore explaining naturally the effective 2-dimensionality [?]. Preferred extremal property should rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD). A natural looking condition is that the symplectic Noether charges associated with a sub-algebra of symplectic algebra with conformal weights *n*-multiples of the weights of the entire algebra vanish for preferred extremals. These conditions would be classical counterparts the the condition that super-symplectic sub-algebra annihilates the physical states. This would give a hierarchy of super-symplectic symmetry breakings and quantum criticalities having interpretation in terms of hierarchy of Planck constants $h_{eff} = n \times h$ identified as a hierarchy of dark matter. *n* could be interpreted as the number of space-time conformal gauge equivalence classes for space-time sheets connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean or imply. The weak form of electric-magnetic duality combined with the assumption that the contraction of the Kähler current with Kähler gauge potential vanishes for preferred extremals implies that Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms at the light-like orbits of wormhole throats at which the signature of the induced metric changes its signature from Minkowskian to Euclidian. In regions with 4-D CP_2 projection (wormhole contacts) also a 3-D contribution not assignable to the boundary of the region might be possible. These conditions pose strong physically feasible conditions on extremals and might be true for preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space of given point of space-time surface is associative and thus quaternionic. Also the formulation in terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility. So called $M^8 - H$ duality is a variant of this vision and would mean that one can map associative/coassociative space-time surfaces from M^8 to H and also iterate this mapping from H to H to generate entire category of preferred extremals. The signature of M^4 is a general technical problem. For instance, the holomorphy in 2 complex variables could correspond to what I have called Hamilton-Jacobi property. Associativity/co-associativity of the tangent space makes sense also in Minkowskian signature.

In this chapter various views about preferred extremal property are discussed.

Identification of WCW Kähler Function

There are two basic approaches to quantum TGD. The first approach, which is discussed in this chapter, is a generalization of Einstein's geometrization program of physics to an infinitedimensional context. Second approach is based on the identification of physics as a generalized number theory. The first approach relies on the vision of quantum physics as infinite-dimensional Kähler geometry for the "world of classical worlds" (WCW) identified as the space of 3-surfaces in in certain 8-dimensional space.

There are three separate manners to meet the challenge of constructing WCW Kähler geometry and spinor structure. The first approach relies on direct guess of Kähler function. Second approach relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry needed to guarantee the mathematical existence of Riemann connection. The third approach relies on the construction of spinor structure based on the hypothesis that complexified WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for second quantized free spinor fields at space-time surface and on the geometrization of superconformal symmetries in terms of WCW spinor structure.

In this chapter the proposal for Kähler function based on the requirement of 4-dimensional General Coordinate Invariance implying that its definition must assign to a given 3-surface a unique space-time surface. Quantum classical correspondence requires that this surface is a preferred extremal of some some general coordinate invariant action, and so called Kähler action is a unique candidate in this respect. The preferred extremal has in positive energy ontology interpretation as an analog of Bohr orbit so that classical physics becomes and exact part of WCW geometry and therefore also quantum physics. In zero energy ontology (ZEO) it is not clear whether this interpretation can be preserved except for maxima of Kähler function.

The basic challenge is the explicit identification of WCW Kähler function K. Two assumptions lead to the identification of K as a sum of Chern-Simons type terms associated with the ends of causal diamond and with the light-like wormhole throats at which the signature of the induced metric changes. The first assumption is the weak form of electric magnetic duality. Second assumption is that the Kähler current for preferred extremals satisfies the condition $j_K \wedge dj_K = 0$ implying that the flow parameter of the flow lines of j_K defines a global space-time coordinate. This would mean that the vision about reduction to almost topological QFT would be realized.

Second challenge is the understanding of the space-time correlates of quantum criticality. Electric-magnetic duality helps considerably here. The realization that the hierarchy of Planck constant realized in terms of coverings of the embedding space follows from basic quantum TGD leads to a further understanding. The extreme non-linearity of canonical momentum densities as functions of time derivatives of the embedding space coordinates implies that the correspondence between these two variables is not 1-1 so that it is natural to introduce coverings of $CD \times CP_2$. This leads also to a precise geometric characterization of the criticality of the preferred extremals. Sub-algebra of conformal symmetries consisting of generators for which conformal weight is integer multiple of given integer n is conjectured to act as critical deformations, that there are n conformal equivalence classes of extremals and that n defines the effective value of Planck constant $h_{eff} = n \times h$.

Construction of WCW Kähler Geometry from Symmetry Principles

There are three separate approaches to the challenge of constructing WCW Kähler geometry and spinor structure. The first one relies on a direct guess of the Kähler function. Second approach relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry needed to guarantee the mathematical existence of Riemann connection. The third approach relies on the construction of spinor structure assuming that complexified WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for the second quantized free spinor fields at space-time surface and on the geometrization of super-conformal symmetries in terms of spinor structure. In this chapter the construction of Kähler form and metric based on symmetries is discussed. The basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with lines thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy ontology the strong form of General Coordinate Invariance (GCI) strongly suggests effective 2-dimensionality and the basic objects are taken to be pairs partonic 2-surfaces X^2 at opposite light-like boundaries of causal diamonds (CDs). This has however turned out to be too strong formulation for effective 2-dimensionality string world sheets carrying induced spinor fields are also present.

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric spaces G/H labeled by zero modes having an interpretation as classical, non-quantum fluctuating variables. A crucial role is played by the metric 2-dimensionality of the light-cone boundary δM_+^4 and of light-like 3-surfaces implying a generalization of conformal invariance. The group G acting as isometries of WCW is tentatively identified as the symplectic group of $\delta M_+^4 \times CP_2$. H corresponds to sub-group acting as diffeomorphisms at preferred 3-surface, which can be taken to correspond to maximum of Kähler function.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at the opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal of Kähler action. The interpretation would be in terms of holography. One can also consider the inclusion of the light-like 3-surfaces at which the signature of the induced metric changes to the 3-surface so that it would become connected.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux Hamiltonians using Haltonians of light-cone boundary is proposed and also the elements of Kähler form can be constructed in terms of these. Explicit expressions for WCW flux Hamiltonians as functionals of complex coordinates of the Cartesian product of the infinite-dimensional symmetric spaces having as points the partonic 2-surfaces defining the ends of the the light 3-surface (line of generalized Feynman diagram) are proposed.

This construction suffers from some rather obvious defects. Effective 2-dimensionality is realized in too strong sense, only covariantly constant right-handed neutrino is involved, and WCW Hamiltonians do not directly reflect the dynamics of Kähler action. The construction however generalizes in very straightforward manner to a construction free of these problems. This however requires the understanding of the dynamics of preferred extremals and Kähler-Dirac action.

WCW Spinor Structure

Quantum TGD should be reducible to the classical spinor geometry of the configuration space ("world of classical worlds" (WCW)). The possibility to express the components of WCW Kähler metric as anti-commutators of WCW gamma matrices becomes a practical tool if one assumes that WCW gamma matrices correspond to Noether super charges for super-symplectic algebra of WCW. The possibility to express the Kähler metric also in terms of Kähler function identified as Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT duality.

Physical states should correspond to the modes of the WCW spinor fields and the identification of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion number. Concerning the construction of the WCW spinor structure there are some important clues.

1. Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can be understood geometrically in terms of the WCW spinor structure in the sense that the anticommutation relations for WCW gamma matrices require anti-commutation relations for the oscillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely related to the WCW spinor structure. Ramond model has as its basic field the anti-commuting field $\Gamma^k(x)$, whose Fourier components are analogous to the gamma matrices of the WCW and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests that the complexified gamma matrices of the WCW are analogous to spin 3/2 fields and therefore expressible in terms of the fermionic oscillator operators so that their anti-commutativity naturally derives from the anti-commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom analogous to the "orbital" degrees of freedom of the ordinary spinor field.

- 2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would be very nice if the classical theory for the spinor fields would be contained in the definition of the WCW spinor structure somehow. The properties of the modified massless Dirac operator associated with the induced spinor structure are indeed very physical. The modified massless Dirac equation for the induced spinors predicts a separate conservation of baryon and lepton numbers. The differences between quarks and leptons result from the different couplings to the CP_2 Kähler potential. In fact, these properties are shared by the solutions of massless Dirac equation of the imbedding space.
- 3. Since TGD should have a close relationship to the ordinary quantum field theories it would be highly desirable that the second quantized free induced spinor field would somehow appear in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma matrices are linearly related to the oscillator operators associated with the second quantized induced spinor field on the space-time surface and/or its boundaries. There is actually no deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in general. In fact, in the finitedimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor and vector representations of the vielbein group SO(D) to have same dimension and this is possible for D = 8-dimensional Euclidian space only. This coincidence might explain the success of 10-dimensional super string models for which the physical degrees of freedom effectively correspond to an 8-dimensional Euclidian space.
- 4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in terms of the anti-commutators $\{\gamma_A, \gamma_B\} = 2g_{AB}$ must in TGD context be replaced with $\{\gamma_A^{\dagger}, \gamma_B\} = iJ_{AB}$, where J_{AB} denotes the matrix elements of the Kähler form of the WCW. The presence of the Hermitian conjugation is necessary because WCW gamma matrices carry fermion number. This definition is numerically equivalent with the standard one in the complex coordinates. The realization of this delicacy is necessary in order to understand how the square of the WCW Dirac operator comes out correctly.

2. Kähler-Dirac equation for induced spinor fields

Super-symmetry between fermionic and and WCW degrees of freedom dictates that Kähler-Dirac action is the unique choice for the Dirac action

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence of both strong form of holography and of number theoretic vision, and also follows from the notion of finite measurement resolution having discretization at partonic 2-surfaces as a geometric correlate. Furthermore, the conditions stating that electric charge is well-defined for preferred extremals forces the localization of the modes to 2-D surfaces in the generic case. This also resolves the interpretational problems related to possibility of strong parity breaking effects since induce W fields and possibly also Z^0 field above weak scale, vahish at these surfaces.

The condition that also spinor dynamics is associative suggests strongly that the localization to 2-D surface occurs always (for right-handed neutrino the above conditions does not apply this). The induced gauge potentials are the possible source of trouble but the holomorphy of spinor modes completely analogous to that encountered in string models saves the situation. Whether holomorphy could be replaced with its quaternionic counterpart in Euclidian regions is not clear (this if W fields vanish at the entire space-time surface so that 4-D modes are possible). Neither it is clear whether the localization to 2-D surfaces occurs also in Euclidian regions with 4-D CP_2 projection.

- 2. One expects that stringy approach based on 4-D generalization of conformal invariance or its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac equation. Conformal invariance indeed allows to write the solutions explicitly using formulas similar to encountered in string models. In accordance with the earlier conjecture, all modes of the Kähler-Dirac operator generate badly broken super-symmetries.
- 3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets. Covariantly constant right-handed neutrino certainly defines solutions de-localized inside entire space-time sheet. This need not be the case if right-handed neutrino is not covariantly constant since the non-vanishing CP_2 part for the induced gamma matrices mixes it with left-handed neutrino. For massless extremals (at least) the CP_2 part however vanishes and right-handed neutrino allows also massless holomorphic modes de-localized at entire spacetime surface and the de-localization inside Euclidian region defining the line of generalized Feynman diagram is a good candidate for the right-handed neutrino generating the least broken super-symmetry. This super-symmetry seems however to differ from the ordinary one in that ν_R is expected to behave like a passive spectator in the scattering. Also for the left-handed neutrino solutions localized inside string world sheet the condition that coupling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely Minkowskian or CP_2 like inside the world sheet.

awcwspin

Quantum TGD should be reducible to the classical spinor geometry of the configuration space ("world of classical worlds" (WCW)). The possibility to express the components of WCW Kähler metric as anti-commutators of WCW gamma matrices becomes a practical tool if one assumes that WCW gamma matrices correspond to Noether super charges for super-symplectic algebra of WCW. The possibility to express the Kähler metric also in terms of Kähler function identified as Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT duality.

Physical states should correspond to the modes of the WCW spinor fields and the identification of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion number. Concerning the construction of the WCW spinor structure there are some important clues.

1. Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can be understood geometrically in terms of the WCW spinor structure in the sense that the anticommutation relations for WCW gamma matrices require anti-commutation relations for the oscillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely related to the WCW spinor structure. Ramond model has as its basic field the anti-commuting field $\Gamma^k(x)$, whose Fourier components are analogous to the gamma matrices of the WCW and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests that the complexified gamma matrices of the WCW are analogous to spin 3/2 fields and therefore expressible in terms of the fermionic oscillator operators so that their anti-commutativity naturally derives from the anti-commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom analogous to the "orbital" degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would be very nice if the classical theory for the spinor fields would be contained in the definition of the WCW spinor structure somehow. The properties of the modified massless Dirac operator associated with the induced spinor structure are indeed very physical. The modified massless Dirac equation for the induced spinors predicts a separate conservation of baryon and lepton numbers. The differences between quarks and leptons result from the different couplings to the CP_2 Kähler potential. In fact, these properties are shared by the solutions of massless Dirac equation of the imbedding space.

- 3. Since TGD should have a close relationship to the ordinary quantum field theories it would be highly desirable that the second quantized free induced spinor field would somehow appear in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma matrices are linearly related to the oscillator operators associated with the second quantized induced spinor field on the space-time surface and/or its boundaries. There is actually no deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in general. In fact, in the finitedimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor and vector representations of the vielbein group SO(D) to have same dimension and this is possible for D = 8-dimensional Euclidian space only. This coincidence might explain the success of 10-dimensional super string models for which the physical degrees of freedom effectively correspond to an 8-dimensional Euclidian space.
- 4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in terms of the anti-commutators $\{\gamma_A, \gamma_B\} = 2g_{AB}$ must in TGD context be replaced with $\{\gamma_A^{\dagger}, \gamma_B\} = iJ_{AB}$, where J_{AB} denotes the matrix elements of the Kähler form of the WCW. The presence of the Hermitian conjugation is necessary because WCW gamma matrices carry fermion number. This definition is numerically equivalent with the standard one in the complex coordinates. The realization of this delicacy is necessary in order to understand how the square of the WCW Dirac operator comes out correctly.

2. Kähler-Dirac equation for induced spinor fields

Super-symmetry between fermionic and and WCW degrees of freedom dictates that Kähler-Dirac action is the unique choice for the Dirac action

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence of both strong form of holography and of number theoretic vision, and also follows from the notion of finite measurement resolution having discretization at partonic 2-surfaces as a geometric correlate. Furthermore, the conditions stating that electric charge is well-defined for preferred extremals forces the localization of the modes to 2-D surfaces in the generic case. This also resolves the interpretational problems related to possibility of strong parity breaking effects since induce W fields and possibly also Z^0 field above weak scale, vahish at these surfaces.

The condition that also spinor dynamics is associative suggests strongly that the localization to 2-D surface occurs always (for right-handed neutrino the above conditions does not apply this). The induced gauge potentials are the possible source of trouble but the holomorphy of spinor modes completely analogous to that encountered in string models saves the situation. Whether holomorphy could be replaced with its quaternionic counterpart in Euclidian regions is not clear (this if W fields vanish at the entire space-time surface so that 4-D modes are possible). Neither it is clear whether the localization to 2-D surfaces occurs also in Euclidian regions with 4-D CP_2 projection.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac equation. Conformal invariance indeed allows to write the solutions explicitly using formulas similar to encountered in string models. In accordance with the earlier conjecture, all modes of the Kähler-Dirac operator generate badly broken super-symmetries. 3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets. Covariantly constant right-handed neutrino certainly defines solutions de-localized inside entire space-time sheet. This need not be the case if right-handed neutrino is not covariantly constant since the non-vanishing CP_2 part for the induced gamma matrices mixes it with left-handed neutrino. For massless extremals (at least) the CP_2 part however vanishes and right-handed neutrino allows also massless holomorphic modes de-localized at entire spacetime surface and the de-localization inside Euclidian region defining the line of generalized Feynman diagram is a good candidate for the right-handed neutrino generating the least broken super-symmetry. This super-symmetry seems however to differ from the ordinary one in that ν_R is expected to behave like a passive spectator in the scattering. Also for the left-handed neutrino solutions localized inside string world sheet the condition that coupling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely Minkowskian or CP_2 like inside the world sheet.

Recent View about Kähler Geometry and Spin Structure of WCW

The construction of Kähler geometry of WCW ("world of classical worlds") is fundamental to TGD program. I ended up with the idea about physics as WCW geometry around 1985 and made a breakthrough around 1990, when I realized that Kähler function for WCW could correspond to Kähler action for its preferred extremals defining the analogs of Bohr orbits so that classical theory with Bohr rules would become an exact part of quantum theory and path integral would be replaced with genuine integral over WCW. The motivating construction was that for loop spaces leading to a unique Kähler geometry. The geometry for the space of 3-D objects is even more complex than that for loops and the vision still is that the geometry of WCW is unique from the mere existence of Riemann connection.

This chapter represents the updated version of the construction providing a solution to the problems of the previous construction. The basic formulas remain as such but the expressions for WCW super-Hamiltonians defining WCW Hamiltonians (and matrix elements of WCW metric) as their anticommutator are replaced with those following from the dynamics of the Kähler-Dirac action.

Symmetries and Geometry of the "World of Classical Worlds"

The view of the symmetries of the TGD Universe has remained unclear for decades. The notion of "World of Classical Worlds" (WCW) emerged around 1985 but found its basic form around 1990. Holography forced by the realization of General Coordinate Invariance forced/allowed to give up the attempts to make sense of the path integral.

A more concrete way to express this view is that WCW does not consist of 3-surfaces as particle-like entities but almost deterministic Bohr orbits assignable to them as preferred extremals of Kähler action so that quantum TGD becomes wave mechanics in WCW combined with Bohr orbitology. This view has profound implications, which can be formulated in terms of zero energy ontology (ZEO), solving among other things the basic paradox of quantum measurement theory. ZEO forms also the backbone of TGD inspired theory of consciousness and quantum biology.

After the developments towards the end of 2023 leading to a discovery of explicit solution of field equations based on the 4-D geneneralization of holomorphy realizing holography, it seems that the extension of conformal and Kac-Moody symmetries of string models to the TGD framework is understood. What about symplectic symmetries, which were originally proposed as isometries of WCW? In this article this question is discussed in detail and it will be found that these symmetries act naturally on 3-D holographic data and one can identify conserved charges. By holography this is in principle enough and might imply that the actions of holomorphic and symplectic symmetry algebras are dual. Holography=holomorphy principle generalizes also to the construction of the solutions of the modified Dirac action.

1.3.2 PART II: TOPOLOGY OF WCW

Homology of WCW in relation to Floer homology and quantum homology

One of the mathematical challenges of TGD is the construction of the homology of "world of classical worlds" (WCW). The generalization of Floer homology looks rather obvious in the zero ontology (ZEO) based view about quantum TGD. ZEO, the notion of preferred extremal (PE), and the intuitive connection between the failure of strict non-determinism and criticality are essential elements. The homology group is defined in terms of the free group formed by preferred extremals $PE(X^3, Y^3)$ for which X^3 is a stable maximum of Kähler function K associated with the passive boundary of CD and Y^3 associated with the passive boundary is a more general critical point.

The identification of PEs as minimal surfaces with lower-dimensional singularities as loci of instabilities implying non-determinism allows to assign to the set $PE(X^3, Y_i^3)$ numbers $n(X^3, Y_i^3 \rightarrow Y_j^3)$ as the number of instabilities of singularities leading from Y_i^3 to Y_j^3 and define the analog of criticality index (number of negative eigenvalues of Hessian of function at critical point) as number $n(X^3, Y_i^3 \rightarrow Y_j^3) = \sum_j n(X^3, Y_i^3 \rightarrow Y_j^3)$. The differential *d* defining WCW homology is defined in terms of $n(X^3, Y_i^3 \rightarrow Y_j^3)$ for pairs Y_i^3, Y_j^3 such that $n(X^3, Y_j^3) - n(X^3, Y_i^3) = 1$ is satisfied.

Intersection form for 4-manifolds, knots and 2-knots, smooth exotics, and TGD

The existence of exotic smooth structures even in the simplest possible 4-D space R^4 might have some relevance for TGD. The study of the smooth structures in 4-D case involves intersection form for 2-homology of the 4-manifold. However, the existence of smooth structures in the 4-D case is not the only reason to get interested in this topic.

The first reason is that in the TGD framework the intersection form describes the intersections of string world sheets and partonic 2-surfaces and therefore is of direct physical interest.

The second reason relates to the role of knots in TGD. The 1-homology of the knot complement characterizes the knot. Time evolution defines a knot cobordism as a 2-surface consisting of knotted string world sheets and partonic 2-surfaces. A natural guess is that the 2-homology for the 4-D complement of this cobordism characterizes the knot cobordism. Also 2-knots are possible in 4-D space-time and a natural guess is that knot cobordism defines a 2-knot.

Exotic smoothness could be anomalous in the TGD framework. Can one find any argument excluding the exotics? A reasonable expectation is that the metrics of Minkowski space M^4 and CP_2 fix completely the smooth structure of $H = M^4 \times CP_2$ but what about space-time surfaces $X^4 \subset H$. The smooth structure, unlike topology, of X^4 cannot be induced from that of H. In the case of Lie-groups, group structure implies the standard smooth structure: this is highly relevant for TGD.

In the TGD framework, but not generally (coordinate atlas cannot be extended from the boundary to the interior), one can consider the holography of smoothness, which in zero energy ontology (ZEO) implies that the X^4 and also the smooth structure in X^4 is uniquely induced from its boundary, that is from the ends of X^4 at light-like boundaries of causal diamond $CD \subset H$. It is known that exotic smoothness reduces to ordinary one in a complement of a set of arbitrary small balls of a manifold so that it is analogous to the existence of local defects in condensed matter physics.

The induced smooth structure need not be the standard one. The analogs of point defects would be associated with partonic 2-surfaces in the interior of space-time surfaces, and representing topological particle reaction vertices at which light-like parton orbits meet. Defect could correspond to points at which fermion pairs can be created. The smooth structure in the complement of the vertex would reduce to the ordinary smooth structure. One ends up with a concrete proposal in terms of a topological generalization of Feynman graphs.

Knots and TGD

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is to find a quantum physical construction of Khovanov homology analous to the topological QFT defined by Chern-Simons action allowing to interpret Jones polynomial as vacuum expectation value of Wilson loop in non-Abelian gauge theory. Witten's approach to Khovanov homology relies on fivebranes as is natural if one tries to define 2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the difference in approaches it is very useful to try to find the counterparts of this approach in quantum TGD since this would allow to gain new insights to quantum TGD itself as almost topological QFT identified as symplectic theory for 2-knots, braids and braid cobordisms. This comparison turns out to be extremely useful from TGD point of view.

1. Key question concerns the identification of string world sheets. A possible identification of string world sheets and therefore also of the braids whose ends carry quantum numbers of many particle states at partonic 2-surfaces emerges if one identifies the string word sheets as singular surfaces in the same manner as is done in Witten's approach.

In TGD framework the localization of the modes of the induced spinor fields at 2-D surfaces carrying vanishing induced W boson fields guaranteeing that the em charge of spinor modes is well-defined for a generic preferred extremal is natural. Besides string world sheets partonic 2-surfaces are good candidates for this kind of surfaces. It is not clear whether one can have continuous slicing of this kind by string world sheets and partonic 2-surfaces orthogonal to them or whether only discrete set of these surfaces is possible.

2. Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges. P would correspond to instanton number and F to the fermion number assignable to right handed neutrinos. The breaking of M^4 chiral invariance makes possible to realize Q physically. The finding that the generalizations of Wilson loops can be identified in terms of the gerbe fluxes $\int H_A J$ supports the conjecture that TGD as almost topological QFT corresponds essentially to a symplectic theory for braids and 2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of generalized Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired by zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are needed if bosonic emergence holds true.

- 1. For this purpose the notion of algebraic knot is introduce and the possibility that it could be applied to generalized Feynman diagrams is discussed. The algebraic structures kei, quandle, rack, and biquandle and their algebraic modifications as such are not enough. The lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute. This poses several challenges: the crossing associated with braiding and crossing occurring in non-planar Feynman diagrams should be integrated to a more general notion; braids are replaced with sub-manifold braids; braids of braidsof braids are possible; the redistribution of braid strands in vertices should be algebraized. In the following I try to abstract the basic operations which should be algebraized in the case of generalized Feynman diagrams.
- 2. One should be also able to concretely identify braids and 2-braids (string world sheets) as well as partonic 2-surfaces and I have discussed several identifications during last years. Legendrian braids turn out to be very natural candidates for braids and their duals for the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of Lagrangian sub-manifolds or two minimal surfaces of space-time surface satisfying the weak form of electric-magnetic duality. The latter opion turns out to be more plausible. This identification if correct would solve quantum TGD explicitly at string world sheet level which corresponds to finite measurement resolution.
- 3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This requires the identification of vertices, propagators, and prescription for integrating over al 3-surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are well-defined.
- 4. The notion of generalized Feynman diagram leads to a beautiful duality between the descriptions of hadronic reactions in terms of hadrons and partons analogous to gauge-gravity duality and AdS/CFT duality but requiring no additional assumptions. The model of quark gluon plasma as s strongly interacting phase is proposed. Color magnetic flux tubes are responsible for the long range correlations making the plasma phase more like a very large hadron rather

than a gas of partons. One also ends up with a simple estimate for the viscosity/entropy ratio using black-hole analogy.

Part I

PHYSICS AS GEOMETRY OF WCW
Chapter 2

About Identification of the Preferred extremals of Kähler Action

2.1 Introduction

Preferred extremal of Kähler action have remained one of the basic poorly defined notions of TGD. There are pressing motivations for understanding what the attribute "preferred" really means. Symmetries give a clue to the problem. The conformal invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex coordinates and therefore explaining naturally the effective 2-dimensionality [L12]. Preferred extremal property should rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD). A natural looking condition is that the symplectic Noether charges associated with a sub-algebra of symplectic algebra with conformal weights *n*-multiples of the weights of the entire algebra vanish for preferred extremals. These conditions would be classical counterparts the condition that super-symplectic sub-algebra annihilates the physical states. This would give a hierarchy of super-symplectic symmetry breakings and quantum criticalities having interpretation in terms of hierarchy of Planck constants $h_{eff} = n \times h$ identified as a hierarchy of dark matter. *n* could be interpreted as the number of space-time conformal gauge equivalence classes for space-time sheets connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean or imply. The weak form of electric-magnetic duality combined with the assumption that the contraction of the Kähler current with Kähler gauge potential vanishes for preferred extremals implies that Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms at the light-like orbits of wormhole throats at which the signature of the induced metric changes its signature from Minkowskian to Euclidian. In regions with 4-D CP_2 projection (wormhole contacts) also a 3-D contribution not assignable to the boundary of the region might be possible. These conditions pose strong physically feasible conditions on extremals and might be true for preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space of given point of space-time surface is associative and thus quaternionic. Also the formulation in terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility. So called $M^8 - H$ duality is a variant of this vision and would mean that one can map associative/coassociative space-time surfaces from M^8 to H and also iterate this mapping from H to H to generate entire category of preferred extremals. The signature of M^4 is a general technical problem. For instance, the holomorphy in 2 complex variables could correspond to what I have called Hamilton-Jacobi property. Associativity/co-associativity of the tangent space makes sense also in Minkowskian signature. In this chapter various views about preferred extremal property are discussed.

2.1.1 Preferred Extremals As Critical Extremals

The study of the Kähler-Dirac equation leads to a detailed view about criticality. Quantum criticality [D2] fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum criticality implies that second variation of Kähler action vanishes for critical deformations and the existence of conserved current except in the case of Cartan algebra of isometries. Quantum criticality allows to fix the values of couplings appearing in the measurement interaction by using the condition $K \to K + f + \overline{f}$. p-Adic coupling constant evolution can be understood also and corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

The discovery that the hierarchy of Planck constants realized in terms of singular covering spaces of $CD \times CP_2$ can be understood in terms of the extremely non-linear dynamics of Kähler action implying 1-to-many correspondence between canonical momentum densities and time derivatives of the embedding space coordinates led to a further very concrete understanding of the criticality at space-time level and its relationship to zero energy ontology [K35].

Criticality is accompanied by conformal invariance and this leads to the proposal that critical deformations correspond to Kac-Moody type conformal algebra respecting the light-likeness of the partonic orbits and acting trivially at partonic 2-surfaces. Sub-algebras of conformal algebras with conformal weights divisible by integer n would act as gauge symmetries and these algebras would form an inclusion hierarchy defining hierarchy of symmetry breakings. n would also characterize the value of Planck constant $h_{eff} = n \times h$ assignable to various phases of dark matter.

2.1.2 Construction Of Preferred Extremals

There has been considerable progress in the understanding of both preferred extremals and Kähler-Dirac equation.

- 1. For preferred extremals the generalization of conformal invariance to 4-D situation is very attractive idea and leads to concrete conditions formally similar to those encountered in string model [K9]. In particular, Einstein's equations with cosmological constant would solve consistency conditions and field equations would reduce to a purely algebraic statements analogous to those appearing in equations for minimal surfaces if one assumes that space-time surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure (Appendix).
- 2. The older approach based on basic heuristics for massless equations, on effective 3-dimensionality, weak form of electric magnetic duality, and Beltrami flows is also promising. An alternative approach is inspired by number theoretical considerations and identifies space-time surfaces as associative or co-associative sub-manifolds of octonionic embedding space [K70].

The basic step of progress was the realization that the known extremals of Kähler action - certainly limiting cases of more general extremals - can be deformed to more general extremals having interpretation as preferred extremals.

1. The generalization boils down to the condition that field equations reduce to the condition that the traces $Tr(TH^k)$ for the product of energy momentum tensor and second fundamental form vanish. In string models energy momentum tensor corresponds to metric and one obtains minimal surface equations. The equations reduce to purely algebraic conditions stating that T and H^k have no common components. Complex structure of string world sheet makes this possible.

Stringy conditions for metric stating $g_{zz} = g_{\overline{z}\overline{z}} = 0$ generalize. The condition that field equations reduce to $Tr(TH^k) = 0$ requires that the terms involving Kähler gauge current in field equations vanish. This is achieved if Einstein's equations hold true (one can consider also more general way to satisfy the conditions). The conditions guaranteeing the vanishing of the trace in turn boil down to the existence of Hermitian structure in the case of Euclidian signature and to the existence of its analog - Hamilton-Jacobi structure - for Minkowskian signature (Appendix). These conditions state that certain components of the induced metric vanish in complex coordinates or Hamilton-Jacobi coordinates.

- 2. In string model the replacement of the embedding space coordinate variables with quantized ones allows to interpret the conditions on metric as Virasoro conditions. In the recent case a generalization of classical Virasoro conditions to four-dimensional ones would be in question. An interesting question is whether quantization of these conditions could make sense also in TGD framework at least as a useful trick to deduce information about quantum states in WCW degrees of freedom.
- 3. The interpretation of the extended algebra as Yangian [A26] [B19] suggested previously [L12] to act as a generalization of conformal algebra in TGD Universe is attractive. There is also the conjecture that preferred extremals could be interpreted as quaternionic of co-quaternionic 4-surface of the octonionic embedding space with octonionic representation of the gamma matrices defining the notion of tangent space quanternionicity.

2.2 Weak Form Electric-Magnetic Duality And Its Implications

The notion of electric-magnetic duality [B4] was proposed first by Olive and Montonen and is central in $\mathcal{N} = 4$ supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles are two different phases of theory and that the description in terms of monopoles can be applied at the limit when the running gauge coupling constant becomes very large and perturbation theory fails to converge. The notion of electric-magnetic self-duality is more natural since for CP_2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a considerable step of progress took place in the understanding of this notion [K19] . What seems to be essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept leads to precise predictions. The point is that elementary particles do not generate monopole fields in macroscopic length scales: at least when one considers visible matter. The first question is whether elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next question is how the screening of the magnetic charges could take place and leads to an identification of the physical particles as string like objects identified as pairs magnetic charged wormhole throats connected by magnetic flux tubes.

- 1. The first implication is a new view about electro-weak massivation reducing it to weak confinement in TGD framework. The second end of the string contains particle having electroweak isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak scale would be in question. Hence the screening of electro-weak force takes place via weak confinement realized in terms of magnetic confinement.
- 2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be connected by flux tubes of length of order hadron size such that magnetic charges sum up to zero. For instance, for baryonic valence quarks these charges could be (2, -1, -1) and could be proportional to color hyper charge.
- 3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary particles are string like objects: this could become manifest at LHC energies.
- 4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological QFT and that Kähler function is explicitly calculable. This has enormous impact concerning practical calculability of the theory.
- 5. One ends up also to a general solution ansatz for field equations from the condition that the theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that

all isometry currents are proportional to Kähler current which is integrable in the sense that the flow parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz would describe a hydrodynamical flow with the property that isometry charges are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents flow along flow lines of the Beltrami flow defined by Kähler current. Intuitively this picture is attractive. A more general ansatz would allow several Beltrami flows meaning multihydrodynamics. The integrability conditions boil down to two scalar functions: the first one satisfies massless d'Alembert equation in the induced metric and the gradients of the scalar functions are orthogonal. The interpretation in terms of momentum and polarization directions is natural.

2.2.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats at which the signature of the induced metric changes. A stronger condition allows all partonic 2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number theoretical vision suggests that hyper-quaternionicity *resp.* co-hyperquaternionicity constraint could be enough to fix the initial values of time derivatives of the embedding space coordinates in the space-time regions with Minkowskian *resp.* Euclidian signature of the induced metric. This is a condition on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument goes as follows.

- 1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of the Kähler fluxes weighted by Hamiltonians of δM_{\pm}^4 at the partonic 2-surface X^2 looks very attractive. These expressions however carry no information about the 4-D tangent space of the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which cannot hold true. One would like to code to the WCW metric also information about the electric part of the induced Kähler form assignable to the complement of the tangent space of $X^2 \subset X^4$.
- 2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner to get electric magnetic duality at the level of the full theory would be via the identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced metric is however troublesome since the presence of the induced metric means that the simple transformation properties of flux Hamiltonians under symplectic transformations -in particular color rotations- are lost.
- 3. A less trivial formulation of electric-magnetic duality would be as an initial condition which eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory this duality allows to solve field equations exactly in terms of instantons. This approach involves also quaternions. These arguments suggest that the duality in some form might work. The full electric magnetic duality is certainly too strong and implies that spacetime surface at the partonic 2-surface corresponds to piece of CP_2 type vacuum extremal and can hold only in the deep interior of the region with Euclidian signature. In the region surrounding wormhole throat at both sides the condition must be replaced with a weaker condition.
- 4. To formulate a weaker form of the condition let us introduce coordinates (x^0, x^3, x^1, x^2) such (x^1, x^2) define coordinates for the partonic 2-surface and (x^0, x^3) define coordinates labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces

and string world sheets making sense in the regions of space-time sheet with Minkowskian signature. The assumption about the slicing allows to preserve general coordinate invariance. The weakest condition is that the generalized Kähler electric fluxes are apart from constant proportional to Kähler magnetic fluxes. This requires the condition

$$J^{03}\sqrt{g_4} = KJ_{12} . (2.2.1)$$

A more general form of this duality is suggested by the considerations of [K35] reducing the hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like wormhole throats. This form is following

$$J^{n\beta}\sqrt{g_4} = K\epsilon \times \epsilon^{n\beta\gamma\delta} J_{\gamma\delta}\sqrt{g_4} . \tag{2.2.2}$$

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of CD or for light-like wormhole throat. ϵ is a sign factor which is opposite for the two ends of CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the dependence on induced metric disappears at the right hand side and this condition eliminates the potentials singularity due to the reduction of the rank of the induced metric at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are used and K is symplectic invariant. Using the sum

$$J_e + J_m = (1+K)J_{12} , \qquad (2.2.3)$$

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW metric even for K = 0, which could correspond to the ends of a cosmic string like solution carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be a non-constant function of X^2 depending on string world sheet coordinates. The light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained if one assumes that the quantization of electro-weak charges reduces to this condition at classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic flux

$$Q_m = \frac{e}{\hbar} \oint BdS = n$$

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z^0 fields in terms of Kähler form $[{\rm L1}]$, $[{\rm L1}]$ read as

$$\gamma = \frac{eF_{em}}{\hbar} = 3J - \sin^2(\theta_W)R_{03} ,$$

$$Z^0 = \frac{g_Z F_Z}{\hbar} = 2R_{03} .$$
(2.2.4)

Here R_{03} is one of the components of the curvature tensor in vielbein representation and F_{em} and F_Z correspond to the standard field tensors. From this expression one can deduce

$$J = \frac{e}{3\hbar}F_{em} + \sin^2(\theta_W)\frac{g_Z}{6\hbar}F_Z \quad . \tag{2.2.5}$$

3. The weak duality condition when integrated over X^2 implies

$$\frac{e^2}{3\hbar}Q_{em} + \frac{g_Z^2 p}{6}Q_{Z,V} = K \oint J = Kn ,$$

$$Q_{Z,V} = \frac{I_V^3}{2} - Q_{em} , \quad p = \sin^2(\theta_W) . \qquad (2.2.6)$$

Here the vectorial part of the Z^0 charge rather than as full Z^0 charge $Q_Z = I_L^3 + \sin^2(\theta_W)Q_{em}$ appears. The reason is that only the vectorial isospin is same for left and right handed components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and using $\hbar = r\hbar_0$ one can write

$$\alpha_{em}Q_{em} + p\frac{\alpha_Z}{2}Q_{Z,V} = \frac{3}{4\pi} \times rnK ,
\alpha_{em} = \frac{e^2}{4\pi\hbar_0} , \ \alpha_Z = \frac{g_Z^2}{4\pi\hbar_0} = \frac{\alpha_{em}}{p(1-p)} .$$
(2.2.7)

4. There is a great temptation to assume that the values of Q_{em} and Q_Z correspond to their quantized values and therefore depend on the quantum state assigned to the partonic 2surface. The linear coupling of the Kähler-Dirac operator to conserved charges implies correlation between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-surface. The assumption of standard quantized values for Q_{em} and Q_Z would be also seen as the identification of the fine structure constants α_{em} and α_Z . This however requires weak isospin invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of $F^{03} = (\hbar/g_K)J^{03}$ defining the counterpart of Kähler electric field equals to the Kähler charge g_K would give the condition $K = g_K^2/\hbar$, where g_K is Kähler coupling constant which should invariant under coupling constant evolution by quantum criticality. Within experimental uncertainties one has $\alpha_K = g_K^2/4\pi\hbar_0 = \alpha_{em} \simeq 1/137$, where α_{em} is finite structure constant in electron length scale and \hbar_0 is the standard value of Planck constant.

- 2. The quantization of Planck constants makes the condition highly non-trivial. The most general quantization of r is as rationals but there are good arguments favoring the quantization as integers corresponding to the allowance of only singular coverings of CD and CP_2 . The point is that in this case a given value of Planck constant corresponds to a finite number pages of the "Big Book". The quantization of the Planck constant implies a further quantization of K and would suggest that K scales as 1/r unless the spectrum of values of Q_{em} and Q_Z allowed by the quantization condition scales as r. This is quite possible and the interpretation would be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of anyonic phases [K54] supports this interpretation.
- 3. The identification of J as a counterpart of eB/\hbar means that Kähler action and thus also Kähler function is proportional to $1/\alpha_K$ and therefore to \hbar . This implies that for large values of \hbar Kähler coupling strength $g_K^2/4\pi$ becomes very small and large fluctuations are suppressed in the functional integral. The basic motivation for introducing the hierarchy of Planck constants was indeed that the scaling $\alpha \to \alpha/r$ allows to achieve the convergence of perturbation theory: Nature itself would solve the problems of the theoretician. This of course does not mean that the physical states would remain as such and the replacement of single particles with anyonic states in order to satisfy the condition for K would realize this concretely.
- 4. The condition $K = g_K^2/\hbar$ implies that the Kähler magnetic charge is always accompanied by Kähler electric charge. A more general condition would read as

$$K = n \times \frac{g_K^2}{\hbar}, n \in \mathbb{Z} \quad . \tag{2.2.8}$$

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for both leptons and quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that abelian Z^0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole throat. At the Euclidian side much more natural condition is

$$K = \frac{1}{hbar} {.} {(2.2.9)}$$

In fact, the self-duality of CP_2 Kähler form favours this boundary condition at the Euclidian side of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The same constraint arises from the condition that the action for CP_2 type vacuum extremal has the value required by the argument leading to a prediction for gravitational constant in terms of the square of CP_2 radius and α_K the effective replacement $g_K^2 \to 1$ would spoil the argument.

The boundary condition $J_E = J_B$ for the electric and magnetic parts of Kählwer form at the Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if the deformation of the metric induced by the deformation of the canonically imbedded CP_2 is such that in CP_2 coordinates for the Euclidian region the tensor $(g^{\alpha\beta}g^{\mu\nu} - g^{\alpha\nu}g^{\mu\beta})/\sqrt{g}$ remains invariant. This is certainly the case for CP_2 type vacuum extremals since by the lightlikeness of M^4 projection the metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole. $\mathbf{46}$

Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather than Kähler charge. This would replace induced Kähler form with electromagnetic field, which is a linear combination of induced Kahler field and classical Z^0 field

$$\gamma = 3J - \sin^2 \theta_W R_{12} ,$$

$$Z^0 = 2R_{03} .$$
(2.2.10)

Here $Z_0 = 2R_{03}$ is the appropriate component of CP_2 curvature form [L1]. For a vanishing Weinberg angle the condition reduces to that for Kähler form.

- 2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could however vanish. If so, the condition guaranteeing that electromagnetic charge of the partonic 2-surfaces equals to the above condition stating that the em charge assignable to the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian region.
- 3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intuition. Above elementary particle length scales one sees only the classical electric field reducing to the induced Kähler form and classical Z^0 fields and color gauge fields are effectively absent. Only in phases with a large value of Planck constant classical Z^0 field and other classical weak fields and color gauge field could make themselves visible. Cell membrane could be one such system [K59]. This conforms with the general picture about color confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in Minkowskian regions.

- 1. The value of the Kähler coupling strength mut be very near to the value of the fine structure constant in electron length scale and these constants can be assumed to be equal.
- 2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally correspond to Einstein-Maxwell theory with cosmological constant which is nonvanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and CP_2 are allowed as simplest possible solutions of field equations [K78]. The extremely small value of the observed cosmological constant needed in GRT type cosmology could be equal to the large cosmological constant associated with CP_2 metric multiplied with the 3-volume fraction of Euclidian regions.
- 3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee also now the preferred extremal property and prevent the reduction to a mere topological QFT.
- 4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions where the approximation as a small deformation of CP_2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view about quantum TGD as following considerations show.

2.2.2 Magnetic Confinement, The Short Range Of Weak Forces, And Color Confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one should have a mechanism neutralizing the monopole charge. How electroweak interactions become short ranged in TGD framework is still a poorly understood problem. What suggests itself is the neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

- 1. In the case of fermions and their super partners the opposite magnetic monopole would be a wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the electromagnetic charge of the fermion is visible on longer length scales. The distance of this wormhole throat from the fermionic one should be of the order weak boson Compton length. An interpretation as a bound state of fermion and a wormhole throat state with the quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would have quantum numbers of $X_{-1/2} = \nu_L \overline{\nu}_R$ or $X_{1/2} = \overline{\nu}_L \nu_R$. $\nu_L \overline{\nu}_R$ would not be neutral Higgs boson (which should correspond to a wormhole contact) but a superpartner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time sheets and leave only electromagnetic interaction as a long ranged interaction.
- 2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats must always appear as pairs such that for the second member of the pair monopole charges and I_V^3 cancel each other at both space-time sheets involved so that one obtains at both space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of fundamental particles should become visible at TeV energies so that LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very natural constraint and not trivially satisfied because classical W boson fields are present. As a matter fact, all weak fields should be effectively absent above weak scale. How this is possible classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region in which spinor mode is non-vanishing has 2-D CP_2 projection such that the induced W boson fields are vanishing. The vanishing of classical Z^0 field can be poses as additional condition - at least in scales above weak scale. In the generic case this requires that the spinor mode is restricted to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting the modes are expected to allow restriction to 2-surfaces. This localization is possible only for Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with effective metric obtained by summing to Minkowski metric the deviations of the induced metrics of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies. YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of weak gauge potentials from different space-time sheet tend to vanish above weak scale and that well-definedness of em charge at classical level follows from the effective absence of classical weak gauge fields.

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean that magnetic charges of the state $q_{\pm 1/2} - X_{\mp 1/2}$ representing the physical quark would not vanish and magnetic confinement would accompany also color confinement. This would explain why free quarks are not observed. To how degree then quark confinement corresponds to magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the magnetic net charges are $(\pm 2, \mp 1, \mp 1)$. This brings in mind the spectrum of color hyper charges coming as $(\pm 2, \mp 1, \mp 1)/3$ and one can indeed ask whether color hypercharge correlates with the Kähler magnetic charge. The geometric picture would be three strings connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up during the first year of TGD when I had not yet discovered CP_2 and believed on $M^4 \times S^2$.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics. For p-adically scaled up variants the mass scales would be scaled by a power of $\sqrt{2}$ in the most general case. The dark variants of the particle would have the same mass as the original one. In particular, Mersenne primes $M_k = 2^k - 1$ and Gaussian Mersennes $M_{G,k} = (1+i)^k - 1$ has been proposed to define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M_{89} should define a scaled up variant of the ordinary hadron physics with mass scaled up roughly by a factor $2^{(107-89)/2} = 512$. The size scale of color confinement for this physics would be same as the weal length scale. It would look more natural that the weak confinement for the quarks of M_{89} physics takes place in some shorter scale and M_{61} is the first Mersenne prime to be considered. The mass scale of M_{61} weak bosons would be by a factor $2^{(89-61)/2} = 2^{14}$ higher and about 1.6×10^4 TeV. M_{89} quarks would have virtually no weak interactions but would possess color interactions with weak confinement length scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as four scaled up electron Compton lengths $L_e(k) = \sqrt{5}L(k)$: they are associated with Gaussian Mersennes $M_{G,k}$, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this range. There are recent claims about experimental evidence for magnetic monopole pairs [D1].

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts is that one cannot construct spin two objects using only single fermion states at wormhole throats. Of course, also super partners of these states with higher spin obtained by adding fermions and anti-fermions at the wormhole throat but these do not give rise to graviton like states [?]. The upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission

in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but now there is no need to assign the entities X_{\pm} with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic Mersenne prime M_{127} . It is however difficult to test whether graviton has a structure visible below this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to assume about what happens in the vertices. One could of course hope that zero energy ontology could allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman diagrams.

- 1. Consider first the recent view about generalized Feynman diagrams which relies ZEO. A highly attractive assumption is that the particles appearing at wormhole throats are on mass shell particles. For incoming and outgoing elementary bosons and their super partners they would be positive it resp. negative energy states with parallel on mass shell momenta. For virtual bosons they the wormhole throats would have opposite sign of energy and the sum of on mass shell states would give virtual net momenta. This would make possible twistor description of virtual particles allowing only massless particles (in 4-D sense usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes in the interaction region a topological condensation creating another wormhole throat having no fermionic quantum numbers.
- 2. The addition of the particles X^{\pm} replaces generalized Feynman diagrams with the analogs of stringy diagrams with lines replaced by pairs of lines corresponding to fermion and $X_{\pm 1/2}$. The members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to form shorter strings but the replication of the entire string to form two strings with same length or fusion of two strings to single string along all their points rather than along ends to form a longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true for the TGD variants of stringy diagrams.
- 3. How should one describe the bound state formed by the fermion and X^{\pm} ? Should one describe the state as superposition of non-parallel on mass shell states so that the composite state would be automatically massive? The description as superposition of on mass shell states does not conform with the idea that bound state formation requires binding energy. In TGD framework the notion of negentropic entanglement has been suggested to make possible the analogs of bound states consisting of on mass shell states so that the binding energy is zero [K42]. If this kind of states are in question the description of virtual states in terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind of states serving as analogs for the excitations of string like object.
- 4. What happens to the states formed by fermions and $X_{\pm 1/2}$ in the internal lines of the Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible. If this picture is correct, the situation would not change in an essential manner from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should have stringy character in electro-weak length scales and could behaving to become manifest at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about physics at LHC energies [K43].

2.2.3 Could Quantum TGD Reduce To Almost Topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned with the wormhole throats somehow dictates the dynamics. This proposal can be formulated 50

also for the Kähler-Dirac action action. I gave up this proposal but the following argument shows that Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action plus Coulomb term.

- 1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term $j_K^{\alpha} A_{\alpha}$ plus and integral of the boundary term $J^{n\beta}A_{\beta}\sqrt{g_4}$ over the wormhole throats and of the quantity $J^{0\beta}A_{\beta}\sqrt{g_4}$ over the ends of the 3-surface.
- 2. If the self-duality conditions generalize to $J^{n\beta} = 4\pi \alpha_K \epsilon^{n\beta\gamma\delta} J_{\gamma\delta}$ at throats and to $J^{0\beta} = 4\pi \alpha_K \epsilon^{0\beta\gamma\delta} J_{\gamma\delta}$ at the ends, the Kähler function reduces to the counterpart of Chern-Simons action evaluated at the ends and throats. It would have same value for each branch and the replacement $h \to n \times h$ would effectively describe this. Boundary conditions would however give 1/n factor so that \hbar would disappear from the Kähler function! It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an almost topological QFT. The attribute "almost" would come from the fact that one has non-vanishing classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M^4 degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction term deserve a detailed analysis.

- 1. For the known extremals j_K^{α} either vanishes or is light-like ("massless extremals" for which weak self-duality condition does not make sense [K9]) so that the Coulomb term vanishes identically in the gauge used. The addition of a gradient to A induces terms located at the ends and wormhole throats of the space-time surface but this term must be cancelled by the other boundary terms by gauge invariance of Kähler action. This implies that the M^4 part of WCW metric vanishes in this case. Therefore massless extremals as such are not physically realistic: wormhole throats representing particles are needed.
- 2. The original naïve conclusion was that since Chern-Simons action depends on CP_2 coordinates only, its variation with respect to Minkowski coordinates must vanish so that the WCW metric would be trivial in M^4 degrees of freedom. This conclusion is in conflict with quantum classical correspondence and was indeed too hasty. The point is that the allowed variations of Kähler function must respect the weak electro-magnetic duality which relates Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the dependence on M^4 coordinates creeps via a Lagrange multiplier term

$$\int \Lambda_{\alpha} (J^{n\alpha} - K \epsilon^{n\alpha\beta\gamma} J_{\beta \ gamma}) \sqrt{g_4} d^3x \quad . \tag{2.2.11}$$

The (1,1) part of second variation contributing to M^4 metric comes from this term.

3. This erratic conclusion about the vanishing of M^4 part WCW metric raised the question about how to achieve a non-trivial metric in M^4 degrees of freedom. The proposal was a modification of the weak form of electric-magnetic duality. Besides CP_2 Kähler form there would be the Kähler form assignable to the light-cone boundary reducing to that for $r_M = constant$ sphere - call it J^1 . The generalization of the weak form of self-duality would be $J^{n\beta} = \epsilon^{n\beta\gamma\delta}K(J_{\gamma\delta} + \epsilon J_{\gamma\delta}^1)$. This form implies that the boundary term gives a non-trivial contribution to the M^4 part of the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a topological contribution. Whether this term can survive depends on whether the resulting vacuum extremals are consistent with the basic facts about classical gravitation. 4. The Coulombic interaction term is not invariant under gauge transformations. The good news is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing condition fixing the gauge transformation ϕ is

$$j_K^{\alpha} \partial_{\alpha} \phi = -j^{\alpha} A_{\alpha} \quad . \tag{2.2.12}$$

This differential equation can be reduced to an ordinary differential equation along the flow lines j_K by using $dx^{\alpha}/dt = j_K^{\alpha}$. Global solution is obtained only if one can combine the flow parameter t with three other coordinates- say those at the either end of CD to form spacetime coordinates. The condition is that the parameter defining the coordinate differential is proportional to the covariant form of Kähler current: $dt = \phi j_K$. This condition in turn implies $d^2t = d(\phi j_K) = d(\phi j_K) = d\phi \wedge j_K + \phi dj_K = 0$ implying $j_K \wedge dj_K = 0$ or more concretely,

$$\epsilon^{\alpha\beta\gamma\delta}j^K_{\beta}\partial_{\gamma}j^K_{delta} = 0 . ag{2.2.13}$$

 j_K is a four-dimensional counterpart of Beltrami field [B9] and could be called generalized Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler action [K9]. The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no dissipation): this requires $j_K \wedge J = 0$. One manner to guarantee this is the topologization of the Kähler current meaning that it is proportional to the instanton current: $j_K = \phi j_I$, where $j_I = {}^*(J \wedge A)$ is the instanton current, which is not conserved for 4-D CP_2 projection. The conservation of j_K implies the condition $j_I^{\alpha} \partial_{\alpha} \phi = \partial_{\alpha} j^{\alpha} \phi$ and from this ϕ can be integrated if the integrability condition $j_I \wedge dj_I = 0$ holds true implying the same condition for j_K . By introducing at least 3 or CP_2 coordinates as space-time coordinates, one finds that the contravariant form of j_I is purely topological so that the integrability condition fixes the dependence on M^4 coordinates and this selection is coded into the scalar function ϕ . These functions define families of conserved currents $j_K^{\alpha}\phi$ and $j_I^{\alpha}\phi$ and could be also interpreted as conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing condition for the Coulomb term is gauge invariant only under the gauge transformations $A \to A + \nabla \phi$ for which the scalar function the integral $\int j_K^{\alpha} \partial_{\alpha} \phi$ reduces to a total divergence a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied if the allowed gauge transformations define conserved currents

$$D_{\alpha}(j^{\alpha}\phi) = 0$$
 . (2.2.14)

As a consequence Coulomb term reduces to a difference of the conserved charges $Q_{\phi}^{e} = \int j^{0} \phi \sqrt{g_{4}} d^{3}x$ at the ends of the CD vanishing identically. The change of the Chern-Simons type term is trivial if the total weighted Kähler magnetic flux $Q_{\phi}^{m} = \sum \int J \phi dA$ over wormhole throats is conserved. The existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some special physical meaning. The measurement interaction term in the Kähler-Dirac interaction corresponds to a critical deformation of the space-time sheet and is realized as an addition of a gauge part to the Kähler gauge potential of CP_2 . It would be natural to identify this gauge transformation giving rise to a conserved charge so that the conserved charges would provide a representation for the charges associated with the infinitesimal critical deformations not affecting Kähler action. The gauge transformed Kähler gauge potential couples to the Kähler-Dirac equation and its effect could be visible in the value of Kähler function and therefore also in the properties of the preferred extremal. The effect on WCW metric would however vanish since K would transform only by an addition of a real part of a holomorphic function.

- 7. A first guess for the explicit realization of the quantum classical correspondence between quantum numbers and space-time geometry is that the deformation of the preferred extremal due to the addition of the measurement interaction term is induced by a U(1) gauge transformation induced by a transformation of $\delta CD \times CP_2$ generating the gauge transformation represented by ϕ . This interpretation makes sense if the fluxes defined by Q_{ϕ}^m and corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.
- 8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Measurement interaction terms would correspond to Lagrange multiplier terms at the ends of space-time surface fixing the values of classical conserved charges to their quantum values. Super-symmetry requires the assignment of this kind of term also to Kähler-Dirac action as boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the spacetime surface stating that the action of the Kähler-Dirac gamma matrix in normal direction annihilates the spinor modes. The normal vector would be light-like and the value of the incoming on mass shell four-momentum would be coded to the geometry of the space-time surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would be that the action of C-S-D operator equals to that of massless M^4 Dirac operator. C-S-D Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach suggests that also the virtual fermions reduce effectively to massless on-shell states but have non-physical helicity.

To sum up, one could understand the basic properties of WCW metric in this framework. Effective 2-dimensionality would result from the existence of an infinite number of conserved charges in two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms from light-like wormhole throats giving interaction term between positive and negative energy parts of the state. Hence Kähler function could be calculated without any knowledge about the interior of the space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless to say this would have immense boost to the program of constructing WCW Kähler geometry.

2.3 An attempt to understand preferred extremals of Kähler action

Preferred extremal of Kähler action is one of the basic poorly defined notions of TGD. There are pressing motivations for understanding what "preferred" really means. For instance, the conformal invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex coordinates and therefore explaining naturally the effective 2-dimensionality [K20]. The problem is however how to assign a complex coordinate with the string world sheet having Minkowskian signature of metric. One can hope that the understanding of preferred extremals could allow to identify two preferred complex coordinates whose existence is also suggested by number theoretical vision giving preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The best one could hope is a general solution of field equations in accordance with the hints that TGD is integrable quantum theory.

2.3.1 What "preferred" could mean?

The first question is what preferred extremal could mean.

- 1. In positive energy ontology preferred extremal would be a space-time surface assignable to given 3-surface and unique in the ideal situation: since one cannot pose conditions to the normal derivatives of embedding space coordinates at 3-surface, there is infinity of extremals. Some additional conditions are required and space-time surface would be analogous to Bohr orbit: hence the attribute "preferred". The problem would be to understand what "preferred" could mean. The non-determinism of Kähler action however destroyed this dream in its original form and led to zero energy ontology (ZEO).
- 2. In ZEO one considers extremals as space-time surfaces connecting two space-like 3-surfaces at the boundaries. One might hope that these 4-surfaces are unique. The non-determinism of Kähler action suggests that this is not the case. At least there is conformal invariance respecting the light-likeness of the 3-D parton orbits at which the signature of the induced metric changes: the conformal transformations would leave the space-like 3-D ends or at least partonic 2-surfaces invariant. This non-determinism would correspond to quantum criticality.
- 3. Effective 2-dimensionality follows from strong form of general coordinate invariance (GCI) stating that light-like partonic orbits and space-like 3-surfaces at the ends of space-time surface are equivalent physically: partonic 2-surfaces and their 4-D tangent space data would determine everything. One can however worry about how effective 2-dimensionality relates to the fact that the modes of the induced spinor field are localized at string world sheets and partonic 2-surface. Are the tangent space data equivalent with the data characterizing string world sheets as surfaces carrying vanishing electroweak fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires that the conformal equivalence classes of light-like surfaces must be counted as physical degrees of freedom so that either space-like or light-like surfaces do not seem to be quite enough.

Should one then include also the light-like partonic orbits to the what one calls 3-surface? The resulting connected 3-surfaces would define analogs of Wilson loops. Could the conformal equivalence class of the preferred extremal be unique without any additional conditions? If so, one could get rid of the attribute "preferred". The fractal character of the many-sheeted space-time however suggests that one can have this kind of uniqueness only in given length scale resolution and that "radiative corrections" due to the non-determinism are always present.

These considerations show that the notion of preferred extremal is still far from being precisely defined and it is not even clear whether the attribute "preferred" is needed. If not then the question is what are the extremals of Kähler action.

2.3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this understanding, one might gain new visions. The problem is that all these arguments are heuristic and rely heavily on physical intuition. The following considerations relate to the space-time regions having Minkowskian signature of the induced metric. The attempt to generalize the construction also to Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M^4 (discussed in this chapter) define natural preferred coordinates for Minkowskian space-time sheet and might allow to identify string world sheets for X^4 as those for M^4 . Hamilton-Jacobi coordinates consist of light-like coordinate m and its dual defining local 2-plane $M^2 \subset M^4$ and complex transversal complex coordinates (w, \overline{w}) for a plane E_x^2 orthogonal to M_x^2 at each point of M^4 . Clearly, hyper-complex analyticity and complex analyticity are in question.

- 2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by partonic 2-surfaces (string world sheets).
- 3. The quaternionic planes of octonion space containing preferred hyper-complex plane are labelled by CP_2 , which might be called CP_2^{mod} [K70]. The identification $CP_2 = CP_2^{mod}$ motivates the notion of $M^8 - -M^4 \times CP_2$ duality [K18]. It also inspires a concrete solution ansatz assuming the equivalence of two different identifications of the quaternionic tangent space of the space-time sheet and implying that string world sheets can be regarded as strings in the 6-D coset space $G_2/SU(3)$. The group G_2 of octonion automorphisms has already earlier appeared in TGD framework.
- 4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the $CP_2 = CP_2^{mod}$ conditions reduce to string model for partonic 2-surfaces in $CP_2 = SU(3)/U(2)$. String model in both cases could mean just hypercomplex/complex analyticity for the coordinates of the coset space as functions of hyper-complex/complex coordinate of string world sheet/partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic number theoretic idea.

- 1. To begin with express octonions in the form $o = q_1 + Iq_2$, where q_i is quaternion and I is an octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions. Map preferred coordinates of $H = M^4 \times CP_2$ to octonionic coordinate, form an arbitrary octonion analytic function having expansion with real Taylor or Laurent coefficients to avoid problems due to non-commutativity and non-associativity. Map the outcome to a point of H to get a map $H \to H$. This procedure is nothing but a generalization of Wick rotation to get an 8-D generalization of analytic map.
- 2. Identify the preferred extremals of Kähler action as surfaces obtained by requiring the vanishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string world sheets would correspond to commutative sub-manifolds of the space-time surface and of embedding space and would emerge naturally. The ends of braid strands at partonic 2-surface would naturally correspond to the poles of the octonion analytic functions. This would mean a huge generalization of conformal invariance of string models to octonionic conformal invariance and an exact solution of the field equations of TGD and presumably of quantum TGD itself.

2.3.3 Basic ideas about preferred extremals

The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets. The challenge is to formulate this more precisely at the level of the preferred extremals of Kähler action.

- 1. Almost topological QFT property means that the Kähler action reduces to Chern-Simons terms assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in the action density implied automatically if conserved Kähler current is proportional to the instanton current with proportionality coefficient some scalar function.
- 2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is that the flow lines of these currents define global coordinates. This means that these currents are Beltrami flows [B9] so that corresponding 1-forms J satisfy the condition $J \wedge dJ = 0$. These conditions are satisfied if

hold true for conserved currents. From this one obtains that Ψ defines global coordinate varying along flow lines of J.

3. A possible interpretation is in terms of local polarization and momentum directions defined by the scalar functions involved and natural additional conditions are that the gradients of Ψ and Φ are orthogonal:

$$\nabla \Phi \cdot \nabla \Psi = 0 \ ,$$

and that the Ψ satisfies massless d'Alembert equation

$$\nabla^2 \Psi = 0$$

as a consequence of current conservation. If Ψ defines a light-like vector field - in other words

$$\nabla \Psi \cdot \nabla \Psi = 0 \quad ,$$

the light-like dual of Φ -call it Φ_c - defines a light-like like coordinate and Φ and Φ_c defines a light-like plane at each point of space-time sheet.

If also Φ satisfies d'Alembert equation

$$\nabla^2 \Phi = 0$$

also the current

$$K=\Psi\nabla\Phi$$

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal to time-lik plane defined by local light-like momentum direction.

If Φ allows a continuation to an analytic function of the transversal complex coordinate, one obtains a coordinatization of space-time surface by Ψ and its dual (defining hyper-complex coordinate) and w, \overline{w} . Complex analyticity and its hyper-complex variant would allow to provide space-time surface with four coordinates very much analogous with Hamilton-Jacobi coordinates of M^4 .

This would mean a decomposition of the tangent space of space-time surface to orthogonal planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J defined Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection with the mathematics of string models. The two complex coordinates assignable to the Yangian of affine algebra would naturally relate to string world sheets and partonic 2-surfaces and the highly non-trivial challenge is to identify them appropriately.

Hamilton-Jacobi coordinates for M^4

The earlier attempts to construct preferred extremals [K9] led to the realization that so called Hamilton-Jacobi coordinates (m, w) for M^4 define its slicing by string world sheets parametrized by partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an integrable distribution of planes M^2 and w would define a complex coordinate for the integrable distribution of 2-planes E^2 orthogonal to M^2 . There is a great temptation to assume that these coordinates define preferred coordinates for M^4 .

- 1. The slicing is very much analogous to that for space-time sheets and the natural question is how these slicings relate. What is of special interest is that the momentum plane M^2 can be defined by massless momentum. The scaling of this vector does not matter so that these planes are labelled by points z of sphere S^2 telling the direction of the line $M^2 \cap E^3$, when one assigns rest frame and therefore S^2 with the preferred time coordinate defined by the line connecting the tips of CD. This direction vector can be mapped to a twistor consisting of a spinor and its conjugate. The complex scalings of the twistor $(u, \overline{u}) \to \lambda u, \overline{u}/\lambda$ define the same plane. Projective twistor like entities defining CP_1 having only one complex component instead of three are in question. This complex number defines with certain prerequisites a local coordinate for space-time sheet and together with the complex coordinate of E^2 could serve as a pair of complex coordinates (z, w) for space-time sheet. This brings strongly in mind the two complex coordinates appearing in the expansion of the generators of quantum Yangian of quantum affine algebra [K20].
- 2. The coordinate Ψ appearing in Beltrami flow defines the light-like vector field defining M^2 distribution. Its hyper-complex conjugate would define Ψ_c and conjugate light-like direction. An attractive possibility is that Φ allows analytic continuation to a holomorphic function of w. In this manner one would have four coordinates for M^4 also for space-time sheet.
- 3. The general vision is that at each point of space-time surface one can decompose the tangent space to $M^2(x) \subset M^4 = M_x^2 \times E_x^2$ representing momentum plane and polarization plane $E^2 \subset E_x^2 \times T(CP_2)$. The moduli space of planes $E^2 \subset E^6$ is 8-dimensional and parametrized by $SO(6)/SO(2) \times SO(4)$ for a given E_x^2 . How can one achieve this selection and what conditions it must satisfy? Certainly the choice must be integrable but this is not the only condition.

Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition means that space-time surfaces are in some sense quaternionic surfaces of an octonionic spacetime. It took several trials before the recent form of this hypothesis was achieved.

- 1. Octonionic structure is defined in terms of the octonionic representation of gamma matrices of the embedding space existing only in dimension D = 8 since octonion units are in one-one correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds to a preferred time axes (and rest frame) identified naturally as that connecting the tips of CD. What modified gamma matrices mean depends on variational principle for space-time surface. For volume action one would obtain induced gamma matrices. For Kähler action one obtains something different. In particular, the modified gamma matrices do not define vector basis identical with tangent vector basis of space-time surface.
- 2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma matrices of H with canonical momentum densities for Kähler action span quaternionic subspace of the octonionic tangent space [K84, K61]. A further condition is that each quaternionic space defined in this manner contains a preferred hyper-complex subspace of octonions.
- 3. The sub-space defined by the modified gamma matrices does not coincide with the tangent space of space-time surface in general so that the interpretation of this condition is far from obvious. The canonical momentum densities need not define four independent vectors at given point. For instance, for massless extremals these densities are proportional to light-like vector so that the situation is degenerate and the space in question reduces to 2-D hyper-complex sub-space since light-like vector defines plane M^2 .

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local tangent space $M^2 \subset M^4$ for preferred extremals? For massless extremals [K9] this condition would be true. The orthogonal decomposition $T(X^4) = M^2 \oplus_{\perp} E^2$ can be defined at each point if this is true. For massless extremals also the functions Ψ and Φ can be identified.

2. One should answer also the following delicate question. Can M^2 really depend on point x of space-time? CP_2 as a moduli space of quaternionic planes emerges naturally if M^2 is same everywhere. It however seems that one should allow an integrable distribution of M_x^2 such that M_x^2 is same for all points of a given partonic 2-surface.

How could one speak about fixed CP_2 (the embedding space) at the entire space-time sheet even when M_x^2 varies?

- (a) Note first that G_2 (see http://tinyurl.com/y9rrs7un) defines the Lie group of octonionic automorphisms and G_2 action is needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups of G_2 are related by G_2 automorphism. Clearly, one must assign to each point of a string world sheet in the slicing parameterizing the partonic 2-surfaces an element of G_2 . One would have Minkowskian string model with G_2 as a target space. As a matter fact, this string model is defined in the target space $G_2/SU(3)$ having dimension D = 6 since SU(3) automorphisms leave given SU(3)invariant.
- (b) This would allow to identify at each point of the string world sheet standard quaternionic basis - say in terms of complexified basis vectors consisting of two hyper-complex units and octonionic unit q_1 with "color isospin" $I_3 = 1/2$ and "color hypercharge" Y = -1/3 and its conjugate \bar{q}_1 with opposite color isospin and hypercharge.
- (c) The CP_2 point assigned with the quaternionic basis would correspond to the SU(3) rotation needed to rotate the standard basis to this basis and would actually correspond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is the basic property of the solutions of the field equations representing Minkowskian string world sheets. Also now the same assumption is highly natural. In the case of string models in Minkowski space, the reduction of the induced metric to standard form implies Virasoro conditions and similar conditions are expected also now. There is no need to introduce action principle -just the hyper-complex analycitity is enough-since Kähler action already defines it.
- 3. The WZW model (see http://tinyurl.com/ydxcvfhv) inspired approach to the situation would be following. The parameterization corresponds to a map $g: X^2 \to G_2$ for which g defines a flat G_2 connection at string world sheet. WZW type action would give rise to this kind of situation. The transition $G_2 \to G_2/SU(3)$ would require that one gauges SU(3) degrees of freedom by bringing in SU(3) connection. Similar procedure for $CP_2 = SU(3)/U(2)$ would bring in SU(3) valued chiral field and U(2) gauge field. Instead of introducing these connections one can simply introduce $G_2/SU(3)$ and SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed predicts gluons and electroweak gauge bosons assignable to string like objects so that the mathematical picture would be consistent with physical intuition.

The two interpretations of CP_2

An old observation very relevant for what I have called $M^8 - H$ duality [K18] is that the moduli space of quaternionic sub-spaces of octonionic space (identifiable as M^8) containing preferred hyper-complex plane is CP_2 . Or equivalently, the space of two planes whose addition extends hyper-complex plane to some quaternionic subspace can be parametrized by CP_2 . This CP_2 can be called it CP_2^{mod} to avoid confusion. In the recent case this would mean that the space $E^2(x) \subset E_x^2 \times T(CP_2)$ is represented by a point of CP_2^{mod} . On the other hand, the embedding of space-time surface to H defines a point of "real" CP_2 . This gives two different CP_2 s.

1. The highly suggestive idea is that the identification $CP_2^{mod} = CP_2$ (apart from isometry) is crucial for the construction of preferred extremals. Indeed, the projection of the space-time point to CP_2 would fix the local polarization plane completely. This condition for $E^2(x)$ would be purely local and depend on the values of CP_2 coordinates only. Second condition for $E^2(x)$ would involve the gradients of embedding space coordinates including those of CP_2 coordinates. 2. The conditions that the planes M_x^2 form an integrable distribution at space-like level and that M_x^2 is determined by the modified gamma matrices. The integrability of this distribution for M^4 could imply the integrability for X^2 . X^4 would differ from M^4 only by a deformation in degrees of freedom transversal to the string world sheets defined by the distribution of M^2 s.

Does this mean that one can begin from vacuum extremal with constant values of CP_2 coordinates and makes them non-constant but allows to depend only on transversal degrees of freedom? This condition is too strong even for simplest massless extremals for which CP_2 coordinates depend on transversal coordinates defined by $\epsilon \cdot m$ and $\epsilon \cdot k$. One could however allow dependence of CP_2 coordinates on light-like M^4 coordinate since the modification of the induced metric is light-like so that light-like coordinate remains light-like coordinate in this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most general dependence of CP_2 points on the light-like coordinates assignable to the distribution of M_x^2 would be dependence on either of the light-like coordinates of Hamilton-Jacobi coordinates but not both.

2.3.4 What could be the construction recipe for the preferred extremals assuming $CP_2 = CP_2^{mod}$ identification?

The crucial condition is that the planes $E^2(x)$ determined by the point of $CP_2 = CP_2^{mod}$ identification and by the tangent space of $E_x^2 \times CP_2$ are same. The challenge is to transform this condition to an explicit form. $CP_2 = CP_2^{mod}$ identification should be general coordinate invariant. This requires that also the representation of E^2 as (e^2, e^3) plane is general coordinate invariant suggesting that the use of preferred CP_2 coordinates - presumably complex Eguchi-Hanson coordinates - could make life easy. Preferred coordinates are also suggested by number theoretical vision. A careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of X^4 but not in general identical with the tangent space: this would be the case only if the action were 4-volume. I will use the notation $T_x^m(X^4)$ about the modified tangent space and call the vectors of $T_x^m(X^4)$ modified tangent vectors. I hope that this would not cause confusion.

$CP_2 = CP_2^{mod}$ condition

58

Quaternionic property of the counterpart of $T_x^m(X^4)$ allows an explicit formulation using the tangent vectors of $T_x^m(X^4)$.

- 1. The unit vector pair (e_2, e_3) should correspond to a unique tangent vector of H defined by the coordinate differentials dh^k in some natural coordinates used. Complex Eguchi-Hanson coordinates [L1] are a natural candidate for CP_2 and require complexified octonionic imaginary units. If octonionic units correspond to the tangent vector basis of H uniquely, this is possible.
- 2. The pair (e_2, e_3) as also its complexification $(q_1 = e_2 + ie_3, \overline{q}_1 = e_2 ie_3)$ is expressible as a linear combination of octonionic units $I_2, ... I_7$ should be mapped to a point of $CP_2^{mod} = CP_2$ in canonical manner. This mapping is what should be expressed explicitly. One should express given (e_2, e_3) in terms of SU(3) rotation applied to a standard vector. After that one should define the corresponding CP_2 point by the bundle projection $SU(3) \to CP_2$.
- 3. The tangent vector pair

$$(\partial_w h^k, \partial_{\overline{w}} h^k)$$

defines second representation of the tangent space of $E^2(x)$. This pair should be equivalent with the pair (q_1, \overline{q}_1) . Here one must be however very cautious with the choice of coordinates. If the choice of w is unique apart from constant the gradients should be unique. One can use also real coordinates (x, y) instead of $(w = x + iy, \overline{w} = x - iy)$ and the pair (e_2, e_3) . One can project the tangent vector pair to the standard vielbein basis which must correspond to the octonionic basis

$$(\partial_x h^k, \partial_y h^k) \to (\partial_x h^k e^A_k e_A, \partial_y h^k e^A_k) e_A) \leftrightarrow (e_2, e_3)$$
,

where the e_A denote the octonion units in 1-1 correspondence with vielbein vectors. This expression can be compared to the expression of (e_2, e_3) derived from the knowledge of CP_2 projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (e_2, e_3) expressed in terms of octonionic units deducible from the condition that unit vectors obey quaternionic algebra. The expressions for octonionic (see http://tinyurl.com/5m51qr) resp. quaternionic (see http://tinyurl.com/3rr79p9) structure constants can be found at [A17] resp. [A19].

1. The ansatz is

$$\{E_k\} = \{1, I_1, E_2, E_3\} , E_2 = E_{2k}e^k \equiv \sum_{k=2}^7 E_{2k}e^k , E_3 = E_{3k}e^k \equiv \sum_{k=2}^7 E_{3k}e^k , |E_2| = 1 , |E_3| = 1 .$$
 (2.3.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle (see http://tinyurl.com/5m5lqr) [A17] gives

$$f^{1kl}E_{2k} = E_{3l} , f^{1kl}E_{3k} = -E_{2l} , f^{klr}E_{2k}E_{3l} = \delta_1^r .$$
 (2.3.2)

Here the indices are raised by unit metric so that there is no difference between lower and upper indices. Summation convention is assumed. Also the contribution of the real unit is present in the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coefficients E_{2k} and E_{3k} and are expected to allow an explicit solution. The first two conditions define homogenous equations which must allow solution. The coefficient matrix acting on (E_2, E_3) is of the form

$$\left(\begin{array}{cc}f_1&1\\-1&f_1\end{array}\right) \ ,$$

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due to the highly symmetric properties of the structure constants. In fact the equations can be written as eigen conditions

$$f_1 \circ (E_2 \pm iE_3) = \mp i(E_2 \pm iE_3)$$
,

and one can say that the structure constants are eigenstates of the hermitian operator defined by I_1 analogous to color hyper charge. Both values of color hyper charged are obtained.

Explicit expression for the $CP_2 = CP_2^{mod}$ conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like $(1, 1, 3, \overline{3})$ under SU(3). Note the analogy of triplet with color triplet of quarks. One can write complexified basis as $(1, e_1, (q_1, q_2, q_3), (\overline{q}_1 \overline{q}_2, \overline{q}_3))$. The expressions for complexified basis elements are

$$(q_1, q_2, q_3) = \frac{1}{\sqrt{2}}(e_2 + ie_3, e_4 + ie_5, e_6 + ie_7)$$

These options can be seen to be possible by studying octonionic triangle in which all lines containing 3 units defined associative triple: any pair of octonion units at this kind of line can be used to form pair of complexified unit and its conjugate. In the tangent space of $M^4 \times CP_2$ the basis vectors q_1 , and q_2 are mixtures of E_x^2 and CP_2 tangent vectors. q_3 involves only CP_2 tangent vectors and there is a temptation to interpret it as the analog of the quark having no color isospin.

2. The quaternionic basis is real and must transform like $(1, 1, q_1, \overline{q}_1)$, where q_1 is any quark in the triplet and \overline{q}_1 its conjugate in antitriplet. Having fixed some basis one can perform SU(3) rotations to get a new basis. The action of the rotation is by 3×3 special unitary matrix. The over all phases of its rows do not matter since they induce only a rotation in (e_2, e_3) plane not affecting the plane itself. The action of SU(3) on q_1 is simply the action of its first row on (q_1, q_2, q_3) triplet:

$$q_1 \rightarrow (Uq)_1 = U_{11}q_1 + U_{12}q_2 + U_{13}q_3 \equiv z_1q_1 + z_2q_2 + z_3q_3$$

= $z_1(e_2 + ie_3) + z_2(e_4 + ie_5) + z_3(e_6 + ie_7)$. (2.3.3)

The triplets (z_1, z_2, z_3) defining a complex unit vector and point of S^5 . Since overall phase does not matter a point of CP_2 is in question. The new real octonion units are given by the formulas

$$e_{2} \rightarrow Re(z_{1})e_{2} + Re(z_{2})e_{4} + Re(z_{3})e_{6} - Im(z_{1})e_{3} - Im(z_{2})e_{5} - Im(z_{3})e_{7} ,$$

$$e_{3} \rightarrow Im(z_{1})e_{2} + Im(z_{2})e_{4} + Im(z_{3})e_{6} + Re(z_{1})e_{3} + Re(z_{2})e_{5} + Re(z_{3})e_{7} .$$

$$(2.3.4)$$

For instance the CP_2 coordinates corresponding to the coordinate patch (z_1, z_2, z_3) with $z_3 \neq 0$ are obtained as $(\xi_1, \xi_2) = (z_1/z_3, z_2/z_3)$.

Using these expressions the equations expressing the conjecture $CP_2 = CP_2^{mod}$ equivalence can be expressed explicitly as first order differential equations. The conditions state the equivalence

$$(e_2, e_3) \quad \leftrightarrow \quad (\partial_x h^k e_k^A e_A, \partial_y h^k e_k^A e_A) \quad , \tag{2.3.5}$$

where e_A denote octonion units. The comparison of two pairs of vectors requires normalization of the tangent vectors on the right hand side to unit vectors so that one takes unit vector in the direction of the tangent vector. After this the vectors can be equated. This allows to expresses the contractions of the partial derivatives with vielbein vectors with the 6 components of e_2 and e_3 . Each condition gives 6+6 first order partial differential equations which are non-linear by the presence of the overal normalization factor for the right hand side. The equations are invariant under scalings of (x, y). The very special form of these equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary Minkowski coordinates and Hamilton-Jacobi coordinates for M^4 and Eguchi-Hanson complex coordinates in which $SU(2) \times U(1)$ is represented linearly for CP_2 . These coordinates are preferred because they carry deep physical meaning.

Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and $CP_2 = CP_2^{mod}$ conditions one has what one might call string model with 6-dimensional $G_2/SU(3)$ as targent space. The orbit of string in $G_2/SU(3)$ allows to deduce the G_2 rotation identifiable as a point of $G_2/SU(3)$ defining what one means with standard quaternionic plane at given point of string world sheet. The hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and partonic 2-surfaces central for the proposed mathematical applications of TGD [K36, K37, K68, K41]. This duality suggests that the solutions to the $CP_2 = CP_2^{mod}$ conditions could reduce to holomorphy with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions. The dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual string models in $G_2/SU(3)$ and SU(3)/U(2) and also to string model in M^4 and X^4 ! In the previous arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-surfaces. TGD seems to yield an inflation of string models! This not actually surprising since the slicing of space-time sheets by string world sheets and partonic 2-surfaces implies automatically various kinds of maps having interpretation in terms of string orbits.

2.4 In What Sense TGD Could Be An Integrable Theory?

During years evidence supporting the idea that TGD could be an integrable theory in some sense has accumulated. The challenge is to show that various ideas about what integrability means form pieces of a bigger coherent picture. Of course, some of the ideas are doomed to be only partially correct or simply wrong. Since it is not possible to know beforehand what ideas are wrong and what are right the situation is very much like in experimental physics and it is easy to claim (and has been and will be claimed) that all this argumentation is useless speculation. This is the price that must be paid for real thinking.

Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for a linear system. In TGD framework this translates to quantum classical correspondence. The solutions of Kähler-Dirac equation define the scattering data. This data should define a real analytic function whose octonionic extension defines the space-time surface as a surface for which its imaginary part in the representation as bi-quaternion vanishes. There are excellent hopes about this thanks to the reduction of the Kähler-Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories, list some bits of evidence for integrability in TGD framework, discuss once again the question whether the different pieces of evidence are consistent with other and what one really means with various notions. An an outcome I represent what I regard as a more coherent view about integrability of TGD. The notion of octonion analyticity developed in the previous section is essential for the for what follows.

2.4.1 What Integrable Theories Are?

The following is an attempt to get some bird's eye of view about the landscape of integrable theories.

Examples of integrable theories

Integrable theories are typically non-linear 1+1-dimensional (quantum) field theories. Solitons and various other particle like structures are the characteristic phenomenon in these theories. Scattering matrix is trivial in the sense that the particles go through each other in the scattering and suffer only a phase change. In particular, momenta are conserved. Korteveg- de Vries equation (see http://tinyurl.com/3cyt8hk) [B2] was motivated by the attempt to explain the experimentally discovered shallow water wave preserving its shape and moving with a constant velocity. Sine-Gordon equation (see http://tinyurl.com/yafl243x) [B7] describes geometrically constant curvature surfaces and defines a Lorentz invariant non-linear field theory in 1+1-dimensional space-time, which can be applied to Josephson junctions (in TGD inspired quantum

biology it is encountered in the model of nerve pulse [K59]). Non-linear Schrödinger equation (see http://tinyurl.com/y88efbo7) [B5] having applications to optics and water waves represents a further example. All these equations have various variants.

From TGD point of view conformal field theories represent an especially interesting example of integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by its infinite-dimensional character implies infinite number of conserved quantities. The construction of the theory reduces to the construction of the representations of (super-)conformal algebra. One can solve 2-point functions exactly and characterize them in terms of (possibly anomalous) scaling dimensions of conformal fields involved and the coefficients appearing in 3-point functions can be solved in terms of fusion rules leading to an associative algebra for conformal fields. The basic applications are to 2-dimensional critical thermodynamical systems whose scaling invariance generalizes to conformal field theories associated with various genera of 2-surface is needed to describe loop corrections to the scattering amplitudes. Also moduli spaces of conformal equivalence classes become important.

Topological quantum field theories (see http://tinyurl.com/lsvx7g3) are also examples of integrable theories. Because of its independence on the metric Chern-Simons action (see http://tinyurl.com/ydgsqm2c) is in 3-D case the unique action defining a topological quantum field theory. The calculations of knot invariants (for TGD approach see [K36]), topological invariants of 3-manifolds and 4-manifolds, and topological quantum computation (see http://tinyurl.com/dkpo4y) (for a model of DNA as topological quantum computer see [K3]) represent applications of this approach. TGD as almost topological QFT means that the Kähler action for preferred extremals reduces to a surface term by the vanishing of Coulomb term in action and by the weak form of electric-magnetic duality reduces to Chern-Simons action. Both Euclidian and Minkowskian regions give this kind of contribution.

 $\mathcal{N} = 4$ SYM is the a four-dimensional and very nearly realistic candidate for an integral quantum field theory. The observation that twistor amplitudes allow also a dual of the 4-D conformal symmetry motivates the extension of this symmetry to its infinite-dimensional Yangian variant [A26]. Also the enormous progress in the construction of scattering amplitudes suggests integrability. In TGD framework Yangian symmetry would emerge naturally by extending the symplectic variant of Kac-Moody algebra from light-cone boundary to the interior of causal diamond and the Kac-Moody algebra from light-like 3-surface representing wormhole throats at which the signature of the induced metric changes to the space-time interior [L12].

About mathematical methods

 $\mathbf{62}$

The mathematical methods used in integrable theories are rather refined and have contributed to the development of the modern mathematical physics. Mention only quantum groups, conformal algebras, and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical problem for which the interaction is characterized by a potential function or its analog to a linear scattering problem depending on time. For instance, for the ordinary Schrödinger function one can solve potential once single solution of the equation is known. This does not work in practice. One can however gather information about the asymptotic states in scattering to deduce the potential. One cannot do without information about bound state energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like boundaries of CD (more precisely: the largest CD involved and defining the IR resolution for momenta). From the scattering data coding information about scattering for various values of energy of the incoming particle one deduced the potential function or its analog.

- 1. The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan (GML) transform (see http://tinyurl.com/y9f7ybln) described in simple terms in [B8].
 - (a) In 1+1 dimensional case the S-matrix characterizing scattering is very simple since the only thing that can take place in scattering is reflection or transmission. Therefore the S-matrix elements describe either of these processes and by unitarity the sum of corresponding probabilities equals to 1. The particle can arrive to the potential either

from left or right and is characterized by a momentum. The transmission coefficient can have a pole meaning complex (imaginary in the simplest case) wave vector serving as a signal for the formation of a bound state or resonance. The scattering data are represented by the reflection and transmission coefficients as function of time.

- (b) One can deduce an integral equation for a propagator like function K(t, x) describing how delta pulse moving with light velocity is scattered from the potential and is expressible in terms of time integral over scattering data with contributions from both scattering states and bound states. The derivation of GML transform [B8] uses time reversal and time translational invariance and causality defined in terms of light velocity. After some tricks one obtains the integral equation as well as an expression for the time independent potential as V(x) = K(x, x). The argument can be generalized to more complex problems to deduce the GML transform.
- 2. The so called Lax pair (see http://tinyurl.com/yc93nw53) is one manner to describe integrable systems [B3]. Lax pair consists of two operators L and M. One studies what might be identified as "energy" eigenstates satisfying $L(x,t)\Psi = \lambda \Psi$. λ does not depend on time and one can say that the dynamics is associated with x coordinate whereas as t is time coordinate parametrizing different variants of eigenvalue problem with the same spectrum for L. The operator M(t) does not depend on x at all and the independence of λ on time implies the condition

$$\partial_t L = [L, M]$$
.

This equation is analogous to a quantum mechanical evolution equation for an operator induced by time dependent "Hamiltonian" M and gives the non-linear classical evolution equation when the commutator on the right hand side is a multiplicative operator (so that it does not involve differential operators acting on the coordinate x). Non-linear classical dynamics for the time dependent potential emerges as an integrability condition.

One could say that M(t) introduces the time evolution of L(t,x) as an automorphism which depends on time and therefore does not affect the spectrum. One has $L(t,x) = U(t)L(0,x)U^{-1}(t)$ with dU(t)/dt = M(t)U(t). The time evolution of the analog of the quantum state is given by a similar equation.

3. A more refined view about Lax pair is based on the observation that the above equation can be generalized so that M depends also on x. The generalization of the basic equation for M(x, t) reads as

$$\partial_t L - \partial_x M - [L, M] = 0 \quad .$$

The condition has interpretation as a vanishing of the curvature of a gauge potential having components $A_x = L, A_t = M$. This generalization allows a beautiful geometric formulation of the integrability conditions and extends the applicability of the inverse scattering transform. The monodromy of the flat connection becomes important in this approach. Flat connections in moduli spaces are indeed important in topological quantum field theories and in conformal field theories.

4. There is also a connection with the so called Riemann-Hilbert problem (see http://tinyurl. com/ybay4qjg) [A21]. The monodromies of the flat connection define monodromy group and Riemann-Hilbert problem concerns the existence of linear differential equations having a given monodromy group. Monodromy group emerges in the analytic continuation of an analytic function and the action of the element of the monodromy group tells what happens for the resulting many-valued analytic function as one turns around a singularity once ("mono-"). The linear equations obviously relate to the linear scattering problem. The flat connection (M, L) in turn defines the monodromy group. What is needed is that the functions involved are analytic functions of (t, x) replaced with a complex or hyper-complex variable. Again Wick rotation is involved. Similar approach generalizes also to higher dimensional moduli spaces with complex structures.

In TGD framework the effective 2-dimensionality raises the hope that this kind of mathematical apparatus could be used. An interesting possibility is that finite measurement resolution could be realized in terms of a gauge group or Kac-Moody type group represented by trivial gauge potential defining a monodromy group for n-point functions. Monodromy invariance would hold for the full n-point functions constructed in terms of analytic n-point functions and their conjugates. The ends of braid strands are natural candidates for the singularities around which monodromies are defined.

2.4.2 Why TGD Could Be Integrable Theory In Some Sense?

 $\mathbf{64}$

There are many indications that TGD could be an integrable theory in some sense. The challenge is to see which ideas are consistent with each other and to build a coherent picture where everything finds its own place.

- 1. 2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for integrability. Effective 2-dimensionality is suggested by the strong form of General Coordinate Invariance implying also holography and generalized conformal invariance predicting infinite number of conservation laws. The dual roles of partonic 2-surfaces and string world sheets supports a four-dimensional generalization of conformal invariance. Twistor considerations [L12, L16] indeed suggest that Yangian invariance and Kac-Moody invariances combine to a 4-D analog of conformal invariance induced by 2-dimensional one by algebraic continuation.
- 2. Octonionic representation of embedding space Clifford algebra and the identification of the space-time surfaces as quaternionic space-time surfaces would define a number theoretically natural generalization of conformal invariance. The reason for using gamma matrix representation is that vector field representation for octonionic units does not exist. The problem concerns the precise meaning of the octonionic representation of gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is analytically continued from string curve to 8-D space by octonion real-analyticity. The question is whether the Clifford algebra based notion of tangent space quaternionicity is equivalent with octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must consider seriously the possibility that associativity-co-associativity dichotomy corresponds to Minkowskian-Euclidian dichotomy.

- 3. Field equations define hydrodynamic Beltrami flows satisfying integrability conditions of form $J \wedge dJ = 0$.
 - (a) One can assign local momentum and polarization directions to the preferred extremals and this gives a decomposition of Minkowskian space-time regions to massless quanta analogous to the 1+1-dimensional decomposition to solitons. The linear superposition of modes with 4-momenta with different directions possible for free Maxwell action does not look plausible for the preferred extremals of Kähler action. This rather quantal and solitonic character is in accordance with the quantum classical correspondence giving very concrete connection between quantal and classical particle pictures. For 4-D volume action one does not obtain this kind of decomposition. In 2-D case volume action gives superposition of solutions with different polarization directions so that the situation is nearer to that for free Maxwell action and is not like soliton decomposition.
 - (b) Beltrami property in strong sense allows to identify 4 preferred coordinates for the space-time surface in terms of corresponding Beltrami flows. This is possible also in Euclidian regions using two complex coordinates instead of hyper-complex coordinate and complex coordinate. The assumption that isometry currents are parallel to the same light-like Beltrami flow implies hydrodynamic character of the field equations in the sense that one can say that each flow line is analogous to particle carrying some quantum numbers. This property is not true for all extremals (say cosmic strings).

- (c) The tangent bundle theoretic view about integrability is that one can find a Lie algebra of vector fields in some manifold spanning the tangent space of a lower-dimensional manifolds and is expressed in terms of Frobenius theorem (see http://tinyurl.com/of6vfz5) [A7]. The gradients of scalar functions defining Beltrami flows appearing in the ansatz for preferred exremals would define these vector fields and the slicing. Partonic 2-surfaces would correspond to two complex conjugate vector fields (local polarization direction) and string world sheets to light-like vector field and its dual (light-like momentum directions). This slicing generalizes to the Euclidian regions.
- 4. Infinite number of conservation laws is the signature of integrability. Classical field equations follow from the condition that the vector field defined by Kähler-Dirac gamma matrices has vanishing divergence and can be identified an integrability condition for the Kähler-Dirac equation guaranteeing also the conservation of super currents so that one obtains an infinite number of conserved charges.
- 5. Quantum criticality is a further signal of integrability. 2-D conformal field theories describe critical systems so that the natural guess is that quantum criticality in TGD framework relates to the generalization of conformal invariance and to integrability. Quantum criticality implies that Kähler coupling strength is analogous to critical temperature. This condition does affects classical field equations only via boundary conditions expressed as weak form of electric magnetic duality at the wormhole throats at which the signature of the metric changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined by the second derivatives of potential is similar signature and applies in catastrophe theory. Therefore the existence of vanishing second variations of Kähler action should characterize criticality and define a property of preferred extremals. The vanishing of second variations indeed leads to an infinite number of conserved currents [K9] following the conditions that the deformation of Kähler-Dirac gamma matrix is also divergenceless and that the Kähler-Dirac equation associated with it is satisfied.

2.4.3 Could TGD Be An Integrable Theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical correspondence could be seen as a correspondence between linear quantum dynamics and non-linear classical dynamics. Integrability would realize this correspondence. In integrable models such as Sine-Gordon equation particle interactions are described by potential in 1+1 dimensions. This too primitive for the purposes of TGD. The vertices of generalized Feynman diagrams take care of this. At lines one has free particle dynamics so that the situation could be much simpler than in integrable models if one restricts the considerations to the lines or Minkowskian space-time regions surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized Feynman diagram should be obtainable from the linear dynamics for the induced spinor fields defined by Kähler-Dirac operator. There are two options.

- 1. Strong form of the quantum classical correspondence states that each solution for the linear dynamics of spinor fields corresponds to space-time sheet. This is analogous to solving the potential function in terms of a single solution of Schrödinger equation. Coupling of space-time geometry to quantum numbers via measurement interaction term is a proposal for realizing this option. It is however the quantum numbers of positive/negative energy parts of zero energy state which would be visible in the classical dynamics rather than those of induced spinor field modes.
- 2. Only overall dynamics characterized by scattering data- the counterpart of S-matrix for the Kähler-Dirac operator- is mapped to the geometry of the space-time sheet. This is much more abstract realization of quantum classical correspondence.
- 3. Can these two approaches be equivalent? This might be the case since quantum numbers of the state are not those of the modes of induced spinor fields.

What the scattering data could be for the induced spinor field satisfying Kähler-Dirac equation?

1. If the solution of field equation has hydrodynamic character, the solutions of the Kähler-Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow. These correspond to basic solutions and the general solution is a superposition of these. There is no dispersion and the dynamics is that of geometric optics at the basic level. This means geometric optics like character of the spinor dynamics.

Solutions of the Kähler-Dirac equation are completely analogous to the pulse solutions defining the fundamental solution for the wave equation in the argument leading from wave equation with external time independent potential to Marchenko-Gelfand-Levitan equation allowing to identify potential in terms of scattering data. There is however no potential present now since the interactions are described by the vertices of Feynman diagram where the particle lines meet. Note that particle like regions are Euclidian and that this picture applies only to the Minkowskian exteriors of particles.

- 2. Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected by flow lines. Partonic 2-surfaces at which the signature of the induced metric changes are in a special position. Only the imaginary part of the bi-quaternionic value of the octonion valued map is non-vanishing at these surfaces which can be said to be co-complex 2-surfaces. By geometric optics behavior the scattering data correspond to a diffeomorphism mapping initial partonic 2-surface to the final one in some preferred complex coordinates common to both ends of the line.
- 3. What could be these preferred coordinates? Complex coordinates for S^2 at light-cone boundary define natural complex coordinates for the partonic 2-surface. With these coordinates the diffeomorphism defining scattering data is diffeomorphism of S^2 . Suppose that this map is real analytic so that maps "real axis" of S^2 to itself. This map would be same as the map defining the octonionic real analyticity as algebraic extension of the complex real analytic map. By octonionic analyticity one can make large number of alternative choices for the coordinates of partonic 2-surface.
- 4. There can be non-uniqueness due to the possibility of $G_2/SU(3)$ valued map characterizing the local octonionic units. The proposal is that the choice of octonionic imaginary units can depend on the point of string like orbit: this would give string model in $G_2/SU(3)$. Conformal invariance for this string model would imply analyticity and helps considerably but would not probably fix the situation completely since the element of the coset space would constant at the partonic 2-surfaces at the ends of CD. One can of course ask whether the $G_2/SU(3)$ element could be constant for each propagator line and would change only at the 2-D vertices?

This would be the inverse scattering problem formulated in the spirit of TGD. There could be also dependence of space-time surface on quantum numbers of quantum states but not on individual solution for the induced spinor field since the scattering data of this solution would be purely geometric.

2.5 Do Geometric Invariants Of Preferred Extremals Define Topological Invariants Of Space-time Surface And Code For Quantumphysics?

The recent progress in the understanding of preferred extremals [K9] led to a reduction of the field equations to conditions stating for Euclidian signature the existence of Kähler metric. The resulting conditions are a direct generalization of corresponding conditions emerging for the string world sheet and stating that the 2-metric has only non-diagonal components in complex/hypercomplex coordinates. Also energy momentum of Kähler action and has this characteristic (1, 1) tensor structure. In Minkowskian signature one obtains the analog of 4-D complex structure combining hyper-complex structure and 2-D complex structure.

The construction lead also to the understanding of how Einstein's equations with cosmological term follow as a consistency condition guaranteeing that the covariant divergence of the Maxwell's energy momentum tensor assignable to Kähler action vanishes. This gives $T = kG + \Lambda g$. By taking trace a further condition follows from the vanishing trace of T:

$$R = \frac{4\Lambda}{k} . \tag{2.5.1}$$

That any preferred extremal should have a constant Ricci scalar proportional to cosmological constant is very strong prediction. Note that the accelerating expansion of the Universe would support positive value of Λ . Note however that both Λ and $k \propto 1/G$ are both parameters characterizing one particular preferred extremal. One could of course argue that the dynamics allowing only constant curvature space-times is too simple. The point is however that particle can topologically condense on several space-time sheets meaning effective superposition of various classical fields defined by induced metric and spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canonical representatives for the constant curvature manifolds playing central role in Thurston's geometrization theorem (see http://tinyurl.com/y8bbzlnr) [A24] known also as hyperbolization theorem implying that geometric invariants of space-time surfaces transform to topological invariants. The generalization of the notion of Ricci flow to Maxwell flow in the space of metrics and further to Kähler flow for preferred extremals in turn gives a rather detailed vision about how preferred extremals organize to one-parameter orbits. It is quite possible that Kähler flow is actually discrete. The natural interpretation is in terms of dissipation and self organization.

Quantum classical correspondence suggests that this line of thought could be continued even further: could the geometric invariants of the preferred extremals could code not only for space-time topology but also for quantum physics? How to calculate the correlation functions and coupling constant evolution has remained a basic unresolved challenge of quantum TGD. Could the correlation functions be reduced to statistical geometric invariants of preferred extemals? The latest (means the end of 2012) and perhaps the most powerful idea hitherto about coupling constant evolution is quantum classical correspondence in statistical sense stating that the statistical properties of a preferred extremal in quantum superposition of them are same as those of the zero energy state in question. This principle would be quantum generalization of ergodic theorem stating that the time evolution of a single member of ensemble represents the ensemble statistical properties of single preferred extremal alone using classical intuition. Also coupling constant evolution would be coded by the statistical properties of the representative preferred extremal.

2.5.1 Preferred Extremals Of Kähler Action As Manifolds With Constant Ricci Scalar Whose Geometric Invariants Are Topological-Invariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants of space-time surface serve as topological invariants. The reduction of Kähler action to 3-D Chern-Simons terms (see http://tinyurl.com/ybp86sho) [K9] gives support for this conjecture as a classical counterpart for the view about TGD as almost topological QFT. The following arguments give a more precise content to this conjecture in terms of existing mathematics.

1. It is not possible to represent the scaling of the induced metric as a deformation of the space-time surface preserving the preferred extremal property since the scale of CP_2 breaks scale invariance. Therefore the curvature scalar cannot be chosen to be equal to one numerically. Therefore also the parameter $R = 4\Lambda/k$ and also Λ and k separately characterize the equivalence class of preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond CD remains constant along the orbits of the flow and thus characterizes the space-time surface. A and even $k \propto 1/G$ can indeed depend on space-time sheet and p-adic length scale hypothesis suggests a discrete spectrum for Λ/k expressible in terms of p-adic length scales: $\Lambda/k \propto 1/L_p^2$ with $p \simeq 2^k$ favored by p-adic length scale hypothesis. During cosmic evolution the p-adic length scale would increase gradually. This would resolve the problem posed by cosmological constant in GRT based theories.

2. One could also see the preferred extremals as 4-D counterparts of constant curvature 3manifolds in the topology of 3-manifolds. An interesting possibility raised by the observed negative value of Λ is that most 4-surfaces are constant negative curvature 4-manifolds. By a general theorem coset spaces (see http://tinyurl.com/y8d3udpr) H^4/Γ , where $H^4 = SO(1,4)/SO(4)$ is hyperboloid of M^5 and Γ a torsion free discrete subgroup of SO(1,4) [A11]. It is not clear to me, whether the constant value of Ricci scalar implies constant sectional curvatures and therefore hyperbolic space property. It could happen that the space of spaces with constant Ricci curvature contain a hyperbolic manifold as an especially symmetric representative. In any case, the geometric invariants of hyperbolic metric are topological invariants.

By Mostow rigidity theorem (see http://tinyurl.com/yacbu8sk) [A16] finite-volume hyperbolic manifold is unique for D > 2 and determined by the fundamental group of the manifold. Since the orbits under the Kähler flow preserve the curvature scalar the manifolds at the orbit must represent different embeddings of one and hyperbolic 4-manifold. In 2-D case the moduli space for hyperbolic metric for a given genus g > 0 is defined by Teichmueller parameters and has dimension 6(g-1). Obviously the exceptional character of D = 2 case relates to conformal invariance. Note that the moduli space in question (see http://tinyurl.com/ybowqm5v) plays a key role in p-adic mass calculations [K16].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions and maybe generalize also to Minkowskian regions. If so then both "topological" and "geometro" in "Topological GeometroDynamics" would be fully justified. The fact that geometric invariants become topological invariants also conforms with "TGD as almost topological QFT" and allows the notion of scale to find its place in topology. Also the dream about exact solvability of the theory would be realized in rather convincing manner.

These conjectures are the main result independent of whether the generalization of the Ricci flow discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates in the space of preferred extremals of Kähler action. My sincere hope is that the reader could grasp how far reaching these result really are.

2.5.2 Is There A Connection Between Preferred Extremals And AdS_4/CFT Correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and have negative scalar curvature for negative value of Λ . 4-D space-times with hyperbolic metric provide canonical representation for a large class of four-manifolds and an interesting question is whether these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS_4 . This suggests at connection with AdS_4/CFT correspondence of M-theory. The boundary of AdS would be now replaced with 3-D light-like orbit of partonic 2-surface at which the signature of the induced metric changes. The metric 2-dimensionality of the light-like surface makes possible generalization of 2-D conformal invariance with the light-like coordinate taking the role of complex coordinate at lightlike boundary. AdS could represent a special case of a more general family of space-time surfaces with constant Ricci scalar satisfying Einstein-Maxwell equations and generalizing the AdS_4/CFT correspondence. There is however a strong objection from cosmology: the accelerated expansion of the Universe requires positive value of Λ and favors De Sitter Space dS_4 instead of AdS_4 .

These observations provide motivations for finding whether AdS_4 and/or dS_4 allows an embedding as a vacuum extremal to $M^4 \times S^2 \subset M^4 \times CP_2$, where S^2 is a homologically trivial geodesic sphere of CP_2 . It is easy to guess the general form of the embedding by writing the line elements of, M^4 , S^2 , and AdS_4 .

1. The line element of M^4 in spherical Minkowski coordinates (m, r_M, θ, ϕ) reads as

$$ds^2 = dm^2 - dr_M^2 - r_M^2 d\Omega^2 . (2.5.2)$$

2. Also the line element of S^2 is familiar:

$$ds^{2} = -R^{2}(d\Theta^{2} + \sin^{2}(\theta)d\Phi^{2}) . \qquad (2.5.3)$$

3. By visiting in Wikipedia (see http://tinyurl.com/y9hw95ql) one learns that in spherical coordinate the line element of AdS_4/dS_4 is given by

$$ds^{2} = A(r)dt^{2} - \frac{1}{A(r)}dr^{2} - r^{2}d\Omega^{2} ,$$

$$A(r) = 1 + \epsilon y^{2} , \quad y = \frac{r}{r_{0}} ,$$

$$\epsilon = 1 \text{ for } AdS_{4} , \quad \epsilon = -1 \text{ for } dS_{4} .$$
(2.5.4)

4. From these formulas it is easy to see that the ansatz is of the same general form as for the embedding of Schwartschild-Nordstöm metric:

$$m = \Lambda t + h(y) , \quad r_M = r ,$$

$$\Theta = s(y) , \qquad \Phi = \omega(t + f(y)) .$$
(2.5.5)

The non-trivial conditions on the components of the induced metric are given by

$$g_{tt} = \Lambda^{2} - x^{2} \sin^{2}(\Theta) = A(r) ,$$

$$g_{tr} = \frac{1}{r_{0}} \left[\Lambda \frac{dh}{dy} - x^{2} \sin^{2}(\theta) \frac{df}{dr} \right] = 0 ,$$

$$g_{rr} = \frac{1}{r_{0}^{2}} \left[(\frac{dh}{dy})^{2} - 1 - x^{2} \sin^{2}(\theta) (\frac{df}{dy})^{2} - R^{2} (\frac{d\Theta}{dy})^{2} \right] = -\frac{1}{A(r)} ,$$

$$x = R\omega .$$
(2.5.6)

By some simple algebraic manipulations one can derive expressions for $sin(\Theta)$, df/dr and dh/dr.

1. For $\Theta(r)$ the equation for g_{tt} gives the expression

$$sin(\Theta) = \pm \frac{P^{1/2}}{x} , P = \Lambda^2 - A = \Lambda^2 - 1 - \epsilon y^2 .$$
 (2.5.7)

The condition $0 \leq \sin^2(\Theta) \leq 1$ gives the conditions

$$\begin{array}{rcl} (\Lambda^2 - x^2 - 1)^{1/2} \leq & y & \leq (\Lambda^2 - 1)^{1/2} & \text{for } \epsilon = 1 \ (AdS_4) \\ & (-\Lambda^2 + 1)^{1/2} \leq & y & \leq (x^2 + 1 - \Lambda^2)^{1/2} & \text{for } \epsilon = -1 \ (dS_4) \end{array} ,$$

$$(2.5.8)$$

Only a spherical shell is possible in both cases. The model for the final state of star considered in [K78] predicted similar layer layer like structure and inspired the proposal that stars quite generally have an onion-like structure with radii of various shells characterize by p-adic length scale hypothesis and thus coming in some powers of $\sqrt{2}$. This brings in mind also Titius-Bode law. 2. From the vanishing of g_{tr} one obtains

$$\frac{dh}{dy} = \frac{P}{\Lambda} \frac{df}{dy} .$$
(2.5.9)

3. The condition for g_{rr} gives

$$\left(\frac{df}{dy}\right)^2 = \frac{r_0^2}{AP} \left[A^{-1} - R^2 \left(\frac{d\Theta}{dy}\right)^2\right] . \tag{2.5.10}$$

Clearly, the right-hand side is positive if $P \ge 0$ holds true and $Rd\Theta/dy$ is small. One can express $d\Theta/dy$ using chain rule as

$$\left(\frac{d\Theta}{dy}\right)^2 = \frac{x^2 y^2}{P(P-x^2)} \quad . \tag{2.5.11}$$

One obtains

$$\left(\frac{df}{dy}\right)^2 = \Lambda r_0^2 \frac{y^2}{AP} \left[\frac{1}{1+y^2} - x^2 (\frac{R}{r_0})^2 \frac{1}{P(P-x^2)}\right] .$$
(2.5.12)

The right hand side of this equation is non-negative for certain range of parameters and variable y. Note that for $r_0 \gg R$ the second term on the right hand side can be neglected. In this case it is easy to integrate f(y).

The conclusion is that both AdS_4 and dS^4 allow a local embedding as a vacuum extremal. Whether also an embedding as a non-vacuum preferred extremal to $M^4 \times S^2$, S^2 a homologically non-trivial geodesic sphere is possible, is an interesting question.

2.5.3 Generalizing Ricci Flow To Maxwell Flow For 4-Geometries And Kähler Flow For Space-Time Surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants of Riemann manifolds. I certainly did not have this in mind when I choose to call my unification attempt "Topological Geometrodynamics" but this title strongly suggests that a suitable generalization of Ricci flow could play a key role in the understanding of also TGD.

Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a generalization of the well-known volume preserving Ricci flow (see http://tinyurl.com/2cwlzh91) [A20] introduced by Richard Hamilton. Ricci flow is defined in the space of Riemann metrics as

$$\frac{dg_{\alpha\beta}}{dt} = -2R_{\alpha\beta} + 2\frac{R_{avg}}{D}g_{\alpha\beta} \quad . \tag{2.5.13}$$

Here R_{avg} denotes the average of the scalar curvature, and D is the dimension of the Riemann manifold. The flow is volume preserving in average sense as one easily checks $(\langle g^{\alpha\beta} dg_{\alpha\beta}/dt \rangle = 0)$. The volume preserving property of this flow allows to intuitively understand that the volume of

a 3-manifold in the asymptotic metric defined by the Ricci flow is topological invariant. The fixed points of the flow serve as canonical representatives for the topological equivalence classes of 3-manifolds. These 3-manifolds (for instance hyperbolic 3-manifolds with constant sectional curvatures) are highly symmetric. This is easy to understand since the flow is dissipative and destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called Maxwell flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

1. First of all, the vanishing of the trace of Maxwell's energy momentum tensor codes for the volume preserving character of the flow defined as

$$\frac{dg_{\alpha\beta}}{dt} = T_{\alpha\beta} . (2.5.14)$$

Taking covariant divergence on both sides and assuming that d/dt and D_{α} commute, one obtains that $T^{\alpha\beta}$ is divergenceless.

This is true if one assumes Einstein's equations with cosmological term. This gives

$$\frac{dg_{\alpha\beta}}{dt} = kG_{\alpha\beta} + \Lambda g_{\alpha\beta} = kR_{\alpha\beta} + \left(-\frac{kR}{2} + \Lambda\right)g_{\alpha\beta} \quad . \tag{2.5.15}$$

The trace of this equation gives that the curvature scalar is constant. Note that the value of the Kähler coupling strength plays a highly non-trivial role in these equations and it is quite possible that solutions exist only for some critical values of α_K . Quantum criticality should fix the allow value triplets (G, Λ, α_K) apart from overall scaling

$$(G, \Lambda, \alpha_K) \to (xG, \Lambda/x, x\alpha_K)$$
.

Fixing the value of G fixes the values remaining parameters at critical points. The rescaling of the parameter t induces a scaling by x.

2. By taking trace one obtains the already mentioned condition fixing the curvature to be constant, and one can write

$$\frac{dg_{\alpha\beta}}{dt} = kR_{\alpha\beta} - \Lambda g_{\alpha\beta} \quad . \tag{2.5.16}$$

Note that in the recent case $R_{avg} = R$ holds true since curvature scalar is constant. The fixed points of the flow would be Einstein manifolds (see http://tinyurl.com/ybrnakuu) [A6, A59] satisfying

$$R_{\alpha\beta} = \frac{\Lambda}{k} g_{\alpha\beta} \tag{2.5.17}$$

3. It is by no means obvious that continuous flow is possible. The condition that Einstein-Maxwell equations are satisfied might pick up from a completely general Maxwell flow a discrete subset as solutions of Einstein-Maxwell equations with a cosmological term. If so, one could assign to this subset a sequence of values t_n of the flow parameter t.

4. I do not know whether 3-dimensionality is somehow absolutely essential for getting the topological classification of closed 3-manifolds using Ricci flow. This ignorance allows me to pose some innocent questions. Could one have a canonical representation of 4-geometries as spaces with constant Ricci scalar? Could one select one particular Einstein space in the class fourmetrics and could the ratio Λ/k represent topological invariant if one normalizes metric or curvature scalar suitably. In the 3-dimensional case curvature scalar is normalized to unity. In the recent case this normalization would give $k = 4\Lambda$ in turn giving $R_{\alpha\beta} = g_{\alpha\beta}/4$. Does this mean that there is only single fixed point in local sense, analogous to black hole toward which all geometries are driven by the Maxwell flow? Does this imply that only the 4-volume of the original space would serve as a topological invariant?

Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow would be the appropriate term and provides families of preferred extremals. Since space-time surfaces inside CD are the basic physical objects are in TGD framework, a possible interpretation of these families would be as flows describing physical dissipation as a four-dimensional phenomenon polishing details from the space-time surface interpreted as an analog of Bohr orbit.

1. The flow is now induced by a vector field $j^k(x,t)$ of the space-time surface having values in the tangent bundle of embedding space $M^4 \times CP_2$. In the most general case one has Kähler flow without the Einstein equations. This flow would be defined in the space of all space-time surfaces or possibly in the space of all extremals. The flow equations reduce to

$$h_{kl}D_{\alpha}j^{k}(x,t)D_{\beta}h^{l} = \frac{1}{2}T_{\alpha\beta}$$
 (2.5.18)

The left hand side is the projection of the covariant gradient $D_{\alpha}j^k(x,t)$ of the flow vector field $j^k(x,t)$ to the tangent space of the space-time surface. D_{alpha} is covariant derivative taking into account that j^k is embedding space vector field. For a fixed point space-time surface this projection must vanish assuming that this space-time surface reachable. A good guess for the asymptotia is that the divergence of Maxwell energy momentum tensor vanishes and that Einstein's equations with cosmological constant are well-defined.

Asymptotes corresponds to vacuum extremals. In Euclidian regions CP_2 type vacuum extremals and in Minkowskian regions to any space-time surface in any 6-D sub-manifold $M^4 \times Y^2$, where Y^2 is Lagrangian sub-manifold of CP_2 having therefore vanishing induced Kähler form. Symplectic transformations of CP_2 combined with diffeomorphisms of M^4 give new Lagrangian manifolds. One would expect that vacuum extremals are approached but never reached at second extreme for the flow.

If one assumes Einstein's equations with a cosmological term, allowed vacuum extremals must be Einstein manifolds. For CP_2 type vacuum extremals this is the case. It is quite possible that these fixed points do not actually exist in Minkowskian sector, and could be replaced with more complex asymptotic behavior such as limit, chaos, or strange attractor.

2. The flow could be also restricted to the space of preferred extremals. Assuming that Einstein Maxwell equations indeed hold true, the flow equations reduce to

$$h_{kl}D_{\alpha}j^{k}(x,t)\partial_{\beta}h^{l} = \frac{1}{2}(kR_{\alpha\beta} - \Lambda g_{\alpha\beta}) . \qquad (2.5.19)$$

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the space of all 4-surfaces.

3. One can also consider a situation in which $j^k(x,t)$ is replaced with $j^k(h,t)$ defining a flow in the entire embedding space. This assumption is probably too restrictive. In this case the equations reduce to

$$(D_r j_l(x,t) + D_l j_r) \partial_\alpha h^r \partial_\beta h^l = k R_{\alpha\beta} - \Lambda g_{\alpha\beta} .$$

$$(2.5.20)$$

Here D_r denotes covariant derivative. Asymptotia is achieved if the tensor $D_k j_l + D_k j_l$ becomes orthogonal to the space-time surface. Note for that Killing vector fields of H the left hand side vanishes identically. Killing vector fields are indeed symmetries of also asymptotic states.

It must be made clear that the existence of a continuous flow in the space of preferred extremals might be too strong a condition. Already the restriction of the general Maxwell flow in the space of metrics to solutions of Einstein-Maxwell equations with cosmological term might lead to discretization, and the assumption about reprentability as 4-surface in $M^4 \times CP_2$ would give a further condition reducing the number of solutions. On the other hand, one might consiser a possibility of a continuous flow in the space of constant Ricci scalar metrics with a fixed 4-volume and having hyperbolic spaces as the most symmetric representative.

Dissipation, self organization, transition to chaos, and coupling constant evolution

A beautiful connection with concepts like dissipation, self-organization, transition to chaos, and coupling constant evolution suggests itself.

1. It is not at all clear whether the vacuum extremal limits of the preferred extremals can correspond to Einstein spaces except in special cases such as CP_2 type vacuum extremals isometric with CP_2 . The imbeddability condition however defines a constraint force which might well force asymptotically more complex situations such as limit cycles and strange attractors. In ordinary dissipative dynamics an external energy feed is essential prerequisite for this kind of non-trivial self-organization patterns.

In the recent case the external energy feed could be replaced by the constraint forces due to the imbeddability condition. It is not too difficult to imagine that the flow (if it exists!) could define something analogous to a transition to chaos taking place in a stepwise manner for critical values of the parameter t. Alternatively, these discrete values could correspond to those values of t for which the preferred extremal property holds true for a general Maxwell flow in the space of 4-metrics. Therefore the preferred extremals of Kähler action could emerge as one-parameter (possibly discrete) families describing dissipation and self-organization at the level of space-time dynamics.

2. For instance, one can consider the possibility that in some situations Einstein's equations split into two mutually consistent equations of which only the first one is independent

$$x J^{\alpha}{}_{\nu} J^{\nu\beta} = R^{\alpha\beta} ,$$

$$L_{K} = x J^{\alpha}{}_{\nu} J^{\nu\beta} = 4\Lambda ,$$

$$x = \frac{1}{16\pi\alpha_{K}} .$$
(2.5.21)

Note that the first equation indeed gives the second one by tracing. This happens for CP_2 type vacuum extremals.

Kähler action density would reduce to cosmological constant which should have a continuous spectrum if this happens always. A more plausible alternative is that this holds true only asymptotically. In this case the flow equation could not lead arbitrary near to vacuum extremal, and one can think of situation in which $L_K = 4\Lambda$ defines an analog of limiting

cycle or perhaps even strange attractor. In any case, the assumption would allow to deduce the asymptotic value of the action density which is of utmost importance from calculational point of view: action would be simply $S_K = 4\Lambda V_4$ and one could also say that one has minimal surface with Λ taking the role of string tension.

- 3. One of the key ideas of TGD is quantum criticality implying that Kähler coupling strength is analogous to critical temperature. Second key idea is that p-adic coupling constant evolution represents discretized version of continuous coupling constant evolution so that each p-adic prime would correspond a fixed point of ordinary coupling constant evolution in the sense that the 4-volume characterized by the p-adic length scale remains constant. The invariance of the geometric and thus geometric parameters of hyperbolic 4-manifold under the Kähler flow would conform with the interpretation as a flow preserving scale assignable to a given p-adic prime. The continuous evolution in question (if possible at all!) might correspond to a fixed p-adic prime. Also the hierarchy of Planck constants relates to this picture naturally. Planck constant $\hbar_{eff} = n\hbar$ corresponds to a multi-furcation generating n-sheeted structure and certainly affecting the fundamental group.
- 4. One can of course question the assumption that a continuous flow exists. The property of being a solution of Einstein-Maxwell equations, imbeddability property, and preferred extremal property might allow allow only discrete sequences of space-time surfaces perhaps interpretable as orbit of an iterated map leading gradually to a fractal limit. This kind of discrete sequence might be also be selected as preferred extremals from the orbit of Maxwell flow without assuming Einstein-Maxwell equations. Perhaps the discrete p-adic coupling constant evolution could be seen in this manner and be regarded as an iteration so that the connection with fractality would become obvious too.

Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and almost constancy of L_K suggest an interpretation in terms of 4-D variant of thermodynamics natural in zero energy ontology (ZEO), where physical states are analogs for pairs of initial and final states of quantum event are quantum superpositions of classical time evolutions. Quantum theory becomes a "square root" of thermodynamics so that 4-D analog of thermodynamics might even replace ordinary thermodynamics as a fundamental description. If so this 4-D thermodynamics should be qualitatively consistent with the ordinary 3-D thermodynamics.

- 1. The first naïve guess would be the interpretation of the action density L_K as an analog of energy density $e = E/V_3$ and that of R as the analog to entropy density $s = S/V_3$. The asymptotic states would be analogs of thermodynamical equilibria having constant values of L_K and R.
- 2. Apart from an overall sign factor ϵ to be discussed, the analog of the first law de = Tds pdV/V would be

$$dL_K = kdR + \Lambda \frac{dV_4}{V_4}$$
 .

One would have the correspondences $S \to \epsilon R V_4$, $e \to \epsilon L_K$ and $k \to T$, $p \to -\Lambda$. $k \propto 1/G$ indeed appears formally in the role of temperature in Einstein's action defining a formal partition function via its exponent. The analog of second law would state the increase of the magnitude of $\epsilon R V_4$ during the Kähler flow.

- 3. One must be very careful with the signs and discuss Euclidian and Minkowskian regions separately. Concerning purely thermodynamic aspects at the level of vacuum functional Euclidian regions are those which matter.
 - (a) For CP_2 type vacuum extremals $L_K \propto E^2 + B^2$, $R = \Lambda/k$, and Λ are positive. In thermodynamical analogy for $\epsilon = 1$ this would mean that pressure is negative.
(b) In Minkowskian regions the value of $R = \Lambda/k$ is negative for $\Lambda < 0$ suggested by the large abundance of 4-manifolds allowing hyperbolic metric and also by cosmological considerations. The asymptotic formula $L_K = 4\Lambda$ considered above suggests that also Kähler action is negative in Minkowskian regions for magnetic flux tubes dominating in TGD inspired cosmology: the reason is that the magnetic contribution to the action density $L_K \propto E^2 - B^2$ dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian regions assuming that the evolution by quantum jumps has Kähler flow as a spacetime correlate.

1. In Euclidian regions the choice $\epsilon = 1$ seems to be more reasonable one. In Euclidian regions $-\Lambda$ as the analog of pressure would be negative, and asymptotically (that is for CP_2 type vacuum extremals) its value would be proportional to $\Lambda \propto 1/GR^2$, where R denotes CP_2 radius defined by the length of its geodesic circle.

A possible interpretation for negative pressure is in terms of string tension effectively inducing negative pressure (note that the solutions of the Kähler-Dirac equation indeed assign a string to the wormhole contact). The analog of the second law would require the increase of RV_4 in quantum jumps. The magnitudes of L_K , R, V_4 and Λ would be reduced and approach their asymptotic values. In particular, V_4 would approach asymptotically the volume of CP_2 .

2. In Minkowskian regions Kähler action contributes to the vacuum functional a phase factor analogous to an imaginary exponent of action serving in the role of Morse function so that thermodynamics interpretation can be questioned. Despite this one can check whether thermodynamic interpretation can be considered. The choice $\epsilon = -1$ seems to be the correct choice now. $-\Lambda$ would be analogous to a negative pressure whose gradually decreases. In 3-D thermodynamics it is natural to assign negative pressure to the magnetic flux tube like structures as their effective string tension defined by the density of magnetic energy per unit length. $-R \ge 0$ would entropy and $-L_K \ge 0$ would be the analog of energy density.

 $R = \Lambda/k$ and the reduction of Λ during cosmic evolution by quantum jumps suggests that the larger the volume of CD and thus of (at least) Minkowskian space-time sheet the smaller the negative value of Λ .

Assume the recent view about state function reduction explaining how the arrow of geometric time is induced by the quantum jump sequence defining experienced time [K6]. According to this view zero energy states are quantum superpositions over CDs of various size scales but with common tip, which can correspond to either the upper or lower light-like boundary of CD. The sequence of quantum jumps the gradual increase of the average size of CD in the quantum superposition and therefore that of average value of V_4 . On the other hand, a gradual decrease of both $-L_K$ and -R looks physically very natural. If Kähler flow describes the effect of dissipation by quantum jumps in ZEO then the space-time surfaces would gradually approach nearly vacuum extremals with constant value of entropy density -R but gradually increasing 4-volume so that the analog of second law stating the increase of $-RV_4$ would hold true.

3. The interpretation of -R > 0 as negentropy density assignable to entanglement is also possible and is consistent with the interpretation in terms of second law. This interpretation would only change the sign factor ϵ in the proposed formula. Otherwise the above arguments would remain as such.

2.5.4 Could Correlation Functions, S-Matrix, And Coupling Constant Evolution Be Coded The Statistical Properties Of Preferred Extremals?

How to calculate the correlation functions and coupling constant evolution has remained a basic unresolved challenge. Generalized Feynman diagrams provide a powerful vision which however does not help in practical calculations. Some big idea has been lacking. Quantum classical correspondence states that all aspects of quantum states should have correlates in the geometry of preferred extremals. In particular, various elementary particle propagators should have a representation as properties of preferred extremals. This would allow to realize the old dream about being able to say something interesting about coupling constant evolution although it is not yet possible to calculate the M-matrices and U-matrix. The general structure of U-matrix is however understood [K46]. Hitherto everything that has been said about coupling constant evolution has been rather speculative arguments except for the general vision that it reduces to a discrete evolution defined by p-adic length scales. General first principle definitions are however much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum state should code for its properties. By quantum classical correspondence these correlation functions should have counterparts in the geometry of preferred extremals. Even more: these classical counterparts for a given preferred extremal ought to be identical with the quantum correlation functions for the superposition of preferred extremals. This correspondence could be called quantum ergodicity by its analogy with ordinary ergodicity stating that the member of ensemble becomes representative of ensemble.

This principle would be a quantum generalization of ergodic theorem stating that the time evolution of a single member of ensemble represents the ensemble statistically. This symmetry principle analogous to holography might allow to fix S-matrix uniquely even in the case that the hermitian square root of the density matrix appearing in the M-matrix would lead to a breaking of quantum ergodicity as also 4-D spin glass degeneracy suggests.

This principle would allow to deduce correlation functions from the statistical properties of single preferred extremal alone using just classical intuition. Also coupling constant evolution would be coded by the statistical properties of preferred extremals. Quantum ergodicity would mean an enormous simplification since one could avoid the horrible conceptual complexities involved with the functional integrals over WCW.

This might of course be too optimistic guess. If a sub-algebra of symplectic algebra acts as gauge symmetries of the preferred extremals in the sense that corresponding Noether charges vanish, it can quite well be that correlations functions correspond to averages for extremals belonging to single conformal equivalence class.

- 1. The marvellous implication of quantum ergodicity would be that one could calculate everything solely classically using the classical intuition - the only intuition that we have. Quantum ergodicity would also solve the paradox raised by the quantum classical correspondence for momentum eigenstates. Any preferred extremal in their superposition defining momentum eigenstate should code for the momentum characterizing the superposition itself. This is indeed possible if every extremal in the superposition codes the momentum to the properties of classical correlation functions which are identical for all of them.
- 2. The only manner to possibly achieve quantum ergodicity is in terms of the statistical properties of the preferred extremals. It should be possible to generalize the ergodic theorem stating that the properties of statistical ensemble are represented by single space-time evolution in the ensemble of time evolutions. Quantum superposition of classical worlds would effectively reduce to single classical world as far as classical correlation functions are considered. The notion of finite measurement resolution suggests that one must state this more precisely by adding that classical correlation functions are calculated in a given UV and IR resolutions meaning UV cutoff defined by the smallest CD and IR cutoff defined by the largest CD present.
- 3. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that this quantum ergodic theorem must be broken. In the case of the ordinary spin classes one has not only statistical average for a fixed Hamiltonian but a statistical average over Hamiltonians. There is a probability distribution over the coupling parameters appearing in the Hamiltonian. Maybe the quantum counterpart of this is needed to predict the physically measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with different classical correlation functions? This kind of average is indeed taken in density matrix formalism. Or could it be that the square root of thermodynamics defined by ZEO actually gives automatically rise to this average? The eigenvalues of the "hermitian square root" of the density matrix would code for components of the state characterized by different classical correlation functions. One could assign these contributions to different "phases".

- 4. Quantum classical correspondence in statistical sense would be very much like holography (now individual classical state represents the entire quantum state). Quantum ergodicity would pose a rather strong constraint on quantum states. This symmetry principle could actually fix the spectrum of zero energy states to a high degree and fix therefore the Mmatrices given by the product of hermitian square root of density matrix and unitary Smatrix and unitary U-matrix constructible as inner products of M-matrices associated with CDs with various size scales [K46].
- 5. In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the postulate that the space-time geometry provides a symbolic representation for the quantum states and also for the contents of consciousness assignable to quantum jumps between quantum states. Quantum ergodicity would realize this strongly self-referential looking condition. The positive and negative energy parts of zero energy state would be analogous to the initial and final states of quantum jump and the classical correlation functions would code for the contents of consciousness like written formulas code for the thoughts of mathematician and provide a sensory feedback.

How classical correlation functions should be defined?

1. General Coordinate Invariance and Lorentz invariance are the basic constraints on the definition. These are achieved for the space-time regions with Minkowskian signature and 4-D M^4 projection if linear Minkowski coordinates are used. This is equivalent with the contraction of the indices of tensor fields with the space-time projections of M^4 Killing vector fields representing translations. Accepting the generalization, there is no need to restrict oneself to 4-D M^4 projection and one can also consider also Euclidian regions identifiable as lines of generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian and Euclidian space-time regions and various phases associated with them. Also CP_2 Killing vector fields can be projected to space-time surface and give a representation for classical gluon fields. These in turn can be contracted with M^4 Killing vectors giving rise to gluon fields as analogs of graviton fields but with second polarization index replaced with color index.

- 2. The standard definition for the correlation functions associated with classical time evolution is the appropriate starting point. The correlation function $G_{XY}(\tau)$ for two dynamical variables X(t) and Y(t) is defined as the average $G_{XY}(\tau) = \int_T X(t)Y(t+\tau)dt/T$ over an interval of length T, and one can also consider the limit $T \to \infty$. In the recent case one would replace τ with the difference $m_1 - m_2 = m$ of M^4 coordinates of two points at the preferred extremal and integrate over the points of the extremal to get the average. The finite time interval T is replaced with the volume of causal diamond in a given length scale. Zero energy state with given quantum numbers for positive and negative energy parts of the state defines the initial and final states between which the fields appearing in the correlation functions are defined.
- 3. What correlation functions should be considered? Certainly one could calculate correlation functions for the induced spinor connection given electro-weak propagators and correlation functions for CP_2 Killing vector fields giving correlation functions for gluon fields using the description in terms of Killing vector fields. If one can uniquely separate from the Fourier transform uniquely a term of form $Z/(p^2 m^2)$ by its momentum dependence, the coefficient Z can be identified as coupling constant squared for the corresponding gauge potential component and one can in principle deduce coupling constant evolution purely classically. One can imagine of calculating spinorial propagators for string world sheets in the same manner. Note that also the dependence on color quantum numbers would be present so that in principle all that is needed could be calculated for a single preferred extremal without

the need to construct QFT limit and to introduce color quantum numbers of fermions as spin like quantum numbers (color quantum numbers corresponds to CP_2 partial wave for the tip of the CD assigned with the particle).

Many detailed speculations about coupling constant evolution to be discussed in the sections below must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion of quantum ergodicity could however be one of the really deep ideas about coupling constant evolution comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity (briefly QE) would also state something extremely non-trivial also about the construction of correlation functions and S-matrix. Because this principle is so new, the rest of the chapter does not yet contain any applications of QE. This should not lead the reader to under-estimate the potential power of QE.

2.6 About Deformations Of Known Extremals Of Kähler Action

I have done a considerable amount of speculative guesswork to identify what I have used to call preferred extremals of Kähler action. The difficulty is that the mathematical problem at hand is extremely non-linear and that I do not know about existing mathematical literature relevant to the situation. One must proceed by trying to guess the general constraints on the preferred extremals which look physically and mathematically plausible. The hope is that this net of constraints could eventually chrystallize to Eureka! Certainly the recent speculative picture involves also wrong guesses. The need to find explicit ansatz for the deformations of known extremals based on some common principles has become pressing. The following considerations represent an attempt to combine the existing information to achieve this.

2.6.1 What Might Be The Common Features Of The Deformations Of Known Extremals

The dream is to discover the deformations of all known extremals by guessing what is common to all of them. One might hope that the following list summarizes at least some common features.

Effective three-dimensionality at the level of action

 $\mathbf{78}$

- 1. Holography realized as effective 3-dimensionality also at the level of action requires that it reduces to 3-dimensional effective boundary terms. This is achieved if the contraction $j^{\alpha}A_{\alpha}$ vanishes. This is true if j^{α} vanishes or is light-like, or if it is proportional to instanton current in which case current conservation requires that CP_2 projection of the space-time surface is 3-dimensional. The first two options for j have a realization for known extremals. The status of the third option - proportionality to instanton current - has remained unclear.
- 2. As I started to work again with the problem, I realized that instanton current could be replaced with a more general current $j = *B \wedge J$ or concretely: $j^{\alpha} = \epsilon^{\alpha\beta\gamma\delta}B_{\beta}J_{\gamma\delta}$, where B is vector field and CP_2 projection is 3-dimensional, which it must be in any case. The contractions of j appearing in field equations vanish automatically with this ansatz.
- 3. Almost topological QFT property in turn requires the reduction of effective boundary terms to Chern-Simons terms: this is achieved by boundary conditions expressing weak form of electric magnetic duality. If one generalizes the weak form of electric-magnetic duality to $J = \Phi * J$ one has $B = d\Phi$ and j has a vanishing divergence for 3-D CP_2 projection. This is clearly a more general solution ansatz than the one based on proportionality of j with instanton current and would reduce the field equations in concise notation to $Tr(TH^k) = 0$.
- 4. Any of the alternative properties of the Kähler current implies that the field equations reduce to $Tr(TH^k) = 0$, where T and H^k are shorthands for Maxwellian energy momentum tensor and second fundamental form and the product of tensors is obvious generalization of matrix product involving index contraction.

Could Einstein's equations emerge dynamically?

For j^{α} satisfying one of the three conditions, the field equations have the same form as the equations for minimal surfaces except that the metric g is replaced with Maxwell energy momentum tensor T.

- 1. This raises the question about dynamical generation of small cosmological constant Λ : $T = \Lambda g$ would reduce equations to those for minimal surfaces. For $T = \Lambda g$ Kähler-Dirac gamma matrices would reduce to induced gamma matrices and the Kähler-Dirac operator would be proportional to ordinary Dirac operator defined by the induced gamma matrices. One can also consider weak form for $T = \Lambda g$ obtained by restricting the consideration to a sub-space of tangent space so that space-time surface is only "partially" minimal surface but this option is not so elegant although necessary for other than CP_2 type vacuum extremals.
- 2. What is remarkable is that $T = \Lambda g$ implies that the divergence of T which in the general case equals to $j^{\beta}J^{\alpha}_{\beta}$ vanishes. This is guaranteed by one of the conditions for the Kähler current. Since also Einstein tensor has a vanishing divergence, one can ask whether the condition to $T = \kappa G + \Lambda g$ could the general condition. This would give Einstein's equations with cosmological term besides the generalization of the minimal surface equations. GRT would emerge dynamically from the non-linear Maxwell's theory although in slightly different sense as conjectured [K78] ! Note that the expression for G involves also second derivatives of the embedding space coordinates so that actually a partial differential equation is in question. If field equations reduce to purely algebraic ones, as the basic conjecture states, it is possible to have $Tr(GH^k) = 0$ and $Tr(gH^k) = 0$ separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave analogs of Einstein's equations as a definition of conserved four-momentum currents. The recent proposal would give the analog of ordinary Einstein equations as a dynamical constraint relating Maxwellian energy momentum tensor to Einstein tensor and metric.

- 3. Minimal surface property is physically extremely nice since field equations can be interpreted as a non-linear generalization of massless wave equation: something very natural for nonlinear variant of Maxwell action. The theory would be also very "stringy" although the fundamental action would not be space-time volume. This can however hold true only for Euclidian signature. Note that for CP_2 type vacuum extremals Einstein tensor is proportional to metric so that for them the two options are equivalent. For their small deformations situation changes and it might happen that the presence of G is necessary. The GRT limit of TGD discussed in [K78] [L11] indeed suggests that CP_2 type solutions satisfy Einstein's equations with large cosmological constant and that the small observed value of the cosmological constant is due to averaging and small volume fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).
- 4. For massless extremals and their deformations $T = \Lambda g$ cannot hold true. The reason is that for massless extremals energy momentum tensor has component T^{vv} which actually quite essential for field equations since one has $H_{vv}^k = 0$. Hence for massless extremals and their deformations $T = \Lambda g$ cannot hold true if the induced metric has Hamilton-Jacobi structure meaning that g^{uu} and g^{vv} vanish. A more general relationship of form $T = \kappa G + \Lambda G$ can however be consistent with non-vanishing T^{vv} but require that deformation has at most 3-D CP_2 projection (CP_2 coordinates do not depend on v).
- 5. The non-determinism of vacuum extremals suggest for their non-vacuum deformations a conflict with the conservation laws. In, also massless extremals are characterized by a non-determinism with respect to the light-like coordinate but like-likeness saves the situation. This suggests that the transformation of a properly chosen time coordinate of vacuum extremal to a light-like coordinate in the induced metric combined with Einstein's equations in the induced metric of the deformation could allow to handle the non-determinism.

Are complex structure of CP_2 and Hamilton-Jacobi structure of M^4 respected by the deformations?

The complex structure of CP_2 and Hamilton-Jacobi structure of M^4 could be central for the understanding of the preferred extremal property algebraically.

1. There are reasons to believe that the Hermitian structure of the induced metric ((1, 1) structure in complex coordinates) for the deformations of CP_2 type vacuum extremals could be crucial property of the preferred extremals. Also the presence of light-like direction is also an essential elements and 3-dimensionality of M^4 projection could be essential. Hence a good guess is that allowed deformations of CP_2 type vacuum extremals are such that (2, 0) and (0, 2) components the induced metric and/or of the energy momentum tensor vanish. This gives rise to the conditions implying Virasoro conditions in string models in quantization:

$$g_{\xi^i\xi^j} = 0$$
 , $g_{\overline{\xi}^i\overline{\xi}^j} = 0$, $i, j = 1, 2$. (2.6.1)

Holomorphisms of CP_2 preserve the complex structure and Virasoro conditions are expected to generalize to 4-dimensional conditions involving two complex coordinates. This means that the generators have two integer valued indices but otherwise obey an algebra very similar to the Virasoro algebra. Also the super-conformal variant of this algebra is expected to make sense.

These Virasoro conditions apply in the coordinate space for CP_2 type vacuum extremals. One expects similar conditions hold true also in field space, that is for M^4 coordinates.

2. The integrable decomposition $M^4(m) = M^2(m) + E^2(m)$ of M^4 tangent space to longitudinal and transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi structurecould be a very general property of preferred extremals and very natural since non-linear Maxwellian electrodynamics is in question. This decomposition led rather early to the introduction of the analog of complex structure in terms of what I called Hamilton-Jacobi coordinates (u, v, w, \overline{w}) for M^4 . (u, v) defines a pair of light-like coordinates for the local longitudinal space $M^2(m)$ and (w, \overline{w}) complex coordinates for $E^2(m)$. The metric would not contain any cross terms between $M^2(m)$ and $E^2(m)$: $g_{uw} = g_{vw} = g_{u\overline{w}} = g_{v\overline{w}} = 0$.

A good guess is that the deformations of massless extremals respect this structure. This condition gives rise to the analog of the constraints leading to Virasoro conditions stating the vanishing of the non-allowed components of the induced metric. $g_{uu} = g_{vv} = g_{ww} = g_{\overline{ww}} = g_{\overline{ww}} = g_{uw} = g_{vw} = g_{vw}$

Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically conditions stating that the Maxwellian energy momentum tensor has no common index pairs with the second fundamental form. For the deformations of CP_2 type vacuum extremals T is a complex tensor of type (1, 1) and second fundamental form H^k a tensor of type (2, 0) and (0, 2) so that $Tr(TH^k) =$ is true. This requires that second light-like coordinate of M^4 is constant so that the M^4 projection is 3-dimensional. For Minkowskian signature of the induced metric Hamilton-Jacobi structure replaces conformal structure. Here the dependence of CP_2 coordinates on second lightlike coordinate of $M^2(m)$ only plays a fundamental role. Note that now T^{vv} is non-vanishing (and light-like). This picture generalizes to the deformations of cosmic strings and even to the case of vacuum extremals.

2.6.2 What Small Deformations Of *CP*₂ Type Vacuum Extremals Could Be?

I was led to these arguments when I tried find preferred extremals of Kähler action, which would have 4-D CP_2 and M^4 projections - the Maxwell phase analogous to the solutions of Maxwell's equations that I conjectured long time ago. It however turned out that the dimensions of the projections can be $(D_{M^4} \leq 3, D_{CP_2} = 4)$ or $(D_{M^4} = 4, D_{CP_2} \leq 3)$. What happens is essentially breakdown of linear superposition so that locally one can have superposition of modes which have 4-D wave vectors in the same direction. This is actually very much like quantization of radiation field to photons now represented as separate space-time sheets and one can say that Maxwellian superposition corresponds to union of separate photonic space-time sheets in TGD.

Approximate linear superposition of fields is fundamental in standard physics framework and is replaced in TGD with a linear superposition of effects of classical fields on a test particle topologically condensed simultaneously to several space-time sheets. One can say that linear superposition is replaced with a disjoint union of space-time sheets. In the following I shall restrict the consideration to the deformations of CP_2 type vacuum extremals.

Solution ansatz

I proceed by the following arguments to the ansatz.

1. Effective 3-dimensionality for action (holography) requires that action decomposes to vanishing $j^{\alpha}A_{\alpha}$ term + total divergence giving 3-D "boundary" terms. The first term certainly vanishes (giving effective 3-dimensionality) for

$$D_{\beta}J^{\alpha\beta} = j^{\alpha} = 0$$
 .

Empty space Maxwell equations, something extremely natural. Also for the proposed GRT limit these equations are true.

2. How to obtain empty space Maxwell equations $j^{\alpha} = 0$? The answer is simple: assume self duality or its slight modification:

$$J = *J$$

holding for CP_2 type vacuum extremals or a more general condition

$$J = k * J ,$$

In the simplest situation k is some constant not far from unity. * is Hodge dual involving 4-D permutation symbol. k = constant requires that the determinant of the induced metric is apart from constant equal to that of CP_2 metric. It does not require that the induced metric is proportional to the CP_2 metric, which is not possible since M^4 contribution to metric has Minkowskian signature and cannot be therefore proportional to CP_2 metric.

One can consider also a more general situation in which k is scalar function as a generalization of the weak electric-magnetic duality. In this case the Kähler current is non-vanishing but divergenceless. This also guarantees the reduction to $Tr(TH^k) = 0$. In this case however the proportionality of the metric determinant to that for CP_2 metric is not needed. This solution ansatz becomes therefore more general.

3. Field equations reduce with these assumptions to equations differing from minimal surfaces equations only in that metric g is replaced by Maxwellian energy momentum tensor T. Schematically:

$$Tr(TH^k) = 0 ,$$

where T is the Maxwellian energy momentum tensor and H^k is the second fundamental form - asymmetric 2-tensor defined by covariant derivative of gradients of embedding space coordinates.

How to satisfy the condition $Tr(TH^k) = 0$?

It would be nice to have minimal surface equations since they are the non-linear generalization of massless wave equations. It would be also nice to have the vanishing of the terms involving Kähler current in field equations as a consequence of this condition. Indeed, $T = \kappa G + \Lambda g$ implies this. In the case of CP_2 vacuum extremals one cannot distinguish between these options since CP_2 itself is constant curvature space with $G \propto g$. Furthermore, if G and g have similar tensor structure the algebraic field equations for G and g are satisfied separately so that one obtains minimal surface property also now. In the following minimal surface option is considered.

1. The first opton is achieved if one has

$$T = \Lambda g$$
 .

Maxwell energy momentum tensor would be proportional to the metric! One would have dynamically generated cosmological constant! This begins to look really interesting since it appeared also at the proposed GRT limit of TGD [L11] (see http://tinyurl.com/hzkldnb). Note that here also non-constant value of Λ can be considered and would correspond to a situation in which k is scalar function: in this case the the determinant condition can be dropped and one obtains just the minimal surface equations.

2. Very schematically and forgetting indices and being sloppy with signs, the expression for T reads as

$$T = JJ - g/4Tr(JJ) \quad .$$

Note that the product of tensors is obtained by generalizing matrix product. This should be proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on metric and is constant.

For CP_2 type vacuum extremals one obtains

$$T = -g + g = 0$$

Cosmological constant would vanish in this case.

3. Could it happen that for deformations a small value of cosmological constant is generated? The condition would reduce to

$$JJ = (\Lambda - 1)g$$
 .

 Λ must relate to the value of parameter k appearing in the generalized self-duality condition. For the most general ansatz Λ would not be constant anymore.

This would generalize the defining condition for Kähler form

$$JJ = -g$$
 $(i^2 = -1 geometrically)$

stating that the square of Kähler form is the negative of metric. The only modification would be that index raising is carried out by using the induced metric containing also M^4 contribution rather than CP_2 metric.

4. Explicitly:

$$J_{\alpha\mu}J^{\mu}_{\ \beta} = (\Lambda - 1)g_{\alpha\beta}$$
.

Cosmological constant would measure the breaking of Kähler structure. By writing g = s + mand defining index raising of tensors using CP_2 metric and their product accordingly, this condition can be also written as

$$Jm = (\Lambda - 1)mJ$$

If the parameter k is constant, the determinant of the induced metric must be proportional to the CP_2 metric. If k is scalar function, this condition can be dropped. Cosmological constant would not be constant anymore but the dependence on k would drop out from the field equations and one would hope of obtaining minimal surface equations also now. It however seems that the dimension of M^4 projection cannot be four. For 4-D M^4 projection the contribution of the M^2 part of the M^4 metric gives a non-holomorphic contribution to CP_2 metric and this spoils the field equations.

For $T = \kappa G + \Lambda g$ option the value of the cosmological constant is large - just as it is for the proposed GRT limit of TGD [K78] [L11]. The interpretation in this case is that the average value of cosmological constant is small since the portion of space-time volume containing generalized Feynman diagrams is very small.

More detailed ansatz for the deformations of CP_2 type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the induced metric is apart from constant conformal factor the metric of CP_2 . This would guarantee self-duality apart from constant factor and $j^{\alpha} = 0$. Metric would be in complex CP_2 coordinates tensor of type (1, 1) whereas CP_2 Riemann connection would have only purely holomorphic or anti-holomorphic indices. Therefore CP_2 contributions in $Tr(TH^k)$ would vanish identically. M^4 degrees of freedom however bring in difficulty. The M^4 contribution to the induced metric should be proportional to CP_2 metric and this is impossible due to the different signatures. The M^4 contribution to the induced metric breaks its Kähler property but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of CP_2 type vacuum extremals is following.

- 1. Physical intuition suggests that M^4 coordinates can be chosen so that one has integrable decomposition to longitudinal degrees of freedom parametrized by two light-like coordinates u and v and to transversal polarization degrees of freedom parametrized by complex coordinate w and its conjugate. M^4 metric would reduce in these coordinates to a direct sum of longitudinal and transverse parts. I have called these coordinates Hamilton-Jacobi coordinates.
- 2. w would be holomorphic function of CP_2 coordinates and therefore satisfy the analog of massless wave equation. This would give hopes about rather general solution ansatz. u and v cannot be holomorphic functions of CP_2 coordinates. Unless wither u or v is constant, the induced metric would receive contributions of type (2, 0) and (0, 2) coming from u and v which would break Kähler structure and complex structure. These contributions would give no-vanishing contribution to all minimal surface equations. Therefore either u or v is constant: the coordinate line for non-constant coordinate -say u- would be analogous to the M^4 projection of CP_2 type vacuum extremal.
- 3. With these assumptions the induced metric would remain (1,1) tensor and one might hope that $Tr(TH^k)$ contractions vanishes for all variables except u because the there are no common index pairs (this if non-vanishing Christoffel symbols for H involve only holomorphic or anti-holomorphic indices in CP_2 coordinates). For u one would obtain massless wave equation expressing the minimal surface property.
- 4. If the value of k is constant the determinant of the induced metric must be proportional to the determinant of CP_2 metric. The induced metric would contain only the contribution from the transversal degrees of freedom besides CP_2 contribution. Minkowski contribution has however rank 2 as CP_2 tensor and cannot be proportional to CP_2 metric. It is however enough that its determinant is proportional to the determinant of CP_2 metric with constant

proportionality coefficient. This condition gives an additional non-linear condition to the solution. One would have wave equation for u (also w and its conjugate satisfy massless wave equation) and determinant condition as an additional condition.

The determinant condition reduces by the linearity of determinant with respect to its rows to sum of conditions involved 0, 1, 2 rows replaced by the transversal M^4 contribution to metric given if M^4 metric decomposes to direct sum of longitudinal and transversal parts. Derivatives with respect to derivative with respect to particular CP_2 complex coordinate appear linearly in this expression they can depend on u via the dependence of transversal metric components on u. The challenge is to show that this equation has (or does not have) non-trivial solutions.

5. If the value of k is scalar function the situation changes and one has only the minimal surface equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations are in question, equations reduces to non-linear generalizations of Euclidian massless wave equations, and possibly space-time dependent cosmological constant pops up dynamically. These properties are true also for the GRT limit of TGD [L11] (see http://tinyurl.com/hzkldnb).

2.6.3 Hamilton-Jacobi Conditions In Minkowskian Signature

The maximally optimistic guess is that the basic properties of the deformations of CP_2 type vacuum extremals generalize to the deformations of other known extremals such as massless extremals, vacuum extremals with 2-D CP_2 projection which is Lagrangian manifold, and cosmic strings characterized by Minkowskian signature of the induced metric. These properties would be following.

- 1. The recomposition of M^4 tangent space to longitudinal and transversal parts giving Hamilton-Jacobi structure. The longitudinal part has hypercomplex structure but the second light-like coordinate is constant: this plays a crucial role in guaranteeing the vanishing of contractions in $Tr(TH^k)$. It is the algebraic properties of g and T which are crucial. T can however have light-like component T^{vv} . For the deformations of CP_2 type vacuum extremals (1,1) structure is enough and is guaranteed if second light-like coordinate of M^4 is constant whereas wis holomorphic function of CP_2 coordinates.
- 2. What could happen in the case of massless extremals? Now one has 2-D CP_2 projection in the initial situation and CP_2 coordinates depend on light-like coordinate u and single real transversal coordinate. The generalization would be obvious: dependence on single lightlike coordinate u and holomorphic dependence on w for complex CP_2 coordinates. The constraint is $T = \Lambda g$ cannot hold true since T^{vv} is non-vanishing (and light-like). This property restricted to transversal degrees of freedom could reduce the field equations to minimal surface equations in transversal degrees of freedom. The transversal part of energy momentum tensor would be proportional to metric and hence covariantly constant. Gauge current would remain light-like but would not be given by $j = *d\phi \wedge J$. $T = \kappa G + \Lambda g$ seems to define the attractive option.

It therefore seems that the essential ingredient could be the condition

$$T = \kappa G + \lambda g$$
,

which has structure (1, 1) in both $M^2(m)$ and $E^2(m)$ degrees of freedom apart from the presence of T^{vv} component with deformations having no dependence on v. If the second fundamental form has (2, 0)+(0, 2) structure, the minimal surface equations are satisfied provided Kähler current satisfies on of the proposed three conditions and if G and g have similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints leading to Virasoro conditions in quantization to give

$$g_{uu} = 0$$
, $g_{vv} = 0$, $g_{ww} = 0$, $g_{\overline{ww}} = 0$. (2.6.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for which an identification in terms of non-local Yangian symmetry [A26] [B22, B19, B20] has been proposed [L12]. The number of conditions is four and the same as the number of independent field equations. One can consider similar conditions also for the energy momentum tensor T but allowing nonvanishing component T^{vv} if deformations has no v-dependence. This would solve the field equations if the gauge current vanishes or is light-like. On this case the number of equations is 8. First order differential equations are in question and they can be also interpreted as conditions fixing the coordinates used since there is infinite number of ways to choose the Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations in the linear case by writing the solution as a superposition of left and right propagating solutions:

$$\xi^k = f^k_+(u,w) + f^k_+(v,w) \quad . \tag{2.6.3}$$

This could guarantee that second fundamental form is of form (2, 0)+(0, 2) in both M^2 and E^2 part of the tangent space and these terms if $Tr(TH^k)$ vanish identically. The remaining terms involve contractions of T^{uw} , $T^{u\overline{w}}$ and T^{vw} , $T^{v\overline{w}}$ with second fundamental form. Also these terms should sum up to zero or vanish separately. Second fundamental form has components coming from f^k_+ and f^k_-

Second fundamental form H^k has as basic building bricks terms \hat{H}^k given by

$$\hat{H}^{k}_{\alpha\beta} = \partial_{\alpha}\partial_{\beta}h^{k} + {k \choose lm}\partial_{\alpha}h^{l}\partial_{\beta}h^{m} .$$
(2.6.4)

For the proposed ansatz the first terms give vanishing contribution to H_{uv}^k . The terms containing Christoffel symbols however give a non-vanishing contribution and one can allow only f_+^k or f_-^k as in the case of massless extremals. This reduces the dimension of CP_2 projection to D = 3.

What about the condition for Kähler current? Kähler form has components of type $J_{w\overline{w}}$ whose contravariant counterpart gives rise to space-like current component. J_{uw} and $J_{u\overline{w}}$ give rise to light-like currents components. The condition would state that the $J^{w\overline{w}}$ is covariantly constant. Solutions would be characterized by a constant Kähler magnetic field. Also electric field is represent. The interpretation both radiation and magnetic flux tube makes sense.

2.6.4 Deformations Of Cosmic Strings

In the physical applications it has been assumed that the thickening of cosmic strings to Kähler magnetic flux tubes takes place. One indeed expects that the proposed construction generalizes also to the case of cosmic strings having the decomposition $X^4 = X^2 \times Y^2 \subset M^4 \times CP_2$, where X^2 is minimal surface and Y^2 a complex homologically non-trivial sub-manifold of CP_2 . Now the starting point structure is Hamilton-Jacobi structure for $M_m^2 \times Y^2$ defining the coordinate space.

- 1. The deformation should increase the dimension of either CP_2 or M^4 projection or both. How this thickening could take place? What comes in mind that the string orbits X^2 can be interpreted as a distribution of longitudinal spaces $M^2(x)$ so that for the deformation wcoordinate becomes a holomorphic function of the natural Y^2 complex coordinate so that M^4 projection becomes 4-D but CP_2 projection remains 2-D. The new contribution to the X^2 part of the induced metric is vanishing and the contribution to the Y^2 part is of type (1, 1) and the ansatz $T = \kappa G + \Lambda g$ might be needed as a generalization of the minimal surface equations The ratio of κ and G would be determined from the form of the Maxwellian energy momentum tensor and be fixed at the limit of undeformed cosmic strong to $T = (ag(Y^2) - bg(Y^2))$. The value of cosmological constant is now large, and overall consistency suggests that $T = \kappa G + \Lambda g$ is the correct option also for the CP_2 type vacuum extremals.
- 2. One could also imagine that remaining CP_2 coordinates could depend on the complex coordinate of Y^2 so that also CP_2 projection would become 4-dimensional. The induced metric would receive holomorphic contributions in Y^2 part. As a matter fact, this option is already implied by the assumption that Y^2 is a complex surface of CP_2 .

2.6.5 Deformations Of Vacuum Extremals?

What about the deformations of vacuum extremals representable as maps from M^4 to CP_2 ?

- 1. The basic challenge is the non-determinism of the vacuum extremals. One should perform the deformation so that conservation laws are satisfied. For massless extremals there is also non-determinism but it is associated with the light-like coordinate so that there are no problems with the conservation laws. This would suggest that a properly chosen time coordinate consistent with Hamilton-Jacobi decomposition becomes light-like coordinate in the induced metric. This poses a conditions on the induced metric.
- 2. Physical intuition suggests that one cannot require $T = \Lambda g$ since this would mean that the rank of T is maximal whereas the original situation corresponds to the vanishing of T. For small deformations rank two for T looks more natural and one could think that T is proportional to a projection of metric to a 2-D subspace. The vision about the long length scale limit of TGD is that Einstein's equations are satisfied and this would suggest T = kGor $T = \kappa G + \Lambda g$. The rank of T could be smaller than four for this ansatz and this conditions binds together the values of κ and G.
- 3. These extremals have CP_2 projection which in the generic case is 2-D Lagrangian submanifold Y^2 . Again one could assume Hamilton-Jacobi coordinates for X^4 . For CP_2 one could assume Darboux coordinates (P_i, Q_i) , i = 1, 2, in which one has $A = P_i dQ^i$, and that $Y^2 \subset CP_2$ corresponds to $Q_i = constant$. In principle P_i would depend on arbitrary manner on M^4 coordinates. It might be more convenient to use as coordinates (u, v) for M^2 and (P_1, P_2) for Y^2 . This covers also the situation when M^4 projection is not 4-D. By its 2-dimensionality Y^2 allows always a complex structure defined by its induced metric: this complex structure is not consistent with the complex structure of CP_2 (Y^2 is not complex sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y^2 is a 2-dimensional sub-manifold X^2 of X^4 and defines also 2-D sub-manifold of M^4 . The following picture suggests itself. The projection of X^2 to M^4 can be seen for a suitable choice of Hamilton-Jacobi coordinates as an analog of Lagrangian sub-manifold in M^4 that is as surface for which v and Im(w) vary and u and Re(w) are constant. X^2 would be obtained by allowing uand Re(w) to vary: as a matter fact, (P_1, P_2) and (u, Re(w)) would be related to each other. The induced metric should be consistent with this picture. This would requires $g_{uRe(w)} = 0$.

For the deformations Q_1 and Q_2 would become non-constant and they should depend on the second light-like coordinate v only so that only g_{uu} and g_{uw} and $g_{u\overline{w}}$ $g_{w,w}$ and $g_{\overline{w},\overline{w}}$ receive contributions which vanish. This would give rise to the analogs of Virasoro conditions guaranteeing that T is a tensor of form (1,1) in both M^2 and E^2 indices and that there are no cross components in the induced metric. A more general formulation states that energy momentum tensor satisfies these conditions. The conditions on T might be equivalent with the conditions for g and G separately.

- 4. Einstein's equations provide an attractive manner to achieve the vanishing of effective 3dimensionality of the action. Einstein equations would be second order differential equations and the idea that a deformation of vacuum extremal is in question suggests that the dynamics associated with them is in directions transversal to Y^2 so that only the deformation is dictated partially by Einstein's equations.
- 5. Lagrangian manifolds do not involve complex structure in any obvious manner. One could however ask whether the deformations could involve complex structure in a natural manner in CP_2 degrees of freedom so that the vanishing of g_{ww} would be guaranteed by holomorphy of CP_2 complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the complex structure should relate to the geometry of CP_2 somehow. The complex coordinate defined by say $z = P_1 + iQ^1$ for the deformation suggests itself. This would suggest that at the limit when one puts $Q_1 = 0$ one obtains $P_1 = P_1(Re(w))$ for the vacuum extremals and the deformation could be seen as an analytic continuation of real function to region of complex

plane. This is in spirit with the algebraic approach. The vanishing of Kähler current requires that the Kähler magnetic field is covariantly constant: $D_z J^{z\overline{z}} = 0$ and $D_{\overline{z}} J^{z\overline{z}} = 0$.

- 6. One could consider the possibility that the resulting 3-D sub-manifold of CP_2 can be regarded as contact manifold with induced Kähler form non-vanishing in 2-D section with natural complex coordinates. The third coordinate variable- call it s- of the contact manifold and second coordinate of its transversal section would depend on time space-time coordinates for vacuum extremals. The coordinate associated with the transversal section would be continued to a complex coordinate which is holomorphic function of w and u.
- 7. The resulting thickened magnetic flux tubes could be seen as another representation of Kähler magnetic flux tubes: at this time as deformations of vacuum flux tubes rather than cosmic strings. For this ansatz it is however difficult to imagine deformations carrying Kähler electric field.

2.6.6 About The Interpretation Of The Generalized Conformal Algebras

The long-standing challenge has been finding of the direct connection between the super-conformal symmetries assumed in the construction of the geometry of the "world of classical worlds" (WCW) and possible conformal symmetries of field equations. 4-dimensionality and Minkowskian signature have been the basic problems. The recent construction provides new insights to this problem.

- 1. In the case of string models the quantization of the Fourier coefficients of coordinate variables of the target space gives rise to Kac-Moody type algebra and Virasoro algebra generators are quadratic in these. Also now Kac-Moody type algebra is expected. If one were to perform a quantization of the coefficients in Laurents series for complex CP_2 coordinates, one would obtain interpretation in terms of su(3) = u(2) + t decomposition, where t corresponds to CP_3 : the oscillator operators would correspond to generators in t and their commutator would give generators in u(2). SU(3)/SU(2) coset representation for Kac-Moody algebra would be in question. Kac-Moody algebra would be associated with the generators in both M^4 and CP_2 degrees of freedom. This kind of Kac-Moody algebra appears in quantum TGD.
- 2. The constraints on induced metric imply a very close resemblance with string models and a generalization of Virasoro algebra emerges. An interesting question is how the two algebras acting on coordinate and field degrees of freedom relate to the super-conformal algebras defined by the symplectic group of $\delta M_+^4 \times CP_2$ acting on space-like 3-surfaces at boundaries of CD and to the Kac-Moody algebras acting on light-like 3-surfaces. It has been conjectured that these algebras allow a continuation to the interior of space-time surface made possible by its slicing by 2-surfaces parametrized by 2-surfaces. The proposed construction indeed provides this kind of slicings in both M^4 and CP_2 factor.
- 3. In the recent case, the algebras defined by the Fourier coefficients of field variables would be Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would be expressed in terms of the Kac-Moody algebra in the standard Sugawara construction applied in string models. The algebra acting on field space would be analogous to the conformal algebra assignable to the symplectic algebra so that also symplectic algebra is present. Stringy pragmatist could imagine quantization of symplectic algebra by replacing CP_2 coordinates in the expressions of Hamiltonians with oscillator operators. This description would be counterpart for the construction of spinor harmonics in WCW and might provide some useful insights.
- 4. For given type of space-time surface either CP_2 or M^4 corresponds to Kac-Moody algebra but not both. From the point of view of quantum TGD it looks as that something were missing. An analogous problem was encountered at GRT limit of TGD [L11]. When Euclidian spacetime regions are allowed Einstein-Maxwell action is able to mimic standard model with a surprising accuracy but there is a problem: one obtains either color charges or M^4 charges but not both. Perhaps it is not enough to consider either CP_2 type vacuum extremal or its exterior but both to describe particle: this would give the direct product of the Minkowskian

and Euclidian algebras acting on tensor product. This does not however seem to be consistent with the idea that the two descriptions are duality related (the analog of T-duality).

2.7 About TGD counterparts of classical field configurations in Maxwell's theory

Classical physics is an exact part of TGD so that the study of extremals of dimensionally reduces 6-D Kähler action can provide a lot of intuition about quantum TGD and see how quantum-classical correspondence is realized. In the following I will try to develop further understanding about TGD counterparts of the simplest field configurations in Maxwell's theory.

In the sequel CP_2 type extremals will be considered from the point of view of quantum criticality and the view about string world sheets, their lightlike boundaries as carriers of fermion number, and the ends as point like particles as singularities acting as sources for minimal surfaces satisfying non-linear generalization of d'Alembert equation.

I will also discuss the delicacies associated with M^4 Kähler structure and its connection with what I call Hamilton-Jacobi structure and with M^8 approach based on classical number fields. I will argue that the breaking of CP symmetry associated with M^4 Kähler structure is small without any additional assumptions: this is in contrast with the earlier view.

The difference between TGD and Maxwell's theory and consider the TGD counterparts of simple em field configurations will be also discussed. Topological field quantization provides a geometric view about formation of atoms as bound states based on flux tubes as correlates for binding, and allows to identify space-time correlates for second quantization. These considerations force to take seriously the possibility that preferred extremals besides being minimal surfaces also possess generalized holomorphy reducing field equations to purely algebraic conditions and that minimal surfaces without this property are not preferred extremals. If so, at microscopic level only CP_2 type extremals, massless extremals, and string like objects and their deformations would exist as preferred extremals and serve as building bricks for the counterparts of Maxwellian field configurations and the counterparts of Maxwellian field configurations such as Coulomb potential would emerge only at the QFT limit.

2.7.1 About differences between Maxwell's ED and TGD

TGD differs from Maxwell's theory in several important aspects.

- 1. The TGD counterparts of classical electroweak gauge potentials are induced from component of spinor connection of CP_2 . Classical color gauge potentials corresponds to the projections of Killing vector fields of color isometries.
- 2. Also M^4 has Kähler potential, which is induced to space-time surface and gives rise to an additional U(1) force. The couplings of M^4 gauge potential to quarks and leptons are of same sign whereas the couplings of CP_2 Kähler potential to B and L are of opposite sign so that the contributions to 6-D Kähler action reduce to separate terms without interference term.

Coupling to induced M^4 Kähler potential implies CP breaking. This could explain the small CP breaking in hadronic systems and also matter antimatter asymmetry in which there are opposite matter-antimatter asymmetries inside cosmic strings and their exteriors respectively. A priori it is however not obvious that the CP breaking is small.

3. General coordinate invariance implies that there are only 4 local field like degrees of freedom so that for extremals with 4-D M^4 projection corresponding to GRT space-time both metric, electroweak and color gauge potentials can be expressed in terms four CP_2 coordinates and their gradients. Preferred extremal property realized as minimal surface condition means that field equations are satisfied separately for the 4-D Kähler and volume action reduces the degrees of freedom further.

If the CP_2 part of Kähler form is non-vanishing, minimal surface conditions can be guaranteed by a generalization of holomorphy realizing quantum criticality (satisfied by known extremals). One can say that there is no dependence on coupling parameters. If CP_2 part of Kähler form vanishes identically, the minimal surface condition need not be guaranteed by holomorphy. It is not at all clear whether quantum criticality and preferred extremal property allow this kind of extremals.

4. Supersymplectic symmetries act as isometries of "world of classical worlds" (WCW). In a welldefined sense supersymplectic symmetry generalizes 2-D conformal invariance to 4-D context. The key observation here is that light-like 3-surfaces are metrically 2-D and therefore allow extended conformal invariance.

Preferred extremal property realizing quantum criticality boils down to a condition that sub-algebra of SSA and its commutator with SSA annihilate physical states and that corresponding Noether charges vanish. These conditions could be equivalent with minimal surface property. This implies that the set of possible field patterns is extremely restricted and one might talk about "archetypal" field patterns analogous to partial waves or plane waves in Maxwell's theory.

5. Linear superposition of the archetypal field patterns is not possible. TGD however implies the notion of many-sheeted space-time and each sheet can carry its own field pattern. A test particle which is space-time surface itself touches all these sheets and experiences the sum of the effects caused by fields at various sheets. Effects are superposed rather than fields and this is enough. This means weakening of the superposition principle of Maxwell's theory and the linear superposition of fields at same space-time sheet is replaced with set theoretic union of space-time sheets carrying the field patterns whose effects superpose.

This observation is also essential in the construction of QFT limit of TGD. The gauge potentials in standard model and gravitational field in general relativity are superpositions of those associated with space-time sheets idealized with slightly curved piece of Minkowski space M^4 .

6. An important implication is that each system has field identity - field body or magnetic body (MB). In Maxwell's theory superposition of fields coming from different sources leads to a loss of information since one does not anymore now which part of field came from particular source. In TGD this information loss does not happen and this is essential for TGD inspired quantum biology.

Remark: An interesting algebraic analog is the notion of co-algebra. Co-product is analogous to reversal of product AB = C in the sense that it assigns to C and a linear combination of products $\sum A_i \otimes B_i$ such that $A_iB_i = C$. Quantum groups and co-algebras are indeed important in TGD and it might be that there is a relationship. In TGD inspired quantum biology magnetic body plays a key role as an intentional agent receiving sensory data from biological body and using it as motor instrument.

7. I have already earlier considered a space-time correlate for second quantization in terms of sheets of covering for $h_{eff} = nh_0$. In [L23] it is proposed that n factorizes as $n = n_1n_2$ such that n_1 (n_2) is the number sheets for space-time surface as covering of CP_2 (M^4). One could have quantum mechanical linear superposition of space-time sheets, each with a particular field pattern. This kind state would correspond to single particle state created by quantum field in QFT limit. For instance, one could have spherical harmonic for orientations of magnetic flux tube or electric flux tube.

One could also have superposition of configurations containing several space-time sheets simultaneously as analogs of many-boson states. Many-sheeted space-time would correspond to this kind many-boson states. Second quantization in quantum field theory (QFT) could be seen as an algebraic description of many-sheetedness having no obvious classical correlate in classical QFT.

8. Flux tubes should be somehow different for gravitational fields, em fields, and also weak and color gauge fields. The value of $n = n_1 n_2$ [L23] for gravitational flux tubes is very large by Nottale formula $\hbar_{eff} = \hbar_{gr} = GMm/v_0$. The value of n_2 for gravitational flux tubes is $n_2 \sim 10^7$ if one accepts the formula $G = R^2/n_2\hbar$. For em fields much smaller values of n

and therefore of n_2 are suggestive. There the value of n measuring in adelic physics algebraic complexity and evolutionary level would distinguish between gravitational and em flux tubes.

Large value of n would mean quantum coherence in long scales. For gravitation this makes sense since screening is absent unlike for gauge interactions. Note that the large value of $h_{eff} = h_{gr}$ implies that $\alpha_{em} = e^2/4\pi\hbar_{eff}$ is extremely small for gravitational flux tubes so that they would indeed be gravitational in an excellent approximation.

n would be the dimension of extension of rationals involved and n_2 would be the number space-time sheets as covering of M^4 . If this picture is correct, gravitation would correspond to much larger algebraic complexity and much larger value of Planck constant. This conforms with the intuition that gravitation plays essential role in the quantum physics of living matter.

There are also other number theoretic characteristics such as ramified primes of the extension identifiable as preferred p-adic primes in turn characterizing elementary particle. Also flux tubes mediating weak and strong interactions should allow characterization in terms of number theoretic parameters. There are arguments that in atomic physics one has $h = 6h_0$. Since the quantum coherence scale of hadrons is smaller than atomic scale, one can ask whether one could have $h_{eff} < h$.

2.7.2 *CP*₂ type extremals as ultimate sources of fields and singularities

 CP_2 type extremals have Euclidian signature of induced metric and therefore represent the most radical deviation from Maxwell's ED, gauge theories, and GRT. CP_2 type extremal with lightlike geodesic as M^4 projection represents a model for wormhole contact. The light-like orbit of partonic 2-surface correspond to boundary between wormhole contact and Minkowskian region and is associated with both throats of wormhole contact. The throats of wormhole contact can carry part of a boundary of string world sheet connecting the partonic orbits associated with different particles. These light-like lines can carry fermion number and would correspond to lines of TGD counterparts of twistor diagrams.

These world lines would correspond to singularities for the minimal surface equations analogous to sources of massless vector fields carrying charge [L22, L27]. These singularities would serve as ultimate sources of classical em fields. Various currents would consist of wormhole throat pairs representing elementary particle and carrying charges at the partonic orbits. Two-sheetedness is essential and could be interpreted in terms of a double covering formed by space-time sheet glued along their common boundary. This necessary since space-time sheet has a finite size being not continuable beyond certain minimal size as preferred extremal since some of the real coordinates would become complex.

Quantum criticality for CP_2 type extremals

TGD predicts a hierarchy of quantum criticalities. The increase in criticality means that some space-time sheets for space-time surface regarded as a covering with sheets related by Galois group of extension of rationals degenerate to single sheet. The action of Galois group would reduce to that for its subgroup.

This is analogous to the degeneration of some roots of polynomial to single root and in M^8 representation space-time sheets are indeed quite concretely roots of octonionic polynomial defined by vanishing of real or imaginary part in the decomposition $o = q_1 + iq_2$ of octonion to a sum quaternionic real and imaginary parts.

The hierarchy of criticalities is closely related to the hierarchy of Planck constants $h_{eff}/h_0 = n = n_1 n_2$, where n_1 corresponds to number of sheets as covering over CP_2 and n_2 as covering over M^4 . One can also consider special cases in which M^4 projection has dimension D < 4. The proposal is that n corresponds to the dimension of Galois group for extension of rationals defining the level of dark matter hierarchy. If n is prime, one has either $n_1 = 1$ or $n_2 = 1$.

It seems that the range of n_2 is rather limited since the expression for Newton's constant as $G = R^2/n_2\hbar$ varies in rather narrow range. If the covering has symmetries assignable to some discrete subgroup of SU(3) acting as isometries of CP_2 this could be understood. The increase of criticality could mean that n_1 or n_2 or both are reduced. What is the position of CP_2 type extremals in the hierarchies of Planck constants and quantum criticalities?

1. Consider first n_2 . CP_2 type extremal have 1-D geodesic line as M^4 projection. The light-like geodesic as 1-D structure could be interpreted as covering for which two geodesic lines along the orbits of opposite throats of wormhole contact form a kind of time loop. In this case one would have $n_2 = 2$ and one could have n = 2p, p prime.

In this sense CP_2 type extremal or at least its core would be maximally critical. Deformations replacing the light-like geodesic as projection with higher-D region of M^4 presumably reduce criticality and one has $n_2 > 2$ is obtained. Whether this is possible inside wormhole contact is not clear. One can imagine that as one approaches partonic 2-surface, the criticality and degeneration increase in CP_2 degrees of freedom step by step and reach maximum in its core. This would be like realization of Thom's catastrophe involving parts with various degrees of criticalities.

At the flux tubes mediating gravitational interaction $n_2 \sim 10^7$ would hold true in the exterior of associated CP_2 type extremals. This would suggests that CP_2 type extremals have maximal criticality in M^4 degrees of freedom and M^4 covering reduces to 2-fold covering for wormhole contacts.

2. What about criticality as n_1 -fold covering of CP_2 . This covering corresponds to a situation in which CP_2 coordinates as field in M^4 have given values of CP_2 coordinates n_1 times. A lattice like structure formed by n_1 wormhole contacts is suggestive. n_1 can be arbitrary large in principle and the gravitational Planck constant $h_{gr}/h_0 = n_1 n_2$ would correspond to this situation. Singularities would now correspond to a degeneration of some wormhole contacts to single wormhole contact and could have interpretation in terms of fusion of particles to single particle. One might perhaps interpret elementary particle reaction vertices as catastrophes.

Wormhole contacts can be regarded as CP_2 type extremals having two holes corresponding to the 3-D orbits of wormhole contacts. Mathematician would probably speak of a blow up. CP_2 type extremals is glued to surrounding Minkowskian space-time sheets at the 3-D boundaries of these holes. At the orbit of partonic 2-surface the induced 4-metric degenerates to 3-D metric and 4-D tangent space becomes metrically 3-D. Light-likeness of the M^4 projection would correspond to this. For CP_2 type extremal 3 space-like M^4 directions of Minkowskian region would transmute to CP_2 directions at the light-like geodesic and time direction would become light-like. This is like graph of function for which tangent becomes vertical. For deformations of CP_2 type extremals this process could take place in several steps, one dimension in given step. This process could take place inside CP_2 or outside it depending on which order the transmutation of dimensions takes place.

2.7.3 Delicacies associated with M^4 Kähler structure

Twistor lift forces to assume that also M^4 possesses the analog of Kähler form, and Minkowskian signature does not prevent this [K13]. M^4 Kähler structure breaks CP symmetry and provides a very attractive manner to break CP symmetry and explain generation of matter antimatter symmetry and CP breaking in hadron physics. The CP breaking is very small characterized by a dimensionless number of order 10^{-9} identifiable as photon/baryon ratio. Can one understand the smallness of CP breaking in TGD framework?

Hamilton-Jacobi structure

Hamilton-Jacobi structure [L53] can be seen as a generalization of complex structure and involves a local but integrable selection of subspaces of various dimension for the tangent space of M^4 . Integrability means that the selected subspaces are tangent spaces of a sub-manifold of M^4 . M^8-H duality allows to interpret this selection as being induced by a global selection of a hierarchy of real, complex, and quaternionic subspaces associated with octonionic structure mapped to M^4 in such a way that this global selection becomes local at the level of H.

- 1. The 4-D analog of conformal invariance is due to very special conformal properties of lightlike 3-surfaces and light-cone boundary of M^4 . This raises hopes about construction of general solution families by utilizing the generalized form of conformal invariance. Massless extremals (MEs) in fact define extremely general solution family of this kind and involve light-like direction vector k and polarization vector ϵ orthogonal to it defining decomposition $M^4 = M^2 \times E^2$. I have proposed that this decomposition generalizes to local but integrable decomposition so that the distributions for M^2 and E^2 integrate to string world sheets and partonic 2-surfaces.
- 2. One can have decomposition $M^4 = M^2 \times E^2$ such that one has Minkowskian analog of conformal symmetry in M^2 . This decomposition is defined by the vectors k and ϵ . An unproven conjecture is that these vectors can depend on point and the proposed Hamilton-Jacobi structure would mean a *local* decomposition of tangent space of M^4 , which is integrable meaning that local M^2 s integrate to string world sheet in M^4 and local E^2 s integrate to closed 2-surface as special case corresponds to partonic 2-surface. Generalizing the terminology, one could talk about family of partonic surfaces. These decompositions could define families of exremals.

An integrable decomposition of M^4 to string world sheets and partonic 2-surfaces would characterize the preferred extremals with 4-D M^4 projection. Integrable distribution would mean assignment of partonic 2-surface to each point of string world sheet and vice versa.

3. M^4 Kähler form defines unique decomposition $M^2 \times E^2$. This is however not consistent Lorentz invariance. To cure this problem one must allow moduli space for M^4 Kähler forms such that one can assign to each Hamilton-Jacobi structure M^4 Kähler form defining the corresponding integrable surfaces in terms of light-like vector and polarization vector whose directions depend on point of M^4 .

This looks strange since the very idea is that the embedding space if unique. However, this local decomposition could be secondary being associated only with $H = M^4 \times CP_2$ and emerge in $M^8 - H$ duality mapping of space-time surfaces $X^4 \subset M^8$ to surfaces in $M^4 \times CP_2$. There is a moduli space for octonion structures in M^8 defined as a choice of preferred time axis M^1 (rest system), preferred M^2 defining hypercomplex place and preferred direction (light-like vector), and quaternionic plane $M^2 \times E^2$ (also polarization direction is included). Lorentz boosts mixing the real and imaginary octonion coordinates and changing the direction of time axis give rise to octonion structures not equivalent with the original one.

Thus the choice $M^1 \subset M^2 \subset M^4 = M^2 \times E^2 \subset M^8$ is involved with the definition of octonion structure and quaternionion structure. The image of this decomposition under $M^8 - H$ duality mapping quaternionic tangent space of $X^4 \subset M^8$ containing M^1 and M^2 as sub-spaces would be such that the image of $M^1 \subset M^2 \subset M^2 \times E^2$ depends on point of $M^4 \subset H$ in integrable manner so that Hamilton-Jacobi structure in H is obtained.

Also CP_2 allows the analog of Hamilton-Jacobi structure as a local decomposition integrating to a family of geodesic spheres S_I^2 as analog of partonic 2-surfaces with complex structure and having at each point as a fiber different S_I^2 - these spheres necessary intersect at single point. This decomposition could correspond to the 4-D complex structure of CP_2 and complex coordinates of CP_2 would serve as coordinates for the two geodesic spheres.

Could one imagine decompositions in which fiber is 2-D Lagrangian manifold - say S_{II}^2 - with vanishing induced Kähler form and not possessing induced complex structure? S_{II}^2 does not have complex structure as induced complex structure and is therefore analogous to M^2 . S_{II}^2 coordinates would be functions of string world sheet coordinates (in special as analytic in hypercomplex sense and describing wave propagating with light-velocity). S_I^2 coordinates would be analytic functions of complex coordinates of partonic 2-surface.

CP breaking and M^4 Kähler structure

The CP breaking induce by M^4 Kähler structure should be small. Is this automatically true or must one make some assumptions to achieve this.

Could one guarantee this by brute force by assuming M^4 and CP_2 parts of Kähler action to have different normalizations. The proposal for the length scale evolution of cosmological constant however relies on almost cancellation M^4 induced Kähler forms of M^4 and CP_2 parts due to the fact that the induced forms differ from each other by a rotation of the twistor sphere S^2 . The S^2 part $M^4 \times S^2$ Kähler for can have opposite with respect to $T(CP_2) = SU(3)/U(1) \times U(1)$ Kähler so that for trivial rotation the forms cancel completely. If the normalizations of Kähler actions differ this cannot happen at the level of 4-D Kähler action.

To make progress, it is useful to look at the situation more concretely.

- 1. Kähler action is dimensionless. The square of Kähler form is metric so that $J_{kl}J^{kl}$ is dimensionless. One must include to the 4-D Kähler action a dimensional factor $1/L^4$ to make it dimensionless. The natural choice for L is as the radius R of CP_2 geodesic sphere to radius of twistor spheres for M^4 and CP_2 . Note however that there is numerical constant involved and if it is changed there must be a compensating change of Kähler coupling strength. Therefore M^4 contribution to action is proportional to the volume of M^4 region using R^4 as unit. This contribution is very large for macroscopic regions of M^4 unless self-duality of M^4 Kähler form would not cause cancellation $(E^2 B^2 = 0)$.
- 2. What about energy density? The naïve expectation based on Maxwell's theory is that the energy density assignable to M^4 Kähler form is by self-duality proportional to $E^2 + B^2 = 2E^2$ and non-vanishing. By naïve order of magnitude estimate using Maxwellian formula for the energy of this kind extremal is proportional to Vol_3/R^4 and very large. Does this exclude these extremals or should one assume that they have very small volume? For macroscopic lengths of one should assume extremely thin MEs with thickness smaller than R. Could one have 2-fold covering formed by gluing to copies of very thin MEs together along their boundaries. This does not look feasible.

Luckily, the Maxwellian intuition fails in TGD framework. The Noether currents associated in presence of M^4 Kähler action involve also a term coming from the variation of the induced M^4 Kähler form. This term guarantees that canonical momentum currents as H-vector fields are orthogonal to the space-time surface. In the case of CP_2 type extremals this causes the cancellation of the canonical momentum currents associated with Kähler action and corresponding contributions to conserved charges. The complete symmetry between M^4 and CP_2 and also physical intuition demanding that canonically imbedded M^4 os vacuum require that cancellation takes place also for M^4 part so that only the term corresponding to cosmological constant remains.

M^4 Kähler form and CP breaking for various kinds of extremals

I have considered already earlier the proposal that CP breaking is due to M^4 Kähler form [K13]. CP breaking is very small and the proposal inspired by the Cartesian product structure of the embedding space and its twistor bundle and also by the similar decomposition of $T(M^4) = M^4 \times S^2$ was that the coefficient of M^4 part of Kähler action can be chosen to be much smaller than the coefficient of CP_2 part. The proposed mechanism giving rise to p-adic length scale evolution of cosmological constant however requires that the coefficients of are identical. Luckily, the CP breaking term is automatically very small as the following arguments based on the examination of various kinds of extremals demonstrate.

- 1. For CP_2 type extremals with light-like M^4 geodesics as M^4 projection the induced M^4 Kähler form vanishes so that there is no CP breaking. For small deformations CP_2 type extremals thickening the M^4 projection the induced M^4 Kähler form is non-vanishing. An attractive hypothesis is that the small CP breaking parameter quantifies the order of magnitude of the induced M^4 Kähler form. This picture could allow to understand CP breaking of hadrons.
- 2. Canonically imbedded M^4 is a minimal surface. A small breaking of CP symmetry is generated in small deformations of M^4 . In particular, for massless extremals (MEs) having 4-D M^4 projection the action associated with M^4 part of Kähler action vanishes at the M^4 limit when the local polarization vector characterizing ME approaches zero. The small CP breaking is characterized by the size of the polarization vector ϵ giving a contribution to the induced metric. This conforms with the perturbative CP breaking.

- 3. String like objects of type $X^4 = X^2 \times Y^2 \subset M^4 \times CP_2$, where X^2 is minimal surface and Y^2 is 2-surface in CP_2 . The M^4 projection contains only electric part but no magnetic part. The M^4 part of action is proportional to the volume Y^2 and therefore very small. This in turn guarantees smallness of CP breaking effects.
 - (a) If Y^2 is homologically non-trivial (magnetic flux tube carries monopole flux), CP_2 part of action is large since action density is proportional $1/\sqrt{det(g_2)}$ for Y^2 and therefore large. The thickening of the flux tube however reduces the value of the action by flux conservation as discussed already earlier.

 M^4 and CP_2 contributions to the actions are of opposite sign but M^4 contribution os however very small as compared to CP_2 contribution. One can look the situation in $M^2 \times S^2$ coordinates. The transverse deformation would correspond to the dependence of E^2 coordinates on S^2 coordinates. The induced Kähler form would give a contribution to the S^2 part of induced Kähler form whose size would characterize CP breaking.

(b) Y^2 can be also homologically trivial. In particular, for $Y^2 = S_{II}^2$ the CP_2 contribution to the total Kähler action vanishes and only the small M^4 contribution proportional to the area of Y^2 remains.

2.7.4 About TGD counterparts for the simplest classical field patterns

What could be the TGD counterparts of typical configurations of classical fields? Since minimal surface equation is a nonlinear generalization of massless field equations, one can hope that the simplest solutions of Maxwell's equations have TGD analogs. The strong non-linearity poses a strong constraint, which can be solved if the extremal allows generalization of holomorphic structure so that field equations are trivially true since they involve in complex coordinates a contraction of tensors of type (1,1) with tensors of type (2,0) or (0,2). It is not clear whether minimal surface property reducing to holomorphy is equivalent with preferred extremal property.

Can one have the basic field patterns such as multipoles as structures with 4-D M^4 projection or could it be that flux tube picture based on spherical harmonics for the orientation of flux tube is all that one can have? Same question can be made for radiation fields having MEs as archetypal representatives in TGD framework. What about the possible consistency problems produced by M^4 Kähler form breaking Lorentz invariance?

I have considered these questions already earlier. The following approach is just making questions and guesses possibly helping to develop general ideas about the correspondence.

- 1. In QFT approach one expresses fields as superpositions of partial waves, which are indeed very simple field patterns and the coefficients in the superposition become oscillator operators. What could be the analogs of partial waves in TGD? Simultaneous extremals of Kähler action and volume strongly suggest themselves as carriers of field archetypes but the non-linearity of field equations does not support the idea that partial waves could be realized at classical level as extremals with 4-D M^4 projection. A more plausible option is that they correspond to spherical harmonics for the orientation of flux tube carrying say electric flux. Could the flux tubes of various kinds serve as building of all classical fields?
- 2. String-like objects $X^2 \times Y^2 \subset M^4 \times CP_2$, where string world sheet X^2 is minimal surface and Y^2 is sub-manifold of CP_2 and their deformations in M^4 degrees of freedom transversal to X^2 and depending on the coordinates Y^2 are certainly good candidates for archetypal field configurations.

 Y^2 can be homologically trivial and could correspond to Lagrangian sub-manifold. Y^2 can also carry homology charge n identifiable as Kähler magnetic charge and correspond to complex sub-manifold of CP_2 with complex structure induced from that of CP_2 .

The simplest option corresponds to geodesic sphere $Y^2 = S^2$. There are two geodesic spheres in CP_2 and they correspond to simplest string like objects.

- 1. S_I^2 has Kähler magnetic charge of one unit and the cosmic and its deformations carry monopole flux. These field configurations are not possible in Maxwell's electrodynamics and the proposal is that they appear in all length scales. The model for the formation of galaxies solving also the problem of galactic dark matter relies on long cosmic strings. They are proposed to appear also in biology.
- 2. S_{II}^2 is homologically trivial so that magnetic flux over it vanishes although magnetic field is non-vanishing. Note that although the Kähler magnetic field is vanishing, the electromagnetic ordinary magnetic field is non-vanishing because em field is a combination of Kähler form and component of CP_2 curvature form with vanishing weak isospin. The total flux of ordinary magnetic field over S_{II}^2 vanishes whereas electric flux can be non-vanishing.

Coulomb fields

By the vanishing of magnetic flux flux tubes for S_{II}^2 cannot represent ordinary magnetic field. They can however serve as radial flux tubes carrying electromagnetic flux. Magnetic flux tubes indeed allow time dependent deformations for which the phase angles of CP_2 coordinates depend linearly of M^4 time coordinate. This would give rise to an archetypal flux tube representation of the electric field created by point charge. Also gravitational flux tubes should correspond to this kind flux tubes emanating radially from the source.

Charge quantization suggests that these flux tubes carry unit charge. In the case of charged elementary particle there would be only single flux tubes but there would be wave function for its orientation having no angular dependence. In principle, this wave function can any spherical harmonic.

Does the orientation angle dependence of flux distribution have any counterpart in Maxwell's theory. One would have the analog of 1/r Coulomb potential with the modulus squared of spherical harmonic Y_{lm} modulating it. Could one consider the possibility that in atoms the spherical harmonics for excited states correspond to this kind of distribution for the electric flux coming from nucleus. The probability amplitude for electrons touching the flux tube would inherit this distribution.

For many particle system with large em charge there would be large number of radial flux tubes and the approximation of electric field with Coulomb field becomes natural. In the case of atoms this limit is achieved for large enough nuclear charges. This does not exclude the possibility of having space-time surfaces carrying Coulomb potential in Maxwellian sense: in this case however the field equations cannot solved by holomorphy and quantum criticality might exclude these configurations.

What about gravitation? The notion of gravitational Planck constant requires that Planck mass replaced in TGD framework by CP_2 mass defining the unit of gravitational flux - $h_{gr} 0GMm/v_0$ cannot be smaller than h_0 . What happens in systems possessing mass smaller than CP_2 mass? Are gravitational flux tubes absent. Is gravitational interaction absent in this kind of systems or is its description analogous to string model description meaning that $h_{gr} = h_0$ for masses smaller than CP_2 mass?

Magnetic fields

As such S_{II}^2 flux tubes cannot serve as counterparts of ordinary magnetic fields. The flux tubes have now boundary and the current at boundary creates the magnetic field inside the tube. This would mean cutting of a disk D^2 from S_{II}^2 so that the net magnetic flux becomes non-vanishing.

The assumption has been that genuine boundaries are not possible since conservation laws very probably prevent them (the normal components of canonical momentum currents should vanish at boundaries but this is not possible). This requires that this flux tube must be glued along the boundary of $D^2 \times D^1$ to surrounding space-time surface X^4 , which has a similar hole. At the boundary of this hole the space-time surface must turn to the direction of CP_2 meaning that the dimension of M^4 projection is reduced to D = 2. Algebraic geometer would talk about blow-up.

Ordinary multipole magnetic field could correspond to spherical harmonic for the orientation of this kind flux tubes. They could also carry electric flux but the em charge could be fractionized. These flux tubes might relate to anyons carrying fractional em charge. Also the fractional charges of quarks could classically correspond to flux tubes mediating both color magnetic field and em flux. The spherical harmonic in question corresponds to that associated with electron in atoms.

Magnetic and electric fields associated with straight current wire

Magnetic and electric fields associated with straight current wire need not allow representation as archetypes since they are obviously macroscopic entities.

1. Is the magnetic field associated with straight current wire representable in terms of extremal with 4-D M^4 projection. The magnetic field lines rotate around the current and it is does not seem natural to model it the field in terms of flux tubes. Forget the presence of M^4 Kähler form. One can imbed this kind of magnetic field as a surface with 4-D M^4 projection and possessing cylindrical symmetry. Line current would correspond to a source of the magnetic field and could be realized as a flux tube carrying em current and topologically condensed to the space-time sheet in question.

The embedding however fails at certain critical radius and the assumption is that no boundaries are allowed by conservation laws. Should one glue the structure to the surrounding space-time surface at this radius. In Maxwell's theory one would have surface current in direction opposite to the source cancelling the magnetic field outside. Could this current have interpretation as a return current?

One can also imagine glueing its copy to it along the boundary at critical radius. It would seem that the magnetic fields must have same direction at the boundary and therefore also in interior.

2. What about current ring? Separation of variables is essential for the simplest embeddings implying a reduction of partial different equations to differential equation. There is rather small number of coordinates system in E^3 in which Laplacian allows separation of variables. The metric is diagonal in these coordinates. One example is toroidal coordinates assignable with a current ring having toroidal geometry. This would allow a construction of minimal surface solution in some finite volume. Minimal surface property would *not* reduce to complex analyticity for these extremals and they would be naturally associated $M^4 \times S_{II}^2$.

Remark: This kind of extremals are not holomorphic and could be excluded by quantum criticality and preferred extremal property. GRT space-time would be idealization making sense only at the QFT limit of TGD.

Time dependent fields

What about time dependent fields such as the field created by oscillating dipole and radiation fields? One can imagine quantal and classical option.

1. The simplest possibility is reduction to quantum description at single particle level. The dipole current corresponds to a wave function for the source particle system consisting of systems with opposite total charge.

Spherical harmonics representing multipoles would induce wave function for the orientations of MEs (topological light ray) carrying radial wave. This is certainly the most natural options as far radiation field at large distances from sources is considered. One can also have second quantization in the proposed sense giving rise to multi-photon states and one can also define coherent states.

One should also understand time dependent fields near sources having also non-radiative part. This requires a model for source such as oscillating dipole. The simplest possibility is that in the case of dipole there are charges of opposite sign with oscillating distance creating Coulomb fields represented in the proposed manner. It is however not obvious that preferred extremals of this kind exist.

2. One can consider also classical description. The model of elementary particle as consisting of two wormhole contacts, whose throats effectively serve as end of monopole flux tubes at the

two sheets involved suggests a possible model. If the wormhole contacts carry opposite em charges realized in terms of fermion and antifermions an oscillating dipole could correspond to flux tube whose length oscillates. This means generation of radiation and for elementary particles this would suggest instability against decay. One can however consider excitation which decay to ground states - say for hadrons. For scaled up variants of this structure this would not mean instability although energy is lost and the system must end up to non-oscillating state.

One possibility is that there are two charges at different space-time sheets connected by wormhole contacts and oscillating by their mutual interaction in harmonic oscillator state. Ground state would be stable and have not dipole moment.

Effectively 2-D systems

In classical electrodynamics effectively 2-D systems are very special in that they allow conformal invariance assignable to 2-D Laplacian.

- 1. Since minimal surface equation is generalization of massless d'Alambertian and since field equations are trivially true for analytic solutions, one can hope that the basic solutions of 4-D d'Alembertian generalize in TGD framework. This would conform with the universality of quantum criticality meaning that coupling parameters disappear from field equations. Conformal invariance or its generalization would mean huge variety of field patterns. This suggests that effectively 2-D systems serve as basic building bricks of more complex field configurations. Flux tubes of various kinds would represent basic examples of this kind of surfaces. Also the magnetic end electric fields associated with straight current wire would serve as an example.
- 2. Are there preferred extremals analogous to the solutions of field equations of general relativity in faraway regions, where they become simple and might allow an analog in TGD framework? If our mathematical models reflect the preferred extremals as archetypal structures, this could be the case.

Forget for a moment the technicalities related to M^4 Kähler form. One can construct a spherically symmetric ansatz in $M^4 \times S_{II}^2$ as a minimal surface for which Φ depends linearly on time t and u is function of r. The ansatz reduces to a highly non-linear differential equation for u. In this case hyper-complex analyticity is obviously not satisfied. This ansatz could give the analog of Schwartschild metric giving also the electric field of point charge appearing as source of the non-linear variant of d'Alembertian. It is however far from clear whether this kind extremals is allowed as preferred extremals.

Under which conditions spherically symmetric ansatz is consistent with M^4 Kähler form? Obviously, the M^4 Kähler form must be spherically symmetric as also the Hamilton-Jacobi structure it. Suppose local Hamilton-Jacobi structures for which M^2 s integrate to t, r coordinate planes and E^2 s integrate to (θ, ϕ) sphere are allowed and that M^4 Kähler form defines this decomposition. In this case there are hopes that consistency conditions can be satisfied. Note however that M^4 Kähler form defines in this case orthogonal magnetic and electric monopole fields defining an analog of instanton. Can one really allow this or should one exclude the time line with r = 0?

Similar M^4 Kähler structure can be associated with cylindrical coordinates and other separable coordinates system. M^4 Kähler structure would define Hamilton-Jacobi structure.

2.8 Minimal surfaces and TGD

The twistor lift of TGD [L12, L20, L24] meant a revolution in the understanding of TGD and led to a new view about what preferred extremal property means physically and why it is needed.

1. The construction of twistor lift of TGD replaces space-time surfaces with 6-D surfaces but requires that they are dynamically effectively 4-D as the analogs of twistor space having

the structure of S^2 bundle with space-time surface as the base. This requires dimensional reduction making S^2 fiber of the twistor space non-dynamical.

One can say that twistor structure is induced from that for 12-D product of the geometric 6-D twistor spaces of M^4 and CP_2 . The condition that 6-D Kähler action exists requires that the twistor spaces of M^4 and CP_2 have Kähler structure. This condition allows only $H = M^4 \times CP_2$ [A58]. The condition that one obtains standard model symmetries leads to the same conclusion.

- 2. The dimensionally reduced Kähler action decomposes to a sum of 4-D Kähler action and volume term. The interaction is as analog of Maxwell action plus action of point-like particle replaced with 3-D surface. The coefficient of the volume term has an interpretation as cosmological constant having a discrete spectrum [L27]. The natural proposal it that it depends on p-adic length scale approaching zero in long length scales. This solves the cosmological constant problem.
- 3. I had actually known for decades that all non-vacuum extremals of 4-D Kähler action are minimal surfaces thus minimizing the space-time volume in the induced metric. This is because the field equations for Kähler action for known non-vacuum extremals were reduced essentially to algebraic conditions realizing holomorphy. Also so called CP_2 type vacuum extremals of 4-D Kähler action are minimal surfaces. This finding conforms with the fact that in $M^8 - H$ duality [L17] one has regard field equations as purely algebraic conditions at M^8 side of the duality.

This inspired the proposal that preferred extremal property of space-time surface is realized by requiring that space-time surfaces as base spaces of these 6-D twistor spaces are quite generally minimal surfaces, and therefore represent a non-linear geometrization for the notion of massless field in accordance with conformal invariance forced by quantum criticality.

Also a more general proposal that space-time contains regions inside which there is an exchange of canonical momenta between Kähler action and volume term was considered. Minimal surface regions would correspond to incoming particles and non-minimal ones to interaction regions.

Later this proposal was simplified by requiring that interaction regions are 2-D string world sheets as singularities: this implied that string world sheets required by general considerations [K84] indeed emerge from 4-D action. This could happen also at the 1-D boundaries of string world sheets at 3-D light-like boundaries between Minkowskian and Euclidian regions behaving like ordinary point-like particles and carrying fermion number, and in the most general case also at these 3-D light-like 3-surfaces.

2.8.1 Space-time surfaces as singular minimal surfaces

From the physics point this is not surprising since minimal surface equations are the geometric analog for massless field equations.

1. The boundary value problem in TGD is analogous to that defining soap films spanned by frames: space-time surface is thus like a 4-D soap film. Space-time surface has 3-D ends at the opposite boundaries of causal diamond of M^4 with points replaced with CP_2 : I call this 8-D object just causal diamond (CD). Geometrically CD brings in mind big-bang followed by big crunch.

These 3-D ends are like the frame of a soap film. This and the Minkowskian signature guarantees the existence of minimal surface extremals. Otherwise one would expect that the non-compactness does not allow minimal surfaces as non-self-intersecting surfaces.

2. Space-time is a 4-surface in 8-D $H = M^4 \times CP_2$ and is a minimal surface, which can have 2-D or 1-D singularities identifiable as string world sheets having 1-D singularities as light-like orbits - they could be geodesics of space-time surface.

Remark: I considered in [L21] the possibility that the minimal surface property could fail only at the reaction vertices associated with partonic 2-surfaces defining the ends of string world sheet boundaries. This condition however seems to be too strong. It is essential that the singular surface defines a sub-manifold giving deltafunction like contribution to the action density and that one can assign conserved quantities to this surface. This requires that the singular contributions to energy momentum tensor and canonical momentum currents as spacetime vectors are parallel to the singular surface. Singular points do not satisfy this condition.

String boundaries represent orbits of fundamental point-like fermions located at 3-D light-like surfaces which represent orbits of partonic 2-surfaces. String world sheets are minimal surfaces and correspond to stringy objects associated with say hadrons. There are also degrees of freedom associated with space-time interior. One have objects of various dimension which all are minimal surfaces. Modified Dirac equation extends the field equations to supersymmetric system and assigns fermionic degrees of freedom to these minimal surfaces of varying dimension.

From the physics point of view, the singular surfaces are analogous to carriers of currents acting as point- and string-like sources of massless field equations.

- 3. Geometrically string world sheets are analogous to folds of paper sheet. Space-time surfaces are extremals of an action which is sum of volume term having interpretation in terms of cosmological constant and what I call Kähler action analogous to Maxwell action. Outside singularities one has minimal surfaces stationary with respect to variations of both volume term and Kähler action note the analogy with free massless field. At singularities there is an exchange of conserved quantities between volume and Kähler degrees of freedom analogous to the interaction of charged particle with electromagnetic field. One can see TGD as a generalization of a dynamics of point-like particle coupled to Maxwell field by making particle 3-D surface.
- 4. The condition that the exchange of conserved charges such as four-momentum is restricted to lower-D surfaces realizes preferred extremal property as a consequence of quantum criticality demanding a universal dynamics independent of coupling parameters [L27]. Indeed, outside the singularities the minimal surfaces dynamics has no explicit dependence on coupling constants provided local minimal surface property guarantees also the local stationarity of Kähler action.

Preferred extremal property has also other formulations. What is essential is the generalization of super-conformal symmetry playing key role in super string models and in the theory of 2-D critical systems so that field equations reduce to purely algebraic conditions just like for analytic functions in 2-D space providing solutions of Laplace equations.

5. TGD provides a large number of specific examples about closed minimal surfaces [K7]. Cosmic strings are objects, which are Cartesian products of minimal surfaces (string world sheets) in M^4 and of complex algebraic curves (2-D surfaces). Both are minimal surfaces and extremize also Kähler action. These algebraic surfaces are non-contractible and characterized by homology charge having interpretation as Kähler magnetic charge. These surfaces are genuine minima just like the geodesics at torus.

 CP_2 contains two kinds of geodesic spheres, which are trivially minimal surfaces. The reason is that the second fundamental form defining as its trace the analogs of external curvatures in the normal space of the surfaces vanishes identically. The geodesic sphere of the first kind is non-contractible minimal surface and absolute minimum. Geodesic spheres of second kind is contractible and one has Minimax type situation.

These geodesic spheres are analogous to 2-planes in flat 3-space with vanishing external curvatures. For a generic minimal surface in 3-space the principal curvatures are non-vanishing and sum up to zero. This implies that minimal surfaces look locally like saddles. For 2-plane the curvatures vanish identically so that saddle is not formed.

2.8.2 Kähler action as Morse function in the space of minimal 4-surfaces

It was found that surface volume could define a Morse function in the space of surfaces. What about the situation in TGD, where volume is replaced with action which is sum of volume term

and Kähler action [L24, L22, L27]?

Morse function interpretation could appear in two ways. The first possibility is that the action defines an analog of Morse function in the space of 4-surfaces connecting given 3-surfaces at the boundaries of CD. Could it be that there is large number of preferred extremals connecting given 3-surfaces at the boundaries of CD? This would serve as analogy for the existence of infinite number of closed surfaces in the case of compact embedding space. The fact that preferred extremals extremize almost everywhere two different actions suggests that this is not the case but one must consider also this option.

- 1. The simplest realization of general coordinate invariance would allow only single preferred extremal but I have considered also the option for which one has several preferred extremals. In this case one encounters problem with the definition of Kähler function which would become many-valued unless one is ready to replace 3-surfaces with its covering so that each preferred extremal associated with the given 3-surface gives rise to its own 3-surface in the covering space. Note that analogy with the definition of covering space of say circle by replacing points with the set of homologically equivalence classes of closed paths at given point (rotating arbitrary number of times around circle).
- 2. Number theoretic vision [K82, K28] suggests that these possibly existing different preferred extremals are analogous to same algebraic computation but performed in different ways or theorem proved in different ways. There is always the shortest manner to do the computation and an attractive idea is that the physical predictions of TGD do not depend on what preferred extremal is chosen.
- 3. An interesting question is whether the "drum theorem" could generalize to TGD framework. If there exists infinite series of preferred extremals which are singular minimal surfaces, the volume of space-time surface for surfaces in the series would depend only on the volume of the CD containing it. The analogy with the high frequencies and drum suggests that the surfaces in the series have more and more local details. In number theoretic vision this would correspond to emergence of more and more un-necessary pieces to the computation. One cannot exclude the possibility that these details are analogs for what is called loop corrections in quantum field theory.
- 4. If the action defines Morse action, the preferred extremals give information about its topology. Note however that the requirement that one has extremum of both volume term and Kähler action almost everywhere is an extremely strong additional condition and corresponds physically to quantum criticality.

Remark: The original assumption was that the space-time surface decomposes to critical regions which are minimal surfaces locally and to non-critical regions inside which there is flow of canonical momentum currents between volume and Kähler degrees of freedom. The stronger hypothesis is that this flow occurs at 2-D and 1-D surfaces only.

2.8.3 Kähler function as Morse function in the space of 3-surfaces

The notion of Morse function can make sense also in the space of 3-surfaces - the world of classical worlds which in zero energy ontology consists of pairs of 3-surfaces at opposite boundaries of CD connected by preferred extremal of Kähler action [K19, K61, L24, L22]. Kähler action for the preferred extremal is assumed to define Kähler function defining Kähler metric of WCW via its second derivates $\partial_K \partial_{\overline{L}} K$. Could Kähler function define a Morse function?

1. First of all, Morse function must be a genuine function. For general Kähler metric this is not the case. Rather, Kähler function K is a section in a U(1) bundle consisting of patches transforming by real part of a complex gradient as one moves between the patches of the bundle. A good example is CP_2 , which has non-trivial topology, and which decomposes to 3 coordinate patches such that Kähler functions in overlapping patches are related by the analog of U(1) gauge transformation.

Kähler action for preferred extremal associated with given 3-surface is however uniquely defined unless one includes Chern-Simons term which changes in U(1) gauge transformation for Kähler gauge potential of CP_2 .

2. What could one conclude about the topology of WCW if the action for preferred extremal defines a Morse function as a functional of 3-surface? This function cannot have saddle points: in a region of WCW around saddle point the WCW metric depending on the second derivatives of Morse function would not be positive definite, and this is excluded by the positivity of Hilbert space inner product defined by the Kähler metric essential for the unitarity of the theory. This would suggest that the space of 3-surfaces has very simple topology if Kähler function.

This is too hasty conclusion! WCW metric is expected to depend also on zero modes, which do not contribute to the WCW line element. What suggests itself is bundle structure. Zero modes define the base space and dynamical degrees of freedom contributing to WCW line element as fiber. The space of zero modes can be topologically complex.

There is a fascinating open problem related to the metric of WCW.

- 1. The conjecture is that WCW metric possess the symplectic symmetries of $\Delta M_+^4 \times CP_2$ as isometries. In infinite dimensional case the existence of Riemann/Kähler geometry is not at all obvious as the work of Dan Freed demonstrated in the case of loops spaces [A40], and the maximal group of isometries would guarantee the existence of WCW Kähler geometry. Geometry would be determined by symmetries alone and all points of the space would be metrically equivalent. WCW would be an infinite-dimensional analog of symmetric space.
- 2. Isometry group property does not require that symplectic symmetries leave Kähler action, and even less volume term for preferred extremal, invariant. Just the opposite: if the action would remain invariant, Kähler function and Kähler metric would be trivial!
- 3. The condition for the existence of symplectic isometries must fix the ratio of the coefficients of Kähler action and volume term highly uniquely. The physical interpretation is in terms of quantum criticality realized mathematically in terms of the symplectic symmetry serving as analog of ordinary conformal symmetry characterizing 2-D critical systems. Note that at classical level quantum criticality realized as minimal surface property says nothing outside singular surfaces since the field equations in this regions are algebraic. At singularities the situation changes. Note also that the minimal surface property is a geometric analog of masslessness which in turn is a correlate of criticality.
- 4. Twistor lift of TGD [?]eads to a proposal for the spectra of Kähler coupling strength and cosmological constant allowed by quantum criticality [L22]. What is surprising that cosmological constant identified as the coefficient of the volume term takes the role of cutoff mass in coupling constant evolution in TGD framework. Coupling constant evolution discretizes in accordance with quantum criticality which must give rise to infinite-D group of WCW isometries. There is also a connection with number theoretic vision in which coupling constant evolution in terms of extensions of rationals [K82, L19, L17].

2.8.4 Kähler calibrations: an idea before its time?

While updating book introductions I was surprised to find that I had talked about so called calibrations of sub-manifolds as something potentially important for TGD and later forgotten the whole idea! A closer examination however demonstrated that I had ended up with the analog of this notion completely independently later as the idea that preferred extremals are minimal surfaces apart form 2-D singular surfaces, where there would be exchange of Noether charges between Kähler and volume degrees of freedom.

1. The original idea that I forgot too soon was that the notion of calibration (see http: //tinyurl.com/y3lyead3) generalizes and could be relevant for TGD. A calibration in Riemann manifold M means the existence of a k-form ϕ in M such that for any orientable k-D sub-manifold the integral of ϕ over M equals to its k-volume in the induced metric. One can say that metric k-volume reduces to homological k-volume.

Calibrated k-manifolds are minimal surfaces in their homology class, in other words their volume is minimal. Kähler calibration is induced by the k^{th} power of Kähler form and

defines calibrated sub-manifold of real dimension 2k. Calibrated sub-manifolds are in this case precisely the complex sub-manifolds. In the case of CP_2 they would be complex curves (2-surfaces) as has become clear.

2. By the Minkowskian signature of M^4 metric, the generalization of calibrated sub-manifold so that it would apply in $M^4 \times CP_2$ is non-trivial. Twistor lift of TGD however forces to introduce the generalization of Kähler form in M^4 (responsible for CP breaking and matter antimatter asymmetry) and calibrated manifolds in this case would be naturally analogs of string world sheets and partonic 2-surfaces as minimal surfaces. Cosmic strings are Cartesian products of string world sheets and complex curves of CP_2 . Calibrated manifolds, which do not reduce to Cartesian products of string world sheets and complex surfaces of CP_2 should also exist and are minimal surfaces.

One can also have 2-D calibrated surfaces and they could correspond to string world sheets and partonic 2-surfaces which also play key role in TGD. Even discrete points assignable to partonic 2-surfaces and representing fundamental fermions play a key role and would trivially correspond to calibrated surfaces.

3. Much later I ended up with the identification of preferred extremals as minimal surfaces by totally different route without realizing the possible connection with the generalized calibrations. Twistor lift and the notion of quantum criticality led to the proposal that preferred extremals for the twistor lift of Kähler action containing also volume term are minimal surfaces. Preferred extremals would be separately minimal surfaces and extrema of Kähler action and generalization of complex structure to what I called Hamilton-Jacobi structure would be an essential element. Quantum criticality outside singular surfaces would be realized as decoupling of the two parts of the action. May be all preferred extremals be regarded as calibrated in generalized sense.

If so, the dynamics of preferred extremals would define a homology theory in the sense that each homology class would contain single preferred extremal. TGD would define a generalized topological quantum field theory with conserved Noether charges (in particular rest energy) serving as generalized topological invariants having extremum in the set of topologically equivalent 3-surfaces.

It is interesting to recall that the original proposal for the preferred extremals as absolute minima of Kähler action has transformed during years to a proposal that they are absolute minima of volume action within given homology class and having fixed ends at the boundaries of CD.

4. The experience with CP_2 would suggest that the Kähler structure of M^4 defining the counterpart of form ϕ is unique. There is however infinite number of different closed self-dual Kähler forms of M^4 defining what I have called Hamilton-Jacobi structures. These forms can have subgroups of Poincare group as symmetries. For instance, magnetic flux tubes correspond to given cylindrically symmetry Kähler form. The problem disappears as one realizes that Kähler structures characterize families of preferred extremals rather than M^4 itself.

If the notion of calibration indeed generalizes, one ends up with the same outcome - preferred extremals as minimal surfaces with 2-D string world sheets and partonic 2-surfaces as singularities - from many different directions.

- 1. Quantum criticality requires that dynamics does not depend on coupling parameters so that extremals must be separately extremals of both volume term and Kähler action and therefore minimal surfaces for which these degrees of freedom decouple except at singular 2-surfaces, where the necessary transfer of Noether charges between two degrees of freedom takes place at these. One ends up with string picture but strings alone are of course not enough. For instance, the dynamical string tension is determined by the dynamics for the twistor lift.
- 2. Almost topological QFT picture implies the same outcome: topological QFT property fails only at the string world sheets.

- 3. Discrete coupling constant evolution, vanishing of loop corrections, and number theoretical condition that scattering amplitudes make sense also in p-adic number fields, requires a representation of scattering amplitudes as sum over resonances realized in terms of string world sheets.
- 4. In the standard QFT picture about scattering incoming states are solutions of free massless field equations and interaction regions the fields have currents as sources. This picture is realized by the twistor lift of TGD in which the volume action corresponds to geodesic length and Kähler action to Maxwell action and coupling corresponds to a transfer of Noether charges between volume and Kähler degrees of freedom. Massless modes are represented by minimal surfaces arriving inside causal diamond (CD) and minimal surface property fails in the scattering region consisting of string world sheets.
- 5. Twistor lift forces M^4 to have generalize Kähler form and this in turn strongly suggests a generalization of the notion of calibration. At physics side the implication is the understanding of CP breaking and matter anti-matter asymmetry.
- 6. $M^8 H$ duality requires that the dynamics of space-time surfaces in H is equivalent with the algebraic dynamics in M^8 . The effective reduction to almost topological dynamics implied by the minimal surface property implies this. String world sheets (partonic 2-surfaces) in H would be images of complex (co-complex sub-manifolds) of $X^4 \subset M^8$ in H. This should allows to understand why the partial derivatives of embedding space coordinates can be discontinuous at these edges/folds but there is no flow between interior and singular surface implying that string world sheets are minimal surfaces (so that one has conformal invariance).

The analogy with foams in 3-D space deserves to be noticed.

- 1. Foams can be modelled as 2-D minimal surfaces with edges meeting at vertices. TGD spacetime could be seen as a dynamically generated foam in 4-D many-sheeted space-time consisting of 2-D minimal surfaces such that also the 4-D complement is a minimal surface. The counterparts for vertices would be light-like curves at light like orbits of partonic 2-surfaces from which several string world sheets can emanate.
- 2. Can one imagine something more analogous to the usual 3-D foam? Could the light-like orbits of partonic 2-surfaces define an analog of ordinary foam? Could also partonic 2-surfaces have edges consisting of 2-D minimal surfaces joined along edges representing strings connecting fermions inside partonic 2-surface?

For years ago I proposed what I called as symplectic QFT (SQFT) as an analog of conformal QFT and as part of quantum TGD [K14]. SQFT would have symplectic transformations as symmetries, and provide a description for the symplectic dynamics of partonic 2-surfaces. SQFT involves an analog of triangulation at partonic 2-surfaces and Kähler magnetic fluxes associated with them serve as observables. The problem was how to fix this kind of network. Partonic foam could serve as a concrete physical realization for the symplectic network and have fundamental fermions at vertices. The edges at partonic 2-surfaces would be space-like geodesics. The outcome would be a calibration involving objects of all dimensions $0 \le D \le 4$ - a physical analog of homology theory.

2.9 Are space-time boundaries possible in the TGD framework?

One of the key ideas of TGD from the very beginning was that the space-time surface has boundaries and we see them directly as boundaries of physical objects.

It however turned out that it is not at all clear whether the boundary conditions stating that no isometry currents flow out of the boundary, can be satisfied. Therefore the cautious conclusion was that perhaps the boundaries are only apparent. For instance, the space-time regions correspond to maps $M^4 \to CP_2$, which are many-valued and have as turning points, which have 3-D projections to M^4 . The boundary surfaces between regions with Minkowskian and Euclidean signatures of the induced metric seem to be unavoidable, at least those assignable to deformations of CP_2 type extremals assignable to wormhole contacts.

There are good reasons to expect that the possible boundaries are light-like and possibly also satisfy the $det(g_4) = 0$ condition and I have considered the boundary conditions but have not been able to make definite conclusions about how they could be realized.

- 1. The action principle defining space-times as 4-surfaces in $H = M^4 \times CP_2$ as preferred extremals contains a 4-D volume term and the Kähler action plus possible boundary term if boundaries are possible at all. This action would give rise to a boundary term representing a normal flow of isometry currents through the boundary. These currents should vanish.
- 2. There could also be a 3-D boundary part in the action but if the boundary is light-like, it cannot depend on the induced metric. The Chern-Simons term for the Kähler action is the natural choice. Twistor lift suggests that it is present also in M^4 degrees of freedom. Topological field theories utilizing Chern-Simons type actions are standard in condensed matter physics, in particular in the description of anyonic systems, so that the proposal is not so radical as one might think. One might even argue that in anyonic systems, the fundamental dynamics of the space-time surface is not masked by the information loss caused by the approximations leading to the field theory limit of TGD.

Boundary conditions would state that the normal components of the isometry currents are equal to the divergences of Chern-Simons currents and in this way guarantee conservation laws. In CP_2 degrees of freedom the conditions would be for color currents and in M^4 degrees of freedom for 4-momentum currents.

3. This picture would conform with the general view of TGD. In zero energy ontology (ZEO) [L31, L39] phase transitions would be induced by macroscopic quantum jumps at the level of the magnetic body (MB) of the system. In ZEO, they would have as geometric correlates classical deterministic time evolutions of space-time surface leading from the initial to the final state [L26]. The findings of Minev et al provide [L26] lend support for this picture.

2.9.1 Light-like 3-surfaces from $det(g_4) = 0$ condition

How the light-like 3- surfaces could be realized?

1. A very general condition considered already earlier is the condition $det(g_4) = 0$ at the lightlike 4-surface. This condition means that the tangent space of X^4 becomes metrically 3-D and the tangent space of X^3 becomes metrically 2-D. In the local light-like coordinates, $(u, v, W, \overline{W}) guv = g_{vu}$ would vanish $(g_{uu} \text{ and } g_{vv} \text{ vanish by definition.})$

Could $det(g_4) = 0$ and $det(g_3) = 0$ condition implied by it allow a universal solution of the boundary conditions? Could the vanishing of these dimensional quantities be enough for the extended conformal invariance?

2. 3-surfaces with $det(g_4) = 0$ could represent boundaries between space-time regions with Minkowskian and Euclidean signatures or genuine boundaries of Minkowskian regions.

A highly attractive option is that what we identify the boundaries of physical objects are indeed genuine space-time boundaries so that we would directly see the space-time topology. This was the original vision. Later I became cautious with this interpretation since it seemed difficult to realize, or rather to understand, the boundary conditions.

The proposal that the outer boundaries of different phases and even molecules make sense and correspond to 3-D membrane like entities [L41], served as a partial inspiration for this article but this proposal is not equivalent with the proposal that light-like boundaries defining genuine space-time boundaries can carry isometry charges and fermions.

3. How does this relate to $M^8 - H$ duality [L33, L34]? At the level of rational polynomials P determined 4-surfaces at the level of M^8 as their "roots" and the roots are mass shells. The points of M^4 have interpretation as momenta and would have values, which are algebraic integers in the extension of rationals defined by P.

The generalization of the Fermi torus and its boundary (usually called Fermi sphere) as the counterpart of unit cell for a condensed matter cubic lattice to a fundamental region of a tessellation of hyperbolic space H^3 acting is discussed is discussed in [L43]. The number of tessellations is infinite and the properties of the hyperbolic manifolds of the "unit cells" are fascinating. For instance, their volumes define topological invariants and hyperbolic volumes for knot complements serve as knot invariants.

This picture resonates with an old guiding vision about TGD as an almost topological quantum field theory (QFT) [K35, K7, K85], which I have even regarded as a third strand in the 3-braid formed by the basic ideas of TGD based on geometry-number theory-topology trinity.

- 1. Kähler Chern-Simons form, also identifiable as a boundary term to which the instanton density of Kähler form reduces, defines an analog of topological QFT.
- 2. In the recent case the metric is however present via boundary conditions and in the dynamics in the interior of the space-time surface. However, the preferred extremal property essential for geometry-number theory duality transforms geometric invariants to topological invariants. Minimal surface property means that the dynamics of volume and Kähler action decouple outside the singularities, where minimal surface property fails. Coupling constants are present in the dynamics only at these lower-D singularities defining the analogs of frames of a 4-D soap film.

Singularities also include string worlds sheets and partonic 2-surfaces. Partonic two-surfaces play the role of topological vertices and string world sheets couple partonic 2-orbits to a network. It is indeed known that the volume of a minimal surface can be regarded as a homological invariant.

3. If the 3-surfaces assignable to the mass shells H^3 define unit cells of hyperbolic tessellations and therefore hyperbolic manifolds, they also define topological invariants. Whether also string world sheets could define topological invariants is an interesting question.

2.9.2 Can one allow macroscopic Euclidean space-time regions

Euclidean space-time regions are not allowed in General Relativity. Can one allow them in TGD?

- 1. CP_2 extremals with a Euclidean induced metric and serving as correlates of elementary particles are basic pieces of TGD vision. The quantum numbers of fundamental fermions would reside at the light-like orbit of 2-D wormhole throat forming a boundary between Minkowskian space-time sheet and Euclidean wormhole contact- parton as I have called it. More precisely, fermionic quantum numbers would flow at the 1-D ends of 2-D string world sheets connecting the orbits of partonic 2-surfaces. The signature of the 4-metric would change at it.
- 2. It is difficult to invent any mathematical reason for excluding even macroscopic surfaces with Euclidean signature or even deformations of CP_2 type extremals with a macroscopic size. The simplest deformation of Minkowski space is to a flat Euclidean space as a warping of the canonical embedding $M^4 \subset M^4 \times S^1$ changing its signature.
- 3. I have wondered whether space-time sheets with an Euclidean signature could give rise to black-hole like entities. One possibility is that the TGD variants of blackhole-like objects have a space-time sheet which has, besides the counterpart of the ordinary horizon, an additional inner horizon at which the signature changes to the Euclidean one. This could take place already at Schwarzschild radius if g_{rr} component of the metric does not change its sign.

2.9.3 But are the normal components of isometry currents finite?

Whether this scenario works depends on whether the normal components for the isometry currents are finite.

1. $det(g_4) = 0$ condition gives boundaries of Euclidean and Minkowskian regions as 3-D lightlike minimal surfaces. There would be no scales in accordance with generalized conformal invariance. g_{uv} in light-cone coordinates for M^2 vanishes and implies the vanishing of $det(g_4)$ and light-likeness of the 3-surface.

What is important is that the formation of these regions would be unavoidable and they would be stable against perturbations.

- 2. $g^{uv}\sqrt{|g_4|}$ is finite if $det(g_4) = 0$ condition is satisfied, otherwise it diverges. The terms $g^{ui}\partial_i h^k\sqrt{|g_4|}$ must be finite. $g^{ui} = cof(g_{iu})/det(g_4)$ is finite since $g_{uv}g_{vu}$ in the cofactor cancels it from the determinant in the expression of g^{ui} . The presence of $\sqrt{|g_4|}$ implies that the these contributions to the boundary conditions vanish. Therefore only the condition boundary condition for g^{uv} remains.
- 3. If also Kähler action is present, the conditions are modified by replacing $T^{uk} = g^{u\alpha}\partial_{\alpha}h^k\sqrt{|g_4|}$ with a more general expression containing also the contribution of Kähler action. I have discussed the details of the variational problem in [K9, K7].

The Kähler contribution involves the analogy of Maxwell's energy momentum tensor, which comes from the variation of the induced metric and involves sum of terms proportional to $J_{\alpha\mu}J_{\mu}^{beta}$ and $g^{\alpha\beta}J^{\mu\nu}J_{\mu\nu}$.

In the first term, the dangerous index raisings by g^{uv} appear 3 times. The most dangerous term is given by $J^{uv}J^v_v\sqrt{|g|} = g^{u\mu}g^{v\nu}J_{\alpha\beta}g^{vu}J_{vu}\sqrt{|g|}$. The divergent part is $g^{uv}g^{vu}J_{uv}g^{vu}J_{vu}\sqrt{|g|}$. The diverging g^{uv} appears 3 times and $J_{uv} = 0$ condition eliminates two of these. $g^{vu}\sqrt{|g|}$ is finite by $\sqrt{|g|} = 0$ condition. $J_{uv} = 0$ guarantees also the finiteness of the most dangerous part in $g^{\alpha\beta}J^{\mu\nu}J_{\mu\nu}\sqrt{|g|}$.

There is also an additional term coming from the variation of the induced Kähler form. This to the normal component of the isometry current is proportional to the quantity $J^{n\alpha}J_l^k\partial_\beta h^l\sqrt{|g|}$. Also now, the most singular term in $J^{u\beta} = g^{u\mu}g^{\beta\nu}J_{\mu\nu}$ corresponds to $J^{u\nu}$ giving $g^{u\nu}g^{\nu u}J^{u\nu}\sqrt{|g|}$. This term is finite by $J_{u\nu} = 0$ condition.

Therefore the boundary conditions are well-defined but only because $det(g_4) = 0$ condition is assumed.

- 4. Twistor lift strongly suggests that the assignment of the analogy of Kähler action also to M^4 and also this would contribute. All terms are finite if $det(g_4) = 0$ condition is satisfied.
- 5. The isometry currents in the normal direction must be equal to the divergences of the corresponding currents assignable to the Chern-Simons action at the boundary so that the flow of isometry charges to the boundary would go to the Chern-Simons isometry charges at the boundary.

If the Chern-Simons term is absent, one expects that the boundary condition reduces to $\partial_v h^k = 0$. This would make X^3 2-dimensional so that Chern-Simons term is necessary. Note that light-likeness does not force the M^4 projection to be light-like so that the expansion of X^2 need not take with light-velocity. If CP_2 complex coordinates are holomorphic functions of W depending also on U = v as a parameter, extended conformal invariance is obtained.

2.9.4 $det(g_4) = 0$ condition as a realization of quantum criticality

Quantum criticality is the basic dynamical principle of quantum TGD. What led to its discovery was the question "How to make TGD unique?". TGD has a single coupling constant, Kähler couplings strength, which is analogous to a critical temperature. The idea was obvious: require quantum criticality. This predicts a spectrum of critical values for the Kähler coupling strength. Quantum criticality would make the TGD Universe maximally complex. Concerning living matter,

quantum critical dynamics is ideal since it makes the system maximally sensitive and maximallt reactive.

Concerning the realization of quantum criticality, it became gradually clear that the conformal invariance accompanying 2-D criticality, must be generalized. This led to the proposal that super symplectic symmetries, extended isometries and conformal symmetries of the metrically 2-D boundary of lightcone of M^4 , and the extension of the Kac-Moody symmetries associated with the light-like boundaries of deformed CP_2 type extremals should act as symmetries of TGD extending the conformal symmetries of 2-D conformal symmetries. These huge infinite-D symmetries are also required by the existence of the Kähler geometry of WCW [K35, K19, K61] [L40, L49].

However, the question whether light-like boundaries of 3-surfaces with scale larger than CP_2 are possible, remained an open question. On the basis of preceding arguments, the answer seems to be affirmative and one can ask for the implications.

1. At M^8 level, the concrete realization of holography would involve two ingredients. The intersections of the space-time surface with the mass shells H^3 with mass squared value determined as the roots of polynomials P and the tlight-like 3-surfaces as $det(g_4) = 0$ surfaces as boundaries (genuine or between Minkowskian and Euclidean regions) associated by $M^8 - H$ duality to 4-surface of M^8 having associative normal space, which contains commutative 2-D subspace at each point. This would make possible both holography and $M^8 - H$ duality.

Note that the identification of the algebraic geometric characteristics of the counterpart of $det(g_4) = 0$ surface at the level of H remains still open.

Since holography determines the dynamics in the interior of the space-time surface from the boundary conditions, the classical dynamics can be said to be critical also in the interior.

- 2. Quantum criticality means ability to self-organize. Number theoretical evolution allows us to identify evolution as an increase of the algebraic complexity. The increase of the degree n of polynomial P serves as a measure for this. $n = h_{eff}/h_0$ also serves as a measure for the scale of quantum coherence, and dark matter as phases of matter would be characterized by the value of n.
- 3. The 3-D boundaries would be places where quantum criticality prevails. Therefore they would be ideal seats for the development of life. The proposal that the phase boundaries between water and ice serve as seats for the evolution of prebiotic life, is discussed from the point of TGD based view of quantum gravitation involving huge value of gravitational Planck constant $\hbar_{eff} = \hbar_{gr} = GMm/v_0$ making possible quantum coherence in astrophysical scales [L45]. Density fluctuations would play an essential role, and this would mean that the volume enclosed by the 2-D M^4 projection of the space-time boundary would fluctuate. Note that these fluctuations are possible also at the level of the field body and magnetic body.
- 4. It has been said that boundaries, where the nervous system is located, distinguishes living systems from inanimate ones. One might even say that holography based on $det(g_4) = 0$ condition realizes nervous systems in a universal manner.
- 5. I have considered several variants for the holography in the TGD framework, in particular strong form of holography (SH). SH would mean that either the light-like 3-surfaces or the 3-surfaces at the ends of the causal diamond (CD) determine the space-time surface so that the 2-D intersections of the 3-D ends of the space-time surface with its light-like boundaries would determine the physics.

This condition is perhaps too strong but a fascinating, weaker, possibility is that the internal consistency requires that the intersections of the 3-surface with the mass shells H^3 are identifiable as fundamental domains for the coset spaces $SO(1,3)/\Gamma$ defining tessellations of H^3 and hyperbolic manifolds. This would conform nicely with the TGD inspired model of genetic code [L38].

Chapter 3

Identification of WCW Kähler Function

3.1 Introduction

The topics of this chapter are the purely geometric aspects of the vision about physics as an infinite-dimensional Kähler geometry of the "world of classical worlds", with " classical world" identified either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions of space-like surfaces with time like separations must be allowed. Zero energy ontology allows to formulate this picture elegantly in terms of causal diamonds defined as intersections of future and past directed light-cones. Also a geometric realization of coupling constant evolution and finite measurement resolution emerges.

There are two separate but closely related tasks involved.

- 1. Provide WCW with Kähler geometry which is consistent with 4-dimensional general coordinate invariance so that the metric is Diff⁴ degenerate. General coordinate invariance implies that the definition of metric must assign to a given light-like 3-surface X^3 a 4-surface as a kind of Bohr orbit $X^4(X^3)$.
- 2. Provide WCW with a spinor structure. The great idea is to identify WCW gamma matrices in terms of super algebra generators expressible using second quantized fermionic oscillator operators for induced free spinor fields at the space-time surface assignable to a given 3surface. The isometry generators and contractions of Killing vectors with gamma matrices would thus form a generalization of Super Kac-Moody algebra.

In this chapter a summary about basic ideas related to the construction of the Kähler geometry of infinite-dimensional configuration of 3-surfaces (more or less-equivalently, the corresponding 4-surfaces defining generalized Bohr orbits) or "world of classical worlds" (WCW).

3.1.1 The Quantum States Of Universe As Modes Of Classical Spinor Field In The "World Of Classical Worlds"

The vision behind the construction of WCW geometry is that physics reduces to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of $M_+^4 \times CP_2$ or $M^4 \times CP_2$, where M^4 and M_+^4 denote Minkowski space and its light cone respectively. This WCW might be called the "world of classical worlds".

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires that WCW possesses Kähler geometry. One of the basic features of the Kähler geometry is that it is solely determined by the so called. which defines both the J and the components of the g in complex coordinates via the general formulas [A45]

$$J = i\partial_k \partial_{\bar{l}} K dz^k \wedge d\bar{z}^l .$$

$$ds^2 = 2\partial_k \partial_{\bar{l}} K dz^k d\bar{z}^l .$$
 (3.1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary unit in the tangent space of the WCW

$$J_{mr}J^{rn} = -g_m^n . aga{3.1.2}$$

As a consequence Kähler form defines also symplectic structure in WCW.

3.1.2 WCW Kähler Metric From Kähler Function

The task of finding Kähler geometry for the WCW reduces to that of finding Kähler function and identifying the complexification. The main constraints on the Kähler function result from the requirement of Diff⁴ symmetry and degeneracy. requires that the definition of the Kähler function assigns to a given 3-surface X^3 , which in Zero Energy Ontology is union of 3-surfaces at the opposite boundaries of causal diamond CD, a unique space-time surface $X^4(X^3)$, the generalized Bohr orbit defining the classical physics associated with X^3 . The natural guess is that Kähler function is defined by what might be called Kähler action, which is essentially Maxwell action with Maxwell field expressible in terms of CP_2 coordinates.

Absolute minimization was the first guess for how to fix $X^4(X^3)$ uniquely. It has however become clear that this option might well imply that Kähler is negative and infinite for the entire Universe so that the vacuum functional would be identically vanishing. This condition can make sense only inside wormhole contacts with Euclidian metric and positive definite Kähler action.

Quantum criticality of TGD Universe suggests the appropriate principle to be the criticality, that is vanishing of the second variation of Kähler action. This principle now follows from the conservation of Noether currents the Kähler-Dirac action. This formulation is still rather abstract and if spinors are localized to string world sheets, it it is not satisfactory. A further step in progress was the realization that preferred extremals could carry vanishing super-conformal Noether charges for sub-algebras whose generators have conformal weight vanishing modulo n with n identified in terms of effective Planck constant $h_{eff}/h = n$.

If Kähler action would define a strictly deterministic variational principle, Diff⁴ degeneracy and general coordinate invariance would be achieved by restricting the consideration to 3-surfaces Y^3 at the boundary of M^4_+ and by defining Kähler function for 3-surfaces X^3 at $X^4(Y^3)$ and diffeo-related to Y^3 as $K(X^3) = K(Y^3)$. The classical non-determinism of the Kähler action however introduces complications. As a matter fact, the hierarchy of Planck constants has nice interpretation in terms of non-determinism: the space-time sheets connecting the 3-surface at the ends of CD form *n* conformal equivalence classes. This would correspond to the non-determinism of quantum criticality accompanied by generalized conformal invariance

3.1.3 WCW Kähler Metric From Symmetries

A complementary approach to the problem of constructing configuration space geometry is based on symmetries. The work of Dan [A40] [A40] has demonstrated that the Kähler geometry of loop spaces is unique from the existence of Riemann connection and fixed completely by the Kac Moody symmetries of the space. In 3-dimensional context one has even better reasons to expect uniqueness. The guess is that WCW is a union of symmetric spaces labelled by zero modes not appearing in the line element as differentials. The generalized conformal invariance of metrically 2-dimensional light like 3-surfaces acting as causal determinants is the corner stone of the construction. The construction works only for 4-dimensional space-time and embedding space which is a product of four-dimensional Minkowski space or its future light cone with CP_2 .

The detailed formulas for the matrix elements of the Kähler metric however remain educated guesses so that this approach is not entirely satisfactory.

3.1.4 WCW Kähler Metric As Anti-commutators Of Super-Symplectic Super Noether Charges

The third approach identifies the Kähler metric of WCW as anti-commutators of WCW gamma matrices. This is not yet enough to get concrete expressions but the identification of WCW gamma matrices as Noether super-charges for super-symplectic algebra assignable to the boundary of WCW changes the situation. One also obtains a direct connection with elementary particle physics.

The super charges are linear in the mode of induced spinor field and second quantized spinor field itself, and involve the infinitesimal action of symplectic generator on the spinor field. One can fix fermionic anti-commutation relations by second quantization of the induced spinor fields (as a matter fact, here one can still consider two options). Hence one obtains explicit expressions for the matrix elements of WCW metric.

If the induced spinor fields are localized at string world sheets - as the well-definedness of em charge and number theoretic arguments suggest - one obtains an expression for the matrix elements of the metric in terms of 1-D integrals over strings connecting partonic 2-surfaces. If spinors are localized to string world sheets also in the interior of CP_2 , the integral is over a closed circle and could have a representation analogous to a residue integral so that algebraic continuation to p-adic number fields might become straightforward.

The matrix elements of WCW metric are labelled by the conformal weights of spinor modes, those of symplectic vector fields for light-like CD boundaries and by labels for the irreducible representations of SO(3) acting on light-cone boundary $\delta M_{\pm}^4 = R_+ \times S^2$ and of SU(3) acting in CP_2 . The dependence on spinor modes and their conformal weights could not be guessed in the approach based on symmetries only. The presence of two rather than only one conformal weights distinguishes the metric from that for loop spaces [A40] and reflects the effective 2-dimensionality. The metric codes a rather scarce information about 3-surfaces. This is in accordance with the notion of finite measurement resolution. By increasing the number of partonic 2-surfaces and string world sheets the amount of information coded - measurement resolution - increases. Fermionic quantum state gives information about 3-geometry. The alternative expression for WCW metric in terms of Kähler function means analog of AdS/CFT duality: Kähler metric can be expressed either in terms of Kähler action associated with the Euclidian wormhole contacts defining Kähler function or in terms of the fermionic oscillator operators at string world sheets connecting partonic 2-surfaces.

3.1.5 What Principle Selects The Preferred Extremals?

In positive energy ontology space-time surfaces should be analogous to Bohr orbits in order to make possible possible realization of general coordinate invariance. The first guess was that absolute minimization of Kähler action might be the principle selecting preferred extremals. One can criticize the assumption that extremals correspond to the absolute minima of Kähler action for entire spacetime surface, as too strong since Kähler action from Minkowskian regions is proportional to imaginary unit and corresponds to ordinary QFT action defining a phase factor of vacuum functional. Furthermore, the notion of absolute minimization does not make sense in p-adic context unless one manages to reduce it to purely algebraic conditions. Absolute minimization could however make sense for Euclidian space-time regions defining the lines of generalized Feynman diagras, where Kähler action has definite sign. Kähler function is indeed the Kähler action for these regions.

What is needed is the association of a unique space-time surface to a given 3-surface defined as union of 3-surfaces at opposite boundaries of CD. One can imagine many way to achieve this. "Unique" is too much to demand: for the proposal unique space-time surface is replaced with finite number of conformal gauge equivalence classes of space-time surfaces. In any case, it is better to talk just about preferred extremals of Kähler action and accept as the fact that there are several proposals for what this notion could mean.

1. For instance, one can consider the identification of space-time surface as associative (coassociative) sub-manifold meaning that tangent space of space-time surface can be regarded as associative (co-associative) sub-manifold of complexified octonions defining tangent space
of embedding space. One way to define "associative sub-manifold" is by introducing octonionic representation of embedding space gamma matrices identified as tangent space vectors. It must be also assumed that the tangent space contains a preferred commutative (co-commutative) sub-space at each point and defining an integrable distribution having identification as string world sheet (also slicing of space-time sheet by string world sheets can be considered). Associativity and commutativity would define the basic dynamical principle. A closely related approach is based on so called Hamilton-Jacobi structure [K9] defining also this kind of slicing and the approaches could be equivalent.

2. In zero energy ontology (ZEO) 3-surfaces become pairs of space-like 3-surfaces at the boundaries of causal diamond (CD). Even the light-like partonic orbits could be included to give the analog of Wilson loop. In absence of non-determinism of Kähler action this forces to ask whether the attribute "preferred" is un-necessary. There are however excellent reasons to expect that there is an infinite gauge degeneracy assignable to quantum criticality and represented in terms of Kac-Moody type transformations of partonic orbits respecting their light-likeness and giving rise to the degeneracy behind hierarchy of Planck constants $h_{eff} = n \times h$. n would give the number of conformal equivalence classes of space-time surfaces with same ends. In given measurement resolution one might however hope that the "preferred" could be dropped away.

The already mentioned vanishing of Noether charges for sub-algebras of conformal algebras with conformal weights coming as multiples of n at the ends of space-time surface would be a concrete realization of this picture.

3. The construction of quantum TGD in terms of the Kähler- Dirac action associated with Kähler action led to a possible answer to the question about the principle selecting preferred extremals. The Noether currents associated with Kähler-Dirac action are conserved if second variations of Kähler action vanish. This is nothing but space-time correlate for quantum criticality and it is amusing that I failed to realize this for so long time. A further very important result is that in generic case the modes of induced spinor field are localized at 2-D surfaces from the condition that em charge is well-defined quantum number (W fields must vanish and also Z^0 field above weak scale in order to avoid large parity breaking effects). The criticality conditions are however rather complicated and it seems that the vanishing of the symplectic Noether charges is the practical way to formulate what "preferred" does mean.

In this chapter I will first consider the basic properties of the WCW, briefly discuss the various approaches to the geometrization of the WCW, and introduce the alternative strategies for the construction of Kähler metric based on a direct guess of Kähler function, on the group theoretical approach assuming that WCW can be regarded as a union of symmetric spaces, and on the identification of Kähler metric as anti-commutators of gamma matrices identified as Noether super charges for the symplectic algebra. After these preliminaries a definition of the Kähler function is proposed and various physical and mathematical motivations behind the proposed definition are discussed. The key feature of the Kähler action is classical non-determinism, and various implications of the classical non-determinism are discussed.

The appendix of the book gives a summary about basic concepts of TGD with illustrations. Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.fi/tgdglossary.pdf [L14].

3.2 WCW

The view about configuration space ("world of classical worlds", WCW) has developed considerably during the last two decades. Here only the recent view is summarized in order to not load reader with unessential details.

3.2.1 Basic Notions

The notions of embedding space, 3-surface (and 4-surface), and WCW or "world of classical worlds" (WCW), are central to quantum TGD. The original idea was that 3-surfaces are

space-like 3-surfaces of $H = M^4 \times CP_2$ or $H = M^4_+ \times CP_2$ (see Figs. http://tgdtheory.fi/appfigures/Hoo.jpg, http://tgdtheory.fi/appfigures/cp2.jpg, http://tgdtheory.fi/appfigures/perrose.jpg, which are also in the appendix of this book), and WCW consists of all possible 3-surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to each X^3 a unique space-time surface $X^4(X^3)$ allowing in this manner to realize GCI. During years these notions have however evolved considerably.

The notion of embedding space

Two generalizations of the notion of embedding space were forced by number theoretical vision [K69, K70, K68].

- 1. p-Adicization forced to generalize the notion of embedding space by gluing real and p-adic variants of embedding space together along rationals and common algebraic numbers. The generalized embedding space has a book like structure with reals and various p-adic number fields (including their algebraic extensions) representing the pages of the book. As matter fact, this gluing idea generalizes to the level of WCW.
- 2. With the discovery of zero energy ontology [K84, K18] it became clear that the so called causal diamonds (CDs) interpreted as intersections $M_+^4 \cap M_-^4$ of future and past directed light-cones of $M^4 \times CP_2$ define correlates for the quantum states. The position of the "lower" tip of CD characterizes the position of CD in H. If the temporal distance between upper and lower tip of CD is quantized power of 2 multiples of CP_2 length, p-adic length scale hypothesis [L22] follows as a consequence. The upper resp. lower light-like boundary $\delta M_+^4 \times CP_2$ resp. $\delta M_-^4 \times CP_2$ of CD can be regarded as the carrier of positive resp. negative energy part of the state. All net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time surfaces assignable to zero energy states would would reside inside $CD \times CP_2$ s and have their 3-D ends at the light-like boundaries of $CD \times CP_2$. Fractal structure is present in the sense that CDs can contains CDs within CDs, and measurement resolution dictates the length scale below which the sub-CDs are not visible.
- 3. The realization of the hierarchy of Planck constants [K27] led to a further generalization of the notion of embedding space. Generalized embedding space is obtained by gluing together Cartesian products of singular coverings and possibly also factor spaces of CD and CP_2 to form a book like structure. There are good physical and mathematical arguments suggesting that only the singular coverings should be allowed [K68]. The particles at different pages of this book behave like dark matter relative to each other. This generalization also brings in the geometric correlate for the selection of quantization axes in the sense that the geometry of the sectors of the generalized embedding space with non-standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly speaking, each CD and CP_2 is replaced with a union of CDs and CP_2 s corresponding to different choices of quantization axes so that no breaking of Poincare and color symmetries occurs at the level of entire WCW.

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the receont view is an outcome of a long and tedious process involving many hastily done mis-interpretations.

- 1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equivalence implied by GCI. There was a problem related to the realization of GCI since it was not at all obvious why the preferred extremal $X^4(Y^3)$ for Y^3 at $X^4(X^3)$ and Diff⁴ related X^3 should satisfy $X^4(Y^3) = X^4(X^3)$.
- 2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identification resolves the above mentioned problem) and understanding the conformal symmetries of the theory. Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore

it seems that one must choose between light-like and space-like 3-surfaces or assume generalized GCI requiring that equivalently either space-like 3-surfaces or light-like 3-surfaces at the ends of CDs can be identified as the fundamental geometric objects. General GCI requires that the basic objects correspond to the partonic 2-surfaces identified as intersections of these 3-surfaces plus common 4-D tangent space distribution.

At the level of WCW metric this suggests that the components of the Kähler form and metric can be expressed in terms of data assignable to 2-D partonic surfaces. Since the information about normal space of the 2-surface is needed one has only effective 2-dimensionality. Weak form of self-duality [K19] however implies that the normal data (flux Hamiltonians associated with Kähler electric field) reduces to magnetic flux Hamiltonians. This is essential for conformal symmetries and also simplifies the construction enormously.

It however turned out that this picture is too simplistic. It turned out that the solutions of the Kähler-Dirac equation are localized at 2-D string world sheets, and this led to a generalization of the formulation of WCW geometry: given point of partonic 2-surface is effectively replaced with a string emanating from it and connecting it to another partonic 2-surface. Hence the formulation becomes 3-dimensional but thanks to super-conformal symmetries acting like gauge symmetries one obtains effective 2-dimensionality albeit in weaker sense [K61].

- 3. At some stage came the realization that light-like 3-surfaces can have singular topology in the sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces representing lines of Feynman diagram can be glued along their 2-D ends playing the role of vertices to form what I call generalized Feynman diagrams. The ends of lines are located at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character holds true in discretized sense and in given resolution scale only.
- 4. A further but inessential complication relates to the hierarchy of Planck constants forcing to generalize the notion of embedding space and also to the fact that for non-standard values of Planck constant there is symmetry breaking due to preferred plane M^2 preferred homologically trivial geodesic sphere of CP_2 having interpretation as geometric correlate for the selection of quantization axis. For given sector of CH this means union over choices of this kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces correspond to preferred extremals $X^4(X^3)$ of Kähler action and are thus analogous to Bohr orbits. Kähler function $K(X^3)$ defining the Kähler geometry of the world of classical worlds would correspond to the Kähler action for the preferred extremal. The precise identification of the preferred extremals actually has however remained open.

The study of the Kähler-Dirac equation led to the realization that classical field equations for Kähler action can be seen as consistency conditions for the Kähler-Dirac action and led to the identification of preferred extremals in terms of criticality. This identification which follows naturally also from quantum criticality.

- 1. The condition that electromagnetic charge is well-defined for the modes of Kähler-Dirac operator implies that in the generic case the modes are restricted to 2-D surfaces (string world sheets or possibly also partonic 2-surfaces) with vanishing W fields [K84]. Above weak scale at least one can also assume that Z^0 field vanishes. Also for space-time surfaces with 2-D CP_2 projection (cosmic strongs would be examples) the localization is expected to be possible. This localization is possible only for Kähler action and the set of these 2-surfaces is discrete except for the latter case. The stringy form of conformal invariance allows to solve Kähler-Dirac equation just like in string models and the solutions are labelled by integer valued conformal weights.
- 2. The next step of progress was the realization that the requirement that the conservation of the Noether currents associated with the Kähler-Dirac equation requires that the second variation of the Kähler action vanishes. In strongest form this condition would be satisfied for all variations and in weak sense only for those defining dynamical symmetries. The

interpretation is as a space-time correlate for quantum criticality and the vacuum degeneracy of Kähler action makes the criticality plausible.

The natural expectation is that the number of critical deformations is infinite and corresponds to conformal symmetries naturally assignable to criticality. The number n of conformal equivalence classes of the deformations can be finite and n would naturally relate to the hierarchy of Planck constants $h_{eff} = n \times h$ (see **Fig.** ?? in the appendix of this book).

Weak form of electric-magnetic duality gives a precise formulation for how Kähler coupling strength is visible in the properties of preferred extremals. A generalization of the ideas of the catastrophe theory to infinite-dimensional context results. These conditions make sense also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the understanding of the preferred extremals and the conjectures were consistent with what is known about the known extremals.

- 1. The conclusion was that one can assign to the 4-D tangent space $T(X^4(X_l^3)) \subset M^8$ a subspace $M^2(x) \subset M^4$ having interpretation as the plane of non-physical polarizations. This in the case that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface is in question, similar assigned should be possible in normal space. This means a close connection with super string models. Geometrically this would mean that the deformations of 3-surface in the plane of non-physical polarizations would not contribute to the line element of WCW . This is as it must be since complexification does not make sense in M^2 degrees of freedom.
- 2. In number theoretical framework $M^2(x)$ has interpretation as a preferred hyper-complex subspace of hyper-octonions defined as 8-D subspace of complexified octonions with the property that the metric defined by the octonionic inner product has signature of M^8 . The condition $M^2(x) \subset T(X^4(X_l^3))$ in principle fixes the tangent space at X_l^3 , and one has good hopes that the boundary value problem is well-defined and could fix $X^4(X^3)$ at least partially as a preferred extremal of Kähler action. This picture is rather convincing since the choice $M^2(x) \subset M^4$ plays also other important roles.
- 3. At the level of H the counterpart for the choice of $M^2(x)$ seems to be following. Suppose that $X^4(X_l^3)$ has Minkowskian signature. One can assign to each point of the M^4 projection $P_{M^4}(X^4(X_l^3))$ a sub-space $M^2(x) \subset M^4$ and its complement $E^2(x)$, and the distributions of these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can be assigned to the known extremals of Kähler with Minkowskian signature. This decomposition allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Y_l^3 parallel to X_l^3 follows under certain conditions on the induced metric of $X^4(X_l^3)$. This decomposition exists for known extremals and has played key role in the recent developments. Physically it means that 4-surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time level. A physically attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is discussed in [K36] by starting from the observation that TGD could define a natural realization of braids, braid cobordisms, and 2-knots.
- 4. The weakest form of number theoretic compactification [K70] states that light-like 3-surfaces $X^3 \subset X^4(X^3) \subset M^8$, where $X^4(X^3)$ hyper-quaternionic surface in hyper-octonionic M^8 can be mapped to light-like 3-surfaces $X^3 \subset X^4(X^3) \subset M^4 \times CP_2$, where $X^4(X^3)$ is now preferred extremum of Kähler action. The natural guess is that $X^4(X^3) \subset M^8$ is a preferred extremal of Kähler action associated with Kähler form of E^4 in the decomposition $M^8 = M^4 \times E^4$, where M^4 corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler action in M^8 is same as in $M^4 \times CP_2$: in fact that 2-surface would have identical induced metric and Kähler form so that this conjecture would follow trivial. $M^8 H$ duality would in this sense be Kähler isometry.

If one takes M^-H duality seriously, one must conclude that one can choose any partonic 2-surface in the slicing of X^4 as a representative. This means gauge invariance reflect in the definition of Kähler function as U(1) gauge transformation $K \to K + f + \overline{f}$ having no effect on Kähler metric and Kähler form.

Although the details of this vision might change it can be defended by its ability to fuse together all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in $M_{\pm}^4 \times CP_2$. The basic outcome is that Kähler metric is expressible using the data at partonic 2-surfaces $X^2 \subset \delta M_+^4 \times CP_2$. The generalization to the actual physical situation requires the replacement of $X^2 \subset \delta M_+^4 \times CP_2$ with unions of partonic 2-surfaces located at light-like boundaries of CDs and sub-CDs.

The notions of space-time sheet and many-sheeted space-time are basic pieces of TGD inspired phenomenology (see **Fig.** ?? in the appendix of this book). Originally the space-time sheet was understood to have a boundary as "sheet" strongly suggests. It has however become clear that genuine boundaries are not allowed. Rather, space-time sheet is typically double (at least) covering of M^4 . The light-like 3-surfaces separating space-time regions with Euclidian and Minkowskian signature are however very much like boundaries and define what I call generalized Feynman diagrams. A fascinating possibility is that every material object is accompanied by an Euclidian region representing the interior of the object and serving as TGD analog for blackhole like object. Space-time sheets suffer topological condensation (gluing by wormhole contacts or topological sum in more mathematical jargon) at larger space-time sheets. Space-time sheets form a length scale hierarchy. Quantitative formulation is in terms of p-adic length scale hypothesis and hierarchy of Planck constants proposed to explain dark matter as phases of ordinary matter.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW ("world of classical worlds" (WCW)). Should one regard CH as the space of 3-surfaces of $M^4 \times CP_2$ or $M^4_+ \times CP_2$ or perhaps something more delicate.

- 1. For a long time I believed that the basis question is " M_+^4 or M^4 ?" and that this question had been settled in favor of M_+^4 by the fact that M_+^4 has interpretation as empty Roberson-Walker cosmology. The huge conformal symmetries assignable to $\delta M_+^4 \times CP_2$ were interpreted as cosmological rather than laboratory symmetries. The work with the conceptual problems related to the notions of energy and time, and with the symmetries of quantum TGD, however led gradually to the realization that there are strong reasons for considering M^4 instead of M_+^4 .
- 2. With the discovery of zero energy ontology it became clear that the so called causal diamonds (CDs) define excellent candidates for the fundamental building blocks of WCW or "world of classical worlds" (WCW). The spaces $CD \times CP_2$ regarded as subsets of H defined the sectors of WCW.
- 3. This framework allows to realize the huge symmetries of $\delta M_{\pm}^4 \times CP_2$ as isometries of WCW. . The gigantic symmetries associated with the $\delta M_{\pm}^4 \times CP_2$ are also laboratory symmetries. Poincare invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first conformal symmetry corresponds to the light-like surfaces $\delta M_{\pm}^4 \times CP_2$ of the embedding space representing the upper and lower boundaries of CD. Second conformal symmetry corresponds to light-like 3-surface X_l^3 , which can be boundaries of X^4 and light-like surfaces separating space-time regions with different signatures of the induced metric. This symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCW s associated with the spaces $CD \times CP_2$. CDs can contain CDs within CDs so that a fractal like hierarchy having interpretation in terms of measurement resolution results. It must be however emphasized that Kähler function depends on partonic 2-surfaces at both ends of space-time surface so that WCW is topologically Cartesian product of corresponding symmetric spaces. WCW metric must therefore have parts corresponding to the partonic 2-surfaces (free part) and also an interaction term depending on the partonic 2-surface at the opposite ends of the light-like 3-surface. The conclusion is that geometrization reduces to that for single like of generalized Feynman diagram containing partonic 2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces to a high degree to a study of a simple special case corresponding to a line of generalized Feynman diagram. One can also deduce the free part of the metric by restricting the consideration to partonic 2-surfaces at single end of generalized Feynman diagram.

A further piece of understanding emerged from the following observations.

- 1. The induced Kähler form at the partonic 2-surface X^2 the basic dynamical object if holography is accepted- can be seen as a fundamental symplectic invariant so that the values of $\epsilon^{\alpha\beta}J_{\alpha\beta}$ at X^2 define local symplectic invariants not subject to quantum fluctuations in the sense that they would contribute to the WCW metric. Hence only induced metric corresponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine theory of gravitation at this level.
- 2. WCW can be divided into slices for which the induced Kähler forms of CP_2 and δM_{\pm}^4 at the partonic 2-surfaces X^2 at the light-like boundaries of CDs are fixed. The symplectic group of $\delta M_{\pm}^4 \times CP_2$ parameterizes quantum fluctuating degrees of freedom in given scale (recall the presence of hierarchy of CDs).
- 3. This leads to the identification of the coset space structure of the sub- WCW associated with given CD in terms of the generalized coset construction for super-symplectic and super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in quantum fluctuating degrees of freedom for given values of zero modes can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local coset space $S^2 \times CP_2$ is in question: this was one of the first ideas about WCW which I gave up as too naïve!

3.2.2 Constraints On WCW Geometry

The constraints on the WCW result both from the infinite dimension of WCW and from physically motivated symmetry requirements. There are three basic physical requirements on the WCW geometry: namely four-dimensional GCI in strong form, Kähler property and the decomposition of WCW into a union $\bigcup_i G/H_i$ of symmetric spaces G/H_i , each coset space allowing *G*-invariant metric such that *G* is subgroup of some "universal group" having natural action on 3-surfaces. Together with the infinite dimensionality of WCW these requirements pose extremely strong constraints on WCW geometry. In the following we shall consider these requirements in more detail.

Diff⁴ invariance and Diff⁴ degeneracy

Diff⁴ plays fundamental role as the gauge group of General Relativity. In string models $Diff^2$ invariance $(Diff^2$ acts on the orbit of the string) plays central role in making possible the elimination of the time like and longitudinal vibrational degrees of freedom of string. Also in the present case the elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity and Diff⁴ invariance provides an obvious manner to do the job.

In the standard path l integral formulation the realization of Diff⁴ invariance is an easy task at the formal level. The problem is however that path integral over four-surfaces is plagued by divergences and doesn't make sense. In the present case WCW consists of 3-surfaces and only $Diff^3$ emerges automatically as the group of re-parameterizations of 3-surface. Obviously one should somehow define the action of Diff⁴ in the space of 3-surfaces. Whatever the action of Diff⁴ is it must leave the WCW metric invariant. Furthermore, the elimination of tachyons is expected to be possible only provided the time like deformations of the 3-surface correspond to zero norm vector fields of WCW so that 3-surface and its Diff⁴ image have zero distance. The conclusion is that WCW metric should be both Diff⁴ invariant and Diff⁴ degenerate.

The problem is how to define the action of Diff⁴ in C(H). Obviously the only manner to achieve Diff⁴ invariance is to require that the very definition of the WCW metric somehow associates a unique space time surface to a given 3-surface for Diff⁴ to act on. The obvious physical interpretation of this space time surface is as "classical space time" so that "Classical Physics" would be contained in WCW geometry. In fact, this space-time surface is analogous to Bohr orbit so that semiclassical quantization rules become an exact part of the quantum theory. It is this requirement, which has turned out to be decisive concerning the understanding of the WCW geometry.

Decomposition of WCW into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan suggests that WCW should possess decomposition into a union of coset spaces $CH = \bigcup_i G/H_i$ such that the metric inside each coset space G/H_i is left invariant under the infinite dimensional isometry group G. The metric equivalence of surfaces inside each coset space G/H_i does not mean that 3-surfaces inside G/H_i are physically equivalent. The reason is that the vacuum functional is exponent of Kähler action which is not isometry invariant so that the 3-surfaces, which correspond to maxima of Kähler function for a given orbit, are in a preferred position physically. For instance, one can imagine of calculating functional integral around this maximum perturbatively. Symmetric space property actually allows also much more powerful non-perturbative approach based on harmonic analysis [K84]. The sum of over i means actually integration over the zero modes of the metric (zero modes correspond to coordinates not appearing as coordinate differentials in the metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions. Denoting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its complement t by $g = h \oplus t$, one has

$$[h,h] \subset h$$
, $[h,t] \subset t$, $[t,t] \subset h$

This decomposition turn out to play crucial role in guaranteeing that G indeed acts as isometries and that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of identifying G. The point is that any 3-surface X^3 is $Diff^4$ equivalent to the intersection of $X^4(X^3)$ with the light cone boundary. This in turn implies that 3-surfaces in the space $\delta H =$ $\delta M^4_+ \times CP_2$ should be all what is needed to construct WCW geometry. The group G can be identified as some subgroup of diffeomorphisms of δH and H_i contains that subgroup of G, which acts as diffeomorphisms of the 3-surface X^3 . Since G preserves topology, WCW must decompose into union $\cup_i G/H_i$, where i labels 3-topologies and various zero modes of the metric. For instance, the elements of the Lie-algebra of G invariant under WCW complexification correspond to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps odd at first. In fact, it turns out that the classical non-determinism of Kähler action does not allow the complete reduction to the light cone boundary: physically this is a highly desirable implication but means a considerable mathematical challenge.

Kähler property

Kähler property implies that the tangent space of the configuration space allows complexification and that there exists a covariantly constant two-form J_{kl} , which can be regarded as a representation of the imaginary unit in the tangent space of the WCW :

$$J_k^{\ r} J_{rl} = -G_{kl} \quad . \tag{3.2.1}$$

There are several physical and mathematical reasons suggesting that WCW metric should possess Kähler property in some generalized sense.

- 1. The deepest motivation comes from the need to geometrize hermitian conjugation which is basic mathematical operation of quantum theory.
- 2. Kähler property turns out to be a necessary prerequisite for defining divergence free WCW integration. We will leave the demonstration of this fact later although the argument as such is completely general.

3. Kähler property very probably implies an infinite-dimensional isometry loop groups $Map(S^1, G)$ [A40] shows that loop group allows only

Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for $Map(X^3, H)$. The defining formula for the connection is given by the expression

$$2(\nabla_X Y, Z) = X(Y, Z) + Y(Z, X) - Z(X, Y) + ([X, Y], Z) + ([Z, X], Y) - ([Y, Z], X)$$
(3.2.2)

X, Y, Z are smooth vector fields in $Map(X^3, G)$. This formula defines $\nabla_X Y$ uniquely provided the tangent space of Map is complete with respect to Riemann metric. In the finitedimensional case completeness means that the inverse of the covariant metric tensor exists so that one can solve the components of connection from the conditions stating the covariant constancy of the metric. In the case of the loop spaces with Kähler metric this is however not the case.

Now the symmetry comes into the game: if X, Y, Z are left (local gauge) invariant vector fields defined by the Lie-algebra of local G then the first three terms drop away since the scalar products of left invariant vector fields are constants. The expression for the covariant derivative is given by

$$\nabla_X Y = (Ad_X Y - Ad_X^* Y - Ad_Y^* X)/2 \tag{3.2.3}$$

where Ad_X^* is the adjoint of Ad_X with respect to the metric of the loop space.

At this point it is important to realize that Freed's argument does not force the isometry group of WCW to be $Map(X^3, M^4 \times SU(3))$! Any symmetry group, whose Lie algebra is complete with respect to the WCW metric (in the sense that any tangent space vector is expressible as superposition of isometry generators modulo a zero norm tangent vector) is an acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to the requirement of left invariance as a mathematical consistency condition and we expect that dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of the metric turns out to be even larger than in 1-dimensional case due to the four-dimensional Diff degeneracy. So we expect that the metric ought to possess some infinite-dimensional isometry group and that the above formula generalizes also to the 3-dimensional case and to the case of local coset space. Note that in M^4 degrees of freedom $Map(X^3, M^4)$ invariance would imply the flatness of the metric in M^4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be underestimated. For example, one natural looking manner to construct physical theory would be based on the idea that configuration space geometry is dynamical and this approach is followed in the attempts to construct string theories [B16]. Various physical considerations (in particular the need to obtain oscillator operator algebra) seem to imply that WCW geometry is necessarily Kähler. The above result however states that WCW Kähler geometry cannot be dynamical quantity and is dictated solely by the requirement of internal consistency. This result is extremely nice since it has been already found that the definition of the WCW metric must somehow associate a unique classical space time and "classical physics" to a given 3-surface: uniqueness of the geometry implies the uniqueness of the "classical physics".

4. The choice of the embedding space becomes highly unique. In fact, the requirement that WCW is not only symmetric space but also (contact) Kähler manifold inheriting its (degenerate) Kähler structure from the embedding space suggests that spaces, which are products of four-dimensional Minkowski space with complex projective spaces CP_n , are perhaps the

only possible candidates for H. The reason for the unique position of the four-dimensional Minkowski space turns out to be that the boundary of the light cone of D-dimensional Minkowski space is metrically a sphere S^{D-2} despite its topological dimension D-1: for D = 4 one obtains two-sphere allowing Kähler structure and infinite parameter group of conformal symmetries!

- 5. It seems possible to understand the basic mathematical structures appearing in string model in terms of the Kähler geometry rather nicely.
 - (a) The projective representations of the infinite-dimensional isometry group (not necessarily Map!) correspond to the ordinary representations of the corresponding centrally extended group [A53]. The representations of Kac Moody group indeed play central role in string models [B29, B27] and WCW approach would explain their occurrence, not as a result of some quantization procedure, but as a consequence of symmetry of the underlying geometric structure.
 - (b) The bosonic oscillator operators of string models would correspond to centrally extended Lie-algebra generators of the isometry group acting on spinor fields of the WCW
 - (c) The "fermionic" fields (Ramond fields, Schwartz, Green) should correspond to gamma matrices of the WCW . Fermionic oscillator operators would correspond simply to contractions of isometry generators j_A^k with complexified gamma matrices of WCW

$$\Gamma_A^{\pm} = j_A^k \Gamma_k^{\pm} \Gamma_k^{\pm} = (\Gamma^k \pm J_l^k \Gamma^l) / \sqrt{2}$$

$$(3.2.4)$$

 $(J_l^k$ is the Kähler form of WCW) and would create various spin excitations of WCW spinor field. Γ_k^{\pm} are the complexified gamma matrices, complexification made possible by the Kähler structure of the WCW .

This suggests that some generalization of the so called Super Kac Moody algebra of string models [B29, B27] should be regarded as a spectrum generating algebra for the solutions of field equations in configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy counter argument against the whole idea. Kähler structure necessitates complex structure in the tangent space of WCW. In CP_2 degrees of freedom no obvious problems of principle are expected: WCW should inherit in some sense the complex structure of CP_2 .

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious obstacle for complexification: somehow one should get rid of two degrees of freedom so that only two Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field theories: only two of the four possible polarizations of gauge boson correspond to physical degrees of freedom: mathematically the wrong polarizations correspond to zero norm states and transverse states span a complex Hilbert space with Euclidian metric. Also in string model analogous situation occurs: in case of D-dimensional Minkowski space only D-2 transversal degrees of freedom are physical. The solution to the problem seems therefore obvious: WCW metric must be degenerate so that each vibrational mode spans effectively a 2-dimensional Euclidian plane allowing complexification.

We shall find that the definition of Kähler function to be proposed indeed provides a solution to this problem and also to the problems listed before.

1. The definition of the metric doesn't differentiate between 1- and N-particle sectors, avoids spin statistics difficulty and has the physically appealing property that one can associate to each 3-surface a unique classical space time: classical physics is described by the geometry of WCW and d the geometry of WCW is determined uniquely by the requirement of mathematical consistency.

- 2. Complexification is possible only provided the dimension of the Minkowski space equals to four and is due to the effective 3-dimensionality of light-cone boundary.
- 3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry group G. G is subgroup of the diffeomorphism group of $\delta M_+^4 \times CP_2$. Essential role is played by the fact that the boundary of the four-dimensional light cone, which, despite being topologically 3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore allows infinite-parameter groups of isometries as well as conformal and symplectic symmetries and also Kähler structure unlike the higher-dimensional light cone boundaries. Therefore WCW metric is Kähler only in the case of four-dimensional Minkowski space and allows symplectic U(1) central extension without conflict with the no-go theorems about higher dimensional central extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to conclude that the isometry group must consist of the symplectic transformations of $\delta H = \delta M_+^4 \times CP_2$. The corresponding Lie algebra can be regarded as a loop algebra associated with the symplectic group of $S^2 \times CP_2$, where S^2 is $r_M = constant$ sphere of light cone boundary. Thus the finite-dimensional group G defining loop group in case of string models extends to an infinite-dimensional group in TGD context. This group has a monstrous size. The radial Virasoro localized with respect to $S^2 \times CP_2$ defines naturally complexification for both G and H. The general form of the Kähler metric deduced on basis of this symmetry has same qualitative properties as that deduced from Kähler function identified as preferred extremal of Kähler action. Also the zero modes, among them isometry invariants, can be identified.

4. The construction of the WCW spinor structure is based on the identification of the WCW gamma matrices as linear superpositions of the oscillator operators associated with the second quantized induced spinor fields. The extension of the symplectic invariance to super symplectic invariance fixes the anti-commutation relations of the induced spinor fields, and WCW gamma matrices correspond directly to the super generators. Physics as number theory vision suggests strongly that WCW geometry exists for 8-dimensional embedding space only and that the choice $M_{+}^{4} \times CP_{2}$ for the embedding space is the only possible one.

3.3 Identification Of The Kähler Function

There are three approaches to the construction of the WCW geometry: a direct physics based guess of the Kähler function, a group theoretic approach based on the hypothesis that CH can be regarded as a union of symmetric spaces, and the approach based on the construction of WCW spinor structure first by second quantization of induced spinor fields. Here the first approach is discussed.

3.3.1 Definition Of Kähler Function

Consider first the basic definitions related to Kähler metric and Kähler function.

Kähler metric in terms of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following formula

$$J_{k\bar{l}} = ig_{k\bar{l}} = i\partial_k\partial_{\bar{l}}K . aga{3.3.1}$$

Kähler function is defined only modulo a real part of holomorphic function so that one has the gauge symmetry

$$K \rightarrow K + f + \overline{f}$$
 (3.3.2)

Let X^3 be a given 3-surface and let X^4 be any four-surface containing X^3 as a sub-manifold: $X^4 \supset X^3$. The 4-surface X^4 possesses in general boundary. If the 3-surface X^3 has nonempty boundary δX^3 then the boundary of X^3 belongs to the boundary of X^4 : $\delta X^3 \subset \delta X^4$.

Induced Kähler form and its physical interpretation

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its relationship to the gauge fields as they are defined in gauge theories. Kähler form J is related to the corresponding Maxwell field F via the formula

$$J = xF , \quad x = \frac{g_K}{\hbar} . \tag{3.3.3}$$

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality of J to \hbar does not matter in the ordinary gauge theory context where one routinely choses units by putting $\hbar = 1$ but becomes very important when one considers a hierarchy of Planck constants [K27].

Unless one has $J = (g_K/\hbar_0)$, where \hbar_0 corresponds to the ordinary value of Planck constant, $\alpha_K = g_K^2/4\pi\hbar$ together the large Planck constant means weaker interactions and convergence of the functional integral defined by the exponent of Kähler function and one can argue that the convergence of the functional integral is what forces the hierarchy of Planck constants. This is in accordance with the vision that Mother Nature likes theoreticians and takes care that the perturbation theory works by making a phase transition increasing the value of the Planck constant in the situation when perturbation theory fails. This leads to a replacement of the M^4 (or more precisely, causal diamond CD) and CP_2 factors of the embedding space $(CD \times CP_2)$ with its $r = \hbar/\hbar_0$ -fold singular covering (one can consider also singular factor spaces). If the components of the space-time surfaces at the sheets of the covering are identical, one can interpret *r*-fold value of Kähler action as a sum of *r* identical contributions from the sheets of the covering with ordinary value of Planck constant and forget the presence of the covering. Physical states are however different even in the case that one assumes that sheets carry identical quantum states and anyonic phase could correspond to this kind of phase [K54].

Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term proportional to $\int_{X^4} J \wedge J$ in well known manner. Chern Simons term is purely topological term and well defined for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable space-time surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore Kähler action $S_K(X^4)$ can be defined as

$$S_K(X^4) = k_1 \int_{X^4; X^3 \subset X^4} J \wedge (*J) .$$
(3.3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is defined in such a way that the action density is negative for the Euclidian signature of the induced metric and such that for a Minkowskian signature of the induced metric Kähler electric field gives a negative contribution to the action density.

The notational convention

$$k_1 \equiv \frac{1}{16\pi\alpha_K} , \qquad (3.3.5)$$

where α_K will be referred as Kähler coupling strength will be used in the sequel. If the preferred extremals minimize/maximize [K70] the absolute value of the action in each region where action density has a definite sign, the value of α_K can depend on space-time sheet.

Kähler function

One can define the Kähler function in the following manner. Consider first the case $H = M_+^4 \times CP_2$ and neglect for a moment the non-determinism of Kähler action. Let X^3 be a 3-surface at the light-cone boundary $\delta M_+^4 \times CP_2$. Define the value $K(X^3)$ of Kähler function K as the value of the Kähler action for some preferred extremal in the set of four-surfaces containing X^3 as a sub-manifold:

$$K(X^{3}) = K(X_{pref}^{4}) , \quad X_{pref}^{4} \subset \{X^{4} | X^{3} \subset X^{4}\} .$$
(3.3.6)

The most plausible identification of preferred extremals is in terms of quantum criticality in the sense that the preferred extremals allow an infinite number of deformations for which the second variation of Kähler action vanishes. Combined with the weak form of electric-magnetic duality forcing appearance of Kähler coupling strength in the boundary conditions at partonic 2-surfaces this condition might be enough to fix preferred extremals completely.

The precise formulation of Quantum TGD has developed rather slowly. Only quite recently-33 years after the birth of TGD - I have been forced to reconsider the question whether the precise identification of Kähler function. Should Kähler function actually correspond to the Kähler action for the space-time regions with Euclidian signature having interpretation as generalized Feynman graphs? If so what would be the interpretation for the Minkowskian contribution?

- 1. If one accepts just the formal definition for the square root of the metric determinant, Minkowskian regions would naturally give an imaginary contribution to the exponent defining the vacuum functional. The presence of the phase factor would give a close connection with the path integral approach of quantum field theories and the exponent of Kähler function would make the functional integral well-defined.
- 2. The weak form of electric magnetic duality would reduce the contributions to Chern-Simons terms from opposite sides of wormhole throats with degenerate four-metric with a constraint term guaranteeing the duality.

The motivation for this reconsideration came from the applications of ideas of Floer homology to TGD framework [K41]: the Minkowskian contribution to Kähler action for preferred extremals would define Morse function providing information about WCW homology. Both Kähler and Morse would find place in TGD based world order.

One of the nasty questions about the interpretation of Kähler action relates to the square root of the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is that the square root is imaginary in Minkowskian space-time regions so that Kähler action would be complex. The Euclidian contribution would have a natural interpretation as positive definite Kähler function but how should one interpret the imaginary Minkowskian contribution? Certainly the path integral approach to quantum field theories supports its presence. For some mysterious reason I was able to forget this nasty question and serious consideration of the obvious answer to it. Only when I worked between possibile connections between TGD and Floer homology [K41] I realized that the Minkowskian contribution is an excellent candidate for Morse function whose critical points give information about WCW homology. This would fit nicely with the vision about TGD as almost topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have a mathematically well-defined theory. Minkowskian contribution would give the quantal interference effects and stationary phase approximation. The analog of Floer homology would represent quantum superpositions of critical points identifiable as ground states defined by the extrema of Kähler action for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals around the extrema of Kähler function. One would have maxima also for the Kähler function but only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume that the reduction to Chern-Simons terms occurs for the preferred extremals in *both* Minkowskian and Euclidian regions or only in Minkowskian regions?

- 1. All arguments for this have been represented for Minkowskian regions [K84] involve local light-like momentum direction which does not make sense in the Euclidian regions. This does not however kill the argument: one can have non-trivial solutions of Laplacian equation in the region of CP_2 bounded by wormhole throats: for CP_2 itself only covariantly constant right-handed neutrino represents this kind of solution and at the same time supersymmetry. In the general case solutions of Laplacian represent broken super-symmetries and should be in one-one correspondences with the solutions of the Kähler-Dirac equation. The interpretation for the counterparts of momentum and polarization would be in terms of classical representation of color quantum numbers.
- 2. If the reduction occurs in Euclidian regions, it gives in the case of CP_2 two 3-D terms corresponding to two 3-D gluing regions for three coordinate patches needed to define coordinates and spinor connection for CP_2 so that one would have two Chern-Simons terms. I have earlier claimed that without any other contributions the first term would be identical with that from Minkowskian region apart from imaginary unit and different coefficient. This statement is wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian and Minkowskian regions.
- 3. There is also an argument stating that Dirac determinant for Chern-Simons Dirac action equals to Kähler function, which would be lost if Euclidian regions would not obey holography. The argument obviously generalizes and applies to both Morse and Kähler function which are definitely not proportional to each other.

CP breaking and ground state degeneracy

The Minkowskian contribution of Kähler action is imaginary due to the negativity of the metric determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at wormhole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian contribution to the exponent of vacuum functional provides a general view about the description of CP breaking in TGD framework.

- 1. In TGD framework path integral is replaced by inner product involving integral over WCV. The vacuum functional and its conjugate are associated with the states in the inner product so that the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian contribution would have no physical significance. This of course cannot be the case. The ground state is actually degenerate corresponding to the phase factor and its complex conjugate since \sqrt{g} can have two signs in Minkowskian regions. Therefore the inner products between states associated with the two ground states define 2×2 matrix and non-diagonal elements contain interference terms due to the presence of the phase factor. At the limit of full CP_2 type vacuum extremal the two ground states would reduce to each other and the determinant of the matrix would vanish.
- 2. A small mixing of the two ground states would give rise to CP breaking and the first principle description of CP breaking in systems like $K \overline{K}$ and of CKM matrix should reduce to this mixing. K^0 mesons would be CP even and odd states in the first approximation and correspond to the sum and difference of the ground states. Small mixing would be present having exponential sensitivity to the actions of CP_2 type extremals representing wormhole throats. This might allow to understand qualitatively why the mixing is about 50 times larger than expected for B^0 mesons.
- 3. There is a strong temptation to assign the two ground states with two possible arrows of geometric time. At the level of M-matrix the two arrows would correspond to state preparation at either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow same for both or is it opposite for long and short-lived neutral measons? Different lifetimes would suggest that the arrow must be the same and apart from small leakage that induced by environment. CP breaking would be induced by the fact that CP is performed only K^0 but not for the environment in the construction of states. One can probably imagine also alternative interpretations.

3.3.2 The Values Of The Kähler Coupling Strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the Kähler function, the dynamics depends on the normalization of the Kähler function. Since the Theory of Everything should be unique it would be highly desirable to find arguments fixing the normalization or equivalently the possible values of the Kähler coupling strength α_K .

Quantization of α_K follow from Dirac quantization in WCW?

The quantization of Kähler form of WCW could result in the following manner. It will be found that Abelian extension of the isometry group results by coupling spinors of WCW to a multiple of Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler form is co-homologically nontrivial the value of α_K is quantized.

Quantization from criticality of TGD Universe?

Mathematically α_K is analogous to temperature and this suggests that α_K is analogous to critical temperature and therefore quantized. This analogy suggests also a physical motivation for the unique value or value spectrum of α_K . Below the critical temperature critical systems suffer something analogous to spontaneous magnetization. At the critical point critical systems are characterized by long range correlations and arbitrarily large volumes of magnetized and non-magnetized phases are present. Spontaneous magnetization might correspond to the generation of Kähler magnetic fields: the most probable 3-surfaces are Kähler magnetized for subcritical values of α_K . At the critical values of α_K the most probable 3-surfaces contain regions dominated by either Kähler electric and or Kähler magnetic fields: by the compactness of CP_2 these regions have in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and with outer boundaries) are possible and they have suffered topological condensation on each other. Therefore the critical value of α_K allows the richest possible topological structure for the most probable 3-space. In fact, this hierarchical structure is in accordance with the basic ideas about renormalization group invariance. This hypothesis has highly nontrivial consequences even at the level of ordinary condensed matter physics.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There is however a much more general but more or less equivalent manner to formulate the condition fixing the value of α_K . Vacuum functional exp(K) is analogous to the exponent exp(-H/T) appearing in the definition of the partition function of a statistical system and S-matrix elements and other interesting physical quantities are integrals of type $\langle O \rangle = \int exp(K)O\sqrt{G}dV$ and therefore analogous to the thermal averages of various observables. α_K is completely analogous to temperature. The critical points of a statistical system correspond to critical temperatures T_c for which the partition function is non-analytic function of $T - T_c$ and according RGE hypothesis critical systems correspond to fixed points of renormalization group evolution. Therefore, a mathematically more precise manner to fix the value of α_K is to require that some integrals of type $\langle O \rangle$ (not necessary S-matrix elements) become non-analytic at $1/\alpha_K - 1/\alpha_K^c$.

Renormalization group invariance is closely related with criticality. The self duality of the Kähler form and Weyl tensor of CP_2 indeed suggest RG invariance. The point is that in N = 1 super-symmetric field theories duality transformation relates the strong coupling limit for ordinary particles with the weak coupling limit for magnetic monopoles and vice versa. If the theory is self dual these limits must be identical so that action and coupling strength must be RG invariant quantities. The geometric realization of the duality transformation is easy to guess in the standard complex coordinates ξ_1, ξ_2 of CP_2 (see Appendix of the book). In these coordinates the metric and Kähler form are invariant under the permutation $\xi_1 \leftrightarrow \xi_2$ having Jacobian -1.

Consistency requires that the fundamental particles of the theory are equivalent with magnetic monopoles. The deformations of so called CP_2 type vacuum extremals indeed serve as building bricks of a elementary particles. The vacuum extremals are are isometric embeddings of CP_2 and can be regarded as monopoles. Elementary particle corresponds to a pair of wormhole contacts and monopole flux runs between the throats of of the two contacts at the two space-time sheets and through the contacts between space-time sheets. The magnetic flux however flows in internal degrees of freedom (possible by nontrivial homology of CP_2) so that no long range $1/r^2$ magnetic field is created. The magnetic contribution to Kähler action is positive and this suggests that ordinary magnetic monopoles are not stable, since they do not minimize Kähler action: a cautious conclusion in accordance with the experimental evidence is that TGD does not predict magnetic monopoles. It must be emphasized that the prediction of monopoles of practically all gauge theories and string theories and follows from the existence of a conserved electromagnetic charge.

Does α_K have spectrum?

The assumption about single critical value of α_K is probably too strong.

- 1. The hierarchy of Planck constants which would result from non-determinism of Kähler action implying *n* conformal equivalences of space-time surface connecting 3-surfaces at the boundaries of causal diamond CD would predict effective spectrum of α_K as $\alpha_K = g_K^2/4\pi \hbar_{eff}$, $\hbar_{eff}/h = n$. The analogs of critical temperatures would have accumulation point at zero temperature.
- 2. p-Adic length scale hierarchy together with the immense vacuum degeneracy of the Kähler action leads to ask whether different p-adic length scales correspond to different critical values of α_K , and that ordinary coupling constant evolution is replaced by a piecewise constant evolution induced by that for α_K .

3.3.3 What Conditions Characterize The Preferred Extremals?

The basic vision forced by the generalization of General Coordinate Invariance has been that spacetime surfaces correspond to preferred extremals $X^4(X^3)$ of Kähler action and are thus analogous to Bohr orbits. Kähler function $K(X^3)$ defining the Kähler geometry of the world of classical worlds would correspond to the Kähler action for the preferred extremal. The precise identification of the preferred extremals actually has however remained open.

In positive energy ontology space-time surfaces should be analogous to Bohr orbits in order to make possible possible realization of general coordinate invariance. The first guess was that absolute minimization of Kähler action might be the principle selecting preferred extremals. One can criticize the assumption that extremals correspond to the absolute minima of Kähler action for entire space-time surface as too strong since the Kähler action from Minkowskian regions is proportional to imaginary unit and corresponds to ordinary QFT action defining a phase factor of vacuum functional. Absolute minimization could however make sense for Euclidian space-time regions defining the lines of generalized Feynman diagras, where Kähler action has definite sign. Kähler function is indeed the Kähler action for these regions. Furthermore, the notion of absolute minimization does not make sense in p-adic context unless one manages to reduce it to purely algebraic conditions.

Is preferred extremal property needed at all in ZEO?

It is good to start with a critical question. Could it be that the notion of preferred extremal might be un-necessary in ZEO (ZEO)? The reason is that 3-surfaces are now pairs of 3-surfaces at boundaries of causal diamonds and for deterministic dynamics the space-time surface connecting them is unique.

Now the action principle is non-deterministic but the non-determinism would give rise to additional discrete dynamical degrees of freedom naturally assignable to the hierarchy of Planck constants $h_{eff} = n \times h$, n the number of space-time surface with same fixed ends at boundaries of CD and same Kähler action and same conserved quantities. One must be however cautious: this leaves the possibility that there is a gauge symmetry present so that the n sheets correspond to gauge equivalence classes of sheets. Conformal gauge invariance is associated with 2-D criticality and is expected to be present also now. and this is the recent view.

One can of course ask whether one can assume that the pairs of 3-surfaces at the ends of CD are totally un-correlated - this the starting point in ZEO. If this assumption is not made then preferred extremal property would make sense also in ZEO and imply additional correlation between the members of these pairs. This kind of correlations might be present and correspond to the Bohr orbit property, space-time correlate for quantum states. This kind of correlates are also expected as space-time counterpart for the correlations between initial and final state in quantum dynamics. This indeed seems to be the correct conclusion.

How to identify preferred extremals?

What is needed is the association of a unique space-time surface to a given 3-surface defined as union of 3-surfaces at opposite boundaries of CD. One can imagine many ways to achieve this. "Unique" is too much to demand: for the proposal unique space-time surface is replaced with finite number of conformal gauge equivalence classes of space-time surfaces. In any case, it is better to talk just about preferred extremals of Kähler action and accept as the fact that there are several proposals for what this notion could mean.

- 1. For instance, one can consider the identification of space-time surface as associative (coassociative) sub-manifold meaning that tangent space of space-time surface can be regarded as associative (co-associative) sub-manifold of complexified octonions defining tangent space of embedding space. One manner to define "associative sub-manifold" is by introducing octonionic representation of embedding space gamma matrices identified as tangent space vectors. It must be also assumed that the tangent space contains a preferred commutative (co-commutative) sub-space at each point and defining an integrable distribution having identification as string world sheet (also slicing of space-time sheet by string world sheets can be considered). Associativity and commutativity would define the basic dynamical principle. A closely related approach is based on so called Hamilton-Jacobi structure [K9] defining also this kind of slicing and the approaches could be equivalent.
- 2. In ZEO 3-surfaces become pairs of space-like 3-surfaces at the boundaries of causal diamond (CD). Even the light-like partonic orbits could be included to give the analog of Wilson loop. In absence of non-determinism of Kähler action this forces to ask whether the attribute "preferred" is un-necessary. There are however excellent reasons to expect that there is an infinite gauge degeneracy assignable to quantum criticality and represented in terms of Kac-Moody type transformations of partonic orbits respecting their light-likeness and giving rise to the degeneracy behind hierarchy of Planck constants $h_{eff} = n \times h$. n would give the number of conformal equivalence classes of space-time surfaces with same ends. In given measurement resolution one might however hope that the "preferred" could be dropped away.

The vanishing of Noether charges for sub-algebras of conformal algebras with conformal weights coming as multiples of n at the ends of space-time surface would be a concrete realization of this picture and looks the most feasible option at this moment since it is direct classical correlated for broken super-conformal gauge invariance at quantum level.

3. The construction of quantum TGD in terms of the Kähler-Dirac action associated with Kähler action suggested a possible answer to the question about the principle selecting preferred extremals. The Noether currents associated with Kähler-Dirac action are conserved if second variations of Kähler action vanish. This is nothing but space-time correlate for quantum criticality and it is amusing that I failed to realize this for so long time. A further very important result is that in generic case the modes of induced spinor field are localized at 2-D surfaces from the condition that em charge is well-defined quantum number (W fields must vanish and also Z^0 field above weak scale in order to avoid large parity breaking effects).

The localization at string world sheets means that quantum criticality as definition of "preferred" works only if there selection of string world sheets, partonic 2-surfaces, and their light-like orbits fixes the space-time surface completely. The generalization of AdS/CFT correspondence (or strong form of holography) suggests that this is indeed the case. The criticality conditions are however rather complicated and it seems that the vanishing of the symplectic Noether charges is the practical manner to formulate what "preferred" does mean.

3.3.4 Why Non-Local Kähler Function?

Kähler function is non-local functional of 3-surface. Non-locality of the Kähler function seems to be at odds with basic assumptions of local quantum field theories. Why this rather radical departure from the basic assumptions of local quantum field theory? The answer is shortly given: WCW integration appears in the definition of the inner product for WCW spinor fields and this inner product must be free from perturbative divergences. Consider now the argument more closely.

In the case of finite-dimensional symmetric space with Kähler structure the representations of the isometry group necessitate the modification of the integration measure defining the inner product so that the integration measure becomes proportional to the exponent exp(K) of the Kähler function [B21]. The generalization to infinite-dimensional case is obvious. Also the requirement of Kac-Moody symmetry leads to the presence of this kind of vacuum functional as will be found later. The exponent is in fact uniquely fixed by finiteness requirement. WCW integral is of the following form

$$\int \bar{S}_1 exp(K) S_1 \sqrt{g} dX \quad . \tag{3.3.7}$$

One can develop perturbation theory using local complex coordinates around a given 3-surface in the following manner. The (1, 1)-part of the second variation of the Kähler function defines the metric and therefore propagator as contravariant metric and the remaining (2, 0)- and (0, 2)-parts of the second variation are treated perturbatively. The most natural choice for the 3-surface are obviously the 3-surfaces, which correspond to extrema of the Kähler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined determinants.

- 1. The Gaussian determinant coming from the exponent, which is just the inverse square root for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kähler function in local coordinates.
- 2. The metric determinant. The matrix representing covariant metric is however same as the matrix appearing in Gaussian determinant by the defining property of the Kähler metric: in local complex coordinates the matrix defined by second derivatives is of type (1, 1). Therefore these two ill defined determinants (recall the presence of Diff degeneracy) cancel each other exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one encounters the standard perturbative divergences. Since most local actions (Chern-Simons term is perhaps an exception [B34]) for induced geometric quantities are extremely nonlinear there is no hope of obtaining a finite theory. For non-local action the situation is however completely different. There are no local interaction vertices and therefore no products of delta functions in perturbation theory.

A further nice feature of the perturbation theory is that the propagator for small deformations is nothing but the contravariant metric of WCW. Also the various vertices of the theory are closely related to the metric of WCW since they are determined by the Kähler function so that perturbation theory would have a beautiful geometric interpretation. Furthermore, since four-dimensional Diff degeneracy implies that the propagator doesn't couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern Simons term from vacuum functional defined as imaginary exponent of $exp(ik_2 \int_{X^4} J \wedge J)$. The term is not well defined for non-orientable space-time surfaces and one must assume that k_2 vanishes for these surfaces. The presence of this term might provide first principle explanation for CP breaking. If k_2 is integer multiple of $1/(8\pi)$ Chern Simons term gives trivial contribution for closed spacetime surfaces since instanton number is in question. By adding a suitable boundary term of form $exp(ik_3 \int_{\delta X^3} J \wedge A)$ it is possible to guarantee that the exponent is integer valued for 4-surfaces with boundary, too.

There are two arguments suggesting that local Chern Simons term would not introduce divergences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to define a divergence free field theory [B34]. The term doesn't depend at all on the induced metric and therefore contains no dimensional parameters $(CP_2 \text{ radius})$ and its expansion in terms of CP_2 coordinate variables is of the form allowed by renormalizable field theory in the sense that only quartic terms appear. This is seen by noticing that there always exist symplectic coordinates, where the expression of the Kähler potential is of the form

$$A = \sum_{k} P_k dQ^k \quad . \tag{3.3.8}$$

The expression for Chern-Simons term in these coordinates is given by

$$k_2 \int_{X^3} \sum_{k,l} P_l dP_k \wedge dQ^k \wedge dQ^l \quad , \tag{3.3.9}$$

and clearly quartic CP_2 coordinates. A further nice property of the Chern Simons term is that this term is invariant under symplectic transformations of CP_2 , which are realized as U(1) gauge transformation for the Kähler potential.

The expressibility of WCW Kähler metric as anti-commutators of super-symplectic Noether super-charges localized at 2-D string world sheets inspires an even stronger conjecture about Kähler action. The super-symmetry between Kähler-Dirac action and Kähler action suggests that Kähler action is expressible as sum of string world sheet areas in the effective metric defined by the anti-commutators of K-D gamma matrices. This would conform with the strong form of holography in turn implies by strong form of General Coordinate Invariance, and could be seen as analog of AdS/CFT correspondence, which as such is not enough in TGD possessing super-conformal symmetries, which are gigantic as compared to those of super string models.

3.4 Some Properties Of Kähler Action

In this section some properties of Kähler action and Kähler function are discussed in light of experienced gained during about 15 years after the introduction of the notion.

3.4.1 Vacuum Degeneracy And Some Of Its Implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kähler action. Although it is not associated with the preferred extremals of Kähler action, there are good reasons to expect that it has deep consequences concerning the structure of the theory.

Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long range interactions possible (the well known problem of the membrane theories is the absence of massless particles [B33]). The Kähler form of CP_2 defines symplectic structure and any 4-surface for which CP_2 projection is so called Lagrangian manifold (at most two dimensional manifold with vanishing induced Kähler form), is vacuum extremal due to the vanishing of the induced Kähler form. More explicitly, in the local coordinates, where the vector potential A associated with the Kähler form reads as $A = \sum_k P_k dQ^k$. Lagrangian manifolds are expressible locally in the following form

$$P_k = \partial_k f(Q^i) . aga{3.4.1}$$

where the function f is arbitrary. Notice that for the general YM action surfaces with onedimensional CP_2 projection are vacuum extremals but for Kähler action one obtains additional degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle physics. The so called CP_2 type vacuum extremals are warped embeddings X^4 of CP_2 to H such that Minkowski coordinates are functions of a single CP_2 coordinate, and the one-dimensional projection of X^4 is random light like curve. These extremals have a non-vanishing action but vanishing Poincare charges. Their small deformations are identified as space-time counterparts of fermions and their super partners. Wormhole throats identified as pieces of these extremals are identified as bosons and their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models and this actually led to the eventual realization that conformal invariance is a basic symmetry of TGD and that WCW can be regarded as a union of symmetric spaces with isometry groups having identification as symplectic and Kac-Moody type groups assignable to the partonic 2-surfaces.

Approximate symplectic invariance

Vacuum extremals have diffeomorphisms of M_+^4 and M_+^4 local symplectic transformations as symmetries. For non-vacuum extremals these symmetries leave induced Kähler form invariant and only induced metric breaks these symmetries. Symplectic transformations of CP_2 act on the Maxwell field defined by the induced Kähler form in the same manner as ordinary U(1) gauge symmetries. They are however not gauge symmetries since gauge invariance is still present. In fact, the construction of WCW geometry relies on the assumption that symplectic transformations of $\delta M_+^4 \times CP_2$ which infinitesimally correspond to combinations of M_+^4 local CP_2 symplectic and CP_2 -local M_+^4 symplectic transformations act as isometries of WCW. In zero energy ontology these transformations act simultaneously on all partonic 2-surfaces characterizing the space-time sheet representing a generalized Feynman diagram inside CD.

The fact that CP_2 symplectic transformations do not act as genuine gauge transformations means that U(1) gauge invariance is effectively broken. This has non-trivial implications. The field equations allow purely geometric vacuum 4-currents not possible in Maxwell's electrodynamics [K9]. For the known extremals (massless extremals) they are light-like and a possible interpretation is in terms of Bose-Einstein condensates of collinear massless bosons.

Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to $M_+^4 \times Y^2$, Y^2 any Lagrangian sub-manifold of CP_2 are vacua irrespective of the topology and that symplectic transformations of CP_2 generate new surfaces Y^2 . If preferred extremals are obtained as small deformations of vacuum extremals (for which the criticality is maximal), one expects therefore enormous ground state degeneracy, which could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy corresponds to the hypothesis that WCW is a union of symmetric spaces labeled by zero modes which do not appear at the line-element of the WCW metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and the maxima Kähler function as a function of zero modes define a discrete set which might be called reduced configuration space. Spin glass degeneracy turns out to be crucial element for understanding how macro-temporal quantum coherence emerges in TGD framework. One of the basic ideas about p-adicization is that the maxima of Kähler function define the TGD counterpart of spin glass energy landscape [K69, K29]. The hierarchy of discretizations of the symmetric spaces corresponding to a hierarchy of measurement resolutions [K84] could allow an identification in terms of a hierarchy spin glass energy landscapes so that the algebraic points of the WCW would correspond to the maxima of Kähler function. The hierarchical structure would be due to the failure of strict non-determinism of Kähler action allowing in zero energy ontology to add endlessly details to the space-time sheets representing zero energy states in shorter scale.

Generalized quantum gravitational holography

The original naïve belief was that the construction of the configuration space geometry reduces to $\delta H = \delta M_+^4 \times CP_2$. An analogous idea in string model context became later known as quantum gravitational holography. The basic implication of the vacuum degeneracy is classical non-determinism, which is expected to reflect itself as the properties of the Kähler function and WCW geometry. Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the degeneracy and save quantum gravitational holography in its simplest form. This would mean

that one just replaces space-like 3-surfaces with "association sequences" consisting of sequences of space-like 3-surfaces with time like separations as causal determinants. This would mean that the absolute minima of Kähler function would become degenerate: same space-like 3-surface at δH would correspond to several association sequences with the same value of Kähler function.

The life turned out to be more complex than this. CP_2 type extremals have Euclidian signature of the induced metric and therefore CP_2 type extremals glued to space-time sheet with Minkowskian signature of the induced metric are surrounded by light like surfaces X_l^3 , which might be called elementary particle horizons. The non-determinism of the CP_2 type extremals suggests strongly that also elementary particle horizons behave non-deterministically and must be regarded as causal determinants having time like projection in M_+^4 . Pieces of CP_2 type extremals are good candidates for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also surrounded by an elementary particle horizons and non-determinism is also now present. That this non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most plausible treatment of the non-determinism and has indeed led to a breakthrough in the construction and understanding of quantum TGD. At the level of generalized Feynman diagrams sub-CDs containing zero energy states represent a hierarchy of radiative corrections so that the classical determinism is direct correlate for the quantum non-determinism. Determinism makes sense only when one has specified the length scale of measurement resolution. One can always add a CD containing a vacuum extremal to get a new zero energy state and a preferred extremal containing more details.

Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must for several reasons. Quantum classical correspondence, which has become a basic guide line in the development of TGD, states that all quantum phenomena have classical space-time correlates. This is not new as far as properties of quantum states are considered. What is new that also quantum jumps and quantum jump sequences which define conscious existence in TGD Universe, should have classical space-time correlates: somewhat like written language is correlate for the contents of consciousness of the writer. Classical non-determinism indeed makes this possible. Classical non-determinism makes also possible the realization of statistical ensembles as ensembles formed by strictly deterministic pieces of the space-time sheet so that even thermodynamics has space-time representations. Space-time surface can thus be seen as symbolic representations for the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum gravitational holography would work in the most strict sense, time would be lost also in TGD since all relevant information about quantum states would be determined by the moment of big bang. More precisely, geometro-temporal localization for the contents of conscious experience would not be possible. Classical non-determinism together with quantum-classical correspondence however suggests that it is possible to have quantum jumps in which non-determinism is concentrated in space-time region so that also conscious experience contains information about this region only.

3.4.2 Four-Dimensional General Coordinate Invariance

The proposed definition of the Kähler function is consistent with GCI and implies also 4-dimensional Diff degeneracy of the Kähler metric. Zero energy ontology inspires strengthening of the GCI in the sense that space-like 3-surfaces at the boundaries of CD are physically equivalent with the light-like 3-surfaces connecting the ends. This implies that basic geometric objects are partonic 2-surfaces at the boundaries of CDs identified as the intersections of these two kinds of surfaces. Besides this the distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so that one would have only effective 2-dimensionality. The failure of the non-determinism of Kähler action in the standard sense of the word affects the situation also and one must allow a fractal hierarchy of CDs inside CDs having interpretation in terms of radiative corrections.

Resolution of tachyon difficulty and absence of Diff anomalies

In TGD as in string models the tachyon difficulty is potentially present: unless the time like vibrational excitations possess zero norm they contribute tachyonic term to the mass squared operator of Super Kac Moody algebra. This difficulty is familiar already from string models [B29, B27].

The degeneracy of the metric with respect to the time like vibrational excitations guarantees that time like excitations do not contribute to the mass squared operator so that mass spectrum is tachyon free. It also implies the decoupling of the tachyons from physical states: the propagator of the theory corresponds essentially to the inverse of the Kähler metric and therefore decouples from time like vibrational excitations. The experience with string model suggests that if metric is degenerate with respect to diffeomorphisms of $X^4(X^3)$ there are indeed good hopes that time like excitations possess vanishing norm with respect to WCW metric.

The four-dimensional Diff invariance of the Kähler function implies that Diff invariance is guaranteed in the strong sense since the scalar product of two Diff vector fields given by the matrix associated with (1, 1) part of the second variation of the Kähler action vanishes identically. This property gives hopes of obtaining theory, which is free from Diff anomalies: in fact loop space metric is not Diff degenerate and this might be the underlying reason to the problems encountered in string models [B29, B27].

Complexification of WCW

Strong form of GCI plays a fundamental role in the complexification of WCW . GCI in strong form reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their 4-D tangent space data associated with ends of light-like 3-surface at light-like boundaries of CD. At boths end the embedding space is effectively reduces to $\delta M_+^4 \times CP_2$ (forgetting the complications due to non-determinism of Kähler action). Light cone boundary in turn is metrically 2-dimensional Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kähler structure. Therefore one can say that in certain sense configuration space metric inherits the Kähler structure of $S^2 \times CP_2$. This mechanism works in case of four-dimensional Minkowski space only: higher-dimensional spheres do not possess even Kähler structure. In fact, it turns out that the quantum fluctuating degrees of freedom can be regarded in well-defined sense as a local variant of $S^2 \times CP_2$ and thus as an infinite-dimensional analog of symmetric space as the considerations of [K19] demonstrate.

The details of the complexification were understood only after the construction of WCW geometry and spinor structure in terms of second quantized induced spinor fields [K84]. This also allows to make detailed statements about complexification [K19].

Contravariant metric and Diff⁴ degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the propagator associated to small deformations of minimizing surface is not quite straightforward. We believe that this problem is only technical. Certainly this problem is not new, being encountered in both GRT and gauge theories [B37, B28]. In TGD a solution of the problem is provided by the existence of infinite-dimensional isometry group. If the generators of this group form a complete set in the sense that any vector of the tangent space is expressible as as sum of these generators plus some zero norm vector fields then one can restrict the consideration to this subspace and in this subspace the matrix g(X, Y) defined by the components of the metric tensor indeed indeed possesses well defined inverse $g^{-1}(X, Y)$. This procedure is analogous to gauge fixing conditions in gauge theories and coordinate fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible an approach to WCW integration based on harmonic analysis replacing the perturbative approach based on perturbative functional integral. This approach allows also a p-adic variant and leads an effective discretization in terms of discrete variants of WCW for which the points of symmetric space consist of algebraic points. There is an infinite number of these discretizations [K69] and the interpretation is in terms of finite measurement resolution. This gives a connection with the p-adicization program, infinite primes, inclusions of hyper-finite factors as representation of the finite measurement resolution, and the hierarchy of Planck constants [K68] so that various approaches to quantum TGD converge nicely.

General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Diff⁴ invariant. This in fact fixes not only classical but also quantum dynamics completely. The point is that the values of the WCW spinor fields must be essentially same for all Diff⁴ related 3-surfaces at the orbit X^4 associated with a given 3-surface. This would mean that the time development of Diff⁴ invariant configuration spinor field is completely determined by its initial value at the moment of the big bang!

This is of course a naïve over statement. The non-determinism of Kähler action and zero energy ontology force to take the causal diamond (CD) defined by the intersection of future and past directed light-cones as the basic structural unit of WCW, and there is fractal hierarchy of CDs within CDs so that the above statement makes sense only for giving CD in measurement resolution neglecting the presence of smaller CDs. Strong form of GCI also implies factorization of WCW spinor fields into a sum of products associated with various partonic 2-surfaces. In particular, one obtains time-like entanglement between positive and negative energy parts of zero energy states and entanglement coefficients define what can be identified as M-matrix expressible as a "complex square root" of density matrix and reducing to a product of positive definite diagonal square root of density matrix and unitary S-matrix. The collection of orthonormal M-matrices in turn define unitary U-matrix between zero energy states. M-matrix is the basic object measured in particle physics laboratory.

3.4.3 WCW Geometry, Generalized Catastrophe Theory, And Phase Transitions

The definition of WCW geometry has nice catastrophe theoretic interpretation. To understand the connection consider first the definition of the ordinary catastrophe theory [A44].

- 1. In catastrophe theory one considers extrema of the potential function depending on dynamical variables x as function of external parameters c. The basic space decomposes locally into cartesian product $E = C \times X$ of control variables c, appearing as parameters in potential function V(c, x) and of state variables x appearing as dynamical variables. Equilibrium states of the system correspond to the extrema of the potential V(x, c) with respect to the variables x and in the absence of symmetries they form a sub-manifold of M with dimension equal to that of the parameter space C. In some regions of C there are several extrema of potential function and the extremum value of x as a function of c is multi-valued. These regions of $C \times X$ are referred to as catastrophes. The simplest example is cusp catastrophe (see Fig. ??) with two control parameters and one state variable.
- 2. In catastrophe regions the actual equilibrium state must be selected by some additional physical requirement. If system obeys flow dynamics defined by first order differential equations the catastrophic jumps take place along the folds of the cusp catastrophe (delay rule). On the other hand, the Maxwell rule obeyed by thermodynamic phase transitions states that the equilibrium state corresponds to the absolute minimum of the potential function and the state of system changes in discontinuous manner along the Maxwell line in the middle between the folds of the cusp (see Fig. 3.1).
- 3. As far as discontinuous behavior is considered, fold catastrophe is the basic catastrophe: all catastrophes contain folds as there "satellites" and one aim of the catastrophe theory is to derive all possible ways for the stable organization of folds into higher catastrophes. The fundamental result of the catastrophe theory is that for dimensions d of C smaller than 5 there are only 7 basic catastrophes: fold catastrophe corresponds to third order polynomial (in fold the two real roots become a pair of complex conjugate roots), cusp to fourth order polynomial, etc.

Consider now the TGD counterpart of this. TGD allows allows two kinds of catastrophe theories.

- 1. The first one is related to Kähler action as a local functional of 4-surface. The nature of this catastrophe theory depends on what one means with the preferred extremals.
- 2. Second catastrophe theory corresponds to Kähler function a non-local functional of 3-surface. The maxima of the vacuum functional defined as the exponent of Kähler function define what might called effective space-times, and discontinuous jumps changing the values of the parameters characterizing the maxima are possible.

Consider first the option based on Kähler action.

- 1. Potential function corresponds to Kähler action restricted to the solutions of Euler Lagrange equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kähler action with respect to the variables of X (time derivatives of coordinates of C specifying X^3 in H_a) keeping the variables of C specifying 3-surface X^3 fixed. Preferred extremal property is analogous to the Bohr quantization since canonical momenta cannot be chosen freely as in the ordinary initial value problems of the classical physics. Preferred extremals are by definition at criticality. Behavior variables correspond to the deformations of the 4-surface keeping partonic 2-surfaces and 3-D tangent space data fixed and preserving extremal property. Control variables would correspond to these data.
- 2. At criticality the rank of the infinite-dimensional matrix defined by the second functional derivatives of the Kähler action is reduced. Catastrophes form a hierarchy characterized by the reduction of the rank of this matrix and Thom's catastrophe theory generalizes to infinite-dimensional context. Criticality in this sense would be one aspect of quantum criticality having also other aspects. No discrete jumps would occur and system would only move along the critical surface becoming more or less critical.
- 3. There can exist however several critical extremals assignable to a given partonic 2-surface but have nothing to do with the catastrophes as defined in Thom's approach. In presence of degeneracy one should be able to choose one of the critical extremals or replace this kind of regions of WCW by their multiple coverings so that single partonic 2-surface is replaced with its multiple copy. The degeneracy of the preferred extremals could be actually a deeper reason for the hierarchy of Planck constants involving in its most plausible version n-fold singular coverings of CD and CP_2 . This interpretation is very satisfactory since the generalization of the embedding space and hierarchy of Planck constants would follow naturally from quantum criticality rather than as separate hypothesis.
- 4. The existence of the catastrophes is implied by the vacuum degeneracy of the Kähler action. For example, for pieces of Minkowski space in $M_+^4 \times CP_2$ the second variation of the Kähler action vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces are analogous to the tip of the cusp catastrophe. There are also space-time surfaces for which the second variation is non-vanishing but degenerate and a hierarchy of subsets in the space of extremal 4-surfaces with decreasing degeneracy of the second variation defines the boundaries of the projection of the catastrophe surface to the space of 3-surfaces. The space-times for which second variation is degenerate contain as subset the critical and initial value sensitive preferred extremal space-times.

Consider next the catastrophe theory defined by Kähler function.

- 1. In this case the most obvious identification for the behavior variables would be in terms of the space of all 3-surfaces in $CD \times CP_2$ and if one believes in holography and zero energy ontology the 2-surfaces assignable the boundaries of causal diamonds (CDs).
- 2. The natural control variables are zero modes whereas behavior variables would correspond to quantum fluctuating degrees of freedom contributing to the WCW metric. The induced Kähler form at partonic 2-surface would define infinitude of purely classical control variables. There is also a correlation between zero modes identified as degrees of freedom assignable to

the interior of 3-surface and quantum fluctuating degrees of freedom assigned to the partonic 2-surfaces. This is nothing but holography and effective 2-dimensionality justifying the basic assumption of quantum measurement theory about the correspondence between classical and quantum variables. The absence of several maxima implies also the presence of saddle surfaces at which the rank of the matrix defined by the second derivatives is reduced. This could lead to a non-positive definite metric. It seems that it is possible to have maxima of Kähler function without losing positive definiteness of the metric since metric is defined as (1, 1)-type derivatives with respect to complex coordinates. In case of CP_2 however Kähler function has single degenerate maximum corresponding to the homologically trivial geodesic sphere at $r = \infty$. It might happen that also in the case of infinite-D symmetric space finite maxima are impossible.

3. The criticality of Kähler function would be analogous to thermodynamical criticality and to the criticality in the sense of catastrophe theory. In this case Maxwell's rule is possible and even plausible since quantum jump replaces the dynamics defined by a continuous flow.

Cusp catastrophe provides a simple concretization of the situation for the criticality of Kähler action (as distinguished from that for Kähler function).

- The set M of the critical 4-surfaces corresponds to the V-shaped boundary of the 2-D cusp catastrophe in 3-D space to plane. In general case it forms codimension one set in WCW. In TGD Universe physical system would reside at this line or its generalization to higher dimensional catastrophes. For the criticality associated with Kähler action the transitions would be smooth transitions between different criticalities characterized by the rank defined above: in the case of cusp (see Fig. 3.1) from the tip of cusp to the vertex of cusp or vice versa. Evolution could mean a gradual increase of criticality in this sense. If preferred extremals are not unique, cusp catastrophe does not provide any analogy. The strong form of criticality would mean that the system would be always "at the tip of cusp" in metaphoric sense. Vacuum extremals are maximally critical in trivial sense, and the deformations of vacuum extremals could define the hierarchy of criticalities.
- 2. For the criticality of Kähler action Maxwell's rule stating that discontinuous jumps occur along the middle line of the cusp is in conflict with catastrophe theory predicting that jumps occurs along at criticality. For the criticality of Kähler function - if allowed at all by symmetric space property - Maxwell's rule can hold true but cannot be regarded as a fundamental law. It is of course known that phase transitions can occur in different ways (super heating and super cooling).

Figure 3.1: Cusp catastrophe

The natural expectation is that the number of critical deformations is infinite and corresponds to conformal symmetries naturally assignable to criticality. Conformal symmetry would be naturally associated with the super-symplectic algebra of δM_{\pm}^4 for which the light-like radial coordinate plays the role of complex coordinate z for ordinary 2-D conformal symmetry. At criticality the symplectic subalgebra represented as gauge symmetries would change to its isomorphic subalgebra or which versa and having conformal weights are multiples of integer n. One would have fractal hierarchies of sub-algebras characterized by integers $n_{i+1} = \prod_{k < i+1} m_k$. In each transition to lower criticality the gauge sub-algebra of the symplectic algebra would become a sub-algebra of the original one. These transitions would occur spontaneously. The transitions in the reverse direction would not take place spontaneously. The proposal is that these phase transitions take place in both directions in living matter and that the phase transitions reducing criticality require metabolic energy.

The number n of conformal equivalence classes of the deformations can be finite and n would naturally relate to the hierarchy of Planck constants $h_{eff} = n \times h$ (see Fig. http://tgdtheory. fi/appfigures/planckhierarchy.jpg or Fig. ?? in the appendix of this book). The hierarchy of Planck constants in turn is identified as dark phases of matter [K27].

Chapter 4

Construction of WCW Kähler Geometry from Symmetry Principles

4.1 Introduction

The most general expectation is that configuration space ("world of classical worlds" (WCW)) can be regarded as a union of coset spaces which are infinite-dimensional symmetric spaces with Kähler structure: $C(H) = \bigcup_i G/H(i)$. Index *i* labels 3-topology and zero modes. The group *G*, which can depend on 3-surface, can be identified as a subgroup of diffeomorphisms of $\delta M^4_+ \times CP_2$ and *H* must contain as its subgroup a group, whose action reduces to $Diff(X^3)$ so that these transformations leave 3-surface invariant.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at the opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal of Kähler action. The interpretation would be in terms of holography. One can also consider the inclusion of the light-like 3-surfaces at which the signature of the induced metric changes to the 3-surface so that it would become connected.

The task is to identify plausible candidate for G and H and to show that the tangent space of the WCW allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow complexification. One must also identify the zero modes and construct integration measure for the functional integral in these degrees of freedom. Besides this one must deduce information about the explicit form of WCW metric from symmetry considerations combined with the hypothesis that Kähler function is Kähler action for a preferred extremal of Kähler action. One must of course understand what "preferred" means.

4.1.1 General Coordinate Invariance And Generalized Quantum Gravitational Holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of $M_+^4 \times CP_2$ or of $M^4 \times CP_2$. Hermitian conjugation is the basic operation in quantum theory and its geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler function reduces the construction of the geometry to that for the boundary of configuration space consisting of 3-surfaces on $\delta M_+^4 \times CP_2$, the moment of big bang. The proposal was that Kähler function $K(Y^3)$ could be defined as a preferred extremal of so called Kähler action for the unique space-time surface $X^4(Y^3)$ going through given 3-surface Y^3 at $\delta M_+^4 \times CP_2$. For Diff⁴ transforms of Y^3 at $X^4(Y^3)$ Kähler function would have the same value so that Diff⁴ invariance and degeneracy would be the outcome. The proposal was that the preferred extremals are absolute minima of Kähler action. This picture turned out to be too simple.

- 1. I have already described the recent view about light-like 3-surfaces as generalized Feynman diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat what has been said. Note that the inclusion of space-like ends at boundaries of CD gives analog of Wilson loop.
- 2. It has also become obvious that the gigantic symmetries associated with $\delta M_{\pm}^4 \times CP_2 \subset CD \times CP_2$ manifest themselves as the properties of propagators and vertices. Cosmological considerations, Poincare invariance, and the new view about energy favor the decomposition of the WCW to a union of configuration spaces assignable to causal diamonds CDs defined as intersections of future and past directed light-cones. The minimum assumption is that CDs label the sectors of CH: the nice feature of this option is that the considerations of this chapter restricted to $\delta M_+^4 \times CP_2$ generalize almost trivially. This option is beautiful because the center of mass degrees of freedom associated with the different sectors of CH would correspond to M^4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence $X^3 \rightarrow X^4(X^3)$ must be replaced by a bijective correspondence in the sense that X_l^3 as light-like 3-surface is unique among all its Diff⁴ translates. This also allows physically preferred "gauge fixing" allowing to get rid of the mathematical complications due to Diff4 degeneracy. The internal geometry of the space-time sheet must define the preferred 3-surface X_l^3 .

The realization of this vision means a considerable mathematical challenge. The effective metric 2-dimensionality of 3-dimensional light-like surfaces X_l^3 of M^4 implies generalized conformal and symplectic symmetries allowing to generalize quantum gravitational holography from light like boundary so that the complexities due to the non-determinism can be taken into account properly.

4.1.2 Light Like 3-D Causal Determinants And Effective 2-Dimensionality

The light like 3-surfaces X_l^3 of space-time surface appear as 3-D causal determinants. Basic examples are boundaries and elementary particle horizons (parton orbits) at which Minkowskian signature of the induced metric transforms to Euclidian one. This brings in a second conformal symmetry related to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry is analogous to TGD counterpart of the Kac Moody symmetry of string models and seems to be associated with quantum criticality implying non-uniqueness of the space-time surface with given space-like ends at boundaries of CD. Critical deformations would be Kac-Moody type transformation preserving the light-likeness of the parton orbits. The challenge is to understand the relationship of this symmetry to WCW geometry and the interaction between the two conformal symmetries.

- 1. Field-particle duality is realized. Light-like 3-surfaces X_l^3 -generalized Feynman diagrams correspond to the particle aspect of field-particle duality whereas the physics in the interior of space-time surface $X^4(X_l^3)$ would correspond to the field aspect. Generalized Feynman diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian signature.
- 2. One could also say that light-like 3-surfaces X_l^3 and the space-like 3-surfaces X^3 in the intersections of $X^4(X_l^3) \cap CD \times CP_2$ where the causal diamond CD is defined as the intersections of future and past directed light-cones provide dual descriptions.
- 3. Generalized coset construction implies that the differences of super-symplectic and Super Kac-Moody type Super Virasoro generators annihilated physical states. This construction in turn led to the realization that WCW for fixed values of zero modes in particular the values of the induced Kähler form of $\delta M_{\pm}^4 \times CP_2$ allows identification as a coset space obtained by dividing the symplectic group of $\delta M_{\pm}^4 \times CP_2$ with Kac-Moody group, whose generators vanish at $X^2 = X_l^3 \times \delta M_{\pm}^4 \times CP_2$. One can say that quantum fluctuating degrees of freedom in a very concrete sense correspond to the local variant of $S^2 \times CP_2$.

The analog of conformal invariance in the light-like direction of X_l^3 and in the light-like radial direction of δM_{\pm}^4 suggests that the data at either X^3 or X_l^3 should be enough to determine WCW geometry. This implies that the relevant data is contained to their intersection X^2 at least for finite regions of X^3 . This is the case if the deformations of X_l^3 not affecting X^2 and preserving light likeness corresponding to zero modes or gauge degrees of freedom and induce deformations of X^3 also acting as zero modes. The outcome is effective 2-dimensionality. One must be however cautious in order to not make over-statements. The reduction to 2-D theory in global sense would trivialize the theory and the reduction to 2-D theory must takes places for finite region of X^3 only so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation of this vision is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-CD:s brings in improved measurement resolution and means also that effective 2-dimensionality is realized in the scale of sub-CD only.

Experience has however taught to be extremely cautious: it could also be that in ZEO the unions of the space-like 3-surfaces at the ends of CD and of the light-like partonic orbits at which the signature of the induced metric changes are the basic objects analogous to Wilson loops. In this case the notion of effective 2-dimensionality is not so clear. Also in this case the Kac-Moody type symmetry preserving the light-likeness of partonic orbits could reduce the additional degrees of freedom to a finite number of conformal equivalence classes of partonic orbits for given pair of 3-surfaces.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies dramatically the earlier formulas for WCW metric involving 3-dimensional integrals over $X^3 \subset M^4_+ \times CP_2$ reducing now to 2-dimensional integrals. Note that X^3 is determined by preferred extremal property of $X^4(X^3_l)$ once X^3_l is fixed and one can hope that this mapping is one-to-one.

4.1.3 Magic Properties Of Light Cone Boundary And Isometries Of WCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional Minkowski space: δM_+^4 , the boundary of four-dimensional light cone is metrically 2-dimensional(!) sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well as Kähler structure. Kähler structure is not unique: possible Kähler structures of light cone boundary are parameterized by Lobatchevski space SO(3, 1)/SO(3). The requirement that the isotropy group SO(3) of S^2 corresponds to the isotropy group of the unique classical 3-momentum assigned to $X^4(Y^3)$ defined as a preferred extremum of Kähler action, fixes the choice of the complex structure uniquely. Therefore group theoretical approach and the approach based on Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of conformal transformations of 2-sphere is completely unique feature of the 4-dimensional light cone boundary. Even more, in case of $\delta M_+^4 \times CP_2$ the isometry group of δM_+^4 becomes localized with respect to CP_2 ! Furthermore, the Kähler structure of δM_+^4 defines also symplectic structure.

Hence any function of $\delta M_+^4 \times CP_2$ would serve as a Hamiltonian transformation acting in both CP_2 and δM_+^4 degrees of freedom. These transformations obviously differ from ordinary local gauge transformations. This group leaves the symplectic form of $\delta M_+^4 \times CP_2$, defined as the sum of light cone and CP_2 symplectic forms, invariant. The group of symplectic transformations of $\delta M_+^4 \times CP_2$ is a good candidate for the isometry group of the WCW.

- 2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects and is exact for vacuum extremals. If Kähler function were exactly invariant under the symplectic transformations of CP_2 , CP_2 symplectic transformations wiyld correspond to zero modes having zero norm in the Kähler metric of WCW. This does not make sense since symplectic transformations of $\delta M^4 \times CP_2$ actually parameterize the quantum fluctuation degrees of freedom.
- 3. The groups G and H, and thus WCW itself, should inherit the complex structure of the light cone boundary. The diffeomorphims of M^4 act as dynamical symmetries of vacuum

extremals. The radial Virasoro localized with respect to $S^2 \times CP_2$ could in turn act in zero modes perhaps inducing conformal transformations: note that these transformations lead out from the symmetric space associated with given values of zero modes.

4.1.4 Symplectic Transformations Of $\Delta M_+^4 \times CP_2$ As Isometries Of WCW

The symplectic transformations of $\delta M_+^4 \times CP_2$ are excellent candidates for inducing symplectic transformations of the WCW acting as isometries. There are however deep differences with respect to the Kac Moody algebras.

- 1. The conformal algebra of the WCW is gigantic when compared with the Virasoro + Kac Moody algebras of string models as is clear from the fact that the Lie-algebra generator of a symplectic transformation of $\delta M_+^4 \times CP_2$ corresponding to a Hamiltonian which is product of functions defined in δM_+^4 and CP_2 is sum of generator of δM_+^4 -local symplectic transformation of CP_2 and CP_2 -local symplectic transformations of δM_+^4 . This means also that the notion of local gauge transformation generalizes.
- 2. The physical interpretation is also quite different: the relevant quantum numbers label the unitary representations of Lorentz group and color group, and the four-momentum labeling the states of Kac Moody representations is not present. Physical states carrying no energy and momentum at quantum level are predicted. The appearance of a new kind of angular momentum not assignable to elementary particles might shed some light to the longstanding problem of baryonic spin (quarks are not responsible for the entire spin of proton). The possibility of a new kind of color might have implications even in macroscopic length scales.
- 3. The central extension induced from the natural central extension associated with $\delta M_+^4 \times CP_2$ Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At first this seems to mean a dramatic difference. For instance, in the case of CP_2 symplectic transformations localized with respect to δM_+^4 the central extension would vanish for Cartan algebra, which means a profound physical difference. For $\delta M_+^4 \times CP_2$ symplectic algebra a generalization of the Kac Moody type structure however emerges naturally.

The point is that δM_+^4 -local CP_2 symplectic transformations are accompanied by CP_2 local δM_+^4 symplectic transformations. Therefore the Poisson bracket of two δM_+^4 local CP_2 Hamiltonians involves a term analogous to a central extension term symmetric with respect to CP_2 Hamiltonians, and resulting from the δM_+^4 bracket of functions multiplying the Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians at the maximum of the Kähler function where one expects that CP_2 Hamiltonians vanish and have a form essentially identical with Kac Moody central extension because it is indeed symmetric with respect to indices of the symplectic group.

The most natural option is that symplectic and Kac-Moody algebras together generate the isometry algebra and that the corresponding transformations leaving invariant the partonic 2-surfaces and their 4-D tangent space data act as gauge transformations and affect only zero modes.

4.1.5 Does The Symmetric Space Property Reduce To Coset Construction For Super Virasoro Algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false alarms before the time was ripe for identifying the precise form of the Cartan decomposition g = t + h satisfying the defining conditions

$$g = t + h$$
 . $[t, t] \subset h$. $[h, t] \subset t$. (4.1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum TGD was understood well enough.

WCW geometry allows two super-conformal symmetries assignable the coset space decomposition G/H for a sector of WCW with fixed values of zero moes. One can assign to the tangent space algebras g resp. h of G resp. H analogous to Kac-Moody algebras super Virasoro algebras and construct super-conformal representation as a coset representation meaning that the differences of super Virasoro generators annihilate the physical states. This obviously generalizes Goddard-Olive-Kent construction [A56].

The identification of the two algeras is not a mechanical task and has involved a lot of trial and erroring. The algebra g should be be spanned by the generators of super-symplectic algebra of light-cone boundary and by the Kac-Moody algebra acting on light-like orbits of partonic 2surfaces. The sub-algebra h should be spanned by generators which vanish for a preferred point of WCW analogous to origin of $CP_2 = SU(3)/U(2)$. Now this point would correspond to maximum or minimum of Kähler function (no saddle points are allowed if the WCW metric has definite signature). In hindsight it is obvious that the generators of both symplectic and Kac-Moody algebras are needed to generate g and h: already the effective 2-dimensionality meaning that 4-D tangent space data of partonic surface matters requires this.

The maxima of Kähler function could correspond to this kind of points (pairs formed by 3-surfaces at different ends of CD in ZEO) and could play also an essential role in the integration over WCW by generalizing the Gaussian integration of free quantum field theories. It took quite a long time to realize that Kähler function must be identified as Kähler action for the Euclidian region of preferred extremal. Kähler action for Minkowskian regions gives imaginary contribution to the action exponential and has interpretation in terms of Morse function. This part of Kähler action can have and is expected to have saddle points and to define Hessian with signature which is not positive definite.

4.1.6 What Effective 2-Dimensionality And Holography Really Mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points, which directly relate to what one means with holography.

- 1. Holography suggests that light-like 3-surfaces with fixed ends give rise to same WCW metric and the deformations of these surfaces by Kac-Moody algebra correspond to zero modes just like the interior degrees of freedom for space-like 3-surface do. The same would be true for space-like 3-surfaces at the ends of space-time surface with respect to symplectic transformations.
- 2. The non-trivial action of Kac-Moody algebra in the interior of X_l^3 together with effective 2-dimensionality and holography would encourage the interpretation of Kac-Moody symmetries acting trivially at X^2 as gauge symmetries. Light-like 3-surfaces having fixed partonic 2-surfaces at their ends would be equivalent physically and effective 2-dimensionality and holography would be realized modulo gauge transformations. As a matter fact, the action on WCW metric would be a change of zero modes so that one could identify it as analog of conformal scaling. The action of symplectic transformations vanishing in the interior of space-like 3-surface at the end of space-time surface affects only zero modes.

4.1.7 For The Reader

Few words about the representation of ideas are in order. For a long time the books about TGD served as kind of lab note books - a bottom-up representation providing kind of a ladder making clear the evolution of ideas. This led gradually to a rather chaotic situation in which it was difficult for me to control the internal consistency and for the possible reader to distinguish between the big ideas and ad hoc guesses, most of them related to the detailed realization of big visions. Therefore I have made now and the decision to clean up a lot of the ad hoc stuff. In this process I have also changed the representation so that it is more top-down and tries to achieve over-all views.

There are several visions about what TGD is and I have worked hardly to achieve a fusion of these visions. Hence simple linear representation in which reader climbs to a tree of wisdom is impossible. I must summarize overall view from the beginning and refer to the results deduced in chapters towards the end of the book and also to ideas discussed in other books. For instance, the construction of WCW ("world of classical worlds" (WCW)) spinor structure discussed in chapters [K84] provides the understanding necessary to make the construction of configuration space geometry more detailed. Also number theoretical vision discussed in another book [K50] is necessary. Somehow it seems that a graphic representation emphasizing visually the big picture should be needed to make the representation more comprehensible.

The appendix of the book gives a summary about basic concepts of TGD with illustrations. Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.fi/tgdglossary.pdf [L14].

4.2 How To Generalize The Construction Of WCW Geometry To Take Into Account The Classical Non-Determinism?

If the embedding space were $H_+ = M_+^4 \times CP_2$ and if Kähler action were deterministic, the construction of WCW geometry reduces to $\delta M_+^4 \times CP_2$. Thus in this limit quantum holography principle [B18, B30] would be satisfied also in TGD framework and actually reduce to the general coordinate invariance. The classical non-determinism of Kähler action however means that this construction is not quite enough and the challenge is to generalize the construction.

4.2.1 Quantum Holography In The Sense Of Quantum GravityTheories

In string theory context quantum holography is more or less synonymous with Maldacena conjecture Maldacena which (very roughly) states that string theory in Anti-de-Sitter space AdS is equivalent with a conformal field theory at the boundary of AdS. In purely quantum gravitational context [B18], quantum holography principle states that quantum gravitational interactions at high energy limit in AdS can be described using a topological field theory reducing to a conformal (and non-gravitational) field theory defined at the *time like* boundary of the AdS. Thus the time like boundary plays the role of a dynamical hologram containing all information about correlation functions of d + 1 dimensional theory. This reduction also conforms with the fact that black hole entropy is proportional to the horizon area rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle assigning space-time surface to a given 3-surface X^3 at light cone boundary were completely deterministic, four-dimensional general coordinate invariance would reduce the construction of the configuration geometry for the space of 3-surfaces in $M_+^4 \times CP_2$ to the construction of the geometry at the boundary of WCW consisting of 3-surfaces in $\delta M_+^4 \times CP_2$ (moment of big bang). Also the quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in this strong form fails. This is very desirable from the point of view of both physics and consciousness theory. Classical determinism would also mean that time would be lost in TGD as it is lost in GRT. Classical non-determinism is also absolutely essential for quantum consciousness and makes possible conscious experiences with contents localized into finite time interval despite the fact that quantum jumps occur between WCW spinor fields defining what I have used to call quantum histories. Classical non-determinism makes it also possible to generalize quantum-classical correspondence in the sense that classical non-determinism at the space-time level provides correlate for quantum non-determinism. The failure of classical determinism is a difficult challenge for the construction of WCW geometry. One might however hope that the notion of quantum holography generalizes.

4.2.2 How Does The Classical Determinism Fail In TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the notion of 3-surface by allowing unions of space-like 3-surfaces with time like separations with very strong but not complete correlations between the space-like 3-surfaces. In this case the non-determinism would mean that the 3-surfaces Y^3 at light cone boundary correspond to at most enumerable number of preferred extremals $X^4(Y^3)$ of Kähler action so that one would get finite or at most enumerably infinite number of replicas of a given WCW region and the construction would still reduce to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP_2 projection which belongs to so called Lagrange manifold of CP_2 having by definition vanishing induced Kähler form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of H for which all extremals of Kähler action are vacua.

- 2. CP_2 type vacuum extremals are different since they possess non-vanishing Kähler form and Kähler action. They are identifiable as classical counterparts of elementary particles have M_+^4 projection which is a random light like curve (this in fact gives rise to conformal invariance identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons to suspect that classical non-determinism might destroy the dream about complete reduction to the light cone boundary.
- 3. The wormhole contacts connecting different space-time sheets together can be seen as pieces of CP_2 type extremals and one expects that the non-determinism is still there and that the metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding wormhole contacts and having time-like M_+^4 projection) might be a crucial element in the understanding of quantum TGD. The non-determinism of CP_2 type extremals is absolutely crucial for the ordinary elementary particle physics. It seems that the conformal symmetries responsible for the ordinary elementary particle quantum numbers acting in these degrees of freedom do not contribute to the WCW metric line element.

The treatment of the non-determinism in a framework in which the prediction of time evolution is seen as initial value problem, seems to be difficult. Also the notion of WCW becomes a messy concept. ZEO changes the situation completely. Light-like 3-surfaces become representations of generalized Feynman diagrams and brings in the notion of finite time resolution. One obtains a direct connection with the concepts of quantum field theory with path integral with cutoff replaced with a sum over various preferred extremals with cutoff in time resolution.

4.2.3 The Notions Of Embedding Space, 3-Surface, And Configuration Space

The notions of embedding space, 3-surface (and 4-surface), and configuration space ("world of classical worlds", WCW) are central to quantum TGD. The original idea was that 3-surfaces are space-like 3-surfaces of $H = M^4 \times CP_2$ or $H = M^4_+ \times CP_2$, and WCW consists of all possible 3-surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to each X^3 a unique space-time surface $X^4(X^3)$ allowing in this manner to realize general coordinate invariance. During years these notions have however evolved considerably. Therefore it seems better to begin directly from the recent picture.

The notion of embedding space

Two generalizations of the notion of embedding space were forced by number theoretical vision $[{\rm K69},\,{\rm K70},\,{\rm K68}]$.

- 1. p-Adicization forced to generalize the notion of embedding space by gluing real and p-adic variants of embedding space together along rationals and common algebraic numbers. The generalized embedding space has a book like structure with reals and various p-adic number fields (including their algebraic extensions) representing the pages of the book.
- 2. With the discovery of ZEO [K84, K18] it became clear that the so called causal diamonds (CDs) interpreted as intersections $M_+^4 \cap M_-^4$ of future and past directed light-cones of $M^4 \times CP_2$ define correlates for the quantum states. The position of the "lower" tip of CD characterizes the position of CD in H. If the temporal distance between upper and lower tip of CD is quantized power of 2 multiples of CP_2 length, p-adic length scale hypothesis [K49] follows as a consequence. The upper resp. lower light-like boundary $\delta M_+^4 \times CP_2$ resp. $\delta M_-^4 \times CP_2$ of CD can be regarded as the carrier of positive resp. negative energy part of the state. All net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time surfaces assignable to zero energy states would would reside inside $CD \times CP_2$ s and have their 3-D ends at the light-like boundaries of $CD \times CP_2$. Fractal structure is present in the sense that CDs can contains CDs within CDs, and measurement resolution dictates the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K27] led to a further generalization of the notion of embedding space - at least as a convenient auxialiary structure. Generalized embedding space is obtained by gluing together Cartesian products of singular coverings and factor spaces of CD and CP_2 to form a book like structure. The particles at different pages of this book behave like dark matter relative to each other. This generalization also brings in the geometric correlate for the selection of quantization axes in the sense that the geometry of the sectors of the generalized embedding space with non-standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly speaking, each CD and CP_2 is replaced with a union of CDs and CP_2 s corresponding to different choices of quantization axes so that no breaking of Poincare and color symmetries occurs at the level of entire WCW.

It seems that the covering of embedding space is only a convenient auxiliary structure. The space-time surfaces in the *n*-fold covering correspond to the *n* conformal equivalence classes of space-time surfaces connecting fixed 3-surfaces at the ends of CD: the space-time surfaces are branched at their ends. The situation can be interpreted at the level of WCW in several ways. There is single 3-surface at both ends but by non-determinism there are *n* space-time branches of the space-time surface connecting them so that the Kähler action is multiplied by factor *n*. If one forgets the presence of the *n* branches completely, one can say that one has $h_{eff} = n \times h$ giving $1/\alpha_K = n/\alpha_K (n = 1)$ and scaling ofKähler action. One can also imagine that the 3-surfaces at the ends of CD are actually surfaces in the *n*-fold covering space consisting of *n* identical copies so that Kähler action is multiplied by *n*. One could also include the light-like partonic orbits to the 3-surface so that 3-surfaces would not have boundaries: in this case the n-fold degeneracy would come out very naturally.

4. The construction of quantum theory at partonic level brings in very important delicacies related to the Kähler gauge potential of CP_2 . Kähler gauge potential must have what one might call pure gauge parts in M^4 in order that the theory does not reduce to mere topological quantum field theory. Hence the strict Cartesian product structure $M^4 \times CP_2$ breaks down in a delicate manner. These additional gauge components -present also in CP_2 - play key role in the model of anyons, charge fractionization, and quantum Hall effect [K54].

The notion of 3-surface

The question what one exactly means with 3-surface turned out to be non-trivial.

- 1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equivalence implied by General Coordinate Invariance. There was a problem related to the realization of General Coordinate Invariance since it was not at all obvious why the preferred extremal $X^4(Y^3)$ for Y^3 at $X^4(X^3)$ and Diff⁴ related X^3 should satisfy $X^4(Y^3) = X^4(X^3)$.
- 2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense (obviously the identification resolves the above mentioned problem) and understanding the conformal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is however important to emphasize that this indeed holds true only locally. At the level of WCW metric this means that the components of the Kähler form and metric can be expressed in terms of data assignable to 2-D partonic surfaces and their 4-D tangent spaces. It is however essential that information about normal space of the 2-surface is needed.
- 3. At some stage came the realization that light-like 3-surfaces can have singular topology in the sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces representing lines of Feynman diagram can be glued along their 2-D ends playing the role of vertices to form what I call generalized Feynman diagrams. The ends of lines are located at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants. At "microscopic" level this means that there number of conformal equivalence classes of space-time surfaces connecting the 3-surfaces at boundaries of CD matters and this information is coded by the value of $h_{eff} = n \times h$. One can divide WCW to sectors corresponding to different values of h_{eff} and conformal symmetry breakings connect these sectors: the transition $n_1 \rightarrow n_2$ such that n_1 divides n_2 occurs spontaneously since it reduces the quantum criticality by transforming super-generators acting as gauge symmetries to dynamical ones.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW ("world of classical worlds" (WCW)). Should one regard CH as the space of 3-surfaces of $M^4 \times CP_2$ or $M^4_+ \times CP_2$ or perhaps something more delicate.

- 1. For a long time I believed that the question " M_{+}^4 or M_{+}^4 " had been settled in favor of M_{+}^4 by the fact that M_{+}^4 has interpretation as empty Roberson-Walker cosmology. The huge conformal symmetries assignable to $\delta M_{+}^4 \times CP_2$ were interpreted as cosmological rather than laboratory symmetries. The work with the conceptual problems related to the notions of energy and time, and with the symmetries of quantum TGD, however led gradually to the realization that there are strong reasons for considering M^4 instead of M_{+}^4 .
- 2. With the discovery of ZEO (with motivation coming from the non-determinism of Kähler action) it became clear that the so called causal diamonds (CDs) define excellent candidates for the fundamental building blocks of WCW or "world of classical worlds" (WCW). The spaces $CD \times CP_2$ regarded as subsets of H defined the sectors of WCW.
- 3. This framework allows to realize the huge symmetries of $\delta M_{\pm}^4 \times CP_2$ as isometries of WCW. The gigantic symmetries associated with the $\delta M_{\pm}^4 \times CP_2$ are also laboratory symmetries. Poincare invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first conformal symmetry corresponds to the light-like surfaces $\delta M_{\pm}^4 \times CP_2$ of the embedding space representing the upper and lower boundaries of CD. Second conformal symmetry corresponds to light-like 3-surface X_l^3 , which can be boundaries of X^4 and light-like surfaces separating space-time regions with different signatures of the induced metric. This symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with the spaces $CD \times CP_2$. CDs can contain CDs within CDs so that a fractal like hierarchy having interpretation in terms of measurement resolution results. Since the complications due to p-adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces to a high degree to a study of a simple special case $\delta M^4_+ \times CP_2$.

A further piece of understanding emerged from the following observations.

- 1. The induced Kähler form at the partonic 2-surface X^2 the basic dynamical object if holography is accepted- can be seen as a fundamental symplectic invariant so that the values of $\epsilon^{\alpha\beta}J_{\alpha\beta}$ at X^2 define local symplectic invariants not subject to quantum fluctuations in the sense that they would contribute to the WCW metric. Hence only induced metric corresponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine theory of gravitation at this level.
- 2. WCW can be divided into slices for which the induced Kähler forms of CP_2 and δM_{\pm}^4 at the partonic 2-surfaces X^2 at the light-like boundaries of CDs are fixed. The symplectic group of $\delta M_{\pm}^4 \times CP_2$ parameterizes quantum fluctuating degrees of freedom in given scale (recall the presence of hierarchy of CDs).
- 3. This leads to the identification of the coset space structure of the sub-WCW associated with given CD in terms of the generalized coset construction for super-symplectic and super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in quantum fluctuating degrees of freedom for given values of zero modes can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local

coset space $S^2 \times CP_2$ is in question: this was one of the first ideas about WCW which I gave up as too naïve!

- 4. Generalized coset construction and coset space structure have very deep physical meaning since they realize Equivalence Principle at quantum level. Contrary to the original belief, this construction does not provide a realization of Equivalence Principle at quantum level. The proper realization of EP at quantum level seems to be based on the identification of classical Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts assignable to Kähler-Dirac action. At classical level EP follows at GRT limit obtained by lumping many-sheeted space-time to M^4 with effective metric satisfying Einstein's equations as a reflection of the underlying Poincare invariance.
- 5. Now it has become clear that EP in the sense of quantum classical correspondence allows a concrete realization for the fermion lines defined by the light-like boundaries of string world sheets at light-like orbits of partonic 2-surfaces. Fermion lines are always light-like or space-like locally. Kähler-Dirac equation reducing to its algebraic counterpart with lightlike 8-momentum defined by the tangent of the boundary curve. 8-D light-likeness means the possibility of massivation in M^4 sense and gravitational mass is defined in an obvious manner. The M^4 -part of 8-momentum is by quantum classical correspondence equal to the 4-momentum assignable to the incoming fermion. EP generalizes also to CP_2 degrees of freedom and relates SO(4) acting as symmetries of Eucldian part of 8-momentum to color SU(3). SO(4) can be assigned to hadrons and SU(3) to quarks and gluons.

The 8-momentum is light-like with respect to the effective metric defined by K-D gamma matrices. Is it also light-like with respect to the induced metric and proportional to the tangent vector of the fermion line? If this is not the case, the boundary curve is locally space-like in the induced metric. Could this relate to the still poorly understand question how the necessarily tachyonic ground state conformal weight of super-conformal representations needed in padic mass calculations [K39] emerges? Could it be that "empty" lines carrying no fermion number are tachyonic with respect to the induced metric?

4.2.4 The Treatment Of Non-Determinism Of Kähler Action In Zero Energy Ontology

The non-determinism of Kähler action means that the reduction of the construction of WCW geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of Kähler action, the non-determinism should manifest itself as a presence of causal determinants also other than light cone boundary.

One can imagine two kinds of causal determinants.

- 1. Elementary particle horizons and light-like boundaries $X_l^3 \subset X^4$ of 4-surfaces representing wormhole throats act as causal determinants for the space-time dynamics defined by Kähler action. The boundary values of this dynamics have been already considered.
- 2. At embedding space level causal determinants correspond to light like CD forming a fractal hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero energy states having interpretation as pairs of initial and final states in standard quantum theory.

The manner to treat the classical non-determinism would be roughly following.

- 1. The replacement of space-like 3-surface X^3 with X_l^3 transforms initial value problem for X^3 to a boundary value problem for X_l^3 . In principle one can also use the surfaces $X^3 \subset \delta CD \times CP_2$ if X_l^3 fixes $X^4(X_l^3)$ and thus X^3 uniquely. For years an important question was whether both X^3 and X_l^3 contribute separately to WCW geometry or whether they provide descriptions, which are in some sense dual.
- 2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X_l^3 . In the 2-D intersections of X_l^3 with the boundary of causal diamond (CD) defined as intersection

of future and past directed light-cones super-symplectic algebra makes sense. This implies effective two-dimensionality which is broken by the non-determinism represented using the hierarchy of CDs meaning that the data from these 2-D surfaces and their normal spaces at boundaries of CDs in various scales determine the WCW metric.

- 3. An important question has been whether Kac-Moody and super-symplectic algebras provide descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality seems to be satisfied in the sense of generalized coset construction meaning that the differences of Super Virasoro generators of super-symplectic and super Kac-Moody algebras annihilate physical states. Among other things this means that four-momenta assignable to the two Super Virasoro representations are identical. T he interpretation is in terms of a generalization of Equivalence Principle [K84, K18]. This gives also a justification for p-adic thermodynamics applying only to Super Kac-Moody algebra.
- 4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite length resolution mean means also a cutoff in the number of generalized Feynman diagrams and this number remains always finite if the light-like 3-surfaces identifiable as maxima of Kähler function correspond to the diagrams. The finiteness of this number is also essential for number theoretic universality since it guarantees that the elements of *M*-matrix are algebraic numbers if momenta and other quantum numbers have this property. The introduction of new sub-CDs means also introduction of zero energy states in corresponding time scale.
- 5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within CDs is important for the treatment of classical non-determinism. In a given resolution the non-determinism of Kähler action remains invisible below the time scale assigned to the smallest CDs. One could also say that complete non-determinism characterized in terms path integral with cutoff is replaced in TGD framework with the partial failure of classical non-determinism leading to generalized Feynman diagrams. This gives rise to discrete coupling constant evolution and avoids the mathematical ill-definedness and infinities plaguing path integral formalism since the functional integral over 3-surfaces is well defined.

4.2.5 Category Theory And WCW Geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very far from simple Cartesian clockworks, and the understanding of the general structure of WCW is a formidable challenge. Category theory is a branch of mathematics which is basically a theory about universal aspects of mathematical structures. Thus category theoretical thinking might help in disentangling the complexities of WCW geometry and the basic ideas of category theory are discussed in this spirit and as an innocent layman. It indeed turns out that the approach makes highly non-trivial predictions.

In ZEO the effects of non-determinism are taken into account in terms of causal diamonds forming a hierarchical fractal structure. One must allow also the unions of CDs, CDs within CDs, and probably also overlapping of CDs, and there are good reasons to expert that CDs and corresponding algebraic structures could define categories. If one does not allow overlapping CDs then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections then CDs would form a structure analogous to the set of open sets used in set theoretic topology. One could indeed see CDs (or rather their Cartesian products with CP_2) as analogs of open sets in Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and allow to build bridge to topological and conformal field theories. This discussion based on standard ontology. In [K14] rather detailed category theoretical constructions are discussed. Important role is played by the notion of operad operad, operads : this structure can be assigned with both generalized Feynman diagrams and with the hierarchy of symplectic fusion algebras realizing symplectic analogs of the fusion rules of conformal field theories.
4.3 Identification Of The Symmetries And Coset Space Structure Of WCW

In this section the identification of the isometry group of the configuration ("world of classical worlds" or briefly WCW) will be discussed at general level.

4.3.1 Reduction To The Light Cone Boundary

The reduction to the light cone boundary would occur exactly if Kähler action were strictly deterministic. This is not the case but it is possible to generalize the construction at light cone boundary to the general case if causal diamonds define the basic structural units of the WCW.

Old argument

The identification of WCW follows as a consequence of 4-dimensional Diff invariance. The right question to ask is the following one. How could one coordinatize the physical(!) vibrational degrees of freedom for 3-surfaces in Diff⁴ invariant manner: coordinates should have same values for all Diff⁴ related 3-surfaces belonging to the orbit of X^3 ? The answer is following:

- 1. Fix some 3-surface (call it Y^3) on the orbit of X^3 in Diff⁴ invariant manner.
- 2. Use as WCW coordinates of X^3 and all its diffeomorphs the coordinates parameterizing small deformations of Y^3 . This kind of replacement is physically acceptable since metrically the WCW is equivalent with $Map/Diff^4$.
- 3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in question leave light M_{+}^{4} invariant and thus act as isometries.

The simplest choice of Y^3 is the intersection of the orbit of 3-surface (X^4) with the set $\delta M^4_+ \times CP_2$, where δM^4_+ denotes the boundary of the light cone (moment of big bang):

$$Y^3 = X^4 \cap \delta M^4_+ \times CP_2 \tag{4.3.1}$$

Lorentz invariance allows also the choice $X \times CP_2$, where X corresponds to the hyperboloid $a = \sqrt{(m^0)^2 - r_M^2} = constant$ but only the proposed choice (a = 0) leads to a natural complexification in M^4 degrees of freedom. This choice is also cosmologically very natural and completely analogous to the quantum gravitational holography of string theories.

WCW has a fiber space structure. Base space consists of 3-surfaces $Y^3 \subset \delta M^4_+ \times CP_2$ and fiber consists of 3-surfaces on the orbit of Y^3 , which are Diff⁴ equivalent with Y^3 . The distance between the surfaces in the fiber is vanishing in WCW metric. An elegant manner to avoid difficulties caused by Diff⁴ degeneracy in WCW integration is to *define* integration measure as integral over the reduced WCW consisting of 3-surfaces Y^3 at the light cone boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kähler action suggests strongly classical non-determinism so that there are several, possibly, infinite number of preferred extremals $X^4(Y^3)$ associated with given Y^3 on light cone boundary. This implies additional degeneracy.

One might hope that the reduced WCW could be replaced by its covering space so that given Y^3 corresponds to several points of the covering space and WCW has many-sheeted structure. Obviously the copies of Y^3 have identical geometric properties. WCW integral would decompose into a sum of integrals over different sheets of the reduced WCW. Note that WCW spinor fields are in general different on different sheets of the reduced WCW.

Even this is probably not enough: it is quite possible that all light like surfaces of M^4 possessing Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with the construction of the WCW geometry. Because of their metric two-dimensionality the proposed construction should generalize. This would mean that WCW geometry has also local laboratory scale aspects and that the general ideas might allow testing.

New version of the argument

The above summary was the basic argument for two decades ago. A more elegant formulation would in terms of light-like 3-surfaces connecting the boundaries of causal diamond taken as basic geometric objects and identified as generalized Feynman diagrams so that they are singular as manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that effective 2dimensionality must hold true in the scale of given CD. In other words, the intersection $X^2 = X_l^3 \cap X^3$ at the boundary of CD is effectively the basic dynamical unit. The failure of strict non-determinism however forces to introduce entire hierarchy of CDs responsible also for coupling constant evolution defined in terms of the measurement resolution identified as the size of the smallest CD present.

4.3.2 WCW As A Union Of Symmetric Spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and curvature are independent of the metric, provided it is left invariant under G. The hope is that same holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition $C(H) = \bigcup_i G/H_i$ over orbits of G. One could allow also symmetry breaking in the sense that Gand H depend on the orbit: $C(H) = \bigcup_i G_i/H_i$ but it seems that G can be chosen to be same for all orbits. What is essential is that these groups are infinite-dimensional. The basic properties of the coset space decomposition give very strong constraints on the group H, which certainly contains the subgroup of G, whose action reduces to diffeomorphisms of X^3 .

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of the theory are enormous since it suffices to find metric and curvature tensor for single representative 3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation of matrix elements as functional integrals over the WCW). The representative surface can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode structure of the WCW. Almost twenty (seven according to long held belief!) years after the discovery of the candidate for the Kähler function defining the metric, it became finally clear that these identifications follow quite nicely from $Diff^4$ invariance and $Diff^4$ degeneracy as well as special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations of $\delta M_{\pm}^4 \times CP_2$ leaving the induced Kähler form invariant. If G acts as isometries the values of Kähler form at partonic 2-surfaces (remember effective 2-dimensionality realized in simplistic manner) are zero modes and WCW allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form. Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctuations of the induced metric. The group H dividing G would act as diffeomorphisms at the preferred 3-surface X^3 and leaving X^3 itself invariant. Therefore the identification of g and h would be in terms of tangent space algebra of WCW sector realized as coset space G/H.

Coset space structure of WCW and Equivalence Principle

The realization of WCW sectors with fixed values of zero modes as symmetric spaces G/H (analogous to $CP_2 = SU(3)/U(2)$) suggests that one can assign super-Virasoro algebras with G. What the two algebras g and h are is however difficult question. The following vision is only one of the many (the latest one).

- 1. Symplectic algebra g generates isometries and h is identified as algebra, whose generators generate diffeormorphisms at preferred X^3 .
- 2. The original long-held belief was that the Super Kac-Moody symmetry corresponds to local embedding space isometries for light-like 3-surfaces X_l^3 , which might be boundaries of X^4

(probably not: it seems that boundary conditions cannot be satisfied so that space-time surfaces must consists of regions defining at least double coverings of M^4) and light-like surfaces separating space-time regions with different signatures of the induced metric. This symmetry would be identifiable as the counterpart of the Kac Moody symmetry of string models.

It has turned out that one can assume Kac-Moody algebra to be sub-algebra of symplectic algebra consisting of the symplectic isometries of embedding space. This Super Kac-Moody algebra is generated by super-currents assignable to the modes of induced spinor fields other than right-handed neutrino and localized at string world sheets. The entire symplectic algebra would correspond to the modes of right-handed neutrino and the entire algebra one would be direct sum of these two algebras so that the number of tensor factors would be indeed 5. The beauty of this option is that localization would be for both algebras inherent and with respect to the light-like coordinate of light-cone boundary rather than forced by hand.

3. p-Adic mass calculations require that symplectic and Kac-Moody algebras together generate the entire algebra. In this situation strong form of holography implies that transformations located to the interior of space-like 3-surface and light-like partonic orbit define zero modes and act like gauge symmetries. The physically non-trivial transformations correspond to transformations acting non-trivially at partonic 2-surfaces. g corresponds to the algebra generated by these transformations and for preferred 3-surface - identified as (say) maximum of Kähler function - h corresponds to the elements of this algebra generating diffeomorphisms of X^3 . Super-conformal representation has five tensor factors corresponding to color algebra, two factors from electroweak U(2), one factor from transversal M^4 translations and one factor from symplectic algebra (note that also Hamiltonians which are products of δM^4_+ and CP_2 Hamiltonians are possible.

Equivalence Principle (EP) has been a longstanding problem for TGD although the recent stringy view about graviton mediated scattering makes it can be argued to reduce to a tautology. I have considered several explanations for EP and coset representation has been one of them.

- 1. Coset representation associated with the super Virasoro algebra is defined by the condition that the differences of super Virasoro generators for g and h annihilate the physical. The original proposal for the realization of EP was that this condition implies that the fourmomenta associated with g and h are identical and identifiable as inertial and gravitational four-momenta. Translations however lead out from CD boundary and cannot leave 3-surface invariant. Hence the Virasoro generators for h should not carry four-momentum. Therefore EP cannot be understood in terms of coset representations.
- 2. The equivalence of classical Noether momentum associated with Kähler action with eigenvalues of the corresponding quantal momentum for Kähler-Dirac action certainly realizes quantum classical correspondence (QCC) EP could correspond to QCC.
- 3. A further option is that EP reduces to the identification of the four momenta for Super Virasoro representations assignable to space-like and light-like 3-surfaces and therefore become part of strong form of holography in turn implied by strong form of GCI! It seems that this option is the most plausible one found hitherto.

WCW isometries as a subgroup of $Diff(\delta M_+^4 \times CP_2)$

The reduction to light cone boundary leads to the identification of the isometry group as some subgroup of for the group G for the diffeomorphisms of $\delta M_+^4 \times CP_2$. These diffeomorphisms indeed act in a natural manner in δCH , the space of 3-surfaces in $\delta M_+^4 \times CP_2$. WCW is expected to decompose to a union of the coset spaces G/H_i , where H_i corresponds to some subgroup of Gcontaining the transformations of G acting as diffeomorphisms for given X^3 . Geometrically the vector fields acting as diffeomorphisms of X^3 are tangential to the 3-surface. H_i could depend on the topology of X^3 and since G does not change the topology of 3-surface each 3-topology defines separate orbit of G. Therefore, the union involves sum over all topologies of X^3 plus possibly other "zero modes". Different topologies are naturally glued together since singular 3surfaces intermediate between two 3-topologies correspond to points common to the two sectors with different topologies.

Isometries of WCW geometry as symplectic transformations of $\delta M_{+}^{4} \times CP_{2}$

During last decade I have considered several candidates for the group G of isometries of WCW as the sub-algebra of the subalgebra of $Diff(\delta M_+^4 \times CP_2)$. To begin with let us write the general decomposition of $diff(\delta M_+^4 \times CP_2)$:

$$diff(\delta M_+^4 \times CP_2) = S(CP_2) \times diff(\delta M_+^4) \oplus S(\delta M_+^4) \times diff(CP_2) .$$

$$(4.3.2)$$

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone diffeomorphisms made local with respect to CP_2 and CP_2 diffeomorphisms made local with respect to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory should be more or less equivalent with topological field theory in this case. Consider now the various candidates for G.

- 1. The fact that symplectic transformations of CP_2 and M_+^4 diffeomorphisms are dynamical symmetries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light cone boundary and symplectic transformations of CP_2 could leave Kähler function invariant and thus correspond to zero modes. The symplectic transformations of CP_2 localized with respect to light cone boundary acting as symplectic transformations of CP_2 have interpretation as local color transformations and are a good candidate for the isometries. The fact that local color transformations are not even approximate symmetries of Kähler action is not a problem: if they were exact symmetries, Kähler function would be invariant and zero modes would be in question.
- 2. CP_2 local conformal transformations of the light cone boundary act as isometries of δM_+^4 . Besides this there is a huge group of the symplectic symmetries of $\delta M_+^4 \times CP_2$ if light cone boundary is provided with the symplectic structure. Both groups must be considered as candidates for groups of isometries. $\delta M_+^4 \times CP_2$ option exploits fully the special properties of $\delta M_+^4 \times CP_2$, and one can develop simple argument demonstrating that $\delta M_+^4 \times CP_2$ symplectic invariance is the correct option. Also the construction of WCW gamma matrices as supersymplectic charges supports $\delta M_+^4 \times CP_2$ option.

WCW as a union of symmetric spaces

The idea about symmetric space is extremely beautiful but it took a long time and several false alarms before the time was ripe for identifying the precise form of the Cartan decomposition g = t + h satisfying the defining conditions

$$g = t + h$$
, $[t,t] \subset h$, $[h,t] \subset t$. (4.3.3)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum TGD was understood well enough. $[t,t] \subset h$ condition is highly nontrivial and equivalent with the existence of involution. Inversion in the light-like radial coordinate of δM^4 is a natural guess for this involution and induces complex conjugation in super-conformal algebras mapping positive and negative conformal weights to each other.

WCW geometry allows two super-conformal symmetries. The first one corresponds to supersymplectic transformations acting at the level of embedding space. The second one corresponds to super Kac-Moody symmetry. The original identification of Kac-Moody was in terms of deformations of light-like 3-surfaces respecting their light-likeness. This not wrong as such: also entire symplectic algebra can be assigned with light-like surfaces and the theory can be constructed using also these conformal algebras. This identification however makes it very difficult to see how Kac-Moody could act as isometry: in particular, the localization with respect to internal coordinates of 3-surface produces technical problems since symplectic algebra is localized with respect to the light-like radial coordinate of light-cone boundary.

The more plausible identification is as the sub-algebra of symplectic algebra realized as isometries of δCD so that localization is inherent and in terms of the radial light-like coordinate of light-like boundary [K61]. This identification is made possible by the wisdom gained from the solutions of the Kähler-Dirac equations predicting the localization of its modes (except right-handed neutrino) to string world sheets.

- 1. g would thus correspond to a direct sum of super-symplectic algebra and super Kac-Moody algebra defined by its isometry sub-algebra but represented in different manner (this is absolutely essential!). More concretely, neutrino modes defined super Hamiltonians associated with the super symplectic algebra and other modes of induced spinor field the super Hamiltonians associated with the super Kac-Moody algebra. The maxima of Kähler function could be chosen as natural candidates for the preferred points and could play also an essential role in WCW integration by generalizing the Gaussian integration of free quantum field theories.
- 2. These super-conformal algebra representations form a direct sum. p-Adic mass calculations require five super-conformal tensor factors and the number of tensor factors would be indeed this.
- 3. This algebra has as sub-algebra the algebra for which generators leave 3-surface invariant in other words, induce its diffeomorphism. Quantum states correspond to the coset representations for entire algebra and this algebra so that differences of the corresponding super-Virasoro generators annihilate physical states. This obviously generalizes Goddard-Olive-Kent construction [A56]. It seems now clear that coset representation does not imply EP: the four-momentum simply does not appear in the representation of the isotropy sub-algebra since translations lead out of CD boundary.

To minimize confusions it must be emphasized that only the contribution of the symplectic algebra realized in terms of single right-handed neutrino mode is discussed in this chapter and the WCW Hamiltonians have 2-dimensional representation. Also the direct connection with the dynamics of Kähler action is lacking. A more realistic construction [K61] uses 3-dimensional representations of Hamiltonians and requires all modes of right-handed neutrino for symplectic algebra and the modes of induced spinor field carrying electroweak quantum numbers in the case of Kac-Moody algebra.

4.4 Complexification

A necessary prerequisite for the Kähler geometry is the complexification of the tangent space in vibrational degrees of freedom. What this means in recent context is non-trivial.

4.4.1 Why Complexification Is Needed?

The Minkowskian signature of M^4 metric seems however to represent an insurmountable obstacle for the complexification of M^4 type vibrational degrees of freedom. On the other hand, complexification seems to have deep roots in the actual physical reality.

1. In the perturbative quantization of gauge fields one associates to each gauge field excitation polarization vector e and massless four-momentum vector p ($p^2 = 0$, $p \cdot e = 0$). These vectors define the decomposition of the tangent space of M^4 : $M^4 = M^2 \times E^2$, where M^2 type polarizations correspond to zero norm states and E^2 type polarizations correspond to physical states with non-vanishing norm. Same type of decomposition occurs also in the linearized theory of gravitation. The crucial feature is that E^2 allows complexification! The general conclusion is that the modes of massless, linear, boson fields define always complexification of M^4 (or its tangent space) by effectively reducing it to E^2 . Also in string models similar situation is encountered. For a string in D-dimensional space only D-2 transversal Euclidian degrees of freedom are physical. 2. Since symplectically extended isometry generators are expected to create physical states in TGD approach same kind of physical complexification should take place for them, too: this indeed takes place in string models in critical dimension. Somehow one should be able to associate polarization vector and massless four momentum vector to the deformations of a given 3-surface so that these vectors define the decomposition $M^4 = M^2 \times E^2$ for each mode. Configuration space metric should be degenerate: the norm of M^2 deformations should vanish as opposed to the norm of E^2 deformations.

Consider now the implications of this requirement.

1. In order to associate four-momentum and polarization (or at least the decomposition $M^4 = M^2 \times E^2$) to the deformations of the 3-surface one should have field equations, which determine the time development of the 3-surface uniquely. Furthermore, the time development for small deformations should be such that it makes sense to associate four momentum and polarization or at least the decomposition $M^4 = M^2 \times E^2$ to the deformations in suitable basis.

The solution to this problem is afforded by the proposed definition of the Kähler function. The definition of the Kähler function indeed associates to a given 3-surface a unique foursurface as the preferred extremal of the Kähler action. Therefore one can associate a unique time development to the deformations of the surface X^3 and if TGD describes the observed world this time development should describe the evolution of photon, gluon, graviton, etc. states and so we can hope that tangent space complexification could be defined.

- 2. We have found that M^2 part of the deformation should have zero norm. In particular, the time like vibrational modes have zero norm in WCW metric. This is true if Kähler function is not only $Diff^3$ invariant but also Diff⁴ invariant in the sense that Kähler function has same value for all 3-surfaces belonging to the orbit of X^3 and related to X^3 by diffeomorphism of X^4 . This is indeed the case.
- 3. Even this is not enough. One expects the presence of massive modes having also longitudinal polarization and for these states the number of physical vibrational degrees of freedom is 3 so that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by $Diff^4$ invariance makes possible to identify the complexification. Crucial role is played by the special properties of the boundary of 4-dimensional light cone, which is metrically two-sphere and thus allows generalized complex and Kähler structure.

4.4.2 The Metric, Conformal And Symplectic Structures Of The Light Cone Boundary

The special metric properties of the light cone boundary play a crucial role in the complexification. The point is that the boundary of the light cone has degenerate metric: although light cone boundary is topologically 3-dimensional it is metrically 2-dimensional: effectively sphere. In standard spherical Minkowski coordinates light cone boundary is defined by the equation $r_M = m^0$ and induced metric reads

$$ds^2 = -r_M^2 d\Omega^2 = -r_M^2 dz d\bar{z}/(1+z\bar{z})^2 , \qquad (4.4.1)$$

and has Euclidian signature. Since S^2 allows complexification and thus also Kähler structure (and as a by-product also symplectic structure) there are good hopes of obtaining just the required type of complexification in non-degenerate M^4 degrees of freedom: WCW would effectively inherit its Kähler structure from $S^2 \times CP_2$.

By its effective two-dimensionality the boundary of the four-dimensional light cone has infinite-dimensional group of (local) conformal transformations. Using complex coordinate z for S^2 the general local conformal transformation reads (see **Fig. 4.1**)

Figure 4.1: Conformal symmetry preserves angles in complex plane

$$r \rightarrow f(r_M, z, \bar{z}) ,$$

 $z \rightarrow g(z) ,$

$$(4.4.2)$$

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro algebra. This algebra is semidirect sum of two algebras L and R given by

$$C = L \oplus R ,$$

[L, R] $\subset R ,$ (4.4.3)

where L denotes standard Virasoro algebra of the two- sphere generated by the generators

$$L_n = z^{n+1} d/dz \tag{4.4.4}$$

and R denotes the algebra generated by the vector fields

$$R_n = f_n(z, \bar{z}, r_M)\partial_{r_M} , \qquad (4.4.5)$$

where $f(z, \bar{z}, r_M)$ forms complete real scalar function basis for light cone boundary. The vector fields of R have the special property that they have vanishing norm in M^4 metric.

This modification of conformal group implies that the Virasoro generator L_0 becomes $L_0 = zd/dz - r_M d/dr_M$ so that the scaling momentum becomes the difference n - m or S^2 and radial scaling momenta. One could achieve conformal invariance by requiring that S^2 and radial scaling quantum numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isometries! An arbitrary conformal transformation $z \to f(z)$ induces to the metric a conformal factor given by $|df/dz|^2$. The compensating radial scaling $r_M \to r_M/|df/dz|$ compensates this factor so that the line element remains invariant.

The Kähler structure of light cone boundary defines automatically symplectic structure. The symplectic form is degenerate and just the area form of S^2 given by

$$J = r_M^2 \sin(\theta) d\theta \wedge d\phi,$$

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations leaving the symplectic form of the light cone boundary (that is S^2) invariant. These transformations are local with respect to the radial coordinate r_M . The symplectic and Kähler structures of light cone boundary are not unique: different structures are labeled by the coset space SO(3, 1)/SO(3). One can however associate with a given 3-surface Y^3 a unique structure by requiring that the corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved classical four-momentum assigned to Y^3 by the preferred extremal property.

In the case of $\delta M_+^4 \times CP_2$ both the conformal transformations, isometries and symplectic transformations of the light cone boundary can be made local also with respect to CP_2 . The idea that the infinite-dimensional algebra of symplectic transformations of $\delta M_+^4 \times CP_2$ act as isometries of WCW and that radial vector fields having zero norm in the metric of light cone boundary possess zero norm also in WCW metric, looks extremely attractive.

In the case of $\delta M_+^4 \times CP_2$ one could combine the symplectic and Kähler structures of δM_+^4 and CP_2 to single symplectic/Kähler structure. The symplectic transformations leaving this symplectic structure invariant would be generated by the function algebra of $\delta M_+^4 \times CP_2$ such that a arbitrary function serves as a Hamiltonian of a symplectic transformation. This group serves as a candidate for the isometry group of WCW. An alternative identification for the isometry algebra is as symplectic symmetries of CP_2 localized with respect to the light cone boundary. Hamiltonians would be also now elements of the function algebra of $\delta M_+^4 \times CP_2$ but their Poisson brackets would be defined using only CP_2 symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the latter option. The symplecticly imbedded CP_2 would be left invariant under δM_+^4 local symplectic transformations of CP_2 . This seems strange. Under symplectic algebra of $\delta M_+^4 \times CP_2$ also symplecticly imbedded CP_2 is deformed and this sounds more realistic. The isometry algebra is therefore assumed to be the group $can(\delta M_+^4 \times CP_2)$ generated by the scalar function basis $S(\delta M_+^4 \times CP_2) = S(\delta M_+^4) \times S(CP_2)$ of the light cone boundary using the Poisson brackets to be discussed in more detail later.

There are some no-go theorems associated with higher-dimensional Abelian extensions [A61], and although the contexts are quite different, it is interesting to consider the recent situation in light of these theorems.

- 1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however metrically and conformally 2-sphere, and therefore the conformal algebra is effectively that associated with the 2-sphere. In the same manner, the quaternion conformal algebra associated with the metrically 2-dimensional elementary particle horizons surrounding wormhole contacts allows the usual Kac Moody algebra and actually also contributes to the WCW metric.
- 2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinitedimensional Abelian group rather than central extensions by the group U(1). This result has an analog at the level of WCW geometry. The extension associated with the symplectic algebra of CP_2 localized with respect to the light cone boundary is analogous a symplectic extension defined by Poisson bracket $\{p, q\} = 1$. The central extension is the function space associated with δM_+^4 and indeed infinite-dimensional if only only CP_2 symplectic structure induces the Poisson bracket but one-dimensional if $\delta M_+^4 \times CP_2$ Poisson bracket induces the extension. In the latter case the symmetries fix the metric completely at the point corresponding to the origin of symmetric space (presumably the maximum of Kähler function for given values of zero modes).
- 3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated physical constraints) [A61]. It might be that the degeneracy of the WCW metric is the analog for the loss of faithful representations.

4.4.3 Complexification And The Special Properties Of The Light Cone Boundary

In case of Kähler metric G and H Lie-algebras must allow complexification so that the isometries can act as holomorphic transformations. Since G and H can be regarded as subalgebras of the vector fields of $\delta M_+^4 \times CP_2$, they inherit in a natural manner the complex structure of the light cone boundary.

There are two candidates for WCW complexification. The simplest, and also the correct, alternative is that complexification is induced by natural complexification of vector field basis on

 $\delta M_+^4 \times CP_2$. In CP_2 degrees of freedom there is natural complexification

$$\xi \rightarrow \overline{\xi}$$

In δM^4_+ degrees of freedom this could involve the transformation

$$z \to \bar{z}$$

and certainly involves complex conjugation for complex scalar function basis in the radial direction:

$$f(r_M) \to f(r_M)$$

which turns out to play same role as the function basis of circle in the Kähler geometry of loop groups [A40].

The requirement that the functions are eigen functions of radial scalings favors functions $(r_M/r_0)^k$, where k is in general a complex number. The function can be expressed as a product of real power of r_M and logarithmic plane wave. It turns out that the radial complexification alternative is the correct manner to obtain Kähler structure. The reason is that symplectic transformations leave the value of r_M invariant. Radial Virasoro invariance plays crucial role in making the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the WCW geometry. The close analogy with string models and conformal field theories suggests that for Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal field theories: $L_n \to L_{-n} = L_n^{\dagger}$. Clearly this complexification is induced from the transformation $z \to \frac{1}{z}$ and differs from the complexification induced by complex conjugation $z \to \overline{z}$. The basis would be polynomial in z and \overline{z} . Since radial algebra could be also seen as Virasoro algebra localized with respect to $S^2 \times CP_2$ one could consider the possibility that also in radial direction the inversion $r_M \to \frac{1}{r_M}$ is involved.

In fact, the complexification changing the signs of radial conformal weights is induced from inversion $r_M/r_0 \rightarrow r_0/r_M$. This transformation is also an excellent candidate for the involution necessary for obtaining the structure of symmetric space implying among other things the covariant constancy of the curvature tensor, which is of special importance in infinite-D context.

The essential prerequisite for the Kähler structure is that both G and H allow same complexification so that the isometries in question can be regarded as holomorphic transformations. In finite-dimensional case this essentially what is needed since metric can be constructed by parallel translation along the orbit of G from H-invariant Kähler metric at a representative point. The requirement of H-invariance forces the radial complexification based on complex powers r_M^k : radial complexification works since symplectic transformations leave r_M invariant.

Some comments on the properties of the proposed complexification are in order.

- 1. The proposed complexification, which is analogous to the choice of gauge in gauge theories is not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart from SO(3) rotation not affecting the value of the radial coordinate r_M (if the imaginary part of k in r_M^k is always non-vanishing). This is possible as will be explained later.
- 2. It turns out that the function basis of light-cone boundary multiplying CP_2 Hamiltonians corresponds to unitary representations of the Lorentz group at light cone boundary so that the Lorentz invariance is rather manifest.
- 3. There is a nice connection with the proposed physical interpretation of the complexification. At the moment of the big bang all particles move with the velocity of light and therefore behave as massless particles. To a given point of the light cone boundary one can associate a unique direction of massless four-momentum by semiclassical considerations: at the point $m^k = (m^0, m^i)$ momentum is proportional to the vector $(m^0, -m^i)$. Since the particles are massless only two polarization vectors are possible and these correspond to the tangent vectors to the sphere $m^0 = r_M$. Of course, one must always fix polarizations at some point of tangent space but since massless polarization vectors are not physical this doesn't imply difficulties: different choices correspond to different gauges.

4. Complexification in the proposed manner is not possible except in the case of four-dimensional Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone boundary acting on the sphere S^{D-2} and the decomposition to (1,0) and (0,1) parts is possible only when the sphere in question is two-dimensional since other spheres do allow neither complexification nor Kähler structure.

4.4.4 How To Fix The Complex And Symplectic Structures In A Lorentz Invariant Manner?

One can assign to light-cone boundary a symplectic structure since it reduces effectively to S^2 . The possible symplectic structures of δM^4_+ are parameterized by the coset space SO(3,1)/SO(3)), where H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of the spherical coordinates apart from rotations around the quantization axis of angular momentum.

The selection of some preferred symplectic structure in an ad hoc manner breaks manifest Lorentz invariance but is possible if physical theory remains Lorentz invariant. The more natural possibility is that 3-surface Y^3 itself fixes in some natural manner the choice of the symplectic structure so that there is unique subgroup SO(3) of SO(3, 1) associated with Y^3 . If WCW Kähler function corresponds to a preferred extremal of Kähler action, this is indeed the case. One can associate unique conserved four-momentum $P^k(Y^3)$ to the preferred extremal $X^4(Y^3)$ of the Kähler action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant leaves also $P^k(Y^3)$ invariant, fixes the symplectic structure associated with Y^3 uniquely.

Therefore WCW decomposes into a union of symplectic spaces labeled by SO(3,1)/SO(3)isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular momentum vector $w^k = \epsilon^{klmn} P_l J_{mn}$ determined by the classical angular momentum tensor of associated with Y^3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3)acting as rotation around this coordinate axis acts as phase transformation of the complex coordinate z of S^2 . Other rotations act as nonlinear holomorphic transformations respecting the complex structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multiplication in this case. If $P^k(Y^3)$ is light like, one can only require that the rotation group SO(2)serving as the isotropy group of 3-momentum belongs to the group SO(3) characterizing the symplectic structure and it seems that symplectic structure cannot be uniquely fixed without additional constraints in this case. Probably this has no practical consequences since the 3-surfaces considered have actually infinite size and 4-momentum is most probably time like for them. Note however that the direction of 3-momentum defines unique axis such that SO(2) rotations around this axis are represented as phase multiplication.

Similar almost unique frame exists also in CP_2 degrees of freedom and corresponds to the complex coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra element defined by classical color charges Q_a of Y^3 . One can fix unique Cartan subgroup of U(2)by noticing that SU(3) allows completely symmetric structure constants d_{abc} such that $R_a = d_a^{\ bc}Q_bQ_c$ defines Lie-algebra element commuting with Q_a . This means that R_a and Q_a span in generic case $U(1) \times U(1)$ Cartan subalgebra and there are unique complex coordinates for which this subgroup acts as phase multiplications. The space of nonequivalent frames is isomorphic with CP(2) so that one can say that cm degrees of freedom correspond to Cartesian product of SO(3,1)/SO(3) hyperboloid and CP_2 whereas coordinate choices correspond to the Cartesian product of SO(3,1)/SO(2) and $SU(3)/U(1) \times U(1)$.

Symplectic transformations leave the value of δM^4_+ radial coordinate r_M invariant and this implies large number of additional zero modes characterizing the size and shape of the 3-surface. Besides this Kähler magnetic fluxes through the $r_M = constant$ sections of X^3 as a function of r_M provide additional invariants, which are functions rather than numbers. The Fourier components for the magnetic fluxes provide infinite number of symplectic invariants. The presence of these zero modes imply that 3-surfaces behave much like classical objects in the sense that neither their shape nor form nor classical Kähler magnetic fields, are subject to Gaussian fluctuations. Of course, quantum superpositions of 3-surfaces with different values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations correspond to zero modes of the Kähler metric (symplectic transformations act as dynamical symmetries of the vacuum extremals of the Kähler action). If this is indeed the case, one can ask whether it is possible to identify an integration measure for them.

If one can associate symplectic structure with zero modes, the symplectic structure defines integration measure in a standard manner (for 2n-dimensional symplectic manifold the integration measure is just the n-fold wedge power $J \wedge J \dots \wedge J$ of the symplectic form J). Unfortunately, in infinite-dimensional context this is not enough since divergence free functional integral analogous to a Gaussian integral is needed and it seems that it is not possible to integrate in zero modes and that this relates in a deep manner to state function reduction. If all symplectic transformations of $\delta M_+^4 \times CP_2$ are represented as symplectic transformations of the configuration space, then the existence of symplectic structure decomposing into Kähler (and symplectic) structure in complexified degrees of freedom and symplectic (but not Kähler) structure in zero modes, is an automatic consequence.

4.4.5 The General Structure Of The Isometry Algebra

There are three options for the isometry algebra of WCW .

- 1. Isometry algebra as the algebra of CP_2 symplectic transformations leaving invariant the symplectic form of CP_2 localized with respect to δM_+^4 .
- 2. Certainly the WCW metric in δM_+^4 must be non-trivial and actually given by the magnetic flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic generators constructed from quarks automatically give as anti-commutators this part of the WCW metric. One could interpret these symplectic invariants as WCW Hamiltonians for δM_+^4 symplectic transformations obtained when CP_2 Hamiltonian is constant.
- 3. Isometry algebra consists of $\delta M^4_+ \times CP_2$ symplectic transformations. In this case a local color transformation involves necessarily a local S^2 transformation. Unfortunately, it is difficult to decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a unitary representation of the Lorentz group at light cone boundary define the most natural function basis for the light cone boundary. The elements of this bases have also well defined scaling quantum numbers and define also a unitary representation of the conformal algebra. The product of the basic functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S^2 provide an alternative function basis for the light cone boundary:

$$H_{jk}^m \equiv Y_{jm}(\theta, \phi) r_M^k \quad . \tag{4.4.6}$$

One can criticize this basis for not having nice properties under Lorentz group.

The product of basis functions is given by Glebch-Gordan coefficients for symmetrized tensor product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The basis is eigen-function basis for the imaginary part of the Virasoro generator L_0 generating rotations around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro generator $L_0 = zd/dz = \rho \partial_{\rho} - \frac{2}{2} \partial_{\phi}$ has global single valued Hamiltonian, whereas the corresponding representation for the transformation induced by the real part of L_0 , with a compensating radial scaling added, cannot be realized as a global symplectic transformation.

The Poisson bracket of two functions $H^m_{j_1k_1}$ and $H^m_{j_2k_2}$ can be calculated and is of the general form

$$\{H_{j_1k}^{m_1}, H_{j_2k_2}^{m_2}\} \equiv C(j_1m_1j_2m_2|j, m_1 + m_2)_A H_{j,k_1+k_2}^{m_1+m_2}$$

$$.$$

$$(4.4.7)$$

The coefficients are Glebch-Gordan coefficients for the anti-symmetrized tensor product for the representations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accompanied by a local radial scaling compensating the conformal factor coming from the conformal transformations having parametric dependence of radial variable and CP_2 coordinates. It seems however that isometries cannot in general be realized as symplectic transformations. The first difficulty is that symplectic transformations cannot affect the value of the radial coordinate. For rotation algebra the representation as symplectic transformations is however possible.

In CP_2 degrees of freedom scalar function basis having definite color transformation properties is desirable. Scalar function basis can be obtained as the algebra generated by the Hamiltonians of color transformations by multiplication. The elements of basis can be typically expressed as monomials of color Hamiltonians H_c^A

$$H_D^A = \sum_{\{B_j\}} C_{DB_1B_2...B_N}^A \prod_{B_i} H_c^{B_i} , \qquad (4.4.8)$$

where summation over all index combinations $\{B_i\}$ is understood. The coefficients $C^A_{DB_1B_2...B_N}$ are Glebch-Gordan coefficients for completely symmetric N: th power $8 \otimes 8... \otimes 8$ of octet representations. The representation is not unique since $\sum_A H_c^A H_c^A = 1$ holds true. One can however find for each representation D some minimum value of N.

find for each representation D some minimum value of N. The product of Hamiltonians $H_A^{D_1}$ and $H_{D_2}^B$ can be decomposed by Glebch-Gordan coefficients of the symmetrized representation $(D_1 \otimes D_2)_S$ as

$$H_{D_1}^A H_{D_2}^B = C_{D_1 D_2 D C}^{A B D}(S) H_D^C , \qquad (4.4.9)$$

where S' indicates that the symmetrized representation is in question. In the similar manner one can decompose the Poisson bracket of two Hamiltonians

$$\{H_{D_1}^A, H_{D_2}^B\} = C_{D_1 D_2 D C}^{A B D}(A) H_D^C . aga{4.4.10}$$

Here 'A' indicates that Glebch-Gordan coefficients for the anti-symmetrized tensor product of the representations D_1 and D_2 are in question.

One can express the infinitesimal generators of CP_2 symplectic transformations in terms of the color isometry generators J_c^B using the expansion of the Hamiltonian in terms of the monomials of color Hamiltonians:

$$j_{DN}^{A} = F_{DB}^{A} J_{c}^{B} ,$$

$$F_{DB}^{A} = N \sum_{\{B_{j}\}} C_{DB_{1}B_{2}...B_{N-1}B}^{A} \prod_{j} H_{c}^{B_{j}} ,$$

$$(4.4.11)$$

where summation over all possible $\{B_j\}$: s appears. Therefore, the interpretation as a color group localized with respect to CP_2 coordinates is valid in the same sense as the interpretation of spacetime diffeomorphism group as local Poincare group. Thus one can say that TGD color is localized with respect to the entire $\delta M^4_+ \times CP_2$.

A convenient basis for the Hamiltonians of $\delta M_+^4 \times CP_2$ is given by the functions

$$H^{mA}_{jkD} = H^m_{jk}H^A_D$$

The symplectic transformation generated by H_{jkD}^{mA} acts both in M^4 and CP_2 degrees of freedom and the corresponding vector field is given by

$$J^{r} = H_{D}^{A} J^{rl} (\delta M_{+}^{4}) \partial_{l} H_{jk}^{m} + H_{jk}^{m} J^{rl} (CP_{2}) \partial_{l} H_{D}^{A} .$$
(4.4.12)

The general form for their Poisson bracket is:

$$\{H_{j_1k_1D_1}^{m_1A_1}, H_{j_2k_2D_2}^{m_2A_2}\} = H_{D_1}^{A_1} H_{D_2}^{A_2} \{H_{j_1k_1}^{m_1}, H_{j_2k_2}^{m_2}\} + H_{j_1k_1}^{m_1} H_{j_2k_2}^{m_2} \{H_{D_1}^{A_1}, H_{D_2}^{A_2}\}$$

$$= \left[C_{D_1D_2D}^{A_1A_2A}(S)C(j_1m_1j_2m_2|jm)_A + C_{D_1D_2D}^{A_1A_2A}(A)C(j_1m_1j_2m_2|jm)_S\right] H_{j,k_1+k_2,D}^{mA} .$$

$$(4.4.13)$$

What is essential that radial "momenta" and angular momentum are additive in δM_+^4 degrees of freedom and color quantum numbers are additive in CP_2 degrees of freedom.

4.4.6 Representation Of Lorentz Group And Conformal Symmetries At Light Cone Boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary might provide natural building blocks for the construction of the WCW Hamiltonians. In the following the explicit representation of the Lorentz algebra at light cone boundary is deduced, and a function basis giving rise to the representations of Lorentz group and having very simple properties under modified Poisson bracket of δM_{+}^{4} is constructed.

Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for S^2 . The expression for the SU(2) generators of the Lorentz group are

$$J_x = (z^2 - 1)d/dz + c.c. = L_1 - L_{-1} + c.c. ,$$

$$J_y = (iz^2 + 1)d/dz + c.c. = iL_1 + iL_{-1} + c.c. ,$$

$$J_z = iz\frac{d}{dz} + c.c. = iL_z + c.c. .$$
(4.4.14)

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m^3 direction corresponds to an infinitesimal transformation

$$\delta m^{3} = -\varepsilon r_{M} ,$$

$$\delta r_{M} = -\varepsilon m^{3} = -\varepsilon \sqrt{r_{M}^{2} - (m^{1})^{2} - (m^{2})^{2}} .$$
(4.4.15)

The relationship between complex coordinates of S^2 and M^4 coordinates m^k is given by stereographic projection

$$z = \frac{(m^{1} + im^{2})}{(r_{M} - \sqrt{r_{M}^{2} - (m^{1})^{2} - (m^{2})^{2}})}$$

$$= \frac{sin(\theta)(cos\phi + isin\phi)}{(1 - cos\theta)} ,$$

$$cot(\theta/2) = \rho = \sqrt{z\bar{z}} ,$$

$$tan(\phi) = \frac{m^{2}}{m^{1}} .$$
 (4.4.16)

This implies that the change in z coordinate doesn't depend at all on r_M and is of the following form

$$\delta z = -\frac{\varepsilon}{2} \left(1 + \frac{z(z+\bar{z})}{2}\right) (1+z\bar{z}) \quad . \tag{4.4.17}$$

The infinitesimal generator for the boosts in z-direction is therefore of the following form

$$L_z = \left[\frac{2z\bar{z}}{(1+z\bar{z})} - 1\right]r_M\frac{\partial}{\partial_{r_M}} - iJ_z \quad . \tag{4.4.18}$$

Generators of L_x and L_y are most conveniently obtained as commutators of $[L_z, J_y]$ and $[L_z, J_x]$. For L_y one obtains the following expression:

$$L_y = 2 \frac{(z\bar{z}(z+\bar{z})+i(z-\bar{z}))}{(1+z\bar{z})^2} r_M \frac{\partial}{\partial_{r_M}} - iJ_y , \qquad (4.4.19)$$

For L_x one obtains analogous expressions. All Lorentz boosts are of the form $L_i = -iJ_i + local radial scaling$ and of zeroth degree in radial variable so that their action on the general generator $X^{klm} \propto z^k \bar{z}^l r_M^m$ doesn't change the value of the label m being a mere local scaling transformation in radial direction. If radial scalings correspond to zero norm isometries this representation is metrically equivalent with the representations of Lorentz boosts as Möbius transformations.

Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S^2 define in a natural manner infinite series of representation functions transformed to each other in Lorentz transformations. The inner product defined by the integration measure $r_M^2 d\Omega dr_M/r_M$ remains invariant under Lorentz boosts since the scaling of r_M induced by the Lorentz boost compensates for the conformal scaling of $d\Omega$ induced by a Lorentz transformation represented as a Möbius transformation. Thus unitary representations of Lorentz group are in question.

The unitary main series representations of the Lorentz group are characterized by halfinteger m and imaginary number $k_2 = i\rho$, where ρ is any real number [A51]. A natural guess is that m = 0 holds true for all representations realizable at the light cone boundary and that radial waves are of form r_M^k , $k = k_1 + ik_2 = -1 + i\rho$ and thus eigen states of the radial scaling so that the action of Lorentz boosts is simple in the angular momentum basis. The inner product in radial degrees of freedom reduces to that for ordinary plane waves when $log(r_M)$ is taken as a new integration variable. The complexification is well-defined for non-vanishing values of ρ .

It is also possible to have non-unitary representations of the Lorentz group and the realization of the symmetric space structure suggests that one must have $k = k_1 + ik_2$, k_1 half-integer. For these representations unitarity fails because the inner product in the radial degrees of freedom is non-unitary. A possible physical interpretation consistent with the general ideas about conformal invariance is that the representations $k = -1 + i\rho$ correspond to the unitary ground state representations and $k = -1 + n/2 + i\rho$, $n = \pm 1, \pm 2, ...$, to non-unitary representations. The general view about conformal invariance suggests that physical states constructed as tensor products satisfy the condition $\sum_i n_i = 0$ completely analogous to Virasoro conditions.

Representations of the Lorentz group with $E^2 \times SO(2)$ as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone boundary. Since SL(2, C) is the group generated by the generators L_0 and L_{\pm} of the conformal algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded as representations of the conformal algebra. One can require that the basis corresponds to eigen functions of the rotation generator J_z and corresponding boost generator L_z . For functions which do not depend on r_M these generators are completely analogous to the generators L_0 generating scalings and iL_0 generating rotations. Also the generator of radial scalings appears in the formulas and one must consider the possibility that it corresponds to the generator L_0 .

In order to construct scalar function eigen basis of L_z and J_z , one can start from the expressions

$$L_{3} \equiv i(L_{z} + L_{\bar{z}}) = 2i[\frac{2z\bar{z}}{(1+z\bar{z})} - 1]r_{M}\frac{\partial}{\partial_{r_{M}}} + i\rho\partial_{\rho} ,$$

$$J_{3} \equiv iL_{z} - iL_{\bar{z}} = i\partial_{\phi} .$$
(4.4.20)

If the eigen functions do not depend on r_M , one obtains the usual basis z^n of Virasoro algebra, which however is not normalizable basis. The eigenfunctions of the generators L_3 , J_3 and $L_0 = ir_M d/dr_M$ satisfying

$$J_{3}f_{m,n,k} = mf_{m,n,k} ,$$

$$L_{3}f_{m,n,k} = nf_{m,n,k} ,$$

$$L_{0}f_{m,n,k} = kf_{m,n,k} .$$
(4.4.21)

are given by

$$f_{m,n,k} = e^{im\phi} \frac{\rho^{n-k}}{(1+\rho^2)^k} \times (\frac{r_M}{r_0})^k \quad .$$
(4.4.22)

 $n = n_1 + in_2$ and $k = k_1 + ik_2$ are in general complex numbers. The condition

$$n_1 - k_1 \ge 0$$

is required by regularity at the origin of S^2 The requirement that the integral over S^2 defining norm exists (the expression for the differential solid angle is $d\Omega = \frac{\rho}{(1+\rho^2)^2} d\rho d\phi$) implies

$$n_1 < 3k_1 + 2$$

From the relationship $(\cos(\theta), \sin(\theta)) = (\rho^2 - 1)/(\rho^2 + 1), 2\rho/(\rho^2 + 1))$ one can conclude that for $n_2 = k_2 = 0$ the representation functions are proportional to f $\sin(\theta)^{n-k}(\cos(\theta) - 1)^{n-k}$. Therefore they have in their decomposition to spherical harmonics only spherical harmonics with angular momentum l < 2(n-k). This suggests that the condition

$$|m| \le 2(n-k) \tag{4.4.23}$$

is satisfied quite generally.

The emergence of the three quantum numbers (m, n, k) can be understood. Light cone boundary can be regarded as a coset space $SO(3, 1)/E^2 \times SO(2)$, where $E^2 \times SO(2)$ is the group leaving the light like vector defined by a particular point of the light cone invariant. The natural choice of the Cartan group is therefore $E^2 \times SO(2)$. The three quantum numbers (m, n, k) have interpretation as quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and one complex parameter. Thus k_2 and n_2 , which are Lorentz invariants, might not be independent parameters, and the simplest option is $k_2 = n_2$.

The nice feature of the function basis is that various quantum numbers are additive under multiplication:

$$f(m_a, n_a, k_a) \times f(m_b, n_b, k_b) = f(m_a + m_b, n_a + n_b, k_a + k_b)$$

These properties allow to cast the Poisson brackets of the symplectic algebra of WCW into an elegant form.

The Poisson brackets for the δM_+^4 Hamiltonians defined by f_{mnk} can be written using the expression $J^{\rho\phi} = (1 + \rho^2)/\rho$ as

$$\{f_{m_a,n_a,k_a}, f_{m_b,n_b,k_b}\} = i \left[(n_a - k_a)m_b - (n_b - k_b)m_a \right] \times f_{m_a + m_b,n_a + n_b - 2,k_a + k_b} + 2i \left[(2 - k_a)m_b - (2 - k_b)m_a \right] \times f_{m_a + m_b,n_a + n_b - 1,k_a + k_b - 1} .$$

$$(4.4.24)$$

Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations Gelfand.

1. The unitary representations discussed in [A51] are characterized by are constructed by deducing the explicit representations for matrix elements of the rotation generators J_x, J_y, J_z and boost generators L_x, L_y, L_z by decomposing the representation into series of representations of SU(2) defining the isotropy subgroup of a time like momentum. Therefore the states are labeled by eigenvalues of J_z . In the recent case the isotropy group is $E^2 \times SO(2)$ leaving light like point invariant. States are therefore labeled by three different quantum numbers.

- 2. The representations of [A51] are realized the space of complex valued functions of complex coordinates ξ and $\overline{\xi}$ labeling points of complex plane. These functions have complex degrees $n_+ = m/2 1 + l_1$ with respect to ξ and $n_- = -m/2 1 + l_1$ with respect to $\overline{\xi}$. l_0 is complex number in the general case but for unitary representations of main series it is given by $l_1 = i\rho$ and for the representations of supplementary series l_1 is real and satisfies $0 < |l_1| < 1$. The main series representation is derived from a representation space consisting of homogenous functions of variables z^0, z^1 of degree n_+ and of \overline{z}^0 and \overline{z}^1 of degrees n_{\pm} . One can separate express these functions as product of $(z^1)^{n^+}$ $(\overline{z}^1)^{n_-}$ and a polynomial of $\xi = z^1/z^2$ and $\overline{\xi}$ with degrees n_+ and n_- . Unitarity reduces to the requirement that the integration measure of complex plane is invariant under the Lorentz transformations acting as Moebius transformations of the complex plane. Unitarity implies $l_1 = -1 + i\rho$.
- 3. For the representations at δM_{+}^{4} formal unitarity reduces to the requirement that the integration measure of $r_{M}^{2} d\Omega dr_{M}/r_{M}$ of δM_{+}^{4} remains invariant under Lorentz transformations. The action of Lorentz transformation on the complex coordinates of S^{2} induces a conformal scaling which can be compensated by an S^{2} local radial scaling. At least formally the function space of δM_{+}^{4} thus defines a unitary representation. For the function basis f_{mnk} $k = -1 + i\rho$ defines a candidate for a unitary representation since the logarithmic waves in the radial coordinate are completely analogous to plane waves for $k_{1} = -1$. This condition would be completely analogous to the vanishing of conformal weight for the physical states of super conformal representations. The problem is that for $k_{1} = -1$ guaranteeing square integrability in S^{2} implies $-2 < n_{1} < -2$ so that unitarity is possible only for the function basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure indeed requires that k_1 is half-integer valued. First of all, WCW spinor fields are analogous to ordinary spinor fields in M^4 , which also define non-unitary representations of Lorentz group. Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals defined by f_{mnk} over 3-surfaces Y^3 are always well-defined. Thirdly, the continuous spectrum of k_2 could be transformed to a discrete spectrum when k_1 becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S^2 degrees of freedom and the non-unitarity of the inner product reflects itself as non-orthogonality of the eigen function basis. Introducing the variable $u = \rho^2 + 1$ as a new integration variable, one can express the inner product in the form

$$\langle m_a, n_a, k_a | m_b, n_b, k_b \rangle = \pi \delta(k_{2a} - k_{2b}) \times \delta_{m_1, m_2} \times I ,$$

$$I = \int_1^\infty f(u) du ,$$

$$f(u) = \frac{(u-1)^{\frac{(N-K)+i\Delta}{2}}}{u^{K+2}} .$$

$$(4.4.25)$$

The integrand has cut from u = 1 to infinity along real axis. The first thing to observe is that for N = K the exponent of the integral reduces to very simple form and integral exists only for $K = k_{1a} + k_{1b} > -1$. For $k_{1i} = -1/2$ the integral diverges.

The discontinuity of the integrand due to the cut at the real axis is proportional to the integrand and given by

$$f(u) - f(e^{i2\pi}u) = [1 - e^{-\pi\Delta}] f(u) ,$$

$$\Delta = n_{1a} - k_{1a} - n_{1b} + k_{1b} .$$
(4.4.26)

This means that one can transform the integral to an integral around the cut. This integral can in turn completed to an integral over closed loop by adding the circle at infinity to the integration path. The integrand has K + 1-fold pole at u = 0.

Under these conditions one obtains

$$I = \frac{2\pi i}{1 - e^{-\pi\Delta}} \times R \times (R - 1) \dots \times (R - K - 1) \times (-1)^{\frac{N - K}{2} - K - 1} ,$$

$$R \equiv \frac{N - K}{2} + i\Delta . \qquad (4.4.27)$$

This expression is non-vanishing for $\Delta \neq 0$. Thus it is not possible to satisfy orthogonality conditions without the un-physical $n = k, k_1 = 1/2$ constraint. The result is finite for K > -1 so that $k_1 > -1/2$ must be satisfied and if one allows only half-integers in the spectrum, one must have $k_1 \geq 0$, which is very natural if real conformal weights which are half integers are allowed.

4.4.7 How The Complex Eigenvalues Of The Radial Scaling Operator-Relate To Symplectic Conformal Weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator $r_M d/dr_M$, and the first guess was that the correct interpretation is as conformal weights. The problem is however that the eigenvalues are complex. Second problem is that general arguments are not enough to fix the spectrum of eigenvalues. There should be a direct connection to the dynamics defined by Kähler action and the Kähler-Dirac action defined by it.

The construction of WCW spinor structure in terms of second quantized induced spinor fields [K84] leads to the conclusion that the modes of induced spinor fields must be restricted at surfaces with 2-D CP_2 projection to guarantee vanishing W fields and well-defined em charge for them. In the generic case these surfaces are 2-D string world sheets (or possibly also partonic 2-surfaces) and in the non-generic case can be chosen to be such. The modes are labeled by generalized conformal weights assignable to complex or hypercomplex string coordinate. Conformal weights are expected to be integers from the experience with string models.

It is an open question whether these conformal weights are independent of the symplectic formal weights or not but on can consider also the possibility that they are dependent. Note hovewer that string coordinate is not reducible to the light-like radial coordinate in the generic case and one can imagine situations in which r_M is constant although string coordinate varies. Dependency would be achieved if the Hamiltonians are generalized eigen modes of $D = \gamma^x d/dx$, $x = log(r/r_0)$, satisfying $DH = \lambda \gamma^x H$ and thus of form $exp(\lambda x) = (r/r_0)^{\lambda}$ with the same spectrum of eigenvalues λ as associated with the Kähler-Dirac operator. That $log(r/r_0)$ naturally corresponds to the coordinate u assignable to the generalized eigen modes of Kähler-Dirac operator supports this interpretation.

The recent view is that the two conformal weights are independent. The conformal weights associated with the modes of Kähler-Dirac operator localized at string world sheets by the condition that the electromagnetic charge is well-defined for the modes (classical induced W field must vanish at string world sheets). The conformal weights of spinor modes would be integer valued as in string models. About super-symplectic conformal weights associated one cannot say this.

This revives the forgotten TGD inspired conjecture that the conformal weights associated with the generators (in the technical sense of the word) of the super-symplectic algebra are given by the negatives of the zeros of Riemann Zeta $h = -1/2 + iy_i$. Note that these conformal weights have negative real part having interpretation in terms of tachyonic ground state needed in p-adic mass calculations [K39]. The spectrum of conformal weights would be of form $h = n/2 + \sum_i n_i y_i$. This would conform with the association of Riemann Zeta to critical systems. From the identification of mass squared as conformal weight, the total conformal weights for the physical states should have vanishing imaginary part be therefore non-negative integers. This would give rise to what might be called conformal confinement.

4.5 Magnetic And Electric Representations Of WCW Hamiltonians

Symmetry considerations lead to the hypothesis that WCW Hamiltonians are apart from a factor depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand, the hypothesis that Kähler function corresponds to a preferred extremal of Kähler action leads to the hypothesis that WCW Hamiltonians corresponds to classical charges associated with the Hamiltonians of the light cone boundary. These charges are very much like electric charges. The requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of CP_2 corresponding duality corresponds to the self-duality of Kähler form stating that the magnetic and electric and electric parts of Kähler form are identical.

4.5.1 Radial Symplectic Invariants

All $\delta M^4_+ \times CP_2$ symplectic transformations leave invariant the value of the radial coordinate r_M . Therefore the radial coordinate r_M of X^3 regarded as a function of $S^2 \times CP_2$ coordinates serves as height function. The number, type, ordering and values for the extrema for this height function in the interior and boundary components are isometry invariants. These invariants characterize not only the topology but also the size and shape of the 3-surface. The result implies that WCW metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond to topology changes for the two-dimensional (one-dimensional) $r_M = constant$ section of 3-surface (boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of the situation. A good example about non-topological extrema is provided by a sphere with two horns.

There are additional symplectic invariants. The "magnetic fluxes" associated with the δM_+^4 symplectic form

$$J_{S^2} = r_M^2 \sin(\theta) d\theta \wedge d\phi$$

over any $X^2 \subset X^3$ are symplectic invariants. In particular, the integrals over $r_M = constant$ sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the solid angle $\Omega(r_M)$ spanned by $r_M = constant$ section and thus $r_M^2 \Omega(r_M)$ characterizes transversal geometric size of the 3-surface. A convenient manner to discretize these invariants is to consider the Fourier components of these invariants in radial logarithmic plane wave basis discussed earlier:

$$\Omega(k) = \int_{r_{min}}^{r_{max}} (r_M/r_{max})^k \Omega(r_M) \frac{dr_M}{r_M} , \quad k = k_1 + ik_2 , \quad perk_1 \ge 0 .$$
(4.5.1)

One must take into account that for each section in which the topology of $r_M = constant$ section remains constant one must associate invariants with separate components of the two-dimensional section. For a given value of r_M , r_M constant section contains several components (to visualize the situation consider torus as an example).

Also the quantities

$$\Omega^+(X^2) = \int_{X^2} |J| \equiv \int |\epsilon^{\alpha\beta} J_{\alpha\beta}| \sqrt{g_2} d^2 x$$

are symplectic invariants and provide additional geometric information about 3-surface. These fluxes are non-vanishing also for closed surfaces and give information about the geometry of the boundary components of 3-surface (signed fluxes vanish for boundary components unless they enclose the tip of the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the Kähler metric vanishes. It is not at all obvious whether WCW integration measure in these degrees of freedom exists at all. A localization in zero modes occurring in each quantum jump seems a more plausible and under suitable additional assumption it would have interpretation as a state function reduction. In string model similar situation is encountered; besides the functional integral determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance discussed in the introduction is accepted, there is no need to integrate over the variable r_M and just the fluxes over the 2-surfaces X_i^2 identified as intersections of light like 3-D causal determinants with X^3 contain the data relevant for the construction of the WCW geometry. Also the symplectic invariants associated with these surfaces are enough.

4.5.2 Kähler Magnetic Invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and by its absolute value

$$Q_m(X^2) = \int_{X^2} J_{CP_2} = J_{\alpha\beta} \epsilon^{\alpha\beta} \sqrt{g_2} d^2 x ,$$

$$Q_m^+(X^2) = \int_{X^2} |J_{CP_2}| \equiv \int_{X^2} |J_{\alpha\beta} \epsilon^{\alpha\beta}| \sqrt{g_2} d^2 x ,$$
(4.5.2)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic transformations of CP_2 and can be calculated once X^3 is given.

For a closed surface $Q_m(X^2)$ vanishes unless the homology equivalence class of the surface is nontrivial in CP_2 degrees of freedom. In this case the flux is quantized. $Q_M^+(X^2)$ is non-vanishing for closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary of X^2 only:

$$\int_{X^2} J = \int_{\delta X^2} A$$

$$J = dA$$

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of X^2 in which the sign of J remains fixed.

$$Q_m(X^2) = \int_{X^2} J_{CP_2} = J_{\alpha\beta} \epsilon^{\alpha\beta} \sqrt{g_2} d^2 x ,$$

$$Q_m^+(X^2) = \int_{X^2} |J_{CP_2}| \equiv \int_{X^2} |J_{\alpha\beta} \epsilon^{\alpha\beta}| \sqrt{g_2} d^2 x ,$$
(4.5.3)

There are also symplectic invariants, which are Lorentz covariants and defined as

$$Q_m(K, X^2) = \int_{X^2} f_K J_{CP_2} ,$$

$$Q_m^+(K, X^2) = \int_{X^2} f_K |J_{CP_2}| ,$$

$$f_{K \equiv (s,n,k)} = e^{is\phi} \times \frac{\rho^{n-k}}{(1+\rho^2)^k} \times (\frac{r_M}{r_0})^k$$
(4.5.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X^3 , and the magnetic fluxes over the representatives these surfaces give thus good candidates for zero modes.

- 1. If effective 2-dimensionality is accepted, the surfaces X_i^2 defined by the intersections of light like 3-D causal determinants X_l^3 and X^3 provide a natural identification for these 2-surfaces.
- 2. Without effective 2-dimensionality the situation is more complex. Since symplectic transformations leave r_M invariant, a natural set of 2-surfaces X^2 appearing in the definition of fluxes are separate pieces for $r_M = constant$ sections of 3-surface. For a generic 3-surface, these surfaces are 2-dimensional and there is continuum of them so that discrete Fourier transforms of these invariants are needed. One must however notice that $r_M = constant$ surfaces could be be 3-dimensional in which case the notion of flux is not well-defined.

4.5.3 Isometry Invariants And Spin Glass Analogy

The presence of isometry invariants implies coset space decomposition $\cup_i G/H$. This means that quantum states are characterized, not only by the vacuum functional, which is just the exponential exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in vacuum modes. Therefore the functional integral over the WCW decomposes into an integral over zero modes for approximately Gaussian functionals determined by exp(K). The weights for the various vacuum mode contributions are given by the probability density associated with the zero modes. The integration over the zero modes is a highly problematic notion and it could be eliminated if a localization in the zero modes occurs in quantum jumps. The localization would correspond to a state function reduction and zero modes would be effectively classical variables correlated in one-one manner with the quantum numbers associated with the quantum fluctuating degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin glass phase for which one has probability distribution for Hamiltonians appearing in the partition function exp(-H/T). In fact, since TGD Universe is also critical, exact similarity requires that also the temperature is critical for various contributions to the average partition function of spin glass phase. The characterization of isometry invariants and zero modes of the Kähler metric provides a precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field theory limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase motivates the hypothesis that effective quantum average space-time possesses ultra-metric topology. This approach leads to excellent predictions for elementary particle masses and predicts even new branches of physics [K43, K76]. As a matter fact, an entire fractal hierarchy of copies of standard physics is predicted.

4.5.4 Magnetic Flux Representation Of The Symplectic Algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X_i^2 defined by the intersections of light-like light-like 3-surfaces $X_{l,i}^3$ with X^3 at the boundaries of CD considered. Bearing in mind that zero energy ontology is the correct approach, one can restrict the consideration on fluxes at $\delta M_+^4 \times CP_2$ One must also remember that if the proposed symmetries hold true, it is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian spacetime sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is discussed in [K36] by starting from the observation that TGD could define a natural realization of braids, braid cobordisms, and 2-knots.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for WCW. Symplectic transformations of CP_2 act as U(1) gauge transformations on the Kähler potential of CP_2 (similar conclusion holds at the level of $\delta M^4_+ \times CP_2$).

One can generalize these transformations to local symplectic transformations by allowing the Hamiltonians to be products of the CP_2 Hamiltonians with the real and imaginary parts of the functions $f_{m,n,k}$ (see Eq. 4.4.22) defining the Lorentz covariant function basis H_A , $A \equiv (a, m, n, k)$ at the light cone boundary: $H_A = H_a \times f(m, n, k)$, where a labels the Hamiltonians of CP_2 .

One can associate to any Hamiltonian H^A of this kind both signed and unsigned magnetic flux via the following formulas:

$$Q_m(H_A|X^2) = \int_{X^2} H_A J ,$$

$$Q_m^+(H_A|X^2) = \int_{X^2} H_A |J| .$$
(4.5.5)

Here X^2 corresponds to any surface X_i^2 resulting as intersection of X^3 with $X_{l,i}^3$. Both signed and unsigned magnetic fluxes and their superpositions

$$Q_m^{\alpha,\beta}(H_A|X^2) = \alpha Q_m(H_A|X^2) + \beta Q_m^+(H_A|X^2) , \quad A \equiv (a, s, n, k)$$
(4.5.6)

provide representations of Hamiltonians. Note that symplectic invariants $Q_m^{\alpha,\beta}$ correspond to $H^A = 1$ and $H^A = f_{s,n,k}$. $H^A = 1$ can be regarded as a natural central term for the Poisson bracket algebra. Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows as a natural consequence.

The obvious question concerns about the correct values of the parameters α and β . One possibility is that the flux is an unsigned flux so that one has $\alpha = 0$. This option is favored by the construction of the WCW spinor structure involving the construction of the fermionic super charges anti-commuting to WCW Hamiltonians: super charges contain the square root of flux, which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so that β vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the defining formulas with its dual *J

$$*J_{\alpha\beta} = \epsilon_{\alpha\beta}^{\ \gamma\delta} J_{\gamma\delta}.$$

For $H_A = 1$ these fluxes reduce to ordinary Kähler electric fluxes. These fluxes are however not symplectic covariants since the definition of the dual involves the induced metric, which is not symplectic invariant. The electric gauge fluxes for Hamiltonians in various representations of the color group ought to be important in the description of hadrons, not only as string like objects, but quite generally. These degrees of freedom would be identifiable as non-perturbative degrees of freedom involving genuinely classical Kähler field whereas quarks and gluons would correspond to the perturbative degrees of freedom, that is the interactions between CP_2 type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that the Lie-derivative of the flux $Q_m^{\alpha,\beta}(H_A)$ with respect to the vector field $X(H_B)$ is given by

$$X(H_B) \cdot Q_m^{\alpha,\beta}(H_A) = Q_m^{\alpha,\beta}(\{H_B, H_A\}) .$$
(4.5.7)

The transformation properties of $Q_m^{\alpha,\beta}(H_A)$ are very nice if the basis for H_B transforms according to appropriate irreducible representation of color group and rotation group. This in turn implies that the fluxes $Q_m^{\alpha,\beta}(H_A)$ as functionals of 3-surface on given orbit provide a representation for the Hamiltonian as a functional of 3-surface. For a given surface X^3 , the Poisson bracket for the two fluxes $Q_m^{\alpha,\beta}(H_A)$ and $Q_m^{\alpha,\beta}(H_B)$ can be defined as

$$\{Q_m^{\alpha,\beta}(H_A), Q_m^{\alpha,\beta}(H_B)\} \equiv X(H_B) \cdot Q_m^{\alpha,\beta}(H_A)$$

= $Q_m^{\alpha,\beta}(\{H_A, H_B\}) = Q_m^{\alpha,\beta}(\{H_A, H_B\}) .$ (4.5.8)

The study of WCW gamma matrices identifiable as symplectic super charges demonstrates that the supercharges associated with the radial deformations vanish identically so that radial deformations correspond to zero norm degrees of freedom as one might indeed expect on physical grounds. The reason is that super generators involve the invariants $j^{ak}\gamma_k$ which vanish by $\gamma_{r_M} = 0$.

The natural central extension associated with the symplectic group of CP_2 ($\{p,q\} = 1$!) induces a central extension of this algebra. The central extension term resulting from $\{H_A, H_B\}$ when CP_2 Hamiltonians have $\{p,q\} = 1$ equals to the symplectic invariant $Q_m^{\alpha,\beta}(f(m_a + m_b, n_a + n_b, k_a + k_b))$ on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom rather than in loop space degrees of freedom and therefore does not lead to the standard Kac Moody type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD context by much larger symmetry algebras. Kac Moody algebra corresponds to the deformations

of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at δCD intact and are highly relevant to the elementary particle physics. This algebra allows a representation in terms of X_l^3 local Hamiltonians generating isometries of $\delta M_{\pm}^4 \times CP_2$. Hamiltonian representation is essential for super-symmetrization since fermionic super charges anti-commute to Hamiltonians rather than vector fields: this is one of the deep differences between TGD and string models. Kac-Moody algebra does not contribute to WCW metric since by definition the generators vanish at partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP_2 symplectic algebra localized with respect to the light cone boundary and relevant to the configuration space geometry. This extends to $S^2 \times CP_2$ -or rather $\delta M_{\pm}^4 \times CP_2$ symplectic algebra and this gives the strongest predictions concerning WCW metric. The local radial Virasoro localized with respect to $S^2 \times CP_2$ acts in zero modes and has automatically vanishing norm with respect to WCW metric defined by super charges.

4.5.5 Symplectic Transformations Of $\Delta M_{\pm}^4 \times CP_2$ As Isometries And Electric-Magnetic Duality

According to the construction of Kähler metric, symplectic transformations of $\delta M_{\pm}^4 \times CP_2$ act as isometries whereas radial Virasoro algebra localized with respect to CP_2 has zero norm in the WCW metric.

Hamiltonians can be organized into light like unitary representations of $so(3, 1) \times su(3)$ and the symmetry condition Zg(X, Y) = 0 requires that the component of the metric is $so(3, 1) \times su(3)$ invariant and this condition is satisfied if the component of metric between two different representations D_1 and D_2 of $so(3, 1) \times su(3)$ is proportional to Glebch-Gordan coefficient $C_{D_1D_2,D_S}$ between $D_1 \otimes D_2$ and singlet representation D_S . In particular, metric has components only between states having identical $so(3, 1) \times su(3)$ quantum numbers.

Magnetic representation of WCW Hamiltonians means the action of the symplectic transformations of the light cone boundary as WCW isometries is an intrinsic property of the light cone boundary. If electric-magnetic duality holds true, the preferred extremal property only determines the conformal factor of the metric depending on zero modes. This is precisely as it should be if the group theoretical construction works. Hence it should be possible by a direct calculation check whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in complex coordinates is invariant under isometries. Symplectic invariance of the metric means that matrix elements of the metric are left translates of the metric along geodesic lines starting from the origin of coordinates, which now naturally corresponds to the preferred extremal of Kähler action. Since metric derives from symplectic form this means that the matrix elements of symplectic form given by Poisson brackets of Hamiltonians must be left translates of their values at origin along geodesic line. The matrix elements in question are given by flux Hamiltonians and since symplectic transforms of flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian, it seems that the conditions are satisfied.

4.5.6 Quantum Counterparts Of The Symplectic Hamiltonians

The matrix elements of WCW Kähler metric can be expressed in terms of anti-commutators of WCW gamma matrices identified as super-symplectic super-charges, which might be called super-Hamiltonians. It is these operators which are the most relevant from the point of view of quantum TGD.

The generalization for the definition WCW super-Hamiltonians defining WCW gamma matrices is discussed in detail in [K61] feeds in the wisdom gained about preferred extremals of Kähler action and solutions of the Kähler-Dirac action: in particular, about their localization at string worlds sheets (right handed neutrino could be an exception). Second quantized Noether charges in turn define representation of WCW Hamiltonians as operators.

The basic formulas generalize as such: the only modification is that the super-Hamiltonian of $\delta M_{\pm}^4 \times CP_2$ at given point of partonic 2-surface is replaced with the Noether super charge associated with the Hamiltonian obtained by integrating the 1-D super current over string emanating from partonic 2-surface. Right handed neutrino spinor is replaced with any mode of the Kähler-Dirac operator localized at string world sheet in the case of Kac-Moody sub-algebra of super-symplectic algebra corresponding to symplectic isometries at light-cone boundary and CP_2 . The original

proposal involved only the contractions with covariantly constant right- handed neutrino spinor mode but now one can allow contractions with all spinor modes - both quark like and leptonic ones. One obtains entire super-symplectic algebra and the direct sum of these algebras is used to construct physical states. This step is analogous to the replacement of point like particle with string.

The resulting super Hamiltonians define WCW gamma matrices. They are labelled by two conformal weights. The first one is the conformal weight associated with the light-like coordinate of $\delta M_{\pm}^4 \times CP_2$. Second conformal weight is associated with the spinor mode and the coordinate along stringy curve and corresponds to the usual stringy conformal weight. The symplectic conformal weight can be more general - I have proposed its spectrum to be generated by the zeros of Riemann zeta. The total conformal weight of a physical state would be non-negative real integer meaning conformal confinement. Symplectic conformal symmetry can be assumed to be broken: an entire hierarchy of breakings is obtained corresponding to hierarchies of sub-algebra of the symplectic algebra isomorphic with it quantum criticalities, Planck constants, and dark matter. Breaking means that only the sub-algebra of super-symplectic algebra isomorphic to it corresponds vanishing elements of the WCW metric: in Hilbert space picture these gauge degrees of freedom correspond to zero norm states.

The presence of two conformal weights is in accordance with the idea that a generalization of conformal invariance to 4-D situation is in question. If Yangian extension of conformal symmetries is possible and would bring an additional integer n telling the degree of multi-locality of Yangian generators defined as the number of strings at which the generator acts (the original not proposal was as the number of partonic 2-surfaces). For super-symplectic algebra the degree of multi-locality equals to n = 1. Measurement resolution increases with n. This is also visible in the properties of space-time surfaces since string world sheets and possibly also partonic 2-surfaces and their light-like orbits provide the holographic data - kind of skeleton - determining space-time surface associated with them.

4.6 General Expressions For The Symplectic And Kähler Forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of WCW. The fact that these expressions involve only first variation of the Kähler action implies huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the formulas.

4.6.1 Closedness Requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of $\delta M_+^4 \times CP_2$ suggest a general representation for the components of the symplectic form of the WCW. The basic requirement is that Kähler form satisfies the defining condition

$$X \cdot J(Y,Z) + J([X,Y],Z) + J(X,[Y,Z]) = 0 , \qquad (4.6.1)$$

where X, Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordinates.

4.6.2 Matrix Elements Of The Symplectic Form As Poisson Brackets

Quite generally, the matrix element of $J(X(H_A), X(H_B))$ between vector fields $X(H_A)$) and $X(H_B)$) defined by the Hamiltonians H_A and H_B of $\delta M_+^4 \times CP_2$ isometries is expressible as Poisson bracket

$$J^{AB} = J(X(H_A), X(H_B)) = \{H_A, H_B\} .$$
(4.6.2)

 J^{AB} denotes contravariant components of the symplectic form in coordinates given by a subset of Hamiltonians. The magnetic flux Hamiltonians $Q_m^{\alpha,\beta}(H_{A,k})$ of Eq. 4.5.5 provide an explicit representation for the Hamiltonians at the level of WCW so that the components of the symplectic form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians of the light cone boundary:

$$J(X(H_A), X(H_B)) = Q_m^{\alpha, \beta}(\{H_A, H_B\}) .$$
(4.6.3)

Recall that the superscript α, β refers the coefficients of J and |J| in the superposition of these Kähler magnetic fluxes. Note that $Q_m^{\alpha,\beta}$ contains unspecified conformal factor depending on symplectic invariants characterizing Y^3 and is unspecified superposition of signed and unsigned magnetic fluxes.

This representation does not carry information about the tangent space of space-time surface at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators of flux Hamiltonians come out correctly. This would give

$$Q_m^{\alpha,\beta}(H_A)_{em} = Q_e^{\alpha,\beta}(H_A) + Q_m^{\alpha,\beta}(H_A) = (1+K)Q_m^{\alpha,\beta}(H_A) .$$
(4.6.4)

Since Kähler form relates to the standard field tensor by a factor e/\hbar , flux Hamiltonians are dimensionless so that commutators do not involve \hbar . The commutators would come as

$$Q_{em}^{\alpha,\beta}(\{H_A, H_B\}) \to (1+K)Q_m^{\alpha,\beta}(\{H_A, H_B\}) \quad . \tag{4.6.5}$$

The factor 1 + K plays the same role as Planck constant in the commutators.

WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives of the Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as coordinates in the perturbative functional integral around extrema (with maxima giving dominating contribution). It is clear that WCW coordinates around a given extremum include only those Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

$$\{P^{I}, Q^{J}\} = J^{IJ} = J_{I}\delta^{I,J} .$$

$$J_{I} = 1 .$$
(4.6.6)

It is not clear whether Darboux coordinates with $J_I = 1$ are possible in the recent case: probably the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix depending on symplectic invariants so that one has $J_I \neq 1$. The integration measure is given by the symplectic volume element given by the determinant of the matrix defined by the Poisson brackets of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

$$Vol = \prod_{I} J_{I}$$

in generalized Darboux coordinates.

Kähler potential (that is gauge potential associated with Kähler form) can be written in Darboux coordinates as

$$A = \sum_{I} J_{I} P_{I} dQ^{I} \quad . \tag{4.6.7}$$

4.6.3 General Expressions For Kähler Form, Kähler Metric And Kähler Function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by transforming the contravariant form of the symplectic form from symplectic coordinates provided by Hamiltonians to complex coordinates:

$$J^{Z^i\bar{Z}^j} = iG^{Z^i\bar{Z}^j} = \partial_{H^A}Z^i\partial_{H^B}\bar{Z}^jJ^{AB} , \qquad (4.6.8)$$

where J^{AB} is given by the classical Kahler charge for the light cone Hamiltonian $\{H^A, H^B\}$. Complex coordinates correspond to linear coordinates of the complexified Lie-algebra providing exponentiation of the isometry algebra via exponential mapping. What one must know is the precise relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship is in principle calculable. In Darboux coordinates the expressions become even simpler:

$$J^{Z^{i}\bar{Z}^{j}} = iG^{Z^{i}\bar{Z}^{j}} = \sum_{I} J(I)(\partial_{P^{i}}Z^{i}\partial_{Q^{I}}\bar{Z}^{j} - \partial_{Q^{I}}Z^{i}\partial_{P^{I}}\bar{Z}^{j}) .$$

$$(4.6.9)$$

Kähler function can be formally integrated from the relationship

$$A_{Z^{i}} = i\partial_{Z^{i}}K ,$$

$$A_{\bar{Z}^{i}} = -i\partial_{Z^{i}}K .$$
(4.6.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

$$K = \int_0^Z (A_{Z^i} dZ^i - A_{\bar{Z}^i} d\bar{Z}^i) . \qquad (4.6.11)$$

4.6.4 $Diff(X^3)$ Invariance And Degeneracy And Conformal Invariances Of The Symplectic Form

 $J(X(H_A), X(H_B))$ defines symplectic form for the coset space G/H only if it is $Diff(X^3)$ degenerate. This means that the symplectic form $J(X(H_A), X(H_B))$ vanishes whenever Hamiltonian H_A or H_B is such that it generates diffeomorphism of the 3-surface X^3 . If effective 2-dimensionality holds true, $J(X(H_A), X(H_B))$ vanishes if H_A or H_B generates two-dimensional diffeomorphism $d(H_A)$ at the surface X_i^2 .

One can always write

$$J(X(H_A), X(H_B)) = X(H_A)Q(H_B|X_i^2)$$

If H_A generates diffeomorphism, the action of $X(H_A)$ reduces to the action of the vector field X_A of some X_i^2 -diffeomorphism. Since $Q(H_B|r_M)$ is manifestly invariant under the diffeomorphisms of X^2 , the result is vanishing:

$$X_A Q(H_B | X_i^2) = 0$$

so that $Diff^2$ invariance is achieved.

The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce trouble. The change of the flux integrand X under the infinitesimal transformation $r_M \to r_M + \epsilon r_M^n$ is given by $r_M^n dX/dr_M$. Replacing r_M with $r_M^{-n+1}/(-n+1)$ as variable, the integrand reduces to a total divergence dX/du the integral of which vanishes over the closed 2-surface X_i^2 . Hence radial Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The induced metric of X_i^2 induces a unique conformal structure and since the conformal transformations of X_i^2 can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

4.6.5 Complexification And Explicit Form Of The Metric And Kähler Form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows trivially from the identification of the symplectic form and definition of complexification. The requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost generator), isospin and hypercharge implies physically natural complexification. In order to fix the complexification completely one must introduce some convention fixing which states correspond to "positive" frequencies and which to "negative frequencies" and which to zero frequencies that is to decompose the generators of the symplectic algebra to three sets Can_+ , Can_- and Can_0 . One must distinguish between Can_0 and zero modes, which are not considered here at all. For instance, CP_2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas the real part defines the g = t + h decomposition naturally. The wave vector associated with the radial logarithmic plane wave corresponds to the angular momentum quantum number associated with a wave in S^1 in the case of Kac Moody algebra. One can imagine three options.

- 1. It is quite possible that the spectrum of k_2 does not contain $k_2 = 0$ at all so that the sector Can_0 could be empty. This complexification is physically very natural since it is manifestly invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so that there are no problems with Lorentz invariance.
- 2. If $k_2 = 0$ is possible one could have

$$Can_{+} = \{H^{a}_{m,n,k=k1+ik_{2}}, k_{2} > 0\},$$

$$Can_{-} = \{H^{a}_{m,n,k}, k_{2} < 0\},$$

$$Can_{0} = \{H^{a}_{m,n,k}, k_{2} = 0\}.$$

$$(4.6.12)$$

3. If it is possible to $n_2 \neq 0$ for $k_2 = 0$, one could define the decomposition as

$$Can_{+} = \{H^{a}_{m,n,k}, k_{2} > 0 \text{ or } k_{2} = 0, n_{2} > 0\},\$$

$$Can_{-} = \{H^{a}_{m,n,k}, k_{2} < 0 \text{ or} k_{2} = 0, n_{2} < 0\},\$$

$$Can_{0} = \{H^{a}_{m,n,k}, k_{2} = n_{2} = 0\}.$$

$$(4.6.13)$$

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen to be the direction of the classical angular momentum associated with the 3-surface in its rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket defined by Eq. 4.6.15

$$J_f(X(H_A), X(H_B)) = 2Im (iQ_f(\{H_A, H_B\}_{-+})) ,$$

$$G_f(X(H_A), X(H_B)) = 2Re (iQ_f(\{H_A, H_B\}_{-+})) .$$
(4.6.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At this stage one cannot say much about the functional form of this factor.

4.6.6 Comparison Of *CP*₂ Kähler Geometry With Configuration Space Geometry

The explicit discussion of the role of g = t + h decomposition of the tangent space of WCW provides deep insights to the metric of the symmetric space. There are indeed many questions to be answered. To what point of WCW (that is 3-surface) the proposed g = t + h decomposition corresponds to? Can one derive the components of the metric and Kähler form from the Poisson brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for CP_2

A good manner to gain understanding is to consider the CP_2 metric and Kähler form at the origin of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

- 1. g = t + h decomposition depends on the point of the symmetric space in general. In case of CP_2 u(2) sub-algebra transforms as $g \circ u(2) \circ g^{-1}$ when the point s is replaced by gsg^{-1} . This is expected to hold true also in case of WCW (unless it is flat) so that the task is to identify the point of WCW at which the proposed decomposition holds true.
- 2. The Killing vector fields of h sub-algebra vanish at the origin of CP_2 in complex coordinates. The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It is possible to add suitable constants to the Hamiltonians in order to guarantee that they vanish at origin.
- 3. It is convenient to introduce complex coordinates and decompose isometry generators to holomorphic components $J^a_+ = j^{ak}\partial_k$ and $j^a_- = j^{a\bar{k}}\partial_{\bar{k}}$. One can introduce what might be called half Poisson bracket and half inner product defined as

$$\{H^{a}, H^{b}\}_{-+} \equiv \partial_{\bar{k}} H^{a} J^{\bar{k}l} \partial_{l} H^{b}$$

= $j^{ak} J_{k\bar{l}} j^{b\bar{l}} = -i(j^{a}_{+}, j^{b}_{-}) .$ (4.6.15)

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

$$\{H^{a}, H^{b}\} = 2Im \left(i\{H^{a}, H^{b}\}_{-+}\right) , (j^{a}, j^{b}) = 2Re \left(i(j^{a}_{+}, j^{b}_{-})\right) = 2Re \left(i\{H^{a}, H^{b}\}_{-+}\right) .$$
 (4.6.16)

What this means that Hamiltonians and their half brackets code all information about metric and Kähler form. Obviously this is of utmost importance in the case of the WCW metric whose symplectic structure and central extension are derived from those of CP_2 .

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

$$\{h, h\}_{-+} = 0 ,$$

$$Re (i\{h, t\}_{-+}) = 0 , Im (i\{h, t\}_{-+}) = 0 ,$$

$$Re (i\{t, t\}_{-+}) \neq 0 , Im (i\{t, t\}_{-+}) \neq 0 .$$

$$(4.6.17)$$

- 2. The first two conditions state that h vector fields have vanishing inner products at the origin. The first condition states also that the Hamiltonians for the commutator algebra [h, h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding to the color hyper charge need not vanish although it can be made vanishing. The third condition implies that the Hamiltonians of t vanish at origin.
- 3. The last two conditions state that the Kähler metric and form are non-vanishing between the elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the only possibility is that $\{t, t\}$ Poisson brackets reduce to a non-vanishing U(1) Hamiltonian at the origin or that the bracket at the origin is due to the symplectic central extension. The requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to interpret $\{t, t\}$ brackets at origin as being due to a symplectic central extension. For instance, for S^2 the requirement that Hamiltonians vanish at origin would mean the replacement of the Hamiltonian $H = cos(\theta)$ representing a rotation around z-axis with $H_3 = cos(\theta) - 1$ so that the Poisson bracket of the generators H_1 and H_2 can be interpreted as a central extension term.
- 4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.
- 5. Also the Kähler function of CP_2 has extremum at the origin. This suggests that in the case of the WCW the counterpart of the origin corresponds to the maximum of the Kähler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of CP_2 Kähler metric at origin provides valuable guide lines in an attempt to understand what happens at the level of WCW. The use of the half bracket for WCW Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kähler form explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically. Cartan decomposition had to be assigned with something and in lack of anything better it was assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without any strong physical justification.

It must be however emphasized that holography implying effective 2-dimensionality of 3surfaces in some length scale resolution is absolutely essential for this construction since it allows to effectively reduce Kac-Moody generators associated with X_l^3 to $X^2 = X_l^3 \cap \delta M_{\pm}^4 \times CP_2$. In the similar manner super-symplectic generators can be dimensionally reduced to X^2 . Number theoretical compactification forces the dimensional reduction and the known extremals are consistent with it [K9]. The construction of WCW spinor structure and metric in terms of the second quantized spinor fields [K84] relies to this picture as also the recent view about *M*-matrix [K17].

In this framework the coset space decomposition becomes trivial.

- 1. The algebra g is labeled by color quantum numbers of CP_2 Hamiltonians and by the label (m, n, k) labeling the function basis of the light cone boundary. Also a localization with respect to X^2 is needed. This is a new element as compared to the original view.
- 2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X^2 . Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decomposition is satisfied.

4.6.7 Comparison With Loop Groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of maps from circle to Lie group G [A40], which served as the inspirer of the WCW geometry approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra $T(k, A) = exp(ik\phi)T_A$, where T_A generates the finite-dimensional Lie-algebra g and ϕ denotes the angle variable of circle; k is integer. The complexification of the tangent space corresponds to the decomposition

Ί

$$T = \{X(k > 0, A)\} \oplus \{X(k < 0, A)\} \oplus \{X(k = 0, A)\} = T_{+} \oplus T_{-} \oplus T_{0}$$

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody algebra and the Kähler form is given by

$$J(X(k_1 < 0, A), X(k_2 > 0, B)) = k_2 \delta(k_1 + k_2) \delta(A, B)$$

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic transformations of $\delta M_+^4 \times CP_2$ centrally extended using symplectic extension. The scalar function basis on circle is replaced with the function basis on an interval of length Δr_M with periodic boundary conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension $(\{p,q\} = 1)$ defined by Poisson bracket. This extension is anti-symmetric with respect to the generators of the symplectic group: in the case of the Kac Moody central extension it is symmetric with respect to the group G. The symplectic transformations of CP_2 might correspond to non-zero modes also because they are not exact symmetries of Kähler action. The situation is however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial integration unless one poses both lower and upper radial cutoffs although the matrix elements would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)algebra defining central extension in the case that only CP_2 symplectic transformations local with respect to δM_+^4 act as isometries: for Kac Moody algebra the central extension corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra defines the isometries the central extension reduces to a U(1) central extension.

4.6.8 Symmetric Space Property Implies Ricci Flatness And Isometric Action Of Symplectic Transformations

The basic structure of symmetric spaces is summarized by the following structural equations

$$g = h + t , [h,h] \subset h , \quad [h,t] \subset t , \quad [t,t] \subset h .$$
(4.6.18)

In present case the equations imply that all commutators of the Lie-algebra generators of $Can(\neq 0)$ having non-vanishing integer valued radial quantum number n_2 , possess zero norm. This condition is extremely strong and guarantees isometric action of $Can(\delta M_+^4 \times CP_2)$ as well as Ricci flatness of the WCW metric.

The requirement $[t,t] \subset h$ and $[h,t] \subset t$ are satisfied if the generators of the isometry algebra possess generalized parity P such that the generators in t have parity P = -1 and the generators belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The first possibility to come into mind is that odd values of n correspond to P = -1 and even values to P = 1. Since n is additive in commutation, this would automatically imply $h \oplus t$ decomposition with the required properties. This assumption looks however somewhat artificial. TGD however forces a generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This suggests strongly that isometry generators are labeled by half integer conformal weight and that half-odd integer conformal weight corresponds to parity P = -1 whereas integer conformal weight corresponds to parity P = 1. Coset space would structure would state conformal invariance of the theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector field X leads together with the covariant constancy of the metric to the Killing conditions

$$X \cdot g(Y,Z) = 0 = g([X,Y],Z) + g(Y,[X,Z]) .$$
(4.6.19)

If the commutators of the complexified generators in $Can(\neq 0)$ have zero norm then the two terms on the right hand side of Eq. (4.6.19) vanish separately. This is true if the conditions

$$Q_m^{\alpha,\beta}(\{H^A,\{H^B,H^C\}\}) = 0 , \qquad (4.6.20)$$

are satisfied for all triplets of Hamiltonians in $Can_{\neq 0}$. These conditions follow automatically from the $[t, t] \subset h$ property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose the conditions of Eq. (4.6.20) as consistency conditions on the initial values of the time derivatives of embedding space coordinates whereas in general case this is possible. If the consistency conditions are satisfied for a single surface on the orbit of symplectic group then they are satisfied on the entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement of time reversal invariance might well force Kähler electric alternative.

4.7 Ricci Flatness And Divergence Cancelation

Divergence cancelation in WCW integration requires Ricci flatness and in this section the arguments in favor of Ricci flatness are discussed in detail.

4.7.1 Inner Product From Divergence Cancelation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product is given by integrating the usual Fock space inner product defined at each point of WCW over the reduced WCW containing only the 3-surfaces Y^3 belonging to $\delta H = \delta M^4_+ \times CP_2$ ("light-cone boundary") using the exponent exp(K) as a weight factor:

$$\langle \Psi_1 | \Psi_2 \rangle = \int \overline{\Psi}_1(Y^3) \Psi_2(Y^3) exp(K) \sqrt{G} dY^3 ,$$

$$\overline{\Psi}_1(Y^3) \Psi_2(Y^3) \equiv \langle \Psi_1(Y^3) | \Psi_2(Y^3) \rangle_{Fock} .$$
 (4.7.1)

The degeneracy for the preferred extremals of Kähler action implies additional summation over the degenerate extremals associated with Y^3 . The restriction of the integration on light cone boundary is Diff⁴ invariant procedure and resolves in elegant manner the problems related to the integration over Diff⁴ degrees of freedom. A variant of the inner product is obtained dropping the bosonic vacuum functional exp(K) from the definition of the inner product and by assuming that it is included into the spinor fields themselves. Probably it is just a matter of taste how the necessary bosonic vacuum functional is included into the inner product: what is essential that the vacuum functional exp(K) is somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product and from the unitarity of the standard L^2 inner product defined by WCW integration in the set of the L^2 integrable scalar functions. It could well occur that $Diff^4$ invariance implies the reduction of WCW integration to $C(\delta H)$.

Consider next the bosonic integration in more detail. The exponent of the Kähler function appears in the inner product also in the context of the finite dimensional group representations. For the representations of the non-compact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1)endowed with Kähler metric) the exponent of Kähler function is necessary in order to get square integrable representations [B21]. The scalar product for two complex valued representation functions is defined as

$$(f,g) = \int \overline{f}gexp(nK)\sqrt{g}dV \quad . \tag{4.7.2}$$

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite

dimensional case this corresponds to the restriction to single unitary representation of the group in question.

The sign of the action appearing in the exponent is of decisive importance in order to make theory stable. The point is that the theory must be well defined at the limit of infinitely large system. Minimization of action is expected to imply that the action of infinitely large system is bound from above: the generation of electric Kähler fields gives negative contributions to the action. This implies that at the limit of the infinite system the average action per volume is nonpositive. For systems having negative average density of action vacuum functional exp(K) vanishes so that only configurations with vanishing average action per volume have significant probability. On the other hand, the choice exp(-K) would make theory unstable: probability amplitude would be infinite for all configurations having negative average action per volume. In the fourth part of the book it will be shown that the requirement that average Kähler action per volume cancels has important cosmological consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the Kähler function as a Taylor series around maximum of Kähler function and use the contravariant Kähler metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so that one avoids divergences coming from it. The non-locality of the Kähler function as a functional of the 3-surface serves as an additional regulating mechanism: if $K(X^3)$ were a local functional of X^3 one would encounter divergences in the perturbative expansion.

The requirement that quantum jump corresponds to a quantum measurement in the sense of quantum field theories implies that quantum jump involves localization in zero modes. Localization in the zero modes implies automatically p-adic evolution since the decomposition of the WCW into sectors D_P labeled by the infinite primes P is determined by the corresponding decomposition in zero modes. Localization in zero modes would suggest that the calculation of the physical predictions does not involve integration over zero modes: this would dramatically simplify the calculational apparatus of the theory. Probably this simplification occurs at the level of practical calculations if U-matrix separates into a product of matrices associated with zero modes and fiber degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to different values of zero modes and here one cannot actually avoid integrals over zero modes. To achieve this one is forced to define the transition probabilities for quantum jumps involving a localization in zero modes as

$$P(x, \alpha \to y, \beta) = \sum_{r,s} |S(r, \alpha \to s, \beta)|^2 |\Psi_r(x)|^2 |\Psi_s(y)|^2$$

where x and y correspond to the zero mode coordinates and r and s label a complete state functional basis in zero modes and $S(r, m \to s, n)$ involves integration over zero modes. In fact, only in this manner the notion of the localization in the zero modes makes mathematically sense at the level of S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function basis can be freely constructed so that divergence difficulties could be avoided. An open question is whether this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

- 1. Since WCW metric is degenerate and the bosonic propagator is essentially the contravariant metric, bosonic integration is expected to reduce to an integration over the zero modes. For instance, isometry invariants are variables of this kind. These modes are analogous to the parameters describing the conformal equivalence class of the orbit of the string in string models.
- 2. α_K is a natural small expansion parameter in WCW integration. It should be noticed that α_K , when defined by the criticality condition, could also depend on the coordinates parameterizing the zero modes.
- 3. Semiclassical approximation, which means the expansion of the functional integral as a sum over the extrema of the Kähler function, is a natural approach to the calculation of the bosonic integral. Symmetric space property suggests that for the given values of the zero

modes there is only single extremum and corresponds to the maximum of the Kähler function. There are theorems (Duistermaat-Hecke theorem) stating that semiclassical approximation is exact for certain systems (for example for integrable systems [A41]). Symmetric space property suggests that Kähler function might possess the properties guaranteeing the exactness of the semiclassical approximation. This would mean that the calculation of the integral $\int exp(K)\sqrt{G}dY^3$ and even more complex integrals involving WCW spinor fields would be completely analogous to a Gaussian integration of free quantum field theory. This kind of reduction actually occurs in string models and is consistent with the criticality of the Kähler coupling constant suggesting that all loop integrals contributing to the renormalization of the Kähler action should vanish. Also the condition that WCW integrals are continuable to p-adic number fields requires this kind of reduction.

4.7.2 Why Ricci Flatness

It has been already found that the requirement of divergence cancelation poses extremely strong constraints on the metric of the WCW. The results obtained hitherto are the following.

- 1. If the vacuum functional is the exponent of Kähler function one gets rid of the divergences resulting from the Gaussian determinants and metric determinants: determinants cancel each other.
- 2. The non-locality of the Kähler action gives good hopes of obtaining divergence free perturbation theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.

1. Dirac operator should be a well defined operator. In particular its square should be well defined. The problem is that the square of Dirac operator contains curvature scalar, which need not be finite since it is obtained via two infinite-dimensional trace operations from the curvature tensor. In case of loop spaces [A40] the Kähler property implies that even Ricci tensor is only conditionally convergent. In fact, loop spaces with Kähler metric are Einstein spaces (Ricci tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates as is seen from the expression for Ricci tensor [A45]

$$R_{k\bar{l}} = \partial_k \partial_{\bar{l}} ln(det(g)) \tag{4.7.3}$$

in Kähler metric. This obviously simplifies considerably functional integration over WCW: one obtains just the standard perturbative field theory in the sense that metric determinant gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it also eliminates divergences. This is seen by expanding the determinant as a functional Taylor series with respect to the coordinates of WCW. In local complex coordinates the first term in the expansion of the metric determinant is determined by Ricci tensor

$$\delta\sqrt{g} \propto R_{k\bar{l}} z^k \bar{z}^l \quad . \tag{4.7.4}$$

In WCW integration using standard rules of Gaussian integration this term gives a contribution proportional to the contraction of the propagator with Ricci tensor. But since the propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor vanishes. 4. The following group theoretic argument suggests that Ricci tensor either vanishes or is divergent. The holonomy group of the WCW is a subgroup of $U(n = \infty)$ (D = 2n is the dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if the U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the trace of the U(1) generator and since this generator corresponds to an infinite dimensional unit matrix the trace diverges: therefore given element of the Ricci tensor is either infinite or vanishes. Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity. This naïve argument doesn't hold true in the case of loop spaces, for which Kähler metric with finite non-vanishing Ricci tensor exists [A40]. Note however that also in this case the sum defining Ricci tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the vanishing of the Ricci tensor is equivalent with the absence of divergences in WCW integration. That divergences are absent is suggested by the non-locality of the Kähler function as a functional of 3-surface: the divergences of local field theories result from the locality of interaction vertices. Ricci flatness in vibrational degrees of freedom is not only necessary mathematically. It is also appealing physically: one can regard Ricci flat WCW as a vacuum solution of Einstein's equations $G^{\alpha\beta} = 0$.

4.7.3 Ricci Flatness And Hyper Kähler Property

Ricci flatness property is guaranteed if WCW geometry is Hyper Kähler [A80, A32] (there exists 3 covariantly constant antisymmetric tensor fields, which can be regarded as representations of quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the contractions of the curvature tensor appearing in the components of the Ricci tensor transform to traces over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that the traces vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the vibrational degrees is a multiple of the metric tensor so that Ricci scalar has an infinite value. This is basically due to the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the WCW.

- 1. The symplectic algebra of δM^4_+ takes effectively the role of the U(1) extension of the loop algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of U(1) algebra. Since volume preserving transformations are in question, the traces of the symplectic generators vanish identically and in finite-dimensional this should be enough for Ricci flatness even if Hyper Kähler property is not achieved.
- 2. The comparison with CP_2 allows to link Ricci flatness with conformal invariance. The elements of the Ricci tensor are expressible in terms of traces of the generators of the holonomy group U(2) at the origin of CP_2 , and since U(1) generator is non-vanishing at origin, the Ricci tensor is non-vanishing. In recent case the origin of CP_2 is replaced with the maximum of Kähler function and holonomy group corresponds to super-symplectic generators labelled by integer valued real parts k_1 of the conformal weights $k = k_1 + i\rho$. If generators with $k_1 = n$ vanish at the maximum of the Kähler function, the curvature scalar should vanish at the maximum and by the symmetric space property everywhere. These conditions correspond to Virasoro conditions in super string models.

A possible source of difficulties are the generators having $k_1 = 0$ and resulting as commutators of generators with opposite real parts of the conformal weights. It might be possible to assume that only the conformal weights $k = k_1 + i\rho$, $k_1 = 0, 1, ...$ are possible since it is the imaginary part of the conformal weight which defines the complexification in the recent case. This would mean that the commutators involve only positive values of k_1 .

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing even when the holonomy algebra does not contain U(1) factor. It will be found that symmetric space property guarantees Ricci flatness even in this case and the reason is essentially the vanishing of the generators having $k_1 = n$ at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.

- 1. The dimensions of the embedding space and space-time are 8 and 4 respectively so that the dimension of WCW in vibrational modes is indeed multiple of four as required by Hyper Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent space of WCW. Since any direction on the sphere S^2 defined by the linear combinations of quaternionic imaginary units with unit norm defines a particular complexification physically, Hyper Kähler property means the possibility to perform complexification in S^2 -fold ways.
- 2. S^2 -fold degeneracy is indeed associated with the definition of the complex structure of WCW. First of all, the direction of the quantization axis for the spherical harmonics or for the eigen states of Lorentz Cartan algebra at δM^4_+ can be chosen in S^2 -fold ways. Quaternion conformal invariance means Hyper Kähler property almost by definition and the S^2 -fold degeneracy for the complexification is obvious in this case.

If these naïve arguments survive a more critical inspection, the conclusion would be that the effective 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic symmetries would also imply Hyper Kähler property of WCW and make the theory well-defined mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension of Minkowski space factor of the embedding space.

In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group of WCW is isomorphic to some subgroup of $SU(n = \infty)$ instead of $U(n = \infty)$ (*n* is the complex dimension of WCW) implied by the Kähler property of the metric. We also derive an expression for the Ricci tensor in terms of the structure constants of the isometry algebra and WCW metric. The expression for the Ricci tensor is formally identical with that obtained by Freed for loop spaces: the only difference is that the structure constants of the finite-dimensional group are replaced with the group $Can(\delta H)$. Also the arguments in favor of Hyper Kähler property are discussed in more detail.

4.7.4 The Conditions Guaranteeing Ricci Flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically: the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci tensor is given by the following expression in complex vielbein basis

$$R^{A\bar{B}} = R^{A\bar{C}B}_{\ \bar{C}} , \qquad (4.7.5)$$

where the latter summation is only over the antiholomorphic indices \overline{C} . Using the cyclic identities

$$\sum_{cycl\ \bar{C}B\bar{D}} R^{A\bar{C}B\bar{D}} = 0 \quad , \tag{4.7.6}$$

the expression for Ricci tensor reduces to the form

$$R^{A\bar{B}} = R^{A\bar{B}C} , \qquad (4.7.7)$$

where the summation is only over the holomorphic indices C. This expression can be regarded as a trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is taken over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if WCW metric is Kähler and possesses infinite-dimensional isometry algebra with the property that its generators form a complete basis for the tangent space (every tangent vector is expressible as a superposition of the isometry generators plus zero norm vector) it is possible to derive a representation for the Ricci tensor in terms of the structure constants of the isometry algebra and of the components of the metric and its inverse in the basis formed by the isometry generators and that Ricci tensor vanishes identically for the proposed complexification of the WCW provided the generators $\{H_{A,m\neq 0}, H_{B,n\neq 0}\}$ correspond to zero norm vector fields of WCW.

The general definition of the curvature tensor as an operator acting on vector fields reads

$$R(X,Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z . \qquad (4.7.8)$$

If the vector fields considered are isometry generators the covariant derivative operator is given by the expression

$$\nabla_X Y = (Ad_X Y - Ad_X^* Y - Ad_Y^* X)/2 ,$$

(Ad_X^* Y, Z) = (Y, Ad_X Z) , (4.7.9)

where $Ad_XY = [X, Y]$ and Ad_X^* denotes the adjoint of Ad_X with respect to WCW metric.

In the sequel we shall assume that the vector fields in question belong to the basis formed by the isometry generators. The matrix representation of Ad_X in terms of the structure constants $C_{X,Y:Z}$ of the isometry algebra is given by the expression

$$\begin{aligned} Ad_{Xn}^{m} &= C_{X,Y:Z} \hat{Y}_{n} Z^{m} , \\ [X,Y] &= C_{X,Y:Z} Z , \\ \hat{Y} &= g^{-1}(Y,V) V , \end{aligned}$$
(4.7.10)

where the summation takes place over the repeated indices and \hat{Y} denotes the dual vector field of Y with respect to the WCW metric. From its definition one obtains for Ad_X^* the matrix representation

$$Ad_{Xn}^{*m} = C_{X,Y:Z}\hat{Y}^{m}Z_{n} ,$$

$$Ad_{X}^{*Y} = C_{X,U:V}g(Y,U)g^{-1}(V,W)W = g(Y,U)g^{-1}([X,U],W)W ,$$
(4.7.11)

where the summation takes place over the repeated indices.

Using the representations of ∇_X in terms of Ad_X and its adjoint and the representations of Ad_X and Ad_X^* in terms of the structure constants and some obvious identities (such as $C_{[X,Y],Z:V} = C_{X,Y:U}C_{U,Z:V}$) one can by a straightforward but tedious calculation derive a more detailed expression for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor has however turned to be very tedious even in the case of the diagonal metric and in the following we shall use a more convenient representation [A40] of the curvature tensor applying in case of the Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators T_X defined as linear operators in the "positive energy part" G_+ of the isometry algebra spanned by the (1,0) parts of the isometry generators. In present case the positive and negative energy parts and cm part of the algebra can be defined just as in the case of loop spaces:

$$\begin{aligned}
G_{+} &= \{H^{Ak}|k > 0\}, \\
G_{-} &= \{H^{Ak}|k < 0\}, \\
G_{0} &= \{H^{Ak}|k = 0\}.
\end{aligned}$$
(4.7.12)

Here H^{Ak} denote the Hamiltonians generating the symplectic transformations of δH . The positive energy generators with non-vanishing norm have positive radial scaling dimension: $k \ge 0$, which corresponds to the imaginary part of the scaling momentum $K = k_1 + i\rho$ associated with the factors $(r_M/r_0)^K$. A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ is discrete and $\rho = 0$ does not appear at all in the spectrum in the sense that the flux Hamiltonians associated with $\rho = 0$ elements vanish for the maximum of Kähler function which can be taken to be the point where the calculations are done.

 T_X differs from Ad_X in that the negative energy part of $Ad_XY = [X, Y]$ is dropped away:

Here "+" denotes the projection to "positive energy" part of the algebra. Using Toeplitz operators one can associate to various isometry generators linear operators $\Phi(X_0)$, $\Phi(X_-)$ and $\Phi(X_+)$ acting on G_+ :

$$\Phi(X_0) = T_{X_0}, X_0 \varepsilon G_0,
\Phi(X_-) = T_{X_-}, X_- \varepsilon G_-,
\Phi(X_+) = -T_{X_-}^*, X_+ \varepsilon G_+.$$
(4.7.14)

Here "*" denotes hermitian conjugate in the diagonalized metric: the explicit representation $\Phi(X_+)$ is given by the expression [A40]

$$\Phi(X_{+}) = D^{-1}T_{X_{-}}D ,
DX_{+} = d(X)X_{-} ,
d(X) = g(X_{-}, X_{+}) .$$
(4.7.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes the conformal factor associated with the metric.

The representations for the action of $\Phi(X_0)$, $\Phi(X_-)$ and $\Phi(X_+)$ in terms of metric and structure constants of the isometry algebra are in the case of the diagonal metric given by the expressions

$$\Phi(X_0)Y_+ = C_{X_0,Y_+:U_+}U_+ ,
\Phi(X_-)Y_+ = C_{X_-,Y_+:U_+}U_+ ,
\Phi(X_+)Y_+ = \frac{d(Y)}{d(U)}C_{X_-,Y_-:U_-}U_+ .$$
(4.7.16)

The expression for the action of the curvature tensor in positive energy part G_+ of the isometry algebra in terms of the these operators is given as [A40] :

$$R(X,Y)Z_{+} = \{ [\Phi(X), \Phi(Y)] - \Phi([X,Y]) \} Z_{+} .$$
(4.7.17)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci tensor is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of the curvature tensor with respect to indices associated with G_+ .

$$Ricci(X_{+}, Y_{-}) = (\hat{Z}_{+}, R(X_{+}, Y_{-})Z_{+}) \equiv Trace(R(X_{+}, Y_{-})) , \qquad (4.7.18)$$

where the summation over Z_+ generators is performed.

Using the explicit representations of the operators Φ one obtains the following explicit expression for the Ricci tensor
$$Ricci(X_{+}, Y_{-}) = Trace\{[D^{-1}T_{X_{+}}D, T_{Y_{-}}] - T_{[X_{+}, Y_{-}]|G_{0}+G_{-}} - D^{-1}T_{[X_{+}, Y_{-}]|G_{0}}D\} .$$

$$(4.7.19)$$

This expression is identical to that encountered in case of loop spaces and the following arguments are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case. This term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic transformations are volume-preserving the traces of Lie-algebra generators vanish so that this term is absent. The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces. It can be written explicitly using the explicit representations of the various operators appearing in the formula:

$$Trace\{[D^{-1}T_{X_{-}}D, T_{Y_{-}}]\} = \sum_{Z_{+}, U_{+}} [C_{X_{-}, U_{-}:Z_{-}}C_{Y_{-}, Z_{+}:U_{+}}\frac{d(U)}{d(Z)} - C_{X_{-}, Z_{-}:U_{-}}C_{Y_{-}, U_{+}:Z_{+}}\frac{d(Z)}{d(U)}].$$

$$(4.7.20)$$

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that the sum vanishes identically. This is not the case. By the diagonality of the metric with respect to radial quantum number, one has $m(X_-) = m(Y_-)$ for the non-vanishing elements of the Ricci tensor. Furthermore, one has m(U) = m(Z) - m(Y), which eliminates summation over m(U) in the first term and summation over m(Z) in the second term. Note however, that summation over other labels related to symplectic algebra are present.

By performing the change $U \to Z$ in the second term one can combine the sums together and as a result one has finite sum

$$\sum_{0 < m(Z) < m(X)} [C_{X_{-}, U_{-}: Z_{-}} C_{Y_{-}, Z_{+}: U_{+}} \frac{d(U)}{d(Z)} = C \sum_{0 < m(Z) < m(X)} \frac{m(X)}{m(Z) - m(X)} ,$$

$$C = \sum_{Z, U} C_{X, U: Z} C_{Y, Z: U} \frac{d_{0}(U)}{d_{0}(Z)} .$$
(4.7.21)

Here the dependence of $d(X) = |m(X)|d_0(X)$ on m(X) is factored out; $d_0(X)$ does not depend on k_X . The dependence on m(X) in the resulting expression factorizes out, and one obtains just the purely group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive to write the sum in terms of the metric in the symplectic degrees of freedom to see the geometry behind the Ricci flatness:

$$C = \sum_{Z,U} g([Y,Z],U)g^{-1}([X,U],Z) . \qquad (4.7.22)$$

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since tangent space complexification is inherited from the local coset space, the non-vanishing commutators in complexified basis are always between generators in $Can_{\neq 0}$; that is they do not not belong to rigid $su(2) \times su(3)$.

The condition guaranteeing Ricci flatness at the maximum of Kähler function and thus everywhere is simple. All elements of type $[X_{\neq 0}, Y_{\neq 0}]$ vanish or have vanishing norm. In case of CP_2 Kähler geometry this would correspond to the vanishing of the U(2) generators at the origin of CP_2 (note that the holonomy group is U(2) in case of CP_2). At least formally stronger condition is that the algebra generated by elements of this type, the commutator algebra associated with $Can_{\neq 0}$, consist of elements of zero norm. Already the (possibly) weaker condition implies that adjoint map $Ad_{X\neq0}$ and its hermitian adjoint $Ad^*_{X\neq0}$ create zero norm states. Since isometry conditions involve also adjoint action the condition also implies that $Can_{\neq0}$ acts as isometries. More concrete form for the condition is that all flux factors involving double Poisson bracket and three generators in $Can_{\neq0}$ vanish:

$$Q_e(\{H_A, \{H_B, H_C\}\}) = 0, \text{ for } H_A, H_B, H_C \text{ in } Can_{\neq 0}.$$
(4.7.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry invariance and Ricci flatness and, as found in [K19], is implied by the $[t, t] \subset h$ property of the Lie-algebra of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equations. The existence of the infinite parameter isometry group in turn follows basically from the condition guaranteeing the existence of the Riemann connection. Therefore vacuum Einstein equations seem to arise, not only as a consequence of a physically motivated variational principle but as a mathematical consistency condition in infinite dimensional Kähler geometry. The flux representation seems to provide elegant manner to formulate and solve these conditions and isometry invariance implies Ricci flatness.

4.7.5 Is WCW Metric Hyper Kähler?

The requirement that WCW integral integration is divergence free implies that WCW metric is Ricci flat. The so called Hyper-Kähler metrics [A80, A32], [B32] are particularly nice representatives of Ricci flat metrics. In the following the basic properties of Hyper-Kähler metrics are briefly described and the problem whether Hyper Kähler property could realized in case of $M_+^4 \times CP_2$ is considered.

Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and Kähler form correspond to the complex numbers 1 and i and therefore define complex structure in the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed Kähler forms I, J, K, which with respect to the multiplication obey the algebra of quaternionic imaginary units and have square equal to - 1, which corresponds to the metric of Hyper Kähler space.

$$I^2 = J^2 = K^2 = -1$$
 $IJ = -JI = K$, etc. (4.7.24)

To define Kähler structure one must choose one of the Kähler forms or any linear combination of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each other playing thus the role of quaternion automorphisms. This group acts also as coordinate transformations in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coordinates, I and J being tensors of type (2, 0) + (0, 2). The forms I + iJ and I - iJ are holomorphic and anti-holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step operators I_+ and I_- of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k), $k \leq dimM/4$, the group of $k \times k$ unitary matrices with quaternionic entries. This group is indeed subgroup of SU(2k), so that its generators are traceless and Hyper Kähler metric is therefore Ricci flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmetric sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that target space allows Hyper Kähler metric [B32, B12]. In particular, it has been found that Hyper Kähler property is decisive for the divergence cancelation.

Hyper-Kähler metrics arise also in monopole and instanton physics [A32]. The moduli spaces for monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is characteristic for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems.

Since YM action appears in the definition of WCW metric there are hopes that also in present case the metric possesses Hyper-Kähler property.

 CP_2 allows what might be called almost Hyper-Kähler structure known as quaternionion structure. This means that the Weil tensor of CP_2 consists of three components in one-one correspondence with components of iso-spin and only one of them- the one corresponding to Kähler form- is covariantly constant. The physical interpretation is in terms of electroweak symmetry breaking selecting one isospin direction as a favored direction.

Does the "almost" Hyper-Kähler structure of CP_2 lift to a genuine Hyper-Kähler structure in WCW?

The Hyper-Kähler property of WCW metric does not seem to be in conflict with the general structure of TGD.

- 1. In string models the dimension of the "space-time" is two and Weyl invariance and complex structures play a decisive role in the theory. In present case the dimension of the space-time is four and one therefore might hope that quaternions play a similar role. Indeed, Weyl invariance implies YM action in dimension 4 and as already mentioned moduli spaces of instantons and monopoles enjoy the Hyper Kähler property.
- 2. Also the dimension of the embedding space is important. The dimension of Hyper Kähler manifold must be multiple of 4. The dimension of WCW is indeed infinite multiple of 8: each vibrational mode giving one "8".
- 3. The complexification of the WCW in symplectic degrees of freedom is inherited from $S^2 \times CP_2$ and CP_2 Kähler form defines the symplectic form of WCW. The point is that CP_2 Weyl tensor has 3 covariantly constant components, having as their square metric apart from sign. One of them is Kähler form, which is closed whereas the other two are non-closed forms and therefore fail to define Kähler structure. The group SU(2) of electro-weak isospin rotations rotate these forms to each other. It would not be too surprising if one could identify WCW counterparts of these forms as representations of quaternionic units at the level of WCW. The failure of the Hyper Kähler property at the level of CP_2 geometry is due to the electro-weak symmetry breaking and physical intuition (in particular, p-adic mass calculations [K47]) suggests that electro-weak symmetry might not be broken at the level of WCW geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomology of WCW: the three Kähler forms must be co-homologically trivial as is clear from the following argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3) symmetry rotating Kähler forms to each other all must be co-homologically nontrivial. On the other hand, electro-weak isospin rotation leads to a linear combination of 3 Kähler forms and the flux associated with this form is in general not integer valued. The point is however that Kähler form forms only the (1,1) part of the symplectic form and must be co-homologically trivial whereas the zero mode part is same for all complexifications and can be co-homologically nontrivial. The co-homological non-triviality of the zero mode part of the symplectic form is indeed a nice feature since it fixes the normalization of the Kähler function apart from a multiplicative integer. On the other hand the hypothesis that Kähler coupling strength is analogous to critical temperature provides a dynamical (and perhaps equivalent) manner to fix the normalization of the Kähler function.

Since the properties of the WCW metric are inherited from $M_+^4 \times CP_2$ then also the Hyper Kähler property should be understandable in terms of the embedding space geometry. In particular, the complex structure in CP_2 vibrational degrees of freedom is inherited from CP_2 . Hyper Kähler property implies the existence of a continuum (sphere S^2) of complex structures: any linear superposition of 3 independent Kähler forms defines a respectable complex structure. Therefore also CP_2 should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of CP_2 Hyper Kähler manifold with 3 covariantly constant 2forms then it would be easy to understand the Hyper Kähler structure of WCW. Given the Kähler structure of WCW would be obtained by replacing induced Kähler electric and magnetic fields in the definition of flux factors $Q(H_{A,m})$ with the appropriate component of the induced Weyl tensor. CP_2 indeed manages to be very nearly Hyper Kähler manifold! How CP_2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl tensor of CP_2 allows three independent components, which are self dual as 2-forms and rotated to each other by vielbein rotations.

$$W_{03} = W_{12} \equiv 2I_3 = 2(e^0 \wedge e^3 + e^1 \wedge e^2) ,$$

$$W_{01} = W_{23} \equiv I_1 = -e^0 \wedge e^1 - e^2 \wedge e^3 ,$$

$$W_{02} = W_{31} \equiv I_2 = -e^0 \wedge e^2 - e^3 \wedge e^1 .$$
(4.7.25)

The component I_3 is just the Kähler form of CP_2 . Remaining components are covariantly constant only with respect to spinor connection and not closed forms so that they cannot be interpreted as Maxwell fields. Their squares equal however apart from sign with the metric of CP_2 , when appropriate normalization factor is used. If these forms were covariantly constant Kähler action defined by any linear superposition of these forms would indeed define Kähler structure in WCW and the group SO(3) would rotate these forms to each other. The projections of the components of the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector fields (Kähler magnetic field) is divergenceless. One might regard these 3 vector fields as counter parts of quaternion units associated with the broken Hyper Kähler structure, that is quaternion structure. The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kähler electric field implies that the electric parts of the other two components of induced Weyl tensor are symplectic invariants. This is the minimum requirement. What is however obvious is that the magnetic parts cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example is enough and CP_2 type extremals seem to provide this counter example: the components of the induced Weyl tensor are just the same as they are for CP_2 and clearly not symplectically invariant.

Thus it seems that WCW could allow Hyper Kähler structure broken by electro-weak interactions but it cannot be inherited from CP_2 . An open question is whether it allows genuine quaternionic structure. Good prospects for obtaining quaternionic structure are provided by the quaternionic counterpart QP_2 of CP_2 , which is 8-dimensional and has coset space structure $QP_2 = Sp(3)/Sp(2) \times Sp(1)$. This choice does not seem to be consistent with the symmetries of the standard model. Note however that the over all symmetry group is obtained by replacing complex numbers with quaternions on the matrix representation of the standard model group.

Could different complexifications for M_+^4 and light like surfaces induce Hyper Kähler structure for WCW?

Quaternionic structure means also the existence of a family of complex structures parameterized by a sphere S^2 . The complex structure of the WCW is inherited from the complex structure of some light like surface.

In the case of the light cone boundary δM^4_+ the complex structure corresponds to the choice of quantization axis of angular momentum for the sphere $r_M = constant$ so that the coordinates orthogonal to the quantization axis define a complex coordinate: the sphere S^2 parameterizes these choices. Thus there is a temptation to identify the choice of quantization axis with a particular imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group. This would bring an additional item to the list of miraculous properties of light like surfaces of 4-dimensional space-times.

This might relate to the fact that WCW geometry is not determined by the symplectic algebra of CP_2 localized with respect to the light cone boundary as one might first expect but consists of $M_+^4 \times CP_2$ Hamiltonians so that infinitesimal symplectic transformation of CP_2 involves always also M_+^4 -symplectic transformation. M_+^4 Hamiltonians are defined by a function basis generated as products of the Hamiltonians H_3 and $H_1 \pm iH_2$ generating rotations with respect to three orthogonal axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfaces X_l^3 associated with quaternion conformal invariance are determined by some 2-surface X^2 and the choice of complex coordinates and if X^2 is sphere the choices are labelled by S^2 . In this case, the presence of quaternion conformal structure would be almost obvious since it is possible to choose some complex coordinate in several ways and the choices are guarantees Ricci flatness of the WCW metric.

labelled by S^2 . The choice of the complex coordinate in turn fixes 2-surface X^2 as a surface for which the remaining coordinates are constant. X^2 need not however be located at the elementary particle horizon unless one poses additional constraint. One might hope that different choices of X^2 resulting in this manner correspond to all possible different selections of the complex structure and that this choice could fix uniquely the conformal equivalence class of X^2 appearing as argument in elementary particle vacuum functionals. If X^2 has a more complex topology the identification is not so clear but since conformal algebra SL(2,C) containing algebra of rotation group is involved, one might argue that the choice of quantization axis also now involves S^2 degeneracy. If these

arguments are correct one could conclude that Hyper Kähler structure is implicitly involved and

Chapter 5

WCW Spinor Structure

5.1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration space ("world of classical worlds" (WCW)). The possibility to express the components of WCW Kähler metric as anti-commutators of WCW gamma matrices becomes a practical tool if one assumes that WCW gamma matrices correspond to Noether super charges for super-symplectic algebra of WCW. The possibility to express the Kähler metric also in terms of Kähler function identified as Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT duality.

5.1.1 Basic Principles

Physical states should correspond to the modes of the WCW spinor fields and the identification of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion number. Concerning the construction of the WCW spinor structure there are some important clues.

Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can be understood geometrically in terms of the WCW spinor structure in the sense that the anti-commutation relations for WCW gamma matrices require anti-commutation relations for the oscillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely related to the configuration space spinor structure. [B29] has as its basic field the anticommuting field $\Gamma^k(x)$, whose Fourier components are analogous to the gamma matrices of the configuration space and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests that the are analogous to spin 3/2 fields and therefore expressible in terms of the fermionic oscillator operators so that their naturally derives from the anticommutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom analogous to the "orbital" degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would be very nice if the classical theory for the spinor fields would be contained in the definition of the WCW spinor structure somehow. The properties of the associated with the induced spinor structure are indeed very physical. The modified massless Dirac equation for the induced spinors predicts a separate conservation of baryon and lepton numbers. Contrary to the long held belief it seems that covariantly constant right handed neutrino does not generate . The differences between quarks and leptons result from the different couplings to the CP_2 Kähler potential. In fact, these properties are shared by the solutions of massless Dirac equation of the embedding space.

- 3. Since TGD should have a close relationship to the ordinary quantum field theories it would be highly desirable that the second quantized free induced spinor field would somehow appear in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma matrices are linearly related to the oscillator operators associated with the second quantized induced spinor field on the space-time surface and its boundaries. There is actually no deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in general. In fact, in the finitedimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor and vector representations of the vielbein group SO(D) to have same dimension and this is possible for D = 8-dimensional Euclidian space only. This coincidence might explain the success of 10-dimensional super string models for which the physical degrees of freedom effectively correspond to an 8-dimensional Euclidian space.
- 4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in terms of the anti-commutators $\{\gamma_A, \gamma_B\} = 2g_{AB}$ must in TGD context be replaced with

$$\{\gamma_A^{\dagger}, \gamma_B\} = i J_{AB}$$
.

where J_{AB} denotes the matrix elements of the Kähler form of the WCW. The presence of the Hermitian conjugation is necessary because WCW gamma matrices carry fermion number. This definition is numerically equivalent with the standard one in the complex coordinates. The realization of this delicacy is necessary in order to understand how the square of the WCW Dirac operator comes out correctly.

5. TGD as a generalized number theory vision leads to the understanding of how the second quantization of the induced spinor fields should be carried out and space-time conformal symmetries allow to explicitly solve the Dirac equation associated with the Kähler-Dirac action in the interior and at the 3-D light like causal determinants. An essentially new element is the notion of number theoretic braid forced by the fact that the Kähler-Dirac operator allows only finite number of generalized eigen modes so that the number of fermionic oscillator operators is finite. As a consequence, anti-commutation relations can be satisfied only for a finite set of points defined by the number theoretic braid, which is uniquely identifiable. The interpretation is in terms of finite measurement resolution. The finite Clifford algebra spanned by the fermionic oscillator operators is interpreted as the factor space \mathcal{M}/\mathcal{N} of infinite hyperfinite factors of type II₁ defined by WCW Clifford algebra \mathcal{N} and included Clifford algebra $\mathcal{M} \subset \mathcal{N}$ interpreted as the characterizer of the finite measurement resolution. Note that the finite number of eigenvalues guarantees that Dirac determinant identified as the exponent of Kähler function is finite. Finite number of eigenvalues is also essential for number theoretic universality.

Identification of WCW gamma matrices as super Hamiltonians and expression of WCW Kähler metric

The basic super-algebra corresponds to the fermionic oscillator operators and can be regarded as a generalization \mathcal{N} super algebras by replacing \mathcal{N} with the number of solutions of the Kähler-Dirac equation which can be infinite. This leads to QFT SUSY limit of TGD different in many respects crucially from standard SUSYs.

WCW gamma matrices are identified as super generators of super-symplectic and are expressible in terms of these oscillator operators. In the original proposal super-symplectic and super charges were assumed to be expressible as integrals over 2-dimensional partonic surfaces X^2 and interior degrees of freedom of X^4 can be regarded as zero modes representing classical variables in one-one correspondence with quantal degrees of freedom at X_l^3 as indeed required by quantum measurement theory.

It took quite long time to realize that it is possible to second quantize induced spinor fields by using just the standard canonical quantization. The only new element is the replacement of the ordinary gamma matrices with K-D gamma matrices identified as canonical momentum currents contracted with the embedding space gamma matrices. This allows to deduce super-generators of super-symplectic algebra as Noether supercharges assignable to the fermionic strings connecting partonic 2-surfaces. Their anti-commutators giving the matrix elements of WCW Kähler metric can be deduced explicitly. This is a decisive calculational advantage since the formal expression of the matrix elements in terms of second derivatives of Kähler function is not possible to calculate with the recent understanding. WCW gamma matrices provide also a natural identification for the counterparts of fermionic oscillator operators creating physical states.

One can also deduce the fermionic Hamiltonians as conserved Noether charges. The expressions for Hamiltonians generalized the earlier expressions as Hamiltonian fluxes in the sense that the embedding space Hamiltonian is replaced with the corresponding fermionic Noether charge. This replacement is analogous to a transition from field theory to string models requiring the replacement of points of partonic 2-surfaces with stringy curves connecting the points of two partonic 2-surfaces. One can consider also several strings emanating from a given partonic 2-surface. This leads to an extension of the super-symplectic algebra to a Yangian, whose generators are multi-local (multi-stringy) operators. This picture does not mean loss of effective 2-dimensionality implied by strong form of general coordinate invariance but allows genuine generalization of super-conformal invariance in 4-D context.

5.1.2 Kähler-Dirac Action

Supersymmetry fixes the interior part of Kähler-Dirac uniquely. The K-D gamma matrices are contractions of the canonical momentum currents of Kähler action with the embedding space gamma matrices and this gives field equations consistent with hermitian conjugation. The modes of K-D equation must be restricted to 2-D string world sheets with vanishing induced W boson fields in order that they have a well-defined em charge. It is not yet clear whether this restriction is part of variational principle or whether it is a property of spinor modes. For the latter option modes one can have 4-D modes if the space-time surface has CP_2 projection carrying vanishing W gauge potentials. Also covariantly constant right-handed neutrino defines this kind of mode.

The boundary terms of Kähler action and Kähler-Dirac action

A long standing question has been whether Kähler action could contain Chern-Simons term cancelling the Chern-Simons contribution of Kähler action at space-time interior at partonic orbit reducing to Chern-Simons terms so that only the contribution at space-like ends of space-time surface at the boundaries of causal diamond (CD) remains. This is however not necessary and super-symmetry would require Chern-Simons-Dirac term as boundary term in Dirac action. This however has unphysical implications since C-S-D Dirac operator acts on CP_2 coordinates only.

The intuitive expectation is that fermionic propagators assignable to string boundaries at light-like partonic orbits are needed in the construction of the scattering amplitudes. These boundaries can be locally space-like or light-like. One could add 1-D massles Dirac action with gamma matrices defined in the induced metric, which is by supersymmetry accompanied by the action defined by geodesic length, which however vanishes for light-like curves. Massless Dirac equation at the boundary of string world sheet fixes the boundary conditions for the spinor modes at the string world sheet. This option seems to be the most plausible at this moment.

Kähler-Dirac equation for induced spinor fields

It has become clear that Kähler-Dirac action with induced spinor fields localized at string world sheets carrying vanishing classical W fields, and the light-like boundaries of the string world sheets at light-like orbits of partonic 2-surfaces carrying massless Dirac operator for induced gamma matrices is the most natural looking option.

The light-like momentum associated with the boundary is a light-like curve of imbedding space and defines light-like 8-momentum, whose M^4 projection is in general time-like. This leads

to an 8-D generalization of twistor formalism. The squares of the M^4 and CP_2 parts of the 8momentum could be identified as mass squared for the embedding space spinor mode assignable to the ground state of super-symplectic representation. This would realize quantum classical correspondence for fermions. The four-momentum assignable to fermion line would have identification as gravitational four-momentum and that associated with the mode of embedding space spinor field as inertial four-momentum.

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

- 1. The most promising approach assumes that the solutions are restricted on 2-D stringy world sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence of both strong form of holography and of number theoretic vision, and also follows from the notion of finite measurement resolution having discretization at partonic 2-surfaces as a geometric correlate. Furthermore, the conditions stating that electric charge is well-defined for preferred extremals forces the localization of the modes to 2-D surfaces in the generic case. This also resolves the interpretational problems related to possibility of strong parity breaking effects since induce W fields and possibly also Z^0 field above weak scale, vanish at these surfaces.
- 2. One expects that stringy approach based on 4-D generalization of conformal invariance or its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac equation. Conformal invariance indeed allows to write the solutions explicitly using formulas similar to encountered in string models. In accordance with the earlier conjecture, all modes of the Kähler-Dirac operator generate badly broken super-symmetries.
- 3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets. Covariantly constant right-handed neutrino certainly defines solutions de-localized inside entire space-time sheet. This need not be the case if right-handed neutrino is not covariantly constant since the non-vanishing CP_2 part for the induced gamma matrices mixes it with left-handed neutrino. For massless extremals (at least) the CP_2 part however vanishes and right-handed neutrino allows also massless holomorphic modes de-localized at entire spacetime surface and the de-localization inside Euclidian region defining the line of generalized Feynman diagram is a good candidate for the right-handed neutrino generating the least broken super-symmetry. This super-symmetry seems however to differ from the ordinary one in that ν_R is expected to behave like a passive spectator in the scattering. Also for the left-handed neutrino solutions localized inside string world sheet the condition that coupling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely Minkowskian or CP_2 like inside the world sheet.

Quantum criticality and K-D action

A detailed view about the physical role of quantum criticality results. Quantum criticality fixes the values of Kähler coupling strength as the analog of critical temperature. The recent formulation of quantum criticality states the existence of hierarchy of sub-algebras of super-symplectic algebras isomorphic with the original algebra. The conformal weights of given sub-algebra are *n*-multiples of those of the full algebra. *n* would also characterize the value of Planck constant $h_{eff} = n \times h$ assignable to various phases of dark matter. These sub-algebras correspond to a hierarchy of breakings of super-symplectic gauge symmetry to a sub-algebra. Accordingly the supersymplectic Noether charges of the sub-algebra annihilate physical states and the corresponding classical Noether charges vanish for Kähler action at the ends of space-time surfaces. This defines the notion of preferred extremal. These sub-algebras form an inclusion hierarchy defining a hierarchy of symmetry breakings. *n* would also characterize the value of Planck constant $h_{eff} = n \times h$ assignable to various phases of dark matter.

Quantum criticality implies that second variation of Kähler action vanishes for critical deformations defined by the sub-algebra and vanishing of the corresponding Noether charges and super-charges for physical stats. It is not quite clear whether the charges corresponding to broken super-symplectic symmetries are conserved. If this is the case, Kähler action is invariant under brokent symplectic transformations although the second variation is non-vanishing so these deformations contribute to Kähler metric and are thus quantum fluctuating dynamical degrees of freedom.

Quantum classical correspondence

Quantum classical correspondence (QCC) requires a coupling between quantum and classical and this coupling should also give rise to a generalization of quantum measurement theory. The big question mark is how to realize this coupling.

- 1. As already described, the massless Dirac equation for induced gamma matrices at the boundary of string world sheets gives as solutions for which local 8-momentum is light-like. The M^4 part of this momentum is in general time-like and can be identified as the 8-momentum of incoming fermion assignable to an embedding space spinor mode. The interpretation is as equivalence of gravitational and inertial masses.
- 2. QCC can be realized at the level of WCW Dirac operator and Kähler-Dirac operator contains only interior term. The vanishing of the normal component of fermion current replaces Chern-Simons Dirac operator at various boundary like surfaces. I have proposed that WCW spinor fields with given quantum charges in Cartan algebra are superpositions of space-time surfaces with same classical charges. A stronger form of QCC at the level of WCW would be that classical correlation functions for various geometric observables are identical with quantal correlation functions.

QCC could be realized at the level of WCW by putting it in by hand. One can of course consider also the possibility that the equality of quantal and classical Cartan charges is realized by adding constraint terms realized using Lagrange multipliers at the space-like ends of space-time surface at the boundaries of CD. This procedure would be very much like the thermodynamical procedure used to fix the average energy or particle number of the the system with Lagrange multipliers identified as temperature or chemical potential. Since quantum TGD in zero energy ontology (ZEO) can be regarded as square root of thermodynamics, the procedure looks logically sound.

The appendix of the book gives a summary about basic concepts of TGD with illustrations. Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.fi/tgdglossary.pdf [L14].

5.2 WCW Spinor Structure: General Definition

The basic problem in constructing WCW spinor structure is clearly the construction of the explicit representation for the gamma matrices of WCW. One should be able to identify the space, where these gamma matrices act as well as the counterparts of the "free" gamma matrices, in terms of which the gamma matrices would be representable using generalized vielbein coefficients.

5.2.1 Defining Relations For Gamma Matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

$$\{\gamma_A, \gamma_B\} = 2g_{AB} \quad .$$

This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD context until the difficulties related to the understanding of WCW d'Alembertian defined in terms of the square of the Dirac operator forced to reconsider the definition. If WCW allows Kähler structure, the most general definition allows to replace the metric any covariantly constant Hermitian form. In particular, g_{AB} can be replaced with

$$\{\Gamma_A^{\dagger}, \Gamma_B\} = iJ_{AB} \quad , \tag{5.2.1}$$

where J_{AB} denotes the matrix element of the Kähler form of WCW. The reason is that gamma matrices carry fermion number and are non-hermitian in all coordinate systems. This definition is numerically equivalent with the standard one in the complex coordinates but in arbitrary coordinates situation is different since in general coordinates iJ_{kl} is a nontrivial positive square root of

 g_{kl} . The realization of this delicacy is necessary in order to understand how the square of WCW Dirac operator comes out correctly. Obviously, what one must do is the equivalent of replacing $D^2 = (\Gamma^k D_k)^2$ with $D\hat{D}$ with \hat{D} defined as

$$\hat{D} = i J^{kl} \Gamma_l^{\dagger} D_k$$

5.2.2 General Vielbein Representations

There are two ideas, which make the solution of the problem obvious.

- 1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is coded into the geometry of WCW it seems natural to expect that same applies in the case of the spinor structure. The time development of the induced spinor fields dictated by TGD counterpart of the massless Dirac action should be coded into the definition of the WCW spinor structure. This leads to the challenge of defining what classical spinor field means.
- 2. Since classical scalar field in WCW corresponds to second quantized boson fields of the embedding space same correspondence should apply in the case of the fermions, too. The spinor fields of WCW should correspond to second quantized fermion field of the embedding space and the space of the configuration space spinors should be more or less identical with the Fock space of the second quantized fermion field of embedding space or $X^4(X^3)$. Since classical spinor fields at space-time surface are obtained by restricting the spinor structure to the space-time surface, one might consider the possibility that life is really simple: the second quantized spinor field corresponds to the free spinor field of the embedding space satisfying the counterpart of the massless Dirac equation and more or less standard anti-commutation relations. Unfortunately life is not *so* simple as the construction of WCW spinor structure demonstrates: second quantization must be performed for induced spinor fields.

It is relatively simple to fill in the details once these basic ideas are accepted.

- 1. The only natural candidate for the second quantized spinor field is just the on X^4 . Since this field is free field, one can indeed perform second quantization and construct fermionic oscillator operator algebra with unique anti-commutation relations. The space of WCW spinors can be identified as the associated with these oscillator operators. This space depends on 3-surface and strictly speaking one should speak of the Fock bundle having WCW as its base space.
- 2. The gamma matrices of WCW (or rather fermionic Kac Moody generators) are representable as super positions of the fermionic oscillator algebra generators:

$$\Gamma_A^+ = E_A^n a_n^{\dagger}
\Gamma_A^- = \bar{E}_A^n a_n
i J_{A\bar{B}} = \sum_n E_A^n \bar{E}_B^n$$
(5.2.2)

where E_A^n are the vielbein coefficients. Induced spinor fields can possess zero modes and there is no oscillator operators associated with these modes. Since oscillator operators are spin 1/2 objects, WCW gamma matrices are analogous to spin 3/2 spinor fields (in a very general sense). Therefore the generalized vielbein and WCW metric is analogous to the pair of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the contractions $j^{Ak}\Gamma_k$ of the complexified gamma matrices with the isometry generators are genuine spin 1/2 objects labeled by the quantum numbers labeling isometry generators. In particular, in CP_2 degrees of freedom these fermions are color octets.

3. A further great idea inspired by the symplectic and Kähler structures of WCW is that configuration gamma matrices are actually generators of super-symplectic symmetries. This simplifies enormously the construction allows to deduce explicit formulas for the gamma matrices.

5.2.3 Inner Product For WCW Spinor Fields

The conjugation operation for WCW spinor s corresponds to the standard $ket \rightarrow bra$ operation for the states of the Fock space:

$$\begin{aligned}
\Psi &\leftrightarrow |\Psi\rangle \\
\bar{\Psi} &\leftrightarrow \langle\Psi|
\end{aligned}$$
(5.2.3)

The inner product for WCW spinor s at a given point of WCW is just the standard Fock space inner product, which is unitary.

$$\bar{\Psi}_1(X^3)\Psi_2(X^3) = \langle \Psi_1|\Psi_2\rangle_{|X^3}$$
(5.2.4)

WCW inner product for two WCW spinor fields is obtained as the integral of the Fock space inner product over the whole WCW using the vacuum functional exp(K) as a weight factor

$$\langle \Psi_1 | \Psi_2 \rangle = \int \langle \Psi_1 | \Psi_2 \rangle_{|X^3} exp(K) \sqrt{G} dX^3$$
(5.2.5)

This inner product is obviously unitary. A modified form of the inner product is obtained by including the factor exp(K/2) in the definition of the spinor field. In fact, the construction of the central extension for the isometry algebra leads automatically to the appearance of this factor in vacuum spinor field.

The inner product differs from the standard inner product for, say, Minkowski space spinors in that integration is over the entire WCW rather than over a time= constant slice of the WCW. Also the presence of the vacuum functional makes it different from the finite dimensional inner product. These are not un-physical features. The point is that (apart from classical non-determinism forcing to generalized the concept of 3-surface) Diff⁴ invariance dictates the behavior of WCW spinor field completely: it is determined form its values at the moment of the big bang. Therefore there is no need to postulate any Dirac equation to determine the behavior and therefore no need to use the inner product derived from dynamics.

5.2.4 Holonomy Group Of The Vielbein Connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical observables is that they do not depend at all on the gauge chosen to represent the gamma matrices. This is indeed achieved using vielbein connection, which is now quadratic in fermionic oscillator operators. The holonomy group of the vielbein connection is the WCW counterpart of the electro-weak gauge group and its algebra is expected to have same general structure as the algebra of the WCW isometries. In particular, the generators of this algebra should be labeled by conformal weights like the elements of Kac Moody algebras. In present case however conformal weights are complex as the construction of WCW geometry demonstrates.

5.2.5 Realization Of WCW Gamma Matrices In Terms Of Super Symmetry Generators

In string models super symmetry generators behave effectively as gamma matrices and it is very tempting to assume that WCW gamma matrices can be regarded as generators of the symplectic algebra extended to super-symplectic Kac Moody type algebra. The experience with string models suggests also that radial Virasoro algebra extends to Super Virasoro algebra. There are good reasons to expect that WCW Dirac operator and its square give automatically a realization of this algebra. It this is indeed the case, then WCW spinor structure as well as Dirac equation reduces to mere group theory.

One can actually guess the general form of the super-symplectic algebra. The form is a direct generalization of the ordinary super Kac Moody algebra. The complexified super generators S_A are identifiable as WCW gamma matrices:

$$\Gamma_A = S_A . \tag{5.2.6}$$

The anti-commutators $\{\Gamma_A^{\dagger}, \Gamma_B\}_+ = i2J_{A,B}$ define a Hermitian matrix, which is proportional to the Kähler form of the configuration space rather than metric as usually. Only in complex coordinates the anti-commutators equal to the metric numerically. This is, apart from the multiplicative constant n, is expressible as the Poisson bracket of the WCW Hamiltonians H_A and H_B . Therefore one should be able to identify super generators $S_A(r_M)$ for each values of r_M as the counterparts of fluxes. The anti-commutators between the super generators S_A and their Hermitian conjugates should read as

$$\{S_A, S_B^{\dagger}\}_+ = iQ_m(H_{[A,B]}) . \tag{5.2.7}$$

and should be induced directly from the anti-commutation relations of free second quantized spinor fields of the embedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transformation properties of the super generators under symplectic transformations, which are same as for the Hamiltonians themselves

$$\{H_{Am}, S_{Bn}\}_{-} = S_{[Am, Bn]} , \qquad (5.2.8)$$

and are of the same form as in the case of Super-Kac-Moody algebra.

The task is to derive an explicit representation for the super generators S_A in both cases. For obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary $\delta M_+^4 \times CP_2$ can be used. Leptonic/quark like oscillator operators are used to construct Ramond/NS type algebra.

What is then the strategy that one should follow?

- 1. WCW Hamiltonians correspond to either magnetic or electric flux Hamiltonians and the conjecture is that these representations are equivalent. It turns out that this electric-magnetic duality generalizes to the level of super charges. It also turns out that quark representation is the only possible option whereas leptonic super charges super-symmetrize the ordinary function algebra of the light cone boundary.
- 2. The simplest option would be that second quantized embedding space spinors could be used in the definition of super charges. This turns out to not work and one must second quantize the induced spinor fields.
- 3. The task is to identify a super-symmetric variational principle for the induced spinors: ordinary Dirac action does not work. It turns out that in the most plausible scenario the Kähler-Dirac action varied with respect to *both* embedding space coordinates and spinor fields is the fundamental action principle. The c-number parts of the conserved symplectic charges associated with this action give rise to bosonic conserved charges defining WCW Hamiltonians. The second quantization of the spinor fields reduces to the requirement that super charges and Hamiltonians generate super-symplectic algebra determining the anti-commutation relations for the induced spinor fields.

5.2.6 Central Extension As Symplectic Extension At WCW Level

The earlier attempts to understand the emergence of central extension of super-symplectic algebra were based on the notion of symplectic extension. This general view is not given up although it seems that this abstract approach is not very practical. Symplectic extension emerged originally in the attempts to construct formal expression for the WCW Dirac equation. The rather obvious idea was that the Dirac equation reduces to super Virasoro conditions with Super Virasoro generators involving the Dirac operator of the embedding space. The basic difficulty was the necessity to assign to the gamma matrices of the embedding space fermion number. In the recent formulation the Dirac operator of H does not appear in the Super Virasoro conditions so that this problem disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that the commutator of super-symplectic and super Kac-Moody algebras annihilates physical states, looks rather feasible. One could call these conditions as WCW Dirac equation but at this moment I feel that this would be just play with words and mask the group theoretical content of these conditions. In any case, the formulas for the symplectic extension and action of isometry generators on WCW spinor deserve to be summarized.

Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple trick. Replace the ordinary derivatives appearing in the definition of, say spinorial isometry generator, by the covariant derivatives defined by a coupling to a multiple of the Kähler potential.

$$j^{Ak}\partial_k \rightarrow j^{Ak}D_k ,$$

$$D_k = \partial_k + ikA_k/2 .$$
(5.2.9)

where A_k denotes Kähler potential. The reality of the parameter k is dictated by the Hermiticity requirement and also by the requirement that Abelian extension reduces to the standard form in Cartan algebra. k is expected to be integer also by the requirement that covariant derivative corresponds to connection (quantization of magnetic charge).

The commutation relations for the centrally extended generators J^A read:

$$[J^{A}, J^{B}] = J^{[A,B]} + ikj^{Ak}J_{kl}j^{Bl} \equiv J^{[A,B]} + ikJ_{AB} .$$
(5.2.10)

Since Kähler form defines symplectic structure in WCW one can express Abelian extension term as a Poisson bracket of two Hamiltonians

$$J_{AB} \equiv j^{Ak} J_{kl} j^{Bl} = \{ H^A, H^B \} .$$
(5.2.11)

Notice that Poisson bracket is well defined also when Kähler form is degenerate.

The extension indeed has acceptable properties:

1. Jacobi-identities reduce to the form

$$\sum_{cyclic} H^{[A,[B,C]]} = 0 , \qquad (5.2.12)$$

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian representation.

2. In the Cartan algebra Abelian extension reduces to a constant term since the Poisson bracket for two commuting generators must be a multiple of a unit matrix. This feature is clearly crucial for the non-triviality of the Abelian extension and is encountered already at the level of ordinary (q, p) Poisson algebra: although the differential operators ∂_p and ∂_q commute the Poisson bracket of the corresponding Hamiltonians p and q is nontrivial: $\{p,q\} = 1$. Therefore the extension term commutes with the generators of the Cartan subalgebra. Extension is also local U(1) extension since Poisson algebra differs from the Lie-algebra of the vector fields in that it contains constant Hamiltonian ("1" in the commutator), which commutes with all other Hamiltonians and corresponds to a vanishing vector field.

- 3. For the generators not belonging to Cartan sub-algebra of CH isometries Abelian extension term is not annihilated by the generators of the original algebra and in this respect the extension differs from the standard central extension for the loop algebras. It must be however emphasized that for the super-symplectic algebra generators correspond to products of δM_{+}^{4} and CP_{2} Hamiltonians and this means that generators of say δM_{+}^{4} -local SU(3)Cartan algebra are non-commuting and the commutator is completely analogous to central extension term since it is symmetric with respect to SU(3) generators.
- 4. The proposed method yields a trivial extension in the case of Diff⁴. The reason is the (fourdimensional!) Diff degeneracy of the Kähler form. Abelian extension term is given by the contraction of the Diff⁴ generators with the Kähler potential

$$j^{Ak}J_{kl}j^{Bl} = 0 {,} {(5.2.13)}$$

which vanishes identically by the Diff degeneracy of the Kähler form. Therefore neither 3- or 4-dimensional Diff invariance is not expected to cause any difficulties. Recall that 4dimensional Diff degeneracy is what is needed to eliminate time like vibrational excitations from the spectrum of the theory. By the way, the fact that the loop space metric is not Diff degenerate makes understandable the emergence of Diff anomalies in string models [B29, B27]

- 5. The extension is trivial also for the other zero norm generators of the tangent space algebra, in particular for the $k_2 = Im(k) = 0$ symplectic generators possible present so that these generators indeed act as genuine U(1) transformations.
- 6. Concerning the solution of WCW Dirac equation the maximum of Kähler function is expected to be special, much like origin of Minkowski space and symmetric space property suggests that the construction of solutions reduces to this point. At this point the generators and Hamiltonians of the algebra h in the defining Cartan decomposition g = h + t should vanish. h corresponds to integer values of $k_1 = Re(k)$ for Cartan algebra of super-symplectic algebra and integer valued conformal weights n for Super Kac-Moody algebra. The algebra reduces at the maximum to an exceptionally simple form since only central extension contributes to the metric and Kähler form. In the ideal case the elements of the metric and Kähler form could be even diagonal. The degeneracy of the metric might of course pose additional complications.

Super symplectic action on WCW spinor s

The generators of symplectic transformations are obtained in the spinor representation of the isometry group of WCW by the following formal construction. Take isometry generator in the spinor representation and add to the covariant derivative D_k defined by vielbein connection the coupling to the multiple of the Kähler potential: $D_k \rightarrow D_k + ikAk/2$.

$$J^{A} = j^{Ak} D_{k} + D_{l} j_{k} \Sigma^{kl} / 2 ,$$

$$\to \hat{J}^{A} = j^{Ak} (D_{k} + ikA_{k} / 2) + D_{l} j_{k}^{A} \Sigma^{kl} / 2 ,$$
(5.2.14)

This induces the required central term to the commutation relations. Introduce complex coordinates and define bosonic creation and annihilation operators as (1,0) and (0,1) parts of the modified isometry generators

$$B_{A}^{\dagger} = J_{+}^{A} = j^{Ak} (D_{k} + ... ,$$

$$B_{A} = J_{-}^{A} = j^{A\bar{k}} (D_{\bar{k}} +$$
(5.2.15)

where "k" refers now to complex coordinates and " \bar{k} " to their conjugates.

Fermionic generators are obtained as the contractions of the complexified gamma matrices with the isometry generators

$$\Gamma_A^{\dagger} = j^{Ak} \Gamma_k ,$$

$$\Gamma_A = j^{A\bar{k}} \Gamma_{\bar{k}} .$$

$$(5.2.16)$$

Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commutation relations and annihilate fermionic Cartan algebra generators. Hermiticity condition holds in the sense that creation type generators are hermitian conjugates of the annihilation operator type generators. There are two kinds of representations depending on whether one uses leptonic or quark like oscillator operators to construct the gammas. These will be assumed to correspond to Ramond and NS type generators with the radial plane waves being labeled by integer and half odd integer indices respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given by the matrix elements of the Kähler form in the basis of formed by the isometry generators

$$[B_A^{\dagger}, B_B] = J(j^{A^{\dagger}}, j^B) \equiv J_{\bar{A}B} \quad . \tag{5.2.17}$$

and are isometry invariant quantities. The commutators between local SU(3) generators not belonging to Cartan algebra are just those of the local gauge algebra with Abelian extension term added.

The anti-commutators between the fermionic generators are given by the elements of the metric (as opposed to Kähler form in the case of bosonic generators) in the basis formed by the isometry generators

$$\{\Gamma_A^{\dagger}, \Gamma_B\} = 2g(j^{A\dagger}, j^B) \equiv 2g_{\bar{A}B} \quad . \tag{5.2.18}$$

and are invariant under isometries. Numerically the commutators and anti-commutators differ only the presence of the imaginary unit and the scale factor R relating the metric and Kähler form to each other (the factor R is same for CP_2 metric and Kähler form).

The commutators between bosonic and fermionic generators are given by

$$[B_A, \Gamma_B] = \Gamma_{[A,B]} . (5.2.19)$$

The presence of vielbein and rotation terms in the representation of the isometry generators is essential for obtaining these nice commutations relations. The commutators vanish identically for Cartan algebra generators. From the commutation relations it is clear that Super Kac Moody algebra structure is directly related to the Kähler structure of WCW : the anti-commutator of fermionic generators is proportional to the metric and the commutator of the bosonic generators is proportional to the Kähler form. It is this algebra, which should generate the solutions of the field equations of the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the fermionic oscillator operators and this suggests the interpretation as the fermionic contribution to the isometry currents. This means that the action of the bosonic generators is essentially non-perturbative since it creates fermion anti-fermion pairs besides exciting bosonic degrees of freedom.

5.2.7 WCW Clifford Algebra As AHyper-Finite Factor Of Type II₁

The naïve expectation is that the trace of the unit matrix associated with the Clifford algebra spanned by WCW sigma matrices is infinite and thus defines an excellent candidate for a source of divergences in perturbation theory. This potential source of infinities remained un-noticed until it became clear that there is a connection with von Neumann algebras [A60]. In fact, for a separable Hilbert space defines a standard representation for so called [A48]. This guarantees that the trace of the unit matrix equals to unity and there is no danger about divergences.

Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian conjugation * and observables correspond to Hermitian operators. Any measurable function f(A) of operator A belongs to the algebra and one can say that non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density matrix defining expectations of observables in ensemble is the basic example. The highly non-trivial requirement of von Neumann was that identical a priori probabilities for a detection of states of infinite state system must make sense. Since quantum mechanical expectation values are expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable must thus be modified by excluding 1-dimensional minimal projections, and allow only projections for which the trace would be infinite using the straightforward generalization of the matrix algebra trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection probabilities. Quantum measurements can lead with a finite probability only to mixed states with a density matrix which is projection operator to infinite-dimensional subspace. The simple von Neumann algebras for which unit operator has unit trace are known as factors of type II_1 [A48].

The definitions of adopted by von Neumann allow however more general algebras. Type I_n algebras correspond to finite-dimensional matrix algebras with finite traces whereas I_{∞} associated with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of type *III* non-trivial traces are always infinite and the notion of trace becomes useless.

von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix mechanism with wave mechanics. Note however that the assumption about continuous momentum state basis is in conflict with separability but the particle-in-box idealization allows to circumvent this problem (the notion of space-time sheet brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II_1 as fundamental and factors of type III as pathological. The highly pragmatic and successful approach of Dirac based on the notion of delta function, plus the emergence of Feynman graphs, the possibility to formulate the notion of delta function rigorously in terms of distributions, and the emergence of path integral approach meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II_1 have emerged only much later in conformal and topological quantum field theories [A81, A42] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic structures known as bi-algebras, Hopf algebras, and ribbon algebras [A35, A54] relate closely to type II_1 factors. In topological quantum computation [B24] based on braid groups [A85] modular S-matrices they play an especially important role.

Clifford algebra of WCW as von Neumann algebra

The Clifford algebra of WCW provides a school example of a hyper-finite factor of type II_1 , which means that fermionic sector does not produce divergence problems. Super-symmetry means that also "orbital" degrees of freedom corresponding to the deformations of 3-surface define similar factor. The general theory of hyper-finite factors of type II_1 is very rich and leads to rather detailed understanding of the general structure of S-matrix in TGD framework. For instance, there is a unitary evolution operator intrinsic to the von Neumann algebra defining in a natural manner single particle time evolution. Also a connection with 3-dimensional topological quantum field theories and knot theory, conformal field theories, braid groups, quantum groups, and quantum counterparts of quaternionic and octonionic division algebras emerges naturally. These aspects are discussed in detail in [K83].

5.3 Under What Conditions Electric Charge Is Conserved For The Kähler-Dirac Equation?

One might think that talking about the conservation of electric charge at 21st century is a waste of time. In TGD framework this is certainly not the case.

- 1. In quantum field theories there are two ways to define em charge: as electric flux over 2-D surface sufficiently far from the source region or in the case of spinor field quantum mechanically as combination of fermion number and vectorial isospin. The latter definition is quantum mechanically more appropriate.
- 2. There is however a problem. In standard approach to gauge theory Dirac equation in presence of charged classical gauge fields does not conserve electric charge as quantum number: electron is transformed to neutrino and vice versa. Quantization solves the problem since the non-conservation can be interpreted in terms of emission of gauge bosons. In TGD framework this does not work since one does not have path integral quantization anymore. Preferred extremals carry classical gauge fields and the question whether em charge is conserved arises. Heuristic picture suggests that em charge must be conserved.

It seems that one should pose the well-definedness of spinorial em charge as an additional condition. Well-definedness of em charge is not the only problem. How to avoid large parity breaking effects due to classical Z^0 fields? How to avoid the problems due to the fact that color rotations induced vielbein rotation of weak fields? Does this require that classical weak fields vanish in the regions where the modes of induced spinor fields are non-vanishing?

This condition might be one of the conditions defining what it is to be a preferred extremal/solution of Kähler Dirac equation. It is not however trivial whether this kind of additional condition can be posed unless it follows automatically from the recent formulation for Kähler action and Kähler Dirac action. The common answer to these questions is restriction of the modes of induced spinor field to 2-D string world sheets (and possibly also partonic 2-surfaces) such that the induced weak fields vanish. This makes string/parton picture part of TGD. The vanishing of classical weak fields has also number theoretic interpretation: space-time surfaces would have quaternionic (hyper-complex) tangent space and the 2-surfaces carrying spinor fields complex (hyper-complex) tangent space.

5.3.1 Conservation Of EM Charge For Kähler Dirac Equation

What does the conservation of em charge imply in the case of the Kähler-Dirac equation? The obvious guess that the em charged part of the Kähler-Dirac operator must annihilate the solutions, turns out to be correct as the following argument demonstrates.

- 1. Em charge as coupling matrix can be defined as a linear combination $Q = aI + bI_3$, $I_3 = J_{kl}\Sigma^{kl}$, where I is unit matrix and I_3 vectorial isospin matrix, J_{kl} is the Kähler form of CP_2 , Σ^{kl} denotes sigma matrices, and a and b are numerical constants different for quarks and leptons. Q is covariantly constant in $M^4 \times CP_2$ and its covariant derivatives at space-time surface are also well-defined and vanish.
- 2. The modes of the Kähler-Dirac equation should be eigen modes of Q. This is the case if the Kähler-Dirac operator D commutes with Q. The covariant constancy of Q can be used to derive the condition

$$[D,Q]\Psi = D_{1}\Psi = 0 ,$$

$$D = \hat{\Gamma}^{\mu}D_{\mu} , D_{1} = [D,Q] = \hat{\Gamma}^{\mu}_{1}D_{\mu} , \hat{\Gamma}^{\mu}_{1} = \left[\hat{\Gamma}^{\mu},Q\right] .$$
(5.3.1)

Covariant constancy of J is absolutely essential: without it the resulting conditions would not be so simple.

It is easy to find that also $[D_1, Q]\Psi = 0$ and its higher iterates $[D_n, Q]\Psi = 0$, $D_n = [D_{n-1}, Q]$ must be true. The solutions of the Kähler-Dirac equation would have an additional symmetry.

3. The commutator $D_1 = [D, Q]$ reduces to a sum of terms involving the commutators of the vectorial isospin $I_3 = J_{kl} \Sigma^{kl}$ with the CP_2 part of the gamma matrices:

$$D_1 = [Q, D] = [I_3, \Gamma_r] \partial_\mu s^r T^{\alpha \mu} D_\alpha \quad . \tag{5.3.2}$$

In standard complex coordinates in which U(2) acts linearly the complexified gamma matrices can be chosen to be eigenstates of vectorial isospin. Only the charged flat space complexified gamma matrices Γ^A denoted by Γ^+ and Γ^- possessing charges +1 and -1 contribute to the right hand side. Therefore the additional Dirac equation $D_1\Psi = 0$ states

$$D_{1}\Psi = [Q, D]\Psi = I_{3}(A)e_{Ar}\Gamma^{A}\partial_{\mu}s^{r}T^{\alpha\mu}D_{\alpha}\Psi$$
$$= (e_{+r}\Gamma^{+} - e_{-r}\Gamma^{-})\partial_{\mu}s^{r}T^{\alpha\mu}D_{\alpha}\Psi = 0 .$$
(5.3.3)

The next condition is

$$D_2 \Psi = [Q, D] \Psi = (e_{+r} \Gamma^+ + e_{-r} \Gamma^-) \partial_\mu s^r T^{\alpha \mu} D_\alpha \Psi = 0 .$$
 (5.3.4)

Only the relative sign of the two terms has changed. The remaining conditions give nothing new.

4. These equations imply two separate equations for the two charged gamma matrices

$$D_{+}\Psi = T_{+}^{\alpha}\Gamma^{+}D_{\alpha}\Psi = 0 ,$$

$$D_{-}\Psi = T_{-}^{\alpha}\Gamma^{-}D_{\alpha}\Psi = 0 ,$$

$$T_{\pm}^{\alpha} = e_{\pm r}\partial_{\mu}s^{r}T^{\alpha\mu} .$$
(5.3.5)

These conditions state what one might have expected: the charged part of the Kähler-Dirac operator annihilates separately the solutions. The reason is that the classical W fields are proportional to $e_{r\pm}$.

The above equations can be generalized to define a decomposition of the energy momentum tensor to charged and neutral components in terms of vierbein projections. The equations state that the analogs of the Kähler-Dirac equation defined by charged components of the energy momentum tensor are satisfied separately.

5. In complex coordinates one expects that the two equations are complex conjugates of each other for Euclidian signature. For the Minkowskian signature an analogous condition should hold true. The dynamics enters the game in an essential manner: whether the equations can be satisfied depends on the coefficients a and b in the expression T = aG + bq implied by Einstein's equations in turn guaranteeing that the solution ansatz generalizing minimal surface solutions holds true [K9].

6. As a result one obtains three separate Dirac equations corresponding to the neutral part $D_0\Psi = 0$ and charged parts $D_{\pm}\Psi = 0$ of the Kähler-Dirac equation. By acting on the equations with these Dirac operators one obtains also that the commutators $[D_+, D_-]$, $[D_0, D_{\pm}]$ and also higher commutators obtained from these annihilate the induced spinor field model. Therefore entire -possibly- infinite-dimensional algebra would annihilate the induced spinor fields. In string model the counterpart of Dirac equation when quantized gives rise to Super-Virasoro conditions. This analogy would suggest that Kähler-Dirac equation gives rise to the analog of Super-Virasoro conditions in 4-D case. But what the higher conditions mean? Could they relate to the proposed generalization to Yangian algebra [A26] [B22, B19, B20]? Obviously these conditions resemble structurally Virasoro conditions $L_n | phys \rangle = 0$ and their supersymmetric generalizations, and might indeed correspond to a generalization of these conditions just as the field equations for preferred extremals could correspond to the Virasoro conditions if one takes seriously the analogy with the quantized string.

What could this additional symmetry mean from the point of view of the solutions of the Kähler-Dirac equation? The field equations for the preferred extremals of Kähler action reduce to purely algebraic conditions in the same manner as the field equations for the minimal surfaces in string model. Could this happen also for the Kähler-Dirac equation and could the condition on charged part of the Dirac operator help to achieve this?

This argument was very general and one can ask for simple ways to realize these conditions. Obviously the vanishing of classical W fields in the region where the spinor mode is non-vanishing defines this kind of condition.

5.3.2 About The Solutions Of Kähler Dirac Equation For Known Extremals

To gain perpective consider first Dirac equation in in H. Quite generally, one can construct the solutions of the ordinary Dirac equation in H from covariantly constant right-handed neutrino spinor playing the role of fermionic vacuum annihilated by the second half of complexified gamma matrices. Dirac equation reduces to Laplace equation for a scalar function and solution can be constructed from this "vacuum" by multiplying with the spherical harmonics of CP_2 and applying Dirac operator [K39]. Similar construction works quite generally thanks to the existence of covariantly constant right handed neutrino spinor. Spinor harmonics of CP_2 are only replaced with those of space-time surface possessing either hermitian structure or Hamilton-Jacobi structure (corresponding to Euclidian and Minkowskian signatures of the induced metric [K9, K84]). What is remarkable is that these solutions possess well-defined em charge although classical W boson fields are present.

This in sense that H d'Alembertian commutes with em charge matrix defined as a linear combination of unit matrix and the covariantly constant matrix $J^{kl}\Sigma_{kl}$ since the commutators of the covariant derivatives give constant Ricci scalar and $J^{kl}\Sigma_{kl}$ term to the d'Alembertian besides scalar d'Alembertian commuting with em charge. Dirac operator itself does not commute with em charge matrix since gamma matrices not commute with em charge matrix.

Consider now Kähler Dirac operator. The square of Kähler Dirac operator contains commutator of covariant derivatives which contains contraction $[\Gamma^{\mu}, \Gamma^{\nu}] F_{\mu\nu}^{weak}$ which is quadratic in sigma matrices of $M^4 \times CP_2$ and does not reduce to a constant term commuting which em charge matrix. Therefore additional condition is required even if one is satisfies with the commutativity of d'Alembertian with em charge. Stronger condition would be commutativity with the Kähler Dirac operator and this will be considered in the following.

To see what happens one must consider space-time regions with Minkowskian and Euclidian signature. What will be assumed is the existence of Hamilton-Jacobi structure [K9] meaning complex structure in Euclidian signature and hyper-complex plus complex structure in Minkowskian signature. The goal is to get insights about what the condition that spinor modes have a well-defined em charge eigenvalue requires. Or more concretely: is the localization at string world sheets guaranteeing well-defined value of em charge predicted by Kähler Dirac operator or must one introduce this condition separately? One can also ask whether this condition reduces to commutativity/co-commutativity in number theoretic vision.

1. CP_2 type vacuum extremals serve as a convenient test case for the Euclidian signature. In this case the Kähler-Dirac equation reduces to the massless ordinary Dirac equation in CP_2 allowing only covariantly constant right-handed neutrino as solution. Only part of CP_2 so that one give up the constraint that the solution is defined in the entire CP_2 . In this case holomorphic solution ansatz obtained by assuming that solutions depend on the coordinates ξ^i , i = 1, 2 but not on their conjugates and that the gamma matrices $\Gamma^{\vec{i}}$, i = 1, 2, annihilate the solutions, works. The solutions ansatz and its conjugate are of exactly the same form as in case string models where one considers string world sheets instead of CP_2 region.

The solutions are not restricted to 2-D string world sheets and it is not clear whether one can assign to them a well-defined em charge in any sense. Note that for massless Dirac equation in H one obtains all CP_2 harmonics as solutions, and it is possible to talk about em charge of the solution although solution itself is not restricted to 2-D surface of CP_2 .

- 2. For massless extremals and a very wide class of solutions produced by Hamilton-Jacobi structure - perhaps all solutions representable locally as graphs for map $M^4 \rightarrow CP_2$ - canonical momentum densities are light-like and solutions are hyper-holomorphic in the coordinates associated with with string world sheet and annihilated by the conjugate gamma and arbitrary functions in transversal coordinates. This allows localization to string world sheets. The localization is now strictly dynamical and implied by the properties of Kähler Dirac operator.
- 3. For string like objects one obtains massless Dirac equation in $X^2 \times Y^2 \subset M^4 \times Y^2$, Y^2 a complex 2-surface in CP_2 . Homologically trivial geodesic sphere corresponds to the simplest choice for Y^2 . Modified Dirac operator reduces to a sum of massless Dirac operators associated with X^2 and Y^2 . The most general solutions would have Y^2 mass. Holomorphic solutions reduces to product of hyper-holomorphic and holomorphic solutions and massless 2-D Dirac equation is satisfied in both factors.

For instance, for S^2 a geodesic sphere and $X^2 = M^2$ one obtains M^2 massivation with mass squared spectrum given by Laplace operator for S^2 . Conformal and hyper-conformal symmetries are lost, and one might argue that this is quite not what one wants. One must be however resist the temptation to make too hasty conclusions since the massivation of string like objects is expected to take place. The question is whether it takes place already at the level of fundamental spinor fields or only at the level of elementary particles constructed as many-fermion states of them as twistor Grassmann approach assuming massless M^4 propagators for the fundamental fermions strongly suggests [L12].

4. For vacuum extremals the Kähler Dirac operator vanishes identically so that it does not make sense to speak about solutions.

What can one conclude from these observations?

- 1. The localization of solutions to 2-D string world sheets follows from Kähler Dirac equation only for the Minkowskian regions representable as graphs of map $M^4 \rightarrow CP_2$ locally. For string like objects and deformations of CP_2 type vacuum extremals this is not expected to take place.
- 2. It is not clear whether one can speak about well-defined em charge for the holomorphic spinors annihilated by the conjugate gamma matrices or their conjugates. As noticed, for embedding space spinor harmonics this is however possible.
- 3. Strong form of conformal symmetry and the condition that em charge is well-defined for the nodes suggests that the localization at 2-D surfaces at which the charged parts of induced electroweak gauge fields vanish must be assumed as an additional condition. Number theoretic vision would suggest that these surfaces correspond to 2-D commutative or cocommutative surfaces. The string world sheets inside space-time surfaces would not emerge from theory but would be defined as basic geometric objects.

This kind of condition would also allow duals of string worlds sheets as partonic 2-surfaces identified number theoretically as co-commutative surfaces. Commutativity and co-commutativity would become essential elemenents of the number theoretical vision.

4. The localization of solutions of the Kähler-Dirac action at string world sheets and partonic 2-surfaces as a constraint would mean induction procedure for Kähler-Dirac matrices from SX^4 to X^2 - that is projection. The resulting em neutral gamma matrices would correspond to tangent vectors of the string world sheet. The vanishing of the projections of charged parts of energy momentum currents would define these surfaces. The conditions would apply both in Minkowskian and Euclidian regions. An alternative interpretation would be number theoretical: these surface would be commutative or co-commutative.

5.3.3 Concrete Realization Of The Conditions Guaranteeing Well-Defined Em Charge

Well-definedness of the em charge is the fundamental condiiton on spinor modes. Physical intuition suggests that also classical Z^0 field should vanish - at least in scales longer than weak scale. Above the condition guaranteeing vanishing of em charge has been discussed at very general level. It has however turned out that one can understand situation by simply posing the simplest condition that one can imagine: the vanishing of classical W and possibly also Z^0 fields inducing mixing of different charge states.

- 1. Induced W fields mean that the modes of Kähler-Dirac equation do not in general have welldefined em charge. The problem disappears if the induced W gauge fields vanish. This does not yet guarantee that couplings to classical gauge fields are physical in long scales. Also classical Z^0 field should vanish so that the couplings would be purely vectorial. Vectoriality might be true in long enough scales only. If W and Z^0 fields vanish in all scales then electroweak forces are due to the exchanges of corresponding gauge bosons described as string like objects in TGD and represent non-trivial space-time geometry and topology at microscopic scale.
- 2. The conditions solve also another long-standing interpretational problem. Color rotations induce rotations in electroweak-holonomy group so that the vanishing of all induced weak fields also guarantees that color rotations do not spoil the property of spinor modes to be eigenstates of em charge.

One can study the conditions quite concretely by using the formulas for the components of spinor curvature [L1] (http://tinyurl.com/z86o5qk).

1. The representation of the covariantly constant curvature tensor is given by

$$\begin{array}{rcl}
R_{01} &=& e^{0} \wedge e^{1} - e^{2} \wedge e^{3} , & R_{23} &=& e^{0} \wedge e^{1} - e^{2} \wedge e^{3} , \\
R_{02} &=& e^{0} \wedge e^{2} - e^{3} \wedge e^{1} , & R_{31} &=& -e^{0} \wedge e^{2} + e^{3} \wedge e^{1} , \\
R_{03} &=& 4e^{0} \wedge e^{3} + 2e^{1} \wedge e^{2} , & R_{12} &=& 2e^{0} \wedge e^{3} + 4e^{1} \wedge e^{2} .
\end{array}$$
(5.3.6)

 $R_{01} = R_{23}$ and $R_{03} = -R_{31}$ combine to form purely left handed classical W boson fields and Z^0 field corresponds to $Z^0 = 2R_{03}$.

Kähler form is given by

$$J = 2(e^0 \wedge e^3 + e^1 \wedge e^2) \quad . \tag{5.3.7}$$

2. The vanishing of classical weak fields is guaranteed by the conditions

$$e^{0} \wedge e^{1} - e^{2} \wedge e^{3} = 0 ,$$

$$e^{0} \wedge e^{2} - e^{3} \wedge e^{1} ,$$

$$4e^{0} \wedge e^{3} + 2e^{1} \wedge e^{2} .$$

(5.3.8)

3. There are many ways to satisfy these conditions. For instance, the condition $e^1 = a \times e^0$ and $e^2 = -a \times e^3$ with arbitrary a which can depend on position guarantees the vanishing of classical W fields. The CP_2 projection of the tangent space of the region carrying the spinor mode must be 2-D.

Also classical Z^0 vanishes if $a^2 = 2$ holds true. This guarantees that the couplings of induced gauge potential are purely vectorial. One can consider other alternatics. For instance, one could require that only classical Z^0 field or induced Kähler form is non-vanishing and deduce similar condition.

4. The vanishing of the weak part of induced gauge field implies that the CP_2 projection of the region carrying spinor mode is 2-D. Therefore the condition that the modes of induced spinor field are restricted to 2-surfaces carrying no weak fields sheets guarantees well-definedness of em charge and vanishing of classical weak couplings. This condition does not imply string world sheets in the general case since the CP_2 projection of the space-time sheet can be 2-D.

How string world sheets could emerge?

- 1. Additional consistency condition to neutrality of string world sheets is that Kähler-Dirac gamma matrices have no components orthogonal to the 2-surface in question. Hence various fermionic would flow along string world sheet.
- 2. If the Kähler-Dirac gamma matrices at string world sheet are expressible in terms of two non-vanishing gamma matrices parallel to string world sheet and sheet and thus define an integrable distribution of tangent vectors, this is achieved. What is important that modified gamma matrices can indeed span lower than 4-D space and often do so as already described. Induced gamma matrices defined always 4-D space so that the restriction of the modes to string world sheets is not possible.
- 3. String models suggest that string world sheets are minimal surfaces of space-time surface or of embedding space but it might not be necessary to pose this condition separately.

In the proposed scenario string world sheets emerge rather than being postulated from beginning.

- 1. The vanishing conditions for induced weak fields allow also 4-D spinor modes if they are true for entire spatime surface. This is true if the space-time surface has 2-D projection. One can expect that the space-time surface has foliation by string world sheets and the general solution of K-D equation is continuous superposition of the 2-D modes in this case and discrete one in the generic case.
- 2. If the CP_2 projection of space-time surface is homologically non-trivial geodesic sphere S^2 , the field equations reduce to those in $M^4 \times S^2$ since the second fundamental form for S^2 is vanishing. It is possible to have geodesic sphere for which induced gauge field has only em component?
- 3. If the CP_2 projection is complex manifold as it is for string like objects, the vanishing of weak fields might be also achieved.
- 4. Does the phase of cosmic strings assumed to dominate primordial cosmology correspond to this phase with no classical weak fields? During radiation dominated phase 4-D string like objects would transform to string world sheets.Kind of dimensional transmutation would occur.

Right-handed neutrino has exceptional role in K-D action.

1. Electroweak gauge potentials do not couple to ν_R at all. Therefore the vanishing of W fields is un-necessary if the induced gamma matrices do not mix right handed neutrino with left-handed one. This is guaranteed if M^4 and CP_2 parts of Kähler-Dirac operator annihilate separately right-handed neutrino spinor mode. Also ν_R modes can be interpreted as continuous superpositions of 2-D modes and this allows to define overlap integrals for them and induced spinor fields needed to define WCW gamma matrices and super-generators.

2. For covariantly constant right-handed neutrino mode defining a generator of super-symmetries is certainly a solution of K-D. Whether more general solutions of K-D exist remains to be checked out.

5.3.4 Connection With Number Theoretic Vision?

The interesting potential connection of the Hamilton-Jacobi vision to the number theoretic vision about field equations has been already mentioned.

- 1. The vision that associativity/co-associativity defines the dynamics of space-time surfaces boils down to M^8-H duality stating that space-time surfaces can be regarded as associative/co-associative surfaces either in M^8 or H [K70, K82]. Associativity reduces to hyper-quaternionicity implying that the tangent/normal space of space-time surface at each point contains preferred sub-space $M^2(x) \subset M^8$ and these sub-spaces forma an integrable distribution. An analogous condition is involved with the definition of Hamilton-Jacobi structure.
- 2. The octonionic representation of the tangent space of M^8 and H effectively replaces SO(7, 1) as tangent space group with its octonionic analog obtained by the replacement of sigma matrices with their octonionic counterparts defined by anti-commutators of gamma matrices. By non-associativity the resulting algebra is not ordinary Lie-algebra and exponentiates to a non-associative analog of Lie group. The original wrong belief was that the reduction takes place to the group G_2 of octonionic automorphisms acting as a subgroup of SO(7). One can ask whether the conditions on the charged part of energy momentum tensor could relate to the reduction of SO(7, 1)
- 3. What puts bells ringing is that the Kähler-Dirac equation for the octonionic representation of gamma matrices allows the conservation of electromagnetic charge in the proposed sense. The reason is that the left handed sigma matrices (W charges are left-handed) in the octonionic representation of gamma matrices vanish identically! What remains are vectorial=right-handed em and Z^0 charge which becomes proportional to em charge since its left-handed part vanishes. All spinor modes have a well-defined em charge in the octonionic sense defined by replacing embedding space spinor locally by its octonionic variant? Maybe this could explain why H spinor modes can have well-defined em charge contrary to the naïve expectations.
- 4. The non-associativity of the octonionic spinors is however a problem. Even non-commutativity poses problems also at space-time level if one assumes quaternion-real analyticity for the spinor modes. Could one assume commutativity or co-commutativity for the induced spinor modes? This would mean restriction to associative or co-associative 2-surfaces and (hyper-)holomorphic depends on its (hyper-)complex coordinate. The outcome would be a localization to a hyper-commutative of commutative 2-surface, string world sheet or partonic 2-surface.
- 5. These conditions could also be interpreted by saying that for the Kähler Dirac operator the octonionic induced spinors assumed to be commutative/co-commutative are equivalent with ordinary induced spinors. The well-definedness of em charge for ordinary spinors would correspond to commutativity/co-commutativity for octonionic spinors. Even the Dirac equations based on induced and Kähler-Dirac gamma matrices could be equivalent since it is essentially holomorphy which matters.

To sum up, these considerations inspire to ask whether the associativity/co-associativity of the space-time surface is equivalent with the reduction of the field equations to stringy field equations stating that certain components of the induced metric in complex/Hamilton-Jacobi coordinates vanish in turn guaranteeing that field equations reduce to algebraic identifies following from the fact that energy momentum tensor and second fundamental form have no common components? Commutativity/co-commutativity would characterize fermionic dynamics and would have physical representation as possibility to have em charge eigenspinors. This should be the case if one requires that the two solution ansätze are equivalent.

$\mathbf{5.4}$ **Representation Of WCW Metric As Anti-Commutators** Of Gamma Matrices Identified As Symplectic Super-Charges

WCW gamma matrices identified as symplectic super Noether charges suggest an elegant representation of WCW metric and Kähler form, which seems to be more practical than the representations in terms of Kähler function or representations guessed by symmetry arguments.

This representation is equivalent with the somewhat dubious representation obtained using symmetry arguments - that is by assuming that the half Poisson brackets of embedding space Hamiltonians defining Kähler form and metric can be lifted to the level of WCW, if the conformal gauge conditions hold true for the spinorial conformal algebra, which is the TGD counterpart of the standard Kac-Moody type algebra of the ordinary strings models. For symplectic algebra the hierarchy of breakings of super-conformal gauge symmetry is possible but not for the standard conformal algebras associated with spinor modes at string world sheets.

Expression For WCW Kähler Metric As Anticommutators As 5.4.1Symplectic Super Charges

During years I have considered several variants for the representation of symplectic Hamiltonians and WCW gamma matrices and each of these proposals have had some weakness. The key question has been whether the Noether currents assignable to WCW Hamiltonians should play any role in the construction or whether one can use only the generalization of flux Hamiltonians.

The original approach based on flux Hamiltonians did not use Noether currents.

1. Magnetic flux Hamiltonians do not refer to the space-time dynamics and imply genuine rather than only effective 2-dimensionality, which is more than one wants. If the sum of the magnetic and electric flux Hamiltonians and the weak form of self duality is assumed, effective 2-dimensionality might be achieved.

The challenge is to identify the super-partners of the flux Hamiltonians and postulate correct anti-commutation relations for the induced spinor fields to achieve anti-commutation to flux Hamiltonians. It seems that this challenge leads to ad hoc constructions.

2. For the purposes of generalization it is useful to give the expression of flux Hamiltonian. Apart from normalization factors one would have

$$Q(H_A) = \int_{X^2} H_A J_{\mu\nu} dx^{\mu} \wedge dx^{\nu} \quad .$$

Here A is a label for the Hamiltonian of $\delta M^4_{\pm} \times CP_2$ decomposing to product of δM^4_{\pm} and CP_2 Hamiltonians with the first one decomposing to a product of function of the radial lightlike coordinate r_M and Hamiltonian depending on S^2 coordinates. It is natural to assume that Hamiltonians have well- defined SO(3) and SU(3) quantum numbers. This expressions serves as a natural starting point also in the new approach based on Noether charges.

The approach identifying the Hamiltonians as symplectic Noether charges is extremely natural from physics point of view but the fact that it leads to 3-D expressions involving the induced metric led to the conclusion that it cannot work. In hindsight this conclusion seems wrong: I had not yet realized how profound that basic formulas of physics really are. If the generalization of AdS/CFT duality works, Kähler action can be expressed as a sum of string area actions for string world sheets with string area in the effective metric given as the anti-commutator of the Kähler-Dirac gamma matrices for the string world sheet so that also now a reduction of dimension takes place. This is easy to understand if the classical Noether charges vanish for a sub-algebra of symplectic algebra for preferred extremals.

1. If all end points for strings are possible, the recipe for constructing super-conformal generators would be simple. The embedding space Hamiltonian H_A appearing in the expression of the flux Hamiltonian given above would be replaced by the corresponding symplectic quantum Noether charge $Q(H_A)$ associated with the string defined as 1-D integral along the string. By replacing Ψ or its conjugate with a mode of the induced spinor field labeled by electroweak quantum numbers and conformal weight nm one would obtain corresponding super-charged identifiable as WCW gamma matrices. The anti-commutators of the super-charges would give rise to the elements of WCW metric labelled by conformal weights n_1 , n_2 not present in the naïve guess for the metric. If one assumes that the fermionic super-conformal symmetries act as gauge symmetries only $n_i = 0$ gives a non-vanishing matrix element.

Clearly, one would have weaker form of effective 2-dimensionality in the sense that Hamiltonian would be functional of the string emanating from the partonic 2-surface. The quantum Hamiltonian would also carry information about the presence of other wormhole contactsat least one- when wormhole throats carry Kähler magnetic monopole flux. If only discrete set for the end points for strings is possible one has discrete sum making possible easy padicization. It might happen that integrability conditions for the tangent spaces of string world sheets having vanishing W boson fields do not allow all possible strings.

- 2. The super charges obtained in this manner are not however entirely satisfactory. The problem is that they involve only single string emanating from the partonic 2-surface. The intuitive expectation is that there can be an arbitrarily large number of strings: as the number of strings is increased the resolution improves. Somehow the super-conformal algebra defined by Hamiltonians and super-Hamiltonians should generalize to allow tensor products of the strings providing more physical information about the 3-surface.
- 3. Here the idea of Yangian symmetry [L12] suggests itself strongly. The notion of Yangian emerges from twistor Grassmann approach and should have a natural place in TGD. In Yangian algebra one has besides product also co-product, which is in some sense "time-reversal" of the product. What is essential is that Yangian algebra is also multi-local.

The Yangian extension of the super-conformal algebra would be multi-local with respect to the points of partonic surface (or multi-stringy) defining the end points of string. The basic formulas would be schematically

$$O_1^A = f_{BC}^A T^B \otimes T^B \quad ,$$

where a summation of B, C occurs and f_{BC}^A are the structure constants of the algebra. The operation can be iterated and gives a hierarchy of *n*-local operators. In the recent case the operators are n-local symplectic super-charges with unit fermion number and symplectic Noether charges with a vanishing fermion number. It would be natural to assume that also the *n*-local gamma matrix like entities contribute via their anti-commutators to WCW metric and give multi-local information about the partonic 2-surface and 3-surface.

The operation generating the algebra well-defined if one an assumes that the second quantization of induced spinor fields is carried out using the standard canonical quantization. One could even assume that the points involved belong to different partonic 2-surfaces belonging even at opposite boundaries of CD. The operation is also well-defined if one assumes that induced spinor fields at different space-time points at boundaries of CD always anticommute. This could make sense at boundary of CD but lead to problems with embedding space-causality if assumed for the spinor modes at opposite boundaries of CD.

5.4.2 Handful Of Problems With A Common Resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It is essential to make trials, even if one is aware that they are probably wrong. When stares long enough to the letters which do not quite fit, one suddenly realizes what one particular crossword must actually be and it is soon clear what those other crosswords are. In the following I describe an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma matrices and propose Kähler-Dirac action as their solution.

Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of Kähler-Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to a complex-analytic map. This implies that induced metric is hermitian so that it has no diagonal components in complex coordinates (z, \overline{z}) and the second fundamental form has only diagonal components of type H_{zz}^k . This implies that minimal surface is in question since the trace of the second fundamental form vanishes. At first it seems that the same must happen also in the more general case with the consequence that the space-time surface is a minimal surface. Although many basic extremals of Kähler action are minimal surfaces, it seems difficult to believe that minimal surface property plus extremization of Kähler action could really boil down to the absolute minimization of Kähler action or some other general principle selecting preferred extremals as Bohr orbits [K19, K70].

This brings in mind a similar long-standing problem associated with the Dirac equation for the induced spinors. The problem is that right-handed neutrino generates super-symmetry only provided that space-time surface and its boundary are minimal surfaces. Although one could interpret this as a geometric symmetry breaking, there is a strong feeling that something goes wrong. Induced Dirac equation and super-symmetry fix the variational principle but this variational principle is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors is consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously require that for vacuum extremals of Kähler action also induced spinor fields represent vacua. This is however not the case. This super-symmetry is however assumed in the construction of WCW geometry so that there is internal inconsistency.

Super-symmetry forces Kähler-Dirac equation

The above described three problems have a common solution. Nothing prevents from starting directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations can be written as

$$D_{\alpha}T_{k}^{\alpha} = 0 ,$$

$$T_{k}^{\alpha} = \frac{\partial}{\partial h_{\alpha}^{k}}L_{K} .$$
(5.4.1)

Here T_k^{α} is canonical momentum current of Kähler action. If super-symmetry is present one can assign to this current its super-symmetric counterpart

$$J^{\alpha k} = \overline{\nu_R} \Gamma^k T_l^{\alpha} \Gamma^l \Psi ,$$

$$D_{\alpha} J^{\alpha k} = 0 .$$
(5.4.2)

having a vanishing divergence. The isometry currents currents and super-currents are obtained by contracting T^{α_k} and J^{α_k} with the Killing vector fields of super-symmetries. Note also that the super current

$$J^{\alpha} = \overline{\nu_R} T_l^{\alpha} \Gamma^l \Psi \tag{5.4.3}$$

has a vanishing divergence.

By using the covariant constancy of the right-handed neutrino spinor, one finds that the divergence of the super current reduces to

$$D_{lpha}J^{lpha k} = \overline{
u_R}\Gamma^k T_l^{lpha}\Gamma^l D_{lpha} \Psi$$
 .

(5.4.4)

The requirement that this current vanishes is guaranteed if one assumes that Kähler-Dirac equation

$$\hat{\Gamma}^{\alpha} D_{\alpha} \Psi = 0 ,
\hat{\Gamma}^{\alpha} = T_{l}^{\alpha} \Gamma^{l} .$$
(5.4.5)

This equation must be derivable from a Kähler-Dirac action. It indeed is. The action is given by

$$L = \overline{\Psi} \hat{\Gamma}^{\alpha} D_{\alpha} \Psi \quad . \tag{5.4.6}$$

Thus the variational principle exists. For this variational principle induced gamma matrices are replaced with Kähler-Dirac gamma matrices and the requirement

$$D_{\mu}\hat{\Gamma}^{\mu} = 0 \tag{5.4.7}$$

guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are satisfied. For the ordinary Dirac action this condition would lead to the minimal surface property. What sounds strange that the essentially hydrodynamical equations defined by Kähler action have fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation and something which one might not guess without taking super-symmetry very seriously.

As a matter fact, any mode of Kähler-Dirac equation contracted with second quantized induced spinor field or its conjugate defines a conserved super charge. Also super-symplectic Noether charges and their super counterparts can be assigned to symplectic generators as Noether charges but they need not be conserved.

Second quantization of the K-D action

Second quantization of Kähler-Dirac action is crucial for the construction of the Kähler metric of world of classical worlds as anti-commutators of gamma matrices identified as super-symplectic Noether charges. To get a unique result, the anti-commutation relations must be fixed uniquely. This has turned out to be far from trivial.

1. Canonical quantization works after all

The canonical manner to second quantize fermions identifies spinorial canonical momentum densities and their conjugates as $\overline{\Pi} = \partial L_{K_D} / \partial_{\Psi} = \overline{\Psi} \Gamma^t$ and their conjugates. The vanishing of Γ^t at points, where the induced Kähler form J vanishes can cause problems since anti-commutation relations are not internally consistent anymore. This led me to give up the canonical quantization and to consider various alternatives consistent with the possibility that J vanishes. They were admittedly somewhat ad hoc. Correct (anti-)commutation relations for various fermionic Noether currents seem however to fix the anti-commutation relations to the standard ones. It seems that it is better to be conservative: the canonical method is heavily tested and turned out to work quite nicely.

The canonical manner to second quantize fermions identifies spinorial canonical momentum densities and their conjugates as $\overline{\Pi} = \partial L_{K_D} / \partial_{\Psi} = \overline{\Psi} \Gamma^t$ and their conjugates. The vanishing of Γ^t at points, where the induced Kähler form J vanishes can cause problems since anti-commutation relations are not internally consistent anymore. This led originally to give up the canonical quantization and to consider various alternatives consistent with the possibility that J vanishes. They were admittedly somewhat ad hoc. Correct commutation relations for various fermionic Noether currents seem however to fix the anti-commutation relations to the standard ones.

Consider first the 4-D situation without the localization to 2-D string world sheets. The canonical anti-commutation relations would state $\{\overline{\Pi}, \Psi\} = \delta^3(x, y)$ at the space-like boundaries of the string world sheet at either boundary of CD. At points where J and thus T^t vanishes, canonical momentum density vanishes identically and the equation seems to be inconsistent.

If fermions are localized at string world sheets assumed to always carry a non-vanishing J at their boundaries at the ends of space-time surfaces, the situation changes since Γ^t is non-vanishing. The localization to string world sheets, which are not vacua saves the situation. The problem is

that the limit when string approaches vacuum could be very singular and discontinuous. In the case of elementary particle strings are associated with flux tubes carrying monopole fluxes so that the problem disappears.

It is better to formulate the anti-commutation relations for the modes of the induced spinor field. By starting from

$$\{\overline{\Pi}(x), \Psi(y)\} = \delta^1(x, y)$$

(5.4.8)

(5.4.9)

and contracting with $\Psi(x)$ and $\Pi(y)$ and integrating, one obtains using orthonormality of the modes of Ψ the result

$$\{b_m^\dagger, b_n\} = \gamma^0 \delta_{m,n}$$

holding for the nodes with non-vanishing norm. At the limit $J \rightarrow 0$ there are no modes with non-vanishing norm so that one avoids the conflict between the two sides of the equation.

The proposed anti-commutator would realize the idea that the fermions are massive. The following alternative starts from the assumption of 8-D light-likeness.

2. Does one obtain the analogy of SUSY algebra? In super Poincare algebra anti-commutators

of super-generators give translation generator: anti-commutators are proportional to $p^k \sigma_k$. Could it be possible to have an anti-commutator proportional to the contraction of Dirac operator $p^k \sigma_k$ of 4-momentum with quaternionic sigma matrices having or 8-momentum with octonionic 8-matrices?

This would give good hopes that the GRT limit of TGD with many-sheeted space-time replaced with a slightly curved region of M^4 in long length scales has large \mathcal{N} SUSY as an approximate symmetry: \mathcal{N} would correspond to the maximal number of oscillator operators assignable to the partonic 2-surface. If conformal invariance is exact, it is just the number of fermion states for single generation in standard model.

- 1. The first promising sign is that the action principle indeed assigns a conserved light-like 8momentum to each fermion line at partonic 2-surface. Therefore octonionic representation of sigma matrices makes sense and the generalization of standard twistorialization of fourmomentum also. 8-momentum can be characterized by a pair of octonionic 2-spinors $(\lambda, \overline{\lambda})$ such that one has $\lambda \overline{\lambda} = p^k \sigma_k$.
- 2. Since fermion line as string boundary is 1-D curve, the corresponding octonionic sub-spaces is just 1-D complex ray in octonion space and imaginary axes is defined by the associated imaginary octonion unit. Non-associativity and non-commutativity play no role and it is as if one had light like momentum in say z-direction.
- 3. One can select the ininitial values of spinor modes at the ends of fermion lines in such a way that they have well-defined spin and electroweak spin and one can also form linear superpositions of the spin states. One can also assume that the 8-D algebraic variant of Dirac equation correlating M^4 and CP_2 spins is satisfied.

One can introduce oscillator operators $b_{m,\alpha}^{\dagger}$ and $b_{n,\alpha}$ with α denoting the spin. The motivation for why electroweak spin is not included as an index is due to the correlation between spin and electroweak spin. Dirac equation at fermion line implies a complete correlation between directions of spin and electroweak spin: if the directions are same for leptons (convention only), they are opposite for antileptons and for quarks since the product of them defines embedding space chirality which distinguishes between quarks and leptons. Instead of introducing electroweak isospin as an additional correlated index one can introduce 4 kinds of oscillator operators: leptonic and quark-like and fermionic and antifermionic.

4. For definiteness one can consider only fermions in leptonic sector. In hope of getting the analog of SUSY algebra one could modify the fermionic anti-commutation relations such that one has

$$\{b_{m,\alpha}^{\dagger}, b_{n,\beta}\} = \pm i\epsilon_{\alpha\beta}\delta_{m,n} \quad .$$
(5.4.10)

Here α is spin label and ϵ is the standard antisymmetric tensor assigned to twistors. The anticommutator is clearly symmetric also now. The anti-commutation relations with different signs \pm at the right-hand side distinguish between quarks and leptons and also between fermions and anti-fermions. $\pm = 1$ could be the convention for fermions in lepton sector.

5. One wants combinations of oscillator operators for which one obtains anti-commutators having interpretation in terms of translation generators representing in terms of 8-momentum. The guess would be that the oscillator operators are given by

$$B_n^{\dagger} = b_{m,\alpha}^{\dagger} \lambda^{\alpha} \quad , \quad B_n = \overline{\lambda}^{\alpha} b_{m,\alpha} \quad .$$

$$(5.4.11)$$

The anti-commutator would in this case be given by

$$\{B_m^{\dagger}, B_n\} = i\overline{\lambda}^{\alpha} \epsilon_{\alpha\beta} \lambda^{\beta} \delta_{m,n}$$

= $Tr(p^k \sigma_k) \delta_{m,n} = 2p^0 \delta_{m,n}$.
(5.4.12)

The inner product is positive for positive value of energy p^0 . This form of anti-commutator obviously breaks Lorentz invariance and this us due the number theoretic selection of preferred time direction as that for real octonion unit. Lorentz invariance is saved by the fact that there is a moduli space for the choices of the quaternion units parameterized by Lorentz boosts for CD.

The anti-commutator vanishes for covariantly constant antineutrino so that it does not generate sparticle states. Only fermions with non-vanishing four-momentum do so and the resulting algebra is very much like that associated with a unitary representation of super Poincare algebra.

- 6. The recipe gives one helicity state for lepton in given mode m (conformal weight). One has also antilepton with opposite helicity with $\pm = -1$ in the formula defining the anticommutator. In the similar manner one obtains quarks and antiquarks.
- 7. Contrary to the hopes, one did not obtain the anti-commutator $p^k \sigma_k$ but $Tr(p^0 \sigma_0)$. $2p^0$ is however analogous to the action of Dirac operator $p^k \sigma_k$ to a massless spinor mode with "wrong" helicity giving $2p^0 \sigma^0$. Massless modes with wrong helicity are expected to appear in the fermionic propagator lines in TGD variant of twistor approach. Hence one might hope that the resulting algebra is consistent with SUSY limit.

The presence of 8-momentum at each fermion line would allow also to consider the introduction of anti-commutators of form $p^k(8)\sigma_k$ directly making $\mathcal{N} = 8$ SUSY at parton level manifest. This expression restricts for time-like M^4 momenta always to quaternion and one obtains just the standard picture.

8. Only the fermionic states with vanishing conformal weight seem to be realized if the conformal symmetries associated with the spinor modes are realized as gauge symmetries. Supergenerators would correspond to the fermions of single generation standard model: 4+4=8 states altogether. Interestingly, $\mathcal{N} = 8$ correspond to the maximal SUSY for super-gravity. Right-handed neutrino would obviously generate the least broken SUSY. Also now mixing of M^4 helicities induces massivation and symmetry breaking so that even this SUSY is broken. One must however distinguish this SUSY from the super-symplectic conformal symmetry. The space in which SUSY would be realized would be partonic 2-surfaces and this distinguishes it from the usual SUSY. Also the conservation of fermion number and absence of Majorana spinors is an important distinction.

3. What about quantum deformations of the fermionic oscillator algebra?

Quantum deformation introducing braid statistics is of considerable interest. Quantum deformations are essentially 2-D phenomenon, and the experimental fact that it indeed occurs gives a further strong support for the localization of spinors at string world sheets. If the existence of anyonic phases is taken completely seriously, it supports the existence of the hierarchy of Planck constants and TGD view about dark matter. Note that the localization also at partonic 2-surfaces cannot be excluded yet.

I have wondered whether quantum deformation could relate to the hierarchy of Planck constants in the sense that $n = h_{eff}/h$ corresponds to the value of deformation parameter $q = exp(i2\pi/n)$.

A q-deformation of Clifford algebra of WCW gamma matrices is required. Clifford algebra is characterized in terms of anti-commutators replaced now by q-anticommutators. The natural identification of gamma matrices is as complexified gamma matrices. For q-deformation q-anticommutators would define WCW Kähler metric. The commutators of the supergenerators should still give anti-symmetric sigma matrices. The q-anticommutation relations should be same in the entire sector of WCW considered and be induced from the q-anticommutation relations for the oscillator operators of induced spinor fields at string world sheets, and reflect the fact that permutation group has braid group as covering group in 2-D case so that braid statistics becomes possible.

In [A50] (http://tinyurl.com/y9e6pg4d) the q-deformations of Clifford algebras are discussed, and this discussion seems to apply in TGD framework.

- 1. It is assumed that a Lie-algebra g has action in the Clifford algebra. The q-deformations of Clifford algebra is required to be consistent with the q-deformation of the universal enveloping algebra Ug.
- 2. The simplest situation corresponds to group su(2) so that Clifford algebra elements are labelled by spin $\pm 1/2$. In this case the q-anticommutor for creation operators for spin up states reduces to an anti-commutator giving q-deformation I_q of unit matrix but for the spin down states one has genuine q-anti-commutator containing besides I_q also number operator for spin up states at the right hand side.
- 3. The undeformed anti-commutation relations can be witten as

$$P_{ij}^{+kl}a_ka_l = 0 , \quad P_{ij}^{+kl}a_k^{\dagger}a_l^{\dagger} = 0 , \quad a^i a_j^{\dagger} + P_{jk}^{ih}a_h^{\dagger}a^k = \delta_j^i 1 .$$
(5.4.13)

Here $P_{ij}^{kl} = \delta_l^i \delta_k^j$ is the permutator and $P_{ij}^{+kl} = (1+P)/2$ is projector. The q-deformation reduces to a replacement of the permutator and projector with q-permutator P_q and q-projector and P_q^+ , which are both fixed by the quantum group.

- 4. Also the condition that deformed algebra has same Poincare series as the original one is posed. This says that the representation content is not changed that is the dimensions of summands in a representation as direct sum of graded sub-spaces are same for algebra and its q-deformation. If one has quantum group in a strict sense of the word (quasi-triangularity (genuine braid group) rather that triangularity requiring that the square of the deformed permutator P_q is unit matrix, one can have two situations.
 - (a) g = sl(N) (special linear group such as SL(2, F), F = R, C) or g = Sp(N = 2n) (symplectic group such as Sp(2) = SL(2, R)), which is subgroup of sl(N). Creation (annihilation-) operators must form the N-dimensional defining representation of g.

- (b) g = sl(N) and one has direct sum of M N-dimensional defining representations of g. The M copies of representation are ordered so that they can be identified as strands of braid so that the deformation makes sense at the space-like ends of string world sheet naturally. q-projector is proportional to so called universal R-matrix.
- 5. It is also shown that q-deformed oscillator operators can be expressed as polynomials of the ordinary ones.

The following argument suggest that the g must correspond to the minimal choices sl(2, R) (or su(2)) in TGD framework.

- 1. The q-Clifford algebra structure of WCW should be induced from that for the fermionic oscillator algebra. g cannot correspond to $su(2)_{spin} \times su(2)_{ew}$ since spin and weak isospin label fermionic oscillator operators beside conformal weights but must relate closely to this group. The physical reason is that the separate conservation of quark and lepton numbers and light-likeness in 8-D sense imply correlations between the components of the spinors and reduce g.
- 2. For a given H-chirality (quark/lepton) 8-D light-likeness forced by massless Dirac equation at the light-like boundary of the string world sheet at parton orbit implies correlation between M^4 and CP_2 chiralities. Hence there are 4+4 spinor components corresponding to fermions and antifermions with physical (creation operators) and unphysical (annihilation operators) polarizations. This allows two creation operators with given H-chirality (quark or lepton) and fermion number. Same holds true for antifermions. By fermion number conservation one obtains a reduction to SU(2) doublets and the quantum group would be sl(2) = sp(2)for which "special linear" implies "symplectic".

5.5 Quantum Criticality And Kähler-Dirac Action

The precise mathematical formulation of quantum criticality has remained one of the basic challenges of quantum TGD. The belief has been that the existence of conserved current for Kähler-Dirac equation are possible if Kähler action is critical for the 3-surface in question in the sense that the deformation in question corresponds to vanishing of second variation of Kähler action. The vanishing of the second variation states that the deformation of the Kähler-Dirac gamma matrix is divergence free just like the Kähler-Dirac gamma matrix itself and is therefore very natural.

2-D conformal invariance accompanies 2-D criticality and allows to satisfy these conditions for spinor modes localized at 2-D surfaces - string world sheets and possibly also partonic 2-surfaces. This localization is in the generic case forced by the conditions that em charge is well-defined for the spinor modes: this requires that classical W fields vanish and also the vanishing of classical Z^0 field is natural -at least above weak scale. Only 2 Kähler-Dirac gamma matrices can be non-vanishing and this is possible only for Kähler-Dirac action.

5.5.1 What Quantum Criticality Could Mean?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means mathematically is however far from clear and one can imagine several meanings for it.

- 1. What is obvious is that quantum criticality implies quantization of Kähler coupling strength as a mathematical analog of critical temperature so that the theory becomes mathematically unique if only single critical temperature is possible. Physically this means the presence of long range fluctuations characteristic for criticality and perhaps assignable to the effective hierarchy of Planck constants having explanation in terms of effective covering spaces of the embedding space. This hierarchy follows from the vacuum degeneracy of Kähler action, which in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of criticality.
- 2. At more technical level one would expect criticality to correspond to deformations of a given preferred extremal defining a vanishing second variation of Kähler Kähler function or Kähler action.

- (a) For Kähler function this criticality is analogous to thermodynamical criticality. The Hessian matrix defined by the second derivatives of free energy or potential function becomes degenerate at criticality as function of control variables which now would be naturally zero modes not contribution to Kähler metric of WCW but appearing as parameters in it. The bevavior variables correspond to quantum fluctuating degrees of freedom and according to catastrophe theory a big change can in quantum fluctuating degrees of freedom at criticality for zero modes. This would be control of quantum state by varying classical variables. Cusp catastrophe is standard example of this. One can imagined also a situation in which the roles of zero modes and behavior variables change and big jump in the values of zero modes is induced by small variation in behavior variables. This would mean quantum control of classical variables.
- (b) Zero modes controlling quantum fluctuating variables in Kähler function would correspond to vanishing of also second derivatives of potential function at extremum in certain directions so that the matrix defined by second derivatives does not have maximum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional model is provided by the catastrophe theory of Thom [A44]. Cusp catastrophe (see http://tinyurl.com/yddpfdgo) [A2] is the simplest catastrophe one can think of, and here the folds of cusp where discontinuous jump occurs correspond to criticality with respect to one control variable and the tip to criticality with respect to both control variables.
- 3. Quantum criticality makes sense also for Kähler action.
 - (a) Now one considers space-time surface connecting which 3-surfaces at the boundaries of CD. The non-determinism of Kähler action allows the possibility of having several space-time sheets connecting the ends of space-time surface but the conditions that classical charges are same for them reduces this number so that it could be finite. Quantum criticality in this sense implies non-determinism analogous to that of critical systems since preferred extremals can coincide and suffer this kind of bifurcation in the interior of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and the integer n in $h_{eff} = n \times h$ [K27] corresponds to the number of degenerate space-time sheets with same Kähler action and conserved classical charges.
 - (b) Also now one expects a hierarchy of criticalities and since criticality and conformal invariance are closely related, a natural conjecture is that the fractal hierarchy of sub-algebras of conformal algebra isomorphic to conformal algebra itself and having conformal weights coming as multiples of n corresponds to the hierarchy of Planck constants. This hierarchy would define a hierarchy of symmetry breakings in the sense that only the sub-algebra would act as gauge symmetries.
 - (c) The assignment of this hierarchy with super-symplectic algebra having conformal structure with respect to the light-like radial coordinate of light-cone boundary looks very attractive. An interesting question is what is the role of the super-conformal algebra associated with the isometries of light-cone boundary $R_+ \times S^2$ which are conformal transformations of sphere S^2 with a scaling of radial coordinate compensating the scaling induced by the conformal transformation. Does it act as dynamical or gauge symmetries?
- 4. I have discussed what criticality could mean for Kähler-Dirac action [K84].
 - (a) I have conjectured that it leads to the existence of additional conserved currents defined by the variations which do not affect the value of Kähler action. These arguments are far from being mathematically rigorous and the recent view about the solutions of the Kähler-Dirac equation predicting that the spinor modes are restricted to 2-D string world sheets requires a modification of these arguments.

- (b) The basic challenge is to understand the mechanism making this kind of currents conserved: the same challenge is met already in the case of isometries since embedding space coordinates appear as parameters in Kähler-Dirac action. Kähler-Dirac equation is satisfied if the first variation of the canonical momentum densities contracted with the embedding space gamma matrices annihilates the spinor mode. Situation is analogous to massless Dirac equation: it does not imply the vanishing of four-momentum, only the vanishing of mass. One obtains conserved fermion current associated with deformations only if the deformation of the Kähler-Dirac gamma matrix is divergenceless just like the Kähler-Dirac gamma matrix itself. This conditions requires the vanishing of the second variation of Kähler action.
- (c) It is far from obvious that these conditions can be satisfied. The localization of the spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generic case that em charge is well-defined for spinor modes implies holomorphy allowing to formulate current conservation for the deformations of the space-time surface for second quantized induced spinor field. The crux is that the deformation respects the holomorphy properties of the Kähler-Dirac gamma matrices at string world sheet and thus does not mix Γ^z with $\Gamma^{\overline{z}}$. The deformation of Γ^z has only z-component and also annihilates the holomorphic spinor.

This mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac gamma matrices in directions orthogonal to the 2-surface must vanish and this is not possible for other actions. This also means that energy momentum tensor has rank 2 as a matrix. Cosmic string solutions are an exception since in this case CP_2 projection of space-time surface is 2-D and conditions guaranteing vanishing of classical W fields can be satisfied without the restriction to 2-surface.

The vacuum degeneracy of Kähler action strongly suggests that the number of critical deformations is always infinite and that these deformations define an infinite inclusion hierarchy of super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge theories. These super-conformal inclusion hierarchies would realize the inclusion hierarchies for hyper-finite factors of type II₁.

5.5.2 Quantum Criticality And Fermionic Representation Of Conserved Charges Associated With Second Variations Of Kähler Action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The development of the understanding of conservation laws has been however slow. Kähler-Dirac action provides excellent candidates for quantum counterparts of Noether charges. The problem is that the embedding space coordinates are in the role of classical external fields and induces spinor fields are second quantized so that it is not at all clear whether one obtains conserved charges.

What does the conservation of the fermionic Noether current require?

The obvious anser to the question of the title is that the conservation of the fermionic current requires the vanishing of the first variation of Kähler-Dirac action with respect to embedding space coordinates. This is certainly true but need not mean vanishing of the second variation of Kähler action as thought first. Hence fermionic conserved currents might be obtained for much more general variations than critical ones.

1. The Kähler-Dirac action assigns to a deformation of the space-time surface a conserved charge expressible as bilinears of fermionic oscillator operators only if the first variation of the Kähler-Dirac action under this deformation vanishes.

The vanishing of the first variation for the Kähler-Dirac action is equivalent with the vanishing of the second variation for the Kähler action. This can be seen by the explicit calculation of the second variation of the Kähler-Dirac action and by performing partial integration for the terms containing derivatives of Ψ and $\overline{\Psi}$ to give a total divergence representing the difference of the charge at upper and lower boundaries of the causal diamond plus a four-dimensional integral of the divergence term defined as the integral of the quantity

$$\Delta S_D = \overline{\Psi} \Gamma^k D_\alpha J_k^\alpha \Psi ,$$

$$J_k^\alpha = \frac{\partial^2 L_K}{\partial h_\alpha^k \partial h_\beta^l} \delta h_\beta^k + \frac{\partial^2 L_K}{\partial h_\alpha^k \partial h^l} \delta h^l .$$
(5.5.1)

Here h_{β}^{k} denote partial derivative of the embedding space coordinates with respect to spacetime coordinates. ΔS_{D} vanishes if this term vanishes:

$$D_{\alpha}J_k^{\alpha} = 0$$
 .

The condition states the vanishing of the second variation of Kähler action. This can of course occur only for preferred deformations of X^4 . One could consider the possibility that these deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant divergence is in question so that J_k^{α} does not define conserved classical charge in the general case.

- 2. This condition is however un-necessarily strong. It is enough that that the deformation of Dirac operator anihilates the spinor mode, which can also change in the deformation. It must be possible to compensate the change of the covariant derivative in the deformation by a gauge transformation which requires that deformations act as gauge transformations on induce gauge potentials. This gives additional constraint and strongly suggests Kac-Moody type algebra for the deformations. Conformal transformations would satisfy this constraint and are suggested by quantum criticality.
- 3. It is essential that the Kähler-Dirac equation holds true so that the Kähler-Dirac action vanishes: this is needed to cancel the contribution to the second variation coming from the determinant of the induced metric. The condition that the Kähler-Dirac equation is satisfied for the deformed space-time surface requires that also Ψ suffers a transformation determined by the deformation. This gives

$$\delta \Psi = -\frac{1}{D} \times \Gamma^k J_k^{\alpha} \Psi . \qquad (5.5.2)$$

Here 1/D is the inverse of the Kähler-Dirac operator defining the counterpart of the fermionic propagator.

4. The fermionic conserved currents associated with the deformations are obtained from the standard conserved fermion current

$$J^{\alpha} = \overline{\Psi} \Gamma^{\alpha} \Psi \quad . \tag{5.5.3}$$

Note that this current is conserved only if the space-time surface is extremal of Kähler action: this is also needed to guarantee Hermiticity and same form for the Kähler-Dirac equation for Ψ and its conjugate as well as absence of mass term essential for super-conformal invariance. Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by replacing Kähler-Dirac gamma matrices with their increments in the deformation keeping Ψ

and its conjugate constant. Second term is obtained by replacing Ψ with its increment $\delta\Psi$. The third term is obtained by performing same operation for $\delta\overline{\Psi}$.

$$J^{\alpha} = \overline{\Psi} \Gamma^{k} J^{\alpha}_{k} \Psi + \overline{\Psi} \widehat{\Gamma}^{\alpha} \delta \Psi + \delta \overline{\Psi} \widehat{\Gamma}^{\alpha} \Psi . \qquad (5.5.4)$$

These currents provide a representation for the algebra defined by the conserved charges analogous to a fermionic representation of Kac-Moody algebra.

- 5. Also conserved super charges corresponding to super-conformal invariance are obtained. The first class of super currents are obtained by replacing Ψ or $\overline{\Psi}$ right handed neutrino spinor or its conjugate in the expression for the conserved fermion current and performing the above procedure giving two terms since nothing happens to the covariantly constant right handed-neutrino spinor. Second class of conserved currents is defined by the solutions of the Kähler-Dirac equation interpreted as c-number fields replacing Ψ or $\overline{\Psi}$ and the same procedure gives three terms appearing in the super current.
- 6. The existence of vanishing of second variations is analogous to criticality in systems defined by a potential function for which the rank of the matrix defined by second derivatives of the potential function vanishes at criticality. Quantum criticality becomes the prerequisite for the existence of quantum theory since fermionic anti-commutation relations in principle can be fixed from the condition that the algebra in question is equivalent with the algebra formed by the vector fields defining the deformations of the space-time surface defining second variations. Quantum criticality in this sense would also select preferred extremals of Kähler action as analogs of Bohr orbits and the spectrum of preferred extremals would be more or less equivalent with the expected existence of infinite-dimensional symmetry algebras.

It is far from obvious that the criticality conditions or even the weaker conditions guaranteing the existence of (say) isometry charges can be satisfied. It seems that the restriction of spinor modes to 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - implied by the condition that em charge is well-define for them, is the manner to achieve this. The reason is that conformal invariance allows complexification of the Kähler-Dirac gamma matrices and allows to construct spinor modes as holomorphic modes and their conjugates. Holomorphy reduces K-D equation to algebraic condition that Γ^z annihilates the spinor mode. If this is true also the deformation of Γ^z then the existince of conserved current follows. It is essential that only two Kähler-Dirac gamma matrices are non-vanishing and this is possible only for Kähler-Dirac action.

About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

- 1. Any Cartan algebra of the isometry group $P \times SU(3)$ (there are two types of them for P corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations (one could require that the isometries respect the geometry of CD). The corresponding second order charges for Kähler action are conserved but vanish since the corresponding conjugate coordinates are cyclic for the Kähler metric and Kähler form so that the conserved current is proportional to the gradient of a Killing vector field which is constant in these coordinates.
- 2. Contrary to the original conclusion, the corresponding fermionic charges expressible as fermionic bilinears are first order in deformation and do not vanish! Four-momentum and color quantum numbers are defined for Kähler action as classical conserved quantities and for Kähler-Dirac action as quantal charges.

Critical manifold is infinite-dimensional for Kähler action

Some examples might help to understand what is involved.
- 1. The action defined by four-volume gives a first glimpse about what one can expect. In this case Kähler-Dirac gamma matrices reduce to the induced gamma matrices. Second variations satisfy d'Alembert type equation in the induced metric so that the analogs of massless fields are in question. Mass term is present only if some dimensions are compact. The vanishing of excitations at light-like boundaries is a natural boundary condition and might well imply that the solution spectrum could be empty. Hence it is quite possible that four-volume action leads to a trivial theory.
- 2. For the vacuum extremals of Kähler action the situation is different. There exists an infinite number of second variations and the classical non-determinism suggests that deformations vanishing at the light-like boundaries exist. For the canonical embedding of M^4 the equation for second variations is trivially satisfied. If the CP_2 projection of the vacuum extremal is onedimensional, the second variation contains a non-vanishing term and an equation analogous to massless d'Alembert equation for the increments of CP_2 coordinates is obtained. Also for the vacuum extremals of Kähler action with 2-D CP_2 projection all terms involving induced Kähler form vanish and the field equations reduce to d'Alembert type equations for CP_2 coordinates. A possible interpretation is as the classical analog of Higgs field. For the deformations of non-vacuum extremals this would suggest the presence of terms analogous to mass terms: these kind of terms indeed appear and are proportional to δs_k . M^4 degrees of freedom decouple completely and one obtains QFT type situation.
- 3. The physical expectation is that at least for the vacuum extremals the critical manifold is infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies of inclusions of hyper-finite factors of type II_1 possibly having interpretation in terms of inclusions of the super conformal algebras defined by the critical deformations.
- 4. The properties of Kähler action give support for this expectation. The critical manifold is infinite-dimensional in the case of vacuum extremals. Canonical embedding of M^4 would correspond to maximal criticality analogous to that encountered at the tip of the cusp catastrophe. The natural guess would be that as one deforms the vacuum extremal the previously critical degrees of freedom are transformed to non-critical ones. The dimension of the critical manifold could remain infinite for all preferred extremals of the Kähler action. For instance, for cosmic string like objects any complex manifold of CP_2 defines cosmic string like objects so that there is a huge degeneracy is expected also now. For CP_2 type vacuum extremals M^4 projection is arbitrary light-like curve so that also now infinite degeneracy is expected for the deformations.

This leads to the conjecture that the critical deformations correspond to sub-algebras of super-conformal algebras with conformal weights coming as integer multiples of fixed integer m. One would have infinite hierarchy of breakings of conformal symmetry labelled by m. The super-conformal algebras would be effectively m-dimensional. Since all commutators with the critical sub-algebra would create zero energy states. In ordinary conformal field theory one have maximal criticality corresponding to m = 1.

Critical super-algebra and zero modes

The relationship of the critical super-algebra to WCW geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler action for preferred extremals means that the critical variations are orthogonal to all deformations of the space-time surface with respect to the WCW metric.

The original expectation was that critical deformations correspond to zero modes but this interpretation need not be correct since critical deformations can leave 3-surface invariant but affect corresponding preferred extremal: this would conform with the non-deterministic character of the dynamics which is indeed the basic signature of criticality. Rather, critical deformations are limiting cases of ordinary deformations acting in quantum fluctuating degrees of freedom. This conforms with the fact that WCW metric vanishes identically for canonically imbedded M^4 and that Kähler action has fourth order terms as first non-vanishing terms in perturbative expansion (for Kähler-Dirac the expansion is quadratic in deformation).

Therefore the super-conformal algebra associated with the critical deformations has genuine physical content.

- 2. Since the action of X^4 local Hamiltonians of $\delta M^4_{\times} CP_2$ corresponds to the action in quantum fluctuating degrees of freedom, critical deformations cannot correspond to this kind of Hamiltonians.
- 3. The notion of finite measurement resolution suggests that the degrees of freedom which are below measurement resolution correspond to vanishing gauge charges. The sub-algebras of critical super-conformal algebra for which charges annihilate physical states could correspond to this kind of gauge algebras.
- 4. The conserved super charges associated with the vanishing second variations cannot give WCW metric as their anti-commutator. This would also lead to a conflict with the effective 2-dimensionality stating that WCW line-element is expressible as sum of contribution coming from partonic 2-surfaces as also with fermionic anti-commutation relations.

Connection with quantum criticality

The notion of quantum criticality of TGD Universe was originally inspired by the question how to make TGD unique if Kähler function for WCW is defined by the Kähler action for a preferred extremal assignable to a given 3-surface. Vacuum functional defined by the exponent of Kähler function is analogous to thermodynamical weight and the obviou idea with Kähler coupling strength taking the role of temperature. The obvious idea was that the value of Kähler coupling strength is analogous to critical temperature so that TGD would be more or less uniquely defined.

To understand the delicacies it is convenient to consider various variations of Kähler action first.

- 1. The variation can leave 3-surface invariant but modify space-time surface such that Kähler action remains invariant. In this case infinitesimal deformation reduces to a diffeomorphism at space-like 3-surface and perhaps also at light-like 3-surfaces. In this case the correspondence between X^3 and $X^4(X^3)$ would not be unique and one would have non-deterministic dynamics characteristic for critical systems. This criticality would correspond to criticality of Kähler action at X^3 . Note that the original working hypothesis was that $X^4(X^3)$ is unique. The failure of the strict classical determinism implying spin glass type vacuum degeneracy indeed suggets that this is the case.
- 2. The variation could act on zero modes which do not affect Kähler metric which corresponds to (1, 1) part of Hessian in complex coordinates for WCW. Only the zero modes characterizing 3-surface appearing as parameters in the metric WCW would be affected and the result would be a generalization of conformal transformation. Kähler function would change but only due to the change in zero modes. These transformations do not seem to correspond to critical transformations since Kähler function changes.
- 3. The variation could act on 3-surface both in zero modes and dynamical degrees of freedom represented by complex coordinates. It would of course affect also the space-time surface. Criticality for Kähler function would mean that Kähler metric has zero modes at X^3 meaning that (1, 1) part of Hessian is degenerate. This could mean that in the vicinity of X^3 the Kähler form has non-definite signature: physically this is unacceptable since inner product in Hilbert space would not be positive definite.

Critical transformations might relate closely to the coset space decomposition of WCW to a union of coset spaces G/H labelled by zero modes.

1. The critical deformations leave 3-surface X^3 invariant as do also the transformations of H associated with X^3 . If H affects $X^4(X^3)$ and corresponds to critical transformations then

critical transformation would extend WCW to a bundle for which 3-surfaces would be base points and preferred extremals $X^4(X^3)$ would define the fiber. Gauge invariance with respect to H would generalize the assumption that $X^4(X^3)$ is unique.

- 2. Critical deformations could correspond to H or sub-group of H (which dependes on X^3). For other 3-surfaces than X^3 the action of H is non-trivial as the case of $CP_2 = SU(3)/U(2)$ makes easy to understand.
- 3. A possible identification of Lie-algebra of H is as a sub-algebra of Virasoro algebra associated with the symplectic transformations of $\delta M^4 \times CP_2$ and acting as diffeomorphisms for the light-like radial coordinate of δM^4_+ . The sub-algebras of Virasoro algebra have conformal weights coming as integer multiplies of a given conformal weight m and form inclusion hierarchies suggesting a direct connection with finite measurement resolution realized in terms of inclusions of hyperfinite factors of type II₁. For m > 1 one would have breaking of maximal conformal symmetry. The action of these Virasoro algebra on symplectic algebra would make the corresponding sub-algebras gauge degrees of freedom so that the number of symplectic generators generating non-gauge transformations would be finite. This result is not surprising since also for 2-D critical systems criticality corresponds to conformal invariance acting as local scalings.

The vanishing of the second variation for some deformations means that the system is critical, in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp catastrophe. Quantum criticality realized as the vanishing of the second variation gives hopes about a more or less unique identification of preferred extremals and considered alternative identifications such as absolute minimization of Kähler action which is just the opposite of criticality.

One must be very cautious here: there are two criticalities: one for the extremals of Kähler action with respect to deformations of four-surface and second for the Kähler function itself with respect to deformations of 3-surface: these criticalities are not equivalent since in the latter case variation respects preferred extremal property unlike in the first case.

- 1. The criticality for preferred extremals would make 4-D criticality a property of all physical systems.
- 2. The criticality for Kähler function would be 3-D and might hold only for very special systems. In fact, the criticality means that some eigenvalues for the Hessian of Kähler function vanish and for nearby 3-surfaces some eigenvalues are negative. On the other hand the Kähler metric defined by (1, 1) part of Hessian in complex coordinates must be positive definite. Thus criticality might imply problems.

This allows and suggests non-criticality of Kähler function coming from Kähler action for Euclidian space-time regions: this is mathematically the simplest situation since in this case there are no zero modes causing troubles in Gaussian approximation to functional integral. The Morse function coming from Kähler action in Minkowskian as imaginary contribution analogous to that appearing in path integral could be critical and allow non-definite signature in principle. In fact this is expected by the defining properties of Morse function.

3. The almost 2-dimensionality implied by strong form of holography suggests that the interior degrees of freedom of 3-surface can be regarded almost gauge degrees of freedom and that this relates directly to generalised conformal symmetries associated with symplectic isometries of WCW. These degrees of freedom are not critical in the sense inspired by G/H decomposition. The only plausible interaction seems to be that these degrees of freedom correspond to deformations in zero modes.

Both the super-symmetry of D_K and conservation Dirac Noether currents for Kähler-Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function $V(x^1, x^2, ...)$ are characterized by the matrix defined by the second derivatives of the potential function and the rank of system classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to the complete vanishing of this matrix. Thom's catastrophe theory classifies these hierarchies, when the numbers of behavior and control variables are small (smaller than 5). In the recent case the situation is infinite-dimensional and the criticality conditions give additional field equations as existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy of criticalities is realized. For a general vacuum extremal with at most 2-D CP_2 projection the matrix defined by the second variation vanishes because $J_{\alpha\beta} = 0$ vanishes and also the matrix $(J_k^{\alpha} + J_k^{\alpha})(J_l^{\beta} + J_l^{\beta})$ vanishes by the antisymmetry $J_k^{\alpha} = -J_k^{\alpha}$.

The formulation of quantal version of Equivalence Principle (EP) in string picture demonstrates that the conservation of of fermionic Noether currents defining gravitational fourmomentum and other Poincare quantum numbers requires that the deformation of the Kähler-Dirac equation obtained by replacing Kähler-Dirac gamma matrices with their deformations is also satisfied. Holomorphy can guarantee this. The original wrong conclusion was that this condition is equivalent with much stronger condition stating the vanishing of the second variation of Kähler action, which it is not. There is analogy for this: massless Dirac equation does not imply the vanishing of four-momentum.

- 3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In particular, the isometries of the embedding space define conserved currents represented in terms of the fermionic oscillator operators if the second variations defined by the infinitesimal isometries vanish for the Kähler-Dirac action. For vacuum extremals the dimension of the critical manifold is infinite: maybe there is hierarchy of quantum criticalities for which this dimension decreases step by step but remains always infinite. This hierarchy could closely relate to the hierarchy of inclusions of hyper-finite factors of type II_1 . Also the conserved charges associated with super-symplectic and Super Kac-Moody algebras would require infinite-dimensional critical manifold defined by the spectrum of second variations.
- 4. Phase transitions are characterized by the symmetries of the phases involved with the transitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of quantum criticalities. The notion of finite quantum measurement resolution based on the hierarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge symmetries characterized by gauge groups in ADE hierarchy [K27] with degrees of freedom below the measurement resolution identified as gauge degrees of freedom.
- 5. Does this criticality have anything to do with the criticality against the phase transitions changing the value of Planck constant? If the geodesic sphere S_I^2 for which induced Kähler form vanishes corresponds to the back of the CP_2 book (as one expects), this could be the case. The homologically non-trivial geodesic sphere $S^{1}2_{II}$ is as far as possible from vacuum extremals. If it corresponds to the back of CP_2 book, cosmic strings would be quantum critical with respect to phase transition changing Planck constant. They cannot however correspond to preferred extremals.

5.5.3 Preferred Extremal Property As Classical Correlate For Quantum Criticality, Holography, And Quantum Classical Correspondence

The Noether currents assignable to the Kähler-Dirac equation are conserved only if the first variation of the Kähler-Dirac operator D_K defined by Kähler action vanishes. This is equivalent with the vanishing of the second variation of Kähler action -at least for the variations corresponding to dynamical symmetries having interpretation as dynamical degrees of freedom which are below measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of $X^4(X_l^3)$ is what corresponds exactly to quantum criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a precise identification of the preferred extremals. Something which I should have noticed for more than decade ago! The question whether these extremals correspond to absolute minima remains however open.

The vanishing of second variations of preferred extremals -at least for deformations representing dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix. In the recent case this theory would be generalized to infinite-dimensional context. There are three kind of variables now but quantum classical correspondence (holography) allows to reduce the types of variables to two.

- 1. The variations of $X^4(X_l^3)$ vanishing at the intersections of $X^4(X_l^3)$ with the light-like boundaries of causal diamonds CD would represent behavior variables. At least the vacuum extremals of Kähler action would represent extremals for which the second variation vanishes identically (the "tip" of the multi-furcation set).
- 2. The zero modes of Kähler function would define the control variables interpreted as classical degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or holography or quantum classical correspondence) meaning that the configuration space metric is determined by the data coming from partonic 2-surfaces X^2 at intersections of X_l^3 with boundaries of CD, the interiors of 3-surfaces X^3 at the boundaries of CDs in rough sense correspond to zero modes so that there is indeed huge number of them. Also the variables characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler metric of WCW represent zero modes. Fixing the interior of the 3-surface would mean fixing of control variables. Extremum property would fix the 4-surface and behavior variables if boundary conditions are fixed to sufficient degree.
- 3. The complex variables characterizing X^2 would represent third kind of variables identified as quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical correspondence requires 1-1 correspondence between zero modes and these variables. This would be essentially holography stating that the 2-D "causal boundary" X^2 of $X^3(X^2)$ codes for the interior. Preferred extremal property identified as criticality condition would realize the holography by fixing the values of zero modes once X^2 is known and give rise to the holographic correspondence $X^2 \to X^3(X^2)$. The values of behavior variables determined by extremization would fix then the space-time surface $X^4(X_I^3)$ as a preferred extremal.
- 4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quantum criticality, quantum classical correspondence, holography, and preferred extremal property would all represent more or less the same thing. One must of course be very cautious since the boundary conditions at X_l^3 involve normal derivative and might bring in delicacies forcing to modify the simplest heuristic picture.
- 5. There is a possible connection with the notion of self-organized criticality [B6] introduced to explain the behavior of systems like sand piles. Self-organization in these systems tends to lead "to the edge". The challenge is to understand how system ends up to a critical state, which by definition is unstable. Mechanisms for this have been discovered and based on phase transitions occurring in a wide range of parameters so that critical point extends to a critical manifold. In TGD Universe quantum criticality suggests a universal mechanism of this kind. The criticality for the preferred extremals of Kähler action would mean that classically all systems are critical in well-defined sense and the question is only about the degree of criticality. Evolution could be seen as a process leading gradually to increasingly critical systems. One must however distinguish between the criticality associated with the preferred extremals of Kähler action and the criticality caused by the spin glass like energy landscape like structure for the space of the maxima of Kähler function.

5.5.4 Quantum Criticality And Electroweak Symmetries

In the following quantum criticali and electroweak symmetries are discussed for Kähler-Dirac action.

What does one mean with quantum criticality?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means mathematically is however far from clear and one can imagine several meanings for it.

- 1. What is obvious is that quantum criticality implies quantization of Kähler coupling strength as a mathematical analog of critical temperature so that the theory becomes mathematically unique if only single critical temperature is possible. Physically this means the presence of long range fluctuations characteristic for criticality and perhaps assignable to the effective hierarchy of Planck constants having explanation in terms of effective covering spaces of the embedding space. This hierarchy follows from the vacuum degeneracy of Kähler action, which in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of criticality.
- 2. At more technical level one would expect criticality to corresponds to deformations of a given preferred extremal defining a vanishing second variation of Kähler Kähler function or Kähler action.
 - (a) For Kähler function this criticality is analogous to thermodynamical criticality. The Hessian matrix defined by the second derivatives of free energy or potential function becomes degenerate at criticality as function of control variables which now would be naturally zero modes not contribution to Kähler metric of WCW but appearing as parameters in it. The bevavior variables correspond to quantum fluctuating degrees of freedom and according to catastrophe theory a big change can in quantum fluctuating degrees of freedom at criticality for zero modes. This would be control of quantum state by varying classical variables. Cusp catastrophe is standard example of this. One can imagined also a situation in which the roles of zero modes and behavior variables change and big jump in the values of zero modes is induced by small variation in behavior variables. This would mean quantum control of classical variables.
 - (b) Zero modes controlling quantum fluctuating variables in Kähler function would correspond to vanishing of also second derivatives of potential function at extremum in certain directions so that the matrix defined by second derivatives does not have maximum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional model is provided by the catastrophe theory of Thom [A44]. Cusp catastrophe (see http://tinyurl.com/yddpfdgo) [A2] is the simplest catastrophe one can think of, and here the folds of cusp where discontinuous jump occurs correspond to criticality with respect to one control variable and the tip to criticality with respect to both control variables.
- 3. Quantum criticality makes sense also for Kähler action.
 - (a) Now one considers space-time surface connecting which 3-surfaces at the boundaries of CD. The non-determinism of Kähler action allows the possibility of having several space-time sheets connecting the ends of space-time surface but the conditions that classical charges are same for them reduces this number so that it could be finite. Quantum criticality in this sense implies non-determinism analogous to that of critical systems since preferred extremals can coincide and suffer this kind of bifurcation in the interior of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and the integer n in $h_{eff} = n \times h$ [K27] corresponds to the number of degenerate space-time sheets with same Kähler action and conserved classical charges.
 - (b) Also now one expects a hierarchy of criticalities and since criticality and conformal invariance are closely related, a natural conjecture is that the fractal hierarchy of sub-algebras of conformal algebra isomorphic to conformal algebra itself and having conformal weights coming as multiples of n corresponds to the hierarchy of Planck constants. This hierarchy would define a hierarchy of symmetry breakings in the sense that only the sub-algebra would act as gauge symmetries.
 - (c) The assignment of this hierarchy with super-symplectic algebra having conformal structure with respect to the light-like radial coordinate of light-cone boundary looks very attractive. An interesting question is what is the role of the super-conformal algebra associated with the isometries of light-cone boundary $R_+ \times S^2$ which are conformal

transformations of sphere S^2 with a scaling of radial coordinate compensating the scaling induced by the conformal transformation. Does it act as dynamical or gauge symmetries?

- 4. I have discussed what criticality could mean for Kähler-Dirac action [K84].
 - (a) I have conjectured that it leads to the existence of additional conserved currents defined by the variations which do not affect the value of Kähler action. These arguments are far from being mathematically rigorous and the recent view about the solutions of the Kähler-Dirac equation predicting that the spinor modes are restricted to 2-D string world sheets requires a modification of these arguments.
 - (b) The basic challenge is to understand the mechanism making this kind of currents conserved: the same challenge is met already in the case of isometries since embedding space coordinates appear as parameters in Kähler-Dirac action. The existence of conserved currents does not actually require the vanishing of the second variation of Kähler action as claimed earlier. It is enough that the first variation of the canonical momentum densities contracted with the embedding space gamma matrices annihilates the spinor mode. Situation is analogous to massless Dirac equation: it does not imply the vanishing of four-momentum, only the vanishing of mass. Hence conserved currents are obtained also outside the quantum criticality.
 - (c) It is far from obvious that these conditions can be satisfied. The localization of the spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generaic case that em charge is well-defined for spinor modes implies holomorphy allowing to formulate current conservation for currents associated with the deformations of the space-time surface for second quantized induced spinor field. The crux is that the deformation respects the holomorphy properties of the modified gamma matrices at string world sheet and thus does not mix Γ^z with $\Gamma^{\overline{z}}$. The deformation of Γ^z has only z-component and also annihilates the holomorphic spinor. This mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac gamma matrices in directions orthogonal to the 2-surface must vanish and this is not possible for other actions. This also means that energy momentum tensor has rank 2 as matrix. Cosmic string solutions are an exception since in this case CP_2 projection of space-time surface is 2-D and conditions guaranteing vanishing of classical W fields can be satisfied.

In the following these arguments are formulated more precisely. The unexpected result is that critical deformations induce conformal scalings of the modified metric and electro-weak gauge transformations of the induced spinor connection at X^2 . Therefore holomorphy brings in the Kac-Moody symmetries associated with isometries of H (gravitation and color gauge group) and quantum criticality those associated with the holonomies of H (electro-weak-gauge group) as additional symmetries.

The variation of modes of the induced spinor field in a variation of space-time surface respecting the preferred extremal property

Consider first the variation of the induced spinor field in a variation of space-time surface respecting the preferred extremal property. The deformation must be such that the deformed Kähler-Dirac operator D annihilates the modified mode. By writing explicitly the variation of the Kähler-Dirac action (the action vanishes by Kähler-Dirac equation) one obtains deformations and requiring its vanishing one obtains

$$\delta \Psi = D^{-1}(\delta D)\Psi . \tag{5.5.5}$$

 D^{-1} is the inverse of the Kähler-Dirac operator defining the analog of Dirac propagator and δD defines vertex completely analogous to $\gamma^k \delta A_k$ in gauge theory context. The functional integral over preferred extremals can be carried out perturbatively by expressing δD in terms of δh^k and

one obtains stringy perturbation theory around X^2 associated with the preferred extremal defining maximum of Kähler function in Euclidian region and extremum of Kähler action in Minkowskian region (stationary phase approximation).

What one obtains is stringy perturbation theory for calculating n-points functions for fermions at the ends of braid strands located at partonic 2-surfaces and representing intersections of string world sheets and partonic 2-surfaces at the light-like boundaries of CDs. δD - or more precisely, its partial derivatives with respect to functional integration variables - appear at the vertices located anywhere in the interior of X^2 with outgoing fermions at braid ends. Bosonic propagators are replaced with correlation functions for δh^k . Fermionic propagator is defined by D^{-1} .

After 35 years or hard work this provides for the first time a reasonably explicit formula for the N-point functions of fermions. This is enough since by bosonic emergence these N-point functions define the basic building blocks of the scattering amplitudes. Note that bosonic emergence states that bosons corresponds to wormhole contacts with fermion and anti-fermion at the opposite wormhole throats.

What critical modes could mean for the induced spinor fields?

What critical modes could mean for the induced spinor fields at string world sheets and partonic 2-surfaces. The problematic part seems to be the variation of the Kähler-Dirac operator since it involves gradient. One cannot require that covariant derivative remains invariant since this would require that the components of the induced spinor connection remain invariant and this is quite too restrictive condition. Right handed neutrino solutions de-localized into entire X^2 are however an exception since they have no electro-weak gauge couplings and in this case the condition is obvious: Kähler-Dirac gamma matrices suffer a local scaling for critical deformations:

$$\delta\Gamma^{\mu} = \Lambda(x)\Gamma^{\mu} . \tag{5.5.6}$$

This guarantees that the Kähler-Dirac operator D is mapped to ΛD and still annihilates the modes of ν_R labelled by conformal weight, which thus remain unchanged.

What is the situation for the 2-D modes located at string world sheets? The condition is obvious. Ψ suffers an electro-weak gauge transformation as does also the induced spinor connection so that D_{μ} is not affected at all. Criticality condition states that the deformation of the space-time surfaces induces a conformal scaling of Γ^{μ} at X^2 . It might be possible to continue this conformal scaling of the entire space-time sheet but this might be not necessary and this would mean that all critical deformations induced conformal transformations of the effective metric of the space-time surface defined by $\{\Gamma^{\mu}, \Gamma^{\nu}\} = 2G^{\mu\nu}$. Thus it seems that effective metric is indeed central concept (recall that if the conjectured quaternionic structure is associated with the effective metric, it might be possible to avoid problem related to the Minkowskian signature in an elegant manner).

In fact, one can consider even more general action of critical deformation: the modes of the induced spinor field would be mixed together in the infinitesimal deformation besides infinitesimal electroweak gauge transformation, which is same for all modes. This would extend electroweak gauge symmetry. Kähler-Dirac equation holds true also for these deformations. One might wonder whether the conjectured dynamically generated gauge symmetries assignable to finite measurement resolution could be generated in this manner.

The infinitesimal generator of a critical deformation J_M can be expressed as tensor product of matrix A_M acting in the space of zero modes and of a generator of infinitesimal electro-weak gauge transformation $T_M(x)$ acting in the same manner on all modes: $J_M = A_M \otimes T_M(x)$. A_M is a spatially constant matrix and $T_M(x)$ decomposes to a direct sum of left- and right-handed $SU(2) \times U(1)$ Lie-algebra generators. Left-handed Lie-algebra generator can be regarded as a quaternion and right handed as a complex number. One can speak of a direct sum of left-handed local quaternion $q_{M,L}$ and right-handed local complex number $c_{M,R}$. The commutator $[J_M, J_N]$ is given by $[J_M, J_N] = [A_M, A_N] \otimes \{T_M(x), T_N(x)\} + \{A_M, A_N\} \otimes [T_M(x), T_N(x)]$. One has $\{T_M(x), T_N(x)\} = \{q_{M,L}(x), q_{N,L}(x)\} \oplus \{c_{M,R}(x), c_{N,R}(x)\}$ and $[T_M(x), T_N(x)] = [q_{M,L}(x), q_{N,L}(x)]$. The commutator property might have some deeper role.

Thus the critical deformations would induce conformal scalings of the effective metric and dynamical electro-weak gauge transformations. Electro-weak gauge symmetry would be a dynamical symmetry restricted to string world sheets and partonic 2-surfaces rather than acting at the entire space-time surface. For 4-D de-localized right-handed neutrino modes the conformal scalings of the effective metric are analogous to the conformal transformations of M^4 for $\mathcal{N} = 4$ SYMs. Also ordinary conformal symmetries of M^4 could be present for string world sheets and could act as symmetries of generalized Feynman graphs since even virtual wormhole throats are massless. An interesting question is whether the conformal invariance associated with the effective metric is the analog of dual conformal invariance in $\mathcal{N} = 4$ theories.

Critical deformations of space-time surface are accompanied by conserved fermionic currents. By using standard Noetherian formulas one can write

$$J_i^{\mu} = \overline{\Psi} \Gamma^{\mu} \delta_i \Psi + \delta_i \overline{\Psi} \Gamma^{\mu} \Psi \quad . \tag{5.5.7}$$

Here $\delta \Psi_i$ denotes derivative of the variation with respect to a group parameter labeled by *i*. Since $\delta \Psi_i$ reduces to an infinitesimal gauge transformation of Ψ induced by deformation, these currents are the analogs of gauge currents. The integrals of these currents along the braid strands at the ends of string world sheets define the analogs of gauge charges. The interpretation as Kac-Moody charges is also very attractive and I have proposed that the 2-D Hodge duals of gauge potentials could be identified as Kac-Moody currents. If so, the 2-D Hodge duals of J would define the quantum analogs of dynamical electro-weak gauge fields and Kac-Moody charge could be also seen as non-integral phase factor associated with the braid strand in Abelian approximation (the interpretation in terms of finite measurement resolution is discussed earlier).

One can also define super currents by replacing $\overline{\Psi}$ or Ψ by a particular mode of the induced spinor field as well as c-number valued currents by performing the replacement for both $\overline{\Psi}$ or Ψ . As expected, one obtains a super-conformal algebra with all modes of induced spinor fields acting as generators of super-symmetries restricted to 2-D surfaces. The number of the charges which do not annihilate physical states as also the effective number of fermionic modes could be finite and this would suggest that the integer \mathcal{N} for the supersymmetry in question is finite. This would conform with the earlier proposal inspired by the notion of finite measurement resolution implying the replacement of the partonic 2-surfaces with collections of braid ends.

Note that Kac-Moody charges might be associated with "long" braid strands connecting different wormhole throats as well as short braid strands connecting opposite throats of wormhole contacts. Both kinds of charges would appear in the theory.

What is the interpretation of the critical deformations?

Critical deformations bring in an additional gauge symmetry. Certainly not all possible gauge transformations are induced by the deformations of preferred extremals and a good guess is that they correspond to holomorphic gauge group elements as in theories with Kac-Moody symmetry. What is the physical character of this dynamical gauge symmetry?

- 1. Do the gauge charges vanish? Do they annihilate the physical states? Do only their positive energy parts annihilate the states so that one has a situation characteristic for the representation of Kac-Moody algebras. Or could some of these charges be analogous to the gauge charges associated with the constant gauge transformations in gauge theories and be therefore non-vanishing in the absence of confinement. Now one has electro-weak gauge charges and these should be non-vanishing. Can one assign them to deformations with a vanishing conformal weight and the remaining deformations to those with non-vanishing conformal weight and acting like Kac-Moody generators on the physical states?
- 2. The simplest option is that the critical Kac-Moody charges/gauge charges with non-vanishing positive conformal weight annihilate the physical states. Critical degrees of freedom would not disappear but make their presence known via the states labelled by different gauge charges assignable to critical deformations with vanishing conformal weight. Note that constant gauge transformations can be said to break the gauge symmetry also in the ordinary gauge theories unless one has confinement.

3. The hierarchy of quantum criticalities suggests however entire hierarchy of electro-weak Kac-Moody algebras. Does this mean a hierarchy of electro-weak symmetries breakings in which the number of Kac-Moody generators not annihilating the physical states gradually increases as also modes with a higher value of positive conformal weight fail to annihilate the physical state?

The only manner to have a hierarchy of algebras is by assuming that only the generators satisfying $n \mod N = 0$ define the sub-Kac-Moody algebra annihilating the physical states so that the generators with $n \mod N \neq 0$ would define the analogs of gauge charges. I have suggested for long time ago the relevance of kind of fractal hierarchy of Kac-Moody and Super-Virasoro algebras for TGD but failed to imagine any concrete realization.

A stronger condition would be that the algebra reduces to a finite dimensional algebra in the sense that the actions of generators Q_n and Q_{n+kN} are identical. This would correspond to periodic boundary conditions in the space of conformal weights. The notion of finite measurement resolution suggests that the number of independent fermionic oscillator operators is proportional to the number of braid ends so that an effective reduction to a finite algebra is expected.

Whatever the correct interpretation is, this would obviously refine the usual view about electro-weak symmetry breaking.

These arguments suggests the following overall view. The holomorphy of spinor modes gives rise to Kac-Moody algebra defined by isometries and includes besides Minkowskian generators associated with gravitation also SU(3) generators associated with color symmetries. Vanishing second variations in turn define electro-weak Kac-Moody type algebra.

Note that criticality suggests that one must perform functional integral over WCW by decomposing it to an integral over zero modes for which deformations of X^4 induce only an electroweak gauge transformation of the induced spinor field and to an integral over moduli corresponding to the remaining degrees of freedom.

5.5.5 The Emergence Of Yangian Symmetry And Gauge Potentials As Duals Of Kac-Moody Currents

Yangian symmetry plays a key role in $\mathcal{N} = 4$ super-symmetric gauge theories. What is special in Yangian symmetry is that the algebra contains also multi-local generators. In TGD framework multi-locality would naturally correspond to that with respect to partonic 2-surfaces and string world sheets and the proposal has been that the Super-Kac-Moody algebras assignable to string worlds sheets could generalize to Yangian.

Witten has written a beautiful exposition of Yangian algebras [B19]. Yangian is generated by two kinds of generators J^A and Q^A by a repeated formation of commutators. The number of commutations tells the integer characterizing the multi-locality and provides the Yangian algebra with grading by natural numbers. Witten describes a 2-dimensional QFT like situation in which one has 2-D situation and Kac-Moody currents assignable to real axis define the Kac-Moody charges as integrals in the usual manner. It is also assumed that the gauge potentials defined by the 1-form associated with the Kac-Moody current define a flat connection:

$$\partial_{\mu}j_{\nu}^{A} - \partial_{\nu}j_{\nu}^{A} + [j_{\mu}^{A}, j_{\nu}^{A}] = 0 \quad . \tag{5.5.8}$$

This condition guarantees that the generators of Yangian are conserved charges. One can however consider alternative ways to obtain the conservation.

1. The generators of first kind - call them J^A - are just the conserved Kac-Moody charges. The formula is given by

$$J_A = \int_{-\infty}^{\infty} dx j^{A0}(x,t) \quad . \tag{5.5.9}$$

2. The generators of second kind contain bi-local part. They are convolutions of generators of first kind associated with different points of string described as real axis. In the basic formula one has integration over the point of real axis.

$$Q^{A} = f^{A}_{BC} \int_{-\infty}^{\infty} dx \int_{x}^{\infty} dy j^{B0}(x,t) j^{C0}(y,t) - 2 \int_{-\infty}^{\infty} j^{A}_{x} dx \quad .$$
 (5.5.10)

These charges are indeed conserved if the curvature form is vanishing as a little calculation shows.

How to generalize this to the recent context?

- 1. The Kac-Moody charges would be associated with the braid strands connecting two partonic 2-surfaces - Strands would be located either at the space-like 3-surfaces at the ends of the space-time surface or at light-like 3-surfaces connecting the ends. Kähler-Dirac equation would define Super-Kac-Moody charges as standard Noether charges. Super charges would be obtained by replacing the second quantized spinor field or its conjugate in the fermionic bilinear by particular mode of the spinor field. By replacing both spinor field and its conjugate by its mode one would obtain a conserved c-number charge corresponding to an anti-commutator of two fermionic super-charges. The convolution involving double integral is however not number theoretically attractive whereas single 1-D integrals might make sense.
- 2. An encouraging observation is that the Hodge dual of the Kac-Moody current defines the analog of gauge potential and exponents of the conserved Kac-Moody charges could be identified as analogs for the non-integrable phase factors for the components of this gauge potential. This identification is precise only in the approximation that generators commute since only in this case the ordered integral $P(exp(i \int Adx))$ reduces to $P(exp(i \int Adx))$.Partonic 2-surfaces connected by braid strand would be analogous to nearby points of space-time in its discretization implying that Abelian approximation works. This conforms with the vision about finite measurement resolution as discretization in terms partonic 2-surfaces and braids.

This would make possible a direct identification of Kac-Moody symmetries in terms of gauge symmetries. For isometries one would obtain color gauge potentials and the analogs of gauge potentials for graviton field (in TGD framework the contraction with M^4 vierbein would transform tensor field to 4 vector fields). For Kac-Moody generators corresponding to holonomies one would obtain electroweak gauge potentials. Note that super-charges would give rise to a collection of spartners of gauge potentials automatically. One would obtain a badly broken SUSY with very large value of \mathcal{N} defined by the number of spinor modes as indeed speculated earlier [?].

3. The condition that the gauge field defined by 1-forms associated with the Kac-Moody currents are trivial looks unphysical since it would give rise to the analog of topological QFT with gauge potentials defined by the Kac-Moody charges. For the duals of Kac-Moody currents defining gauge potentials only covariant divergence vanishes implying that curvature form is

$$F_{\alpha\beta} = \epsilon_{\alpha\beta}[j_{\mu}, j^{\mu}] , \qquad (5.5.11)$$

so that the situation does not reduce to topological QFT unless the induced metric is diagonal. This is not the case in general for string world sheets.

4. It seems however that there is no need to assume that j_{μ} defines a flat connection. Witten mentions that although the discretization in the definition of J^A does not seem to be possible, it makes sense for Q^A in the case of G = SU(N) for any representation of G. For general G and its general representation there exists no satisfactory definition of Q. For certain representations, such as the fundamental representation of SU(N), the definition of Q^A is especially simple. One just takes the bi-local part of the previous formula:

$$Q^{A} = f^{A}_{BC} \sum_{i < j} J^{B}_{i} J^{C}_{j} .$$
(5.5.12)

What is remarkable that in this formula the summation need not refer to a discretized point of braid but to braid strands ordered by the label i by requiring that they form a connected polygon. Therefore the definition of J^A could be just as above.

5. This brings strongly in mind the interpretation in terms of twistor diagrams. Yangian would be identified as the algebra generated by the logarithms of non-integrable phase factors in Abelian approximation assigned with pairs of partonic 2-surfaces defined in terms of Kac-Moody currents assigned with the Kähler-Dirac action. Partonic 2-surfaces connected by braid strand would be analogous to nearby points of space-time in its discretization. This would fit nicely with the vision about finite measurement resolution as discretization in terms partonic 2-surfaces and braids.

The resulting algebra satisfies the basic commutation relations

$$[J^{A}, J^{B}] = f_{C}^{AB} J^{C} , \ [J^{A}, Q^{B}] = f_{C}^{AB} Q^{C} .$$
(5.5.13)

plus the rather complex Serre relations described in [B19].

5.6 Kähler-Dirac Equation And Super-Symmetries

The previous considerations concerning super-conformal symmetries and space-time SUSY have been based on general arguments. The new vision about preferred extremals and Kähler-Dirac equation however leads to a rather detailed understanding of super-conformal symmetries at the level of field equations and is bound to modify the existing vision about super-conformal symmetries.

Whether TGD predicts some variant of space-time SUSY or not has been a long-standing issue: the reason is that TGD does not allow Majorana spinors since fermion number conservation is exact. The more precise formulation of field equations made possible by the realization that spinor modes are localized at string world sheets allows to conclude that the analog of broken $\mathcal{N} = 8$ SUSY is predicted at parton level and that right-handed neutrino generates the minimally broken $\mathcal{N} = 2$ sub-SUSY.

One important outcome of criticality is the identification of gauge potentials as duals of Kac-Moody currents at the boundaries of string world sheets: quantum gauge potentials are defined only where they are needed that is string curves defining the non-integrable phase factors. This gives also rise to the realization of the conjectured Yangian in terms of the Kac-Moody charges and commutators in accordance with the earlier conjecture.

5.6.1 Super-Conformal Symmetries

It is good to summarize first the basic ideas about Super-Virasoro representations. TGD allows two kinds of super-conformal symmetries.

1. The first super-conformal symmetry is associated with $\delta M_{\pm}^4 \times CP_2$ and corresponds to symplectic symmetries of $\delta M_{\pm}^4 \times CP_2$. The reason for extension of conformal symmetries is metric 2-dimensionality of the light-like boundary δM_{\pm}^4 defining upper/lower boundary of causal diamond (CD). This super-conformal symmetry is something new and corresponds to replacing finite-dimensional Lie-group G for Kac-Moody symmetry with infinite-dimensional symplectic group. The light-like radial coordinate of δM_{\pm}^4 takes the role of the real part of complex coordinate z for ordinary conformal symmetry. Together with complex coordinate of S^2 it defines 3-D restriction of Hamilton-Jacobi variant of 4-D super-conformal symmetries. One can continue the conformal symmetries from light-cone boundary to CD by forming a slicing

by parallel copies of δM_{\pm}^4 . There are two possible slicings corresponding to the choices δM_{\pm}^4 and δM_{-}^4 assignable to the upper and lower boundaries of CD. These two choices correspond to two arrows of geometric time for the basis of zero energy states in ZEO.

2. Super-symplectic degrees of freedom determine the electroweak and color quantum numbers of elementary particles. Bosonic emergence implies that ground states assignable to partonic 2-surfaces correspond to partial waves in δM_{\pm}^4 and one obtains color partial waves in particular. These partial waves correspond to the solutions for the Dirac equation in embedding space and the correlation between color and electroweak quantum numbers is not quite correct. Super-Kac-Moody generators give the compensating color for massless states obtained from tachyonic ground states guaranteeing that standard correlation is obtained. Super-symplectic degrees are therefore directly visible in particle spectrum. One can say that at the point-like limit the WCW spinors reduce to tensor products of embedding space spinors assignable to the center of mass degrees of freedom for the partonic 2-surfaces defining wormhole throats.

I have proposed a physical interpretation of super-symplectic vibrational degrees of freedom in terms of degrees of freedom assignable to non-perturbative QCD. These degrees of freedom would be responsible for most of the baryon masses but their theoretical understanding is lacking in QCD framework.

3. The second super-conformal symmetry is assigned light-like 3-surfaces and to the isometries and holonomies of the embedding space and is analogous to the super-Kac-Moody symmetry of string models. Kac-Moody symmetries could be assigned to the light-like deformations of light-like 3-surfaces. Isometries give tensor factor $E^2 \times SU(3)$ and holonomies factor $SU(2)_L \times U(1)$. Altogether one has 5 tensor factors to super-conformal algebra. That the number is just five is essential for the success p-adic mass calculations [K47, K39].

The construction of solutions of the Kähler-Dirac equation suggests strongly that the fermionic representation of the Super-Kac-Moody algebra can be assigned as conserved charges associated with the space-like braid strands at both the 3-D space-like ends of space-time surfaces and with the light-like (or space-like with a small deformation) associated with the light-like 3-surfaces. The extension to Yangian algebra involving higher multi-linears of super-Kac Moody generators is also highly suggestive. These charges would be non-local and assignable to several wormhole contacts simultaneously. The ends of braids would correspond points of partonic 2-surfaces defining a discretization of the partonic 2-surface having interpretation in terms of finite measurement resolution.

These symmetries would correspond to electroweak and strong gauge fields and to gravitation. The duals of the currents giving rise to Kac-Moody charges would define the counterparts of gauge potentials and the conserved Kac-Moody charges would define the counterparts of non-integrable phase factors in gauge theories. The higher Yangian charges would define generalization of non-integrable phase factors. This would suggest a rather direct connection with the twistorial program for calculating the scattering amplitudes implies also by zero energy ontology.

Quantization recipes have worked in the case of super-string models and one can ask whether the application of quantization to the coefficients of powers of complex coordinates or Hamilton-Jacobi coordinates could lead to the understanding of the 4-D variants of the conformal symmetries and give detailed information about the representations of the Kac-Moody algebra too.

5.6.2 WCW Geometry And Super-Conformal Symmetries

The vision about the geometry of WCW has been roughly the following and the recent steps of progress induce to it only small modifications if any.

1. Kähler geometry is forced by the condition that hermitian conjugation allows geometrization. Kähler function is given by the Kähler action coming from space-time regions with Euclidian signature of the induced metric identifiable as lines of generalized Feynman diagrams. Minkowskian regions give imaginary contribution identifiable as the analog of Morse function and implying interference effects and stationary phase approximation. The vision about quantum TGD as almost topological QFT inspires the proposal that Kähler action reduces to 3-D terms reducing to Chern-Simons terms by the weak form of electric-magnetic duality. The recent proposal for preferred extremals is consistent with this property realizing also holography implied by general coordinate invariance. Strong form of general coordinate invariance implying effective 2-dimensionality in turn suggests that Kähler action is expressible string world sheets and possibly also areas of partonic 2-surfaces.

- 2. The complexified gamma matrices of WCW come as hermitian conjugate pairs and anticommute to the Kähler metric of WCW. Also bosonic generators of symplectic transformations of $\delta M_{\pm}^4 \times CP_2$ a assumed to act as isometries of WCW geometry can be complexified and appear as similar pairs. The action of isometry generators coincides with that of symplectic generators at partonic 2-surfaces and string world sheets but elsewhere inside the space-time surface it is expected to be deformed from the symplectic action. The superconformal transformations of $\delta M_{\pm}^4 \times CP_2$ acting on the light-like radial coordinate of δM_{\pm}^4 act as gauge symmetries of the geometry meaning that the corresponding WCW vector fields have zero norm.
- 3. WCW geometry has also zero modes which by definition do not contribute to WCW metric expect possibly by the dependence of the elements of WCW metric on zero modes through a conformal factor. In particular, induced CP_2 Kähler form and its analog for sphere $r_M = constant$ of light cone boundary are symplectic invariants, and one can define an infinite number of zero modes as invariants defined by Kähler fluxes over partonic 2-surfaces and string world sheets. This requires however the slicing of CD parallel copies of δM_+^4 or δM_-^4 . The physical interpretation of these non-quantum fluctuating degrees of freedom is as classical variables necessary for the interpretation of quantum measurement theory. Classical variable would metaphorically correspond the position of the pointer of the measurement instrument.
- 4. The construction receives a strong philosophical inspiration from the geometry of loop spaces. Loop spaces allow a unique Kähler geometry with maximal isometry group identifiable as Kac-Moody group. The reason is that otherwise Riemann connection does not exist. The only problem is that curvature scalar diverges since the Riemann tensor is by constant curvature property proportional to the metric. In 3-D case one would have union of constant curvature spaces labelled by zero modes and the situation is expected to be even more restrictive. The conjecture indeed is that WCW geometry exists only for $H = M^4 \times CP_2$: infinite-D Kähler geometric existence and therefore physics would be unique. One can also hope that Ricci scalar is finite and therefore zero by the constant curvature property so that Einstein's equations are satisfied.
- 5. The matrix elements of WCW Kähler metric are given in terms of the anti-commutators of the fermionic Noether super-charges associated with symplectic isometry currents. A given mode of induced spinor field characterized by embedding space chirality (quark or lepton), by spin and weak spin plus conformal weight n. If the super-conformal transformations for string modes act gauge transformations only the spinor modes with vanishing conformal weight correspond to non-zero modes of the WCW metric and the situation reduces essentially to the analog of $\mathcal{N} = 8$ SUSY.

The WCW Hamiltonians generating symplectic isometries correspond to the Hamiltonians spanning the symplectic group of $\delta M_{\pm}^4 \times CP_2$. One can say that the space of quantum fluctuating degrees of freedom is this symplectic group of $\delta M_{\pm}^4 \times CP_2$ or its subgroup or coset space: this must have very deep implications for the structure of the quantum TGD.

An interesting possibility is that the radial conformal weights of the symplectic algebra are linear combinations of the zeros of Riemann Zeta with integer coefficients. Also this option allows to realize the hierarchy of super-symplectic conformal symmetry breakings in terms of sub-algebras isomorphic to the entire super-symplectic algebra. WCW would have fractal structure corresponding to a hierarchy of quantum criticalities.

- 6. The localization of the induced spinors to string world sheets means that the super-symplectic Noether charges are associated with strings connecting partonic 2-surfaces. The physically obvious fact that given partonic surface can be accompanied by an arbitrary number of strings, forces a generalization of the super-symplectic algebra to a Yangian containing infinite number of n-local variants of various super-symplectic Noether charges. For instance, four -momentum is accompanied by multi-stringy variants involving four-momentum P_0^A and angular momentum generators. At the first level of the hierarchy one has $P_1^A = f_{BC}^A P_0^B \otimes J^C$. This hierarchy might play crucial role in understanding of the four-momenta of bound states.
- 7. Zero energy ontology brings in additional delicacies. Basic objects are now unions of partonic 2-surfaces at the ends of CD. One can generalize the expressions for the isometry generators in a straightforward manner by requiring that given isometry restricts to a symplectic transformation at partonic 2-surfaces and string world sheets.
- 8. One could criticize the effective metric 2-dimensionality forced by the general consistency arguments as something non-physical. The WCW Hamiltonians are expressed using only the data at partonic 2-surfaces and string string world sheets: this includes also 4-D tangent space data via the weak form of electric-magnetic duality so that one has only effective 2-dimensionality. Obviously WCW geometry must huge large gauge symmetries besides zero modes. The hierarchy of super-symplectic symmetries indeed represent gauge symmetries of this kind.

Effective 2-dimensionality realizing strong form of holography in turn is induced by the strong form of general coordinate invariance. Light-like 3-surfaces at which the signature of the induced metric changes must be equivalent with the 3-D space-like ends of space-time surfaces at the light-boundaries of space-time surfaces as far as WCW geometry is considered. This requires that the data from their 2-D intersections defining partonic 2-surfaces should dictate the WCW geometry. Note however that Super-Kac-Moody charges giving information about the interiors of 3-surfaces appear in the construction of the physical states.

5.6.3 The Relationship Between Inertial Gravitational Masses

The relationship between inertial and gravitational masses and Equivalence Principle have been on of the longstanding problems in TGD. Not surprisingly, the realization how GRT space-time relates to the many-sheeted space-time of TGD finally allowed to solve the problem.

ZEO and non-conservation of Poincare charges in Poincare invariant theory of gravitation

In positive energy ontology the Poincare invarance of TGD is in sharpt contrast with the fact that GRT based cosmology predicts non-conservation of Poincare charges (as a matter fact, the definition of Poincare charges is very questionable for general solutions of field equations).

In zero energy ontology (ZEO) all conserved (that is Noether-) charges of the Universe vanish identically and their densities should vanish in scales below the scale defining the scale for observations and assignable to causal diamond (CD). This observation allows to imagine a ways out of what seems to be a conflict of Poincare invariance with cosmological facts.

ZEO would explain the local non-conservation of average energies and other conserved quantum numbers in terms of the contributions of sub-CDs analogous to quantum fluctuations. Classical gravitation should have a thermodynamical description if this interpretation is correct. The average values of the quantum numbers assignable to a space-time sheet would depend on the size of CD and possibly also its location in M^4 . If the temporal distance between the tips of CD is interpreted as a quantized variant of cosmic time, the non-conservation of energy-momentum defined in this manner follows. One can say that conservation laws hold only true in given scale defined by the largest CD involved.

Equivalence Principle at quantum level

The interpretation of EP at quantum level has developed slowly and the recent view is that it reduces to quantum classical correspondence meaning that the classical charges of Kähler action can be identified with eigen values of quantal charges associated with Kähler-Dirac action.

- 1. At quantum level I have proposed coset representations for the pair of super-symplectic algebras assignable to the light-like boundaries of CD and the Super Kac-Moody algebra assignable to the light-like 3-surfaces defining the orbits of partonic 2-surfaces as realization of EP. For coset representation the differences of super-conformal generators would annihilate the physical states so that one can argue that the corresponding four-momenta are identical. One could even say that one obtains coset representation for the "vibrational" parts of the super-conformal algebras in question. It is now clear that this idea does not work. Note however that coset representations occur naturally for the subalgebras of symplectic algebra and Super Kac-Moody algebra and are naturally induced by finite measurement resolution.
- 2. The most recent view (2014) about understanding how EP emerges in TGD is described in [K78] and relies heavily on superconformal invariance and a detailed realisation of ZEO at quantum level. In this approach EP corresponds to quantum classical correspondence (QCC): four-momentum identified as classical conserved Noether charge for space-time sheets associated with Käbler action is identical with quantal four-momentum assignable to the representations of super-symplectic and super Kac-Moody algebras as in string models and having a realisation in ZEO in terms of wave functions in the space of causal diamonds (CDs).
- 3. The latest realization is that the eigenvalues of quantal four-momentum can be identified as eigenvalues of the four-momentum operator assignable to the Kähler-Dirac equation. This realisation seems to be consistent with the p-adic mass calculations requiring that the super-conformal algebra acts in the tensor product of 5 tensor factors.

Equivalence Principle at classical level

How Einstein's equations and General Relativity in long length scales emerges from TGD has been a long-standing interpretational problem of TGD.

The first proposal making sense even when one does not assume ZEO is that vacuum extremals are only approximate representations of the physical situation and that small fluctuations around them give rise to an inertial four-momentum identifiable as gravitational four-momentum identifiable in terms of Einstein tensor. EP would hold true in the sense that the average gravitational four-momentum would be determined by the Einstein tensor assignable to the vacuum extremal. This interpretation does not however take into account the many-sheeted character of TGD spacetime and is therefore questionable.

The resolution of the problem came from the realization that GRT is only an effective theory obtained by endowing M^4 with effective metric.

- 1. The replacement of superposition of fields with superposition of their effects means replacing superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences sum of the effects caused by the classical fields at the space-time sheets (see Fig. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. ?? in the appendix of this book).
- 2. This is true also for the classical gravitational field defined by the deviation from flat Minkowski metric instandard M^4 coordinates for the space-time sheets. One can define effective metric as sum of M^4 metric and deviations. This effective metric would correspond to that of General Relativity. This resolves long standing issues relating to the interpretation of TGD.
- 3. Einstein's equations could hold true for the effective metric. They are motivated by the underlying Poincare invariance which cannot be realized as global conservation laws for the effective metric. The conjecture vanishing of divergence of Kähler energy momentum tensor can be seen as the microscopic justification for the claim that Einstein's equations hold true for the effective space-time.
- 4. The breaking of Poincare invariance could have interpretation as effective breaking in zero energy ontology (ZEO), in which various conserved charges are length dependent and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein's equations generalize for preferred extremals of Kähbler action. This would actually represent at space-time level the notion of QCC rather than realise QCC interpreted as EP. The condition that the energy momentum tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if Einstein's equations with cosmological term hold true. This is the case also now but one can consider also more general solutions in which one has two cosmological constants which are not genuine constants anymore: this approach is not promising.

An interesting question is whether inertial-gravitational duality generalizes to the case of color gauge charges so that color gauge fluxes would correspond to "gravitational" color charges and the charges defined by the conserved currents associated with color isometries would define "inertial" color charges. Since the induced color fields are proportional to color Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in accordance with "gravitational" color confinement.

Constraints from p-adic mass calculations and ZEO

A further important physical input comes from p-adic thermodynamics forming a core element of p-adic mass calculations.

- 1. The first thing that one can get worried about relates to the extension of conformal symmetries. If the conformal symmetries generalize to D = 4, how can one take seriously the results of p-adic mass calculations based on 2-D conformal invariance? There is no reason to worry. The reduction of the conformal invariance to 2-D one for the preferred extremals takes care of this problem. This however requires that the fermionic contributions assignable to string world sheets and/or partonic 2-surfaces Super- Kac-Moody contributions should dictate the elementary particle masses. For hadrons also symplectic contributions should be present. This is a valuable hint in attempts to identify the mathematical structure in more detail.
- 2. ZEO suggests that all particles, even virtual ones correspond to massless wormhole throats carrying fermions. As a consequence, twistor approach would work and the kinematical constraints to vertices would allow the cancellation of divergences. This would suggest that the p-adic thermal expectation value is for the longitudinal M^2 momentum squared (the definition of CD selects $M^1 \subset M^2 \subset M^4$ as also does number theoretic vision). Also propagator would be determined by M^2 momentum. Lorentz invariance would be obtained by integration of the moduli for CD including also Lorentz boosts of CD.
- 3. In the original approach one allows states with arbitrary large values of L_0 as physical states. Usually one would require that L_0 annihilates the states. In the calculations however mass squared was assumed to be proportional L_0 apart from vacuum contribution. This is a questionable assumption. ZEO suggests that total mass squared vanishes and that one can decompose mass squared to a sum of longitudinal and transversal parts. If one can do the same decomposition to longitudinal and transverse parts also for the Super Virasoro algebra then one can calculate longitudinal mass squared as a p-adic thermal expectation in the transversal super-Virasoro algebra and only states with $L_0 = 0$ would contribute and one would have conformal invariance in the standard sense.
- 4. In the original approach the assumption motivated by Lorentz invariance has been that mass squared is replaced with conformal weight in thermodynamics, and that one first calculates the thermal average of the conformal weight and then equates it with mass squared. This assumption is somewhat ad hoc. ZEO however suggests an alternative interpretation in which one has zero energy states for which longitudinal mass squared of positive energy state derive from p-adic thermodynamics. Thermodynamics or rather, its square root would become part of quantum theory in ZEO. *M*-matrix is indeed product of hermitian square root of density matrix multiplied by unitary S-matrix and defines the entanglement coefficients between positive and negative energy parts of zero energy state.
- 5. The crucial constraint is that the number of super-conformal tensor factors is N = 5: this suggests that thermodynamics applied in Super-Kac-Moody degrees of freedom assignable

to string world sheets is enough, when one is interested in the masses of fermions and gauge bosons. Super-symplectic degrees of freedom can also contribute and determine the dominant contribution to baryon masses. Should also this contribution obey p-adic thermodynamics in the case when it is present? Or does the very fact that this contribution need not be present mean that it is not thermal? The symplectic contribution should correspond to hadronic padic length prime rather the one assignable to (say) u quark. Hadronic p-adic mass squared and partonic p-adic mass squared cannot be summed since primes are different. If one accepts the basic rules [K48], longitudinal energy and momentum are additive as indeed assumed in perturbative QCD.

- 6. Calculations work if the vacuum expectation value of the mass squared must be assumed to be tachyonic. There are two options depending on whether one whether p-adic thermodynamics gives total mass squared or longitudinal mass squared.
 - (a) One could argue that the total mass squared has naturally tachyonic ground state expectation since for massless extremals longitudinal momentum is light-like and transversal momentum squared is necessary present and non-vanishing by the localization to topological light ray of finite thickness of order p-adic length scale. Transversal degrees of freedom would be modeled with a particle in a box.
 - (b) If longitudinal mass squared is what is calculated, the condition would require that transversal momentum squared is negative so that instead of plane wave like behavior exponential damping would be required. This would conform with the localization in transversal degrees of freedom.

5.6.4 Realization Of Space-Time SUSY In TGD

The generators of super-conformal algebras are obtained by taking fermionic currents for second quantized fermions and replacing either fermion field or its conjugate with its particular mode. The resulting super currents are conserved and define super charges. By replacing both fermion and its conjugate with modes one obtains c-number valued currents. In this manner one also obtains the analogs of super-Poincare generators labelled by the conformal weight and other spin quantum numbers as Noether charges so that space-time SUSY is suggestive.

The super-conformal invariance in spinor modes is expected to be gauge symmetry so that only the generators with vanishing string world sheet conformal weight create physical states. This would leave only the conformal quantum numbers characterizing super-symplectic generators (radial conformal weight included) under consideration and the hierarchy of its sub-algebras acting as gauge symmetries giving rise to a hierarchy of criticalities having interpretation in terms of dark matter.

As found in the earlier section, the proposed anti-commutation relations for fermionic oscillator operators at the ends of string world sheets can be formulated so that they are analogous to those for Super Poincare algebra. The reason is that field equations assign a conserved 8momentum to the light-like geodesic line defining the boundary of string at the orbit of partonic 2-surface. Octonionic representation of sigma matrices making possible generalization of twistor formalism to 8-D context is also essential. As a matter, the final justification for the analog of space-time came from the generalization of twistor approach to 8-D context.

By counting the number of spin and weak isospin components of embedding space spinors satisfying massless algebraic Dirac equation one finds that broken $\mathcal{N} = 8$ SUSY is the expected space-time SUSY. $\mathcal{N} = 2$ SUSY assignable to right-handed neutrino is the least broken sub-SUSY and one is forced to consider the possibility that spartners correspond to dark matter with $h_{eff} = n \times h$ and therefore remaining undetected in recent particle physics experiments.

Super-space viz. Grassmann algebra valued fields

Standard SUSY induces super-space extending space-time by adding anti-commuting coordinates as a formal tool. Many mathematicians are not enthusiastic about this approach because of the purely formal nature of anti-commuting coordinates. Also I regard them as a non-sense geometrically and there is actually no need to introduce them as the following little argument shows. Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann algebra and the natural object replacing super-space is this Grassmann algebra with coefficients of Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just an ordinary space with additional algebraic structure: the mysterious anti-commuting coordinates are not needed. To me this notion is one of the conceptual monsters created by the over-pragmatic thinking of theoreticians.

This allows allows to replace field space with super field space, which is completely welldefined object mathematically, and leave space-time untouched. Linear field space is simply replaced with its Grassmann algebra. For non-linear field space this replacement does not work. This allows to formulate the notion of linear super-field just in the same manner as it is done usually.

The generators of super-symmetries in super-space formulation reduce to super translations, which anti-commute to translations. The super generators Q_{α} and $\overline{Q}_{\dot{\beta}}$ of super Poincare algebra are Weyl spinors commuting with momenta and anti-commuting to momenta:

$$\{Q_{\alpha}, \overline{Q}_{\dot{\beta}}\} = 2\sigma^{\mu}_{\alpha \ beta} P_{\mu} \quad . \tag{5.6.1}$$

One particular representation of super generators acting on super fields is given by

$$D_{\alpha} = i \frac{\partial}{\partial \theta_{\alpha}} ,$$

$$D_{\dot{\alpha}} = i \frac{\partial}{\partial \overline{\theta}_{alpha}} + \theta^{\beta} \sigma^{\mu}_{\beta \dot{\alpha}} \partial_{\mu}$$
(5.6.2)

Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor $\epsilon^{\alpha\beta}$. Super-space interpretation is not necessary since one can interpret this action as an action on Grassmann algebra valued field mixing components with different fermion numbers.

Chiral superfields are defined as fields annihilated by $D_{\dot{\alpha}}$. Chiral fields are of form $\Psi(x^{\mu} + i\bar{\theta}\sigma^{\mu}\theta,\theta)$. The dependence on $\bar{\theta}_{\dot{\alpha}}$ comes only from its presence in the translated Minkowski coordinate annihilated by $D_{\dot{\alpha}}$. Super-space enthusiast would say that by a translation of M^4 coordinates chiral fields reduce to fields, which depend on θ only.

The space of fermionic Fock states at partonic 2-surface as TGD counterpart of chiral super field

As already noticed, another manner to realize SUSY in terms of representations the super algebra of conserved super-charges. In TGD framework these super charges are naturally associated with the modified Dirac equation, and anti-commuting coordinates and super-fields do not appear anywhere. One can however ask whether one could identify a mathematical structure replacing the notion of chiral super field.

In [?] it was proposed that generalized chiral super-fields could effectively replace induced spinor fields and that second quantized fermionic oscillator operators define the analog of SUSY algebra. One would have $\mathcal{N} = \infty$ if all the conformal excitations of the induced spinor field restricted on 2-surface are present. For right-handed neutrino the modes are labeled by two integers and de-localized to the interior of Euclidian or Minkowskian regions of space-time sheet.

The obvious guess is that chiral super-field generalizes to the field having as its components many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in one-one correspondence with fermionic creation operators and their hermitian conjugates.

1. Fermionic creation operators - in classical theory corresponding anti-commuting Grassmann parameters - replace theta parameters. Theta parameters and their conjugates are not in one-one correspondence with spinor components but with the fermionic creation operators and their hermitian conjugates. One can say that the super-field in question is defined in the "world of classical worlds" (WCW) rather than in space-time. Fermionic Fock state at the partonic 2-surface is the value of the chiral super field at particular point of WCW.

- 2. The matrix defined by the $\sigma^{\mu}\partial_{\mu}$ is replaced with a matrix defined by the Kähler-Dirac operator D between spinor modes acting in the solution space of the Kähler-Dirac equation. Since Kähler-Dirac operator annihilates the modes of the induced spinor field, super covariant derivatives reduce to ordinary derivatives with respect the theta parameters labeling the modes. Hence the chiral super field is a field that depends on θ_m or conjugates $\overline{\theta}_m$ only. In second quantization the modes of the chiral super-field are many-fermion states assigned to partonic 2-surfaces and string world sheets. Note that this is the only possibility since the notion of super-coordinate does not make sense now.
- 3. It would seem that the notion of super-field does not bring anything new. This is not the case. First of all, the spinor fields are restricted to 2-surfaces. Second point is that one cannot assign to the fermions of the many-fermion states separate non-parallel or even parallel four-momenta. The many-fermion state behaves like elementary particle. This has non-trivial implications for propagators and a simple argument [?] leads to the proposal that propagator for N-fermion partonic state is proportional to $1/p^N$. This would mean that only the states with fermion number equal to 1 or 2 behave like ordinary elementary particles.

5.6.5 Comparison Of TGD And Stringy Views About Super-Conformal Symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison with the conformal symmetries of super string models.

Basic differences between the realization of super conformal symmetries in TGD and in super-string models

The realization super conformal symmetries in TGD framework differs from that in string models in several fundamental aspects.

- 1. In TGD framework super-symmetry generators acting as configuration space gamma matrices carry either lepton or quark number. Majorana condition required by the hermiticity of super generators which is crucial for super string models would be in conflict with the conservation of baryon and lepton numbers and is avoided. This is made possible by the realization of bosonic generators represented as Hamiltonians of X^2 -local symplectic transformations rather than vector fields generating them [K19]. This kind of representation applies also in Kac-Moody sector since the local transversal isometries localized in X_l^3 and respecting light-likeness condition can be regarded as X^2 local symplectic transformations, whose Hamiltonians generate also isometries. Localization is not complete: the functions of X^2 coordinates multiplying symplectic and Kac-Moody generators are functions of the symplectic invariant $J = \epsilon^{\mu\nu} J_{\mu\nu}$ so that effective one-dimensionality results but in different sense than in conformal field theories. This realization of super symmetries is what distinguishes between TGD and super string models and leads to a totally different physical interpretation of super-conformal symmetries. The fermionic representations of super-symplectic and super Kac-Moody generators can be identified as Noether charges in standard manner.
- 2. A long-standing problem of quantum TGD was that stringy propagator 1/G does not make sense if G carries fermion number. The progress in the understanding of second quantization of the modified Dirac operator made it however possible to identify the counterpart of G as a c-number valued operator and interpret it as different representation of G [K17].
- 3. The notion of super-space is not needed at all since Hamiltonians rather than vector fields represent bosonic generators, no super-variant of geometry is needed. The distinction between Ramond and N-S representations important for N = 1 super-conformal symmetry and allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2 super-conformal symmetry it is already possible to generate spectral flow transforming these Ramond and N-S representations to each other (G_n is not Hermitian anymore).
- 4. If Kähler action defines the Kähler-Dirac operator, the number of spinor modes could be finite. One must be here somewhat cautious since bound state in the Coulomb potential

associated with electric part of induced electro-weak gauge field might give rise to an infinite number of bound states which eigenvalues converging to a fixed eigenvalue (as in the case of hydrogen atom). Finite number of generalized eigenmodes means that the representations of super-conformal algebras reduces to finite-dimensional ones in TGD framework. Also the notion of number theoretic braid indeed implies this. The physical interpretation would be in terms of finite measurement resolution. If Kähler action is complexified to include imaginary part defined by CP breaking instanton term, the number of stringy mass square eigenvalues assignable to the spinor modes becomes infinite since conformal excitations are possible. This means breakdown of exact holography and effective 2-dimensionality of 3-surfaces. It seems that the inclusion of instanton term is necessary for several reasons. The notion of finite measurement resolution forces conformal cutoff also now. There are arguments suggesting that only the modes with vanishing conformal weight contribute to the Dirac determinant defining vacuum functional identified as exponent of Kähler function in turn identified as Kähler action for its preferred extremal.

5. What makes spinor field mode a generator of gauge super-symmetry is that is c-number and not an eigenmode of $D_K(X^2)$ and thus represents non-dynamical degrees of freedom. If the number of eigen modes of $D_K(X^2)$ is indeed finite means that most of spinor field modes represent super gauge degrees of freedom.

The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro representations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason is that WCW gamma matrices possess a well defined fermion number. The hermiticity of the WCW gamma matrices Γ and of the Super Virasoro current G could be achieved by posing Majorana conditions on the second quantized H-spinors. Majorana conditions can be however realized only for space-time dimension $D \mod 8 = 2$ so that super string type approach does not work in TGD context. This kind of conditions would also lead to the non-conservation of baryon and lepton numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the general situation corresponds to super symmetric operators S, S^{\dagger} , whose anti-commutator is Hamiltonian: $\{S, S^{\dagger}\} = H$. One can define a simpler system by considering a Hermitian operator $S_0 = S + S^{\dagger}$ satisfying $S_0^2 = H$: this relation is completely analogous to the ordinary Super Virasoro relation GG = L. On basis of this observation it is clear that one should replace ordinary Super Virasoro structure GG = L with $GG^{\dagger} = L$ in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the doubling of super generators and super generators carry U(1) charge having an interpretation as fermion number in recent context. The so called short representations of N = 2 super-symmetry algebra can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix Γ_n , n > 0 corresponds to an operator creating fermion whereas Γ_n , n < 0 annihilates anti-fermion. For the Hermitian conjugate Γ_n^{\dagger} the roles of fermion and antifermion are interchanged. Only the anti-commutators of gamma matrices and their Hermitian conjugates are non-vanishing. The dynamical Kac Moody type generators are Hermitian and are constructed as bilinears of the gamma matrices and their Hermitian conjugates and, just like conserved currents of the ordinary quantum theory, contain parts proportional to $a^{\dagger}a, b^{\dagger}b, a^{\dagger}b^{\dagger}$ and ab (a and b refer to fermionic and anti-fermionic oscillator operators). The commutators between Kac Moody generators and Kac Moody generators and gamma matrices remain as such.

For a given value of $m G_n$, n > 0 creates fermions whereas G_n , n < 0 annihilates antifermions. Analogous result holds for G_n^{\dagger} . Virasoro generators remain Hermitian and decompose just like Kac Moody generators do. Thus the usual anti-commutation relations for the super Virasoro generators must be replaced with anti-commutations between G_m and G_n^{\dagger} and one has

$$\{G_m, G_n^{\dagger}\} = 2L_{m+n} + \frac{c}{3}(m^2 - \frac{1}{4})\delta_{m, -n} , \{G_m, G_n\} = 0 , \{G_m^{\dagger}, G_n^{\dagger}\} = 0 .$$
 (5.6.3)

The commutators of type $[L_m, L_n]$ are not changed. Same applies to the purely kinematical commutators between L_n and G_m/G_m^{\dagger} .

The Super Virasoro conditions satisfied by the physical states are as before in case of L_n whereas the conditions for G_n are doubled to those of G_n , n < 0 and G_n^{\dagger} , n > 0.

What could be the counterparts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the complex coordinates of X^2 as a candidate for conformal super-symmetries. One can imagine two counterparts of the stringy coordinate z in TGD framework.

- 1. Super-symplectic and super Kac-Moody symmetries are local with respect to X^2 in the sense that the coefficients of generators depend on the invariant $J = \epsilon^{\alpha\beta} J_{\alpha\beta} \sqrt{g_2}$ rather than being completely free [K19]. Thus the real variable J replaces complex (or hyper-complex) stringy coordinate and effective 1-dimensionality holds true also now but in different sense than for conformal field theories.
- 2. The slicing of X^4 by string world sheets Y^2 and partonic 2-surfaces X^2 implied by number theoretical compactification implies string-parton duality and involves the super conformal fermionic gauge symmetries associated with the coordinates u and w in the dual dimensional reductions to stringy and partonic dynamics. These coordinates define the natural analogs of stringy coordinate. The effective reduction of X_l^3 to braid by finite measurement resolution implies the effective reduction of $X^4(X^3)$ to string world sheet. This implies quite strong resemblance with string model. The realization that spinor modes with well- define em charge must be localized at string world sheets makes the connection with strings even more explicit [K84].

One can understand how Equivalence Principle emerges in TGD framework at space-time level when many-sheeted space-time (see **Fig. http://tgdtheory.fi/appfigures/manysheeted.** jpg or **Fig.** 9 in the appendix of this book) is replaced with effective space-time lumping together the space-time sheets to M^4 endowed with effective metric. The quantum counterpart EP has most feasible interpretation in terms of Quantum Classical Correspondence (QCC): the conserved Kähler four-momentum equals to an eigenvalue of conserved Kähler-Dirac four-momentum acting as operator.

- 3. The conformal fields of string model would reside at X^2 or Y^2 depending on which description one uses and complex (hyper-complex) string coordinate would be identified accordingly. Y^2 could be fixed as a union of stringy world sheets having the strands of number theoretic braids as its ends. The proposed definition of braids is unique and characterizes finite measurement resolution at space-time level. X^2 could be fixed uniquely as the intersection of X_l^3 (the light-like 3-surface at which induced metric of space-time surface changes its signature) with $\delta M_{\pm}^4 \times CP_2$. Clearly, wormhole throats X_l^3 would take the role of branes and would be connected by string world sheets defined by number theoretic braids.
- 4. An alternative identification for TGD parts of conformal fields is inspired by $M^8 H$ duality. Conformal fields would be fields in WCW. The counterpart of z coordinate could be the hyper-octonionic M^8 coordinate m appearing as argument in the Laurent series of WCW Clifford algebra elements. m would characterize the position of the tip of CD and the fractal hierarchy of CDs within CDs would give a hierarchy of Clifford algebras and thus inclusions of hyper-finite factors of type II_1 . Reduction to hyper-quaternionic field -that is field in M^4 center of mass degrees of freedom- would be needed to obtained associativity. The arguments m at various level might correspond to arguments of N-point function in quantum field theory.

5.7 Still about induced spinor fields and TGD counterpart for Higgs

The understanding of the modified Dirac equation and of the possible classical counterpart of Higgs field in TGD framework is not completely satisfactory. The emergence of twistor lift of Kähler

action [K28] [L16] inspired a fresh approach to the problem and it turned out that a very nice understanding of the situation emerges.

More precise formulation of the Dirac equation for the induced spinor fields is the first challenge. The well-definedness of em charge has turned out to be very powerful guideline in the understanding of the details of fermionic dynamics. Although induced spinor fields have also a part assignable space-time interior, the spinor modes at string world sheets determine the fermionic dynamics in accordance with strong form of holography (SH).

The well-definedness of em charged is guaranteed if induced spinors are associated with 2-D string world sheets with vanishing classical W boson fields. It turned out that an alternative manner to satisfy the condition is to assume that induced spinors at the boundaries of string world sheets are neutrino-like and that these string world sheets carry only classical W fields. Dirac action contains 4-D interior term and 2-D term assignable to string world sheets. Strong form of holography (SH) allows to interpret 4-D spinor modes as continuations of those assignable to string world sheets so that spinors at 2-D string world sheets determine quantum dynamics.

Twistor lift combined with this picture allows to formulate the Dirac action in more detail. Well-definedness of em charge implies that charged particles are associated with string world sheets assignable to the magnetic flux tubes assignable to homologically non-trivial geodesic sphere and neutrinos with those associated with homologically trivial geodesic sphere. This explains why neutrinos are so light and why dark energy density corresponds to neutrino mass scale, and provides also a new insight about color confinement.

A further important result is that the formalism works only for embedding space dimension D = 8. This is due the fact that the number of vector components is the same as the number of spinor components of fixed chirality for D = 8 and corresponds directly to the octonionic triality.

p-Adic thermodynamics predicts elementary particle masses in excellent accuracy without Higgs vacuum expectation: the problem is to understand fermionic Higgs couplings. The observation that CP_2 part of the modified gamma matrices gives rise to a term mixing M^4 chiralities contain derivative allows to understand the mass-proportionality of the Higgs-fermion couplings at QFT limit.

5.7.1 More precise view about modified Dirac equation

Consistency conditions demand that modified Dirac equation with modified gamma matrices Γ^{α} defined as contractions $\Gamma^{\alpha} = T^{\alpha k} \gamma_k$ of canonical momentum currents $T^{\alpha k}$ associated with the bosonic action with embedding space gamma matrices γ_k [K84, K61]. The Dirac operator is not hermitian in the sense that the conjugation for the Dirac equation for Ψ does not give Dirac equation for $\overline{\Psi}$ unless the modified gamma matrices have vanishing covariant divergence as vector at space-time surface. This says that classical field equations are satisfied. This consistency condition holds true also for spinor modes possibly localized at string world sheets to which one can perhaps assign area action plus topological action defined by Kähler magnetic flux. The interpretation is in terms of super-conformal invariance.

The challenge is to formulate this picture more precisely and here I have not achieved a satisfactory formulation. The question has been whether interior spinor field Ψ are present at all, whether only Ψ is present and somehow becomes singular at string world sheets, or whether both stringy spinors Ψ_s and interior spinors Ψ are present. Both Ψ and Ψ_s could be present and Ψ_s could serve as source for interior spinors with the same H-chirality.

The strong form of holography (SH) suggests that interior spinor modes Ψ_n are obtained as continuations of the stringy spinor modes $\Psi_{s,n}$ and one has $\Psi = \Psi_s$ at string world sheets. Dirac action would thus have a term localized at strong world sheets and bosonic action would contain similar term by the requirement of super-conformal symmetry. Can one realize this intuition?

1. Suppose that Dirac action has interior and stringy parts. For the twistor lift of TGD [L16] the interior part with gamma matrices given by the modified gamma matrices associated with the sum of Kähler action and volume action proportional to cosmological constant Λ . The variation with respect to the interior spinor field Ψ gives modified Dirac equation in the interior with source term from the string world sheet. The H-chiralities of Ψ and Psi_s would be same. Quark like and leptonic H-chiralities have different couplings to Kähler gauge potential and mathematical consistency strongly encourages this.

What is important is that the string world sheet part, which is bilinear in interior and string world sheet spinor fields Ψ and Ψ_s and otherwise has the same form as Dirac action. The natural assumption is that the stringy Dirac action corresponds to the modified gamma matrices assignable to area action.

- 2. String world sheet must be minimal surface: otherwise hermiticity is lost. This can be achieved either by adding to the Kähler action string world sheet area term. Whatever the correct option is, quantum criticality should determine the value of string tension. The first string model inspired guess is that the string tension is proportional to gravitational constant $1/G = 1/l_P^2$ defining the radius fo M^4 twistor sphere or to $1/R^2$, $R \ CP_2$ radius. This would however allow only strings not much longer than l_P or R. A more natural estimate is that string tension is proportional to the cosmological constant Λ and depends on p-adic length scale as 1/p so that the tension becomes small in long length scales. Since Λ coupling contant type parameter, this estimate looks rather reasonable.
- 3. The variation of stringy Dirac action with action density

$$L = [\overline{\Psi}_s D_s^{\rightarrow} \Psi - \overline{\Psi}_s D_s^{\leftarrow} \Psi] \sqrt{g_2} + h.c.$$
(5.7.1)

with respect to stringy spinor field Ψ_s gives for Ψ Dirac equation $D_s \Psi = 0$ if there are no Lagrange multiplier terms (see below). The variation in interior gives $D\Psi = S = D_s \Psi_s$, where the source term S is located at string world sheets. Ψ satisfies at string world sheet the analog of 2-D massless Dirac equation associated with the induced metric. This is just what stringy picture suggests.

The stringy source term for D equals to $D_s \Psi_s$ localized at string world sheets: the construction of solutions would require the construction of propagator for D, and this does not look an attractive idea. For $D_s \Psi_s = 0$ the source term vanishes. Holomorphy for Ψ_s indeed implies $D_s \Psi = 0$.

4. $\Psi_s = \Psi$ would realize SH as a continuation of Ψ_s from string world sheet to Ψ in the interior. Could one introduce Lagrange multiplier term

$$L_1 = \overline{\Lambda}(\Psi - \Psi_s) + h.c.$$

to realize $\Psi_s = \Psi$? Lagrange multiplier spinor field Λ would serve a source in the Dirac equation for $\Psi = \Psi_s$ and Ψ should be constructed at string world sheet in terms of stringy fermionic propagator with Λ as source. The solution for Ψ_s would require the construction of 2-D stringy propagator for Ψ_s but in principle this is not a problem since the modes can be solved by holomorphy in hypercomplex stringy coordinate. The problem of this option is that the H-chiralities of Λ and Ψ would be opposite and the coupling of opposite H-chiralities is not in spirit with H-chirality conservation.

A possible cure is to replace the Lagrange multiplier term with

$$L_1 = \overline{\Lambda}^k \gamma_k (\Psi - \Psi_s) + h.c. \quad . \tag{5.7.2}$$

The variation with respect to the spin 3/2 field Λ^k would give 8 conditions - just the number of spinor components for given H-chirality - forcing $\Psi = \Psi_s! D = 8$ would be in crucial role! In other embedding space dimensions the number of conditions would be too high or too low. One would however obtain

$$D_s \Psi = D_s \Psi_s = \Lambda^k \gamma_k \quad . \tag{5.7.3}$$

One could of course solve Ψ at string world sheet from $\Lambda^k \gamma_k$ by constructing the 2-D propagator associated with D_s . Conformal symmetry for the modes however implies $D_s \Psi = 0$ so that one has actually $\Lambda^k = 0$ and Λ^k remains mere formal tool to realize the constraint $\Psi = \Psi_s$ in mathematically rigorous manner for embedding space dimension D = 8. This is a new very powerful argument in favor of TGD.

- 5. At the string world sheets Ψ would be annihilated both by D and D_s . The simplest possibility is that the actions of D and D_s are proportional to each other at string world sheets. This poses conditions on string world sheets, which might force the CP_2 projection of string world sheet to belong to a geodesic sphere or circle of CP_2 . The idea that string world sheets and also 3-D surfaces with special role in TGD could correspond to singular manifolds at which trigonometric functions representing CP_2 coordinates tend to go outside their allowed value range supports this picture. This will be discussed below.
 - (a) For the geodesic sphere of type II induced Kähler form vanishes so that the action of 4-D Dirac massless operator would be determined by the volume term (cosmological constant). Could the action of D reduce to that of D_s at string world sheets? Does this require a reduction of the metric to an orthogonal direct sum from string world sheet tangent space and normal space and that also normal part of D annihilates the spinors at the string world sheet? The modes of Ψ at string world sheets are locally constant with respect to normal coordinates.
 - (b) For the geodesic sphere of type I induced Kähler form is non-vanishing and brings an additional term to D coming from CP_2 degrees of freedom. This might lead to trouble since the gamma matrix structures of D and D_s would be different. One could however add to string world sheet bosonic action a topological term as Kähler magnetic flux. Although its contribution to the field equations is trivial, the contribution to the modified gamma matrices is non-vanishing and equal to the contraction $J^{\alpha k}\gamma_k$ of half projection of the Kähler form with CP_2 gamma matrices. The presence of this term could allow the reduction of $D\Psi_s = 0$ and $D_s\Psi_s = 0$ to each other also in this case.

5.7.2 A more detailed view about string world sheets

In TGD framework gauge fields are induced and what typically occurs for the space-time surfaces is that they tend to "go out" from CP_2 . Could various lower-D surfaces of space-time surface correspond to sub-manifolds of space-time surface?

- 1. To get a concrete idea about the situation it is best to look what happens in the case of sphere $S^2 = CP_1$. In the case of sphere S^2 the Kähler form vanishes at South and North poles. Here the dimension is reduced by 2 since all values of ϕ correspond to the same point. $sin(\Theta)$ equals to 1 at equator geodesic circle and here Kähler form is non-vanishing. Here dimension is reduced by 1 unit. This picture conforms with the expectations in the case of CP_2 These two situations correspond to 1-D and 2-D geodesic sub-manifolds.
- 2. CP_2 coordinates can be represented as cosines or sines of angles and the modules of cosine or sine tends to become larger than 1 (see http://tinyurl.com/z3coqau). In Eguchi-Hanson coordinates (r, Θ, Φ, Ψ) the coordinates r and Θ give rise to this kind of trigonometric coordinates. For the two cyclic angle coordinates (Φ, Ψ) one does not encounter this problem.
- 3. In the case of CP_2 only geodesic sub-manifolds with dimensions D = 0, 1, 2 are possible. 1-D geodesic submanifolds carry vanishing induce spinor curvature. The impossibility of 3-D geodesic sub-manifolds would suggest that 3-D surfaces are not important. CP_2 has two geodesic spheres: S_I^2 is homologically non-trivial and S_{II}^2 homologically trivial (see http://tinyurl.com/z3coqau).
 - (a) Let us consider S_I^2 first. CP_2 has 3 poles, which obviously relates to SU(3), and in Eguchi Hanson coordinates (r, θ, Φ, Ψ) the surface $r = \infty$ is one of them and corresponds not to a 3-sphere but homologically non-trivial geodesic 2- sphere, which is complex

sub-manifold and orbits of $SU(2) \times U(1)$ subgroup. Various values of the coordinate Ψ correspond to same point as those of Φ at the poles of S^2 . The Kähler form J and classical Z^0 and γ fields are non-vanishing whereas W gauge fields vanish leaving only induced γ and Z^0 field as one learns by studying the detailed expressions for the curvature of spinor curvature and vierbein of CP_2 .

String world sheet could have thus projection to S_I^2 but both γ and Z^0 would be vanishing except perhaps at the boundaries of string world sheet, where Z^0 would naturally vanish in the picture provided by standard model. One can criticize the presence of Z^0 field since it would give a parity breaking term to the modified Dirac operator. SH would suggest that the reduction to electromagnetism at string boundaries might make sense as counterpart for standard model picture. Note that the original vision was that besides induced Kähler form and em field also Z^0 field could vanish at string world sheets.

(b) The homologically trivial geodesic sphere S_{II}^2 is the orbit of SO(3) subgroup and not a complex manifold. By looking the standard example about S_I^2 , one finds that the both J, Z_0 , and γ vanish and only the W components of spinor connection are non-vanishing. In this case the notion of em charge would not be well-defined for S_{II}^2 without additional conditions. Partonic 2-surfaces, their light-like orbits, and boundaries of string world sheets could do so since string world sheets have 1-D intersection with with the orbits. This picture would make sense for the minimal surfaces replacing vacuum extremals in the case of twistor lift of TGD.

Since em fields are not present, the presence of classical W fields need not cause problems. The absence of classical em fields however suggests that the modes of induced spinor fields at boundaries of string worlds sheets must be em neutral and represent therefore neutrinos. The safest but probably too strong option would be right-handed neutrino having no coupling spinor connection but coupling to the CP_2 gamma matrices transforming it to left handed neutrino. Recall that ν_R represents a candidate for super-symmetry.

Neither charged leptons nor quarks would be allowed at string boundaries and classical W gauge potentials should vanish at the boundaries if also left-handed neutrinos are allowed: this can be achieved in suitable gauge. Quarks and charged leptons could reside only at string world sheets assignable to monopole flux tubes. This could relate to color confinement and also to the widely different mass scales of neutrinos and other fermions as will be found.

To sum up, the new result is that the distinction between neutrinos and other fermions could be understood in terms of the condition that em charge is well-defined. What looked originally a problem of TGD turns out to be a powerful predictive tool.

5.7.3 Classical Higgs field again

A motivation for returning back to Higgs field comes from the twistor lift of Kähler action.

- 1. The twistor lift of TGD [K28] [L16] brings in cosmological constant as the coefficient of volume term resulting in dimensional reduction of 6-D Kähler action for twistor space of space-time surface realized as surface in the product of twistor space of M^4 and CP_2 . The radius of the sphere of M^4 twistor bundle corresponds to Planck length. Volume term is extremely small but removes the huge vacuum degeneracy of Kähler action. Vacuum extremals are replaced by 4-D minimal surfaces and modified Dirac equation is just the analog of massless Dirac equation in complete analogy with string models.
- 2. The well-definedness and conservation of fermionic em charges and SH demand the localization of fermions to string world sheets. The earlier picture assumed only em fields at string world sheets. More precise picture allows also W fields.

3. The first guess is that string world sheets are minimal surfaces and this is supported by the previous considerations demanding also string area term and Kähler magnetic flux tube. Here gravitational constant assignable to M^4 twistor space would be the first guess for the string tension.

What one can say about the possible existence of classical Higgs field?

1. TGD predicts both Higgs type particles and gauge bosons as bound states of fermions and antifermions and they differ only in that their polarization are in M^4 resp. CP_2 tangent space. p-adic thermodynamics [K39] gives excellent predictions for elementary particle masses in TGD framework. Higgs vacuum expectation is not needed to predict fermion or boson masses. Standard model gives only a parametrization of these masses by assuming that Higgs couplings to fermions are proportional to their masses, it does not predict them.

The experimental fact is however that the couplings of Higgs are proportional to fermion masses and TGD should be able to predict this and there is a general argument for the proportonality, which however should be deduced from basic TGD. Can one achieve this?

2. Can one imagine any candidate for the classical Higgs field? There is no covariantly constant vector field in CP_2 , whose space-time projection could define a candidate for classical Higgs field. This led years ago before the model for how bosons emerge from fermions to the wrong conclusion that TGD does not predict Higgs.

The first guess for the possibly existing classical counterpart of Higgs field would be as CP_2 part for the divergence of the space-time vector defined modified gamma matrices expressible in terms of canonical momentum currents having natural interpretation as a generalization of force for point like objects to that for extended objects. Higgs field in this sense would however vanish by above consistency conditions and would not couple to spinors at all.

Classical Higgs field should have only CP_2 part being CP_2 vector. What would be also troublesome that this proposale for classical Higgs field would involve second derivatives of embedding space coordinates. Hence it seems that there is no hope about geometrization of classical Higgs fields.

3. The contribution of the induced Kähler form gives to the modified gamma matrices a term expressible solely in terms of CP_2 gamma matrices. This term appears in modified Dirac equation and mixes M^4 chiralities - a signal for the massivation. This term is analogous to Higgs term expect that it contains covariant derivative.

The question that I have not posed hitherto is whether this term could at QFT limit of TGD give rise to vacuum expectation of Higgs. The crucial observation is that the presence of derivative, which in quantum theory corresponds roughly to mass proportionality of chirality mixing coupling at QFT limit. This could explain why the coupling of Higgs field to fermions is proportional to the mass of the fermion at QFT limit!

4. For S_{II}^2 type string world sheets assignable to neutrinos the contribution to the chirality mixing coupling should be of order of neutrino mass. The coefficient $1/L^4$ of the volume term defining cosmological constant [L16] separates out as over all factor in massless Dirac equation and the parameter characterizing the mass scale causing the mixing is of order $m = \omega_1 \omega_2 R$. Here ω_1 characterizes the scale of gradient for CP_2 coordinates. The simplest minimal surface is that for which CP_2 projection is geodesic line with $\Phi = \omega_1 t$. ω_2 characterizes the scale of the gradient of spinor mode.

Assuming $\omega_1 = \omega_2 \equiv \omega$ the scale *m* is of order neutrino mass $m_{\nu} \simeq .1$ eV from the condition $m \sim \omega^2 R \sim m_{\nu}$. This gives the estimate $\omega \sim \sqrt{m_{CP_2}m_{\nu}} \sim 10^2 m_p$ from $m_{CP_2} \sim 10^{-4}m_P$, which is weak mass scale and therefore perfectly sensible. The reduction $\Delta c/c$ of the light velocity from maximal signal velocity due the replacement $g_{tt} = 1 - R^2 \omega^2$ is $\Delta c/c \sim 10^{-34}$ and thus completely negligible. This estimate does not make sense for charged fermions, which correspond to S_I^2 type string world sheets.

A possible problem is that if the value of the cosmological constant Λ evolves as 1/p as function of the length mass scale the mass scale of neutrinos should increase in short scales.

This looks strange unless the mass scale remains below the cosmic temperature so that neutrinos would be always effectively massless.

5. For S_I^2 type string world sheets assignable to charged fermions Kähler action dominates and the mass scales are expected to be higher than for neutrinos. For S_I^2 type strings the modified gamma matrices contain also Kähler term and a rough estimate is that the ratio of two contributions is the ratio of the energy density of Kähler action to vacuum energy density. As Kähler energy density exceeds the value corresponding to vacuum energy density $1/L^4$, $L \sim 40 \ \mu m$, Kähler action density begins to dominate over dark energy density.

To sum up, this picture suggest that the large difference between the mass scales of neutrinos and em charged fermions is due to the fact that neutrinos are associated with string world sheet of type II and em charged fermions with string world sheets of type I. Both strings world sheets would be accompanied by flux tubes but for charged particles the flux tubes would carry Kähler magnetic flux. Cosmological constant forced by twistor lift would make neutrinos massive and allow to understand neutrino mass scale.

Chapter 6

Recent View about Kähler Geometry and Spin Structure of WCW

6.1 Introduction

The construction of Kähler geometry of WCW ("world of classical worlds") is fundamental to TGD program. I ended up with the idea about physics as WCW geometry around 1985 and made a breakthrough around 1990, when I realized that Kähler function for WCW could correspond to Kähler action for its preferred extremals defining the analogs of Bohr orbits so that classical theory with Bohr rules would become an exact part of quantum theory and path integral would be replaced with genuine integral over WCW. The motivating construction was that for loop spaces leading to a unique Kähler geometry [A40]. The geometry for the space of 3-D objects is even more complex than that for loops and the vision still is that the geometry of WCW is unique from the mere existence of Riemann connection.

The basic idea is that WCW is union of symmetric spaces G/H labelled by zero modes which do not contribute to the WCW metric. There have been many open questions and it seems the details of the ealier approach [?]ust be modified at the level of detailed identifications and interpretations.

1. A longstanding question has been whether one could assign Equivalence Principle (EP) with the coset representation formed by the super-Virasoro representation assigned to G and H in such a way that the four-momenta associated with the representations and identified as inertial and gravitational four-momenta would be identical. This does not seem to be the case. The recent view will be that EP reduces to the view that the classical fourmomentum associated with Kähler action is equivalent with that assignable to Kähler-Dirac action supersymmetrically related to Kähler action: quantum classical correspondence (QCC) would be in question. Also strong form of general coordinate invariance implying strong form of holography in turn implying that the super-symplectic representations assignable to spacelike and light-like 3-surfaces are equivalent could imply EP with gravitational and inertial four-momenta assigned to these two representations.

At classical level EP follows from the interpretation of GRT space-time as effective spacetime obtained by replacing many-sheeted space-time with Minkowski space with effective metric determined as a sum of Minkowski metric and sum over the deviations of the induced metrices of space-time sheets from Minkowski metric. Poincare invariance suggests strongly classical EP for the GRT limit in long length scales at least.

2. The detailed identification of groups G and H and corresponding algebras has been a longstanding problem. Symplectic algebra associated with $\delta M_{\pm}^4 \times CP2$ (δM_{\pm}^4 is light-cone boundary - or more precisely, with the boundary of causal diamond (CD) defined as Cartesian product of CP_2 with intersection of future and past direct light cones of M^4 has Kac-Moody type structure with light-like radial coordinate replacing complex coordinate z. Virasoro algebra would correspond to radial diffeomorphisms. I have also introduced Kac-Moody algebra assigned to the isometries and localized with respect to internal coordinates of the light-like 3-surfaces at which the signature of the induced metric changes from Minkowskian to Euclidian and which serve as natural correlates for elementary particles (in very general sense!). This kind of localization by force could be however argued to be rather ad hoc as opposed to the inherent localization of the symplectic algebra containing the symplectic algebra of isometries as sub-algebra. It turns out that one obtains direct sum of representations of symplectic algebra and Kac-Moody algebra of isometries naturally as required by the success of p-adic mass calculations.

3. The dynamics of Kähler action is not visible in the earlier construction. The construction also expressed WCW Hamiltonians as 2-D integrals over partonic 2-surfaces. Although strong form of general coordinate invariance (GCI) implies strong form of holography meaning that partonic 2-surfaces and their 4-D tangent space data should code for quantum physics, this kind of outcome seems too strong. The progress in the understanding of the solutions of Kähler-Dirac equation led however to the conclusion that spinor modes other than right-handed neutrino are localized at string world sheets with strings connecting different partonic 2-surfaces. This leads to a modification of earlier construction in which WCW super-Hamiltonians are essentially integrals with integrand identified as a Noether super current for the deformations in *G* Each spinor mode gives rise to super current and the modes of right-handed neutrino and other fermions differ in an essential ways. Right-handed neutrino would correspond to symplectic algebra and other modes to the Kac-Moody algebra and one obtains the crucial 5 tensor factors of Super Virasoro required by p-adic mass calculations.

The matrix elements of WCW metric between Killing vectors are expressible as anti-commutators of super-Hamiltonians identifiable as contractions of WCW gamma matrices with these vectors and give Poisson brackets of corresponding Hamiltonians. The anti-commutation relates of induced spinor fields are dictated by this condition. Everything is 3-dimensional although one expects that symplectic transformations localized within interior of X^3 act as gauge symmetries so that in this sense effective 2-dimensionality is achieved. The components of WCW metric are labelled by standard model quantum numbers so that the connection with physics is extremely intimate.

- 4. An open question in the earlier visions was whether finite measurement resolution is realized as discretization at the level of fundamental dynamics. This would mean that only certain string world sheets from the slicing by string world sheets and partonic 2-surfaces are possible. The requirement that anti-commutations are consistent suggests that string world sheets correspond to surfaces for which Kähler magnetic field is constant along string in well defined sense $(J_{\mu\nu}\epsilon^{\mu\nu}g^{1/2}$ remains constant along string). It however turns that by a suitable choice of coordinates of 3-surface one can guarantee that this quantity is constant so that no additional constraint results.
- 5. Quantum criticality is one of the basic notions of quantum TGD and its relationship to coset construction has remained unclear. In this chapter the concrete realization of criticality in terms of symmetry breaking hierarchy of Super Virasoro algebra acting on symplectic and Kac-Moody algebras. Also a connection with finite measurement resolution second key notion of TGD emerges naturally.

The appendix of the book gives a summary about basic concepts of TGD with illustrations. Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.fi/tgdglossary.pdf [L14].

6.2 WCW As A Union Of Homogenous Or Symmetric Spaces

The physical interpretation and detailed mathematical understanding of super-conformal symmetries has developed rather slowly and has involved several side tracks. In the following I try to summarize the basic picture with minimal amount of formulas with the understanding that the statement "Noether charge associated with geometrically realized Kac-Moody symmetry" is enough for the reader to write down the needed formula explicitly. Formula oriented reader might deny the value of the approach giving weight to principles. My personal experience is that piles of formulas too often hide the lack of real understanding.

In the following the vision about WCW as union of coset spaces is discussed in more detail.

6.2.1 Basic Vision

The basic view about coset space construction for WCW has not changed.

1. The idea about WCW as a union of coset spaces G/H labelled by zero modes is extremely attractive. The structure of homogenous space [A10] (http://tinyurl.com/y7u2t8jo) means at Lie algebra level the decomposition $g = h \oplus t$ to sub-Lie-algebra h and its complement t such that $[h, t] \subset t$ holds true. Homogeneous spaces have G as its isometries. For symmetric space the additional condition $[t, t] \subset h$ holds true and implies the existence of involution changing at the Lie algebra level the sign of elements of t and leaving the elements of h invariant. The assumption about the structure of symmetric space [A23] (http://tinyurl.com/ycouv7uh) implying covariantly constant curvature tensor is attractive in infinite-dimensional case since it gives hopes about calculability.

An important source of intuition is the analogy with the construction of CP_2 , which is symmetric space A particular choice of h corresponds to Lie-algebra elements realized as Killing vector fields which vanish at particular point of WCW and thus leave 3-surface invariant. A preferred choice for this point is as maximum or minimum of Kähler function. For this 3-surface the Hamiltonians of h should be stationary. If symmetric space property holds true then commutators of [t, t] also vanish at the minimum/maximum. Note that Euclidian signature for the metric of WCW requires that Kähler function can have only maximum or minimum for given zero modes.

- 2. The basic objection against TGD is that one cannot use the powerful canonical quantization using the phase space associated with configuration space - now WCW. The reason is the extreme non-linearity of the Kähler action and its huge vacuum degeneracy, which do not allow the construction of Hamiltonian formalism. Symplectic and Kähler structure must be realized at the level of WCW. In particular, Hamiltonians must be represented in completely new manner. The key idea is to construct WCW Hamiltonians as anti-commutators of super-Hamiltonians defining the contractions of WCW gamma matrices with corresponding Killing vector fields and therefore defining the matrix elements of WCW metric in the tangent vector basis defined by Killing vector fields. Super-symmetry therefre gives hopes about constructing quantum theory in which only induced spinor fields are second quantized and embedding space coordinates are treated purely classically.
- 3. It is important to understand the difference between symmetries and isometries assigned to the Kähler function. Symmetries of Kähler function do not affect it. The symmetries of Kähler action are also symmetries of Kähler action because Kähler function is Kähler action for a preferred extremal (here there have been a lot of confusion). Isometries leave invariant only the quadratic form defined by Kähler metric $g_{M\overline{N}} = \partial_M \partial_{\overline{L}} K$ but not Kähler function in general. For G/H decomposition G represents isometries and H both isometries and symmetries of Kähler function.

 CP_2 is familiar example: SU(3) represents isometries and U(2) leaves also Kähler function invariant since it depends on the U(2) invariant radial coordinate r of CP_2 . The origin r = 0is left invariant by U(2) but for r > 0 U(2) performs a rotation at r = constant 3-sphere. This simple picture helps to understand what happens at the level of WCW.

How to then distinguish between symmetries and isometries? A natural guess is that one obtains also for the isometries Noether charges but the vanishing of boundary terms at spatial infinity crucial in the argument leading to Noether theorem as $\Delta S = \Delta Q = 0$ does not hold true anymore and one obtains charges which are not conserved anymore. The symmetry breaking contributions would now come from effective boundaries defined by wormhole throats at which the induce metric changes its signature from Minkowskian to Euclidian. A

more delicate situation is in which first order contribution to ΔS vanishes and therefore also ΔQ and the contribution to ΔS comes from second variation allowing also to define Noether charge which is not conserved.

4. The simple picture about CP_2 as symmetric space helps to understand the general vision if one assumes that WCW has the structure of symmetric space. The decomposition g = h + tcorresponds to decomposition of symplectic deformations to those which vanish at 3-surface (h) and those which do not (t).

For the symmetric space option, the Poisson brackets for super generators associated with t give Hamiltonians of h identifiable as the matrix elements of WCW metric. They would not vanish although they are stationary at 3-surface meaning that Riemann connection vanishes at 3-surface. The Hamiltonians which vanish at 3-surface X^3 would correspond to t and the Hamiltonians for which Killing vectors vanish and which therefore are stationary at X^3 would correspond to h. Outside X^3 the situation would of course be different. The metric would be obtained by parallel translating the metric from the preferred point of WCW to elsewhere and symplectic transformations would make this parallel translation.

For the homogenous space option the Poisson brackets for super generators of t would still give Hamiltonians identifiable as matrix elements of WCW metric but now they would be necessary those of h. In particular, the Hamiltonians of t do not in general vanish at X^3 .

6.2.2 Equivalence Principle And WCW

6.2.3 Equivakence Principle At Quantum And Classical Level

Quite recently I returned to an old question concerning the meaning of Equivalence Principle (EP) in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not is a pseudo problem due to uncritical assumption there really are two different four-momenta which must be identified. If even the identification of these two different momenta is difficult, the pondering of this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by graviton exchange are proportional to the product of four-momenta of particles and that the proportionality constant does not depend on any other parameters characterizing particle (except spin). The are excellent reasons to expect that the stringy picture for interactions predicts this.

- 1. The old idea is that EP reduces to the coset construction for Super Virasoro algebra using the algebras associated with G and H. The four-momenta assignable to these algebras would be identical from the condition that the differences of the generators annihilate physical states and identifiable as inertial and gravitational momenta. The objection is that for the preferred 3-surface H by definition acts trivially so that time-like translations leading out from the boundary of CD cannot be contained by H unlike G. Hence four-momentum is not associated with the Super-Virasoro representations assignable to H and the idea about assigning EP to coset representations does not look promising.
- 2. Another possibility is that EP corresponds to quantum classical correspondence (QCC) stating that the classical momentum assignable to Kähler action is identical with gravitational momentum assignable to Super Virasoro representations. This forced to reconsider the questions about the precise identification of the Kac-Moody algebra and about how to obtain the magic five tensor factors required by p-adic mass calculations [K78].

A more precise formulation for EP as QCC comes from the observation that one indeed obtains two four-momenta in TGD approach. The classical four-momentum assignable to the Kähler action and that assignable to the Kähler-Dirac action. This four-momentum is an operator and QCC would state that given eigenvalue of this operator must be equal to the value of classical four-momentum for the space-time surfaces assignable to the zero energy state in question. In this form EP would be highly non-trivial. It would be justified by the Abelian character of four-momentum so that all momentum components are well-defined also quantum mechanically. One can also consider the splitting of four-momentum to longitudinal and transversal parts as done in the parton model for hadrons: this kind of splitting would be very natural at the boundary of CD. The objection is that this correspondence is nothing more than QCC.

3. A further possibility is that duality of light-like 3-surfaces and space-like 3-surfaces holds true. This is the case if the action of symplectic algebra can be defined at light-like 3-surfaces or even for the entire space-time surfaces. This could be achieved by parallel translation of light-cone boundary providing slicing of CD. The four-momenta associated with the two representations of super-symplectic algebra would be naturally identical and the interpretation would be in terms of EP.

One should also understand how General Relativity and EP emerge at classical level. The understanding comes from the realization that GRT is only an effective theory obtained by endowing M^4 with effective metric.

- 1. The replacement of superposition of fields with superposition of their effects means replacing superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences sum of the effects caused by the classical fields at the space-time sheets.
- 2. This is true also for the classical gravitational field defined by the deviation from flat Minkowski metric instandard M^4 coordinates for the space-time sheets. One can define effective metric as sum of M^4 metric and deviations. This effective metric would correspond to that of General Relativity. This resolves long standing issues relating to the interpretation of TGD.
- 3. Einstein's equations could hold true for the effective metric. They are motivated by the underlying Poincare invariance which cannot be realized as global conservation laws for the effective metric. The conjecture vanishing of divergence of Kähler energy momentum tensor can be seen as the microscopic justification for the claim that Einstein's equations hold true for the effective space-time.
- 4. The breaking of Poincare invariance could have interpretation as effective breaking in zero energy ontology (ZEO), in which various conserved charges are length dependent and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein's equations generalize for preferred extremals of Kähbler action. This would actually represent at space-time level the notion of QCC rather than realise QCC interpreted as EP. The condition that the energy momentum tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if Einstein's equations with cosmological term hold true. This is the case also now but one can consider also more general solutions in which one has two cosmological constants which are not genuine constants anymore: this idea is however not promising.

An interesting question is whether inertial-gravitational duality generalizes to the case of color gauge charges so that color gauge fluxes would correspond to "gravitational" color charges and the charges defined by the conserved currents associated with color isometries would define "inertial" color charges. Since the induced color fields are proportional to color Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in accordance with "gravitational" color confinement.

6.2.4 Criticism Of The Earlier Construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be criticized.

1. Even after these more than twenty years it looks strange that the Hamiltonians should reduce to flux integrals over partonic 2-surfaces. The interpretation has been in terms of effective 2-dimensionality suggested strongly by strong form of general coordinate invariance stating that the descriptions based on light-like orbits of partonic 2-surfaces and space-like three surfaces at the ends of causal diamonds are dual so that only partonic 2-surfaces and 4-D tangent space data at them would matter. Strong form of holography implies effective 2-dimensionality but this should correspond gauge character for the action of symplectic generators in the interior the space-like 3-surfaces at the ends of CDs, which is something much milder.

One expects that the strings connecting partonic 2-surfaces could bring something new to the earlier simplistic picture. The guess is that embedding space Hamiltonian assignable to a point of partonic 2-surface should be replaced with that defined as integral over string attached to the point. Therefore the earlier picture would suffer no modification at the level of general formulas.

2. The fact that the dynamics of Kähler action and Kähler-Dirac action are not directly involved with the earlier construction raises suspicions. I have proposed that Kähler function could allow identification as Dirac determinant [K84] but one would expect more intimate connection. Here the natural question is whether super-Hamiltonians for the Kähler-Dirac action could correspond to Kähler charges constructible using Noether's theorem for corresponding deformations of the space-time surface and would also be identifiable as WCW gamma matrices.

6.2.5 Is WCW Homogenous Or Symmetric Space?

A key question is whether WCW can be symmetric space [A23] (http://tinyurl.com/y8ojglkb) or whether only homogenous structure is needed. The lack of covariant constancy of curvature tensor might produce problems in infinite-dimensional context.

The algebraic conditions for symmetric space are g = h + t, $[h, t] \subset t$, $[t, t] \subset h$. The latter condition is the difficult one.

- 1. δCD Hamiltonians should induce diffeomorphisms of X^3 indeed leaving it invariant. The symplectic vector fields would be parallel to X^3 . A stronger condition is that they induce symplectic transformations for which all points of X^3 remain invariant. Now symplectic vector fields vanish at preferred 3-surface (note that the symplectic transformations are r_M local symplectic transformations of $S^2 \times CP_2$).
- 2. For Kac-Moody algebra inclusion $H \subset G$ for the finite-dimensional Lie-algebra induces the structure of symmetric space. If entire algebra is involved this does not look physically very attractive idea unless one believes on symmetry breaking for both SU(3), $U(2)_{ew}$, and SO(3) and E_2 (here complex conjugation corresponds to the involution). If one assumes only Kac-Moody algebra as critical symmetries, the number of tensor factors is 4 instead of five, and it is not clear whether one can obtain consistency with p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of CP_2 . They could correspond to intersections of deformations of CP_2 type vacuum extremals with the boundary of CD. Also geodesic spheres S^2 of CP_2 are invariant under U(2) subgroup and would relate naturally to cosmic strings. The corresponding 3-surface would be $L \times S^2$, where L is a piece of light-like radial geodesic.

- 3. In the case of symplectic algebra one can construct the embedding space Hamiltonians inducing WCW Hamiltonians as products of elements of the isometry algebra of $S^2 \times CP_2$ for with parity under involution is well-defined. This would give a decomposition of the symplectic algebra satisfying the symmetric space property at the level embedding space. This decomposition does not however look natural at the level of WCW since the only single point of CP_2 and light-like geodesic of δM^4_+ can be fixed by $SO(2) \times U(2)$ so that the 3-surfaces would reduce to pieces of light rays.
- 4. A more promising involution is the inversion $r_M \to 1/r_M$ of the radial coordinate mapping the radial conformal weights to their negatives. This corresponds to the inversion in Super Virasoro algebra. t would correspond to functions which are odd functions of $u \equiv log(r_M/r_0)$ and h to even function of u. Stationary 3-surfaces would correspond to u = 1 surfaces for which log(u) = 0 holds true. This would assign criticality with Virasoro algebra as one expects on general grounds.

 $r_M = constant$ surface would most naturally correspond to a maximum of Kähler function which could indeed be highly symmetric. The elements with even *u*-parity should define Hamiltonians, which are stationary at the maximum of Kähler function. For other 3-surfaces obtained by $/r_M$ -local) symplectic transformations the situation is different: now *H* is replaced with its symplectic conjugate hHg^{-1} of *H* is acceptable and if the conjecture is true one would obtained 3-surfaces assignable to perturbation theory around given maximum as symplectic conjugates of the maximum. The condition that *H* leaves X^3 invariant in pointwise manner is certainly too strong and imply that the 3-surface has single point as CP_2 projection.

5. One can also consider the possibility that critical deformations correspond to h and noncritical ones to t for the preferred 3-surface. Criticality for given h would hold only for a preferred 3-surface so that this picture would be very similar that above. Symplectic conjugates of h would define criticality for other 3-surfaces. WCW would decompose to a union corresponding to different criticalities perhaps assignable to the hierarchy of subalgebras of conformal algebra labelled by integer whose multiples give the allowed conformal weights. Hierarchy of breakings of conformal symmetries would characterize this hierarchy of sectors of WCW.

For sub-algebras of the conformal algebras (Kac-Moody and symplectic algebra) the condition $[t,t] \subset h$ cannot hold true so that one would obtain only the structure of homogenous space.

6.2.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks

6.3 Updated View About Kähler Geometry Of WCW

During last years the understanding of the mathematical aspects of TGD and of its connection with the experimental world has developed rapidly.

TGD differs in several respects from quantum field theories and string models. The basic mathematical difference is that the mathematically poorly defined notion of path integral is replaced with the mathematically well-defined notion of functional integral defined by the Kähler function defining Kähler metric for WCW ("world of classical worlds"). Apart from quantum jump, quantum TGD is essentially theory of classical WCW spinor fields with WCW spinors represented as fermionic Fock states. One can say that Einstein's geometrization of physics program is generalized to the level of quantum theory.

It has been clear from the beginning that the gigantic super-conformal symmetries generalizing ordinary super-conformal symmetries are crucial for the existence of WCW Kähler metric. The detailed identification of Kähler function and WCW Kähler metric has however turned out to be a difficult problem. It is now clear that WCW geometry can be understood in terms of the analog of AdS/CFT duality between fermionic and space-time degrees of freedom (or between Minkowskian and Euclidian space-time regions) allowing to express Kähler metric either in terms of Kähler function or in terms of anti-commutators of WCW gamma matrices identifiable as superconformal Noether super-charges for the symplectic algebra assignable to $\delta M_{\pm}^4 \times CP_2$. The string model type description of gravitation emerges and also the TGD based view about dark matter becomes more precise. String tension is however dynamical rather than pregiven and the hierarchy of Planck constants is necessary in order to understand the formation of gravitationally bound states. Also the proposal that sparticles correspond to dark matter becomes much stronger: sparticles actually are dark variants of particles.

A crucial element of the construction is the assumption that super-symplectic and other super-conformal symmetries having the same structure as 2-D super-conformal groups can be seen a broken gauge symmetries such that sub-algebra with conformal weights coming as *n*-ples of those for full algebra act as gauge symmetries. In particular, the Noether charges of this algebra vanish for preferred extremals- this would realize the strong form of holography implied by strong form of General Coordinate Invariance. This gives rise to an infinite number of hierarchies of conformal gauge symmetry breakings with levels labelled by integers n(i) such that n(i) divides n(i + 1)interpreted as hierarchies of dark matter with levels labelled by the value of Planck constant $h_{eff} = n \times h$. These hierarchies define also hierarchies of quantum criticalities, and are proposed to give rise to inclusion hierarchies of hyperfinite factors of II₁ having interpretation in terms of finite cognitive resolution with inclusions being characterized by the integers n(+1)/n(i).

These hierarchies are fundamental for the understanding of living matter. Living matter is fighting in order to stay at criticality and uses metabolic energy and homeostasis to achieve this. In the biological death of the system (self) a phase transition increasing h_{eff} finally takes place. The sub-selves of self experienced by self as mental images however die and are reborn at opposite boundary of the corresponding causal diamond (CD) and they genuinely evolve so that self can be said to become wiser even without dying! The purpose of this fighting against criticality would thus allow a possibility for sub-selves to evolve via subsequent re-incarnations. One interesting prediction is the possibility of time reversed mental images. The challenge is to understand what they do mean at the level of conscious experience.

6.3.1 Kähler Function, Kähler Action, And Connection With String Models

The definition of Kähler function in terms of Kähler action is possible because space-time regions can have also Euclidian signature of induced metric. Euclidian regions with 4-D CP_2 projection - wormhole contacts - are identified as lines of generalized Feynman diagrams - space-time correlates for basic building bricks of elementary particles. Kähler action from Minkowskian regions is imaginary and gives to the functional integrand a phase factor crucial for quantum field theoretic interpretation. The basic challenges are the precise specification of Kähler function of "world of classical worlds" (WCW) and Kähler metric.

There are two approaches concerning the definition of Kähler metric: the conjecture analogous to AdS/CFT duality is that these approaches are mathematically equivalent.

1. The Kähler function defining Kähler metric can be identified as Kähler action for space-time regions with Euclidian signature for a preferred extremal containing 3-surface as the ends of the space-time surfaces inside causal diamond (CD). Minkowskian space-time regions give to Kähler action an imaginary contribution interpreted as the counterpart of quantum field theoretic action. The exponent of Kähler function gives rise to a mathematically well-defined functional integral in WCW. WCW metric is dictated by the Euclidian regions of space-time with 4-D CP_2 projection.

The basic question concerns the attribute "preferred". Physically the preferred extremal is analogous to Bohr orbit. What is the mathematical meaning of preferred extremal of Kähler action? The latest step of progress is the realization that the vanishing of generalized conformal charges for the ends of the space-time surface fixes the preferred extremals to high extent and is nothing but classical counterpart for generalized Virasoro and Kac-Moody conditions.

- 2. Fermions are also needed. The well-definedness of electromagnetic charge led to the hypothesis that spinors are restricted at string world sheets. One could also consider associativity as basic contraint to fermionic dynamics combined with the requirement that octonionic representation for gamma matrices is equivalent with the ordinary one. The conjecture is that this leads to the same outcome. This point is highly non-trivial and will be discussed below separately.
- 3. Second manner to define Kähler metric is as anticommutators of WCW gamma matrices identified as super-symplectic Noether charges for the Dirac action for induced spinors with string tension proportional to the inverse of Newton's constant. These charges are associated with the 1-D space-like ends of string world sheets connecting the wormhole throats. WCW metric contains contributions from the spinor modes associated with various string world sheets connecting the partonic 2-surfaces associated with the 3-surface.

It is clear that the information carried by WCW metric about 3-surface is rather limited and that the larger the number of string world sheets, the larger the information. This conforms with strong form of holography and the notion of measurement resolution as a property of quantums state. Duality clearly means that Kähler function is determined either by spacetime dynamics inside Euclidian wormhole contacts or by the dynamics of fermionic strings
in Minkowskian regions outside wormhole contacts. This duality brings strongly in mind AdS/CFT duality. One could also speak about fermionic emergence since Kähler function is dictated by the Kähler metric part from a real part of gradient of holomorphic function: a possible identification of the exponent of Kähler function is as Dirac determinant.

6.3.2 Symmetries of WCW

Towards the end of year 2023 a dramatic progress in the understanding of WCW geometry took place and the following piece of text summarizes the findings. It turned that the original intuitive picture was surprisingly near to what now looks the correct view.

The situation before 2023

WCW geometry exists only if it has maximal isometries. I have proposed that WCW could be regarded as a union of generalized symmetric spaces labelled by zero modes which do not contribute to the metric. The induced Kähler field is invariant under symplectic transformations of CP_2 and would therefore define zero mode degrees of freedom if one assumes that WCW metric has symplectic transformations as isometries. In particular, Kähler magnetic fluxes would define zero modes and are quantized closed 2-surfaces. The induced metric appearing in Kähler action is however not zero mode degree of freedom. If the action contains volume term, the assumption about union of symmetric spaces is not well-motivated.

Symplectic transformations are not the only candidates for the isometries of WCW. The basic picture about what these maximal isometries could be, is partially inspired by string models.

- 1. A weaker proposal is that the symplectomorphisms of H define only symplectomorphisms of WCW. Extended conformal symmetries define also a candidate for isometry group. Remarkably, light-like boundary has an infinite-dimensional group of isometries which are in 1-1 correspondence with conformal symmetries of $S^2 \subset S^2 \times R_+ = \delta M_+^4$.
- 2. Extended Kac Moody symmetries induced by isometries of δM^4_+ are also natural candidates for isometries. The motivation for the proposal comes from physical intuition deriving from string models. Note they do not include Poincare symmetries, which act naturally as isometries in the moduli space of causal diamonds (CDs) forming the "spine" of WCW.
- 3. The light-like orbits of partonic 2-surfaces might allow separate symmetry algebras. One must however notice that there is exchange of charges between interior degrees of freedom and partonic 2-surfaces. The essential point is that one can assign to these surface conserved charges when the dual light-like coordinate defines time coordinate. This picture also assumes a slicing of space-time surface by by the partonic orbits for which partonic orbits associated with wormrhole throats and boundaries of the space-time surface would be special. This slicing would correspond to Hamilton-Jacobi structure.
- 4. Fractal hierarchy of symmetry algebras with conformal weights, which are non-negative integer multiples of fundamental conformal weights, is essential and distinguishes TGD from string models. Gauge conditions are true only the isomorphic subalgebra and its commutator with the entire algebra and the maximal gauge symmetry to a dynamical symmetry with generators having conformal weights below maximal value. This view also conforms with p-adic mass calculations.
- 5. The realization of the symmetries for 3-surfaces at the boundaries of CD and for light-like orbits of partonic 2-surfaces is known. The problem is how to extend the symmetries to the interior of the space-time surface. It is natural to expect that the symmetries at partonic orbits and light-cone boundary extend to the same symmetries.

Realization Of Super-Conformal Symmetries

The detailed realization of various super-conformal symmetries has been also a long standing problem.

- 1. Super-conformal symmetry requires that Dirac action for string world sheets is accompanied by string world sheet area as part of bosonic action. String world sheets are implied and can be present only in Minkowskian regions if one demands that octonionic and ordinary representations of induced spinor structure are equivalent (this requires vanishing of induced spinor curvature to achieve associativity in turn implying that CP_2 projection is 1-D). Note that 1-dimensionality of CP_2 projection is symplectically invariant property. Kähler action is not invariant under symplectic transformations. This is necessary for having non-trivial Kähler metric. Whether WCW really possesses super-symplectic isometries remains an open problem.
- 2. Super-conformal symmetry also demands that Kähler action is accompanied by what I call Kähler-Dirac action with gamma matrices defined by the contractions of the canonical momentum currents with embedding space-gamma matrices. Both the well-definedness of em charge and equivalence of octonionic spinor dynamics with ordinary one require the restriction of spinor modes to string world sheets with light-like boundaries at wormhole throats. K-D action with the localization of induced spinors at string world sheets is certainly the minimal option to consider.
- 3. Strong form of holography suggested by strong form of general coordinate invariance strongly suggests that super-conformal symmetry is broken gauge invariance in the sense that the clasical super-conformal charges for a sub-algebra of the symplectic algebra with conformal weights vanishing modulo some integer n vanish. The proposal is that n corresponds to the effective Planck constant as $h_{eff}/h = n$. The standard conformal symmetries for spinors modes at string world sheets is always unbroken gauge symmetry.

The conserved charges associated with holomorphies

Generalized holomorphy not only solves explicitly the equations of motion [L51] but, as found quite recently, also gives corresponding conserved Noether currents and charges.

- 1. Generalized holomorphy algebra generalizes the Super-Virasoro algebra and the Super-Kac-Moody algebra related to the conformal invariance of the string model. The corresponding Noether charges are conserved. Modified Dirac action allows to construct the supercharges having interpretation as WCW gamma matrices. This suggests an answer to a longstanding question related to the isometries of the "world of the classical worlds" (WCW).
- 2. Either the generalized holomorphies or the symplectic symmetries of $H = M^4 \times CP_2$ or both together define WCW isometries and corresponding super algebra. It would seem that symplectic symmetries induced from H are not necessarily needed and might correspond to symplectic symmetries of WCW. One would obtain a close similarity with the string model, except that one has half-algebra for which conformal weights are proportional to non-negative integers and gauge conditions only apply to an isomorphic subalgebra. These are labeled by positive integers and one obtains a hierarchy.
- 3. By their light-likeness, the light cone boundary and orbits of partonic 2-surfaces allow an infinite-dimensional isometry group. This is possible only in dimension four. Its transformations are generalized conformal transformations of 2-sphere (partonic 2-surface) depending on light-like radial coordinate such that the radial scaling compensates for the usual conformal scaling of the metric. The WCW isometries would thus correspond to the isometries of the parton orbit and of the boundary of the light cone! These two representations could provide alternative representations for the charges if the strong form of holography holds true and would realize a strong form of holography. Perhaps these realizations deserve to be called inertial and gravitational charges.

Can these transformations leave the action invariant? For the light-cone boundary, this looks obvious if the light-cone is sliced by a surface parallel to the light-cone boundary. Note however that the tip of this surface might produce problems. A slicing defined by the Hamilton-Jacobi structure would be naturally associated with partonic orbits.

4. What about Poincare symmetries? They would act on the center of mass coordinates of causal diamonds (CDs) as found already earlier [L56]. CDs form the "spine" of WCW, which can be regarded as fiber space with fiber for a given CD containing as a fiber the space-time surfaces inside it.

The super-symmetric counterparts of holomorphic charges for the modified Dirac action and bilinear in fermionic oscillator operators associated with the second quantization of free spinor fields in H, define gamma matrices of WCW. Their anticommutators define the Kähler metric of WCW. There is no need to calculate either the action defining the classical Kähler action defining the Kähler function or its derivatives with respect to WCW complex coordinates and their conjugates. What is important is that this makes it possible to speak about WCW metric also for number theoretical discretization of WCW with space-time surfaces replaced with their number theoretic discretizations.

Could generalized holomorphy allow to sharpen the existing views?

This picture is rather speculative, allows several variants, and is not proven. There is now however a rather convincing ansatz for the general form of preferred extremals. This proposal relies on the realization of holography as generalized 4-D holomorphy. Could it help to make the picture more precise?

- 1. Explicit solution of field equations in terms of the generalized holomorphy is now known. The solution ansatz is independent of action as long it is general coordinate invariance depending only on the induced geometric structures. Space-time surfaces would be minimal surfaces apart from lower-dimensional singular surfaces at which the field equations involve the entire action. Only the singularities, classical charges and positions of topological interaction vertices depend on the choice of the action [L51]. Kähler action plus volume term is the choice of action forced by twistor lift making the choice of H unique.
- 2. The universality has a very intriguing implication. One can assign to any action of this kind conserved Noether currents and their fermionic counterparts (also super counterparts). One would have a huge algebra of conserved currents characterizing the space-time geometry. The corresponding charges can be made conserved by suitably modifying the form of holomorphic functions of the ansatz and therefore the time derivatives $\partial_t h^k$ at the 3-D end of space-time surface at the boundary CD. This need not be the case for all deformations of partonic orbits. In any case, the 3-D holographic data seem to be dual as the strong form of holography suggests. The discussion of the symplectic symmetries leads to the conclusion that they give rise to conserved charges at the partonic 3-surfaces obeying Chern-Simons-Kähler dynamics, which is non-deterministic.
- 3. Hamilton-Jacobi structures emerge naturally as generalized conformal structures of spacetime surfaces and M^4 [L53]. This inspires a proposal for a generalization of modular invariance and of moduli spaces as subspaces of Teichmüller spaces.
- 4. One can assign to holomorphy conserved Noether charges. The conservation reduces to the algebraic conditions satisfied for the same reason as field equations, i.e. the conservation conditions involving contractions of complex tensors of type (1,1) with tensors of type (2,0) and (0,2). The charges have the same form as Noether charges but it is not completely clear whether the action remains invariant under these transformations. This point is non-trivial since Noether theorem says that invariance of the action implies the existence of conserved charges but not vice versa. Could TGD represent a situation in which the equivalence between symmetries of action and conservation laws fails?

Also string models have conformal symmetries but in this case 2-D area form suffers conformal scaling. Also the fact that holomorphic ansatz is satisfied for such a large class of actions apart from singularities suggests that the action is not invariant.

5. The action should define Kähler function for WCW identified as the space of Bohr orbits. WCW Kähler metric is defined in terms of the second derivatives of the Kähler action of type (1,1) with respect to complex coordinates of WCW. Does the invariance of the action under holomorphies imply a trivial Kähler metric and constant Kähler function?

Here one must be very cautious since by holography the variations of the space-time surface are induced by those of 3-surface defining holographic data so that the entire space-time surface is modified and the action can change. The presence of singularities, analogous to poles and cuts of an analytic function and representing particles, suggests that the action represents the interactions of particles and must change. Therefore the action might not be invariant under holomorphies. The parameters characterizing the singularities should affect the value of the action just as the positions of these singularities in 2-D electrostatistics affect the Coulomb energy.

Generalized conformal charges and supercharges define a generalization of Super Virasoro algebra of string models. Also Kac-Moody algebra assignable to the isometries of $\delta M_+^4 \times CP_2$ and light H generalizes trivially.

6. An absolutely essential point is that generalized holomorphisms are *not* symmetries of Kähler function since otherwise Kähler metric involving second derivatives of type (1,1) with respect to complex coordinates of WCW is non-trivial if defined by these symmetry generators as differential operators. If Kähler function is equal to Kähler action, as it seems, Kähler action cannot be invariant under generalized holomorphies.

Noether's theorem states that the invariance of the action under a symmetry implies the conservation of corresponding charge but does *not* claim that the existence of conserved Noether currents implies invariance of the action. Since Noether currents are conserved now, one would have a concrete example about the situation in which the inverse of Noether's theorem does not hold true. In a string model based on area action, conformal transformations of complex string coordinates give rise to conserved Noether currents as one easily checks. The area element defined by the induced metric suffers a conformal scaling so that the action is not invariant in this case.

Challenging the existing picture of WCW geometry

These findings make it possible to challenge and perhaps sharpen the existing speculations concerning the metric and isometries of WCW.

I have considered the possibility that also the symplectomorphisms of $\delta M^4 + \times CP_2$ could define WCW isometries. This actually the original proposal. One can imagine two options.

- 1. The continuation of symplectic transformations to transformations of the space-time surface from the boundary of light-cone or from the orbits partonic 2-surfaces should give rise to conserved Noether currents but it is not at all obvious whether this is the case.
- 2. One can assign conserved charges to the time evolution of the 3-D boundary data defining the holographic data: the time coordinate for the evolution would correspond to the lightlike coordinate of light-cone boundary or partonic orbit. This option I have not considered hitherto. It turns out that this option works!

The conclusion would be that generalized holomorphies give rise to conserved charges for 4-D time evolution and symplectic transformations give rise to conserved charged for 3-D time evolution associated with the holographic data.

About extremals of Chern-Simons-Kähler action

Let us look first the general nature of the solutions to the extremization of Chern-Simons-Kähler action.

1. The light-likeness of the partonic orbits requires Chern-Simons action, which is equivalent to the topological action $J \wedge J$, which is total divergence and is a symplectic in variant. The field equations at the boundary cannot involve induced metric so that only induced symplectic structure remains. The 3-D holographic data at partonic orbits would extremize Cherns-Simons-Kähler action. Note that at the ends of the space-time surface about boundaries of CD one cannot pose any dynamics.

- 2. If the induced Kähler form has only the CP_2 part, the variation of Chern-Simons-Kähler form would give equations satisfied if the CP_2 projection is at most 2-dimensional and Chern-Simons action would vanish and imply that instanton number vanishes.
- 3. If the action is the sum of M^4 and CP_2 parts, the field equations in M^4 and CP_2 degrees of freedom would give the same result. If the induced Kähler form is identified as the sum of the M^4 and CP_2 parts, the equations also allow solutions for which the induced M^4 and CP_2 Kähler forms sum up to zero. This phase would involve a map identifying M^4 and CP_2 projections and force induce Kähler forms to be identical. This would force magnetic charge in M^4 and the question is whether the line connecting the tips of the CD makes non-trivial homology possible. The homology charges and the 2-D ends of the partonic orbit cancel each other so that partonic surfaces can have monopole charge.

The conditions at the partonic orbits do not pose conditions on the interior and should allow generalized holomorphy. The following considerations show that besides homology charges as Kähler magnetic fluxes also Hamiltonian fluxes are conserved in Chern-Simons-Kähler dynamics.

Can one assign conserved charges with symplectic transformations or partonic orbits and 3-surfaces at light-cone boundary?

The geometric picture is that symplectic symmetries are Hamiltonian flows along the light-like partonic orbits generated by the projection A_t of the Kähler gauge potential in the direction of the light-like time coordinate. The physical picture is that the partonic 2-surface is a Kähler charged particle that couples to the Hamilton $H = A_t$. The Hamiltonians H_A are conserved in this time evolution and give rise to conserved Noether currents. The corresponding conserved charge is integral over the 2-surface defined by the area form defined by the induced Kähler form.

Let's examine the change of the Chern-Simons-Kähler action in a deformation that corresponds, for example, to the CP_2 symplectic transformation generated by Hamilton H_A . M^4 symplectic transformations can be treated in the same way:here however M^4 Kähler form would be involved, assumed to accompany Hamilton-Jacobi structure as a dynamically generated structure.

- 1. Instanton density for the induced Kähler form reduces to a total divergence and gives Chern-Simons-Kähler action, which is TGD analog of topological action. This action should change in infinitesimal symplectic transformations by a total divergence, which should vanish for extremals and give rise to a conserved current. The integral of the divergence gives a vanishing charge difference between the ends of the partonic orbit. If the symplectic transformations define symmetries, it should be possible to assign to each Hamiltonian H_A a conserved charge. The corresponding quantal charge would be associated with the modified Dirac action.
- 2. The conserved charge would be an integral over X^2 . The surface element is not given by the metric but by the symplectic structure, so that it is preserved in symplectic transformations. The 2-surface of the time evolution should correspond to the Hamiltonian time transformation generated by the projection $A_{\alpha} = A_k \partial_{\alpha} s^k$ of the Kähler gauge potential A_k to the direction of light-like time coordinate $x^{\alpha} \equiv t$.
- 3. The effect of the generator $j_A^k = J^{kl} \partial_l H_A$ on the Kähler potential A_l is given by $j_A^k \partial_k A_l$. This can be written as $\partial_k A_l = J_{kl} + \partial_l A_k$. The first term gives the desired total divergence $\partial_{\alpha} (\epsilon^{\alpha\beta\gamma} J_{\beta\gamma} H_A)$.

The second term is proportional to the term $\partial_{\alpha}H_A - \{A_{\alpha}, H\}$. Suppose that the induced Kähler form is transversal to the light-like time coordinate t, i.e. the induced Kähler form does not have components of form $J_{t\mu}$. In this kind of situation the only possible choice for α corresponds to the time coordinate t. In this situation one can perform the replacement $\partial_{\alpha}H_A - \{A_{\alpha}, H\} \rightarrow dH_A/dt - \{A_t, H\}$ This corresponds to a Hamiltonian time evolution generated by the projection A_t acting as a Hamiltonian. If this is really a Hamiltonian time evolution, one has $dH_A/dt - \{A, H\} = 0$. Because the Poisson bracket represents a commutator, the Hamiltonian time evolution equation is analogous to the vanishing of

a covariant derivative of H_A along light-like curves: $\partial_t H_A + [A, H_A] = 0$. The physical interpretation is that the partonic surface develops like a particle with a Kähler charge. As a consequence the change of the action reduces to a total divergence.

An explicit expression for the conserved current $J_A^{\alpha} = H_A \epsilon^{\alpha\beta\gamma} J_{\beta\gamma}$ can be derived from the vanishing of the total divergence. Symplectic transformations on X^2 generate an infinite-dimensional symplectic algebra. The charge is given by the Hamiltonian flux $Q_A = \int H_A J_{\beta\gamma} dx^{\alpha} \wedge dx^{\beta}$.

4. If the projection of the partonic path CP_2 or M^4 is 2-D, then the light-like geodesic line corresponds to the path of the parton surface. If A_l can be chosen parallel to the surface, its projection in the direction of time disappears and one has $A_t = 0$. In the more general case, X^2 could, for example, rotate in CP_2 . In this case A_t is nonvanishing. If J is transversal (no Kähler electric field), charge conservation is obtained.

Do the above observations apply at the boundary of the light-cone?

- 1. Now the 3-surface is space-like and Chern-Simons-Kähler action makes sense. It is not necessary but emerges from the "instanton density" for the Kähler form. The symplectic transformations of $\delta M_+^4 \times CP_2$ are the symmetries. The most time evolution associated with the radial light-like coordinate would be from the tip of the light-cone boundary to the boundary of CD. Conserved charges as homological invariants defining symplectic algebra would be associated with the 2-D slices of 3-surfaces. For closed 3-surfaces the total charges from the sheets of 3-space as covering of δM_+^4 must sum up to zero.
- 2. Interestingly, the original proposal [K19] for the isometries of WCW was that the Hamiltonian fluxes assignable to M^4 and CP_2 degrees of freedom at light-like boundary act define the charges associated with the WCW isometries as symplectic transformations so that a strong form of holography would have been be realized and space-time surface would have been effectively 2-dimensional. The recent view is that these symmetries pose conditions only on the 3-D holographic data. The holographic charges would correspond to additional isometries of WCW and would be well-defined for the 3-surfaces at the light-cone boundary.

To sum up, one can imagine many options but the following picture is perhaps the simplest one and is supported by physical intuition and mathematical facts. The isometry algebra of $\delta M_+^4 \times CP_2$ consists of generalized conformal and KM algebras at 3-surfaces in $\delta M_+^4 \times CP_2$ and symplectic algebras at the light cone boundary and 3-D light-like partonic orbits. The latter symmetries give constraints on the 3-D holographic data. It is still unclear whether one can assign generalized conformal and Kac-Moody charges to Chern-Simons-Kähler action. The isomorphic subalgebras labelled by a positive integer and their commutators with the entire algebra would annihilate the physical states. The isomorphic subalgebras labelled by a positive integer and their commutators with the entire algebra would annihilate the physical states. These two representations would generalize the notions of inertial and gravitational mass and their equivalence would generalize the Equivalence Principle.

Objection against the idea about theoretician friendly Mother Nature

One of the key ideas behind the TGD view of dark matter is that Nature is theoretician friendly [L52]. When the coupling strength proportional to \hbar_{eff} becomes so large that perturbation series ceases to converge, a phase transition increasing the value of h_{eff} takes place so that the perturbation series converges.

One can however argue that this argument is quantum field-theoretic and does not apply in TGD since holography changes the very concept of perturbation theory. There is no path integral to worry about. Path integral is indeed such a fundamental concept that one expects it to have some approximate counterpart also in the TGD Universe. Bohr orbits are not completely deterministic: could the sum over the Bohr orbits however translate to an approximate description as a path integral at the QFT limit? The dynamics of light-like partonic orbits is indeed non-deterministic and could give rise to an analog of path integral as a finite sum.

1. The dynamics implied by Chern-Simons-Kähler action assignable to the partonic 3-surface with light-one coordinate in the role of time, is very topological in that the partonic orbits is light-like 3-surface and has 2-D CP_2 and M^4 projections unless the induced M^4 and CP_2 Kähler forms sum up to zero. The light-likeness of the projection is a very loose condition and and the sum over partonic orbits as possible representation of holographic data analogous to initial values (light-likeness!) is therefore analogous to the sum over all paths appearing as a representation of Schrödinger equation in wave mechanics.

One would have an analog of 1-D QFT. This means that the infinities of quantum field theories are absent but for a large enough coupling strength $g^2/4\pi\hbar$ the perturbation series fails to converge. The increase of h_{eff} would resolve the problem. For instance, Dirac equation in atomic physics makes unphysical predictions when the value of nuclear charge is larger than $Z \sim 137$.

2. I have also considered a discrete variant of this picture motivated by the fact that the presence of the volume term in the action implies that the M^4 projection of the CP_2 type extremal is a light-like geodesic line. The light-like orbits would consist of pieces of light-like geodesics implying that the average velocity would be smaller than c: this could be seen as a correlate for massivation.

The points at which the direction of segment changes would correspond to points at which energy and momentum transfer between the partonic orbit and environment takes place. This kind of quantum number transfer might occur at least for the fermionic lines as boundaries of string world sheets. They could be described quantum mechanically as interactions with classical fields in the same way as the creation of fermion pairs as a fundamental vertex [L51]. The same universal 2-vertex would be in question.

At these points the minimal surface property would fail and the trace of the second fundamental form would not vanish but would have a delta function-like singularity. The CP_2 part of the second fundamental form has quantum numbers of Higgs so that there would be an analogy with the standard description of massivation by the Higgs mechanism. Higgs would be only where the vertices are.

3. What is intriguing, that the light-likeness of the projection of the CP_2 type extremals in M^4 leads to Virasoro conditions assignable to M^4 coordinates and this eventually led to the idea of conformal symmetries as isometries as WCW. In the case of the partonic orbits, the light-like curve would be in $M^4 \times CP_2$ but it would not be surprising if the generalization of the Virasoro conditions would emerge also now.

One can write M^4 and CP_2 coordinates for the light-like curve as Fourier expansion in powers of exp(it), where t is the light-like coordinate. This gives $h^k = \sum h_n^k exp(int)$. If the CP_2 projection of the orbits of the partonic 2-surface is geodesic circle, CP_2 metric s_{kl} is constant, the light-likeness condition $h_{kl}\partial_t h^k \partial_t h^l = 0$ gives $Re[h_{kl} \sum_m h_{n-m}^k \overline{h}_m^l] = 0$. This does not give Virasoro conditions.

The condition $d/dt(h_{kl}\partial_t h^k \partial_t h^l = 0) = 0$ however gives the standard Virasoro condition in quantization condition stating that the operator counterparts of quantities $L_n = Re[h_{kl} \sum_m (n-m)h_{n-m}^k \overline{h}_m^l]$ annihilate the physical states. What is interesting is that the latter condition also allows time-like (and even space-like) geodesics.

Could massivation mean a failure of light-likeness? For piecewise light-like geodesics the light-likeness condition would be true only inside the segments. By taking Fourier transform one expects to obtain Virasoro conditions with a cutoff analogous to the momentum cutoff in condensed matter physics for crystals.

4. In TGD the Virasoro, Kac-Moody algebras and symplectic algebras are replaced by halfalgebras and the gauge conditions are satisfied for conformal weights which are *n*-multiples of fundamentals with with *n* larger than some minimal value. This would dramatically reduce the effects of the non-determinism and could make the sum over all paths allowed by the light-likeness manifestly finite and reduce it to a sum with a finite number of terms. This cutoff in degrees of freedom would correspond to a genuinely physical cutoff due to the finite measurement resolution coded to the number theoretical anatomy of the space-time surfaces. This cutoff is analogous to momentum cutoff and could at the space-time picture correspond to finite minimum length for the light-like segments of the orbit of the partoic 2-surface.

Boundary conditions at partonic orbits and holography

TGD reduces coupling constant evolution to a number theoretical evolution of the coupling parameters of the action identified as Kähler function for WCW. An interesting question is how the 3-D holographic data at the partonic orbits relates to the corresponding 3-D data at the ends of space-time surfaces at the boundary of CD, and how it relates to coupling constant evolution.

1. The twistor lift of TGD strongly favours 6-D Kähler action, which dimensionally reduces to Kähler action plus volume term plus topological $\int J \wedge J$ term reducing to Chern Simons-Kähler action. The coefficients of these terms are proposed to be expressible in terms of number theoretical invariants characterizing the algebraic extensions of rationals and polynomials determining the space-time surfaces by $M^8 - H$ duality.

Number theoretical coupling constant evolution would be discrete. Each extension of rationals would give rise to its own coupling parameters involving also the ramified primes characterizing the polynomials involved and identified as p-adic length scales.

2. The time evolution of the partonic orbit would be non-deterministic but subject to the lightlikeness constraint and boundary conditions guaranteeing conservation laws. The natural expectation is that the boundary/interface conditions for a given action cannot be satisfied for all partonic orbits (and other singularities). The deformation of the partonic orbit requiring that boundary conditions are satisfied, does not affect X^3 but the time derivatives $\partial_t h^k$ at X^3 are affected since the form of the holomorphic functions defining the space-time surface would change. The interpretation would be in terms of duality of the holographic data associated with the partonic orbits resp. X^3 .

There can of course exist deformations, which require the change of the coupling parameters of the action to satisfy the boundary conditions. One can consider an analog of renormalization group equations in which the deformation corresponds to a modification of the coupling parameters of the action, most plausibly determined by the twistor lift. Coupling parameters would label different regions of WCW and the space-time surfaces possible for two different sets of coupling parameters would define interfaces between these regions.

In order to build a more detailed view one must fix the details related to the action whose value defines the WCW Kähler function.

- 1. If Kähler action is identified as Kähler action, the identification is unique. There is however the possibility that the imaginary exponent of the instanton term or the contribution from the Euclidean region is not included in the definition of Kähler function. For instance instanton term could be interpreted as a phase of quantum state and would not contribute.
- 2. Both Minkowskian and Euclidean regions are involved and the Euclidean signature poses problems. The definition of the determinant as $\sqrt{-g_4}$ is natural in Minkowskian regions but gives an imaginary contribution in Euclidean regions. $\sqrt{|g_4|}$ is real in both regions. $i\sqrt{g_4}$ is real in Minkowskian regions but imaginary in the Euclidean regions.

There is also a problem related to the instanton term, which does not depend on the metric determinant at all. In QFT context the instanton term is imaginary and this is important for instance in QCD in the definition of CP breaking vacuum functional. Should one include only the 4-D or possibly only Minkowskian contribution to the Kähler function imaginary coefficient for the instanton/Euclidian term would be possible?

3. Boundary conditions guaranteeing the conservation laws at the partonic orbits must be satisfied. Consider the $\sqrt{|g_4|}$ case. Charge transfer between Euclidean and Minkowskian regions. If the C-S-K term is real, also the charge transfer between partonic orbit and 4-D regions is possible. The boundary conditions at the partonic orbit fix it to a high degree and

also affect the time derivatives $\partial_t h^k$ at X^3 . This option looks physically rather attractive because classical conserved charges would be real.

If the C-S-K term is imaginary it behaves like a free particle since charge exchange with Minkowskian and Euclidean regions is not possible. A possible interpretation of the possible M^4 contribution to momentum could be in terms of decay width. The symplectic charges do not however involve momentum. The imaginary contribution to momentum could therefore come only from the Euclidean region.

4. If the Euclidean contribution is imaginary, it seems that it cannot be included in the Kähler function. Since in M^8 picture the momenta of virtual fermions are in general complex, one could consider the possibility that Euclidean contribution to the momentum is imaginary and allows an interpretation as a decay width.

The TGD counterparts of the gauge conditions of string models

The string model picture forces to ask whether the symplectic algebras and the generalized conformal and Kac-Moody algebras could act as gauge symmetries.

- 1. In string model picture conformal invariance would suggest that the generators of the generalized conformal and KM symmetries act as gauge transformations annihilate the physical states. In the TGD framework, this does not however make sense physically. This also suggests that the components of the metric defined by supergenerators of generalized conformal and Kac Moody transformations vanish. If so, the symplectomorphisms $\delta M_+^4 \times CP_2$ localized with respect to the light-like radial coordinate acting as isometries would be needed. The half-algebras of both symplectic and conformal generators are labelled by a non-negative integer defining an analog of conformal weight so there is a fractal hierarchy of isomorphic subalgebras in both cases.
- 2. TGD forces to ask whether only subalgebras of both conformal and Kac-Moody half algebras, isomorphic to the full algebras, act as gauge algebras. This applies also to the symplectic case. Here it is essential that only the half algebra with non-negative multiples of the fundamental conformal weights is allowed. For the subalgebra annihilating the states the conformal weights would be fixed integer multiples of those for the full algebra. The gauge property would be true for all algebras involved. The remaining symmetries would be genuine dynamical symmetries of the reduced WCW and this would reflect the number theoretically realized finite measurement resolution. The reduction of degrees of freedom would also be analogous to the basic property of hyperfinite factors assumed to play a key role in thee definition of finite measurement resolution.
- 3. For strong holography, the orbits of partonic 2-surfaces and boundaries of the spacetime surface at δM_+^4 would be dual in the information theoretic sense. Either would be enough to determine the space-time surface.

6.3.3 Interior Dynamics For Fermions, The Role Of Vacuum Extremals, And Dark Matter

The key role of CP_2 -type and M^4 -type vacuum extremals has been rather obvious from the beginning but the detailed understanding has been lacking. Both kinds of extremals are invariant under symplectic transformations of $\delta M^4 \times CP_2$, which inspires the idea that they give rise to isometries of WCW. The deformations CP_2 -type extremals correspond to lines of generalized Feynman diagrams. M^4 type vacuum extremals in turn are excellent candidates for the building bricks of many-sheeted space-time giving rise to GRT space-time as approximation. For M^4 type vacuum extremals CP_2 projection is (at most 2-D) Lagrangian manifold so that the induced Kähler form vanishes and the action is fourth-order in small deformations. This implies the breakdown of the path integral approach and of canonical quantization, which led to the notion of WCW.

If the action in Minkowskian regions contains also string area, the situation changes dramatically since strings dominate the dynamics in excellent approximation and string theory should give an excellent description of the situation: this of course conforms with the dominance of gravitation. String tension would be proportional to $1/\hbar G$ and this raises a grave classical counter argument. In string model massless particles are regarded as strings, which have contracted to a point in excellent approximation and cannot have length longer than Planck length. How this can be consistent with the formation of gravitationally bound states is however not understood since the required non-perturbative formulation of string model required by the large valued of the coupling parameter GMm is not known.

In TGD framework strings would connect even objects with macroscopic distance and would obviously serve as correlates for the formation of bound states in quantum level description. The classical energy of string connecting say the two wormhole contacts defining elementary particle is gigantic for the ordinary value of \hbar so that something goes wrong.

I have however proposed [K64, K52, K53] that gravitons - at least those mediating interaction between dark matter have large value of Planck constant. I talk about gravitational Planck constant and one has $\hbar_{eff} = \hbar_{gr} = GMm/v_0$, where $v_0/c < 1$ (v_0 has dimensions of velocity). This makes possible perturbative approach to quantum gravity in the case of bound states having mass larger than Planck mass so that the parameter GMm analogous to coupling constant is very large. The velocity parameter v_0/c becomes the dimensionless coupling parameter. This reduces the string tension so that for string world sheets connecting macroscopic objects one would have $T \propto v_0/G^2Mm$. For $v_0 = GMm/\hbar$, which remains below unity for Mm/m_{Pl}^2 one would have $h_{gr}/h = 1$. Hence action remains small and its imaginary exponent does not fluctuate wildly to make the bound state forming part of gravitational interaction short ranged. This is expected to hold true for ordinary matter in elementary particle scales. The objects with size scale of large neutron (100 μ m in the density of water) - probably not an accident - would have mass above Planck mass so that dark gravitons and also life would emerge as massive enough gravitational bound states are formed. $h_{gr} = h_{eff}$ hypothesis is indeed central in TGD based view about living matter.

If one assumes that for non-standard values of Planck constant only *n*-multiples of superconformal algebra in interior annihilate the physical states, interior conformal gauge degrees of freedom become partly dynamical. The identification of dark matter as macroscopic quantum phases labeled by $h_{eff}/h = n$ conforms with this.

The emergence of dark matter corresponds to the emergence of interior dynamics via breaking of super-conformal symmetry. The induced spinor fields in the interior of flux tubes obeying Kähler Dirac action should be highly relevant for the understanding of dark matter. The assumption that dark particles have essentially same masses as ordinary particles suggests that dark fermions correspond to induced spinor fields at both string world sheets and in the space-time interior: the spinor fields in the interior would be responsible for the long range correlations characterizing $h_{eff}/h = n$. Magnetic flux tubes carrying dark matter are key entities in TGD inspired quantum biology. Massless extremals represent second class of M^4 type non-vacuum extremals.

This view forces once again to ask whether space-time SUSY is present in TGD and how it is realized. With a motivation coming from the observation that the mass scales of particles and sparticles most naturally have the same p-adic mass scale as particles in TGD Universe I have proposed that sparticles might be dark in TGD sense. The above argument leads to ask whether the dark variants of particles correspond to states in which one has ordinary fermion at string world sheet and 4-D fermion in the space-time interior so that dark matter in TGD sense would almost by definition correspond to sparticles!

6.3.4 Classical Number Fields And Associativity And Commutativity As Fundamental Law Of Physics

The dimensions of classical number fields appear as dimensions of basic objects in quantum TGD. Embedding space has dimension 8, space-time has dimension 4, light-like 3-surfaces are orbits of 2-D partonic surfaces. If conformal QFT applies to 2-surfaces (this is questionable), one-dimensional structures would be the basic objects. The lowest level would correspond to discrete sets of points identifiable as intersections of real and p-adic space-time sheets. This suggests that besides p-adic number fields also classical number fields (reals, complex numbers, quaternions, octonions [A65]) are involved [K70] and the notion of geometry generalizes considerably. In the recent view about quantum TGD the dimensional hierarchy defined by classical number field indeed plays a key role. $H = M^4 \times CP_2$ has a number theoretic interpretation and standard model symmetries can be understood number theoretically as symmetries of hyper-quaternionic planes of hyper-octonionic space.

The associativity condition A(BC) = (AB)C suggests itself as a fundamental physical law of both classical and quantum physics. Commutativity can be considered as an additional condition. In conformal field theories associativity condition indeed fixes the n-point functions of the theory. At the level of classical TGD space-time surfaces could be identified as maximal associative (hyper-quaternionic) sub-manifolds of the embedding space whose points contain a preferred hypercomplex plane M^2 in their tangent space and the hierarchy finite fields-rationals-reals-complex numbers-quaternions-octonions could have direct quantum physical counterpart [K70]. This leads to the notion of number theoretic compactification analogous to the dualities of M-theory: one can interpret space-time surfaces either as hyper-quaternionic 4-surfaces of M^8 or as 4-surfaces in $M^4 \times CP_2$. As a matter fact, commutativity in number theoretic sense is a further natural condition and leads to the notion of number theoretic braid naturally as also to direct connection with super string models.

At the level of Kähler-Dirac action the identification of space-time surface as a hyperquaternionic sub-manifold of H means that the modified gamma matrices of the space-time surface defined in terms of canonical momentum currents of Kähler action using octonionic representation for the gamma matrices of H span a hyper-quaternionic sub-space of hyper-octonions at each point of space-time surface (hyper-octonions are the subspace of complexified octonions for which imaginary units are octonionic imaginary units multiplied by commutating imaginary unit). Hyper-octonionic representation leads to a proposal for how to extend twistor program to TGD framework [K84, L12].

How to achieve associativity in the fermionic sector?

In the fermionic sector an additional complication emerges. The associativity of the tangentor normal space of the space-time surface need not be enough to guarantee the associativity at the level of Kähler-Dirac or Dirac equation. The reason is the presence of spinor connection. A possible cure could be the vanishing of the components of spinor connection for two conjugates of quaternionic coordinates combined with holomorphy of the modes.

- 1. The induced spinor connection involves sigma matrices in CP_2 degrees of freedom, which for the octonionic representation of gamma matrices are proportional to octonion units in Minkowski degrees of freedom. This corresponds to a reduction of tangent space group SO(1,7) to G_2 . Therefore octonionic Dirac equation identifying Dirac spinors as complexified octonions can lead to non-associativity even when space-time surface is associative or coassociative.
- 2. The simplest manner to overcome these problems is to assume that spinors are localized at 2-D string world sheets with 1-D CP_2 projection and thus possible only in Minkowskian regions. Induced gauge fields would vanish. String world sheets would be minimal surfaces in $M^4 \times D^1 \subset M^4 \times CP_2$ and the theory would simplify enormously. String area would give rise to an additional term in the action assigned to the Minkowskian space-time regions and for vacuum extremals one would have only strings in the first approximation, which conforms with the success of string models and with the intuitive view that vacuum extremals of Kähler action are basic building bricks of many-sheeted space-time. Note that string world sheets would be also symplectic covariants.

Without further conditions gauge potentials would be non-vanishing but one can hope that one can gauge transform them away in associative manner. If not, one can also consider the possibility that CP_2 projection is geodesic circle S^1 : symplectic invariance is considerably reduces for this option since symplectic transformations must reduce to rotations in S^1 .

3. The fist heavy objection is that action would contain Newton's constant G as a fundamental dynamical parameter: this is a standard recipe for building a non-renormalizable theory. The very idea of TGD indeed is that there is only single dimensionless parameter analogous to critical temperature. One can of coure argue that the dimensionless parameter is $\hbar G/R^2$, R CP_2 "radius".

Second heavy objection is that the Euclidian variant of string action exponentially damps out all string world sheets with area larger than $\hbar G$. Note also that the classical energy of Minkowskian string would be gigantic unless the length of string is of order Planck length. For Minkowskian signature the exponent is oscillatory and one can argue that wild oscillations have the same effect.

The hierarchy of Planck constants would allow the replacement $\hbar \to \hbar_{eff}$ but this is not enough. The area of typical string world sheet would scale as h_{eff} and the size of CD and gravitational Compton lengths of gravitationally bound objects would scale as $\sqrt{h_{eff}}$ rather than $\hbar_{eff} = GMm/v_0$, which one wants. The only way out of problem is to assume $T \propto (\hbar/h_{eff})^2 \times (1/h_{bar}G)$. This is however un-natural for genuine area action. Hence it seems that the visit of the basic assumption of superstring theory to TGD remains very short.

Is super-symmetrized Kähler-Dirac action enough?

Could one do without string area in the action and use only K-D action, which is in any case forced by the super-conformal symmetry? This option I have indeed considered hitherto. K-D Dirac equation indeed tends to reduce to a lower-dimensional one: for massless extremals the K-D operator is effectively 1-dimensional. For cosmic strings this reduction does not however take place. In any case, this leads to ask whether in some cases the solutions of Kähler-Dirac equation are localized at lower-dimensional surfaces of space-time surface.

1. The proposal has indeed been that string world sheets carry vanishing W and possibly even Z fields: in this manner the electromagnetic charge of spinor mode could be well-defined. The vanishing conditions force in the generic case 2-dimensionality.

Besides this the canonical momentum currents for Kähler action defining 4 embedding space vector fields must define an integrable distribution of two planes to give string world sheet. The four canonical momentum currents $\Pi_k \alpha = \partial L_K / \partial_{\partial_\alpha h^k}$ identified as embedding 1-forms can have only two linearly independent components parallel to the string world sheet. Also the Frobenius conditions stating that the two 1-forms are proportional to gradients of two embedding space coordinates Φ_i defining also coordinates at string world sheet, must be satisfied. These conditions are rather strong and are expected to select some discrete set of string world sheets.

- 2. To construct preferred extremal one should fix the partonic 2-surfaces, their light-like orbits defining boundaries of Euclidian and Minkowskian space-time regions, and string world sheets. At string world sheets the boundary condition would be that the normal components of canonical momentum currents for Kähler action vanish. This picture brings in mind strong form of holography and this suggests that might make sense and also solution of Einstein equations with point like sources.
- 3. The localization of spinor modes at 2-D surfaces would would follow from the well-definedness of em charge and one could have situation is which the localization does not occur. For instance, covariantly constant right-handed neutrinos spinor modes at cosmic strings are completely de-localized and one can wonder whether one could give up the localization inside wormhole contacts.
- 4. String tension is dynamical and physical intuition suggests that induced metric at string world sheet is replaced by the anti-commutator of the K-D gamma matrices and by conformal invariance only the conformal equivalence class of this metric would matter and it could be even equivalent with the induced metric. A possible interpretation is that the energy density of Kähler action has a singularity localized at the string world sheet.

Another interpretation that I proposed for years ago but gave up is that in spirit with the TGD analog of AdS/CFT duality the Noether charges for Kähler action can be reduced to integrals over string world sheet having interpretation as area in effective metric. In the case of magnetic flux tubes carrying monopole fluxes and containing a string connecting partonic 2-surfaces at its ends this interpretation would be very natural, and string tension would characterize the density of Kähler magnetic energy. String model with dynamical string

tension would certainly be a good approximation and string tension would depend on scale of CD.

- 5. There is also an objection. For M^4 type vacuum extremals one would not obtain any nonvacuum string world sheets carrying fermions but the successes of string model strongly suggest that string world sheets are there. String world sheets would represent a deformation of the vacuum extremal and far from string world sheets one would have vacuum extremal in an excellent approximation. Situation would be analogous to that in general relativity with point particles.
- 6. The hierarchy of conformal symmetry breakings for K-D action should make string tension proportional to $1/h_{eff}^2$ with $h_{eff} = h_{gr}$ giving correct gravitational Compton length $\Lambda_{gr} = GM/v_0$ defining the minimal size of CD associated with the system. Why the effective string tension of string world sheet should behave like $(\hbar/\hbar_{eff})^2$?

The first point to notice is that the effective metric $G^{\alpha\beta}$ defined as $h^{kl}\Pi_k^{\alpha}\Pi_l^{\beta}$, where the canonical momentum current $\Pi_k \alpha = \partial L_K / \partial_{\partial_\alpha h^k}$ has dimension $1/L^2$ as required. Kähler action density must be dimensionless and since the induced Kähler form is dimensionless the canonical momentum currents are proportional to $1/\alpha_K$.

Should one assume that α_K is fundamental coupling strength fixed by quantum criticality to $\alpha_K = 1/137$? Or should one regard g_K^2 as fundamental parameter so that one would have $1/\alpha_K = \hbar_{eff}/4\pi g_K^2$ having spectrum coming as integer multiples (recall the analogy with inverse of critical temperature)?

The latter option is the in spirit with the original idea stating that the increase of h_{eff} reduces the values of the gauge coupling strengths proportional to α_K so that perturbation series converges (Universe is theoretician friendly). The non-perturbative states would be critical states. The non-determinism of Kähler action implying that the 3-surfaces at the boundaries of CD can be connected by large number of space-time sheets forming *n* conformal equivalence classes. The latter option would give $G^{\alpha\beta} \propto h_{eff}^2$ and $det(G) \propto 1/h_{eff}^2$ as required.

7. It must be emphasized that the string tension has interpretation in terms of gravitational coupling on only at the GRT limit of TGD involving the replacement of many-sheeted space-time with single sheeted one. It can have also interpretation as hadronic string tension or effective string tension associated with magnetic flux tubes and telling the density of Kähler magnetic energy per unit length.

Superstring models would describe only the perturbative Planck scale dynamics for emission and absorption of $h_{eff}/h = 1$ on mass shell gravitons whereas the quantum description of bound states would require $h_{eff}/n > 1$ when the masses. Also the effective gravitational constant associated with the strings would differ from G.

The natural condition is that the size scale of string world sheet associated with the flux tube mediating gravitational binding is $G(M + m)/v_0$, By expressing string tension in the form $1/T = n^2 \hbar G_1$, $n = h_{eff}/h$, this condition gives $\hbar G_1 = \hbar^2/M_{red}^2$, $M_{red} = Mm/(M + m)$. The effective Planck length defined by the effective Newton's constant G_1 analogous to that appearing in string tension is just the Compton length associated with the reduced mass of the system and string tension equals to $T = [v_0/G(M + m)]^2$ apart from a numerical constant (2G(M + m)) is Schwartschild radius for the entire system). Hence the macroscopic stringy description of gravitation in terms of string differs dramatically from the perturbative one. Note that one can also understand why in the Bohr orbit model of Nottale [E1] for the planetary system and in its TGD version [K64] v_0 must be by a factor 1/5 smaller for outer planets rather than inner planets.

Are 4-D spinor modes consistent with associativity?

The condition that octonionic spinors are equivalent with ordinary spinors looks rather natural but in the case of Kähler-Dirac action the non-associativity could leak in. One could of course give up the condition that octonionic and ordinary K-D equation are equivalent in 4-D case. If so, one could see K-D action as related to non-commutative and maybe even non-associative fermion dynamics. Suppose that one does not.

- 1. K-D action vanishes by K-D equation. Could this save from non-associativity? If the spinors are localized to string world sheets, one obtains just the standard stringy construction of conformal modes of spinor field. The induce spinor connection would have only the holomorphic component A_z . Spinor mode would depend only on z but K-D gamma matrix Γ^z would annihilate the spinor mode so that K-D equation would be satisfied. There are good hopes that the octonionic variant of K-D equation is equivalent with that based on ordinary gamma matrices since quaternionic coordinated reduces to complex coordinate, octonionic quaternionic gamma matrices reduce to complex gamma matrices, sigma matrices are effectively absent by holomorphy.
- 2. One can consider also 4-D situation (maybe inside wormhole contacts). Could some form of quaternion holomorphy [A84] [L12] allow to realize the K-D equation just as in the case of super string models by replacing complex coordinate and its conjugate with quaternion and its 3 conjugates. Only two quaternion conjugates would appear in the spinor mode and the corresponding quaternionic gamma matrices would annihilate the spinor mode. It is essential that in a suitable gauge the spinor connection has non-vanishing components only for two quaternion conjugate coordinates. As a special case one would have a situation in which only one quaternion coordinate appears in the solution. Depending on the character of quaternionion holomorphy the modes would be labelled by one or two integers identifiable as conformal weights.

Even if these octonionic 4-D modes exists (as one expects in the case of cosmic strings), it is far from clear whether the description in terms of them is equivalent with the description using K-D equation based ordinary gamma matrices. The algebraic structure however raises hopes about this. The quaternion coordinate can be represented as sum of two complex coordinates as $q = z_1 + Jz_2$ and the dependence on two quaternion conjugates corresponds to the dependence on two complex coordinates z_1, z_2 . The condition that two quaternion complexified gammas annihilate the spinors is equivalent with the corresponding condition for Dirac equation formulated using 2 complex coordinates. This for wormhole contacts. The possible generalization of this condition to Minkowskian regions would be in terms Hamilton-Jacobi structure.

Note that for cosmic strings of form $X^2 \times Y^2 \subset M^4 \times CP_2$ the associativity condition for S^2 sigma matrix and without assuming localization demands that the commutator of Y^2 imaginary units is proportional to the imaginary unit assignable to X^2 which however depends on point of X^2 . This condition seems to imply correlation between Y^2 and S^2 which does not look physical.

To summarize, the minimal and mathematically most optimistic conclusion is that Kähler-Dirac action is indeed enough to understand gravitational binding without giving up the associativity of the fermionic dynamics. Conformal spinor dynamics would be associative if the spinor modes are localized at string world sheets with vanishing W (and maybe also Z) fields guaranteeing well-definedness of em charge and carrying canonical momentum currents parallel to them. It is not quite clear whether string world sheets are present also inside wormhole contacts: for CP_2 type vacuum extremals the Dirac equation would give only right-handed neutrino as a solution (could they give rise to N = 2 SUSY?).

The construction of preferred extremals would realize strong form of holography. By conformal symmetry the effective metric at string world sheet could be conformally equivalent with the induced metric at string world sheets.

Dynamical string tension would be proportional to \hbar/h_{eff}^2 due to the proportionality $\alpha_K \propto 1/h_{eff}$ and predict correctly the size scales of gravitationally bound states for $\hbar_{gr} = \hbar_{eff} = GMm/v_0$. Gravitational constant would be a prediction of the theory and be expressible in terms of α_K and R^2 and \hbar_{eff} ($G \propto R^2/g_K^2$).

In fact, all bound states - elementary particles as pairs of wormhole contacts, hadronic strings, nuclei [K45], molecules, etc. - are described in the same manner quantum mechanically. This is of course nothing new since magnetic flux tubes associated with the strings provide a universal model for interactions in TGD Universe. This also conforms with the TGD counterpart of AdS/CFT duality.

6.4 About some unclear issues of TGD

TGD has been in the middle of palace revolution during last two years and it is almost impossible to keep the chapters of the books updated. Adelic vision and twistor lift of TGD are the newest developments and there are still many details to be understood and errors to be corrected. The description of fermions in TGD framework has contained some unclear issues. Hence the motivation for the following brief comments.

There questions about the adelic vision about symmetries. Do the cognitive representations implying number theoretic disretization of the space-time surface lead to the breaking of the basic symmetries and are preferred embedding space coordinates actually necessary?

In the fermionic sector there are many questions deserving clarification. How quantum classical correspondence (QCC) is realized for fermions? How is SH realized for fermions and how does it lead to the reduction of dimension D = 4 to D = 2 (apart from number theoretical discretization)? Can scattering amplitudes be really formulated by using only the data at the boundaries of string sheets and what does this mean from the point of view of the modified Dirac equation? Are the spinors at light-like boundaries limiting values or sources? A long-standing issue concerns the fermionic anti-commutation relations: what motivated this article was the solution of this problem. There is also the general problem about whether statistical entanglement is "real".

6.4.1 Adelic vision and symmetries

In the adelic TGD SH is weakened: also the points of the space-time surface having embedding space coordinates in an extension of rationals (cognitive representation) are needed so that data are not precisely 2-D. I have believed hitherto that one must use preferred coordinates for the embedding space H - a subset of these coordinates would define space-time coordinates. These coordinates are determined apart from isometries. Does the number theoretic discretization imply loss of general coordinate invariance and also other symmetries?

The reduction of symmetry groups to their subgroups (not only algebraic since powers of e define finite-dimensional extension of p-adic numbers since e^p is ordinary p-adic number) is genuine loss of symmetry and reflects finite cognitive resolution. The physics itself has the symmetries of real physics.

The assumption about preferred embedding space coordinates is actually not necessary. Different choices of H-coordinates means only different and non-equivalent cognitive representations. Spherical and linear coordinates in finite accuracy do not provide equivalent representations.

6.4.2 Quantum-classical correspondence for fermions

Quantum-classical correspondence (QCC) for fermions is rather well-understood but deserves to be mentioned also here.

QCC for fermions means that the space-time surface as preferred extremal should depend on fermionic quantum numbers. This is indeed the case if one requires QCC in the sense that the fermionic representations of Noether charges in the Cartan algebras of symmetry algebras are equal to those to the classical Noether charges for preferred extremals.

Second aspect of QCC becomes visible in the representation of fermionic states as point like particles moving along the light-like curves at the light-like orbits of the partonic 2-surfaces (curve at the orbit can be locally only light-like or space-like). The number of fermions and antifermions dictates the number of string world sheets carrying the data needed to fix the preferred extremal by SH. The complexity of the space-time surface increases as the number of fermions increases.

6.4.3 Strong form of holography for fermions

It seems that scattering amplitudes can be formulated by assigning fermions with the boundaries of strings defining the lines of twistor diagrams [K28, L20]. This information theoretic dimensional reduction from D = 4 to D = 2 for the scattering amplitudes can be partially understood in terms of strong form of holography (SH): one can construct the theory by using the data at string worlds sheets and/or partonic 2-surfaces at the ends of the space-time surface at the opposite boundaries of causal diamond (CD).

4-D modified Dirac action would appear at fundamental level as supersymmetry demands but would be reduced for preferred extremals to its 2-D stringy variant serving as effective action. Also the value of the 4-D action determining the space-time dynamics would reduce to effective stringy action containing area term, 2-D Kähler action, and topological Kähler magnetic flux term. This reduction would be due to the huge gauge symmetries of preferred extremals. Sub-algebra of super-symplectic algebra with conformal weigths coming as n-multiples of those for the entire algebra and the commutators of this algebra with the entire algebra would annihilate the physical states, and thecorresponding classical Noether charges would vanish.

One still has the question why not the data at the entire string world sheets is not needed to construct scattering amplitudes. Scattering amplitudes of course need not code for the entire physics. QCC is indeed motivated by the fact that quantum experiments are always interpreted in terms of classical physics, which in TGD framework reduces to that for space-time surface.

6.4.4 The relationship between spinors in space-time interior and at boundaries between Euclidian and Minkoskian regions

Space-time surface decomposes to interiors of Minkowskian and Euclidian regions. At light-like 3-surfaces at which the four-metric changes, the 4-metric is degenerate. These metrically singular 3-surfaces - partonic orbits- carry the boundaries of string world sheets identified as carriers of fermionic quantum numbers. The boundaries define fermion lines in the twistor lift of TGD [K28, L20]. The relationship between fermions at the partonic orbits and interior of the space-time surface has however remained somewhat enigmatic.

So: What is the precise relationship between induced spinors Ψ_B at light-like partonic 3surfaces and Ψ_I in the interior of Minkowskian and Euclidian regions? Same question can be made for the spinors Ψ_B at the boundaries of string world sheets and Ψ_I in interior of the string world sheets. There are two options to consider:

- Option I: Ψ_B is the limiting value of Ψ_I .
- Option II: Ψ_B serves as a source of Ψ_I .

For the Option I it is difficult to understand the preferred role of Ψ_B . I have considered Option II already years ago but have not been able to decide.

- 1. That scattering amplitudes could be formulated only in terms of sources only, would fit nicely with SH, twistorial amplitude construction, and also with the idea that scattering amplitudes in gauge theories can be formulated in terms of sources of boson fields assignable to vertices and propagators. Now the sources would become fermionic.
- 2. One can take gauge theory as a guideline. One adds to free Dirac equation source term $\gamma^k A_k \Psi$. Therefore the natural boundary term in the action would be of the form (forgetting overall scale factor)

$$S_B = \overline{\Psi}_I \Gamma^{\alpha} (C - S) A_{\alpha} \Psi_B + c.c \quad .$$

Here the modified gamma matrix is $\Gamma^{\alpha}(C-S)$ (contravariant form is natural for light-like 3-surfaces) is most naturally defined by the boundary part of the action - naturally Chern-Simons term for Kähler action. A denotes the Kähler gauge potential.

3. The variation with respect to Ψ_B gives

$$G^{\alpha}(C-S)A_{\alpha}\Psi_{I}=0$$

at the boundary so that the C-S term and interaction term vanish. This does not however imply vanishing of the source term! This condition can be seen as a boundary condition.

The same argument applies also to string world sheets.

6.4.5 About second quantization of the induced spinor fields

The anti-commutation relations for the induced spinors have been a long-standing issue and during years I have considered several options. The solution of the problem looks however stupifuingly simple. The conserved fermion currents are accompanied by super-currents obtained by replacing Ψ with a mode of the induced spinor field to get $\overline{u}_n\Gamma^{\alpha}\Psi$ or $\overline{\Psi}\Gamma^{\alpha}u_n$ with the conjugate of the mode. One obtains infinite number of conserved super currents. One can also replace both Ψ and $\overline{\Psi}$ in this manner to get purely bosonic conserved currents $\overline{u}_m\Gamma^{\alpha}u_n$ to which one can assign a conserved bosonic charges Q_{mn} .

I noticed this years ago but did not realize that these bosonic charges define naturally anticommutators of fermionic creation and annihilation operators! The ordinary anti-commutators of quantum field theory follow as a special case! By a suitable unitary transformation of the spinor basis one can diagonalize the hermitian matrix defined by Q_{mn} and by performing suitable scalings one can transform anti-commutation relations to the standard form. An interesting question is whether the diagonalization is needed, and whether the deviation of the diagonal elements from unity could have some meaning and possibly relate to the hierarchy $h_{eff} = n \times h$ of Planck constants - probably not.

6.4.6 Is statistical entanglement "real" entanglement?

The question about the "reality" of statistical entanglement has bothered me for years. This entanglement is maximal and it cannot be reduced by measurement so that one can argue that it is not "real". Quite recently I learned that there has been a longstanding debate about the statistical entanglement and that the issue still remains unresolved.

The idea that all electrons of the Universe are maximally entangled looks crazy. TGD provides several variants for solutions of this problem. It could be that only the fermionic oscillator operators at partonic 2-surfaces associated with the space-time surface (or its connected component) inside given CD anti-commute and the fermions are thus indistinguishable. The extremist option is that the fermionic oscillator operators belonging to a network of partonic 2-surfaces connected by string world sheets anti-commute: only the oscillator operators assignable to the same scattering diagram would anti-commute.

What about QCC in the case of entanglement. ER-EPR correspondence introduced by Maldacena and Susskind for 4 years ago proposes that blackholes (maybe even elementary particles) are connected by wormholes. In TGD the analogous statement emerged for more than decade ago - magnetic flux tubes take the role of wormholes in TGD. Magnetic flux tubes were assumed to be accompanied by string world sheets. I did not consider the question whether string world sheets are always accompanied by flux tubes.

What could be the criterion for entanglement to be "real"? "Reality" of entanglement demands some space-time correlate. Could the presence of the flux tubes make the entanglement "real"? If statistical entanglement is accompanied by string connections without magnetic flux tubes, it would not be "real": only the presence of flux tubes would make it "real". Or is the presence of strings enough to make the statistical entanglement "real". In both cases the fermions associated with disjoint space-time surfaces or with disjoint CDs would not be indistinguishable. This looks rather sensible.

The space-time correlate for the reduction of entanglement would be the splitting of a flux tube and fermionic strings inside it. The fermionic strings associated with flux tubes carrying monopole flux are closed and the return flux comes back along parallel space-time sheet. Also fermionic string has similar structure. Reconnection of this flux tube with shape of very long flattened square splitting it to two pieces would be the correlate for the state function reduction reducing the entanglement with other fermions and would indeed decouple the fermion from the network.

6.5 About The Notion Of Four-Momentum In TGD Framework

The starting point of TGD was the energy problem of General Relativity [K78]. The solution of the problem was proposed in terms of sub-manifold gravity and based on the lifting of the isometries of space-time surface to those of $M^4 \times CP_2$ in which space-times are realized as 4-surfaces so that Poincare transformations act on space-time surface as an 4-D analog of rigid body rather than moving points at space-time surface. It however turned out that the situation is not at all so simple.

There are several conceptual hurdles and I have considered several solutions for them. The basic source of problems has been Equivalence Principle (EP): what does EP mean in TGD framework [K78]? A related problem has been the interpretation of gravitational and inertial masses, or more generally the corresponding 4-momenta. In General Relativity based cosmology gravitational mass is not conserved and this seems to be in conflict with the conservation of Noether charges. The resolution is in terms of zero energy ontology (ZEO), which however forces to modify slightly the original view about the action of Poincare transformations.

A further problem has been quantum classical correspondence (QCC): are quantal fourmomenta associated with super conformal representations and classical four-momenta associated as Noether charges with Kähler action for preferred extremals identical? Could inertial-gravitational duality - that is EP - be actually equivalent with QCC? Or are EP and QCC independent dualities. A powerful experimental input comes p-adic mass calculations [K47] giving excellent predictions provided the number of tensor factors of super-Virasoro representations is five, and this input together with Occam's razor strongly favors QCC=EP identification.

There is also the question about classical realization of EP and more generally, TGD-GRT correspondence.

Twistor Grassmannian approach has meant a technical revolution in quantum field theory (for attempts to understand and generalize the approach in TGD framework see [L12]. This approach seems to be extremely well suited to TGD and I have considered a generalization of this approach from $\mathcal{N} = 4$ SUSY to TGD framework by replacing point like particles with string world sheets in TGD sense and super-conformal algebra with its TGD version: the fundamental objects are now massless fermions which can be regarded as on mass shell particles also in internal lines (but with unphysical helicity). The approach solves old problems related to the realization of stringy amplitudes in TGD framework, and avoids some problems of twistorial QFT (IR divergences and the problems due to non-planar diagrams). The Yangian [A26] [B22, B19, B20] variant of 4-D conformal symmetry is crucial for the approach in $\mathcal{N} = 4$ SUSY, and implies the recently introduced notion of amplituhedron [B13]. A Yangian generalization of various super-conformal algebras seems more or less a "must" in TGD framework. As a consequence, four-momentum is expected to have characteristic multilocal contributions identifiable as multipart on contributions now and possibly relevant for the understanding of bound states such as hadrons.

6.5.1 Scale Dependent Notion Of Four-Momentum In Zero Energy Ontology

Quite generally, General Relativity does not allow to identify four-momentum as Noether charges but in GRT based cosmology one can speak of non-conserved mass [K65], which seems to be in conflict with the conservation of four-momentum in TGD framework. The solution of the problem comes in terms of zero energy ontology (ZEO) [K6, K81], which transforms four-momentum to a scale dependent notion: to each causal diamond (CD) one can assign four-momentum assigned with say positive energy part of the quantum state defined as a quantum superposition of 4-surfaces inside CD.

ZEO is necessary also for the fusion of real and various p-adic physics to single coherent whole. ZEO also allows maximal "free will" in quantum jump since every zero energy state can be created from vacuum and at the same time allows consistency with the conservation laws. ZEO has rather dramatic implications: in particular the arrow of thermodynamical time is predicted to vary so that second law must be generalized. This has especially important implications in living matter, where this kind of variation is observed. More precisely, this superposition corresponds to a spinor field in the "world of classical worlds" (WCW) [K81]: its components - WCW spinors - correspond to elements of fermionic Fock basis for a given 4-surface - or by holography implied by general coordinate invariance (GCI) - for 3-surface having components at both ends of CD. Strong form of GGI implies strong form of holography (SH) so that partonic 2-surfaces at the ends of space-time surface plus their 4-D tangent space data are enough to fix the quantum state. The classical dynamics in the interior is necessary for the translation of the outcomes of quantum measurements to the language of physics based on classical fields, which in turn is reduced to sub-manifold geometry in the extension of the geometrization program of physics provided by TGD.

Holography is very much reminiscent of QCC suggesting trinity: GCI-holography-QCC. Strong form of holography has strongly stringy flavor: string world sheets connecting the wormhole throats appearing as basic building bricks of particles emerge from the dynamics of induced spinor fields if one requires that the fermionic mode carries well-defined electromagnetic charge [K84].

6.5.2 Are The Classical And Quantal Four-Momenta Identical?

One key question concerns the classical and quantum counterparts of four-momentum. In TGD framework classical theory is an exact part of quantum theory. Classical four-momentum corresponds to Noether charge for preferred extremals of Kähler action. Quantal four-momentum in turn is assigned with the quantum superposition of space-time sheets assigned with CD - actually WCW spinor field analogous to ordinary spinor field carrying fermionic degrees of freedom as analogs of spin. Quantal four-momentum emerges just as it does in super string models - that is as a parameter associated with the representations of super-conformal algebras. The precise action of translations in the representation remains poorly specified. Note that quantal four-momentum does not emerge as Noether charge: at at least it is not at all obvious that this could be the case.

Are these classical and quantal four-momenta identical as QCC would suggest? If so, the Noether four-momentum should be same for all space-time surfaces in the superposition. QCC suggests that also the classical correlation functions for various general coordinate invariant local quantities are same as corresponding quantal correlation functions and thus same for all 4-surfaces in quantum superposition - this at least in the measurement resolution used. This would be an extremely powerful constraint on the quantum states and to a high extend could determined the U-, M-, and S-matrices.

QCC seems to be more or less equivalent with SH stating that in some respects the descriptions based on classical physics defined by Kähler action in the interior of space-time surface and the quantal description in terms of quantum states assignable to the intersections of space-like 3-surfaces at the boundaries of CD and light-like 3-surfaces at which the signature of induced metric changes. SH means effective 2-dimensionality since the four-dimensional tangent space data at partonic 2-surfaces matters. SH could be interpreted as Kac-Mody and symplectic symmetries meaning that apart from central extension they act almost like gauge symmetries in the interiors of space-like 3-surfaces at the ends of CD and in the interiors of light-like 3-surfaces representing orbits of partonic 2-surfaces. Gauge conditions are replaced with Super Virasoro conditions. The word "almost" is of course extremely important.

6.5.3 What Equivalence Principle (EP) Means In Quantum TGD?

EP states the equivalence of gravitational and inertial masses in Newtonian theory. A possible generalization would be equivalence of gravitational and inertial four-momenta. In GRT this correspondence cannot be realized in mathematically rigorous manner since these notions are poorly defined and EP reduces to a purely local statement in terms of Einstein's equations.

What about TGD? What could EP mean in TGD framework?

1. Is EP realized at both quantum and space-time level? This option requires the identification of inertial and gravitational four-momenta at both quantum and classical level. It is now clear that at classical level EP follows from very simple assumption that GRT space-time is obtained by lumping together the space-time sheets of the many-sheeted space-time and by the identification the effective metric as sum of M^4 metric and deviations of the induced metrics of space-time sheets from M^2 metric: the deviations indeed define the gravitational field defined by multiply topologically condensed test particle. Similar description applies to gauge fields. EP as expressed by Einstein's equations would follow from Poincare invariance at microscopic level defined by TGD space-time. The effective fields have as sources the energy momentum tensor and YM currents defined by topological inhomogenities smaller than the resolution scale.

2. QCC would require the identification of quantal and classical counterparts of both gravitational and inertial four-momenta. This would give three independent equivalences, say $P_{I,class} = P_{I,quant}, P_{gr,class} = P_{gr,quant}, P_{gr,class} = P_{I,quant}$, which imply the remaining ones.

Consider the condition $P_{gr,class} = P_{I,class}$. At classical level the condition that the standard energy momentum tensor associated with Kähler action has a vanishing divergence is guaranteed if Einstein's equations with cosmological term are satisfied. If preferred extremals satisfy this condition they are constant curvature spaces for non-vanishing cosmological constant. It must be emphasized that field equations are extremely non-linear and one must also consider preferred extremals (which could be identified in terms of space-time regions having so called Hamilton-Jacobi structure): hence these proposals are guesses motivated by what is known about exact solutions of field equations.

Consider next $P_{gr,class} = P_{I,class}$. At quantum level I have proposed coset representations for the pair of super conformal algebras g and $h \subset g$ which correspond to the coset space decomposition of a given sector of WCW with constant values of zero modes. The coset construction would state that the differences of super-Virasoro generators associated with gresp. h annhilate physical states.

The identification of the algebras g and h is not straightforward. The algebra g could be formed by the direct sum of super-symplectic and super Kac-Moody algebras and its subalgebra h for which the generators vanish at partonic 2-surface considered. This would correspond to the idea about WCW as a coset space G/H of corresponding groups (consider as a model $CP_2 = SU(3)/U(2)$ with U(2) leaving preferred point invariant). The sub-algebra h in question includes or equals to the algebra of Kac-Moody generators vanishing at the partonic 2-surface. A natural choice for the preferred WCW point would be as maximum of Kähler function in Euclidian regions: positive definiteness of Kähler function allows only single maximum for fixed values of zero modes). Coset construction states that differences of super Virasoro generators associated with g and h annihilate physical states. This implies that corresponding four-momenta are identical that is Equivalence Principle.

3. Does EP at quantum level reduce to one aspect of QCC? This would require that classical Noether four-momentum identified as inertial momentum equals to the quantal four-momentum assignable to the states of super-conformal representations and identifiable as gravitational four-momentum. There would be only one independent condition: $P_{class} \equiv P_{I,class} = P_{gr,quant} \equiv P_{quant}$.

Holography realized as AdS/CFT correspondence states the equivalence of descriptions in terms of gravitation realized in terms of strings in 10-D space-time and gauge fields at the boundary of AdS. What is disturbing is that this picture is not completely equivalent with the proposed one. In this case the super-conformal algebra would be direct sum of super-symplectic and super Kac-Moody parts.

Which of the options looks more plausible? The success of p-adic mass calculations [K47] have motivated the use of them as a guideline in attempts to understand TGD. The basic outcome was that elementary particle spectrum can be understood if Super Virasoro algebra has five tensor factors. Can one decide the fate of the two approaches to EP using this number as an input?

This is not the case. For both options the number of tensor factors is five as required. Four tensor factors come from Super Kac-Moody and correspond to translational Kac-Moody type degrees of freedom in M^4 , to color degrees of freedom and to electroweak degrees of freedom $(SU(2) \times U(1))$. One tensor factor comes from the symplectic degrees of freedom in $\Delta CD \times CP_2$ (note that Hamiltonians include also products of δCD and CP_2 Hamiltonians so that one does not have direct sum!). The reduction of EP to the coset structure of WCW sectors is extremely beautiful property. But also the reduction of EP to QCC looks very nice and deep. It is of course possible that the two realizations of EP are equivalent and the natural conjecture is that this is the case.

For QCC option the GRT inspired interpretation of Equivalence Principle at space-time level remains to be understood. Is it needed at all? The condition that the energy momentum tensor of Kähler action has a vanishing divergence leads in General Relativity to Einstein equations with cosmological term. In TGD framework preferred extremals satisfying the analogs of Einstein's equations with several cosmological constant like parameters can be considered.

Should one give up this idea, which indeed might be wrong? Could the divergence of of energy momentum tensor vanish only asymptotically as was the original proposal? Or should one try to generalize the interpretation? QCC states that quantum physics has classical correlate at space-time level and implies EP. Could also quantum classical correspondence itself have a correlate at space-time level. If so, space-time surface would able to represent abstractions as statements about statements about.... as the many-sheeted structure and the vision about TGD physics as analog of Turing machine able to mimic any other Turing machine suggest.

6.5.4 TGD-GRT Correspondence And Equivalence Principle

One should also understand how General Relativity and EP emerge at classical level. The understanding comes from the realization that GRT is only an effective theory obtained by endowing M^4 with effective metric.

- 1. The replacement of superposition of fields with superposition of their effects means replacing superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences sum of the effects caused by the classical fields at the space-time sheets (see Fig. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. ?? in the appendix of this book).
- 2. This is true also for the classical gravitational field defined by the deviation from flat Minkowski metric instandard M^4 coordinates for the space-time sheets. One can define effective metric as sum of M^4 metric and deviations. This effective metric would correspond to that of General Relativity. This resolves long standing issues relating to the interpretation of TGD.
- 3. Einstein's equations could hold true for the effective metric. They are motivated by the underlying Poincare invariance which cannot be realized as global conservation laws for the effective metric. The conjecture vanishing of divergence of Kähler energy momentum tensor can be seen as the microscopic justification for the claim that Einstein's equations hold true for the effective space-time.
- 4. The breaking of Poincare invariance could have interpretation as effective breaking in zero energy ontology (ZEO), in which various conserved charges are length dependent and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein's equations generalize for preferred extremals of Kähbler action. This would actually represent at space-time level the notion of QCC rather than realise QCC interpreted as EP. The condition that the energy momentum tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if Einstein's equations with cosmological term hold true. This is the case also now but one can consider also more general solutions in which one has two cosmological constants which are not genuine constants anymore. It has turned out that this line of approach is too adhoc to be taken seriously.

6.5.5 How Translations Are Represented At The Level Of WCW ?

The four-momentum components appearing in the formulas of super conformal generators correspond to infinitesimal translations. In TGD framework one must be able to identify these infinitesimal translations precisely. As a matter of fact, finite measurement resolution implies that it is probably too much to assume infinitesimal translations. Rather, finite exponentials of translation generators are involved and translations are discretized. This does not have practical significance since for optimal resolution the discretization step is about CP_2 length scale. Where and how do these translations act at the level of WCW ? ZEO provides a possible answer to this question.

Discrete Lorentz transformations and time translations act in the space of CDs: inertial four-momentum

Quantum state corresponds also to wave function in moduli space of CDs. The moduli space is obtained from given CD by making all boosts for its non-fixed boundary: boosts correspond to a discrete subgroup of Lorentz group and define a lattice-like structure at the hyperboloid for which proper time distance from the second tip of CD is fixed to $T_n = n \times T(CP_2)$. The quantization of cosmic redshift for which there is evidence, could relate to this lattice generalizing ordinary 3-D lattices from Euclidian to hyperbolic space by replacing translations with boosts (velocities).

The additional degree of freedom comes from the fact that the integer n > 0 obtains all positive values. One has wave functions in the moduli space defined as a pile of these lattices defined at the hyperboloid with constant value of $T(CP_2)$: one can say that the points of this pile of lattices correspond to Lorentz boosts and scalings of CDs defining sub- WCW : s.

The interpretation in terms of group which is product of the group of shifts $T_n(CP_2) \rightarrow T_{n+m}(CP_2)$ and discrete Lorentz boosts is natural. This group has same Cartesian product structure as Galilean group of Newtonian mechanics. This would give a discrete rest energy and by Lorentz boosts discrete set of four-momenta giving a contribution to the four-momentum appearing in the super-conformal representation.

What is important that each state function reduction would mean localisation of either boundary of CD (that is its tip). This localization is analogous to the localization of particle in position measurement in E^3 but now discrete Lorentz boosts and discrete translations $T_n - - > T_{n+m}$ replace translations. Since the second end of CD is necessary del-ocalized in moduli space, one has kind of flip-flop: localization at second end implies de-localization at the second end. Could the localization of the second end (tip) of CD in moduli space correspond to our experience that momentum and position can be measured simultaneously? This apparent classicality would be an illusion made possible by ZEO.

The flip-flop character of state function reduction process implies also the alternation of the direction of the thermodynamical time: the asymmetry between the two ends of CDs would induce the quantum arrow of time. This picture also allows to understand what the experience growth of geometric time means in terms of CDs.

The action of translations at space-time sheets

The action of embedding space translations on space-time surfaces possibly becoming trivial at partonic 2-surfaces or reducing to action at δCD induces action on space-time sheet which becomes ordinary translation far enough from end end of space-time surface. The four-momentum in question is very naturally that associated with Kähler action and would therefore correspond to inertial momentum for $P_{I,class} = P_{quant,gr}$ option. Indeed, one cannot assign quantal four-momentum to Kähler action as an operator since canonical quantization badly fails. In finite measurement infinitesimal translations are replaced with their exponentials for $P_{I,class} = P_{quant,gr}$ option.

What looks like a problem is that ordinary translations in the general case lead out from given CD near its boundaries. In the interior one expects that the translation acts like ordinary translation. The Lie-algebra structure of Poincare algebra including sums of translation generators with positive coefficient for time translation is preserved if only time-like superpositions if generators are allowed also the commutators of time-like translation generators with boost generators give time like translations. This defines a Lie-algebraic formulation for the arrow of geometric time. The action of time translation on preferred extremal would be ordinary translation plus continuation of the translated preferred extremal backwards in time to the boundary of CD. The transversal space-like translations could be made Kac-Moody algebra by multiplying them with functions which vanish at δCD .

A possible interpretation would be that $P_{quant,gr}$ corresponds to the momentum assignable to the moduli degrees of freedom and $P_{cl,I}$ to that assignable to the time like translations. $P_{quant,gr} =$ $P_{cl,I}$ would code for QCC. Geometrically quantum classical correspondence would state that timelike translation shift both the interior of space-time surface and second boundary of CD to the geometric future/past while keeping the second boundary of space-time surface and CD fixed.

6.5.6 Yangian And Four-Momentum

Yangian symmetry implies the marvellous results of twistor Grassmannian approach to $\mathcal{N} = 4$ SUSY culminating in the notion of amplituhedron which promises to give a nice projective geometry interpretation for the scattering amplitudes [B13]. Yangian symmetry is a multilocal generalization of ordinary symmetry based on the notion of co-product and implies that Lie algebra generates receive also multilocal contributions. I have discussed these topics from slightly different point of view in [L12], where also references to the work of pioneers can be found.

Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group in the study of integrable systems. Yangians are Hopf algebras which can be assigned with Lie algebras as the deformations of their universal enveloping algebras. The elegant but rather cryptic looking definition is in terms of the modification of the relations for generating elements [L12]. Besides ordinary product in the enveloping algebra there is co-product Δ which maps the elements of the enveloping algebra to its tensor product with itself. One can visualize product and co-product is in terms of particle reactions. Particle annihilation is analogous to annihilation of two particles or single one and co-product is analogous to the decay of particle to two. Δ allows to construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody algebra or Virasoro algebra. In the case of SUSY it means conformal algebra of M^4 - or rather its super counterpart. Witten, Nappi and Dolan have described the notion of Yangian for superconformal algebra in very elegant and concrete manner in the article Yangian Symmetry in D=4superconformal Yang-Mills theory [B19]. Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced with a continuous one. Discrete index poses conditions on the Lie group and its representation (adjoint representation in the case of $\mathcal{N} = 4$ SUSY). One of the conditions conditions is that the tensor product $R \otimes R^*$ for representations involved contains adjoint representation only once. This condition is non-trivial. For SU(n) these conditions are satisfied for any representation. In the case of SU(2) the basic branching rule for the tensor product of representations implies that the condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra. Now however the generators are labelled by non-negative integers labeling the light-like incoming and outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody algebra also negative values are allowed. Note that only the generators with non-negative conformal weight appear in the construction of states of Kac-Moody and Virasoro representations so that the extension to Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations acting in M^4 and their duals acting in momentum space. These two sets of elements can be labelled by conformal weights n = 0 and n = 1 and and their mutual commutation relations are same as for Kac-Moody algebra. The commutators of n = 1 generators with themselves are however something different for a non-vanishing deformation parameter h. Serre's relations characterize the difference and involve the deformation parameter h. Under repeated commutations the generating elements generate infinite-dimensional symmetric algebra, the Yangian. For h = 0 one obtains just one half of the Virasoro algebra or Kac-Moody algebra. The generators with n > 0 are n + 1-local in the sense that they involve n + 1-forms of local generators assignable to the ordered set of incoming particles of the scattering amplitude. This non-locality generalizes the notion of local symmetry and is claimed to be powerful enough to fix the scattering amplitudes completely.

How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, it is not much to say. It is however possible to keep discussion at general level and still say something interesting (as I hope!). The key question is

whether it could be possible to generalize the proposed Yangian symmetry and geometric picture behind it to TGD framework.

- 1. The first thing to notice is that the Yangian symmetry of $\mathcal{N} = 4$ SUSY in question is quite too limited since it allows only single representation of the gauge group and requires massless particles. One must allow all representations and massive particles so that the representation of symmetry algebra must involve states with different masses, in principle arbitrary spin and arbitrary internal quantum numbers. The candidates are obvious: Kac-Moody algebras [A13] and Virasoro algebras [A22] and their super counterparts. Yangians indeed exist for arbitrary super Lie algebras. In TGD framework conformal algebra of Minkowski space reduces to Poincare algebra and its extension to Kac-Moody allows to have also massive states.
- 2. The formal generalization looks surprisingly straightforward at the formal level. In zero energy ontology one replaces point like particles with partonic two-surfaces appearing at the ends of light-like orbits of wormhole throats located to the future and past light-like boundaries of causal diamond $(CD \times CP_2 \text{ or briefly CD})$. Here CD is defined as the intersection of future and past directed light-cones. The polygon with light-like momenta is naturally replaced with a polygon with more general momenta in zero energy ontology and having partonic surfaces as its vertices. Non-point-likeness forces to replace the finite-dimensional super Lie-algebra with infinite-dimensional Kac-Moody algebras and corresponding super-Virasoro algebras assignable to partonic 2-surfaces.
- 3. This description replaces disjoint holomorphic surfaces in twistor space with partonic 2surfaces at the boundaries of $CD \times CP_2$ so that there seems to be a close analogy with Cachazo-Svrcek-Witten picture. These surfaces are connected by either light-like orbits of partonic 2-surface or space-like 3-surfaces at the ends of CD so that one indeed obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context)?

- 1. At least it means that ordinary Super Kac-Moody and Super Virasoro algebras associated with isometries of $M^4 \times CP_2$ annihilating the scattering amplitudes must be extended to a co-algebras with a non-trivial deformation parameter. Kac-Moody group is thus the product of Poincare and color groups. This algebra acts as deformations of the light-like 3-surfaces representing the light-like orbits of particles which are extremals of Chern-Simon action with the constraint that weak form of electric-magnetic duality holds true. I know so little about the mathematical side that I cannot tell whether the condition that the product of the representations of Super-Kac-Moody and Super-Virasoro algebras contains adjoint representation only once, holds true in this case. In any case, it would allow all representations of finitedimensional Lie group in vertices whereas $\mathcal{N} = 4$ SUSY would allow only the adjoint.
- 2. Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-Moody algebra associated with the light-cone boundary which is metrically 3-dimensional. The finite-dimensional Lie group is in this case replaced with infinite-dimensional group of symplectomorphisms of $\delta M^4_{+/-}$ made local with respect to the internal coordinates of the partonic 2-surface. This picture also justifies p-adic thermodynamics applied to either symplectic or isometry Super-Virasoro and giving thermal contribution to the vacuum conformal and thus to mass squared.
- 3. The construction of TGD leads also to other super-conformal algebras and the natural guess is that the Yangians of all these algebras annihilate the scattering amplitudes.
- 4. Obviously, already the starting point symmetries look formidable but they still act on single partonic surface only. The discrete Yangian associated with this algebra associated with the closed polygon defined by the incoming momenta and the negatives of the outgoing momenta acts in multi-local manner on scattering amplitudes. It might make sense to speak about polygons defined also by other conserved quantum numbers so that one would have generalized light-like curves in the sense that state are massless in 8-D sense.

Could Yangian symmetry provide a new view about conserved quantum numbers?

The Yangian algebra has some properties which suggest a new kind of description for bound states. The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute. Since the co-product Δ maps n = 0 generators to n = 1 generators and these in turn to generators with high value of n, it seems that they commute also with $n \ge 1$ generators. This applies to fourmomentum, color isospin and color hyper charge, and also to the Virasoro generator L_0 acting on Kac-Moody algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum of contributions from various levels? If so, the four momentum and mass squared would involve besides the local term assignable to wormhole throats also n-local contributions. The interpretation in terms of n-parton bound states would be extremely attractive. n-local contribution would involve interaction energy. For instance, string like object would correspond to n = 1 level and give n = 2-local contribution to the momentum. For baryonic valence quarks one would have 3-local contribution corresponding to n = 2 level. The Yangian view about quantum numbers could give a rigorous formulation for the idea that massive particles are bound states of massless particles.

6.6 Generalization Of Ads/CFT Duality To TGD Framework

AdS/CFT duality has provided a powerful approach in the attempts to understand the nonperturbative aspects of super-string theories. The duality states that conformal field theory in n-dimensional Minkowski space M^n identifiable as a boundary of n + 1-dimensional space AdS_{n+1} is dual to a string theory in $AdS_{n+1} \times S^{9-n}$.

As a mathematical discovery the duality is extremely interesting but it seems that it need not have much to do with physics. From TGD point of view the reason is obvious: the notion of conformal invariance is quite too limited. In TGD framework conformal invariance is extended to a super-symplectic symmetry in $\delta M_{\pm}^4 \times CP_2$, whose Lie-algebra has the structure of conformal algebra. Also ordinary super-conformal symmetries associated with string world sheets are present as well as generalization of 2-D conformal symmetries to their analogs at light-cone boundary and light-like orbits of partonic 2-surfaces. In this framework AdS/CFT duality is expected to be modified and this seems to be the case.

The matrix elements of Kähler metric of WCW can be expressed in two ways. As contractions of the derivatives $\partial_K \partial_{\overline{L}} K$ of the Kähler function of WCW with isometry generators or as anticommutators of WCW gamma matrices identified as supersymplectic Noether super charges assignable to fermioni strings connecting partonic 2-surfaces. Kähler function is identified as Kähler action for the Euclidian space-time regions with 4-D CP_2 projection. Kähler action defines the Kähler-Dirac gamma matrices appearing in K-D action as contractions of canonical momentum currents with embedding space gamma matrices. Bosonic and fermionic degrees of freedom are therefore dual in a well-defined sense.

This observation suggests various generalizations. There is super-symmetry between Kähler action and Kähler-Dirac action. The problem is that induced spinor fields are localized at 2-D string world sheets. Strong form of holography implying effective 2-dimensionality suggests the solution to the paradox. The paradox disappears if the Kähler action is expressible as string area for the effective metric defined by the anti-commutators of K-D gamma matrices at string world sheet. This expression allows to understand how strings connecting partonic 2-surfaces give rise to the formation of gravitationally bound states. Bound states of macroscopic size are however possible only if one allows hierarchy of Planck constants. This representation of Kähler action can be seen as one aspect of the analog of AdS/CFT duality in TGD framework.

One can imagine also other realizations. For instance, Dirac determinant for the spinors associated with string world sheets should reduce to the exponent of Kähler action.

6.6.1 Does The Exponent Of Chern-Simons Action Reduce To The Exponent Of The Area Of Minimal Surfaces?

As I scanned of hep-th I found an interesting article (see http://tinyurl.com/ycpkrg4f) by Giordano, Peschanski, and Seki [B26] based on AdS/CFT correspondence. What is studied is the high energy behavior of the gluon-gluon and quark-quark scattering amplitudes of $\mathcal{N} = 4$ SUSY.

- 1. The proposal made earlier by Aldaya and Maldacena (see http://tinyurl.com/ybnk6kbs) [B11] is that gluon-gluon scattering amplitudes are proportional to the imaginary exponent of the area of a minimal surface in AdS_5 whose boundary is identified as *momentum space*. The boundary of the minimal surface would be polygon with light-like edges: this polygon and its dual are familiar from twistor approach.
- 2. Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for heavy quarks corresponds to the exponent of the area for a minimal surface in the *Euclidian* version of AdS_5 which is hyperbolic space (space with a constant negative curvature): it is interpreted as a counterpart of WCW rather than momentum space and amplitudes are obtained by analytic continuation. For instance, a universal Regge behavior is obtained. For general amplitudes the exponent of the area alone is not enough since it does not depend on gluon quantum numbers and vertex operators at the edges of the boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum TGD framework. I hasten to inform that I am not a specialist in AdS/CFT and can make only general comments inspired by analogies with TGD and the generalization of AdS/CFT duality to TGD framework based on the localization of induced spinors at string world sheets, supersymmetry between bosonic and fermionic degrees of freedom at the level of WCW , and the notion of effective metric at string world sheets.

6.6.2 Does Kähler Action Reduce To The Sum Of Areas Of Minimal Surfaces In Effective Metric?

Minimal surface conjectures are highly interesting from TGD point of view. The weak form of electric magnetic duality implies the reduction of Kähler action to 3-D Chern-Simons terms. Effective 2-dimensionality implied by the strong form of General Coordinate Invariance suggests a further reduction of Chern-Simons terms to 2-D terms and the areas of string world sheet and of partonic 2-surface are the only non-topological options that one can imagine. Skeptic could of course argue that the exponent of the minimal surface area results as a characterizer of the quantum state rather than vacuum functional. In the following I end up with the proposal that the Kähler action should reduce to the sum of string world sheet areas in the effective metric defines by the anticommutators of Kähler-Dirac gamma matrices at string world sheets.

Let us look this conjecture in more detail.

- 1. In zero energy ontology twistor approach is very natural since all physical states are bound states of massless particles. Also virtual particles are composites of massless states. The possibility to have both signs of energy makes possible space-like momenta for wormhole contacts. Mass shell conditions at internal lines imply extremely strong constraints on the virtual momenta and both UV and IR finiteness are expected to hold true.
- 2. The weak form of electric magnetic duality [K84] implies that the exponent of Kähler action reduces to the exponent of Chern-Simons term for 3-D space-like surfaces at the ends of space-time surface inside CD and for light-like 3-surfaces. The coefficient of this term is complex since the contribution of Minkowskian regions of the space-time surface is imaginary ($\sqrt{g_4}$ is imaginary) and that of Euclidian regions (generalized Feynman diagrams) real. The Chern-Simons term from Minkowskian regions is like Morse function and that from Euclidian regions defines Kähler function and stationary phase approximation makes sense. The two contributions are different since the space-like 3-surfaces contributing to Kähler function and Morse function are different.

3. Electric magnetic duality [K84] leads also to the conclusion that wormhole throats carrying elementary particle quantum numbers are Kähler magnetic monopoles. This forces to identify elementary particles as string like objects with ends having opposite monopole charges. Also more complex configurations are possible.

It is not quite clear what the scale of the stringyness is. The natural first guess inspired by quantum classical correspondence is that it corresponds to the p-adic length scale of the particle characterizing its Compton length. Second possibility is that it corresponds to electroweak scale. For leptons stringyness in Compton length scale might not have any fatal implications since the second end of string contains only neutrinos neutralizing the weak isospin of the state. This kind of monopole pairs could appear even in condensed matter scales: in particular if the proposed hierarchy of Planck constants [K27] is realized.

4. Strong form of General Coordinate Invariance requires effective 2-dimensionality. In given UV and IR resolutions either partonic 2-surfaces or string world sheets form a finite hierarchy of CDs inside CDs with given CD characterized by a discrete scale coming as an integer multiple of a fundamental scale (essentially CP_2 size). The string world sheets have boundaries consisting of either light-like curves in induced metric at light-like wormhole throats and space-like curves at the ends of CD whose M^4 projections are light-like. These braids intersect partonic 2-surfaces at discrete points carrying fermionic quantum numbers.

This implies a rather concrete analogy with $AdS_5 \times S_5$ duality, which describes gluons as open strings. In zero energy ontology (ZEO) string world sheets are indeed a fundamental notion and the natural conjecture is that these surfaces are minimal surfaces whose area by quantum classical correspondence depends on the quantum numbers of the external particles. String tension in turn should depend on gauge couplings -perhaps only Kähler coupling strengthand geometric parameters like the size scale of CD and the p-adic length scale of the particle.

5. One can of course ask whether the metric defining the string area is induced metric or possibly the metric defined by the anti-commutators of Kähler-Dirac gamma matrices. The recent view does not actually leave any other alternative. The analog of AdS/CFT duality together with supersymmetry demands that Kähler action is proportional to the sum of the areas of string world sheets in this effective metric. Whether the vanishing of induced W fields (and possibly also Z^0) making possible well-defined em charge for the spinor nodes is realized by the condition that the string world sheet is a minimal surface in the effective metric remains an open question.

The assumption that ordinary minimal surfaces are in question is not consistent with the TGD view about the formation of gravitational bound states and if string tension is $1/\hbar G$ as in string models, only bound states with size of order Planck length are possible. This strongly favors effective metric giving string tension proportional to $1/h_{eff}^2$. How $1/h_{eff}^2$ proportionality might be understood is discussed in [K21, K22, K23, K24] in terms electric-magnetic duality.

6. One can of course still consider also the option that ordinary minimal surfaces are in question. Are the minimal surfaces in question minimal surfaces of the embedding space $M^4 \times CP_2$ or of the space-time surface X^4 ? All possible 2-surfaces at the boundary of CD must be allowed so that they cannot correspond to minimal surfaces in $M^4 \times CP_2$ unless one assumes that they emerge in stationary phase approximation only. The boundary conditions at the ends of CD could however be such that any partonic 2-surface correspond to a minimal surfaces in X^4 . Same applies to string world sheets. One might even hope that these conditions combined with the weak form of electric magnetic duality fixes completely the boundary conditions at wormhole throats and space-like ends of space-time surface.

The trace of the second fundamental form orthogonal to the string world sheet/partonic 2-surface as sub-manifold of space-time surface would vanish: this is nothing but a generalization of the geodesic motion obtained by replacing word line with a 2-D surface. It does not imply the vanishing of the trace of the second fundamental form in $M^4 \times CP_2$ having interpretation as a generalization of particle acceleration [K78]. Effective 2-dimensionality would be realized if Chern-Simons terms reduce to a sum of the areas of these minimal surfaces. These arguments suggest that scattering amplitudes are proportional to the product of exponents of 2-dimensional actions which can be either imaginary or real. Imaginary exponent would be proportional to the total area of string world sheets and the imaginary unit would come naturally from $\sqrt{g_2}$, where g_2 is effective metric most naturally. Teal exponent proportional to the total area of partonic 2-surfaces. The coefficient of these areas would not in general be same.

The reduction of the Kähler action from Minkowskian regions to Chern-Simons terms means that Chern-Simons terms reduce to actions assignable to string world sheets. The equality of the Minkowskian and Euclidian Chern-Simons terms is suggestive but not necessarily true since there could be also other Chern-Simons contributions than those assignable to wormhole throats and the ends of space-time. The equality would imply that the total area of string world sheets equals to the total area of partonic 2-surfaces suggesting strongly a duality meaning that either Euclidian or Minkowskian regions carry the needed information.

6.6.3 Surface Area As Geometric Representation Of Entanglement Entropy?

I encountered a link to a talk by James Sully and having the title "Geometry of Compression" (see http://tinyurl.com/ycuu8xcr). I must admit that I understood very little about the talk. My not so educated guess is however that information is compressed: UV or IR cutoff eliminating entanglement in short length scales and describing its presence in terms of density matrix - that is thermodynamically - is another manner to say it. The TGD inspired proposal for the interpretation of the inclusions of hyper-finite factors of type II_1 (HFFs) [K83] is in spirit with this.

The space-time counterpart for the compression would be in TGD framework discretization. Discretizations using rational points (or points in algebraic extensions of rationals) make sense also p-adically and thus satisfy number theoretic universality. Discretization would be defined in terms of intersection (rational or in algebraic extension of rationals) of real and p-adic surfaces. At the level of "world of classical worlds" the discretization would correspond to - say - surfaces defined in terms of polynomials, whose coefficients are rational or in some algebraic extension of rationals. Pinary UV and IR cutoffs are involved too. The notion of p-adic manifold allows to interpret the p-adic variants of space-time surfaces as cognitive representations of real space-time surfaces.

Finite measurement resolution does not allow state function reduction reducing entanglement totally. In TGD framework also negentropic entanglement stable under Negentropy Maximixation Principle (NMP) is possible [K42]. For HFFs the projection into single ray of Hilbert space is indeed impossible: the reduction takes always to infinite-D sub-space.

The visit to the URL was however not in vain. There was a link to an article (see http: //tinyurl.com/y9h3qtr8) [B36] discussing the geometrization of entanglement entropy inspired by the AdS/CFT hypothesis.

Quantum classical correspondence is basic guiding principle of TGD and suggests that entanglement entropy should indeed have space-time correlate, which would be the analog of Hawking-Bekenstein entropy.

Generalization of AdS/CFT to TGD context

AdS/CFT generalizes to TGD context in non-trivial manner. There are two alternative interpretations, which both could make sense. These interpretations are not mutually exclusive. The first interpretation makes sense at the level of "world of classical worlds" (WCW) with symplectic algebra and extended conformal algebra associated with δM_{\pm}^4 replacing ordinary conformal and Kac-Moody algebras. Second interpretation at the level of space-time surface with the extended conformal algebra of the light-likes orbits of partonic 2-surfaces replacing the conformal algebra of boundary of AdS^n .

1. First interpretation

For the first interpretation 2-D conformal invariance is generalised to 4-D conformal invariance relying crucially on the 4-dimensionality of space-time surfaces and Minkowski space.

1. One has an extension of the conformal invariance provided by the symplectic transformations of $\delta CD \times CP_2$ for which Lie algebra has the structure of conformal algebra with radial light-like coordinate of δM_+^4 replacing complex coordinate z.

- 2. One could see the counterpart of AdS_n as embedding space $H = M^4 \times CP_2$ completely unique by twistorial considerations and from the condition that standard model symmetries are obtained and its causal diamonds defined as sub-sets $CD \times CP_2$, where CD is an intersection of future and past directed light-cones. I will use the shorthand CD for $CD \times CP_2$. Strings in $AdS_5 \times S^5$ are replaced with space-time surfaces inside 8-D CD.
- 3. For this interpretation 8-D CD replaces the 10-D space-time $AdS_5 \times S^5$. 7-D light-like boundaries of CD correspond to the boundary of say AdS_5 , which is 4-D Minkowski space so that zero energy ontology (ZEO) allows rather natural formulation of the generalization of AdS/CFT correspondence since the positive and negative energy parts of zero energy states are localized at the boundaries of CD.

Second interpretation

For the second interpretation relies on the observation that string world sheets as carriers of induced spinor fields emerge in TGD framework from the condition that electromagnetic charge is well-defined for the modes of induced spinor field.

- 1. One could see the 4-D space-time surfaces X^4 as counterparts of AdS_4 . The boundary of AdS_4 is replaced in this picture with 3-surfaces at the ends of space-time surface at opposite boundaries of CD and by strong form of holography the union of partonic 2-surfaces defining the intersections of the 3-D boundaries between Euclidian and Minkowskian regions of space-time surface with the boundaries of CD. Strong form of holography in TGD is very much like ordinary holography.
- 2. Note that one has a dimensional hierarchy: the ends of the boundaries of string world sheets at boundaries of CD as point-like partices, boundaries as fermion number carrying lines, string world sheets, light-like orbits of partonic 2-surfaces, 4-surfaces, embedding space $M^4 \times CP_2$. Clearly the situation is more complex than for AdS/CFT correspondence.
- 3. One can restrict the consideration to 3-D sub-manifolds X^3 at either boundary of causal diamond (CD): the ends of space-time surface. In fact, the position of the other boundary is not well-defined since one has superposition of CDs with only one boundary fixed to be piece of light-cone boundary. The delocalization of the other boundary is essential for the understanding of the arrow of time. The state function reductions at fixed boundary leave positive energy part (say) of the zero energy state at that boundary invariant (in positive energy ontology entire state would remain unchanged) but affect the states associated with opposite boundaries forming a superposition which also changes between reduction: this is analog for unitary time evolution. The average for the distance between tips of CDs in the superposition increases and gives rise to the flow of time.
- 4. One wants an expression for the entanglement entropy between X^3 and its partner. Bekenstein area law allows to guess the general expression for the entanglement entropy: for the proposal discussed in the article the entropy would be the area of the boundary of X^3 divided by gravitational constant: S = A/4G. In TGD framework gravitational constant might be replaced by the square of CP_2 radius apart from numerical constant. How gravitational constant emerges in TGD framework is not completely understood although one can deduce for it an estimate using dimensional analyses. In any case, gravitational constant is a parameter which characterizes GRT limit of TGD in which many-sheeted space-time is in long scales replaced with a piece of Minkowski space such that the classical gravitational fields and gauge potentials for sheets are summed. The physics behind this relies on the generalization of linear superposition of fields: the effects of different space-time sheets particle touching them sum up rather than fields.
- 5. The counterpart for the boundary of X^3 appearing in the proposal for the geometrization of the entanglement entropy naturally corresponds to partonic 2-surface or a collection of them if strong form of holography holds true.

There is however also another candidate to be considered! Partonic 2-surfaces are basic objects, and one expects that the entanglement between fundamental fermions associated

with distinct partonic 2-surfaces has string world sheets as space-time correlates. Could the area of the string world sheet in the effective metric defined by the anti-commutators of K-D gamma matrices at string world sheet provide a measure for entanglement entropy? If this conjecture is correct: the entanglement entropy would be proportional to Kähler action. Also negative values are possible for Kähler action in Minkowskian regions but in TGD framework number theoretic entanglement entropy having also negative values emerges naturally.

Which of these guesses is correct, if any? Or are they equivalent?

With what kind of systems 3-surfaces can entangle?

With what system X^3 is entangled/can entangle? There are several options to consider and they could correspond to the two TGD variants for the AdS/CFT correspondence.

- 1. X^3 could correspond to a wormhole contact with Euclidian signature of induced metric. The entanglement would be between it and the exterior region with Minkowskian signature of the induced metric.
- 2. X^3 could correspond to single sheet of space-time surface connected by wormhole contacts to a larger space-time sheet defining its environment. More precisely, X^3 and its complement would be obtained by throwing away the wormhole contacts with Euclidian signature of induce metric. Entanglement would be between these regions. In the generalization of the formula

$$S = \frac{A}{4\hbar G}$$

area A would be replaced by the total area of partonic 2-surfaces and G perhaps with CP_2 length scale squared.

3. In ZEO the entanglement could also correspond to time-like entanglement between the 3-D ends of the space-time surface at opposite light-like boundaries of CD. M-matrix, which can be seen as the analog of thermal S-matrix, decomposes to a product of hermitian square root of density matrix and unitary S-matrix and this hermitian matrix could also define p-adic thermodynamics. Note that in ZEO quantum theory can be regarded as square root of thermodynamics.

Minimal surface property is not favored in TGD framework

Minimal surface property for the 3-surfaces X^3 at the ends of space-time surface looks at first glance strange but a proper generalization of this condition makes sense if one assumes strong form of holography. Strong form of holography realizes General Coordinate Invariance (GCI) in strong sense meaning that light-like parton orbits and space-like 3-surfaces at the ends of spacetime surfaces are equivalent physically. As a consequence, partonic 2-surfaces and their 4-D tangent space data must code for the quantum dynamics.

The mathematical realization is in terms of conformal symmetries accompanying the symplectic symmetries of $\delta M_{\pm}^4 \times CP_2$ and conformal transformations of the light-like partonic orbit [K84]. The generalizations of ordinary conformal algebras correspond to conformal algebra, Kac-Moody algebra at the light-like parton orbits and to symplectic transformations $\delta M^4 \times CP_2$ acting as isometries of WCW and having conformal structure with respect to the light-like radial coordinate plus conformal transformations of δM_{\pm}^4 , which is metrically 2-dimensional and allows extended conformal symmetries.

1. If the conformal realization of the strong form of holography works, conformal transformations act at quantum level as gauge symmetries in the sense that generators with no-vanishing conformal weight are zero or generate zero norm states. Conformal degeneracy can be eliminated by fixing the gauge somehow. Classical conformal gauge conditions analogous to Virasoro and Kac-Moody conditions satisfied by the 3-surfaces at the ends of CD are natural in this respect. Similar conditions would hold true for the light-like partonic orbits at which the signature of the induced metric changes. 2. What is also completely new is the hierarchy of conformal symmetry breakings associated with the hierarchy of Planck constants $h_{eff}/h = n$ [K27]. The deformations of the 3-surfaces which correspond to non-vanishing conformal weight in algebra or any sub-algebra with conformal weights vanishing modulo n give rise to vanishing classical charges and thus do not affect the value of the Kähler action [K84].

The inclusion hierarchies of conformal sub-algebras are assumed to correspond to those for hyper-finite factors. There is obviously a precise analogy with quantal conformal invariance conditions for Virasoro algebra and Kac-Moody algebra. There is also hierarchy of inclusions which corresponds to hierarchy of measurement resolutions. An attractive interpretation is that singular conformal transformations relate to each other the states for broken conformal symmetry. Infinitesimal transformations for symmetry broken phase would carry fractional conformal weights coming as multiples of 1/n.

- 3. Conformal gauge conditions need not reduce to minimal surface conditions holding true for all variations.
- 4. Note that Kähler action reduces to Chern-Simons term at the ends of CD if weak form of electric magnetic duality holds true. The conformal charges at the ends of CD cannot however reduce to Chern-Simons charges by this condition since only the charges associated with CP_2 degrees of freedom would be non-trivial.

The way out of the problem is provided by the generalization of AdS/CFT conjecture. String area is estimated in the effective metric provided by the anti-commutator of K-D gamma matrices at string world sheet.

6.6.4 Related Ideas

p-Adic mass calculations led to the introduction of the p-adic variant of Bekenstein-Hawkin law in which Planck length is replaced by p-adic length scale. This generalization is in spirit with the idea that string world sheet area is estimated in effective rather than induced metric.

p-Adic variant of Bekenstein-Hawking law

When the 3-surface corresponds to elementary particle, a direct connection with p-adic thermodynamics suggests itself and allows to answer the questions above. p-Adic thermodynamics could be interpreted as a description of the entanglement with environment. In ZEO the entanglement could also correspond to time-like entanglement between the 3-D ends of the space-time surface at opposite light-like boundaries of CD. M-matrix, which can be seen as the analog of thermal Smatrix, decomposes to a product of hermitian square root of density matrix and unitary S-matrix and this hermitian matrix could also define p-adic thermodynamics.

- 1. p-Adic thermodynamics [K47] would not be for energy but for mass squared (or scaling generator L_0) would describe the entanglement of the particle with environment defined by the larger space-time sheet. Conformal weights would comes as positive powers of integers $(p_0^L \text{ would replace } exp(-H/T)$ to guarantee the number theoretical existence and convergence of the Boltzmann weight: note that conformal invariance that is integer spectrum of L_0 is also essential).
- 2. The interactions with environment would excite very massive CP_2 mass scale excitations (mass scale is about 10^{-4} times Planck mass) of the particle and give it thermal mass squared identifiable as the observed mass squared. The Boltzmann weights would be extremely small having p-adic norm about $1/p^n$, p the p-adic prime: $M_{127} = 2^{127} 1$ for electron.
- 3. One of the first ideas inspired by p-adic vision was that p-adic entropy could be seen as a p-adic counterpart of Bekenstein-Hawking entropy [K49]. $S = (R^2/\hbar^2) \times M^2$ holds true identically apart from numerical constant. Note that one could interpret R^2M/\hbar as the counterpart of Schwartschild radius. Note that this radius is proportional to $1/\sqrt{p}$ so that the area A would correspond to the area defined by Compton length. This is in accordance with the third option.

What is the space-time correlate for negentropic entanglement?

The new element brought in by TGD framework is that number theoretic entanglement entropy is negative for negentropic entanglement assignable to unitary entanglement (in the sense that entanglement matrix is proportional to a unitary matrix) and NMP states that this negentropy increases [K42]. Since entropy is essentially number of energy degenerate states, a good guess is that the number $n = h_{eff}/h$ of space-time sheets associated with h_{eff} defines the negentropy. An attractive space-time correlate for the negentropic entanglement is braiding. Braiding defines unitary S-matrix between the states at the ends of braid and this entanglement is negentropic. This entanglement gives also rise to topological quantum computation.

6.6.5 The Importance Of Being Light-Like

The singular geometric objects associated with the space-time surface have become increasingly important in TGD framework. In particular, the recent progress has made clear that these objects might be crucial for the understanding of quantum TGD. The singular objects are associated not only with the induced metric but also with the effective metric defined by the anti-commutators of the Kähler-Dirac gamma matrices appearing in the Kähler-Dirac equation and determined by the Kähler action.

The singular objects associated with the induced metric

Consider first the singular objects associated with the induced metric.

- 1. At light-like 3-surfaces defined by wormhole throats the signature of the induced metric changes from Euclidian to Minkowskian so that 4-metric is degenerate. These surfaces are carriers of elementary particle quantum numbers and the 4-D induced metric degenerates locally to 3-D one at these surfaces.
- 2. Braid strands at partonic orbits fermion lines identified as boundaries of string world sheets in the more recent terminology - are most naturally light-like curves: this correspond to the boundary condition for open strings. One can assign fermion number to the braid strands. Braid strands allow an identification as curves along which the Euclidian signature of the string world sheet in Euclidian region transforms to Minkowskian one. Number theoretic interpretation would be as a transformation of complex regions to hyper-complex regions meaning that imaginary unit *i* satisfying $i^2 = -1$ becomes hyper-complex unit *e* satisfying $e^2 = 1$. The complex coordinates (z, \overline{z}) become hyper-complex coordinates (u = t + ex, v = t - ex) giving the standard light-like coordinates when one puts e = 1.

The singular objects associated with the effective metric

There are also singular objects assignable to the effective metric. According to the simple arguments already developed, string world sheets and possibly also partonic 2-surfaces are singular objects with respect to the effective metric defined by the anti-commutators of the Kähler-Dirac gamma matrices rather than induced gamma matrices. Therefore the effective metric might be more than a mere formal structure. The following is of course mere speculation and should be taken as such.

- 1. For instance, quaternionicity of the space-time surface *might* allow an elegant formulation in terms of the effective metric avoiding the problems due to the Minkowski signature. This is achieved if the effective metric has Euclidian signature $\epsilon \times (1, 1, 1, 1)$, $\epsilon = \pm 1$ or a complex counterpart of the Minkowskian signature $\epsilon (1, 1, -1, -1)$.
- 2. String word sheets and perhaps also partonic 2-surfaces might be be understood as singularities of the effective metric. What happens that the effective metric with Euclidian signature $\epsilon \times (1, 1, 1, 1)$ transforms to the signature $\epsilon (1, 1, -1, -1)$ (say) at string world sheet so that one would have the degenerate signature $\epsilon \times (1, 1, 0, 0)$ at the string world sheet.

What is amazing is that this works also number theoretically. It came as a total surprise to me that the notion of hyper-quaternions as a closed algebraic structure indeed exists. The hyper-quaternionic units would be given by (1, I, iJ, iK), where *i* is a commuting imaginary unit satisfying $i^2 = -1$. Hyper-quaternionic numbers defined as combinations of these units with real coefficients do form a closed algebraic structure which however fails to be a number field just like hyper-complex numbers do. Note that the hyper-quaternions obtained with real coefficients from the basis (1, iI, iJ, iK) fail to form an algebra since the product is not hyper-quaternion in this sense but belongs to the algebra of complexified quaternions. The same problem is encountered in the case of hyper-octonions defined in this manner. This has been a stone in my shoe since I feel strong disrelish towards Wick rotation as a trick for moving between different signatures.

- 3. Could also partonic 2-surfaces correspond to this kind of singular 2-surfaces? In principle, 2-D surfaces of 4-D space intersect at discrete points just as string world sheets and partonic 2-surfaces do so that this might make sense. By complex structure the situation is algebraically equivalent to the analog of plane with non-flat metric allowing all possible signatures (ϵ_1, ϵ_2) in various regions. At light-like curve either ϵ_1 or ϵ_2 changes sign and light-like curves for these two kinds of changes can intersect as one can easily verify by drawing what happens. At the intersection point the metric is completely degenerate and simply vanishes.
- 4. Replacing real 2-dimensionality with complex 2-dimensionality, one obtains by the universality of algebraic dimension the same result for partonic 2-surfaces and string world sheets. The braid ends at partonic 2-surfaces representing the intersection points of 2-surfaces of this kind would have completely degenerate effective metric so that the Kähler-Dirac gamma matrices would vanish implying that energy momentum tensor vanishes as does also the induced Kähler field.
- 5. The effective metric suffers a local conformal scaling in the critical deformations identified in the proposed manner. Since ordinary conformal group acts on Minkowski space and leaves the boundary of light-cone invariant, one has two conformal groups. It is not however clear whether the M^4 conformal transformations can act as symmetries in TGD, where the presence of the induced metric in Kähler action breaks M^4 conformal symmetry. As found, also in TGD framework the Kac-Moody currents assigned to the braid strands generate Yangian: this is expected to be true also for the Kac-Moody counterparts of the conformal algebra associated with quantum criticality. On the other hand, in twistor program one encounters also two conformal groups and the space in which the second conformal group acts remains somewhat mysterious object. The Lie algebras for the two conformal groups generate the conformal Yangian and the integrands of the scattering amplitudes are Yangian invariants. Twistor approach should apply in TGD if zero energy ontology is right. Does this mean a deep connection?

What is also intriguing that twistor approach in principle works in strict mathematical sense only at signatures $\epsilon \times (1, 1, -1 - 1)$ and the scattering amplitudes in Minkowski signature are obtained by analytic continuation. Could the effective metric give rise to the desired signature? Note that the notion of massless particle does not make sense in the signature $\epsilon \times (1, 1, 1, 1)$.

These arguments provide genuine a support for the notion of quaternionicity and suggest a connection with the twistor approach.

6.7 Could One Define Dynamical Homotopy Groups In WCW?

Agostino Prastaro - working as professor at the University of Rome - has done highly interesting work with partial differential equations, also those assignable to geometric variational principles such as Kähler action in TGD [A30, A31]. I do not understand the mathematical details but the key idea is a simple and elegant generalization of Thom's cobordism theory, and it is difficult to avoid the idea that the application of Prastaro's idea might provide insights about the preferred extremals, whose identification is now on rather firm basis [K82].

One could also consider a definition of what one might call dynamical homotopy groups as a genuine characteristics of WCW topology. The first prediction is that the values of conserved classical Noether charges correspond to disjoint components of WCW. Could this mean that the natural topology in the parameter space of Noether charges zero modes of WCW metric) is p-adic? An analogous conjecture was made on basis of spin glass analogy long time ago. Second surprise is that the only the six lowest dynamical homotopy groups of WCW would be non-trivial. The finite number of these groups dictate by the dimension of embedding space suggests also an interpretation as analogs of homology groups.

In the following the notion of cobordism is briefly discussed and the idea of Prastaro about assigning cobordism with partial differential equations is discussed.

6.7.1 About Cobordism As A Concept

To get some background consider first the notion of cobordism (http://tinyurl.com/y7wdhtmv).

1. Thom's cobordism theory [A75] is inspired by the question "When an *n*-manifold can be represented as a boundary of n + 1-manifold". One can also pose additional conditions such as continuity, smoothness, orientability, one can add bundles structures and require that they are induced to *n*-manifold from that of n + 1-manifold. One can also consider sub-manifolds of some higher-dimensional manifold.

One can also fix *n*-manifold M and ask "What is the set of *n*-manifolds N with the property that there exists n + 1-manifold W having union of $M \cup N$ as its boundary". One can also allow M to have boundary and pose the same question by allowing also the boundary of connecting n + 1-manifold W contain also the orbits of boundaries of M and N.

The cobordism class of M can be defined as the set of manifolds N cobordant with M - that is connectable in this manner. They have same cobordism class since cobordism is equivalence relation. The classes form also a group with respect to disjoint union. Cobordism is much rougher equivalence relation than diffeomorphy or homeomorphy since topology changes are possible. For instance, every 3-D closed un-oriented manifold is a boundary of a 4-manifold! Same is true for orientable cobordisms. Cobordism defines a category: objects are (say closed) manifolds and morphisms are cobordisms.

2. The basic result of Morse, Thom, and Milnor is that cobordism as topology changes can be engineered from elementary cobordisms. One take manifold $M \times I$ and imbeds to its other n-dimensional end the manifold $S^p \times D^q$, n = p + q, removes its interior and glues back $D^{p+1} \times S^{q-1}$ along its boundary to the boundary of the resulting hole. This gives n-manifold with different topology, call it N. The outcome is a cobordism connecting M and N unless there are some obstructions.

There is a connection with Morse theory (http://tinyurl.com/ych4chg9) in which cobordism can be seen as a mapping of W to a unit interval such that the inverse images define a slicing of W and the inverse images at ends correspond to M and N.

3. One can generalize the abstract cobordism to that for *n*-sub-manifolds of a given embedding space. This generalization is natural in TGD framework. This might give less trivial results since not all connecting manifolds are imbeddable into a given embedding space. If connecting 4-manifolds connecting 3-manifolds with Euclidian signature (of induced metric) are assumed to have a Minkowskian signature, one obtains additional conditions, which might be too strong (the classical result of Geroch [A77] implies that non-trivial cobordism implies closed time loops - impossible in TGD).

From TGD point of view this is too strong a condition and in TGD framework space-time surfaces with both Euclidian and Minkowskian signature of the induced metric are allowed. Also cobordisms singular as 4-surfaces are analogous to 3-vertices of Feynman diagrams are allowed.

6.7.2 Prastaro's Generalization Of Cobordism Concept To The Level Of Partial Differential Equations

I am not enough mathematician in technical sense of the word to develop overall view about what Prastaro has done and I have caught only the basic idea. I have tried to understand the articles [A30, A31] with title "Geometry of PDE's. I/II: Variational PDE's and integral bordism groups" (http://tinyurl.com/yb9wey8c and http://tinyurl.com/y9x55qmk), which seem to correspond to my needs. The key idea is to generalize the cobordism concept also to partial differential equations with cobordism replaced with the time evolution defined by partial differential equation. In particular, to geometric variational principles defining as their extremals the counterparts of cobordisms.

Quite generally, and especially so in the case of the conservation of Noether charges give rise to strong selection rules since two *n*-surfaces with different classical charges cannot be connected by extremals of the variational principle. Note however that the values of the conserved charges depend on the normal derivatives of the embedding space coordinates at the *n*-dimensional ends of cobordism. If one poses additional conditions fixing these normal derivatives, the selection rules become even stronger. In TGD framework Bohr orbit property central for the notion of WCW geometry and holography allows to hope that conserved charges depend on 3-surfaces only.

What is so beautiful in this approach that it promises to generalize the notion of cobordism and perhaps also the notions of homotopy/homology groups so that they would apply to partial differential equations quite generally, and especially so in the case of geometric variational principles giving rise to n + 1-surfaces connecting *n*-surfaces characterizing the initial and final states classically. TGD with n = 3 seems to be an ideal applications for these ideas.

Prastaro also proposes a generalization of cobordism theory to super-manifolds and quantum super-manifolds. The generalization in the case of quantum theory utilizing path integral does not not pose conditions on classical connecting field configurations. In TGD framework these generalizations are not needed since fermion number is geometrized in terms of embedding space gamma matrices and super(-symplectic) symmetry is realized differently.

6.7.3 Why Prastaro's Idea Resonates So Strongly With TGD

Before continuing I want to make clear why Prastaro's idea resonates so strongly with TGD.

1. One of the first ideas as I started to develop TGD was that there might be selection rules analogous to those of quantum theory telling which 3-surfaces can be connected by a spacetime surface. At that time I still believed in path integral formalism assuming that two 3-surfaces at different time slices with different values of Minkowski time can be connected by any space-time surface for which embedding space coordinates have first derivatives.

I soon learned about Thom's theory but was greatly disappointed since no selection rules were involved in the category of abstract 3-manifolds. I thought that possible selection rules should result from the imbeddability of the connecting four-manifold to $H = M^4 \times CP_2$ but my gut feeling was that these rules are more or less trivial since so many connecting 4-manifolds exist and some of them are very probably imbeddable.

One possible source of selection rules could have been the condition that the induced metric has Minkowskian signature - one could justify it in terms of classical causality. This restricts strongly topology change in general relativity (http://tinyurl.com/y6vuopgj). Geroch's classical result [A77] states that non-trivial smooth Lorentz cobordism between compact 3-surfaces implies the existence of closed time loop - not possible in TGD framework. Second non-encouraging result is that scalar field propagating in trouser topology leads to an occurrence of infinite energy burst (http://tinyurl.com/ybbuwyfj).

In the recent formulation of TGD however also Euclidian signature of the induced metric is allowed. For space-time counterparts of 3-particle vertices three space-time surfaces are glued along their smooth 3-D ends whereas space-time surface fails to be everywhere smooth manifold. This picture fits nicely with the idea that one can engineer space-time surfaces by gluing them together along their ends.

2. At that time (before 1980) the discovery of the geometry of the "World of Classical Worlds" (WCW) as a possible solution to the failures of canonical quantization and path integral formalism was still at distance of ten years in future. Around 1985 I discovered the notion of WCW. I made some unsuccessful trials to construct its geometry, and around 1990 finally realized that 4-D general coordinate invariance is needed although basic objects are 3-D surfaces.

This is realized if classical physics is an exact part of quantum theory - not only something resulting in a stationary phase approximation. Classical variational principle should assign to a 3-surface a physically unique space-time surface - the analog of Bohr orbit - and the action for this surface would define Kähler function defining the Kähler geometry of WCW using standard formula.

This led to a notion of preferred extremal: absolute minimum of Kähler action was the first guess and might indeed make sense in the space-time regions with Euclidian signature of induced metric but not in Minkowskian regions, which give to the vacuum functional and exponential of Minkowskian Kähler action multiplied by imaginary unit coming from \sqrt{g} - just as in quantum field theories. Euclidian regions give the analog of the free energy exponential of thermodynamics and transform path integral to mathematically well-defined functional integral.

3. After having discovered the notion of preferred extremal, I should have also realized that an interesting generalization of cobordism theory might make sense after all, and could even give rise to the classical counterparts of the selection rules! For instance, conservation of isometry charges defines equivalence classes of 3-surfaces endowed with tangent space data. Bohr orbit property could fix the tangent space data (normal derivatives of embedding space coordinates) so that conserved classical charges would characterize 3-surfaces alone and thus cobordism equivalence classes and become analogous to topological invariants. This would be in spirit with the attribute "Topological" in TGD!

6.7.4 What Preferred Extremals Are?

The topology of WCW has remained mystery hitherto - partly due to my very limited technical skills and partly by the lack of any real physical idea. The fact, that p-adic topology seems to be natural at least as an effective topology for the maxima of Kähler function of WCW gave a hint but this was not enough.

I hope that the above summary has made clear why the idea about dynamical cobordism and even dynamical homotopy theory is so attractive in TGD framework. One could even hope that dynamics determines not only Kähler geometry but also the topology of WCW to some extend at least! To get some idea what might be involved one must however first tell about the recent situation concerning the notion of preferred extremal.

1. The recent formulation for the notion of preferred extremal relies on strong form of General Coordinate Invariance (SGCI). SGCI states that two kinds of 3-surfaces can identified as fundamental objects. Either the light-light 3-D orbits of partonic 2-surfaces defining boundaries between Minkowskian and Euclidian space-time regions or the space-like 3-D ends of space-time surfaces at boundaries of CD. Since both choices are equally good, partonic 2-surfaces and their tangent space-data at the ends of space-time should be the most economic choice.

This eventually led to the realization that partonic 2-surfaces and string world sheets should be enough for the formulation of quantum TGD. Classical fields in the interior of spacetime surface would be needed only in quantum measurement theory, which demands classical physics in order to interpret the experiments.

2. The outcome is strong form of holography (SH) stating that quantum physics should be coded by string world sheets and partonic 2-surfaces inside given causal diamond (CD). SH is very much analogous to the AdS/CFT correspondence but is much simpler: the simplicity is made possible by much larger group of conformal symmetries.

If these 2-surfaces satisfy some consistency conditions one can continue them to 4-D spacetime surface inside CD such that string world sheets are surfaces inside them satisfying the condition that charged (possibly all) weak gauge potentials identified as components of the induced spinor connection vanish at the string world sheets and also that energy momentum currents flow along these surfaces. String world sheets carry second quantized free induced spinor fields and fermionic oscillator operator basis is used to construct WCW gamma matrices.
3. The 3-surfaces at the ends of WCW must satisfy strong conditions to guarantee effective 2-dimensionality. Quantum criticality suggests the identification of these conditions. All Noether charges assignable to a sub-algebra of super-symplectic algebra isomorphic to it and having conformal weights which are *n*-multiples of those of entire algebra vanish/annihilate quantum states. One has infinite fractal hierarchy of broken super-conformal symmetries with the property that the sub-algebra is isomorphic with the entire algebra. This like a ball at the top of ball at the top of

The speculative vision is that super-symplectic subalgebra with weights coming as *n*-ples of those for the entire algebra acts as an analog of conformal gauge symmetries on light-like orbits of partonic 2-surfaces, and gives rise to a pure gauge degeneracy whereas other elements of super-symplectic algebra act as dynamical symmetries. The hierarchy of quantum criticalities defines hierarchies of symmetry breakings characterized by hierarchies of sub-algebras for which one n_{i+1} is divisible by n_i . The proposal is that conformal gauge invariance means that the analogs of Bohr orbits are determined only apart from conformal gauge transformations forming to n_i conformal equivalence classes so that effectively one has n_i discrete degrees of freedom assignable to light-like partonic orbits.

4. In this framework manifolds M and N would correspond the 3-surfaces at the boundaries of CD and containing a collection strings carrying induced spinor fields. The connecting 4-surface W would contain string world sheets and the light-like orbits of partonic 2-surfaces as simultaneous boundaries for Minkowskian and Euclidian regions.

Propagator line has several meanings depending on whether one considers particles as strings, as single fermion states localizable at the ends of strings, or as Euclidian space-time regions or their light-like boundaries with singular induced metric having vanishing determinant. Vertices appear as generalizations of the stringy vertices and as generalization of the vertices of Feynman diagrams in which the incoming 4-surfaces meet along their ends.

- Propagator line has several meanings depending on whether one considers particles as strings, as single fermion states localizable at the ends of strings, or as Euclidian space-time regions or their light-like boundaries with degenerate induced metric with vanishing determinant. Vertices appear as generalizations of the stringy vertices and as generalization of the vertices of Feynman diagrams in which the incoming 4-surfaces meet along their ends.
 - (a) The lines of generalized Feynman graphs defined in topological sense are identified as slightly deformed pieces of CP_2 defining wormhole contacts connecting two Minkowskian regions and having wormhole throats identified as light-like parton orbits as boundaries. Since there is a magnetic monopole flux through the wormhole contacts they must appear as pairs (also larger number is possible) in order that magnetic field lines can close. Elementary particles correspond to pairs of wormhole contacts. At both spacetime sheets the throats are connected by magnetic flux tubes carrying monopole flux so that a closed flux tube results having a shape of an extremely flattened square and having wormhole contacts at its ends. It is a matter of taste, whether to call the light-like wormhole throats or their interiors as lines of the generalized Feynman/twistor diagrams.

The light-like orbits of partonic 2-surfaces bring strongly in mind the light-like 3surfaces along which radiation fields can be restricted - kind of shockwaves at which the signature of the induced space-time metric changes its signature.

(b) String world sheets as orbits of strings are also in an essential role and could be seen as particle like objets. String world sheets could as kind of singular solutions of field equations analogous to characteristics of hyperbolic differential equations. The isometry currents of Kähler action flow along string world sheets and field equations restricted to them are satisfied. As if one would have 2-dimensional solution. $\sqrt{g_4}$ would of course vanishes for genuinely 2-D solution but this one can argue that this is not a problem since $\sqrt{g_4}$ can be eliminated from field equations. String world sheets could serve as 2-D a analoga for a solution of hyperbolic field equations defining expanding wave front localized at 3-D light-like surface.

- (c) Propagation in the third sense of word is assignable to the ends of string world sheets at the light-like orbits of partonic 2-surfaces and possibly carrying fermion number. One could say that in TGD one has both fundamental fermions serving as building bricks of elementary particles and strings characterizing interactions between particles. Fermion lines are massless in 8-D sense. By strong form of holography this quantum description has 4-D description space-time description as a classical dual.
- 2. The topological description of interaction vertices brings in the most important deviation from the standard picture behind cobordism: space-time surfaces are not smooth in TGD framework. One allows topological analogs of 3-vertices of Feynman diagrams realized by connecting three 4-surfaces along their smooth 3-D ends. 3-vertex is also an analog (actually much more!) for the replication in biology. This vertex is *not* the analog of stringy trouser vertex for which space-time surface is continuous whereas 3-surface at the vertex is singular (also trouser vertex could appear in TGD).

The analog of trouser vertex for string world sheets means splitting of string and fermionic field modes decompose into superposition of modes propagating along the two branches. For instance, the propagation of photon along two paths could correspond to its geometric decay at trouser vertex not identifiable as "decay" to two separate particles.

For the analog of 3-vertex of Feynman diagram the 3-surface at the vertex is non-singular but space-time surface is singular. The gluing along ends corresponds to genuine 3-particle vertex.

The view about solution of PDEs generalizes dramatically but the general idea about cobordism might make sense also in the generalized context.

6.7.5 Could Dynamical Homotopy/Homology Groups Characterize WCW Topology?

The challenge is to at least formulate (with my technical background one cannot dream of much more) the analog of cobordism theory in this framework. One can actually hope even the analog of homotopy/homology theory.

1. To a given 3-surface one can assign its cobordism class as the set of 3-surfaces at the opposite boundary of CD connected by a preferred extremal. The 3-surfaces in the same cobordism class are characterized by same conserved classical Noether charges, which become analogs of topological invariants.

One can also consider generalization of cobordisms as analogs to homotopies by allowing return from the opposite boundary of CD. This would give rise to first homotopy groupoid. One can even go back and forth several times. These dynamical cobordisms allow to divide 3-surfaces at given boundary of CD in equivalence classes characterized among other things by same values of conserved charges. One can also return to the original 3-surface. This could give rise to the analog of the first homotopy group Π_1 .

2. If one takes the homotopy interpretation literally one must conclude that the 3-surfaces with different conserved Noether charges cannot be connected by any path in WCW - they belong to disjoint components of the WCW! The zeroth dynamical homotopy group Π_0 of WCW would be non-trivial and its elements would be labelled by the conserved Noether charges defining topological invariants!

The values of the classical Noether charges would label disjoint components of WCW. The topology for the space of these parameters would be totally disconnected - no two points cannot be connected by a continuous path. p-Adic topologies are indeed totally disconnected. Could it be that p-adic topology is natural for the conserved classical Noether charges and the sectors of WCW are characetrized by p-adic number fields and their algebraic extensions?

Long time ago I noticed that the 4-D spin glass degeneracy induced by the huge vacuum degeneracy of Kähler action implies analogy between the space of maxima of Kähler function and the energy landscape of spin glass systems [K49]. Ultrametricity (http://tinyurl.com/

y6vswdoh) is the basic property of the topology of the spin glass energy landscape. p-Adic topology is ultrametric and the proposal was that the effective topology for the space of maxima could be p-adic.

3. Isometry charges are the most important Noether charges. These Noether charges are very probably not the only conserved charges. Also the generators in the complement of the gauge sub-algebra of symplectic algebra acting as gauge conformal symmetries could be conserved. All these conserved Noether charges would define a parameter space with a natural p-adic topology.

Since integration is problematic p-adically, one can ask whether only discrete quantum superpositions of 3-surfaces with different classical charges are allowed or whether one should even assume fixed values for the total classical Noether charges appearing in the scattering amplitudes.

I have proposed this kind of approach for the zero modes of WCW geometry not contributing to the Kähler metric except as parameters. The integration for zero modes is also problematic because there is no metric, which would define the integration measure. Since classical charges do not correspond to quantum fluctuating degrees of freedom they should correspond to zero modes. Hence these arguments are equivalent.

The above argument led to the identification of the analogs of the homotopy group Π_0 and led to the idea about homotopy groupoid/group Π_1 . The elements of Π_1 would correspond to space-time surfaces, which run arbitrary number of times fourth and back and return to the initial 3-surface at the boundary of CD. If the two preferred extremals connecting same pair of 3-surfaces can be deformed to each other, one can say that they are equivalent as dynamical homotopies (or cobordisms). What could be the allowed deformations? Are they cobordisms of cobordisms? What this could mean? Could they define the analog of homotopy groupoid Π_2 as foliations of preferred extremals connecting the same 3-surfaces?

1. The number theoretic vision about generalized Feynman diagrams suggests a possible approach. Number theoretic ideas combined with the generalization of twistor approach [K82, L12] led to the vision that generalized Feynman graphs can be identified as sequences or webs of algebraic operations in the co-algebra defined by the Yangian assignable to super-symplectic algebra [A26] [B22, B19, B20] and acting as symmetries of TGD. Generalized Feynman graphs would represent algebraic computations. Computations can be done in very many different ways and each of them corresponds to a generalized Feynman diagram. These computations transform give same final collection of "numbers" when the initial collection of "numbers" is given. Does this mean that the corresponding scattering amplitudes must be identical?

If so, a huge generalization of the duality symmetry of the hadronic string models would suggest itself. All computations can be reduced to minimal computations. Accordingly, generalized Feynman diagrams can be reduced to trees by eliminating loops by moving the ends of the loops to same point and snipping the resulting tadpole out! The snipped of tadpole would give a mere multiplicative factor to the amplitude contributing nothing to the scattering rate - just like vacuum bubbles contribute nothing in the case of ordinary Feynman diagrams.

- 2. How this symmetry could be realized? Could one just assume that only the minimal generalized Feynman diagrams contribute? - not a very attractive option. Or could one hope that only tree diagrams are allowed by the classical dynamics: this was roughly the original vision? The huge vacuum degeneracy of Kähler action implying non-determinism does not encourage this option. The most attractive and most predictive realization conforming with the idea about generalized Feynman diagrammatics as arithmetics would be that all the diagrams differing by these moves give the same result. An analogous symmetry has been discovered for twistor diagrams.
- 3. Suppose one takes seriously the snipping of a tadpole away from diagram as a move, which does not affect the scattering amplitude. Could this move correspond to an allowed elementary cobordism of preferred extremal? If so, scattering amplitudes would have purely

topological meaning as representations of the elements of cobordism classes! TGD would indeed be what it was proposed to be but in much deeper sense than I thought originally. This could also conform with the interpretation of classical charges as topological invariants, realize adelic physics at the level of WCW, and conform with the idea about TGD as almost topological QFT and perhaps generalizing it to topological QFT in generalized sense.

4. One can imagine several interpretations for the snipping operation at space-time level. TGD allows a huge classical vacuum degeneracy: all space-time surfaces having Lagrangian manifold of CP_2 as their CP_2 projection are vacuum extremals of Kähler action. Also all CP_2 type extremals having 1-D light-like curve as M^4 projection are vacuum extremals but have non-vanishing Kähler action. This would not matter if one does not have superpositions since multiplicative factors are eliminated in scattering amplitudes. Could the tadpoles correspond to CP_2 type vacuum extremals at space-time level?

There is also an alternative interpretation. In ZEO causal diamonds (CD) form a hierarchy and one can imagine that the sub-CDs of given CD correspond to quantum fluctuations. Could tadpoles be assigned to sub-CDs of CD be considered+

5. In this manner one could perhaps define elements of homotopy groupoid Π_2 as foliations preferred extremals with same ends - these would be 5-D surfaces. If one has two such 5-D foliations with the same 4-D ends, one can form the reverse of the other and form a closed surface. This would be analogous to a map of S^2 to WCW. If the two 5-D foliations cannot be transformed to each other, one would have something, which might be regarded as a non-trivial element of dynamical homotopy group Π_2 .

One can ask whether one could define also the analogs of higher homology or homotopy grouppoids and groupoids Π_3 up to Π_5 - the upper bound n = 5 = 8 - 3 comes from the fact that foliations of foliations. can have maximum dimension D = 8 and from the dimension of D = 3 of basic objects.

- 1. One could form a foliation of the foliations of preferred extremals as the element of the homotopy groupoid Π_3 . Could allowed moves reduce to the snipping operation for generalized Feynman diagrams but performed along direction characterized by a new foliation parameter.
- 2. The topology of the zero mode sector of WCW parameterized by fixed values of conserved Noether charges as element of Π_0 could be characterized by dynamical homotopy groups Π_n , n = 1, ..., 5 - at least partially. These degrees of freedom could correspond to quantum fluctuating degrees of freedom. The Kähler structure of WCW and finite-D analogy suggests that all odd dynamical homotopy groups vanish so that Π_0 , Π_2 and Π_4 would be the only non-trivial dynamical homotopy groups. The vanishing of Π_1 would imply that there is only single minimal generalized Feynman diagram contributing to the scattering amplitude. This also true if Feynman diagrams correspond to arithmetic operations.
- 3. Whether one should call these groups homotopy groups or homology groups is not obvious. The construction means that the foliations of foliations of ... can be seen as images of spheres suggesting "homotopy". The number of these groups is determined by the dimension of embedding space, which suggests "homology".
- 4. Clearly, the surfaces defining the dynamical homotopy groups/groupoids would be analogs of branes of M-theory but would be obtained constructing paths of paths of paths... by starting from preferred extremals. The construction of so called *n*-groups (http://tinyurl.com/ yckcjcln) brings strongly in mind this construction.

6.7.6 Appendix: About Field Equations Of TGD In Jet Bundle Formulation

Prastaro utilizes jet bundle (http://tinyurl.com/yb2575bm) formulation of partial differential equations (PDEs). This notion allows a very terse formulation of general PDEs as compared to the old-fashioned but much more concrete formulation that I have used. The formulation is rather

formula rich and reader might lose easily his/her patience since one must do hard work to learn which formulas follow trivially from the basic definitions.

I will describe this formulation in TGD framework briefly but without explicit field equations, which can be found at [K9]. To my view a representation by using a concrete example is always more reader friendly than the general formulas derived in some reference. I explain my view about the general ideas behind jet bundle formulation with minimal number amount of formulas. The reader can find explicit formulas from the Wikipedia link above.

The basic goal is to have a geometric description of PDE. In TGD framework the geometric picture is of course present from beginning: field patterns as 4-surfaces in field space - somewhat formal geometric objects - are replaced with genuine 4-surfaces in $M^4 \times CP_2$.

Field equations as conservation laws, Frobenius integrability conditions, and a connection with quaternion analyticity

The following represents qualitative picture of field equations of TGD trying to emphasize the physical aspects. Also the possibility that Frobenius integrability conditions are satisfied and correspond to quaternion analyticity is discussed.

- 1. Kähler action is Maxwell action for induced Kähler form and metric expressible in terms of embedding space coordinates and their gradients. Field equations reduce to those for embedding space coordinates defining the primary dynamical variables. By GCI only four of them are independent dynamical variables analogous to classical fields.
- 2. The solution of field equations can be interpreted as a section in fiber bundle. In TGD the fiber bundle is just the Cartesian product $X^4 \times CD \times CP_2$ of space-time surface X^4 and causal diamond $CD \times CP_2$. CD is the intersection of future and past directed light-cones having two light-like boundaries, which are cone-like pieces of light-boundary $\delta M_{\pm}^4 \times CP_2$. Space-time surface serves as base space and $CD \times CP_2$ as fiber. Bundle projection Π is the projection to the factor X^4 . Section corresponds to the map $x \to h^k(x)$ giving embedding space coordinates as functions of space-time coordinates. Bundle structure is now trivial and rather formal.

By GCI one could also take suitably chosen 4 coordinates of $CD \times CP_2$ as space-time coordinates, and identify $CD \times CP_2$ as the fiber bundle. The choice of the base space depends on the character of space-time surface. For instance CD, CP_2 or $M^2 \times S^2$ (S^2 a geodesic sphere of CP_2), could define the base space. The bundle projection would be projection from $CD \times CP_2$ to the base space. Now the fiber bundle structure can be non-trivial and make sense only in some space-time region with same base space.

3. The field equations derived from Kähler action must be satisfied. Even more: one must have a *preferred* extremal of Kähler action. One poses boundary conditions at the 3-D ends of space-time surfaces and at the light-like boundaries of $CD \times CP_2$.

One can fix the values of conserved Noether charges at the ends of CD (total charges are same) and require that the Noether charges associated with a sub-algebra of super-symplectic algebra isomorphic to it and having conformal weights coming as n-ples of those for the entire algebra, vanish. This would realize the effective 2-dimensionality required by SH. One must pose boundary conditions also at the light-like partonic orbits. So called weak form of electric-magnetic duality is at least part of these boundary conditions.

It seems that one must restrict the conformal weights of the entire algebra to be non-negative $r \ge 0$ and those of subalgebra to be positive: mn > 0. The condition that also the commutators of sub-algebra generators with those of the entire algebra give rise to vanishing Noether charges implies that all algebra generators with conformal weight $m \ge n$ vanish so the dynamical algebra becomes effectively finite-dimensional. This condition generalizes to the action of super-symplectic algebra generators to physical states.

 M^4 time coordinate cannot have vanishing time derivative dm^0/dt so that four-momentum is non-vanishing for non-vacuum extremals. For CP_2 coordinates time derivatives ds^k/dt can vanish and for space-like Minkowski coordinates dm^i/dt can be assumed to be nonvanishing if M^4 projection is 4-dimensional. For CP_2 coordinates $ds^k/dt = 0$ implies the vanishing of electric parts of induced gauge fields. The non-vacuum extremals with the largest conformal gauge symmetry (very small n) would correspond to cosmic string solutions for which induced gauge fields have only magnetic parts. As n increases, also electric parts are generated. Situation becomes increasingly dynamical as conformal gauge symmetry is reduced and dynamical conformal symmetry increases.

4. The field equations involve besides embedding space coordinates h^k also their partial derivatives up to second order. Induced Kähler form and metric involve first partial derivatives $\partial_{\alpha}h^k$ and second fundamental form appearing in field equations involves second order partial derivatives $\partial_{\alpha}\partial_{\beta}h^k$.

Field equations are hydrodynamical, in other worlds represent conservation laws for the Noether currents associated with the isometries of $M^4 \times CP_2$. By GCI there are only 4 independent dynamical variables so that the conservation of $m \leq 4$ isometry currents is enough if chosen to be independent. The dimension m of the tangent space spanned by the conserved currents can be smaller than 4. For vacuum extremals one has m = 0 and for massless extremals (MEs) m = 1! The conservation of these currents can be also interpreted as an existence of $m \leq 4$ closed 3-forms defined by the duals of these currents.

5. The hydrodynamical picture suggests that in some situations it might be possible to assign to the conserved currents flow lines of currents even globally. They would define $m \leq$ 4 global coordinates for some subset of conserved currents (4+8 for four-momentum and color quantum numbers). Without additional conditions the individual flow lines are welldefined but do not organize to a coherent hydrodynamic flow but are more like orbits of randomly moving gas particles. To achieve global flow the flow lines must satisfy the condition $d\phi^A/dx^\mu = k_B^A J_\mu^B$ or $d\phi^A = k_B^A J^B$ so that one can special of 3-D family of flow lines parallel to $k_B^A J^B$ at each point - I have considered this kind of possibly in [K9] at detail but the treatment is not so general as in the recent case.

Frobenius integrability conditions (http://tinyurl.com/yc6apam2) follow from the condition $d^2\phi^A = 0 = dk_B^A \wedge J^B + k_B^A dJ^B = 0$ and implies that dJ^B is in the ideal of exterior algebra generated by the J^A appearing in $k_B^A J^B$. If Frobenius conditions are satisfied, the field equations can define coordinates for which the coordinate lines are along the basis elements for a sub-space of at most 4-D space defined by conserved currents. Of course, the possibility that for preferred extremals there exists $m \leq 4$ conserved currents satisfying integrability conditions is only a conjecture.

It is quite possible to have m < 4. For instance for vacuum extremals the currents vanish identically For MEs various currents are parallel and light-like so that only single light-like coordinate can be defined globally as flow lines. For cosmic strings (cartesian products of minimal surfaces X^2 in M^4 and geodesic spheres S^2 in CP_2 4 independent currents exist). This is expected to be true also for the deformations of cosmic strings defining magnetic flux tubes.

- 6. Cauchy-Riemann conditions in 2-D situation represent a special case of Frobenius conditions. Now the gradients of real and imaginary parts of complex function w = w(z) = u + iv define two conserved currents by Laplace equations. In TGD isometry currents would be gradients apart from scalar function multipliers and one would have generalization of C-R conditions. In citeallbprefextremals,twistorstory I have considered the possibility that the generalization of Cauchy-Riemann-Fuerter conditions [A84, A69] (http://tinyurl.com/yb8134b5) could define quaternion analyticity - having many non-equivalent variants - as a defining property of preferred extremals. The integrability conditions for the isometry currents would be the natural physical formulation of CRF conditions. Different variants of CRF conditions would correspond to varying number of independent conserved isometry currents.
- 7. The problem caused by GCI is that there is infinite number of coordinate choices. How to pick a physically preferred coordinate system? One possible manner to do this is to use coordinates for the projection of space-time surface to some preferred sub-space of embedding - geodesic manifold is an excellent choice. Only $M^1 \times X^3$ geodesic manifolds are not possible but these correspond to vacuum extremals.

One could also consider a philosophical principle behind integrability. The variational principle itself could give rise to at least some preferred space-time coordinates in the same manner as TGD based quantum physics would realize finite measurement resolution in terms of inclusions of HFFs in terms of hierarchy of quantum criticalities and fermionic strings connecting partonic 2-surfaces. Frobenius integrability of the isometry currents would define some preferred coordinates. Their number need not be the maximal four however.

For instance, for massless extremals only light-like coordinate corresponding to the light-like momentum is obtained. To this one can however assign another local light-like coordinate uniquely to obtain integrable distribution of planes M^2 . The solution ansatz however defines directly an integrable choice of two pairs of coordinates at embedding space level usable also as space-time coordinates - light-like local direction defining local plane M^2 and polarization direction defining a local plane E^2 . These choices define integrable distributions of orthogonal planes and local hypercomplex and complex coordinates. Pair of analogs of C-R equations is the outcome. I have called these coordinates Hamilton-Jacobi coordinates for M^4 .

8. This picture allows to consider a generalization of the notion of solution of field equation to that of integral manifold (http://tinyurl.com/yajn7cuz. If the number of independent isometry currents is smaller than 4 (possibly locally) and the integrability conditions hold true, lower-dimensional sub-manifolds of space-time surface define integral manifolds as kind of lower-dimensional effective solutions. Genuinely lower-dimensional solutions would of course have vanishing $\sqrt{g_4}$ and vanishing Kähler action.

String world sheets can be regarded as 2-D integral surfaces. Charged (possibly all) weak boson gauge fields vanish at them since otherwise the electromagnetic charge for spinors would not be well-defined. These conditions force string world sheets to be 2-D in the generic case. In special case 4-D space-time region as a whole can satisfy these conditions. Well-definedness of Kähler-Dirac equation [K84, K61] demands that the isometry currents of Kähler action flow along these string world sheets so that one has integral manifold. The integrability conditions would allow $2 < m \leq n$ integrable flows outside the string world sheets, and at string world sheets one or two isometry currents would vanish so that the flows would give rise 2-D independent sub-flow.

9. The method of characteristics (http://tinyurl.com/y9dcdayt) is used to solve hyperbolic partial differential equations by reducing them to ordinary differential equations. The (say 4-D) surface representing the solution in the field space has a foliation using 1-D characteristics. The method is especially simple for linear equations but can work also in the non-linear case. For instance, the expansion of wave front can be described in terms of characteristics representing light rays. It can happen that two characteristics intersect and a singularity results. This gives rise to physical phenomena like caustics and shock waves.

In TGD framework the flow lines for a given isometry current in the case of an integrable flow would be analogous to characteristics, and one could also have purely geometric counterparts of shockwaves and caustics. The light-like orbits of partonic 2-surface at which the signature of the induced metric changes from Minkowskian to Euclidian might be seen as an example about the analog of wave front in induced geometry. These surfaces serve as carriers of fermion lines in generalized Feynman diagrams. Could one see the particle vertices at which the 4-D space-time surfaces intersect along their ends as analogs of intersections of characteristics kind of caustics? At these 3-surfaces the isometry currents should be continuous although the space-time surface has "edge".

10. The analogy with ordinary analyticity suggests that it might be possible to interpret string world sheets and partonic 2-surfaces appearing in strong form of holography (SH) as codimension 2 surfaces analogous to poles of analytic function in complex plane. Light-like 3surfaces might be seen as analogs of cuts. The coding of analytic function by its singularities could be seen as analog of SH.

Jet bundle formalism

Jet bundle formalism (http://tinyurl.com/yb2575bm) is a modern manner to formulate PDEs in a coordinate independent manner emphasizing the local algebraic character of field equations. In

TGD framework GCI of course guarantees this automatically. Beside this integrability conditions formulated in terms of Cartan's contact forms are needed.

- 1. The basic idea is to take the partial derivatives of embedding space coordinates as functions of space-time coordinates as independent variables. This increases the number of independent variables. Their number depends on the degree of the jet defined and for partial differential equation of order r, for n dependent variables, and for N independent variables the number of new degrees of freedom is determined by r, n, and N just by counting the total number of various partial derivatives from k = 0 to r. For r = 1 (first order PDE) it is $N \times (1 + n)$.
- 2. Jet at given space-time point is defined as a Taylor polynomial of the embedding space coordinates as functions of space-time coordinates and is characterized by the partial derivatives at various points treated as independent coordinates analogous to embedding space coordinate. Jet degree r is characterized by the degree of the Taylor polynomial. One can sum and multiply jets just like Taylor polynomials. Jet bundle assigns to the fiber bundle associated with the solutions of PDE corresponding jet bundle with fiber at each point consisting of jets for the independent variables ($CD \times CP_2$ coordinates) as functions of the dependent variables (space-time coordinates).
- 3. The field equations from the variation of Kähler action are second order partial differential equations and in terms of jet coefficients they reduce to local algebraic equations plus integrability conditions. Since TGD is very non-linear one obtains polynomial equations at each point one for each embedding space coordinate. Their number reduces to four by GCI. The minimum degree of jet bundle is r = 2 if one wants algebraic equations since field equations are second order PDEs.
- 4. The local algebraic conditions are not enough. One must have also conditions stating that the new independent variables associated with partial derivatives of various order reduces to appropriate multiple partial derivatives of embedding space coordinates. These conditions can be formulated in terms of Cartan's contact forms, whose vanishing states these conditions. For instance, if dh^k is replaced by independent variable u^k , the condition $dh^k - u^k = 0$ is true for the solution surfaces.
- 5. In TGD framework there are good motivations to break the non-orthodoxy and use 1-jets so that algebraic equations replaced by first order PDEs plus conditions requiring vanishing of contact forms. These equations state the conservation of isometry currents implying that the 3-forms defined by the duals of isometry currents are closed. As found, this formulation reveals in TGD framework the hydrodynamic picture and suggests conditions making the system integrable in Frobenius sense.

6.8 Twistor lift of TGD and WCW geometry

In the following a view about WCW geometry forced by twistor lift of TGD [L12, L16, L20, L24] is summarized. Twistor lift brings to the action a volume term but without breaking conformal invariance and without introducing cosmological constant as a fundamental dimensional dynamical coupling. The proposed construction of the gamma matrices of WCW giving rise to Kähler metric as anti-commutators is now in terms of the Noether super charges associated with the super-symplectic algebra. This I dare to regard as a very important step of progress.

6.8.1 Possible weak points of the earlier vision

To make progress it is wise to try to identify the possible weak points of the earlier vision.

1. The huge vacuum degeneracy of Kähler action [K35] defining the Kähler function of WCW Kähler metric is analogous to gauge degeneracy of Maxwell action and coded by symplectic transformations of CP_2 . It implies that the degeneracy of the metric increases as one approaches vacuum extremals and is maximal for the space-time surfaces representing canonical embeddings of Minkowski space: Kähler action vanishes up to fourth order in deformation.

The original interpretation was in terms of 4-D spin glass degeneracy assumed to be induced by quantum degeneracy.

One could however argue that classical non-determinism of Kähler action is not acceptable and that a small term removing the vacuum degeneracy is needed to make the situation mathematically acceptable. There is an obvious candidate: a volume term having an interpretation in terms of cosmological constant. This term however seems to mean the presence of length scale as a fundamental constant and is in conflict with the basic lesson learned from gauge theories teaching that only dimensionless couplings can be allowed.

2. The construction of WCW Kähler metric relies on the hypothesis that the basic result from the construction of loop space geometries [A40] generalizes: the Kähler metric should be essentially unique from the condition that the isometry group is maximal - this guarantees the existence of Riemann connection. For D = 3 this condition is expected to be even stronger than for D = 1.

The hypothesis is that in zero energy ontology (ZEO) the symplectic group acting at the lightlike boundaries of causal diamond (CD) (one has $CD = cd \times CP_2$, where cd is the intersection of future and past directed light-cones) acts as the isometries of the Kähler metric.

It would be enough to identify complexified WCW gamma matrices and define WCW metric in terms of their anti-commutators. The natural proposal is that gamma matrices are expressible as linear combinations of fermionic oscillator operators for second quantized induced spinor fields at space-time surface. One could even ask whether fermionic super charges and conserved fermionic Noether charges are involved with the construction.

The explicit construction of gamma matrices [K84, K61] has however been based on somewhat ad hoc formulas, and what I call effective 2-dimensionality argued to follow from quantum criticality is somewhat questionable as exact notion.

6.8.2 Twistor lift of TGD and ZEO

Twistor lift of TGD and ZEO meant a revolution in the view about WCW geometry and spinor structure.

1. The basic idea is to replace 4-D Kähler action with dimensionally reduced 6-D Kähler for the analog of twistor space of space-time surface. The induction procedure for the spinors would be generalized so that it applies to twistor structure [L22]. The twistor structure of the embedding space is identified as the product of twistor spaces $M^4 \times S^2$ of M^4 and $SU(3)/U(1) \times U(1)$ of CP_2 . In momentum degrees of freedom the twistor space of M^4 would be the usual CP_3 .

Remarkably, M^4 and CP_2 are the only spaces allowing twistor space with Kähler structure [A58]. In the case of M^4 the Kähler structure is a generalization of that for E^4 . TGD would be unique from the existence of twistor lift. This predicts CP breaking at fundamental level possibly responsible for CP breaking and matter-antimatter asymmetry.

2. One would still have Kähler coupling strength α_K as the only single dimensionless coupling strength, whose spectrum is dictated by quantum criticality meaning that it is analogous to critical temperature. All coupling constant like parameters would be determined by quantum criticality. Cosmological constant would not be fundamental constant and this makes itself visible also in the concrete expressions for conserved Noether currents. The breaking of the scale invariance removing vacuum degeneracy of 4-D Kähler action would be analogous to spontaneous symmetry breaking and would remove vacuum degeneracy and classical nondeterminism.

The volume term would emerge from dimensional reduction required to give for the 6-surface the structure of S^2 bundle having space-time surfaces as base space. Cosmological constant would be determined by dynamics and depend on p-adic length scale depending in the average on length scale of space-time sheet proportional to the cosmic time sense like $1/a^2$, a cosmic time. This would solve the problem of large cosmological constant and predict extremely small cosmological constant in cosmic scales in the recent cosmology. This suggests that in long length scales one still has spin glass degeneracy realized in terms of many-sheeted space-time.

- 3. In ZEO 3-surface correspond to a union of 3-surfaces at the ends of space-time surfaces at boundaries of CD. There are many characterizations of quantum criticality.
 - (a) Preferred extremal property and quantum criticality would mean that one has simultaneously an extremal of both 4-D Kähler action and volume term except at singular 2-surfaces identified as string world sheets and their boundaries. In accordance with the universality of quantum critical dynamics, one would have outside singularities local dynamics without dependence on Kähler coupling strength. The interpretation would be as geometric generalization of massless fields also characterizing criticality.
 - (b) Another characterization of preferred extremal is as a space-time surfaces using subalgebra S_m of symplectic algebra S for which generators have conformal weights coming as *m*-tuples of those for the full symplectic algebra. Both S_m and $[S, S_m]$ would have vanishing Noether charges. For the induced spinor fields analogous condition would hold true. Effectively the infinite number of radial conformal weights of the symplectic algebra associated with the light-like radial coordinate of δM^4_{\pm} would reduce to a finite number.
 - (c) A further characterization would be in terms of $M^8 H$ duality [L17]. Preferred extremals in H would be images of of space-time surfaces in M^8 under $M^8 - H$ duality. The latter would correspond to roots of octonionic polynomials with coefficients in an extension of rationals. Therefore space-time surfaces in H satisfying field equations plus preferred extremal conditions would correspond to surfaces described by algebraic equations in M^8 . Algebraic dynamics would be dual to differential dynamics.
 - (d) In adelic physics [L18, L19] the hierarchy of Planck constants $h_{eff}/h_0 = n$ with n having an interpretation as dimensions of Galois group of extension of rationals would define further correlate of quantum criticality. The scaled up Compton lengths proportional to h_{eff} would characterize the long range fluctuations associated with quantum criticality.

6.8.3 The revised view about WCW metric and spinor structure

In this framework one can take a fresh approach to the construction of the spinor structure and Kähler metric of WCW. The basic vision is rather conservative. Rather than inducing ad hoc formulas for WCW gamma matrices one tries to identify Noether the elements super-algebra as Noether charges containing also the gamma matrices as Noether super charges.

- 1. The simplest guess is that the algebra generated by fermionic Noether charges Q^A for symplectic transformations $h^k \to h^k + \epsilon j^{Ak}$ assumed to induce isometries of WCW and Noether supercharges Q_n and their conjugates for the shifts $\Psi \to \Psi + \epsilon u_n$, where u_n is a solution of the modified Dirac equation, and ϵ is Grassmann number are enough to generate algebra containing the gamma matrix algebra.
- 2. The commutators $\Gamma_n^A = [Q^A, Q_n]$ are super-charges labelled by (A, n). One would like to identify them as gamma matrices of WCW. The problem is that they are labelled by (A, n) whereas isometry generators are labelled by A only just as symplectic Noether charges. Do all supercharges Γ_n^A except Γ_0^A corresponding to $u_0 = constant$ annihilate the physical states so that one would have 1-1 correspondence? This would be analogous to what happens quite generally in super-conformal algebras.
- 3. The anti-commutators of Γ_0^A would give the components of the Kähler metric. The allowance of singular surfaces having 2-D string world sheets as singularities would give to the metric also stringy component besides 3-D component and possible 0-D components at the ends of string. Metric 2-D property would not be exact as assumed originally.

This construction can be blamed for the lack of explicitness. The general tendency in the development of TGD has been replacement of explicit but somewhat ad hoc formulas with principles. Maybe this reflects to my own aging and increasing laziness but my own view is that principles are what matter and get abstracted only very slowly. The less formulas, the better!

6.9 Does 4-D action generate lower-dimensional terms dynamically?

The original proposal was that the action defining the preferred extremals is 4-D Kähler action. Later it became obvious that there must be also 2-D string world sheet term present and probably also 1-D term associated with string boundaries at partonic 2-surfaces. The question has been whether these lower-D terms in the action are primary of generated dynamically. By super-conformal symmetry the same question applies to the fermionic part of the action. The recent formulation based on the twistor lift of TGD contains also volume term but the question remains the same.

During years several motivations for the proposal that preferred extremals of action principle including also volume term for twistor lift of Kähler action are minimal surfaces which are singular at 2-D string world sheets and perhaps also at their boundaries.

In particular, quantum criticality would be realized as a minimal surface property realized by holomorphy in suitably generalized sense [L27, L22]. The reason is that the holomorphic solutions of minimal surface equations involve no coupling parameters as the universality of the dynamics at quantum criticality demands.

Minimal surface equation would be true apart from possible singular surfaces having dimension D = 2, 1, 0. D = 2 corresponds to string world sheets and partonic 2-surfaces. If there are 0-D singularities they would be associated with the ends of orbits of partonic 2-surfaces at boundaries of causal diamond (CD). Minimal surfaces are solutions of non-linear variant of massless d'Alembertian having as effective sources the singular surfaces at which d'Alembertian equation fails. The analogy with gauge theories is highly suggestive: singular surfaces would act as sources of massless field.

Strings world sheets seem to be necessary. The basic question is whether the singular surfaces are postulated from the beginning and there is action associated with them or whether they emerge dynamical from 4-D action. One can consider two extreme options.

Option I: There is an explicit assignment of action to the singular surfaces from the beginning. A transfer of Noether charges between space-time interior and string world sheets is possible. This kind of transfer process can take place also between string world sheets and their light-like boundaries and happens if the normal derivatives of embedding space coordinates are discontinuous at the singular surface.

Option II: No separate action is assigned with the singular surfaces. There could be a transfer of Noether charges between 4-D Kähler and volume degrees of freedom at the singular surfaces causing the failure of minimal surface property in 4-D sense. But could singular surfaces carry Noether currents as 2-D delta function like densities?

This is possible if the discontinuity of the normal derivatives generates a 2-D singular term to the action. Conservation laws require that at string world sheets energy momentum tensor should degenerate to a 2-D tensor parallel to and concentrated at string world sheet. Only 4-D action would be needed - this was actually the original proposal. Strings and particles would be essentially edges of space-time - this is not possible in GRT. Same could happen also at its boundaries giving rise to point like particles. Super-conformal symmetry would make this possible also in the fermionic sector.

For both options the singular surfaces would provide a concrete topological picture about the scattering process at the level of single space-time surface and telling what happens to the initial state. The question is whether Option I actually reduces to Option II. If the 2-D term is generated to 4-D action dynamically, there is no need to postulate primary 2-D action.

6.9.1 Can Option II generate separate 2-D action dynamically?

The following argument shows that Option II with 4-D primary action can generate dynamically 2-D term into the action so that no primary action need to be assigned with string world sheets.

Dimensional hierarchy of surfaces and strong form of holography

String world sheets having light-like boundaries at the light-like orbits of partonic 2-surfaces are certainly needed to realize strong form of holography [K84]. Partonic 2-surfaces emerge automat-

ically as the ends of the orbits of wormhole contacts.

- 1. There could (but neet not) be a separate terms in the primary action corresponding to string world sheets and their boundaries. This hierarchy bringing in mind branes would correspond to the hierarchy of classical number fields formed by reals, complex numbers, quaternions (space-time surface), and octonions (embedding space in M^8 -side of M^8 duality). The tangent or normal spaces of these surfaces would inherit real, complex, and quaternionic structures as induced structure. The number theoretic interpretation would allow to see these surfaces as images of those surfaces in M^8 mapped to H by $M^8 H$ duality. Therefore it would be natural to assign action to these surfaces.
- 2. This makes in principle possible the transfer of classical and quantum charges between spacetime interior and string world sheets and between from string world sheets to their light-like boundaries. TGD variant of twistor Grassmannian approach [L20, L24] relies on the assumption that the boundaries of string world sheets at partonic orbits carry quantum numbers. Quantum criticality realized in terms of minimal surface property realized holomorphically is central for TGD and one can ask whether it could play a role in the definition of S-matrix and identification of particles as geometric objects.
- 3. For preferred extremals string world sheets (partonic 2-surfaces) would be complex (cocomplex) manifolds in octonionic sense. Minimal surface equations would hold true outside string world sheets. Conservation of various charges would require that the divergences of canonical momentum currents at string world sheet would be equal to the discontinuities of the normal components of the canonical momentum currents in interior. These discontinuities would correspond to discontinuities of normal derivatives of embedding space coordinates and are acceptable. Similar conditions would hold true at the light-like boundaries of string world sheets at light-like boundaries of parton orbits. String world sheets would not be minimal surfaces and minimal surface property for space-time surface would fail at these surfaces.

Quantum criticality for string world sheets would also correspond to minimal surface property. If this is realized in terms of holomorphy, the field equations for Kähler and volume parts at string world sheets would be satisfied separately and the discontinuities of normal components for the canonical momentum currents in the interior would vanish at string world sheets.

4. The idea about asymptotic states as free particles would suggest that normal components of canonical momentum currents are continuous near the boundaries of CD as boundary conditions at least. The same must be true at the light-like boundaries of string world sheets. Minimal surface property would reduce to the property of being light-like geodesics at light-like partonic 2-surface. If this is not assumed, the orbit is space-like. Even if these conditions are realized, one can imagine the possibility that at string world sheets 4-D minimal surface equation fails and there is transfer of charges between Kähler and volume degrees of freedom (Option II) and therefore breaking of quantum criticality.

If the exchange of Noether charges vanishes everywhere at string world sheets and boundaries, one could argue that they represent independent degrees of freedom and that TGD reduces to string model. The proposed equation for coupling constant evolution however contains a coefficients depending on the total action so that this would not be the case.

- 5. Assigning action to the lower-D objects requires additional coupling parameters. One should be able to express these parameters in terms of the parameters appearing in 4-D action (α_K and cosmological constant). For string sheets the action containing cosmological term is 4-D and Kähler action for $X^2 \times S^2$, where S^2 is non-dynamical twistor sphere is a good guess. Kähler action gets contributions from X^2 and S^2 . If the 2-D action is generated dynamically as a singular term of 4-D action its coupling parameters are those of 4-D action.
- 6. There is a temptation to interpret this picture as a realization of strong form of holography (SH) in the sense that one can deduce the space-time surfaces by using data at string world sheets and partonic 2-surfaces and their light-like orbits. The vanishing of normal components of canonical momentum currents would fix the boundary conditions.

If double holography $D = 4 \rightarrow D = 2 \rightarrow D = 1$ were satisfied it might be even possible to reduce the construction of S-matrix to the proposed variant of twistor Grassmann approach. This need not be the case: p-adic mass calculations rely on p-adic thermodynamics for the excitions of massless particles having CP₂ mass scale and it would seem that the double holography can makes sense for massless states only.

In M^8 -picture [L17] the information about space-time surface is coded by a polynomial defined at real line having coefficients in an extension of rationals. This real line for octonions corresponds to the time axis in the rest system rather than light-like orbit as light-like boundary of string world sheet.

Stringy quantum criticality?

The original intuition [L27] was that there are canonical momentum currents between Kähler and volume degrees of freedom at singular surfaces but no transfer of canonical momenta between interior and string world sheets nor string world sheets and their boundaries. Also string world sheets would be minimal surfaces as also the intuition from string models suggests. Could also the stringy quantum criticality be realized?

- 1. Some embedding space coordinates h^k must have discontinuous partial derivatives in directions normal to the string world sheet so that 3-surface has 1-D edge along fermionic string connecting light-like curves at partonic 2-surfaces in both Minkowskian and Euclidian regions. A closed highly flattened rectangle with long and short edges would be associated with closed monopole flux tube in the case of wormhole contact pairs assigned with elementary particles. 3-surfaces would be "edgy" entities and space-time surfaces would have 2-D and 1-D edges. In condensed matter physics these edges would be regarded as defects.
- 2. Quantum criticality demands that the dynamics of string world sheets and of interior effectively decouple. Same must take place for the dynamics of string world sheets and their boundaries. Decoupling allows also string world sheets to be minimal surfaces as analogs of complex surfaces whereas string world sheet boundaries would be light-like (their deformations are always space-like) so that one obtains both particles and string like objects.
- 3. By field equations the sums for the divergences of stringy canonical momentum currents and the corresponding singular parts of these currents in the interior must vanish. By quantum criticality in interior the divergences f Kähler and volume terms vanish separately. Same must happen for the sums in case of string world sheets and their boundaries. The discontinuity of normal derivatives implies that the contribution from the normal directions to the divergence reduces to the sum of discontinuities in two normal directions multiplied by 2-D delta function. Thid contribution is in the general case equal to the divergence of corresponding stringy canonical momentum current but must vanish if one has quantum criticality also at string world sheets and their boundaries.

The separate continuity of Kähler and volume parts of canonical momentum currents would guarantee this but very probably implies the continuity of the induced metric and Kähler form and therefore of normal derivatives so that there would be no singularity. However, the condition that total canonical momentum currents are continuous makes sense, and indeed implies a transfer of various conserved charges between Kähler action and volume degrees of freedom at string world sheets and their boundaries in normal directions as was conjectured in [L27].

4. What about the situation in fermionic degrees of freedom? The action for string world sheet X^2 would be essentially of Kähler action for $X^2 \times S^2$, where S^2 is twistor sphere. Since the modified gamma matrices appearing in the modified Dirac equation are determined in terms of canonical momentum densities assignable to the modified Dirac action, there could be similar transfer of charges involved with the fermionic sector and the divergences of Noether charges and super-charges assignable to the volume action are non-vanishing at the singular surfaces. The above mechanism would force decoupling between interior spinors and string world sheets spinors also for the modified Dirac equation since modified gamma matrices are determined by the bosonic action.

Remark: There is a delicacy involved with the definition of modified gamma matrices, which for volume term are proportional to the induced gamma matrices (projections of the embedding space gamma matrices to space-time surface). Modified gamma matrices are proportional to the contractions $T_k^{\alpha} \Gamma^k$ of canonical momentum densities $T^{\alpha_k} = \partial L/\partial(\partial_{\alpha} h^k)$ with embedding space gamma matrices Γ^k . To get dimension correctly in the case of volume action one must divide away the factor $\Lambda/8\pi G$. Therefore fermionic super-symplectic currents do not involve this factor as required.

It remains an open question whether the string quantum criticality is realized everywhere or only near the ends of string world sheets near boundaries of CD.

String world sheet singularities as infinitely sharp edges and dynamical generation of string world sheet action

The condition that the singularities are 2-D string world sheets forces 1-D edges of 3-surfaces to be infinitely sharp.

Consider an edge at 3-surface. The divergence from the discontinuity contains contributions from two normal coordinates proportional to a delta function for the normal coordinate and coming from the discontinuity. The discontinuity must be however localized to the string rather than 2surface. There must be present also a delta function for the second normal coordinate. Hence the value of also discontinuity must be infinite. One would have infinitely sharp edge. A concrete example is provided by function $y = |x|^{\alpha} \alpha < 1$. This kind of situation is encountered in Thom's catastrope theory for the projection of the catastrophe: in this case one has $\alpha = 1/2$. This argument generalizes to 3-D case but visualization is possible only as a motion of infinitely sharp edge of 3-surface.

Kähler form and metric are second degree monomials of partial derivatives so that an attractive assumption is that $g_{\alpha\beta}$, $J_{\alpha\beta}$ and therefore also the components of volume and Kähler energy momentum tensor are continuous. This would allow $\partial_{n_i}h^k$ to become infinite and change sign at the discontinuity as the idea about infinitely sharp edge suggests. This would reduce the continuity conditions for canonical momentum currents to rather simple form

$$T^{n_i n_j} \Delta \partial_{n_i} h^k = 0 \quad . \tag{6.9.1}$$

which in turn would give

$$T^{n_i n_j} = 0 \tag{6.9.2}$$

stating that canonical momentum is conserved but transferred between Kähler and volume degrees of freedom. One would have a condition for a continuous quantity conforming with the intuitive view about boundary conditions due to conservation laws. The condition would state that energy momentum tensor reduces to that for string world sheet at the singularity so that the system becomes effectively 2-D. I have already earlier proposed this condition.

The reduction of 4-D locally to effectively 2-D system raises the question whether any separate action is needed for string world sheets (and their boundaries)? The generated 2-D action would be similar to the proposed 2-D action. By super-conformal symmetry similar generation of 2-D action would take place also in the fermionic degrees of freedom. I have proposed also this option already earlier. This would mean that Option II is enough.

The following gives a more explicit analysis of the singularities. The vanishing on the discontinuity for the sum of normal derivative gives terms with varying degree of divergence. Denote by n_i resp. t_i the coordinate indices in the normal resp. tangent space. Suppose that some derivative $\partial_{n_i}h^k$ become infinite at string. One can introduce degree n_D of divergence for a quantity appearing as part of canonical momentum current as the degree of the highest monomial consisting of the diverging derivatives $\partial_{n_i}h^k$ appearing in quantity in question. For the leading term in continuity conditions for canonical momentum currents of total action one should have $n_D = 2$ to give the required 2-D delta function singularity.

- $\partial_{n_i}h^k$ has $n_D \leq 1$. If it is also discontinuous say changes sign one has $n_D = 2$ for $\Delta \partial_{n_i}h^k$ in direction n_i .
- One has $n_D(g_{t_it_j}) = 0$, $n_D(g_{t_in_j}) = 1$, $n_D(g_{n_in_i}) = 2$ and $n_D(g_{n_in_j}) = 1$ or 2 for $i \neq j$. One has $n_D(g) = 4$ $(g = det(g_{\alpha\beta}))$. For contravariant metric one gas $n_D(g^{t_it_j}) = 0$ and $n_D(g^{n_ij}) = n_D(g^{n_in_j}) = -2$ as is easy to see from the formula for $g^{\alpha\beta}$ in terms of cofactors.
- Both Kähler and volume terms in canonical momentum current are proportional to \sqrt{g} with $n_D(\sqrt{g}) = 2$ having leading term proportional to 2-determinant $\sqrt{det(g_{n_i n_j})}$. In Kähler action the leading term comes from tangent space part J_{ij} and has $n_D = -1$ coming from the partial derivative. The remaining parts involving $J_{t_i n_j}$ or $J_{n_i n_j}$ have $n_D < 0$.
- Consider the behavior of the contribution of volume term to the canonical momentum currents. For $g^{n_i t_j} \partial_{t_j} h^k \sqrt{g}$ one has $n_D = 0$ so that this term is finite. For $g^{n_i n_j} \partial_{n_j} h^k \sqrt{g}$ one has $n_D \leq 1$ and this term can be infinite as also its discontinuity coming solely from the change of sign for $\partial_{n_j} h^k$. If $\partial_{n_j} h^k$ is infinite and changes sign, one can have $n_D = 2$ as required by 2-D delta function singularity.

The continuity condition for the canonical momentum current would state the vanishing of $n_D = 2$ discontinuity but would not imply separate vanishing of discontinuity for Kähler and volume parts of canonical momentum currents - this in accordance with the idea about canonical momentum transfer. If the sign of partial derivative only changes the coefficient of the partial derivative must vanish so that the condition reduces to the condition $T^{n_i n_j} = 0$ already given for the components of the total energy momentum tensor, which would be continuous by the above assumption.

6.9.2 Kähler calibrations: an idea before its time?

While updating book introductions I was surprised to find that I had talked about so called calibrations of sub-manifolds as something potentially important for TGD and later forgotten the whole idea! A closer examination however demonstrated that I had ended up with the analog of this notion completely independently later as the idea that preferred extremals are minimal surfaces apart form 2-D singular surfaces, where there would be exchange of Noether charges between Kähler and volume degrees of freedom.

1. The original idea that I forgot too soon was that the notion of calibration (see http: //tinyurl.com/y3lyead3) generalizes and could be relevant for TGD. A calibration in Riemann manifold M means the existence of a k-form ϕ in M such that for any orientable k-D sub-manifold the integral of ϕ over M equals to its k-volume in the induced metric. One can say that metric k-volume reduces to homological k-volume.

Calibrated k-manifolds are minimal surfaces in their homology class, in other words their volume is minimal. Kähler calibration is induced by the k^{th} power of Kähler form and defines calibrated sub-manifold of real dimension 2k. Calibrated sub-manifolds are in this case precisely the complex sub-manifolds. In the case of CP_2 they would be complex curves (2-surfaces) as has become clear.

2. By the Minkowskian signature of M^4 metric, the generalization of calibrated sub-manifold so that it would apply in $M^4 \times CP_2$ is non-trivial. Twistor lift of TGD however forces to introduce the generalization of Kähler form in M^4 (responsible for CP breaking and matter antimatter asymmetry) and calibrated manifolds in this case would be naturally analogs of string world sheets and partonic 2-surfaces as minimal surfaces. Cosmic strings are Cartesian products of string world sheets and complex curves of CP_2 . Calibrated manifolds, which do not reduce to Cartesian products of string world sheets and complex surfaces of CP_2 should also exist and are minimal surfaces.

One can also have 2-D calibrated surfaces and they could correspond to string world sheets and partonic 2-surfaces which also play key role in TGD. Even discrete points assignable to partonic 2-surfaces and representing fundamental fermions play a key role and would trivially correspond to calibrated surfaces. 3. Much later I ended up with the identification of preferred extremals as minimal surfaces by totally different route without realizing the possible connection with the generalized calibrations. Twistor lift and the notion of quantum criticality led to the proposal that preferred extremals for the twistor lift of Kähler action containing also volume term are minimal surfaces. Preferred extremals would be separately minimal surfaces and extrema of Kähler action and generalization of complex structure to what I called Hamilton-Jacobi structure would be an essential element. Quantum criticality outside singular surfaces would be realized as decoupling of the two parts of the action. May be all preferred extremals be regarded as calibrated in generalized sense.

If so, the dynamics of preferred extremals would define a homology theory in the sense that each homology class would contain single preferred extremal. TGD would define a generalized topological quantum field theory with conserved Noether charges (in particular rest energy) serving as generalized topological invariants having extremum in the set of topologically equivalent 3-surfaces.

It is interesting to recall that the original proposal for the preferred extremals as absolute minima of Kähler action has transformed during years to a proposal that they are absolute minima of volume action within given homology class and having fixed ends at the boundaries of CD.

4. The experience with CP_2 would suggest that the Kähler structure of M^4 defining the counterpart of form ϕ is unique. There is however infinite number of different closed self-dual Kähler forms of M^4 defining what I have called Hamilton-Jacobi structures. These forms can have subgroups of Poincare group as symmetries. For instance, magnetic flux tubes correspond to given cylindrically symmetry Kähler form. The problem disappears as one realizes that Kähler structures characterize families of preferred extremals rather than M^4 itself.

If the notion of calibration indeed generalizes, one ends up with the same outcome - preferred extremals as minimal surfaces with 2-D string world sheets and partonic 2-surfaces as singularities - from many different directions.

- 1. Quantum criticality requires that dynamics does not depend on coupling parameters so that extremals must be separately extremals of both volume term and Kähler action and therefore minimal surfaces for which these degrees of freedom decouple except at singular 2-surfaces, where the necessary transfer of Noether charges between two degrees of freedom takes place at these. One ends up with string picture but strings alone are of course not enough. For instance, the dynamical string tension is determined by the dynamics for the twistor lift.
- 2. Almost topological QFT picture implies the same outcome: topological QFT property fails only at the string world sheets.
- 3. Discrete coupling constant evolution, vanishing of loop corrections, and number theoretical condition that scattering amplitudes make sense also in p-adic number fields, requires a representation of scattering amplitudes as sum over resonances realized in terms of string world sheets.
- 4. In the standard QFT picture about scattering incoming states are solutions of free massless field equations and interaction regions the fields have currents as sources. This picture is realized by the twistor lift of TGD in which the volume action corresponds to geodesic length and Kähler action to Maxwell action and coupling corresponds to a transfer of Noether charges between volume and Kähler degrees of freedom. Massless modes are represented by minimal surfaces arriving inside causal diamond (CD) and minimal surface property fails in the scattering region consisting of string world sheets.
- 5. Twistor lift forces M^4 to have generalize Kähler form and this in turn strongly suggests a generalization of the notion of calibration. At physics side the implication is the understanding of CP breaking and matter anti-matter asymmetry.
- 6. $M^8 H$ duality requires that the dynamics of space-time surfaces in H is equivalent with the algebraic dynamics in M^8 . The effective reduction to almost topological dynamics implied

by the minimal surface property implies this. String world sheets (partonic 2-surfaces) in H would be images of complex (co-complex sub-manifolds) of $X^4 \subset M^8$ in H. This should allows to understand why the partial derivatives of embedding space coordinates can be discontinuous at these edges/folds but there is no flow between interior and singular surface implying that string world sheets are minimal surfaces (so that one has conformal invariance).

The analogy with foams in 3-D space deserves to be noticed.

- 1. Foams can be modelled as 2-D minimal surfaces with edges meeting at vertices. TGD spacetime could be seen as a dynamically generated foam in 4-D many-sheeted space-time consisting of 2-D minimal surfaces such that also the 4-D complement is a minimal surface. The counterparts for vertices would be light-like curves at light like orbits of partonic 2-surfaces from which several string world sheets can emanate.
- 2. Can one imagine something more analogous to the usual 3-D foam? Could the light-like orbits of partonic 2-surfaces define an analog of ordinary foam? Could also partonic 2-surfaces have edges consisting of 2-D minimal surfaces joined along edges representing strings connecting fermions inside partonic 2-surface?

For years ago I proposed what I called as symplectic QFT (SQFT) as an analog of conformal QFT and as part of quantum TGD [K14]. SQFT would have symplectic transformations as symmetries, and provide a description for the symplectic dynamics of partonic 2-surfaces. SQFT involves an analog of triangulation at partonic 2-surfaces and Kähler magnetic fluxes associated with them serve as observables. The problem was how to fix this kind of network. Partonic foam could serve as a concrete physical realization for the symplectic network and have fundamental fermions at vertices. The edges at partonic 2-surfaces would be space-like geodesics. The outcome would be a calibration involving objects of all dimensions $0 \le D \le 4$ - a physical analog of homology theory.

6.10 Could metaplectic group have some role in TGD framework?

Metaplectic group appears as a covering group of linear symplectic group Sp(2n, F) for any number field and its representations cam be regarded as analog of spinor representations of the rotation group. Since infinite-D symplectic group of $\delta M_+^4 \times CP_2$, where δM_+^4 is light-cone boundary, appears as an excellent candidate for the isometries of "world of classical worlds" in zero energy ontology (ZEO), one can ask whether and how the notion of metaplectic group generalizes to TGD framework [K35, ?, K61, K46, K18, K17].

The condition for the existence of metaplectic structure is same as those for the spinor structure and not met in the case of CP_2 . One however expects that also in the case of metaplectic structure the modified metaplectic structure exists is one couples spinors to an odd integer multiple of Kähler gauge potential. For triality 1 representation assignable to quarks one has n = 1. The fact that the center of SU(3) is Z_3 suggests that metaplectic group for CP_2 is 3- or 6-fold covering of symplectic group instead of 2-fold covering.

Besides the ordinary representations of SL(2, C) also the possibly existing analogs of metaplectic representations of SL(2, C) = Sp(2, C) acting on wave functions at hyperbolic space H_3 at $a^2 = t^2 - r^2$ hyperbolooid of M_+^4 are cosmologically interesting since the many-sheeted space-time in number theoretic vision allows quantum coherence in even cosmological scales and there are indications for periodic redshift suggests tessellations of H_3 analogous to lattices in E^3 and defined by discrete subgroup of Sl(2, C).

6.10.1 Heisenberg group, symplectic group, and metaplectic group

The following gives a brief summary of basics related to Heisenberg group, symplectic group, and metaplectic group.

Heisenberg group

1. The matrix representation of the simplest Heisenberg group http://tinyurl.com/y2fomegs is given by matrices

A 3-D Lie group is in question. The multiplication for group elements (a_1, b_1, c_1) and (a_2, b_2, c_2) is given by $(a_1, b_1, c_1) \circ (a_2, b_2, c_2) = (a_1 + a_2, b_1 + b_2, c_1 + c_2 - a_1 b_2)$. The coefficients (a, b, c) can be belong to any ring sin the inverse can be expressed using only product and sum as (-a, -b, ab - c). In particular, discrete variants of Heisenberg group such as those associated with extensions of rationals, exist. For odd primes one can define Heisenberg group modulo p as group of order p^3 in finite field F_p .

2n + 1-D Heisenberg group consists of upper triangular with unit matrix at diagonal.

2. Continuous Heisenberg group is a nilpotent Lie group of dimension d = 3. Nilpotency means that it is Lie algebra elements are nilpotent. The Lie algebra is generated by upper-diagonal matrices and the commutation relations for the Lie algebra basis are [X, Y] = Z, [X, Z] = 0, [Y, Z] = 0. The coordinate X = q and differential operator $Y = p = \hbar \partial_q$, $Z = i\hbar$ Isatisfying $[p, q] = i\hbar Id$, define a concrete representation of the Lie algebra of the simplest 3-D Heisenberg group in the space of functions f(q). By introducing n pairs of coordinates commuting to unit matrix one obtain 2n + 1-D Heisenberg group.

Symplectic group

Symplectic group acts as automorphisms of Heisenberg group. Symplectic group leaves acts in function algebra of function H(p,q) leaving invariant Poisson bracket $\{H_1, H_2\} = \partial_q H_1 \partial_p H_2 - \partial_q H_2 \partial_p H_1$. The Poisson bracket $\{p,q\} = 1$ giving the element of $J_{p,q} = 1$ symplectic form remaining invariant under symplectic transformations. Exponentiation of any Hamiltonian H(p,q) acting as Hamiltonian generates symplectic flows. Symplectic group is infinite-D.

3-D linear symplectic group Sp(2, F) is obtained as a special case. In continuous case Hamiltoniansare linear functions of p and q so that the action by Poisson bracket is linear. General linear symplectic group Sp(2n, F) acts in 2n-D space spanned spanned by the analogs of (q_p, p_i) . When symplectic form is accompanied by complex structure and Kähler form symplectic isometries define a finite-D subgroup of symplectic group. For instance, in case of CP_2 symplectic isometries define group SU(3).

Metaplectic group

Metaplectic group $Mp_m(2n, F)$ (see http://tinyurl.com/y5mpswy8 and http://tinyurl. com/y4kjys3e) is an m-fold covering of the linear symplectic group Sp(2n, F). Metaplectic group like also linear symplectic group metaplectic grop is defined for all number fields, in particular p-adic number fields and even adeles. All representations of the metapelectic group are infinite-D (non-compactness is not the only reason: even finite-D non-unitary matrix representations fail to exist).

Sp(2, R) coincides with a covering group the special linear group Sl(2, R) acting as real Möbius transformations in upper half-plane. Metaplectic group does not allow finite-D matrix representations and all representations are infinite-dimensional. Metaplectic group can be regarded as *m*-fold cover of symplectic group and in Weil representation the cover can be chosen to be 2-fold cover.

The elements for the metaplectic group $M_2(2, R)$ as 2-fold covering of Sp(2, R) have representation as pairs (g, ϵ) with g a Möbius transformation represented by matrix (a, b; c, d) with unit determinant acting as $z \to (az+b)/(cz+d)$ and with $\epsilon(z)^2 = cz+d$. The product of group elements is given by $(g_1, epsilon_1)(g_2, \epsilon_2) = (g_1g_2, \epsilon)$, $\epsilon(z) = \epsilon_1(g_2(z))\epsilon_2(z)$. The entities transforming in this manner are not functions but analogous to spinors and one can speak of symplectic spinors.

3. One can generalize the notion of symplectic structure to that of metaplectic structure. The topological conditions (the second Stiefel-Withney class vanishes) for the existence of metaplectic structure for given symplectic manifold are same as for the spinor structure.

Interestingly, in the case of CP_2 this condition is not satisfied and the problem is circumvented by coupling CP_2 spinors to an odd multiple of Kähler gauge potential giving rise to Kähler form: this is essential for obtain electroweak couplings correctly for the induced spinor structure at space-time surface. Since Kähler form relates so closely to symplectic structure, it is reasonable to expect that also in case of $CP_2(CP_{2n})$ symplectic spinors exist.

The center of isometry group SU(3) of CP_2 is Z_3 acting trivial on CP_2 coordinates. The action is analogous to that of Möbius transformations being induced by linear action of SU(3) on projective coordinates (z_1, z_2, z_3) and by the projective map such as $(z_1, z_2, z_3) \rightarrow (z_1/z_3, z_2/z_3, 1)$ in given coordinate patch defined by a choice of two complex coordinates (z_i, z_j) now $(z_1/z_3, z_2/z_3)$. Do symplectic spinors spinors transform like CP_2 spinors under metaplectic action of SU(3)?

 CP_2 spinors with unit coupling to Kähler gauge potential allow triality $t = \pm 1$ partial impossible without the coupling making possible spinor structure and presumabley also metaplectic struture. Does this mean that in the case of CP_2 the metaplectic group must be identified as 3-fold or possibly 6-fold covering of symplectic group. The holomy group is electroweak U(2) and acts like $SU(2) \times U(1)$. Does holonomy group acts as double covering of SO(3) and as 3-fold covering of U(1) giving 6-fold covering of tangent space group SO(4)?

6.10.2 Symplectic group in TGD

In TGD the symplectic transformations of $\delta M_+^4 \times CP_2$, where δM_+^4 is light-cone boundary, and generated by Hamiltonian algebra, are central and act in the "world of classical worlds" (WCW) [K35, ?, K61, K46, K18, K17].

- 1. WCW is formed by pairs of 3-surfaces with members at opposite boundaries of causal diamond $CD = cd \times CP_2$ of embedding space $H = M^4 \times CP_2$. cd is causal diamond of M^4 defined as intersection of future and past directed light-cones. The members of the pair are connected by preferred extremal of action defined by twistor lift of TGD: it is sum of Kähler action and volume term. Preferred extremal is analogous to Bohr orbit.
- 2. The obvious question is whether also infinite-D symplectic group of $\delta M_+^4 \times CP_2$ allows metaplectic variant. Second question is how symplectic spinors relate to ordinary spinors. Are ordinary spinors of H symplectic spinors as one might expect?
- 3. In TGD the spinors of "world of classical worlds" (WCW) [K35, ?, K61] should have interpretation as symplectic spinors. Spinors of WCW are fermionic Fock states created by quark oscillator operators replacing theta parameters in super-coordinates and in super-spinors of super variant of embedding space H. Their local composites appear as monomials with vanishing quark number in hermitian super-coordinates of super-variant of H and in super-quark-spinors of super-H containing only monomials with odd quark number. These super-fields differ from those of standard SUSY since monomials of theta parameters are replaced with monomials of quark oscillator operators and Majorana spinors are not in question.

Infinite-D metaplectic group $\delta M_+^4 \times CP_2$ should act on WCW spinor fields and the action should be induced from action in H.

6.10.3 Kac-Moody type approach to representations of symplectic/metaplectic group

Representations of the symplectic/metaplectic group. Kac-Moody type approach is strongly suggested physically. Kac-Moody group has Lie-algebra which is central extension of the Lie-algebra of local gauge transformation. Kac-Moody algebra elements are labelled by elements with conformal weight $n \in Z$ but also the variant $n \ge 0$ ("half-algebra" exists as sub-algebra is clear from the commutation relations.

1. Let r denote the radial light-like coordinate of light-cone boundary $\delta M_+^4 \times CP_2$. $\delta M_+^4 = S^2 \times R^+$ is metrically 2-sphere S^2 and this implies extension of usual conformal invariance for S^2 to conformal invariance localized with respect to r and explains why 4-D Minkowski space is physically unique.

Radially local conformal transformations $z \to f(r, z)$ of light-cone boundary with scaling $r \to |df(r, z, zbar)/dz|^{-1} \times r$ in light-cone radial coordinate r compensating for the conformal scaling factor $|df(r, z, zbar)/dz|^2$ as isometries of light-cone boundary as also color rotation local with respect to r. One has radially local $S = SO(3) \times SU(3)$ as isometries of light-cone boundary. This would serve as the TGD variant of color gauge symmetry.

2. Effective localization of the symplectic algebra of $S^2 \times CP_2$ with respect to the radial light-like coordinate r. Denote the radial conformal weight h.

Option 1: Radial waves of form r^h , h = -1/2+iy (something to do with zeros of zeta) behave like plane waves with wave vector y for in inner product defined by integration measure dr. Orthogonal plane-wave basis effectively.

Restriction to causal diamond CD defined as intersection of future and past directed lightcones implies $r \leq r_{max}$ defining the size of CD and periodic boundary conditions for a discrete basis r^h . If h = -1/2 + iy corresponds to a zero of zeta, the size of CD determined by r_{max} is quantized. For instance, $sin(yln(r_{max})) = 0$ would imply $ln(r_{max}) = n \times \pi/y$. Also $cos(yln(r_{max})) = 0$ can be considered.

Option 2: One can include the real part of h to the integration measure of inner product defined as $d\mu = dr/r$. This is dimensionless and very natural by scaling invariance. For this choice one has h = iy and the connection with Riemann zeta is not anymore natural. $r_{max} = exp(n \times \pi/y)$ would give periodic boundary conditions.

For $y = k\pi$ one would have $r_{max} = exp(1/k)$, k integer. This conforms with the adelic picture since the infinite-D extension of rationals generated by $e^{1/k}$ induces finite-D extension of p-adic numbers since e^p is ordinary p-adic number.

 $y = k\pi/log(p)$ gives $r_{max} = p^{n/k}$ and one can construct finite-D extensions of rationals allowing roots of p.

3. Super-symplectic algebra is assumed to have fractal structure. There is a hierarchy of isomorphic super-sympletcic sub-algebras SSA_n , n = 1, 2..., for which conformal weights n-multiples of the weights for the entire algebra.

Option 1: One would have also conformal weights n(-1/2 + iy) for these radial waves however inner product using dmu= dr as integration measures does reduce to inner product for plane waves but to $\int r^{-n+1} exp(in(y_1 - y_2))du$, $u = log(r/r_0)$. This leads out from the original state space. The modification of the integration measure to $d\mu = r(n-1)dr$ does not seem plausible.

Option 2: Identify the conformal weight as h = iy and include the real part -1/2 to the dimensionless integration measure $d\mu = dr/r$. This allows fractal hierarchy h = niy. This seems to be the only elegant option so that the connection with Riemann zeta seems artificial

This picture leads to some conjectures and questions.

1. Sub-algebra SSA_n and its commutator with entire algebra SSA represented trivially for physical states. Also classical Noether charges vanish: this gives strong conditions on preferred extremals and makes them analogs of Bohr orbits: only preferred pairs of 3-surfaces at opposite boundaries of CD are connected by preferred extremal. Hierarchy of state spaces is the outcome.

This would be generalization of Super Virasoro conditions for which only the entire algebra would act trivially apart from the scaling generator L_0 .

- 2. Could the hierarchies of extensions of rationals with dimensions $n_1|n_2|...$ (| is for "divides") correspond to hierarchies of inclusions of hyper-finite factors.
- 3. Could the hierarchies of SSA_n with $n_1|n_2|...$ correspond to hierarchies of extensions of extensions of $n_1|n_2|...$

 $\delta M^4_+ \times CP_2$ is metrically $S^2 \times CP_2$ and this leads to some questions.

- 1. Could one have Kac-Moody type representation of the symplectic algebra of $S^2 \times CP_2$, which is radially local and involves central extension? This is physically suggestive.
- 2. Symplectic isometries of $S^2 \times CP_2$ local with respect to r would define a sub-representation. Hamiltonians products of $\delta M_+^4 \times CP_2$ Hamiltonians for δM_+^4 and CP_2 labelled by angular momentum j and by the 2 Casimirs of triality t = 0 color representations.

Isometry algebras SO(3) and SU(3) are sub-algebras of symplectic algebra determined by Hamiltonians at light-cone boundary in given representation to themselves. There are no higher-D sub-algebras so that one cannot consider hierarchy analogous to the hierarchy of sub-algebras labelled by radial conformal weights as n-multiples of weights of the entire algebra.

This in turn leads to a series of questions concerning what happens if one takes gauge symmetry and Kac-Moody symmetry as its analog as a physical guideline.

1. The metaplectic group of SL(2, R) has only infinite-D representations but no matrix representations. Can this be true also for the metaplectic representation of infinite-D for $SO(3) \times SU(3)$ which is compact and allow finite-D unitary ordinary representations. SO(3) must be lifted to SU(2) and this is natural for quark spinors. SU(3) allows only triality t = 0 partial waves.

Since SU(3) has Z_3 as center one expects that the notion of metaplectic representation in this case generalizes so that one has 3-fold covering of function space instead of 2-fold one. Quark spinors indeed allow CP_2 partial waves which are in t = 1 representations. As already noticed CP_2 allows does not allow metaplectic structure in standard sense but the coupling to the Kähler gauge potential probably makes this possible since the condition for the existence of generalized metaplectic structure is same as for the existence of modified spinor structure.

- 2. Should one treat all S^2 Hamiltonians with l > 1 as gauge degrees of freedom? A possible interpretation would be in terms of finite measurement resolution and analog of Kac-Moody symmetry acting very much like gauge symmetry representing the finite measurement resolution. Symplectic group would effectively reduce to $SO(3) \times SU(3)$. If so, one would have $SO(3) \times SU(3)$ gauge theory with l = 1 states and spin 1/2 states with color as particles.
- 3. Only quark triplets and singlets of fermions and color octets of gluons are observed. Without any additional conditions TGD predicts infinite number of spinor harmonics. For CP_2 spinor harmonics there is a correlation for the color quantum numbers and electroweak quantum numbers of spinor harmonic. In QCD the color representation of quark does not however depend on electroweak quantum numbers. Also the masses of spinor harmonics depend on electroweak quantum numbers and are typically very large.

Remark: One could of course ask whether quarks could move in different color partial waves but having t = 1. This however seems rather implausible.

The proposal is that Kac-Moody type generators can be used to build massless states with have correct correlation between color represented as angular momentum like quantum number and electroweak quantum numbers. Could the experimental absence of higher color partial waves be due to the fact the gauge nature of higher excitations of symplectic algebra making higher color partial waves of quarks and leptons gauge degrees of freedom?

- 4. What about l = 1 states assignable to SO(3)? Twistor lift of TGD predicts that also M^4 has analog of Kähler form and induced U(1) gauge field analogous to induced Kähler form. The physical effects are weak and would be responsible for CP breaking and matter antimatter asymmetry. Could the l = 1 triplet correspond to this U(1) gauge boson somewhat like SU(3)octet corresponds to gluon (gluon is identified as pair of quark and antiquark at different positions)?
- 5. How does this relate to the analog of metaplectic group for $SO(3) \times SU(3)$? What about the central extension of $SO(3) \times SU(3)$ assignable to spinor representations with weight n = 1/2. If one adds to the Hamilton associated with rotation generator L_z around z-axis in SO(3) and to hyper-charge generator Y of SU(3) a constant, one obtains what looks like central extension at the level of Poisson brackets since right hand side of brackets receives an additive constant. In SU(3) degrees of freedom one can have only t = 0 color partial waves for scalars but for spinors one obtains the t = 1 waves and can say that color partial waves possess and anomalous hyper-charge Y.

The spectra of L_z and Y are shifted but Killing vector fields are not affected. The couplings of isometry generators are changed since there is coupling proportional to Hamiltonian. This does not seem to have have interpretation as a mere gauge transformation since it makes t = 1 color partial waves possible for quarks.

6.10.4 Relationship to modular functions

The metaplectic representations involve in basic form Sp(2n, F), F any number field.

1. n = 1 is physically special: one has Sp(2, C) = SL(2, C), which is double covering of Lorentz group. The so called modular representations giving rise to basic functions appearing in number theory are related to the representations of SL(2, C) with the condition that SL(2,Z)or its discrete subgroup (there are infinite number of them) is represented either trivially or mere projective factor. In the representation realizing SL(2,C) as Möbius transformations $z \to (Az+B)/Cz+D)$ or upper half-plane one has $f(z) \to (Cz+D)^k f(z)$ when (A,B;C,D) represents element of SL(2,Z) or its subgroup G. k is integer or half integer. One has modular invariance apart from the projective factor.

Although these nodularity conditions apply only to a discrete subgroup of SL(2, R) they they imply projective invariance of the analytic functions involved so that projectively their support of the function reduces to $G \setminus H$, H upper complex plane analogous to unit cell. Could this kind of conditions correspond to the proposed analogs of Kac-Moody type gauge conditions proposed for symplectic symmetries of $\delta M_{+}^4 \times CP_2$?

2. SO(3,1) acts as isometries of the hyperbolic space H_3 identifiable as the hyperboloid H_3 as $a^2 = t^2 - r^2 = constant$ surface of future light-cone M_+^4 : a defines in TGD Lorentz invariant cosmic time and is natural embedding space coordinate in ZEO. Since SL(2, Z) has infinite number if discrete subgroups, one has infinite number of tessellations of H_3 analogous to lattices in 3-D Euclidian space.

In TGD quantum coherence is possible in even cosmological scales since TGD predicts hierarchy of effective values of Planck constants. Could one have quantum coherent structures represented as tessellations of the hyperboloid? The prediction would be quantization of redshift as reflection of quantization of distances from given point of tessellations to other points. Evidence for this kind of quantization has been observed.

3. Finite measurement resolution suggests consideration of tessellations as discretization of H_3 and assignable to extensions of rationals and also to subgroups of SL(2, Z). This would mean discretized wave functions in the tessellation. This would be like wave function for particle in discrete lattice in E^3 . On the other hand, modular functions with projective modular invariance would be analogs for wave functions of particles periodic symmetry implied by lattice but represented projectively.

313

Could one decompose the representation to products of modular forms as projective representations in coset space $SL(2, C)/\Gamma$, Γ a discrete subgroup of SL(2, C) and of representations of discrete subgroup corresponding to finite measurement resolution. This would be like representation of wave functions as products of discrete lattice wave function and wave functions in the space of momenta modulo lattice momenta: Fermi sphere would be replaced by the coset space SU(2)/G.

4. The projective factor $\epsilon^2(Z) = (Cz + D)^k$ is essential for the projective representation of Sp(2, C). Is it possible to generalize this factor acting on upper complex plane to the case of H_3 ? If subgroup SO(3) is represented projectively, then one can use for H_3 coordinates (r, θ, ϕ) , such that r as radius of sphere S^2 remains invariant under r and SO(3) acts the complex coordinate of S^2 transforming linearly under SO(1) as $z \to (Az + B)/(Cz + D)$ so that the projective factor can be identified. These representations would be analogous to modular representations: the discrete subgroup of SL(2, C) would be replaced with SU(2).

It would seem that it must be replaced with SU(2) as subgroup. Could one generalize the notion of modular form invariant under discrete subgroup of SL(2, C) so that the discrete subgroup would become discrete subgroup of SO(3) (SU(2)).

Platonic solids are lattices at S^2 and their isometries and finite subgroups D(2n) appear in McKay correspondence relating discrete subgroups of SU(2) and ADE Lie groups. Finite measurement resolution as dual interpretation. What about infinite discrete subgroups. Does invariance mean projective SU(2) invariance (the case when n = 0)

Chapter 7

Symmetries and Geometry of the "World of Classical Worlds"

7.1 Introduction

The view of the symmetries of the TGD Universe has remained unclear for decades. The notion of "World of Classical Worlds" (WCW) emerged around 1985 but found its basic form around 1990. Holography forced by the realization of General Coordinate Invariance forced/allowed to give up the attempts to make sense of the path integral.

A more concrete way to express this view is that WCW does not consist of 3-surfaces as particle-like entities but almost deterministic Bohr orbits assignable to them as preferred extremals of Kähler action so that quantum TGD becomes wave mechanics in WCW combined with Bohr orbitology. This view has profound implications, which can be formulated in terms of zero energy ontology (ZEO), solving among other things the basic paradox of quantum measurement theory. ZEO forms also the backbone of TGD inspired theory of consciousness and quantum biology.

WCW geometry exists only if it has maximal isometries: this statement is a generalization of the discovery of Freed for loop space geometries [A40]. I have proposed [K35, K19, K84, K61] that WCW could be regarded as a union of generalized symmetric spaces labelled by zero modes which do not contribute to the metric. The induced Kähler field is invariant under symplectic transformations of CP_2 and would therefore define zero mode degrees of freedom if one assumes that WCW metric has symplectic transformations as isometries. In particular, Kähler magnetic fluxes would define zero modes and are quantized closed 2-surfaces. The induced metric appearing in Kähler action is however not zero mode degree of freedom. If the action contains volume term, the assumption about union of symmetric spaces is not well-motivated.

Symplectic transformations are not the only candidates for the isometries of WCW. The basic picture about what these maximal isometries could be, is partially inspired by string models.

- 1. A weaker proposal is that the symplectomorphisms of H define only symplectomorphisms of WCW. Extended conformal symmetries define also a candidate for isometry group. Remarkably, light-like boundary has an infinite-dimensional group of isometries which are in 1-1 correspondence with conformal symmetries of $S^2 \subset S^2 \times R_+ = \delta M_+^4$.
- 2. Extended Kac Moody symmetries induced by isometries of δM^4_+ are also natural candidates for isometries. The motivation for the proposal comes from physical intuition deriving from string models. Note they do not include Poincare symmetries, which act naturally as isometries in the moduli space of causal diamonds (CDs) forming the "spine" of WCW.
- 3. The light-like orbits of partonic 2-surfaces might allow separate symmetry algebras. One must however notice that there is exchange of charges between interior degrees of freedom and partonic 2-surfaces. The essential point is that one can assign to these surface conserved charges when the dual light-like coordinate defines time coordinate. This picture also assumes a slicing of space-time surface by by the partonic orbits for which partonic orbits associated

with wormrhole throats and boundaries of the space-time surface would be special. This slicing would correspond to Hamilton-Jacobi structure.

- 4. Fractal hierarchy of symmetry algebras with conformal weights, which are non-negative integer multiples of fundamental conformal weights, is essential and distinguishes TGD from string models. Gauge conditions are true only the isomorphic subalgebra and its commutator with the entire algebra and the maximal gauge symmetry to a dynamical symmetry with generators having conformal weights below maximal value. This view also conforms with p-adic mass calculations.
- 5. The realization of the symmetries for 3-surfaces at the boundaries of CD and for light-like orbits of partonic 2-surfaces is known. The problem is how to extend the symmetries to the interior of the space-time surface. It is natural to expect that the symmetries at partonic orbits and light-cone boundary extend to the same symmetries.

After the developments towards the end of 2023, it seems that the extension of conformal and Kac-Moody symmetries of string models to the TGD framework is understood. What about symplectic symmetries, which were originally proposed as isometries of WCW? In this article this question is discussed in detail and it will be found that these symmetries act naturally on 3-D holographic data and one can identify conserved charges. By holography this is in principle enough and might imply that the actions of holomorphic and symplectic symmetry algebras are dual. Holography=holomorphy hypothesis is discussed also in the case of the modified Dirac equation.

7.2 The reduction of holography to a generalized holomorphy

The reduction of holography to generalized holomorphy reduced field equations to a ridiculously simple form. Field equations are satisfied because contractions of holomorphic tensors of type (1,1) with tensors of type (2,0)+(0,2) are identically vanishing. This ansatz works already for string sheets as minimal surfaces.

Preferred extremals as analogs of Bohr orbits are minimal surfaces irrespective of the action as long as it is a general coordinate invariant constructed using induced geometry and the minimal surface property fails only at lower-dimensional singularities analogous to the frames of a soap film.

At singularities the other parts of the action become visible by boundary conditions guaranteeing that conservation laws expressed by field equations are not violated. The other parts of action are visible only via the classical conservation laws and at interaction vertices [L51].

Twistor lift fixes the 4-D action to a sum of Kähler action and volume term emerging as a dimensional reduction of 6-surface in the Cartesian product of twistor spaces of M^4 and CP_2 to 6-D twistor space to twistor space as S^2 bundle over space-time surface. Only M^4 and CP_2 allow twistor space with Kähler structure so that TGD is unique from its mathematical existence [A58].

7.2.1 The conserved charges associated with holomorphies

Generalized holomorphy not only solves explicitly the equations of motion but, as found quite recently, also gives corresponding conserved Noether currents and charges.

- 1. Generalized holomorphy algebra generalizes the Super-Virasoro algebra and the Super-Kac-Moody algebra related to the conformal invariance of the string model. The corresponding Noether charges are conserved. Modified Dirac action allows to construct the supercharges having interpretation as WCW gamma matrices. This suggests an answer to a longstanding question related to the isometries of the "world of the classical worlds" (WCW).
- 2. Either the generalized holomorphies or the symplectic symmetries of $H = M^4 \times CP_2$ or both together define WCW isometries and corresponding super algebra. It would seem that symplectic symmetries induced from H are not necessarily needed and might correspond to symplectic symmetries of WCW. One would obtain a close similarity with the string model,

except that one has half-algebra for which conformal weights are proportional to non-negative integers and gauge conditions only apply to an isomorphic subalgebra. These are labeled by positive integers and one obtains a hierarchy.

3. By their light-likeness, the light cone boundary and orbits of partonic 2-surfaces allow an infinite-dimensional isometry group. This is possible only in dimension four. Its transformations are generalized conformal transformations of 2-sphere (partonic 2-surface) depending on light-like radial coordinate such that the radial scaling compensates for the usual conformal scaling of the metric. The WCW isometries would thus correspond to the isometries of the parton orbit and of the boundary of the light cone! These two representations could provide alternative representations for the charges if the strong form of holography holds true and would realize a strong form of holography. Perhaps these realizations deserve to be called inertial and gravitational charges.

Can these transformations leave the action invariant? For the light-cone boundary, this looks obvious if the light-cone is sliced by a surface parallel to the light-cone boundary. Note however that the tip of this surface might produce problems. A slicing defined by the Hamilton-Jacobi structure would be naturally associated with partonic orbits.

4. What about Poincare symmetries? They would act on the center of mass coordinates of causal diamonds (CDs) as found already earlier [L56]. CDs form the "spine" of WCW, which can be regarded as fiber space with fiber for a given CD containing as a fiber the space-time surfaces inside it.

The super-symmetric counterparts of holomorphic charges for the modified Dirac action and bilinear in fermionic oscillator operators associated with the second quantization of free spinor fields in H, define gamma matrices of WCW. Their anticommutators define the Kähler metric of WCW. There is no need to calculate either the action defining the classical Kähler action defining the Kähler function or its derivatives with respect to WCW complex coordinates and their conjugates. What is important is that this makes it possible to speak about WCW metric also for number theoretical discretization of WCW with space-time surfaces replaced with their number theoretic discretizations.

7.2.2 Could generalized holomorphy allow to sharpen the existing views?

This picture is rather speculative, allows several variants, and is not proven. There is now however a rather convincing ansatz for the general form of preferred extremals. Could it help to make the picture more precise?

1. As explained, the explicit solution of field equations in terms of the generalized holomorphy is now known. The solution ansatz is independent of action as long it is general coordinate invariance depending only on the induced geometric structures.

Space-time surfaces would be minimal surfaces apart from lower-dimensional singular surfaces at which the field equations involve the entire action. Only the singularities, classical charges and positions of topological interaction vertices depend on the choice of the action [L51]. Kähler action plus volume term is the choice of action forced by twistor lift making the choice of H unique.

2. The universality has a very intriguing implication. One can assign to any action of this kind conserved Noether currents and their fermionic counterparts (also super counterparts). One would have a huge algebra of conserved currents characterizing the space-time geometry. The corresponding charges can be made conserved by suitably modifying the form of holomorphic functions of the ansatz and therefore the time derivatives $\partial_t h^k$ at the 3-D end of space-time surface at the boundary CD. This need not be the case for all deformations of partonic orbits. In any case, the 3-D holographic data seem to be dual as the strong form of holography suggests. The discussion of the symplectic symmetries leads to the conclusion that they give rise to conserved charges at the partonic 3-surfaces obeying Chern-Simons-Kähler dynamics, which is non-deterministic.

- 3. Hamilton-Jacobi structures emerge naturally as generalized conformal structures of spacetime surfaces and M^4 [L53]. This inspires a proposal for a generalization of modular invariance and of moduli spaces as subspaces of Teichmüller spaces.
- 4. One can assign to holomorphy conserved Noether charges. The conservation reduces to the algebraic conditions satisfied for the same reason as field equations, i.e. the conservation conditions involving contractions of complex tensors of type (1,1) with tensors of type (2,0) and (0,2). The charges have the same form as Noether charges but it is not completely clear whether the action remains invariant under these transformations. This point is non-trivial since Noether theorem says that invariance of the action implies the existence of conserved charges but not vice versa. Could TGD represent a situation in which the equivalence between symmetries of action and conservation laws fails?

Also string models have conformal symmetries but in this case 2-D area form suffers conformal scaling. Also the fact that holomorphic ansatz is satisfied for such a large class of actions apart from singularities suggests that the action is not invariant.

5. The action should define Kähler function for WCW identified as the space of Bohr orbits. WCW Kähler metric is defined in terms of the second derivatives of the Kähler action of type (1,1) with respect to complex coordinates of WCW. Does the invariance of the action under holomorphies imply a trivial Kähler metric and constant Kähler function?

Here one must be very cautious since by holography the variations of the space-time surface are induced by those of 3-surface defining holographic data so that the entire space-time surface is modified and the action can change. The presence of singularities, analogous to poles and cuts of an analytic function and representing particles, suggests that the action represents the interactions of particles and must change. Therefore the action might not be invariant under holomorphies. The parameters characterizing the singularities should affect the value of the action just as the positions of these singularities in 2-D electrostatistics affect the Coulomb energy.

Generalized conformal charges and supercharges define a generalization of Super Virasoro algebra of string models. Also Kac-Moody algebra assignable to the isometries of $\delta M_+^4 \times CP_2$ and light H generalizes trivially.

6. An absolutely essential point is that generalized holomorphisms are *not* symmetries of Kähler function since otherwise Kähler metric involving second derivatives of type (1,1) with respect to complex coordinates of WCW is non-trivial if defined by these symmetry generators as differential operators. If Kähler function is equal to Kähler action, as it seems, Kähler action cannot be invariant under generalized holomorphies.

Noether's theorem states that the invariance of the action under a symmetry implies the conservation of corresponding charge but does *not* claim that the existence of conserved Noether currents implies invariance of the action. Since Noether currents are conserved now, one would have a concrete example about the situation in which the inverse of Noether's theorem does not hold true. In a string model based on area action, conformal transformations of complex string coordinates give rise to conserved Noether currents as one easily checks. The area element defined by the induced metric suffers a conformal scaling so that the action is not invariant in this case.

There are several questions to be answered. Could also the symplectic symmetries act as isometries of WCW geometry? Could symplectic transformations act on 3-D holographic data without any continuation to the space-time interior and allow to assign conserved quantum charges with the 3-D data? Holographic generators act on 4-D space-time surfaces and can be associated with the boundary data at the space-like 3-surfaces at the boundaries of CD (at least). Could symplectomorphisms and generalized holomorphisms define algebras, which by holography are dual in some sense? This is possible since the quantum realizations of both algebras rely on second quantized free Dirac fields in H.

7.3 The twistor space of $H = M^4 \times CP_2$ allows Lagrangian 6-surfaces: what does this mean physically?

I received from Tuomas Sorakivi a link to the article "A note on Lagrangian submanifolds of twistor spaces and their relation to superminimal surfaces" [L64] (see this). The author of the article is Reinier Storm from Belgium.

The abstract of the article tells roughly what it is about.

In this paper a bijective correspondence between superminimal surfaces of an oriented Riemannian 4-manifold and particular Lagrangian submanifolds of the twistor space over the 4manifold is proven. More explicitly, for every superminimal surface a submanifold of the twistor space is constructed which is Lagrangian for all the natural almost Hermitian structures on the twistor space. The twistor fibration restricted to the constructed Lagrangian gives a circle bundle over the superminimal surface. Conversely, if a submanifold of the twistor space is Lagrangian for all the natural almost Hermitian structures, then the Lagrangian projects to a superminimal surface and is contained in the Lagrangian constructed from this surface. In particular this produces many Lagrangian submanifolds of the twistor spaces and with respect to both the Kähler structure as well as the nearly Kähler structure. Moreover, it is shown that these Lagrangian submanifolds.

The article examines 2-D minimal surfaces X^2 in the 4-D space X^4 assumed to have twistor space. From superminimality which looks somewhat peculiar assumption, it follows that in the twistor space of X^4 (assuming that it exists) there is a Lagrangian surface, which is also a minimal surface. Superminimality means that the normal spaces of the 2-surface form a 1-D curve in the space of all normal spaces, which for the Euclidian signature is the 4-D Grassmannian $SO(4)/SO(2) \times SO(2) = S^2 \times S^2$ ($SO(1,3)/SO(1,1) \times SO(2)$ for M^4). Superminimal surface is therefore highly flattened. Of course, already the minimal surface property favours flatness. It is interesting to examine the generalization of the result to TGD because the interpretation for Lagrange manifolds, which are vacuum extremals for the Kähler action with a vanishing induced symplectic form, has remained open. Certainly, they do not fulfill the holomorphy=holography assumption, i.e. they are not surfaces for which the generalized complex structure in H induces a corresponding structure at 4-surface.

Superminimal surfaces look like the opposite of holomorphic minimal surfaces (this turned out to be an illusion!). In TGD, they give a huge vacuum degeneracy and non-determinism for the pure Kähler action, which has turned out to be mathematically undesirable. The cosmological constant Λ , which follows from twistoralization, was thought to correct the situation.

I had not however notice that the Kähler action, whose existence for $T(H) = T(M^4) \times T(CP_2)$ fixes the choice of H, gives a huge number of 6-D Lagrangian manifolds! Are they consistent with dimensional reduction, so that they could be interpreted as induced twistor structures? Can a complex structure be attached to them? Certainly not as an induced complex structure. Does the Lagrangian problem of Kähler action make a comeback? Furthermore, should one extend the very promising looking holography=holomorphy picture by allowing also Lagrangian 6-surfaces T(H)?

Do the Lagrangian surfaces of T(H) have a physical interpretation, most naturally as vacuums? The volume term of the 4-D action characterized by the cosmological constant Λ does not allow vacuum extremals unless Λ vanishes. For the twistor lift Λ is however dynamic and can vanish! Do Lagrangian 6-surfaces in T(H) correspond to 4-D minimal surfaces in H, which are vacuums and have a vanishing $\Lambda = 0$? Would even the original formulation of TGD be an exact part of the theory and not just a long-length-scale limit? And does one really avoid the original problem due to the huge non-determinism spoiling holography!

The question is whether the result presented in the article could generalize to the TGD framework even though the super-minimality assumption does not seem physically natural at first?

7.3.1 Lagrangian surfaces in the twistor space of $H = M^4 \times CP_2$

Let us consider the 12-D twistor space $T(H) = T(M^4) \times T(CP_2)$ and its 6-D Lagrangian surfaces having a local decomposition $X^6 = X^4 \times S^2$. Assume a twistor lift with Kähler action on T(H). It exists only for $H = M^4 \times CP_2$ [L12, L32].

Let us first forget the requirement that these Lagrangian surfaces correspond to minimal

surfaces in H. Consider the situation in which there is no generalized Kähler and symplectic structure in M^4 .

One can actually identify Lagrangian surfaces in 12-D twistor space T(H).

- 1. Since $X^6 = X^4 \times S^2$ is Lagrangian, the symplectic form for it must vanish. This is also true in S^2 . Fibers S^2 together with $T(M^4)$ and $T(CP_2)$ are identified by an orientation-changing isometry. The induced Kähler form S^2 in the subset $X^6 = X^4 \times S^2$ is zero as the *sum* of these two contributions of different signs. If this sum appears in the 6-D Kähler action, its contribution to the 6-D Kähler action vanishes. A vanishes because the S^2 contribution to the 4-D action vanishes.
- 2. The 6-D Kähler action reduces in X^4 to the 4-D Kähler action plus, which was the original guess for the 4-D action. The problem is that in its original form, involving only CP_2 Kähler form, it involves a huge vacuum degeneracy. The CP_2 projection is a Lagrangian surface or its subset but the dynamics of M^4 projection is essentially arbitrary, in particular with respect to time. One obtains a huge number of different vacuum extremals. Since the time evolution is non-deterministic, the holography, and of course holography=holomorphy principle, is lost. This option is not physically acceptable.

How the situation changes when also M^4 has a generalized Kähler form that the twistor space picture strongly suggests, and actually requires.

1. Now the Lagrangian surfaces would be products $X^2 \times Y^2$, where X^2 and Y^2 are the Lagrangian surfaces of M^4 and CP_2 . The M^4 projections of these objects look like string world sheets and in their basic state are vacuums.

Furthermore, the situation is deterministic! The point is that X^2 is Lagrangian and highly fixed as such. In the previous case much more general surface M^4 projection, even 4-D, was Lagrangian. There is no loss of holography! Neither is the holography=holomorphy principle lost: by their 2-D character X^2 and Y^2 have a holomorphic structure.

What is important is that these Lagrangian 4-surfaces of H are obtained also when Λ is non-vanishing. In this case they must be minimal surfaces. Physically this option means that one has Lagrangian strings.

2. For $\Lambda = 0$, the symplectic transformations of H produce new vacuum surfaces. If they are allowed, one might talk of symplectic phase. J = 0 phase gives rise to both classical and fermionic vacuum since the modified gamma matries vanish since they are propertional to vanishing canonical momentum currents. So that Lagrangian phase does not contribute to physics for $\Lambda = 0$. There are however non-vacuum extremals for which the induced Kähler field is non-vanishing (having induced complex structure).

For $\Lambda \neq 0$ Lagrangian surfaces which are non-vacuum extermals and only isometries are allowed as symmetries. One can say that symplectic symmetr breaks down to isometries. Irrespective of the value of Λ , the second phase with a induced complex structure would be present and give rise to color interactions and hadrons and probably also elementary particles. The interpretation of Lagrangian surfaces, which are string like entities, remains open.

3. In the Lagrangian phase induced Kähler form J and the induced color gauge fields vanish and it does not involve monopole fluxes. This phase might be called Maxwell phase. For $\Lambda \neq 0$ one would have two kinds of non-vacuum string like objects with string tension to which Λ contributes.

Could the Lagrangian phase for $\Lambda \neq 0$ correspond to the Coulomb phase as the perturbative phase of the gauge theories, while the monopole flux tubes (large h_{eff} and dark matter) would correspond to the non-perturbative phase in which magnetic monopole fluxes are present? If so, there would be an analogy with the electric-magnetic duality of gauge theories although the two phases does not look like two equivalent descriptions of one and the same thing unless one restricts the consideration to fermions.

Can Lagrangian 4-surfaces be minimal surfaces?

I have not yet considered the question whether the Lagrangian surfaces can be minimal surfaces. For non-vanishing Λ they must be such but for $\Lambda = 0$ this need not be the case. One can of course ask whether this does matter at all for $\Lambda = 0$. In this case, one has only vacuum extremals and the modified gamma matrices are proportional to the canonical momentum currents, which vanish. Both bosonic and fermionic dynamics are trivial for $\Lambda = 0$. Therefore $\Lambda = 0$ does not give any physics.

In the theorem the minimal Lagrangian surfaces were superminimal surfaces. For superminimal surfaces, a unit vector in the normal direction defines a very specific curve in normal space.

For a non-vanishing cosmological constant, the field equations for the Kähler action do not force the Lagrangian surfaces to be minimal surfaces. For $\Lambda \neq 0$ there exists a lot of minimal Lagrangian surfaces.

Lagrangian minimal surfaces in CP_2

Consider first the Lagrangian minimal surfaces in CP_2

- 1. In CP_2 , a homologically trivial geodesic sphere is a minimal surface. Note that the geodesic spheres obtained by isometries are regarded here as equivalent. Also a g = 1 minimal Lagrangian surface (Clifford torus) in CP_2 is known.
- 2. There are many other minimal Lagrangian surfaces and second order partial differential equations for both Lagrangian and minimal Lagrangian surfaces are known (see this). In the article "A new look at equivariant minimal Lagrangian surfaces in CP_2 by Dorfmeister and Ma [A38] Lagrangian minimal surfaces in CP_2 are discussed and general partial differential equations for them are deduced.
 - (a) An essential role is played by the used of complex coordinates in which the induced metric of X^2 is of form $ds^2 = e^u dz d\overline{z}$ and X^2 corresponds to immersion f.
 - (b) The Lagrangian property makes it possible the lift of f and to an immersion defined to unit sphere $S^5 \subset C^3$ and therefore of X^2 to a surface in $S^5 \subset C^3$ defined by a complex triplet F. This allows to combine F, F_z and $F_{\overline{z}}$ to an orthogonal Hermitian tripet which can be can be replaced with a orthonormalized triplet $\mathcal{F} = (F, e^{-u/2}F_z, e^{-u/2}F_{\overline{z}})$.
 - (c) At the next step minimal surface property is introduced. It translation to statement that

$$\mathcal{F}_z = \mathcal{F}\mathcal{U} \ , \ \mathcal{F}_{ar{z}} = \mathcal{F}\mathcal{N} \ .$$

Here one has

$$\mathcal{U} = \begin{pmatrix} u_z/2 & 0 & e^u \\ e^{-u}\psi & -u_z/2 & 0 \\ 0 & -e^u/2 & 0 \end{pmatrix}$$
$$\mathcal{N} = \mathcal{U}^{\dagger}$$

Here ψdz^3 is so called Hopf differential with ψ given by

$$\psi = F_{zz}\overline{F_{\overline{z}}}$$

Clearly, \mathcal{U} is the negative of the hermitian conjugate of \mathcal{N} . One can say that complex differentiation corresponds to the action of SU(3) Lie algebra generator so that \mathcal{F} defines an element of SU(3) loop group at X^2 .

(d) The condition of integrability $(\mathcal{F}_z)_{\overline{z}} = (\mathcal{F}_{\overline{z}})_z$ gives

$$\mathcal{U}_{\overline{z}} = -\mathcal{N}_z$$
 .

and the final equations

$$u_{z\bar{z}} = e^{-2u} |\psi|^2 - e^u$$
, $\psi_{\overline{z}} = 0$.

The Hopf differential is therefore a holomorphic function.

Since any stable stable minimal submanifold in CP_n is a complex submanifold, the Lagrangian minimal surfaces cannot be stable under general variations.

Lagrangian minimal surfaces in M^4

Consider next the situation in M^4 .

- 1. In M^4 , the plane M^2 is an example of a minimal surface, which is a Lagrangian surface. Are there others? Could Hamilton-Jacobi structures [L53] that also involve the symplectic form and generalized Kähler structure (more precisely, their generalizations) define Lagrangian surfaces in M^4 ?
- 2. The Lagrangian surfaces, and as a special case Lagrangian minimal surfaces in \mathbb{R}^4 are discussed in [A73]. The result of the article can be phrased as follows.

Let L be a simply connected domain in C. Then for any smooth conformal Lagrangian immersion $f: L \to R^4$, there exist smooth functions $\beta: L \to R/2\pi Z$, which is the Lagrangian angle, and $s_1, s_2: L \to C$, not simultaneously vanishing, that satisfy the Dirac-type equation

$$\left(\begin{array}{cc} 0 & \partial_z \\ -\partial_{\overline{z}} & 0 \end{array}\right) \left(\begin{array}{c} s_1 \\ \overline{s}_2 \end{array}\right) = \left(\begin{array}{cc} \overline{U} & 0 \\ 0 & -U \end{array}\right) \left(\begin{array}{c} s_1 \\ \overline{s}_2 \end{array}\right)$$

with complex potential $U = \partial_z \beta/2$. Conversely, given β and any solution (s_1, s_2) to the Dirac equation satisfying $(|s_1|^2 + |s_2|^2 \ge 0)$ gives rise to a conformal Lagrangian immersion given by

$$f(z) = Re\left[\int^{z} exp(\beta J/2) \begin{pmatrix} s_{1} \\ s_{2} \\ -is_{1} \\ is_{2} \end{pmatrix}\right] , \quad J = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Here the 4×4 matrix J defines the standard symplectic structure.

- 3. When the Lagrange angle is constant, one obtains minimal Lagrangian immersion. Note that this in this case one has free massless Dirac equation. This suggests quantum classical correspondence in which the solutions of massless Dirac equation in M^4 correspond to Lagrangian minimal surfaces.
- 4. This solution is defined for Euclidian E^4 rather than M^4 but the analytic continuation to M^4 case should be straightforward. This requires an appropriate modification of J. In TGD one must consider the possibility, that Hamilton-Jacobi structures defines large number of non-quivalent Kähler- and symplectic structures for M^4 . The naive guess is that J in the exponential is replaced with the matrix $J_{kl}\sigma^{kl}$ in order to obtain a more general solution.

In the case considered now, the Lagrangian surfaces in H would be products $X^2 \times Y^2$. Interestingly, in the 2-D case the induced metric always defines a holomorphic structure. Now, however, this holomorphic structure would not be the same as the one related to the holomorphic ansatz: it is induced from H.

So What?

These findings raise several questions related to the detailed understanding of TGD. Should one allow only non-vanishing values of Λ ? This would allow minimal Langrangian surfaces $X^2 \times Y^2$ besides the holomorphic ansatz. The holomorphic structure due to the 2-dimensionality of X^2 and Y^2 means that holography=holomorphy principle generalizes.

If one allows $\Lambda = 0$, all Lagrangian surfaces $X^2 \times Y^2$ are allowed but also would have a holomorphic structure due to the 2-dimensionality of X^2 and Y^2 so that holography=holomorphy principle would generalize also now! Minimal surface property is obtained as a special case. Classically the extremals correspond to a vacuum sector and also in the fermionic sector modified Dirac equation is trivial. Therefore there is no physics involved.

Minimal Lagrangian surfaces are favored by the physical interpretation in terms of a geometric analog of the field particle duality. The orbit of a particle as a geodesic line (minimal 1-surface) generalizes to a minimal 4-surface and the field equations inside this surface generalizes massless field equations.

7.4 Modified Dirac equation and the holography=holomorphy hypothesis

The understanding of the modified equation as a generalization of the massless Dirac equation for the induced spinors of the space-time surface X^4 [K84, ?] is far from complete. It is however clear that the modified Dirac equation is necessary [L51] and its failure at singularities, analogous to the failure of minimal surface property at them, leads to an identification of fundamental interaction vertices as 2-vertices for the creation of fermion pair in the induced classical electroweak gauge fields.

These singularities are lower-dimensional surfaces are related to the 4-D exotic diffeomorphic structures [A76, A82] and are discussed from the point of view of TGD in [L47]. They can be interpreted as defects of the standard diffeomorphic structure and mean that in the TGD framework particle creation is possible only in dimension D = 4.

A fermion-antifermion pair as a topological object can be said to be created at these singularities. The creation of particles, in the sense that the fermion and antifermion numbers (boson are identified as fermion-antifermion bound states in TGD) are not preserved separately, is only possible in dimension 4, where exotic differentiable structures are possible.

Two problems should be solved.

- 1. It is necessary to find out whether the modified Dirac equation follows from the generalized holomorphy alone. The dynamics of the space-time surface is trivialized into the dynamics of the minimal surface thanks to the generalized holomorphy and is universal in the sense that the details of the action are only visible at singularities which define the topological particle vertices. Could holomorphy solve also the modified Dirac equation? The modified gamma matrices depend on the action: could the modified Dirac equation fix the modified gamma matrices and thus also the action or does not universality hold true also for the modified Dirac action?
 - (a) Let us consider Dirac's equation in M^2 as a simplified example. Denote the light like coordinates (u, v) by (z, \overline{z}) . The massless Dirac equation reduces to an algebraic condition if the modes are proportional to z^n or \overline{z}^n . $\gamma^z \partial_z resp. \gamma^{\overline{z}} \partial_{\overline{z}}$ annihilates such a mode if $\gamma^z resp. \gamma^{\overline{z}}$ annihilates the mode.
 - (b) These conditions must be generalized to the case of a 4-D space-time surface X^4 . Now the complex and Kähler structure are 4-dimensional and holomorphy generalizes. γ^z is generalized to modified gammas Γ^{z_i} , determined by the action principle, which is general coordinate invariant and constructible in terms of the induced geometry. Modified gamma matrices $\Gamma^\alpha = \gamma^k T_k^\alpha$, $T_k^\alpha = \partial L / \partial (\partial_\alpha h^k)$ are contractions of the gamma matrices of H with the canonical impulse currents T_k^α determined by the action density L.

Irrespective of action, field equations for the space-time surface reduce to the equations of a minimal surface, and are solved by the generalized holomorphy [L58]. The lowerdimensional singularities, at which the minimal surface equations fail, correspond to defects of the standard diffeomorphic structure and are analogs of poles and cuts to analytic functions [L47].

2. The induction of the second quantized spinor field of H on the space-time surface means only the restriction of the induced spinor field to X^4 . This determines the fermionic propagators as H-propagators restricted to X^4 . The induced spinor field can be expressed as a superposition of the modes associated with X^4 . The modes should satisfy the modified Dirac equation, which should reduce by the generalized holomorphy to purely algebraic conditions as in the 2-D case. Is this possible without additional conditions that might fix the action principle? Or is this possible only at lower-dimensional surfaces such as string world sheets?

7.4.1 How to meet the challenges?

This section begins with an optimistic view of the solution of the problems followed by a critical discussion and detailed proposal for how the generalized holography would solve the modified Dirac equation.

Optimistic view of how holomorphy solves the modified Dirac equation

Consider first the notations: the coordinates for the 4-surface X^4 are the light-like coordinate pair (u, v) and the complex coordinate pair (z, \overline{z}) . To simplify the notation, we take the notation $(u, v) \equiv (z_1, \overline{z_1})$ for the light-like coordinate pair (u, v), so that the coordinates of the space-time surface can be denoted by (z_1, z_2) and $(\overline{z_1}, \overline{z_2})$. As far as algebra is considered, one can consider E^4 instead of M^4 , from which Minkowski's version is obtained by continuing analytically.

1. Let us optimistically assume that the H spinor modes can be expressed as superpositions of conformal X^4 spinor modes, which in their simplest form are products of powers of two "complex" variables $z_i^{n_i}$ or $\overline{z}_i^{n_i}$. Only four different types of modes: $z_1^{n_1} z_2^{n_2}$, $\overline{z}_1^{n_1} \overline{z}_2^{n_2}$, $z_1^{n_1} \overline{z}_2^{n_2}$ and $\overline{z}_1^{n_1} \overline{z}_2^{n_2}$ should appear.

The spinor modes of H are plane waves if M^4 has no Kähler structure. Could this mean that the modes can be expressed as products of exponentials $exp(ik_iz_i), exp(ik_i\overline{z}_i), i = 1, 2$. More general analytical functions and their complex conjugates can also be thought of as building blocks of modes. In some cases, the complex coordinate of CP_2 comes into question as well as the complex coordinate of the homologous geodesic sphere.

2. The fermionic oscillator operators associated with X^4 are linear combinations of contributions from different H modes. They satisfy anticommutation relations. It is not clear whether the creation (annihilation) operators for X^4 spinor modes are sums of only creation (annihilation) operators for H spinor modes or wheter for instance sums of the fermion creation operator and the antifermion annihilation operator apppear.

Objections

Consider now the objections against the optimistic view.

- 1. Also non-holomorphic modes involving $z_i^{n_1} \overline{z_i}^{n_2}$ could be present and in this case both Γ^{z_i} and $\Gamma^{\overline{z}_i}$ should annihilate the mode. This is not possible unless the metric is degenerate.
- 2. The spinor modes of CP_2 could make the 4-D holomorphy impossible in the proposed sense. The spinor modes of CP_2 are not holomorphic with respect to the complex coordinates of CP_2 and only the covariantly constant right-handed neutrino satisfies massless Dirac equation in CP_2 . Could this imply the presence of X^4 spinor modes, which are not holomorphic (antiholomorphic) with respect to the given coordinate z_i (\overline{z}_i) so that the modes involving $z_i^m \overline{z}_i^n$ are possible?

3. The general plane wave basis for M^4 without Kähler form in the transversal degrees of freedom is not consistent with the conformal invariance. Here the sum over this kind of modes should give vanishing non-holomorphic modes.

Note that the Kähler structure for M^4 adds to the M^4 Dirac equation of H a coupling to the Kähler gauge potential of M^4 and implies a transversal mass squared so that the transversal basis does not consist of plane waves but is an analog of harmonic oscillator basis. Also now the failure of holomorphy takes place.

4. For the massive modes of CP_2 spinors, massivation takes place in M^4 degrees of freedom. This would suggest that the plane waves in longitudinal M^4 degrees of freedom cannot be massless.

However, $M^8 - H$ duality implies an important difference between TGD and ordinary field theories. The choice of $M^4 \subset M^8$ is not unique and since particles are massless at the level of H one can always choose $M^4 \supset CD$ in such a way that the momentum has only M^4 component and is massless in M^4 sense. Could the holomorphy at the space-time level be seen as the $M^8 - H$ dual of this at the space-time level?

How could one overcome the objections?

One can consider two ways to overcome these objections.

- 1. The sum of the contributions of products of M^4 plane waves and CP_2 spinor harmonics is involved and could simply vanish for the non-holomorphic modes. This would look like a mathematical miracle transforming the symmetry under the isometries of H to a conformal symmetry at the level of X^4 . This mechanism would not depend on the choice of action although the modified Dirac equation might hold only for a unique action.
- 2. The 4-D conformal invariance for fermions could degenerate to its 2-D version so that only the modified Dirac equation at 2-D string world sheets would allow conformal modes. Indeed, a longstanding question has been whether this is the case for physical reasons. The restriction of the induced spinors to 2-D string world sheets is consistent with the recent view of scattering amplitudes in which the boundaries of string world sheets at the light-like orbits of partonic 2-surfaces, which are metrically 2-dimensional, carry point-like fermions. If this is really true, then the 4-D conformal invariance would effectively reduce to ordinary conformal invariance.

Solution of the modified Dirac equation assuming the generalized holomorphy

Consider now the solution of the modified Dirac equation assuming that only holomorphic modes are present.

1. The modified Dirac equation reads a

$$(\Gamma^{z_i} D_{z_i} + \Gamma^{\overline{z}_i} D_{\overline{z}_i})\Psi = 0$$
.

 Γ matrices are modified gamma matrices. D_{z_i} denotes covariant derivative. Generalized conformal invariance produces the equations of the minimal surface almost independently of the action. It is however not clear whether in the modified Dirac equation the modified gammas can be replaced by the induced gamma matrices $\Gamma^{\alpha} = \gamma_k \partial_{\alpha} h^k$ (action as 4-volume). At least at the singularities that determine the vertices, this does not apply [L51].

2. The solution of the modified Dirac equation should reduce to the generalized holomorphy. This is achieved if one of the operators $D_{\overline{z}_i}$, D_{z_i} , $\Gamma^{\overline{z}_i}$, $\Gamma^{\overline{z}_i}$ annihilates the given mode on the space-time surface. It follows that $\Gamma^{z_i}D_{z_i}$ and $\Gamma^{\overline{z}_i}D_{\overline{z}_i}$ for each index separately annihilate the spinor modes. Either Γ^{z_i} ($\Gamma^{\overline{z}_i}$) or D_{z_i} ($D_{\overline{z}_i}$) would do this.

Two gamma matrices in the set $\{\Gamma^{z_i}, \Gamma^{\overline{z}_i} | i = 1, 2\}$ must eliminate a given X^4 spinor mode. Since modified gammas depend on the action, this condition might fix the action.

- 3. There are two cases to consider. The generalized complex structure of the 4-surface X^4 is induced from that of H [L58] or if the space-time surface is a product of Lagrange manifolds $X^2 \times Y^2 \subset M^4 \times CP_2$, is induced from the complex structures of the 2-D factors associated with their induced metrics [L64].
- 4. I have proposed that M^4 allows several generalized Kähler structures, which I have called Hamilton-Jacobi structures [L53]. The 4-surface could fix the Hamilton-Jacobi structure from the condition that the modified Dirac equation is valid. Since the modified gammas depend on the action, the annihilation conditions for the modified gamma matrices might fix the choice of the action, and this choice could correlate with the generalized complex structure of X^4 .

To sum up, the above considerations are only an attempt to clarify the situation and it is not at all obvious that the generalized holomorphy trivializes the solution of the modified Dirac action.

7.4.2 Fermionic oscillator operators in X^4 as fermionic supersymmetry generators acting as gamma matrices of the "world of classical worlds" (WCW)

The challenge is to construct the fermionic oscillator operators in X^4 assignable to the modes of the induced spinor field in X^4 .

- 1. By holography and the experience with quantum field theories one expects that the oscillator operators are expressible in terms of data at t = constant surface and do not depend on the value of t chosen. Therefore the X^4 oscillator operators should be conserved quantities and the identification as supercharges is natural. These supercharges in turn would define the gamma matrices of "world of classical worlds" (WCW).
- 2. Modified Dirac equation indeed is constructed so that it has supersymmetry in the sense that conserved fermionic Noether charges associated with the isometries of H and generalized conformal transformations of H appearing as symmetries in the holography= holomorphy ansatz gave super counterparts.

If the conserved Noether current associated with this kind of symmetry is of form $\overline{\Psi}O^{\alpha}\Psi$, the corresponding conserved supercurrent associated with the c-number valued mode Ψ_n of the modified Dirac equation is $\overline{\Psi}_n O\Psi$. The form of O can be deduced from the change of the modified Dirac action under the symmetry.

The Noether currents and their super counterparts associated with the modified Dirac action

The challenge is to construct the fermionic oscillator operators in X^4 assignable to the modes of the induced spinor field in X^4 .

- 1. By holography and the experience with quantum field theories one expects that the oscillator operators are expressible in terms of data at t = constant surface and do not depend on the value of t chosen. Therefore the X^4 oscillator operators should be conserved quantities and the identification as supercharges is natural. These supercharges in turn would define the gamma matrices of "world of classical worlds" (WCW).
- 2. Modified Dirac equation indeed is constructed so that it has supersymmetry in the sense that conserved fermionic Noether charges associated with the isometries of H and generalized conformal transformations of H appearing as symmetries in the holography= holomorphy ansatz gave super counterparts.

If the conserved Noether current associated with this kind of symmetry is of form $\overline{\Psi}O^{\alpha}\Psi$, the corresponding conserved supercurrent associated with the c-number valued mode Ψ_n of the modified Dirac equation is $\overline{\Psi}_n O\Psi$. The form of O can be deduced from the change of the modified Dirac action under the symmetry. 3. The action density associated with the modified Dirac action is given by

$$L_{D} = \overline{\Psi} D \Psi \sqrt{g} , \quad D = D^{\rightarrow} - D^{\leftarrow} ,$$

$$D^{\rightarrow} = \Gamma^{\alpha} D_{\alpha}^{\rightarrow} \qquad D^{\leftarrow} = D_{\alpha}^{\leftarrow} \Gamma^{\alpha} ,$$

$$\Gamma^{\alpha} = \gamma^{k} T_{k}^{\alpha} \qquad T_{k}^{\alpha} = \frac{\partial}{\partial (\partial_{\alpha} h^{k})} L_{B} .$$
(7.4.1)

Here L_B denotes the bosonic action density defining space-time surfaces as preferred extremals satisfying holography (analogs of Bohr orbits). The replacement of the ordinary induced gamma matrices as projections of the gamma matrices of H with the modified gamma matrices guarantees the hermicity of the modified Dirac operator and implies supersymmetry so that the conserved Noether currents for L_D are accompanied by the fermionic super counterparts.

4. The conserved Noether current associated with the symmetry $h^k \to h^k + \epsilon j^k$ can be deduced from the variation of L_D

$$\begin{split} J_{j}^{\alpha} &= (X_{1}^{\alpha} + X_{2}^{\alpha} + X_{3}^{\alpha} + X_{4}^{\alpha})\sqrt{g_{4}} \quad , \qquad X_{1}^{\alpha} &= d_{\epsilon}\delta\overline{\Psi}\Gamma^{\alpha}\Psi - \overline{\Psi}\Gamma^{\alpha}d_{\epsilon}\delta\Psi \quad , \\ X_{2}^{\alpha} &= \overline{\Psi}(j_{A}^{k}T_{kl}^{\alpha\beta}(\gamma^{l}D_{\beta}^{\rightarrow} - D^{\leftarrow}\gamma^{l})T_{kl}^{\alpha\beta}j_{A}^{k}\Psi \quad , \quad T_{kl}^{\alpha\beta} &= \frac{\partial}{\partial(\partial_{\alpha}h^{k})}T_{l}^{\beta} &= \frac{\partial}{\partial(\partial_{\alpha}h^{k})}\frac{\partial}{\partial(\partial_{\beta}h^{l})}L_{R}(7.4.2) \\ X_{3}^{\alpha} &= 2\overline{\Psi}\Gamma^{\alpha}A_{k}j_{A}^{k}\Psi \quad , \qquad X_{4}^{\alpha} &= L_{D}g^{\alpha\beta}\partial_{\beta}h^{k}h_{kl}j_{A}^{l} \quad . \end{split}$$

5. The super current associated with J_j^{α} is obtained by replacing in the above currents either $\overline{\Psi}$ (or Ψ) with its c-number valued mode $\overline{\Psi}_n$ (Ψ_n).

 $\Delta \Psi$ and $\delta \overline{\Psi}$ can be deduced from the action of the symmetry transformation on spin degrees of freedom. For instance, rotations and Lorentz transformations induce spin rotation. Only the operator D has a direct dependence on h^k and $\partial_{\alpha} h^k$.

6. The conserved supercharges

$$Q_j = \int_{X^3} X^3 J_j d^3 x \tag{7.4.3}$$

defines the fermionic oscillator operators for X^4 . Note that J_j contains the $\sqrt{g_4}$ factor defining the integration measures. By general coordinate invariance and conservation of these charges it is enough that X^3 is deformable to a section of causal diamond with constant M^4 time or light-cone proper time.

associated with J_j^{α} defines a gamma matrix for WCW and a fermionic oscillator operator for the space-time surface. The oscillator operators of H spinor modes can in this way be transformed to oscillator operators of the induced spinor modes.

The modes of CP_2 Dirac operator without M^4 Kähler form have mass scale of order CP_2 mass with one exception: covariantly constant right-handed neutrino. In the presence of M^4 Kähler form also this state has mass of order CP_2 mass. Both the color quantum numbers and mass squared depend on the electroweak spin.

Unless the M^4 plane corresponds to a state, which is nearly at rest in the the rest frame of CD, its large spatial momentum implies very rapid wiggling and the contribution to the super charge as analog of Fourier component of Ψ is expected to be very small. If the state is at rest, the restriction to t = constant surface guarantees that the contribution to the super charge is non-vanishing and does not depend on time t.
in the CSK action would allow nonvanishing light-like M^4 momenta.

7.4.3 About the relationship between supercharges and spinor modes of H

What can one say about the behavior of the modes of the induced spinor field? The most natural choice for the basis for holomorphic modes is such that it is of the same form as the planewave modes for H. Therefore the products of imaginary exponentials $exp(ih_i z_i)$ of "complex" coordinates $\tau_i = exp(z_i)$ and their complex conjugates assignable to the Hamilton-Jacobi structure looks like a natural choice.

The conformal weights h_i could be analogous to conformal weights. M^4 momenta would be replaced with a pair of conformal weights h_1 and h_2 . For single conformal weight the natural interpretation is as mass squared and the challenge is to generalize this picture. Physical intuition would suggest h_i are real for the physical states whereas for "virtual" states h_i would be (possibly) complex algebraic numbers (I have talked about conformal confinement as a consequence of Galois confinement). If this is the case, there would be only 2 real conformal weights as opposed to 4 components for M^4 momenta (restricted by mass shell conditions).

The quantum numbers of H spinors are mapped to those of X^4 . Could the conformal weights h_i correspond to the contributions of M^4 and CP_2 to the 8-momentum of M^8 and be identifiable as mass squared values for M^4 and CP_2 ? One cannot however assume that the M^4 and CP_2 mass squared values of H-spinors are mapped as such to h_i .

The identification $h_1 = m^2(M^4)$ and $h_2 = m^2(CP_2)$ combined with $m^2 = h_1 - h_2 = 0$ allows only massless states. $m^2 = h_1 - h_2 \ge 0$ for the physical mass squared is more plausible. p-Adic thermodynamics would give the physical mass as a thermodynamic expectation value so that positive values of $m^2 = h_1 - h_2$ are needed.

Does the presence of two conformal weights solve the tachyon problem of p-adic mass calculations

In p-adic mass calculations one assumes that physical fermion is created by the oscillator operator of H spinor mode. To this state super-Kac-Moody - or super-symplectic generator is applied to give a state with physical color quantum numbers.

One must also assume that the ground state is tachyonic with conformal weight h = -3/2 or h = -5/2. The action of Kac-Moody-/symplectic generators would compensate for the tachyonic conformal weight and give massless states as ground states. Their thermal excitations would give the physical mass as thermal mass squared. The challenge is to understand the origin of the tachyonic conformal weight.

1. For the 4-D generalization of conformal invariance, there would be two conformal weights h_1 and h_2 associated with longitudinal and transversal degrees of freedom of M^4 Hamilton-Jacobi structure [L53]. The conformal weights correspond physically to the mass squared and the identification $m^2 = h_1 - h_2 \ge 0$ for the physical mass squared could make sense. p-Adic thermodynamics would give the physical mass as a thermodynamic expectation value so that non-negative values of $m^2 = h_1 - h_2$ are needed. This would be the space-time analog for positive values of M^4 mass squared.

Note that in the case of hadrons, longitudinal momenta of quarks are nearly massless but the transverse confinement gives rise to transversal momentum squared. The interpretation could be that the (dominating) contribution of the color magnetic body of the hadron mass makes the momentum of the state non-tachyonic.

2. In this framework, one could understand the construction of the physical states in the following way. The tachyonic ground state would correspond to a state having only the transversal contribution $-h_2$ to the mass squared and the action by Kac-Moody-/symplectic generators would add excitations with a nonvanishing h_1 and give a massless state as well as its excitations with positive mass squared. The replacement of 2-D string worlds sheets with 4-D space-time surface would solve the tachyon problem.

I have also considered an alternative approach to the tachyon problem and one can wonder if it is consistent with the proposed one.

- 1. As noticed, $M^8 H$ duality involves a selection of $M^4 \subset M_c^8$. The octonionic automorphism group G_2 generates different choices of M^4 . What could this freedom to choose $M^4 \subset M_c^8$ mean? How is it visible at the level of H? Since G_2 is an automorphism group, the states would be analogous to states differing by Lorentz boosts. Since these states are massless in M^8 , it should be possible to find a choice of $M^4 \subset M_c^8$ for which the states are massless and thus also in $M^4 \subset H$. This choice is like going to the rest frame of a moving system in special relativity. How are these two states related at the level of H?
- 2. The natural proposal is that in $M^4 \subset M_c^8$ it is always possible to transform a given state with $m^2 \ge 0$ to a state with $m^2 = 0$. In the padic mass calculations this choice corresponds to a construction of a massless state from a state which in absence of tachyons would have mass of order CP_2 mass.

The massless state would be obtained by an addition to the state of a transverse tachyonic contribution with a non-vanishing weight h_2 to give $h_1 = h_2$. The notion of mass defined as $m^2 = h_1 - h_2$ would be a relative notion like four-momentum in special relativity. Application of conformal generators would make it possible to generate states with different rest frames.

3. SO(1,7) contains G_2 as a subgroup of the rotation group $SO(6) \subset SO(1,7)$. More general transformation of SO(1,7) analogous to Lorentz boosts would not be allowed numbertheoretically. The integer valued spectrum for m^2 allows only a discrete subgroup of G_2 . In special relativity this would correspond to a discrete subgroup of the Lorentz group.

To sum up, the tachyon problem of the superstring models could be seen as the compelling reason for replacing string world sheets with 4-D space-time surfaces. The predicted two conformal weights would allow to get rid of tachyons, which also appeared in the p-adic mass calculations based on ordinary conformal invariance.

7.5 Challenging the existing view of symplectic symmetries in relation to WCW geometry

I have considered the possibility that also the symplectomorphisms of $\delta M^4 + \times CP_2$ could define WCW isometries. This actually the original proposal. One can imagine two options.

- 1. The continuation of symplectic transformations to transformations of the space-time surface from the boundary of light-cone or from the orbits partonic 2-surfaces should give rise to conserved Noether currents but it is not at all obvious whether this is the case.
- 2. One can assign conserved charges to the time evolution of the 3-D boundary data defining the holographic data: the time coordinate for the evolution would correspond to the lightlike coordinate of light-cone boundary or partonic orbit. This option I have not considered hitherto. It turns out that this option works!

The conclusion would be that generalized holomorphies give rise to conserved charges for 4-D time evolution and symplectic transformations give rise to conserved charged for 3-D time evolution associated with the holographic data.

7.5.1About extremals of Chern-Simons-Kähler action

Let us look first the general nature of the solutions to the extremization of Chern-Simons-Kähler action.

- 1. The light-likeness of the partonic orbits requires Chern-Simons action, which is equivalent to the topological action $J \wedge J$, which is total divergence and is a symplectic in variant. The field equations at the boundary cannot involve induced metric so that only induced symplectic structure remains. The 3-D holographic data at partonic orbits would extremize Cherns-Simons-Kähler action. Note that at the ends of the space-time surface about boundaries of CD one cannot pose any dynamics.
- 2. If the induced Kähler form has only the CP_2 part, the variation of Chern-Simons-Kähler form would give equations satisfied if the CP_2 projection is at most 2-dimensional and Chern-Simons action would vanish and imply that instanton number vanishes.
- 3. If the action is the sum of M^4 and CP_2 parts, the field equations in M^4 and CP_2 degrees of freedom would give the same result. If the induced Kähler form is identified as the sum of the M^4 and CP_2 parts, the equations also allow solutions for which the induced M^4 and CP_2 Kähler forms sum up to zero. This phase would involve a map identifying M^4 and CP_2 projections and force induce Kähler forms to be identical. This would force magnetic charge in M^4 and the question is whether the line connecting the tips of the CD makes non-trivial homology possible. The homology charges and the 2-D ends of the partonic orbit cancel each other so that partonic surfaces can have monopole charge.

The conditions at the partonic orbits do not pose conditions on the interior and should allow generalized holomorphy. The following considerations show that besides homology charges as Kähler magnetic fluxes also Hamiltonian fluxes are conserved in Chern-Simons-Kähler dynamics.

7.5.2Can one assign conserved charges with symplectic transformations or partonic orbits and 3-surfaces at light-cone boundary?

The geometric picture is that symplectic symmetries are Hamiltonian flows along the light-like partonic orbits generated by the projection A_t of the Kähler gauge potential in the direction of the light-like time coordinate. The physical picture is that the partonic 2-surface is a Kähler charged particle that couples to the Hamilton $H = A_t$. The Hamiltonians H_A are conserved in this time evolution and give rise to conserved Noether currents. The corresponding conserved charge is integral over the 2-surface defined by the area form defined by the induced Kähler form.

Let's examine the change of the Chern-Simons-Kähler action in a deformation that corresponds, for example, to the CP_2 symplectic transformation generated by Hamilton H_A . M^4 symplectic transformations can be treated in the same way:here however M^4 Kähler form would be involved, assumed to accompany Hamilton-Jacobi structure as a dynamically generated structure.

- 1. Instanton density for the induced Kähler form reduces to a total divergence and gives Chern-Simons-Kähler action, which is TGD analog of topological action. This action should change in infinitesimal symplectic transformations by a total divergence, which should vanish for extremals and give rise to a conserved current. The integral of the divergence gives a vanishing charge difference between the ends of the partonic orbit. If the symplectic transformations define symmetries, it should be possible to assign to each Hamiltonian H_A a conserved charge. The corresponding quantal charge would be associated with the modified Dirac action.
- 2. The conserved charge would be an integral over X^2 . The surface element is not given by the metric but by the symplectic structure, so that it is preserved in symplectic transformations. The 2-surface of the time evolution should correspond to the Hamiltonian time transformation generated by the projection $A_{\alpha} = A_k \partial_{\alpha} s^k$ of the Kähler gauge potential A_k to the direction of light-like time coordinate $x^{\alpha} \equiv t$.

3. The effect of the generator $j_A^k = J^{kl} \partial_l H_A$ on the Kähler potential A_l is given by $j_A^k \partial_k A_l$. This can be written as $\partial_k A_l = J_{kl} + \partial_l A_k$. The first term gives the desired total divergence $\partial_{\alpha} (\epsilon^{\alpha\beta\gamma} J_{\beta\gamma} H_A)$.

The second term is proportional to the term $\partial_{\alpha}H_A - \{A_{\alpha}, H\}$. Suppose that the induced Kähler form is transversal to the light-like time coordinate t, i.e. the induced Kähler form does not have components of form $J_{t\mu}$. In this kind of situation the only possible choice for α corresponds to the time coordinate t. In this situation one can perform the replacement $\partial_{\alpha}H_A - \{A_{\alpha}, H\} \rightarrow dH_A/dt - \{A_t, H\}$ This corresponds to a Hamiltonian time evolution generated by the projection A_t acting as a Hamiltonian. If this is really a Hamiltonian time evolution, one has $dH_A/dt - \{A, H\} = 0$. Because the Poisson bracket represents a commutator, the Hamiltonian time evolution equation is analogous to the vanishing of a covariant derivative of H_A along light-like curves: $\partial_t H_A + [A, H_A] = 0$. The physical interpretation is that the partonic surface develops like a particle with a Kähler charge. As a consequence the change of the action reduces to a total divergence.

An explicit expression for the conserved current $J_A^{\alpha} = H_A \epsilon^{\alpha\beta\gamma} J_{\beta\gamma}$ can be derived from the vanishing of the total divergence. Symplectic transformations on X^2 generate an infinite-dimensional symplectic algebra. The charge is given by the Hamiltonian flux $Q_A = \int H_A J_{\beta\gamma} dx^{\alpha} \wedge dx^{\beta}$.

4. If the projection of the partonic path CP_2 or M^4 is 2-D, then the light-like geodesic line corresponds to the path of the parton surface. If A_l can be chosen parallel to the surface, its projection in the direction of time disappears and one has $A_t = 0$. In the more general case, X^2 could, for example, rotate in CP_2 . In this case A_t is nonvanishing. If J is transversal (no Kähler electric field), charge conservation is obtained.

Do the above observations apply at the boundary of the light-cone?

- 1. Now the 3-surface is space-like and Chern-Simons-Kähler action makes sense. It is not necessary but emerges from the "instanton density" for the Kähler form. The symplectic transformations of $\delta M_+^4 \times CP_2$ are the symmetries. The most time evolution associated with the radial light-like coordinate would be from the tip of the light-cone boundary to the boundary of CD. Conserved charges as homological invariants defining symplectic algebra would be associated with the 2-D slices of 3-surfaces. For closed 3-surfaces the total charges from the sheets of 3-space as covering of δM_+^4 must sum up to zero.
- 2. Interestingly, the original proposal for the isometries of WCW was that the Hamiltonian fluxes assignable to M^4 and CP_2 degrees of freedom at light-like boundary act define the charges associated with the WCW isometries as symplectic transformations so that a strong form of holography would have been be realized and space-time surface would have been effectively 2-dimensional. The recent view is that these symmetries pose conditions only on the 3-D holographic data. The holographic charges would correspond to additional isometries of WCW and would be well-defined for the 3-surfaces at the light-cone boundary.

To sum up, one can imagine many options but the following picture is perhaps the simplest one and is supported by mathematical facts. The isometry algebra of $\delta M_+^4 \times CP_2$ consists of generalized conformal and KM algebras at 3-surfaces in $\delta M_+^4 \times CP_2$ and symplectic algebras at the light cone boundary and 3-D light-like partonic orbits. The latter symmetries give constraints on the 3-D holographic data. It is still unclear whether one can assign generalized conformal and Kac-Moody charges to Chern-Simons-Kähler action. The isomorphic subalgebras labelled by a positive integer and their commutators with the entire algebra would annihilate the physical states. The isomorphic subalgebras labelled by a positive integer and their commutators with the entire algebra would annihilate the physical states. These two representations would generalize the notions of inertial and gravitational mass and their equivalence would generalize the Equivalence Principle.

Objection against the idea about theoretician friendly Mother Nature

One of the key ideas behind the TGD view of dark matter is that Nature is theoretician friendly [L52]. When the coupling strength proportional to \hbar_{eff} becomes so large that perturbation se-

ries ceases to converge, a phase transition increasing the value of h_{eff} takes place so that the perturbation series converges.

One can however argue that this argument is quantum field-theoretic and does not apply in TGD since holography changes the very concept of perturbation theory. There is no path integral to worry about. Path integral is indeed such a fundamental concept that one expects it to have some approximate counterpart also in the TGD Universe. Bohr orbits are not completely deterministic: could the sum over the Bohr orbits however translate to an approximate description as a path integral at the QFT limit? The dynamics of light-like partonic orbits is indeed non-deterministic and could give rise to an analog of path integral as a finite sum.

1. The dynamics implied by Chern-Simons-Kähler action assignable to the partonic 3-surface with light-one coordinate in the role of time, is very topological in that the partonic orbits is light-like 3-surface and has 2-D CP_2 and M^4 projections unless the induced M^4 and CP_2 Kähler forms sum up to zero. The light-likeness of the projection is a very loose condition and and the sum over partonic orbits as possible representation of holographic data analogous to initial values (light-likeness!) is therefore analogous to the sum over all paths appearing as a representation of Schrödinger equation in wave mechanics.

One would have an analog of 1-D QFT. This means that the infinities of quantum field theories are absent but for a large enough coupling strength $g^2/4\pi\hbar$ the perturbation series fails to converge. The increase of h_{eff} would resolve the problem. For instance, Dirac equation in atomic physics makes unphysical predictions when the value of nucler charge is larger than $Z \sim 137$.

2. I have also considered a discrete variant of this picture motivated by the fact that the presence of the volume term in the action implies that the M^4 projection of the CP_2 type extremal is a light-like geodesic line. The light-like orbits would consist of pieces of light-like geodesics implying that the average velocity would be smaller than c: this could be seen as a correlate for massivation.

The points at which the direction of segment changes would correspond to points at which energy and momentum transfer between the partonic orbit and environment takes place. This kind of quantum number transfer might occur at least for the fermionic lines as boundaries of string world sheets. They could be described quantum mechanically as interactions with classical fields in the same way as the creation of fermion pairs as a fundamental vertex [L51]. The same universal 2-vertex would be in question.

At these points the minimal surface property would fail and the trace of the second fundamental form would not vanish but would have a delta function-like singularity. The CP_2 part of the second fundamental form has quantum numbers of Higgs so that there would be an analogy with the standard description of massivation by the Higgs mechanism. Higgs would be only where the vertices are.

3. What is intriguing, that the light-likeness of the projection of the CP_2 type extremals in M^4 leads to Virasoro conditions assignable to M^4 coordinates and this eventually led to the idea of conformal symmetries as isometries as WCW. In the case of the partonic orbits, the light-like curve would be in $M^4 \times CP_2$ but it would not be surprising if the generalization of the Virasoro conditions would emerge also now.

One can write M^4 and CP_2 coordinates for the light-like curve as Fourier expansion in powers of exp(it), where t is the light-like coordinate. This gives $h^k = \sum h_n^k exp(int)$. If the CP_2 projection of the orbits of the partonic 2-surface is geodesic circle, CP_2 metric s_{kl} is constant, the light-likeness condition $h_{kl}\partial_t h^k \partial_t h^l = 0$ gives $Re[h_{kl} \sum_m h_{n-m}^k \overline{h}_m^l] = 0$. This does not give Virasoro conditions.

The condition $d/dt(h_{kl}\partial_t h^k \partial_t h^l = 0) = 0$ however gives the standard Virasoro condition in quantization condition stating that the operator counterparts of quantities $L_n = Re[h_{kl} \sum_m (n-m)h_{n-m}^k \overline{h}_m^l]$ annihilate the physical states. What is interesting is that the latter condition also allows time-like (and even space-like) geodesics.

Could massivation mean a failure of light-likeness? For piecewise light-like geodesics the light-likeness condition would be true only inside the segments. By taking Fourier transform

one expects to obtain Virasoro conditions with a cutoff analogous to the momentum cutoff in condensed matter physics for crystals.

4. In TGD the Virasoro, Kac-Moody algebras and symplectic algebras are replaced by halfalgebras and the gauge conditions are satisfied for conformal weights which are *n*-multiples of fundamentals with with *n* larger than some minimal value. This would dramatically reduce the effects of the non-determinism and could make the sum over all paths allowed by the light-likeness manifestly finite and reduce it to a sum with a finite number of terms. This cutoff in degrees of freedom would correspond to a genuinely physical cutoff due to the finite measurement resolution coded to the number theoretical anatomy of the space-time surfaces. This cutoff is analogous to momentum cutoff and could at the space-time picture correspond to finite minimum length for the light-like segments of the orbit of the partoic 2-surface.

Boundary conditions at partonic orbits and holography

TGD reduces coupling constant evolution to a number theoretical evolution of the coupling parameters of the action identified as Kähler function for WCW. An interesting question is how the 3-D holographic data at the partonic orbits relates to the corresponding 3-D data at the ends of space-time surfaces at the boundary of CD, and how it relates to coupling constant evolution.

1. The twistor lift of TGD strongly favours 6-D Kähler action, which dimensionally reduces to Kähler action plus volume term plus topological $\int J \wedge J$ term reducing to Chern Simons-Kähler action. The coefficients of these terms are proposed to be expressible in terms of number theoretical invariants characterizing the algebraic extensions of rationals and polynomials determining the space-time surfaces by $M^8 - H$ duality.

Number theoretical coupling constant evolution would be discrete. Each extension of rationals would give rise to its own coupling parameters involving also the ramified primes characterizing the polynomials involved and identified as p-adic length scales.

2. The time evolution of the partonic orbit would be non-deterministic but subject to the lightlikeness constraint and boundary conditions guaranteeing conservation laws. The natural expectation is that the boundary/interface conditions for a given action cannot be satisfied for all partonic orbits (and other singularities). The deformation of the partonic orbit requiring that boundary conditions are satisfied, does not affect X^3 but the time derivatives $\partial_t h^k$ at X^3 are affected since the form of the holomorphic functions defining the space-time surface would change. The interpretation would be in terms of duality of the holographic data associated with the partonic orbits *resp.* X^3 .

There can of course exist deformations, which require the change of the coupling parameters of the action to satisfy the boundary conditions. One can consider an analog of renormalization group equations in which the deformation corresponds to a modification of the coupling parameters of the action, most plausibly determined by the twistor lift. Coupling parameters would label different regions of WCW and the space-time surfaces possible for two different sets of coupling parameters would define interfaces between these regions.

In order to build a more detailed view one must fix the details related to the action whose value defines the WCW Kähler function.

- 1. If Kähler action is identified as Kähler action, the identification is unique. There is however the possibility that the imaginary exponent of the instanton term or the contribution from the Euclidean region is not included in the definition of Kähler function. For instance instanton term could be interpreted as a phase of quantum state and would not contribute.
- 2. Both Minkowskian and Euclidean regions are involved and the Euclidean signature poses problems. The definition of the determinant as $\sqrt{-g_4}$ is natural in Minkowskian regions but gives an imaginary contribution in Euclidean regions. $\sqrt{|g_4|}$ is real in both regions. $i\sqrt{g_4}$ is real in Minkowskian regions but imaginary in the Euclidean regions.

There is also a problem related to the instanton term, which does not depend on the metric determinant at all. In QFT context the instanton term is imaginary and this is important

for instance in QCD in the definition of CP breaking vacuum functional. Should one include only the 4-D or possibly only Minkowskian contribution to the Kähler function imaginary coefficient for the instanton/Euclidian term would be possible?

3. Boundary conditions guaranteeing the conservation laws at the partonic orbits must be satisfied. Consider the $\sqrt{|g_4|}$ case. Charge transfer between Euclidean and Minkowskian regions. If the C-S-K term is real, also the charge transfer between partonic orbit and 4-D regions is possible. The boundary conditions at the partonic orbit fix it to a high degree and also affect the time derivatives $\partial_t h^k$ at X^3 . This option looks physically rather attractive because classical conserved charges would be real.

If the C-S-K term is imaginary it behaves like a free particle since charge exchange with Minkowskian and Euclidean regions is not possible. A possible interpretation of the possible M^4 contribution to momentum could be in terms of decay width. The symplectic charges do not however involve momentum. The imaginary contribution to momentum could therefore come only from the Euclidean region.

4. If the Euclidean contribution is imaginary, it seems that it cannot be included in the Kähler function. Since in M^8 picture the momenta of virtual fermions are in general complex, one could consider the possibility that Euclidean contribution to the momentum is imaginary and allows an interpretation as a decay width.

7.5.3 The TGD counterparts of the gauge conditions of string models

The string model picture forces to ask whether the symplectic algebras and the generalized conformal and Kac-Moody algebras could act as gauge symmetries.

- 1. In string model picture conformal invariance would suggest that the generators of the generalized conformal and KM symmetries act as gauge transformations annihilate the physical states. In the TGD framework, this does not however make sense physically. This also suggests that the components of the metric defined by supergenerators of generalized conformal and Kac Moody transformations vanish. If so, the symplectomorphisms $\delta M_+^4 \times CP_2$ localized with respect to the light-like radial coordinate acting as isometries would be needed. The half-algebras of both symplectic and conformal generators are labelled by a non-negative integer defining an analog of conformal weight so there is a fractal hierarchy of isomorphic subalgebras in both cases.
- 2. TGD forces to ask whether only subalgebras of both conformal and Kac-Moody half algebras, isomorphic to the full algebras, act as gauge algebras. This applies also to the symplectic case. Here it is essential that only the half algebra with non-negative multiples of the fundamental conformal weights is allowed. For the subalgebra annihilating the states the conformal weights would be fixed integer multiples of those for the full algebra. The gauge property would be true for all algebras involved. The remaining symmetries would be genuine dynamical symmetries of the reduced WCW and this would reflect the number theoretically realized finite measurement resolution. The reduction of degrees of freedom would also be analogous to the basic property of hyperfinite factors assumed to play a key role in thee definition of finite measurement resolution.
- 3. For strong holography, the orbits of partonic 2-surfaces and boundaries of the spacetime surface at δM_+^4 would be dual in the information theoretic sense. Either would be enough to determine the space-time surface.

7.5.4 Could space-time or the space of space-time surfaces be a Lagrangian manifold in some sense?

Gary Ehlenberg sent a link to a tweet to X (see this) by Curt Jainmungal. The tweet has title "Everything is a Lagrangian submanifold". The title expresses the idea of Alan Weinstein (see this), which states that space-time is a Lagrangian submanifold (see this) of some symplectic manifold. Note that the phase space of classical mechanics represents a basic example of symplectic manifold. Lagrangian manifolds emerge naturally in canonical quantization. They reduce one half of the degrees of freedom of the phase space. This realizes the Uncertainty Principle geometrically. Also holography= holomorphy principle realizes Uncertainty Principle by reducing the degrees of freedom by one half.

What about the situation in TGD [L62, L63, L60]. Does the proposal of Alan Weinstein have some analog in the TGD framework?

Consider first the formulation of Quantum TGD.

1. The original approach of TGD relied on the notion of Kähler action [K35, K61]. The reason was that it had exceptional properties. The Lagrangian manifolds L of CP_2 give rise to vacuum extremals for Kähler action: any 4-surface of $M^4 \times L \subset H = M^4 \times CP_2$ with M^4 is a vacuum extremal for this action. At these space-time surfaces, the induced Kähler form vanishes as also Kähler action as a non-linear analog of Maxwell action.

The small variations of the Kähler action vanish in order higher than two so that the action would not have a kinetic term and the ordinary perturbation theory in QFT sense (based on path integral) would completely fail. The addition of a volume term to the action cures the situation and in the twistorialization of TGD it emerges naturally and does not bring in the analog of cosmological constant as a fundamental constant but as a dynamically generated parameter. Therefore scale invariance would not be broken at the level of action.

2. This was however not the only problem. The usual perturbation theory would be plagued by an infinite hierarchy of infinities much worse than those of ordinary QFTs: they would be due to the extreme non-linearity of any general coordinate invariant action density as function of H coordinates and their partial derivatives.

These problems eventually led to the notion of the "world of classical worlds" (WCW) as an arena of dynamics identified as the space of 4-surfaces obeying what I call now holography and realized in some sense [K35, K19, K61, L58]. It took decades to understand in what sense the holography is realized.

1. The 4-D general coordinate invariance would be realized in terms of holography. The definition of WCW geometry assigns to a given 3-surface a unique or almost unique space-time surface at which general coordinate transformations can act. The space-time surfaces are therefore analogs of Bohr orbits so that the path integral disappears or reduces to a sum in the case that the classical dynamics is not completely deterministic. The counterparts of the usual QFT divergences disappear completely and Kähler geometry of WCW takes care of the remaining diverges.

It should be noticed in passing, that year or two ago, I discussed space-times surfaces, which are Lagrangian manifolds of H with M^4 endowed with a generalization of the Kähler metric. This generalization was motivated by twistorialization.

2. Eventually emerged the realization of holography in terms of generalized holomorphy based on the idea that space-time surfaces are generalized complex surfaces of H having a generalized holomorphic structure based on 3 complex coordinates and one hyper complex coordinate associated which I call Hamilton-Jacobi structure.

These 4-surfaces are universal extremals of *any* general coordinate invariant action constructible in terms of the induced geometry since the field equations reduce to a contraction of two complex tensors of different type having no common index pairs. Space-time surfaces are minimal surfaces and analogs of solutions of both massless field equations and of massless particles extended from point-like particles to 3-surfaces. Field particle duality is realized geometrically.

It is now clear that the generalized 4-D complex submanifolds of H are the correct choice to realize holography [L60].

3. The universality realized as action independence, in turn leads to the view that the number theoretic view of TGD in principle could make possible purely number theoretic formulation of TGD [L61] There would be a duality between geometric and number theoretic views [L60],

which is analogous to Langlands duality. The number theoretic view is extremely predictive: for instance, it allows to deduce the spectrum for the exponential of action defining vacuum functional for Bohr orbits does not depend on the action principle.

The universality means enormous computational simplification as also does the possibility to construct space-time surfaces as roots for a pair of (f_1, f_2) of generalized analytic functions of generalized complex coordinates of H. The field equations, which are usually partial differential equations, reduce to algebraic equations. The function pairs form a hierarchy with an increasing complexity starting with polynomials and continuing with analytic functions: both have coefficients in some extension of rationals and even more general coefficients can be considered.

So, could Lagrangian manifolds appear in TGD in some sense?

- 1. The proposal that the WCW as the space of 4-surfaces obeying holography in some sense has symplectomorphisms of H as isometries, has been a basic idea from the beginning. If holography= holomorphy principle is realized, both generalized conformal transformations and generalized symplectic transformations of H would act as isometries of WCW [L58]. This infinite-dimensional group of isometries must be maximal possible to guarantee the existence of Riemann connection: this was already observed for loop spaces by Freed. In the case of loop spaces the isometries would be generated by a Kac-Moody algebra.
- 2. Holography, realized as Bohr orbit property of the space-time surfaces, suggests that one could regard WCW as an analog of a Lagrangian manifold of a larger symplectic manifold WCW_{ext} consisting of 4-surfaces of H appearing as extremals of some action principle. The Bohr orbit property defined by the holomorphy would not hold true anymore.

If WCW can be regarded as a Lagrangian manifold of WCW_{ext} , then the group of Sp(WCW) of symplectic transformations of WCW_{ext} would indeed act in WCW. The group Sp(H) of symplectic transformations of H, a much smaller group, could define symplectic isometries of WCW_{ext} acting in WCW just as color rotations give rise to isometries of CP_2 .

Part II TOPOLOGY OF WCW

Chapter 8

Homology of WCW in relation to Floer homology and quantum homology

8.1 Introduction

One of the mathematical challenges of TGD is the construction of the homology of "world of classical worlds" (WCW). With my rather limited mathematical skills, I had regarded this challenge as a mission impossible. The popular article in Quanta Magazine with title "Mathematicians transcend the geometric theory of motion" (see https://cutt.ly/v04eb5V however stimulated the attempts to think whether it might be possible to say something interesting about WWC homology.

The article told about a generalization of Floer homology by Abouzaid and Blumberg [A27] (https://cutt.ly/ZPeOTSc) published as 400 page article with the title "Arnold Conjecture and Morava K-theory". This theory transcends my mathematical skills but the article stimulated the idea WCW homology might be obtained by an appropriate generalization of the basic ideas of Floer homology (https://cutt.ly/VO4dSPD).

The construction of WCW homology as a generalization of Floer homology looks rather straightforward in the zero ontology (ZEO) based view about quantum TGD. The notions of ZEO and causal diamond (CD) [L31] [K86], the notion of preferred extremal (PE) [L40] [K7], and the intuitive connection between the failure of strict non-determinism and criticality pose strong conditions on the possible generalization of Floer homology.

WCW homology group could be defined in terms of the free group formed by preferred extremals $PE(X^3, Y^3)$ for which X^3 is a *stable* maximum of Kähler function K associated with the *passive* boundary of CD and Y^3 associated with the *active* boundary of CD is a more general critical point.

The stability of X^3 conforms with the TGD view about state function reductions (SFRs) [L31]. The sequence of "small" SFRs (SSFRs) at the active boundary of CD as a locus of Y^3 increases the size of CD and gradually leads to a PE connecting X^3 with stable 3-surface Y^3 . Eventually "big" SFR (BSFR) occurs and changes the arrow of time and the roles of the boundaries of the CD changes. The sequence of SSFRs is analogous to a decay of unstable state to a stable final state.

The identification of PEs as minimal surfaces with lower-dimensional singularities as loci of instabilities implying non-determinism allows to assign to the set $PE(X^3, Y_i^3)$ numbers $n(X^3, Y_i^3 \rightarrow Y_j^3)$ as the number of instabilities of singularities leading from Y_i^3 to Y_j^3 and define the analog of criticality index (number of negative eigenvalues of Hessian of function at critical point) as number $n(X^3, Y_i^3 \rightarrow Y_j^3) = \sum_j n(X^3, Y_i^3 \rightarrow Y_j^3)$. The differential *d* defining WCW homology is defined in terms of $n(X^3, Y_i^3 \rightarrow Y_j^3)$ for pairs Y_i^3, Y_j^3 such that $n(X^3, Y_j^3) - n(X^3, Y_i^3) = 1$ is satisfied. What is nice is that WCW homology would have direct relevance for the understanding of quantum criticality.

The proposal for the WCW homology also involves a generalization of the notion of quantum

connectivity crucial for the definition of Gromow-Witten invariants. Two surfaces (say branes) can be said to intersect if there is a string world sheet connecting them generalizes. In ZEO quantum connectivity translates to the existence of a preferred extremal (PE), which by the weak form of holography is almost unique, such that it connects the 3-surfaces at the opposite boundaries of causal diamond (CD).

8.2 Some background

In this section some background, including Morse theory, Floer homology, its generalization by Abouzaid and Blumberg, and the basic ideas of TGD proposal, is discussed.

8.2.1 The basic ideas of Morse theory

Torus as a 2-D example helps to understand the idea of homology and Morse theory. Homologically non-trivial surfaces are surfaces without boundary but are not boundaries themselves. Entire torus represents the element of H^2 , the 2 homologically non-trivial circles, and points indeed have vanishing boundaries without being boundaries. The basic homological operation d represents the operation of forming a boundary: the boundary of a boundary is empty and this corresponds to $d^2 = 0$. d reduces degree of homology by one unit: $H_n \to H_{n-1}$.

How to understand the homology of torus? Morse theory based on the notion of Morse function provides the tool.

1. Consider the embedding of torus to 3-space. The height-coordinate h defines a Morse function at torus and one can assign to it h = constant level surfaces. It has 4 critical points: h_0, h_1, h_2, h_3 at which the topology of level surface changes.

h has maximum h_3 at the top of torus and minimum h_0 at the bottom of the torus. h_3 corresponds to the entire torus, element of homology group H_2 and h_0 to a point as element of H_0 .

h has saddle points h_1, h_2 at the top and bottom of the "hole" of the torus. The level surfaces $h = h_1$ and $h = h_2$ correspond to two touching circles: the topology of the intersection changes from a contractible circle to a union of oppositely oriented incontractible small circles representing elements of the homology group H_1 . That they have opposite orientations states conservation of homology charge in the topological reaction in which the level circle splits to two: 0 = 1 - 1.

Outside the critical points the topology of the h = constant level surface is a circle or two disjoint circles. The critical points of h clearly code part of the homology of torus. What however remains missing is the homology group element, which corresponds to the large circle around the torus. This element of H_1 would be obtained if the height function h were a horizontal coordinate.

2. One can deform the torus and also add handles to it to get 2-D topologies with a higher genus. Morse function also helps to understand the homology of higher-dimensional spaces for which visual intuition fails.

This situation is finite-D and too simple to apply in the case of the space of orbits of a Hamiltonian system. Now the point of torus is replaced with a loop as a single orbit in phase space. The loop space is infinite-dimensional and the Morse theory does not generalize as such. In Floer homology one studies even the homology of infinite-dimensional spaces.

Homology involves also the d operation. d can be indeed visualized in terms of dynamics of a gradient flow. Assume that torus is in the gravitational potential of Earth proportional to h. Gravitation defines a downwards directed gradient force. One can speak of critical directions as directions in which the particle forced to stay at the torus can fall downwards when subjected to an infinitesimal push.

1. At the top $h = h_3$ of the torus there are 2 critical directions: either along a small or large incontractible circle of torus. This number corresponds to the dimension d = 2 of torus as

the element of the homology group H_2 . At the bottom $h = h_0$ there are 0 critical directions and one has a point as an element of H_0 . At the saddle points h_1, h_2 there is 1 critical direction and it corresponds to a nontrivial circle as an element of H_1 . The number *n* of critical directions corresponds to the dimension for elements of the homology group H_n .

2. The particle at the top h_3 has 2 critical directions (criticality 2), and can fall to the saddle point h_2 , having criticality 1, by moving along the small homologically non-trivial circle. Criticality decreases by 1 unit so that one has a map $H_2 \rightarrow H_1$. The particle can also move along the large circle to the bottom, in which case criticality decreases by 2 units.

The particle at critical point h_2 moves to h_1 along a circle homologous to the large circle without a change in criticality and the particle at h_1 moves to h_0 also the small circle: the criticality changes by 1 unit so that one has a map $H_1 \to H_0$.

Therefore the elements of the homology group correspond to critical points for the gradient flow defined by the gravitational field and the effect of the map d can be represented dynamically as a motion in the gravitational field reducing the criticality by one unit.

The representability of homology elements as critical points of Morse function and the representation of d-operation in terms of gradient dynamics is extremely useful in higher dimensional spaces, where geometric intuition does not help much. In Floer homology this dynamics is applied as a tool.

8.2.2 The basic ideas of Floer homology

Consider first the motivations and ideas of Floer homology (https://cutt.ly/l06EMp6). The original goal was to prove Arnold's conjecture. One considers a symplectic manifold with symplectic form ω . Arnold conjectured that the number of fixed points of a Hamiltonian symplectomorphism generated by an exponentiation of a Hamiltonian H, is bounded below by the number of critical points of a smooth function on M.

The goal is to generalize Morse theory.

- 1. Morse theory involves the height function h in a finite-D manifold M and the critical points of h correspond to elements of homology groups H_n . The number n of negative eigenvalues of Hessian of f at critical points defines the index of criticality f and one can associate with the critical point an element of the homology group H_n . n = 0 corresponds to maximum of f. Note that in infinite-D case, Morse theory need not work since n can be arbitrarily large and if the convention for criticality is changed so that n = 0 corresponds to minimum, a different theory is obtained.
- 2. In Morse homology, the n-simplices of the simplicial homology are replaced by critical points with criticality index n and the homology groups are replaced with the Abelian group defined by the critical points and graded by the criticality index n. The gradient flow lines connecting critical points with $\Delta n = 1$ allow to define an analog of the exterior derivative d: it is defined by the number of flow lines connecting critical points with $\Delta n = 1$.

8.2.3 Floer homology

The motivation for the symplectic Floer homology is the conjecture by Arnold related to the Hamiltonian systems. These systems are defined in phase space, whose points are pairs of position and momentum of the particle. This notion is extremely general in classical physics.

1. One considers compact symplectic manifolds M and symplectic action $S = \oint p_i dq_i$ and its critical points, which are loops. Note that symplectic action has interpretation as an area. The general case $S = \oint (p_i dq_i/dt - H)dt$ is not considered in the Floer homology.

Remark: A more general question is whether there exist closed orbits, kind of islands of order, in the middle of oceans of chaos consisting of non-closed chaotic orbits. This is indeed the case: there is a fractal structure formed by islands of order in oceans of disorder. Hamiltonian chaos differs from dissipative chaos in that the fractal has the same dimension as the symplectic manifold since symplectic transformations preserve area and high 2n-dimensional volumes.

2. Arnold's conjecture was that the number of critical points of a given criticality index of a symplectomorphism has as an upper bound the number of critical points for a generic function. The inspiration behind the Floer homology is the intuition that a generalization of Morse theory to the loop space L(M) allows us to understand the homology. The conjecture is that the closed orbits serve as minimal area representatives for the homology of L(M). These closed orbits would be critical points of S defining the area closed by the curve.

The goal is to understand the homology of a finite-dimensional compact symplectic manifold M and Floer homology provides the needed tool. Floer homology for the infinite-D loop space L(M) serves as a tool to achieve this goal and the proof of Arnold's conjecture follows as an outcome.

In symplectic Floer homology, one is interested in closed loops as orbits of a symplectic flow in a compact symplectic space M. One wants to identify them as critical points of an analog of Morse function in the loop space L(M).

- 1. In the symplectic Floer homology, M is a finite-D symplectic manifold and one deduces information about it from the homology of loop space L(M) by generalizing Morse homology to the homology of L(M).
- 2. The counterpart of the Morse function is unique and defined by the symplectic action functional $S = \oint p_i dq_i$ in L(M). Note that S depends only on M. S defines the counterpart of free action with a vanishing Hamiltonian H. For a general Hamiltonian one would have $S = \oint (p_i dq_i/dt - H)dt$. Note that closed orbits are possible if M is compact. For a generic H the dynamic becomes chaotic.

Closed loops for free flows define the analogs of critical points of Morse function. For instance, for 2-torus the closed orbits correspond to loops with winding numbers n_1, n_2 .

3. One must identify the counterpart for the gradient flow lines connecting the critical points with $\Delta n = 1$ in order to define d. Here one considers a deformation of the system by a time dependent Hamiltonian H and hopes that the predictions do not depend on the choices of H. This gives to orbits of the closed loops in the loop space giving rise to cylinders in M.

These cylinders define pseudoholomorphic curves and define the counterparts of the gradient flows connecting critical points as closed loops in X. The differential d for the Floer homology is defined in terms of the numbers of these curves between critical points with the property that the criticality index increases by one unit.

4. The basic result is a proof for the Arnold conjecture and roughly states that for the ranks of homology groups of M are smaller than the Floer homology groups defined by arbitrary Hamilton.

Floer homology has a rich variety of applications discussed in the Wikipedia article (https://cutt.ly/l06EMp6). One application relates to the Lagrangian manifolds of a symplectic manifold. Now the chain complex is generated by the intersection points of Lagrangian manifolds intersecting transversely.

A further application is associated with Yang- Mills theory. The action is the Chern-Simons action defining a topological quantum field theory. Its critical points are topologically non-trivial gauge connections with a trivial curvature form. Topological non-triviality means that the group defined by the parallel translations along closed curves is non-trivial. The counterpart of the gradient flow is defined by Yang-Mills action and the flow lines correspond to instantons approach at the ends of the counterpart of mapping cylinder trivial connections.

8.2.4 The generalization of Floer homology by Abouzaid and Blumberg

The work of mathematicians Abouzaid and Blumberg [A27] (https://cutt.ly/ZPeOTSc), which represents the generalization of Floer homology which, using popular terms, allows to "count holes" in the infinite-D space of loops.

The abstract of the article of Abouzaid and Blumberg is following.

We prove that the rank of the cohomology of a closed symplectic manifold with coefficients in a field of characteristic p is smaller than the number of periodic orbits of any non-degenerate Hamiltonian flow.

Following Floer, the proof relies on constructing a homology group associated to each such flow, and comparing it with the homology of the ambient symplectic manifold. The proof does not proceed by constructing a version of Floer's complex with characteristic p coefficients, but uses instead the canonical (stable) complex orientations of moduli spaces of Floer trajectories to construct a version of Floer homology with coefficients in Morava's K-theories, and can thus be seen as an implementation of Cohen, Jones, and Segal's vision for a Floer homotopy theory. The key feature of Morava K-theory that allows the construction to be carried out is the fact that the corresponding homology and cohomology groups of classifying spaces of finite groups satisfy Poincare duality.

I try to express what I understand as a physicist about this highly technical summary.

- 1. The main emphasis is in the homology of finite-D symplectic manifolds and the homology of the infinite-D loop space is only a tool to obtain this information.
- 2. The generalization of Arnold's conjecture is expressed in the first paragraph. For closed symplectic manifolds the cohomology groups of a closed symplectic manifold have rank smaller than the number of periodic orbits of *any* non-degenerate Hamiltonian flow.

Therefore Hamiltonian flows give information about the cohomology and by Poincare duality also about homology of the symplectic manifold.

- 3. The coefficients of homology can be chosen in very many ways: rationals, integers, finite fields, p-adic number fields. Integers are however the natural ones in the situation in which one counts concrete objects. The homology has coefficients in finite field F_p , integers modulo prime p: for instance, the numbers of flow lines of gradient flow connecting the critical points of symplectic action are counted modulo p.
- 4. Time dependent Hamiltonians enter into the picture as perturbations of the symplectic action. One replaces the free symplectic action $S = \oint p_i dq_i/dt$ in loop space with $S = \oint (p_i dq_i/dt - H)dt$ playing a role analogous to that of Morse function. This is like adding an interaction term to free action. It is essential that the symplectic space is compact so that closed orbits as critical points of S are possible.

8.2.5 Gromow-Witten invariants

The proposed TGD based generalization of the notion of "being connected" by a flow line of gradient flow resonates with the definition of Gromow-Witten (G-W) invariant. G-W invariant emerges in enumerative geometry, which is essentially counting of particular kinds of points of enumerative geometry which is a branch of algebraic geometry.

G-W invariants (http://tinyurl.com/y9b5vbcw) are rational number valued topological invariants useful in algebraic and symplectic geometry. These quantum invariants give information about these geometries not provided by classical invariants. Despite being rational numbers in the general case G-W invariants in some sense give the number of string world sheets connecting given branes.

The definition of G-W invariant involves a non-locality, which is completely analogous to the non-locality in the proposed definition of WCW homology. In TGD, the string world sheet as connector of branes is replaced with PE as a connector of the boundaries of opposite boundaries of CD taking the role of brane.

Here is the definition of G-W invariants with some TGD induced coloring taken from [K25, K41].

1. One considers a collection of n surfaces ("branes") with even dimensions in some symplectic manifold X of dimension D = 2k (say Kähler manifold) and pseudo-holomorphic curves ("string world sheets") X^2 , which have the property that they connect these n surfaces in the sense that they intersect the "branes" in the marked points x_i , i = 1, ..., n. "Connect" does not reduce to intersection in a topologically stable sense since connecting is possible also for branes with dimension smaller than D-2. One allows all surfaces X^2 that intersect the *n* surfaces at marked points if they are pseudo-holomorphic even if the basic dimension rule is not satisfied. In the 4-dimensional case this does not seem to have implications since the partonic 2-surfaces automatically satisfy the dimension rule. The *n* branes intersect or touch in a quantum sense: there is no concrete intersection but intersection with the mediation of "string world sheet".

2. Pseudo-holomorphy means that the Jacobian df of the embedding map $f : X^2 \to X$ commutes with the symplectic structures j resp. J of X^2 resp. X: i.e. one has df(jT) = Jdf(T) for any tangent vector T at given point of X^2 . For $X^2 = X = C$ this gives Cauchy-Riemann conditions.

In the symplectic case X^2 is characterized topologically by its genus g and homology class A as the surface of X. In algebraic geometry context the degree d of the polynomial defining X^2 replaces A. In TGD X^2 corresponds to a string world sheet having also a boundary. X^2 has also n marked points $x_1, ..., x_n$ corresponding to intersections with the n surfaces.

3. G-W invariant $GW_{g,n}^{X,A}$ gives the number of pseudo-holomorphic 2-surfaces X^2 connecting n given surfaces in X - each at single marked point. In TGD these surfaces would be partonic 2-surfaces and marked points would be carriers of sparticles.

8.3 About the generalization of Floer homology in the TGD framework

A generalization of homotopy and homology groups could help to understand WCW topology. One of the intuitive visions behind TGD has indeed been that, despite the explicit appearance of metric, TGD in a certain sense is a topological quantum theory. A mathematical motivation for this intuition comes from the fact that minimal surfaces provide representations for homological equivalence classes. Floer homology suggests concrete ideas, which might help to understand the homology of WCW.

8.3.1 Key ideas behind WCW homology

The encounter with Floer homology inspired the question whether one could say something interesting about WCW homology by an appropriate generalization of the concepts involved with it.

Preferred extremals (PEs) as counterparts of critical points

PEs are an obvious candidate for the counterparts of critical points. ZEO however implies some important delicacies crucial for WCW homology.

1. In the TGD Universe, space-time is a 4-surface in $H = M^4 \times CP_2$, in a loose sense an orbit of 3-surface. General Coordinate Invariance (GCI) requires that the dynamics associates to a given 3-surface a highly unique 4-surface at which the 4-D general coordinate transformations act. This 4-surface is a PE of the action principle determing space-time surfaces in H and analogous to Bohr orbit. GCI gives Bohr orbitology as an exact part of quantum theory and also holography.

These PEs as 4-surfaces are analogous to the closed orbits in Hamiltonian systems about which Arnold speculated. In the TGD Universe, only these PEs would be realized and would make TGD an integrable theory. The theorem of Abouzaid and Blumberg allows to prove Arnold's conjecture in homologies based on cyclic groups Z_p . Maybe it could also have use also in the TGD framework.

2. WCW generalizes the loop space considered in Floer's approach. Very loosely, loop or string is replaced by a 3-D surface, which by holography induced is more or less equivalent with

4-surface. In TGD just these minimal representatives for homology as counterparts of closed orbits would matter.

- 3. Symplectic structure and Hamiltonian are central notions also in TGD. Symplectic (or rather, contact) transformations assignable to the product $\delta M_+^4 \times CP_2$ of the light-cone boundary and CP_2 act as the isometries of the infinite-D "world of classical worlds" (WCW) consisting of these PEs, or more or less equivalently, corresponding 3-surfaces. Hamiltonian flows as 1-parameter subgroups of isometries of WCW are symplectic flows in WCW with symplectic structure and also Kaehler structure.
- 4. The space-time surfaces are 4-D minimal surfaces in *H* with singularities analogous to frames of soap films. Minimal surfaces are known to define representatives for homological equivalence classes of surfaces. This has inspired the conjecture that TGD could be seen as a topological/homological quantum theory in the sense that space-time surfaces served as unique representatives or their homological classes.
- 5. There is also a completely new element involved. TGD can be seen also as number theoretic quantum theory. $M^8 H$ duality can be seen as a duality of a geometric vision in which space-times are 4-surfaces in H an of a number theoretic vision in which one consideres 4-surfaces in octonionic complexified M^8 determined by polynomials with dynamics reducing to the condition that the normal space of 4-surface is associative (quaternionic). M^8 is analogous to momentum space so that a generalization of momentum-position duality of wave mechanics is in question.

The first sketch for WCW homology

A suitable generalization of Floer's theory might allow us to define WCW homology.

1. The PEs would correspond to the critical points of an analog of Morse function in the infinite-D context. In TGD the Kähler function K defining the Kahler geometry of WCW is the unique candidate for the analog of Morse function.

The space-time surfaces for which the exponent exp(-K) of the Kähler function is stationary (so that the vacuum functional is maximum) would define PEs. Also other space-time surfaces could be allowed and it seems that the continuity of WCW requires this. However the maxima or perhaps extrema would provide an excellent approximation and number theoretic vision would give an explicit realization for this approximation.

It is however important to notice that the K for, in general non-unique, preferred external $PE(X^3, Y^3)$ can be maximum for X^3 and a more general critical point for Y^3 . This option conforms with the ZEO view about SFRs in which the passive boundary of CD is stable and a sequence of SSFRs takes place at the active boundary and increases its size. The homology would be assigned to the criticality of the active boundary of CD.

This would require a varying CD size, which should therefore be determined by PE and appear as a parameter in PE. By $M^8 - H$ duality the boundary of CD corresponds to the image of a mass shell H^3 in M^3 . Perhaps this property at the active end of PE codes for the size scale of the CD. The size scale of CD, not necessarily the size, should correspond to the p-adic length scale L_p determined by the largest ramified prime of the polynomial coding for PE. Does this mean that L_p remains the same during the entire sequence of SSFRs or can it increase? The size could increase by factor \sqrt{p} with change ibn L_p and for large p-adic primes such as $M_{127} = 2^{127} - 1$ this would mean very large scaling.

Remark: Since WCW Kähler geometry has an infinite number of zero modes, which do not appear in the line element as coordinate differentials but only as parameters of the metric tensor, one expects an infinite number of maxima.

2. The PEs would correspond by $M^8 - H$ duality to roots of polynomials P in the complexified octonionic M^8 so that a connection with number theory emerges. $M^8 - H$ duality strongly strongly suggests that exp(-K) is equal to the image of the discriminant D of P under canonical identification $I : \sum x_n p^n \to \sum x_n p^{-n}$ mapping p-adic numbers to reals. The prime p would correspond to the largest ramified prime dividing D [L42, L43].

3. The number theoretic vision could apply only to the critical points of exp(-K) with respect to both ends of PE and give rise to what I call a hierarchy of p-adic physics as correlates of cognition. Everything would be discrete and one could speak of a generalization of computationalism allowing also the hierarchy of extensions of rationals instead of only rationals as in Turing's approach. The real-number based physics would also include the non-maxima via a perturbation theory involving a functional integral around the maxima. Here Kähler geometry allows to get rid of ill-defined metric and Gaussian determinants.

G-W invariants and **ZEO**

Enumerative geometry is also a central element of adelic physics.

- 1. $M^8 H$ duality involves the notion of cognitive representations consisting of special points of 4-surface, in particular, points of 3-D mass shell $H^3 \subset M_c^4 \subset M_c^8$. The "active" points containing quark are identified as quark momenta. A generalization of momentum-position duality is in question.
- 2. The points of the cognitive representation, having interpretation as four-momenta [L33, L34, L42, L43], are identified are algebraic integers in the extensions defined by the real polynomial P with rational coefficients continued to a polynomial of a complexified octonion. P defines mass shells as its roots with $m^2 = r_n$ defining the spectrum of virtual mass squared values for quarks. The finite number of mass shells guarantees the absence of divergences due to momentum space integrations.
- 3. By the symmetries of H^3 , the number of points in cognitive representations is especially high at the mass shells. Physical states correspond to Galois singlets (Galois confinement implying conformal confinement) for which the sum of quark momenta is an ordinary integer as one uses as unit the p-adic mass scale defined by the largest ramified prime associated with P.
- 4. The mass shells associated with a given polynomial P are connected by a 4-surface X^4 as a deformation of M_c^4 , which defines $M^8 - H$ duality by assigning to $X^4 \subset M^8$ space-time surface in $H = M^4 \times CP_2$. This surface is a minimal surface with singularities analogous to frames of a soap film. $M^8 - H$ duality maps the points of cognitive representation to $X^4 \subset H$ [L41].

The TGD view about WCW homology could perhaps be regarded as a generalization of the quantum connectedness behind G-W invariants. The role of the string world-sheet as a quantum connector is taken by PE so that there is no need to introduce gradient dynamics separately. The quantum connection between X_1^3 and X_2^3 at the boundary A of CD exists if $X_1^3 = CPT(Y_1^3)$ is true for a PE having X_1^3 and Y_1^3 as ends. $\Delta n = \pm 1$ translates to an appearance or disappearance of minimal number of critical directions. The attribute "quantum" is well-deserved since the classical non-determinism serves as a space-time correlate for quantum jumps at WCW level [L41, L35, L42, L43].

8.3.2 A more concrete proposal for WCW homology as a generalization of the Floer homology

Consider first the notion of "world of classical worlds" (WCW).

1. In TGD, point-like particles are replaced by 3-surfaces. Zero energy ontology (ZEO) is assumed, which means that space-time surfaces X^4 as "orbits" of 3-surfaces are inside causal diamonds. These 4-surfaces are PEs of the action principle. For the exact holography, 3surface at either boundary of CD would determine X^4 uniquely but determinism is expected to be slightly violated so that there are several PEs associated with a given X^3 at either boundary of CD. The failure of strict determinism is analogous to the failure of determinism for soap films with frames.

Let PE have X^3 resp. Y^3 as its ends at the opposite boundaries A resp. B of CD.

- 2. WCW is identified as the space of PEs. One could regard WCW also as covering a space such that for a given X^3 at (say) A, the fiber contains the PEs having X^3 as the first end. WCW has symplectic and even a Kähler structure and symplectic transformations at the light-like boundaries of CD are conjectured to define isometries of WCW but not symmetries of S_K .
- 3. Kähler function K, serving as the analog of symplectic action, defines Kähler form and symplectic structure. K corresponds to 4-D Kähler action S_K plus volume term for a PE. This action is obtained as a dimensional reduction of 6-D Kähler action for the 6-D surface X^6 in the 6+6-D twistor space of $T(M^4) \times T(CP_2)$. X^6 carries induced twistor structure and has X^4 as base space and S^2 as fiber.

WCW homology based on minimal surfaces with singularities

The challenge is to identify the counterpart of gradient flow as a counterpart of quantum connectivity. This should not bring anything new to the existing picture. The following proposal is perhaps the simplest one and conforms with the physical intuition.

- 1. Morse theory and Floer homology would suggest that one should consider the Hessian of Kähler function $K(PE(X^3))$ of WCW as functional of preferred extremal $PE(X^3, Y^3)$. One could calculate the numbers n_+ resp. n_- of positive and negative eigenvalues of Hessian and identify n_- as the criticality index and number of unstable directions.
- 2. There are several problems. The identification of the analog of gradient flow seems very difficult. However, by the weak holography due the failure of strict determinism, for a given X^3 , there are several 3-surfaces Y_i^3 at the opposite boundary of CD defining PEs. The meaning of criticality is far from obvious since instability for a given time direction looks like stability in the opposite time direction. This is a potential problem since in ZEO [L31] [K86] both arrows of time are possible. There should be a clear distinction between the ends of a CD.
- 3. By the failure of the strict determinism, the basic objects in ZEO are pairs (X_i^3, Y_j^3) connected by $PE(X_i^3, Y_j^3)$ identifiable as critical points of K with respect to variations of at least one end. The physical picture suggests that criticality is possible for both ends and that a maximum for the passive boundary of CD and criticality for the opposite active boundary of CD (where quantum fluctuations due to "small" state function reductions (SSFRs) are located) is possible. The instabilities associated with criticality at active end would correspond to a definite time direction. It is however difficult to proceed without a more concrete picture.
- 4. WCW homology could also involve a generalization of the notion of quantum connectivity crucial for the definition of Gromow-Witten invariants. The idea is that two surfaces (say branes) can be said to intersect when there is a string world sheet connecting them, generalizes.

In ZEO this translates to the existence of a preferred extremal (PE), which by the weak form of holography is almost unique, such that it connects the boundaries of causal diamond (CD), which plays the role of brane.

The identification of PEs as minimal surfaces [L41] allows us to make this picture more concrete and gives a direct connection to quantum criticality as it would be realized in terms of classical non-determinism. One would not count critical directions but critical transitions assignable to singularities of minimal surfaces.

- 1. PEs are identified as minimal surfaces with singularities analogous to the frames of soap film. At the singularities the minimal surface property fails and the Kähler action and volume term couple together in field equations so that conservation laws are satisfied.
- 2. The singular surfaces have dimension d < 4 and and can be regarded as loci of instability leading to non-determinism. By suitably perturbing the singularities, one can generate new

preferred extremals $PE(X^3, Y_j^3)$ from $PE(X^3, Y_i^3)$. The maximum property of K with respect to the variations of X^3 would suggest that one cannot replace X^3 with a new maximum in this way.

3. For each Y_i^3 , one can count the number of deformations of the singularities leading to $PE(X^3, Y_j^3)$ and call this number $n(X^3, Y_i^3 \to Y_j^3)$ as an the analog for the number of gradient lines between given critical points in Floer homology.

One can define the analog of criticality index $n(X^3, Y_i^3)$ as $n(X^3, Y_i^3) = \sum_j n(X^3, Y_i^3 \to Y_j^3)$ as the analog of n_- of the negative eigenvalues of Hessian. One defines an Abelian group as the complex formed by $PE(X_i^3, Y_j^3)$. $n(X^3, Y_i^3)$ defines the grading for $PE(X^3, Y_j^3)$ as an element of this complex.

The differential d for WCW homology can be defined in the same way as in Floer homology. Assume $n(X^3, Y_j^3) - n(X^3, Y_i^3) = 1$. Define the action of d as $d(PE(X^3, Y^i)) = \sum_i n(X^3, Y_i^3 \to Y_j^3) PE(X^3, Y^j)$.

The non-determinism of 6-D Kähler and 4-D action would be essential as also the asymmetry between the active and passive boundaries of CD crucial for TGD based quantum measurement theory. Nondeterminism is also essential for the non-triviality of scattering amplitudes since quantum non-determinism in WCW degrees of freedom has classical non-determinism as a space-time correlate [L41]. If the determinism were exact the homology groups H_n would correspond directly to the groups C_n and one would have a Cartesian product of spaces with the homology group $H_n = C_n$. Interesting questions relate to the interpretation of PE pairs with $\Delta n \neq 1$.

Could CPT allow the concretization of quantum connectedness

The quantum connectedness in some sense identifies the 3-surfaces connected by $PE(X_1^3, Y_1^3)$ such that X_1^3 and Y_1^3 are at opposite boundaries of $CD = cd \times CP_2$. If one could assign to Y_1^3 at B a 3-surface X_2^3 at A, quantum connectedness would become more concrete. There is no compelling reason to effectively for this but can ask whether PE could allow to achieve this formally.

1. This formal connection is achieved if there is a discrete symmetry mapping the boundaries A and B of CD to each other. This symmetry must involve time reflection T with respect to the center point of cd. If one requires that the symmetry is an exact symmetry of quantum theory, CPT remains the only candidate. C would act as charge conjugation, realized as a complex conjugation in CP_2 .

CPT maps the boundaries of CDs to each other and therefore also the positive and negative energy parts of zero energy states. The 3-surfaces $(X_1^3 X_2^3)$ at a given boundary of CD are quantum connected if one has $X_2^3 = CPT(Y_1^3)$ for a PE connecting X_1^3 and Y_1^3 .

2. Critical points of K must be mapped to critical points so that CPT should act as a symmetry of the variational principle. If M^4 has Kähler structure the self-dual covariantly constant Kähler form of M^4 , strongly suggested by the twistor lift of TGD, must be invariant under CPT and this is indeed the case. The Kähler gauge potential would be also fixed apart from the decomposition $M^4 = M^2 \times E^2$ defined by electric and magnetic parts of $J(M^4)$.

Chapter 9

Intersection form for 4-manifolds, knots and 2-knots, smooth exotics, and TGD

9.1 Introduction

Gary Ehlenberger sent a highly interesting commentary related to smooth structures in R^4 discussed in the article of Gompf [A76] (https://cutt.ly/eMracmf) and more generally to exotics smoothness discussed from the point of view of mathematical physics in the book of Asselman-Maluga and Brans [A82] (https://cutt.ly/DMuOdYr). I am grateful for these links for Gary.

9.1.1 The role of intersection forms in TGD

The intersection form of 4-manifold (https://cutt.ly/jMriNdI) characterizing partially its 2homology is a central notion in these consideration and it is expected to have a central role in TGD [K36, K26]. I am not a topologist but I had two good reasons to get interested.

- 1. In the TGD framework [L40], the intersection form describes the intersections of string world sheets and partonic 2-surfaces and therefore is of direct physical interest [K36, K26].
- 2. Knots have an important role in TGD. The 1-homology of the knot complement characterizes the knot. Time evolution defines a knot cobordism as a 2-surface consisting of knotted string world sheets and partonic 2-surfaces. A natural guess is that the 2-homology for the 4-D complement of this cobordism characterizes the knot cobordism. Also 2-knots are possible in 4-D space-time and a natural guess is that knot cobordism defines a 2-knot.

The intersection form for the complement for cobordism as a way to classify these twoknots is therefore highly interesting in the TGD framework. One can also ask what the counterpart for the opening of a 1-knot by repeatedly modifying the knot diagram could mean in the case of 2-knots and what its physical meaning could be in the TGD Universe. Could this opening or more general knot-cobordism of 2-knot take place in zero energy ontology (ZEO) [L31, L39, L44] as a sequence of discrete quantum jumps leading from the initial 2-knot to the final one.

9.1.2 Why exotic smooth structures are not possible in TGD?

The existence of exotic 4-manifolds [A76, A82, A49] could be an anomaly in the TGD framework. In the articles [A76, A49] the term anomaly is indeed used. Could these anomalies cancel in the TGD framework?

The first naive guess was that the exotic smooth structures are not possible in TGD but it turned out that this is not trivially true. The reason is that the smooth structure of the space-time surface is not induced from that of H unlike topology. One could induce smooth structure by

assuming it given for the space-time surface so that exotics would be possible. This would however bring an ad hoc element to TGD. This raises the question of how it is induced.

- 1. This led to the idea of a holography of smoothness, which means that the smooth structure at the boundary of the manifold determines the smooth structure in the interior. Suppose that the holography of smoothness holds true. In ZEO, space-time surfaces indeed have 3-D ends with a unique smooth structure at the light-like boundaries of the causal diamond $CD = cd \times CP_2 \subset H = M^4 \times CP_2$, where cd is defined in terms of the intersection of future and past directed light-cones of M^4 . One could say that the absence of exotics implies that D = 4 is the maximal dimension of space-time.
- 2. The differentiable structure for $X^4 \subset M^8$, obtained by the smooth holography, could be induced to $X^4 \subset H$ by $M^8 - H$ -duality. Second possibility is based on the map of mass shell hyperboloids to light-cone proper time a = constant hyperboloids of H belonging to the space-time surfaces and to a holography applied to these.
- 3. There is however an objection against holography of smoothness (https://cutt.ly/3MewYOt). In the last section of the article, I develop a counter argument against the objection. It states that the exotic smooth structures reduce to the ordinary one in a complement of a set consisting of arbitrarily small balls so that local defects are the condensed matter analogy for an exotic smooth structure.

9.2 Intersection form in the case of 4-surfaces

Intersection form (https://cutt.ly/jMriNdI) for homologically trivial 2-surfaces of the spacetime surface and 2-homology for the complement of these surfaces can be physically important in tGD framework.

9.2.1 Intersection form form 2-D manifolds

It is good to explain the notion of intersection form by starting from 1-homology. The intersection form for 1-homology is encountered for a cylinder with ends fixed. In this case, one has relative homology and homologically trivial curves are curves connecting the ends of string and characterized by a winding number.

In the case of torus obtained by identifying the ends of cylinder, one obtains two winding numbers (m, n) corresponding to to homologically non-trivial circles at torus. The intersection number for curves (m, n) and (p, q) at torus is N = mq - np and for curves at cylinder one as (m, n) = (1, n) giving N = n - q.

The antisymmetric intersection form is defined as 2×2 matrix defining intersections for the basis of the homology with (m, n) = (1, 0) and (n, m) = (0, 1) and is given by (0, 1; -1, 0).

9.2.2 Intersection forms for 4-surfaces

In TGD, the intersection form for a 4-surface identified as space-time surface could have a rather concrete physical interpretation and the stringy part of TGD physics would actually realize it concretely.

1. $M^8 - H$ duality requires that the 4-surface in M^8 has quaternionic/associative normal space: this distribution of normal spaces is integrable and integrates to the 4-surface in M^8 .

The normal must also contain a commutative (complex) sub-space at each point. Only this allows us to parametrize normal spaces by points of CP_2 and map them to space-time surfaces in $H = M^4 \times CP_2$. The integral distribution of these commutative sub-spaces defines a 2-D surface. Physically, these surfaces would correspond to string world sheets and partonic 2-surfaces.

2. String world sheets and partonic 2-surfaces, regarded as objects in relative homology (modulo ends of the space-time surfaces at the boundaries of causal diamond (CD)), can intersect as 2-D objects inside the space-time surface and the intersection form characterizes them.

There is an analogy with the cylinder: time-like direction corresponds to the cylinder axis and a homologically non-trivial 2-surface of CP_2 corresponds to the circle at the cylinder.

3. If the second homology of the space-time surface is trivial, the naive expectation is that the intersections of string world sheets are not stable under large enough deformations of the string world sheets. Same applies to intersecting plane curves. At the cylinder, the situation is different since the relative first homology is non-trivial and spanned by two generators: the circle and a line connecting the ends of the cylinder.

The intersection form is however non-trivial as in the case of the cylinder for 2-surfaces having 2-D homologically non-trivial CP_2 projection. They would represent M^4 deformations of 2-D homologically trivial surfaces of CP_2 just like a helical orbit along a cylinder surface. A 2-D generalization of CP_2 type extremal would have a light-like curve or light-like geodesic as M^4 projection and could define light-partonic orbit.

4. The intersection of string world sheet and partonic 2-surface can be stable however. Partonic 2-surface is a boundary of a wormhole contact connecting two space-time sheets.

Consider a string arriving along space-time sheet A, going through the wormhole contact, and continuing along sheet B. The string has an intersection point with both wormhole throats. This intersection is stable against deformations. The orbit of this string intersects the light-like orbit of the partonic 2-surface along the light-like curve.

One has a non-trivial intersection form with the number of intersections with partonic 2surfaces equal to 1. In analogy with cylinder, also the intersections of 2-surfaces with 2-D homologically trivial CP_2 projection are unavoidable and reflect the non-trivial intersection form of CP_2 .

9.2.3 About ordinary knots

Ordinary knots and 3-topologies are related and the natural expectation is that also 2-knots and 4-topologies are related.

About knot invariants

Consider first knot invariants (https://cutt.ly/DMrgs14)at the general level.

- 1. One important knot invariant of ordinary knots is the 1-homology of the complement and the associated first homotopy group whose abelianization gives the homology group.
- 2. The complement of the knot can be given a metric of a hyperbolic 3-manifold, which corresponds to a unit cell for a tessellation of the mass shell. $M^8 H$ duality suggests that the intersection X^3 of 4-surface of M^8 with mass shell $H^3_m \subset M^4 \subset M^8$ is a hyperbolic manifold and identical with the hyperbolic manifold associated with the complement of a knot of H^3_a realized as light-cone proper time a = constant hyperboloid of $M^4 \subset H$ and closed knotted and linked strings as ends of string world sheets at H^3_a .

The evolution of the strings defined by the string world sheets would define a 1-knot cobordism. The 2-homology of the knot complement should characterize the topological evolution of the 1-homology of the knot.

Opening of knots and links by knot cobordisms

The procedure leading to the trivialization of knot or link can be used to define knot invariants and the procedure itself characterizes knot.

1. Ordinary knot is described by a knot diagram obtained as a projection of the knot to the plane. It contains intersections of lines and the intersection contains information telling which line is above and which line is below.

2. The opening of the knot or link to give a trivial knot or link, which is used in the construction of knot invariants, is a sequence of violent operations. In the basic step strings portions go through each other and therefore suffer a reconnection. This operation can therefore change the 1-homology of the 3-D knot complement.

Knot or link can be modified by forcing two intersecting strands of the plane projection to go through each other. Locally the basic operation for two links is the same as for the pieces of knot. The transformation of the knot or link to a trivial knot or link corresponds to some sequence of these operations and can be used to define a knot invariants. This operation is not unique since there are moves which do not affect the knot.

The basic opening operation can be also seen as a time evolution, knot cobordism, in which the first portion, call it A, remains unchanged and the second portion, call it B, draws a 2-D surface in E^3 . A intersects the 2-D orbit at a single point.

3. The 2-homology for the string world sheets and partonic 2-surfaces as 2-surfaces in space-time serves as an invariant of knot cobordism and represents the topological dynamics of ordinary 1-knots of 3-surface and links formed by strings or flux tubes in 3-surface as cobordism defining the time evolution of a knot to another knot.

In particular, the intersection form for the 2-homology of the complement of the cobordism defines an invariant of cobordism. This intersection form must be distinguished from the intersection form for the second homology of the space-time surface rather than the 2-knot complement.

4. One can also consider more general sequences of basic operations transforming two knots or links to each other as knot-/link cobordisms, which involve self intersections of the knots. Does this mean that the intersection form characterizes the knot cobordism. Could a string diagram involving reconnections describe the cobordism process.

Stringy description of knot cobordisms

 $M^8 - H$ duality [L33, L34, L49, L48] requires string word sheets and partonic 2-surfaces. This implies that TGD physics represents the 2-homology of both space-time surfaces and the homology of the complement of the knotted links defined by them.

Although the "non-homological" intersections of string world sheets can be eliminated by a suitable deformation of the string world sheet, they should have a physical meaning. This comes from the observation that they affect nontrivially the 1-homology of the knot complement as 3-D time=constant slice.

The first thing that I am able to imagine is that strings reconnect. This is nothing but the trouser vertex for strings so that intersection form would define topological string dynamics in some sense. These reconnections play a key role in TGD, also in TGD inspired quantum biology.

The dynamics of partonic 2-surfaces and string world sheets could relate to knot cobordisms, possibly leading to the opening of ordinary knot,

9.2.4 What about 2-knots and their cobordisms?

2-D closed surfaces in 4-D space give rise to 2-knots. What is the physical meaning of 2-knots of string world sheets? What could 2-knots for orbits of linear molecules or associated magnetic flux tubes mean physically and from the point of view of quantum information theory? One can try to understand 2-knots by generalizing the ideas related to the ordinary knots.

- 1. Intuitively it seems that the cobordism of a 1-knot defines a 2-knot. It is not clear to me whether all 2-knots for space-time surfaces connecting the boundaries of CD can be regarded as this kind of cobordisms of 1-knots.
- 2. The 2-homology of the complement of 2-knot should define a 2-knot invariant. In particular, the intersection form should define a 2-knot invariant.

3. The opening of 1-knot by repeating the above described basic operation is central in the construction of knot invariants and the sequence of the operations can be said to be knot invariant modulo moves leaving the knot unaffected.

The opening or a more general cobordism of a 2-knot could be seen as a time evolution with respect to a time parameter t_5 parametrizing the isotopy of space-time surface. The local cobordism can keep the first portion of 2-knot, call it A, unchanged and deform another portion, call it B, so that a 3-D orbit at the space-time surface is obtained. For each value of t_5 , the portions A and B of 2-knot have in the generic case only points as intersections.

This would suggest that an intersection point of A and B is generated in the operation and moves during the t_5 time evolution along A along 1-D curve during the process. This process would be the basic operation used repeatedly to open 2-knot or to transform it to another 2-knot.

4. In quantum TGD, a sequence of quantum jumps, quantum cobordism, would have the same effect as t_5 time evolution. This brings in mind DNA transcription and replication as a process proceeding along a DNA strand parallel to the monopole flux tube as a sequence of SFRs involving direct contact between DNA strand and enzymes catalyzing the process and also of corresponding flux tubes. An interesting possibility is that these quantum cobordisms appear routinely in biochemistry of the fundamental linear bio-molecules such as DNA, RNA, tRNA, and amino-acids [K30, K3, K79, K1, K88, K31] [L25].

The quantum cobordism of 2-knot is possible only in ZEO, where the quantum state as a time= constant snapshot is replaced with a superposition of space-time surfaces.

9.3 Could the existence of exotic smooth structures pose problems for TGD?

The article of Gabor Etesi [A49] (https://cutt.ly/2Md7JWP) gives a good idea about the physical significance of the existence of exotic smooth structures and how they destroy the cosmic censorship hypothesis (CCH of GRT stating that spacetimes of GRT are globally hyperbolic so that there are no time-like loops.

9.3.1 Smooth anomaly

No compact smoothable topological 4-manifold is known, which would allow only a single smooth structure. Even worse, the number of exotics is infinite in every known case! In the case of non-compact smoothable manifolds, which are physically of special interest, there is no obstruction against smoothness and they typically carry an uncountable family of exotic smooth structures.

One can argue that this is a catastrophe for classical general relativity since smoothness is an essential prerequisite for tensory analysis and partial differential equations. This also destroys hopes that the path integral formulation of quantum gravitation, involving path integral over all possible space-time geometries, could make sense. The term anomaly is certainly well-deserved.

Note however that for 3-geometries appearing as basic objects in Wheeler's superspace approach, the situation is different since for D < 3 there is only a single smooth structure. If one has holography, meaning that 3-geometry dictates 4-geometry, it might be possible to avoid the catastrophe.

The failure of the CCH is the basic message of Etesi's article. Any exotic R^4 fails to be globally hyperbolic and Etesi shows that it is possible to construct exact vacuum solutions representing curved space-times which violate the CCH. In other words, GRT is plagued by causal anomalies.

Etesi constructs a vacuum solution of Einstein's equations with a vanishing cosmological constant which is non-flat and could be interpreted as a pure gravitational radiation. This also represents one particular aspect of the energy problem of GRT: solutions with gravitational radiation should not be vacua.

1. Etesi takes any exotic R^4 which has the topology of $S^3 \times R$ and has an exotic smooth structure, which is not a Cartesian product. Etesi maps maps R^4 to CP_2 , which is obtained

from C^2 by gluing CP_1 to it as a maximal ball B_r^3 for which the radial Eguchi-Hanson coordinate approaches infinity: $r \to \infty$. The exotic smooth structure is induced by this map. The image of the exotic atlas defines atlas. The metric is that of CP_2 but SU(3) does not act as smooth isometries anymore.

2. After this Etesi performs Wick rotation to Minkowskian signature and obtains a vacuum solution of Einstein's equations for any exotic smooth structure of R^4 .

9.3.2 Can embedding space and related spaces have exotic smooth structure?

One can worry about the exotic smooth structures possibly associated with the M^4 , CP_2 , $H = M^4 \times CP_2$, causal diamond $CD = cd \times CP_2$, where cd is the intersection of the future and past directed light-cones of M^4 , and with M^8 . One can also worry about the twistor spaces CP_3 resp. $SU(3)/U(1) \times U(1)$ associated with M^4 resp. CP_2 .

The key assumption of TGD is that all these structures have maximal isometry groups so that they relate very closely to Lie groups, whose unique smooth structures are expected to determine their smooth structures.

1. The first sigh of relief is that all Lie groups have the standard smooth structure. In particular, exotic R^4 does not allow translations and Lorentz transformations as isometries. I dare to conclude that also the symmetric spaces like CP_2 and hyperbolic spaces such as $H^n = SO(1, n)/SO(n)$ are non-exotic since they provide a representation of a Lie group as isometries and the smoothness of the Lie group is inherited. This would mean that the charts for the coset space G/H would be obtained from the charts for G by an identification of the points of charts related by action of subgroup H.

Note that the mass shell H^3 , as any 3-surface, has a unique smooth structure by its dimension.

2. Second sigh of relief is that twistor spaces CP_3 and $SU(3)/U(1) \times U(1)$ have by their isometries and their coset space structure a standard smooth structure.

In accordance with the vision that the dynamics of fields is geometrized to that of surfaces, the space-time surface is replaced by the analog of twistor space represented by a 6-surface with a structure of S^2 bundle with space-time surface X^4 as a base-space in the 12-D product of twistor spaces of M^4 and CP_2 and by its dimension D = 6 can have only the standard smooth structure unless it somehow decomposes to $(S^3 \times R) \times R^2$. Holography of smoothness would prevent this since it has boundaries because X^4 as base space has boundaries at the boundaries of CD.

If exotic smoothness is allowed at the space-time level in the proposed sense ordinary smooth structure could be possible at the level of twistor space in the complement of a Cartesian product of the fiber space S^2 with a discrete set of points associated with partonic 2-surfaces.

- 3. cd is an intersection of future and past directed light-cones of M^4 . Future/past directed light-cone could be seen as a subset of M^4 and implies standard smooth structure is possible. Coordinate atlas of M^4 is restricted to cd and one can use Minkowski coordinates also inside the cd. cd could be also seen as a pile of light-cone boundaries $S^2 \times R_+$ and by its dimension $S^2 \times R$ allows only one smooth structure.
- 4. M^8 is a subspace of complexified octonions and has the structure of 8-D translation group, which implies standard smooth structure.

The conclusion is that continuous symmetries of the geometry dictate standard smoothness at the level of embedding space and related structures.

9.3.3 Could TGD eliminate the smoothness anomaly or provide a physical interpretation for it?

The question of exotic smoothness is encountered both at the level of embedding space and associated fixed spaces and at the level of space-time surfaces and their 6-D twistor space analogies.

What does the induction of a differentiable structure really mean? Here my naive expectations turn out to be wrong. If a sub-manifold $S \subset H$ can be regarded as an embedding of smooth manifold N to $S \subset H$, the embedding $N \to S \subset H$ induces a smooth structure in S (https://cutt.ly/tMtvG79). The problem is that the smooth structure would not be induced from H but from N and for a given 4-D manifold embedded to H one could also have exotic smooth structures. This induction of smooth structure is of course physically adhoc.

It is not possible to induce the smooth structure from H to sub-manifold. The atlas defining the smooth structure in H cannot define the charts for a sub-manifold (surface). For standard R^4 one has only one atlas.

Could holography of smoothness make sense in the general case?

The first trial to get rid of exotics was based on the holography of smoothness and did not involve TGD. Could a smooth structure at the boundary of a 4-manifold could dictate that of the manifold uniquely. Could one speak of holography for smoothness? Manifolds with boundaries would have the standard smooth structure.

- 1. The obvious objection is that the coordinate atlas for 3-D boundary cannot determine 4-D atlas in any way because the boundary cannot have information of the topology of the interior.
- 2. The holography for smoothness is also argued to fail (https://cutt.ly/3MewY0t). Assume a 4-manifold W with 2 different smooth structures. Remove a ball B^4 belonging to an open set U and construct a smooth structure at its boundary S^3 . Assume that this smooth structure can be continued to W. If the continuation is unique, the restrictions of the 2 smooth structures in the complement of B^4 would be equivalent but it is argued that they are not.
- 3. The first layman objection is that the two smooth structures of W are equivalent in the complement $W B^3$ of an arbitrary small ball $B^3 \subset W$ but not in the entire W. This would be analogous to coordinate singularity. For instance, a single coordinate chart is enough for a sphere in the complement of an arbitrarily small disk.

An exotic smooth structure would be like a local defect in condensed matter physics. In fact it turned out that this intuitive idea is correct: it can be shown that the exotic smooth structures are equivalent with standard smooth structure in a complement of a set having co-dimension zero (https://cutt.ly/7MbGqx2). This does not save the holography of smoothness in the general case but gives valuable hints for how exotic smoothness might be realized in TGD framework.

Could holography of smoothness make sense in the TGD framework?

Could $M^8 - H$ duality and holography make holography of smoothness possible in the TGD framework?

1. In the TGD framework space-time is 4-surface rather than abstract 4-manifold. 4-D general coordinate invariance, assuming that 3-surfaces as generalization of point-like particles are the basic objects, suggests a fully deterministic holography. A small failure of determinism is however possible and expected, and means that space-time surfaces analogous to Bohr orbits become fundamental objects. Could one avoid the smooth anomaly in this framework?

The 8-D embedding space topology induces 4-D topology. My first naive intuition was that the 4-D smooth structure, which I believed to be somehow inducible from that of $H = M^4 \times CP_2$, cannot be exotic so that in TGD physics the exotics could not be realized. But can one really exclude the possibility that the induced smooth structure could be exotic as a 4-D smooth structure?

- 2. In the TGD framework and at the level of $H = M^4 \times cP_2$, one can argue that the holography implied by the general coordinate invariance somehow determines the smooth structure in the interior of space-time surface from the coordinate atlas at the boundary. One would have a holography of smoothness. It is however not obvious why this unique structure should be the standard one.
- 3. One has also holography in M^8 and this induces holography in H by $M^8 H$ duality. The 3-surfaces X^3 inducing the holography in M^8 are parts of mass shells, which are hyperbolic spaces $H^3 \subset M^4 \subset M^8$. 3-surfaces X^3 could be even hyperbolic 3-manifolds as unit cells of tessellations of H^3 . These hyperbolic manifolds have unique smooth structures as manifolds with dimension D < 4.

The hypothesis is that one can assign to these 3-surfaces a 4-surface by a number theoretic dynamics requiring that the normal space is associative, that is quaternionic [L33, L34]. The additional condition is that the normal space contains commutative subspace makes it possible to parametrize normal spaces by points of CP_2 . $M^8 - H$ duality would map a given normal space to a point of CP_2 . $M^8 - H$ duality makes sense also for the twistor lift.

4. A more general statement would be as follows. A set of 3-surfaces as sub-manifolds of mass shells H_m^3 determined by the roots of polynomial P having interpretation as mass square values defining the 4-surface in M^8 take the role of the boundaries. Mass-shells H_m^3 or partonic 2-surfaces associated with them having particle interpretation could correspond to discontinuities of derivatives and even correspond to failure of manifold property analogous to that occurring for Feybman diagrams so that the holography of smoothness would decompose to a piece-wise holography.

The regions of $X^4 \subset M^8$ connecting two sub-sequent mass shells would have a unique smooth structure induced by the hyperbolic manifolds H^3 at the ends.

It is important to notice that the holography of smoothness does not force the smooth 4-D structure to be the standard one.

Could the exotic smooth structures have a physical interpretation in the TGD framework?

In the TGD framework, exotic smooth structures could also have a physical interpretation. As noticed, the failure of the standard smooth structure can be thought to occur at a point set of dimension zero and correspond to a set of point defects in condensed matter physics. This could have a deep physical meaning.

- 1. The space-time surfaces in $H = M^4 \times CP_2$ are images of 4-D surfaces of M^8 by $M^8 H$ duality. The proposal is that they reduce to minimal surfaces analogous to soap films spanned by frames. Regions of both Minkowskian and Euclidean signature are predicted and the latter correspond to wormhole contacts represented by CP_2 type extremals. The boundary between the Minkowskian and Euclidean region is a light-like 3-surface representing the orbit of partonic 2-surface identified as wormhole throat carrying fermionic lines as boundaries of string world sheets connecting orbits of partonic 2-surfaces.
- 2. These fermionic lines are counterparts of the lines of ordinary Feynman graphs, and have ends at the partonic 2-surfaces located at the light-like boundaries of CD and in the interior of the space-time surface. The partonic surfaces, actually a pair of them as opposite throats of wormhole contact, in the interior define topological vertices, at which light-like partonic orbits meet along their ends.
- 3. These points should be somehow special. Number theoretically they should correspond points with coordinates in an extension of rationals for a polynomial P defining 4-surface in Hand space-time surface in H by $M^8 - H$ duality. What comes first in mind is that the throats touch each other at these points so that the distance between Minkowskian spacetime sheets vanishes. This is analogous to singularities of Fermi surface encountered in topological condensed matter physics: the energy bands touch each other. In TGD, the

partonic 2-surfaces at the mass shells of M^4 defined by the roots of P are indeed analogs of Fermi surfaces at the level of $M^4 \subset M^8$, having interpretation as analog of momentum space.

Could these points correspond to the defects of the standard smooth structure in X^4 ? Note that the branching at the partonic 2-surface defining a topological vertex implies the local failure of the manifold property. Note that the vertices of an ordinary Feynman diagram imply that it is not a smooth 1-manifold.

- 4. Could the interpretation be that the 4-manifold obtained by removing the partonic 2-surface has exotic smooth structure with the defect of ordinary smooth structure assignable to the partonic 2-surface at its end. The situation would be rather similar to that for the representation of exotic R^4 as a surface in CP_2 with the sphere at infinity removed [A49].
- 5. The failure of the cosmic censorship would make possible a pair creation. As explained, the fermionic lines can indeed turn backwards in time by going through the wormhole throat and turn backwards in time. The above picture suggests that this turning occurs only at the singularities at which the partonic throats touch each other. The QFT analog would be as a local vertex for pair creation.
- 6. If all fermions at a given boundary of CD have the same sign of energy, fermions which have returned back to the boundary of CD, should correspond to antifermions without a change in the sign of energy. This would make pair creation without fermionic 4-vertices possible.

If only the total energy has a fixed sign at a given boundary of CD, the returned fermion could have a negative energy and correspond to an annihilation operator. This view is nearer to the QFT picture and the idea that physical states are Galois confined states of virtual fundamental fermions with momentum components, which are algebraic integers. One can also ask whether the reversal of the arrow of time for the fermionic lines could give rise to gravitational quantum computation as proposed in [A82].

A more detailed model for the exotic smooth structure associated with a topological 3-vertex

One can ask what happens to the 4-surface near the topological 3-particle vertex and what is the geometric interpretation of the point defect. The first is whether the description of the situation is possible both in M^8 and H. Here one must consider momentum conservation.

1. By Uncertainty Principle and momentum conservation at the level of M^8 , the incoming real momenta of the particle reaction are integers in the scale defined by CD. In the standard QFT picture, the momenta at the vertex of physical particles are at different mass shells.

In M^8 picture, the mass squared values of virtual fermions are in general algebraic and also complex roots of a polynomial defining the 3-D mass shells H_m^3 of $M^4 \subset M^8$, determining 4-surface by associative holography.

In the standard wave mechanical picture assumed also in TGD, a given topological vertex, describable in terms of partonic 2-surfaces, would correspond to a multi-local vertex in M^8 in accordance with the representation of a local n-vertex in M^4 as convolution of n-local vertices in momentum space realizing momentum conservation.

2. M^8-H duality maps M^4 momenta by inversion to positions in $M^4 \subset H$. This encourages the question whether the topological vertex could be described also in M^8 as a partonic surface at single algebraic mass shell in M^8 , mapped by $M^8 - H$ duality to a single a = constant hyperboloid in $M^4 \subset H$.

The virtual momenta at the level of M^8 are algebraic, in general complex, integers. The algebraic mass squared values at the mass shell of M^8 would be the same for all particles of the vertex. This kind of correspondence does not make sense if $M^8 - H$ duality applies to the full algebraic momenta. The assumption has been that it applies to the rational parts of the momenta.

3. The rational parts of the algebraic integer valued 4-momenta of virtual fermions are in general not at the same mass shell. Could this make possible a description in terms of partonic 2-surfaces at fixed mass *resp.* a = consant shell at the level of M^8 resp. H?

The classical space-time surface in H, partonic 2-surfaces and fermion lines at them are characterized by classical momenta by Noether's theorem. Quantum classical correspondence, realized in ZEO as Bohr orbitology, suggests that the classical 4-momenta assignable to these objects correspond to the rational parts of the momenta at M^8 mass shell. Could the rational projections of M^8 momenta at H_n^3 correspond to different mass squared values at given H^3 ?

4. Note that this additional symmetry for complexified momentum space and position space descriptions would be analogous to the duality of twistor amplitudes position space and the space of area momenta.

How to describe the topological vertex in H? The goal is to understand how exotic smooth structure and its point defects could emerge from this picture. The physical picture applied hitherto is as follows.

- 1. 3 partonic orbits meet at a vertex described by a partonic 2-surface. Assume that they are located to single $a = constant \ H^3 \subset M^4 \subset H$.
- 2. The partonic wormhole throats appear as pairs at the opposite Minkowskian space-time sheets. There are three pairs corresponding to 3 external particle lines and one line which must be a bosonic line describing fermion-antifermion bound state disappears: this corresponds to a boson absorption (or emission).

The opposite throats carry opposite magnetic monopole charges. The only possibility, not noticed before, is that the opposite wormhole throats for the partoni orbit, which ends at the vertex, must coincide at the vertex. The minimal option is that the exotic smooth structure is associated with this partonic orbit turning back in time. The two partonic orbits, which bind 4-D Euclidean regions as wormhole throats, would fuse to a larger 4-D surface with an exotic smooth structure.

Fermion-antifermion annihilation occurs at a point at which fermion and antifermion lines meet. The first guess is that this point corresponds to the defect of the smooth structure.

3. There is an analogy with the construction of Etesi [A49] in which a homologically non-trivial ball CP_1 glued to the C^2 at infinity to construct an exotic smooth structure. One dimension disappears for the glued 3-surface at infinity.

In the partonic vertex, one has actually two homologically non-trivial 2-surfaces with opposite homology charges as boundaries between wormhole contact and Minkowskian regions and they fuse together in the partonic vertex. Also now, one dimension disappears as the partonic 2-surfaces become identical so that 3-D wormhole contact contracts to single 2-D partonic 2-surface.

4. The defect for the smooth structure associated with the fusion of the pair of wormhole orbits should correspond to a point at which fermion and antifermion lines meet.

This suggests that the throats do not fuse instantaneously but gradually. The fusion would start from a single touching point identifiable asd the fermion-antifermion vertex, serving as a seed of a phase transition, and would proceed to the entire wormhole contact so that it reduces to a partonic 2-surface.

One can argue that one has a problem if this surface is homologically non-trivial. Could the process make the closed partonic 2-surface homologically trivial. A simplified example is the fusion of two circles with opposite winding numbers ± 1 on a cylinder. The outcome is two homologically non-trivial circles of opposite orientations on top of each other. The phase transition starting from a point would correspond to a touching of the circles.

A couple of further comments are in order.

1. The connection of the pair of wormhole throats to the associative holography is an interesting question. The 4-D tangent planes of $X^4 \subset M^8$ mass shell correspond to points of CP_2 . They would be different at the two parallel sheets.

At the mass shell H_m^3 the branches would coincide. The presence of two tangent planes could give rise to two different holographic orbits, which coincide at the initial mass shell and gradually diverge from each other just as in the above model for the fusion of partonic 2surfaces. The failure of the strict determinism for the associative holography at the partonic 2-surface would make in TGD the analogy of fermion-antifermion annihilation vertex possible.

2. There is also an analogy with the cusp catastrophe in which the projection of the cusp catastrophe as a 2-surface in 3-D space with behavior variable x and two control parameters (a, b) has a boundary at which two real roots of a polynomial of degree 3 coincide. The projection to the (a, b) plane gives a sharp shape, whose boundary is a V-shaped curve in which the sides of V become parallel at the vertex. The vertex corresponds to maximal criticality. The particle vertex would be a critical phenomenon in accordance with the interpretation as a phase transition.

9.3.4 Is a master formula for the scattering amplitudes possible?

Marko Manninen asked whether TGD can in some sense be reduced to a single equation or principle is very interesting. My basic answer is that one could reduce TGD to a handful of basic principles but formula analogous to F = ma is not possible. However, at the level of classical physics, one could perhaps say that general coordinate invariance \rightarrow holography \leftarrow 4-D generalization of holomorphy [L57, L54, L55] reduce the representations of preferred extremals as analogs of Bohr orbits for particles as 3-surfaces to a representation analogous to that of a holomorphic function.

Can one hope something analogous to happen at the level of scattering amplitudes? Is some kind of a master formula possible? I have considered many options, even replacing the S-matrix with the Kähler metric in the fermionic degrees of freedom [L36]. The motivation was that the rows of the matrix defining Kähler metric define unit vectors allowing interpretation in terms of probability conservation. However, it seems that the concept of zero energy state alone makes the definition unambiguous and unitarity is possible without additional assumptions.

1. In standard quantum field theory, correlation functions for quantum fields give rise to scattering amplitudes. In TGD, the fields are replaced by the spinor fields of the "world of classical worlds" (WCW) which can regarded as superpositions of pairs of multi-fermion states restricted at the 3-D surfaces at the ends of the 4-D Bohr orbits at the boundaries of CD.

These 3-surfaces are extremely strongly but not completely correlated by holography implied by 4-D general coordinate invariance. The modes of WCW spinor fields at the 3-D surfaces correspond to irreducible unitary representations of various symmetries, which include supersymplectic symmetries of WCW and Kac-Moody type symmetries [K19, K61] [L40, L49, L57]. Hence the inner product is unitary.

2. Whatever the detailed form of the 3-D parts of the modes of WCW spinor fields at the boundaries of CD is, they can be constructed from ordinary many fermion states. These many-fermion state correspond in the number theoretic vision of TGD to Galois singlets, which are states constructed at the level of M^8 from fermion with momenta whose components are possibly complex algebraic integers in the algebraic extension of rational defining the 4-D region of M^8 mapped to H by $M^8 - H$ duality. Complex momentum means that the corresponding state decomposes to plane waves with a continuum of momenta. The presence of Euclidian wormhole contact makes already the classical momenta complex.

Galois confined states have momenta, whose components are integers in the momentum scale defined by the causal diamond (CD). Galois confinement defines a universal mechanism for the formation of bound states. The induced spinor fields are second quantized free spinor fields in H and their Dirac propagators are therefore fixed. This means an enormou calculational simplification.

- 3. The inner products of these WCW spinor fields restricted to 3-surfaces determine the scattering amplitudes. They are non-trivial since the modes of WCW spinor fields are located at opposite boundaries of CD. These inner products define the zero energy state identifiable as such as scattering amplitudes. This is the case also in wave mechanics and quantum TGD is indeed wave mechanics for particles identified as 3-surfaces.
- 4. There is also a functional integral of these amplitudes over the WCW, i.e. over the 4-D Bohr orbits. This defines a unitary inner product. The functional integral replaces the path integral of field theory and is mathematically well-defined since the Kähler function, appearing in the exponent defining vacuum functional, is a non-local function of the 3-surface so that standard local divergences due to the point-like nature of particles disappear. Also the standard problems due to the presence of a Hessian coming from a Gaussian determinant is canceled by the square foot of the determinant of the Kähler metric appearing in the integration measure [?]
- 5. The restriction of the second quantized spinor fields to 4-surfaces and zero-energy ontology are absolutely essential. Induction turns free fermion fields into interacting ones. The spinor fields of H are free and define a trivial field theory in H. The restriction to space-time surfaces changes the situation. Non-trivial scattering amplitudes are obtained since the fermionic propagators restricted to the space-time surface are not anymore free propagators in H. Therefore the restriction of WCW spinors to the boundaries of CD makes the fermions interact in exactly the same way as it makes the induced spinor connection and the metric dynamical.

There are a lot of details involved that I don't understand, but it would seem that a simple "master formula" is possible. Nothing essentially new seems to be needed. There is however one more important "but".

Are pair production and boson emission possible?

The question that I have pondered a lot is whether the pair production and emission of bosons are possible in the TGD Universe. In this process the fermion number is conserved, but fermion and antifermion numbers are not conserved separately. In free field theories they are, and in the interacting quantum field theories, the introduction of boson fermion interaction vertices is necessary. This brings infinities into the theory.

- 1. In TGD, the second quantized fermions in H are free and the boson fields are not included as primary fields but are bound states of fermions and antifermions. Is it possible to produce pairs at all and therefore also bosons? For example, is the emission of a photon from an electron possible? If a photon is a fermion-antifermion pair, then the fermion and antifermion numbers cannot be preserved separately. How to achieve this?
- 2. If fundamental fermions correspond to light-like curves at light-like orbit of partonic 2surfaces, pair creation requires that that fermion trajectory turns in time direction. At this point velocity is infinite and this looks like a causal anomaly. There are two options: the fermion changes the sign of its energy or transforms to antiferion with the same sign of energy.

Different signs of energy are not possible since the annihilation operator creating the fermion with opposite energy would annihilate either the final state or some fermion in the final state so that both fermion and antifermion numbers of the final state would be the same as those of the initial state.

On the other hand, it can be said that positive energy antifermions propagate backwards in time because in the free fermion field since the terms proportional to fermion creation operators and antifermion annihilation operators appear in the expression of the field as sum of spinor modes.

Therefore a fermion-antifermion pair with positive energies can be created and corresponds to a pair of creation operators. It could also correspond to a boson emission and to a field theory vertex, in which the fermion, antifermion and boson occur. In TGD, however, the boson fields are not included as primary fields. Is such a "vertex without a vertex" possible at all?

3. Can one find an interpretation for this creation of a pair that is in harmony with the standard view. Space-time surfaces are associated with induced classical gauge potentials. In standard field theory, they couple to fermion-antifermion pairs, and pairs can be created in classical fields. The modified Dirac equation [K84] and the Dirac equation in *H* also have such a coupling. Now the modified Dirac equation holds true at the fermion lines at the light-like orbits of the partonic 2-surface. Does the creation of pairs happen in this way? It might do so: also in the path integral formalism of field theories, bosons basically correspond to classical fields and the vertex is just this except that in TGD fermions are restricted to 1-D lines.

9.3.5 Fundamental fermion pair creation vertices as local defects of the standard smooth structure of the space-time surface?

Here comes the possible connection with a very general mathematical problem of general relativity that I have already discussed.

- 1. Causal anomalies as time loops that break causality are more the rule than an exception in general relativity the essence of the causal anomaly is the reversal of the arrow of time. Causal anomalies correspond to exotic diffeo-structures that are possible only in dimension D = 4! Their number is infinite.
- 2. Quite generally, the exotic smooth structures reduce to defects of the usual differentiable structure and have measure zero. Assume that they are point like defects. Exotic differentiable structures are also possible in TGD, and the proposal is that the associated defects correspond to a creation of fermion-fermion pairs for emission of fermion pairs of of gauge bosons and Higgs particle identified in TGD as bound states of fermion-antifermion pairs. This picture generalizes also to the case of gravitons, which would involve a pair of vertices of this kind. The presence of 2 vertices might relate to the weakness of the gravitational interaction.

The reversal of the fermion line in time direction would correspond to a creation of a fermionantifermion pair: fermion and antiferion would have the same sign of energy. This would be a causal anomaly in the sense that the time direction of the fermion line is reversed so that it becomes an antifermion.

I have proposed that this causal anomaly is identifiable as an anomaly of differentiable structure so that emission of bosons and fermion pairs would only be possible in dimension 4: the space-time dimension would be unique!

3. But why would a point-like local defect of the differentiable structure correspond to a fermion pair creation vertex. In TGD, the point-like fermions correspond to 1-D light-like curves at the light-like orbit of the partonic 2-surface.

In the pair creation vertex in presence of classical induced gauge potentials, one would have a V-shaped world line of fermion turning backwards in time meaning that antifermion is transformed to fermion. The antifermion and fermion numbers are not separately conserved although the total fermion number is. If one assumes that the modified Dirac equation holds true along the entire fermion worldline, there would be no pair creation.

If it holds true only outside the V-shaped vertex the modified Dirac action for the V-shaped fermion libe can be transformed to a difference of antifermion number equal to the discontinuity of the antifermion part of the fermion current identified as an operator at the vertex. This would give rise to a non-trivial vertex and the modified gamma matrices would code information about classical bosonic action.

4. The 1-D curve formed by fermion and antifermion trajectories with opposite time direction turns backwards in time at the vertex. At the vertex, the curve is not differentiable and this is what the local defect of the standard smooth differentiable structure would mean physically!

9.3.6 Master formula for the scattering amplitudes: finally?

Most pieces that have been identified over the years in order to develop a master formula for the scattering amplitudes are as such more or less correct but always partially misunderstood. Maybe the time is finally ripe for the fusion of these pieces to a single coherent whole. I will try to list the pieces into a story in the following.

1. The vacuum functional, which is the exponential Kähler function defined by the classical bosonic action defining the preferred extremal a an analog of Bohr orbit, is the starting point. Physically, the Kähler function corresponds to the bosonic action (e.g. EYM) in field theories.

Because holography is almost unique, it replaces the path integral by a sum over 4-D Bohr trajectories as a functional integral over 3-surfaces plus discrete sum.

2. However, the fermionic part of the action is missing. I have proposed a long time ago a super symmetrization of the WCW Kähler function by adding to it what I call modified Dirac action. It relies on modified gamma matrices modified gamma matrices Γ^{α} , which are contractions $\Gamma_k T^{\alpha k}$ of H gamma matrices Γ_k with the canonical momentum currents $T^{\alpha k} = \partial L/\partial_{\partial_{\alpha}h^k}$ defined by the Lagrangian L. Modified Dirac action is therefore determined by the bosonic action from the requirement of supersymmetry. This supersymmetry is however quite different from the SUSY associated with the standard model and it assigns to fermine Noether currents their super counterparts.

Bosonic field equations for the space-time surface actually follow as hermiticity conditions for the modified Dirac equation. These equations also guarantee the conservation of fermion number(s). The overall super symmetrized action that defines super symmetrized Kähler function in WCW would be unambiguous. One would get exactly the same master formula as in quantum field theories, but without the path integral.

- 3. The overall super symmetrized action is sum of contributions assignable to the space-time surface itself, its 3-D light-like parton orbits as boundaries between Minkowskian regions and Euclidian wormhole contact, 2-D string world sheets and their 1-D boundaries as orbits of point-like fermions. These 1-D boundaries are the most important and analogous to the lines of ordinary Feynman diagrams. One obtains a dimensional hierarchy.
- 4. One can assign to these objects of varying dimension actions defined in terms of the induced geometry and spinor structure. The supersymmetric actions for the preferred extremals analogous to Bohr orbit in turn give contributions to the super symmetrized Kähler function as an analogue of the YM action so that, apart from the reduction of path integral to a sum over 4-D Bohr orbits, there is a very close analogy with the standard quantum field theory.

However, some problems are encountered.

1. It seems natural to assume that a modified Dirac equation holds true. I have presented an argument for how it indeed emerges from the induction for the second quantized spinor field in H restricted to the space-time surface assuming modified Dirac action.

The problem is, however, that the fermionic action, which should define vertex for fermion pair creation, disappears completely if Dirac's equation holds everywhere! One would not obtain interaction vertices in which pairs of fermions arise from classical induced fields. Something goes wrong. In this vertex total fermion number is conserved but fermion and antifermion numbers are changed since antifermion transforms to fermion at the V-shaped vertex: this condition should be essential.

2. If one gives up the modified Dirac equation, the fermionic action does not disappear. In this case, one should construct a Dirac propagator for the modified Dirac operator. This is an impossible task in practice.

Moreover, the construction of the propagator is not even necessary and in conflict with the fact that the induced spinor fields are second quantized spinors of H restricted to the space-time surface and the propagators are therefore well-defined and calculable and define the propagation at the space-time surface. 3. Should we conclude that the modified Dirac equation cannot hold everywhere? What these, presumably lower-dimensional regions of space-time surface, are and could they give the interaction vertices as topological vertices?

The key question is how to understand geometrically the emission of fermion pairs and bosons as their bound states?

1. I have previously derived a topological description for reaction vertices. The fundamental 1 \rightarrow 2 vertex (for example e \rightarrow e+ gamma) generalizes the basic vertex of Feynman diagrams, where a fermion emits a boson or a boson decays into a pair of fermions. Three lines meet at the ends.

In TGD, this vertex can topologically correspond to the decomposition of a 3-surface into two 3-surfaces, to the decomposition of a partonic 2-surface into two, to the decomposition of a string into two, and finally, to the turning of the fermion line backwards from time. One can say that the *n*-surfaces are glued together along their n - 1-dimensional ends, just like the 1-surfaces are glued at the vertex in the Feynman diagram.

2. In the previous section, I already discussed how to identify vertex for fermion-antifermion pair creation as a V-shaped turning point of a 1-D fermion line. The fermion line turns back in time and fermion becomes an antifermion. In TGD, the quantized boson field at the vertex is replaced by a classical boson field. This description is basically the same as in the ordinary path integral where the gauge potentials are classical.

The problem was that if the modified Dirac equation holds everywhere, there are no pair creation vertices. The solution of the problem is that the modified Dirac equation at the V-shaped vertex cannot hold true.

What this means physically is that fermion and antifermion numbers are not separately conserved in the vertex. The modified Dirac action for the fermion line can be transformed to the change of antifermion number as operator (or fermion number at the vertex) expressible as the change of the antifermion part of the fermion number. This is expressible as the discontinuity of a corresponding part of the conserved current at the vertex. This picture conforms with the appearance of gauge currents in gauge theory vertices. Notice that modified gamma matrices determined by the bosonic action appear in the current.

3. This argument was limited to 1-D objects but can be generalized to higher-dimensional defects by assuming that the modified Dirac equation holds true everywhere except at defects represented as vertices, which become surfaces. The modified Dirac action reduces to an integral of the discontinuity of say antifermion current at the vertex, i.e. the change of the antifermion charge as an operator.

What remains more precisely understood and generalized, is the connection with the irreducible exotic smooth structures possible only in 4-D space-time.

- 1. TGD strongly suggests that 0-dimensional vertices generalize to topological vertices representable as surfaces of dimension n = 0, 1, 2, 3 assignable to objects carrying induced spinor field. In the $1 \rightarrow 2$ vertex, the orbit of an n < 4- dimensional surface would turn back in the direction of time and would define a V-shaped structure in time direction. These would be the various topological vertices that I have previously arrived at, but guided by a physical intuition. Also now the vertex would boild down to the discontinuity of say antifermion current instead of the current itself at the vertex.
- 2. It is known that exotic smooth structures reduce to standard ones except in a set of defects having measure zero. Also non-point-like defects might be possible in contrast to what I assumed at first. If the defects are surfaces, their dimension is less than 4. If not, then only the direction of fermion lines could change.

If the generalization is possible, also 1-D, 2-D, and 3-D defects, defining an entire hierarchy of particles of different dimensions, is possible. As a matter of fact, a longstanding issue has been whether this prediction should be taken seriously. Note that in topological condensed
matter physics, defects with various dimensions are commonplace. One talks about bulk states, boundary states, edge states and point-like singularities. In this would predict hierarchy of fermionic object of various dimensions.

To summarize, exotic smooth structures would give vertices without vertices assuming only free fermions fields and no primary boson fields! And this is possible only in space-time dimension 4!

Chapter 10

Knots and TGD

10.1 Introduction

Witten has highly inspiring popular lecture about knots and quantum physics [A25] mentioning also his recent work with knots related to an attempt to understand Khovanov homology. Witten manages to explain in rather comprehensible way both the construction recipe of Jones polynomial and the idea about how Jones polynomial emerges from topological quantum field theory as a vacuum expectation of so called Wilson loop defined by path integral with weighting coming from Chern-Simons action [A42]. Witten also tells that during the last year he has been working with an attempt to understand in terms of quantum theory the so called Khovanov polynomial associated with a much more abstract link invariant whose interpretation and real understanding remains still open. In particular, he mentions the approach of Gukov, Schwartz, and Vafa [A55, A55] as an attempt to understand Khovanov polynomial.

This kind of talks are extremely inspiring and lead to a series of questions unavoidably culminating to the frustrating "Why I do not have the brain of Witten making perhaps possible to answer these questions?". This one must just accept. In the following I summarize some thoughts inspired by the associations of the talk of Witten with quantum TGD and with the model of DNA as topological quantum computer. In my own childish way I dare believe that these associations are interesting and dare also hope that some more brainy individual might take them seriously.

An idea inspired by TGD approach which also main streamer might find interesting is that the Jones invariant defined as vacuum expectation for a Wilson loop in 2+1-D space-time generalizes to a vacuum expectation for a collection of Wilson loops in 2+2-D space-time and could define an invariant for 2-D knots and for cobordisms of braids analogous to Jones polynomial. As a matter fact, it turns out that a generalization of gauge field known as gerbe is needed and that in TGD framework classical color gauge fields defined the gauge potentials of this field. Also topological string theory in 4-D space-time could define this kind of invariants. Of course, it might well be that this kind of ideas have been already discussed in literature.

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is to find a quantum physical construction of Khovanov homology analous to the topological QFT defined by Chern-Simons action allowing to interpret Jones polynomial as vacuum expectation value of Wilson loop in non-Abelian gauge theory.

Witten's approach to Khovanov homology relies on fivebranes as is natural if one tries to define 2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the difference in approaches it is very useful to try to find the counterparts of this approach in quantum TGD since this would allow to gain new insights to quantum TGD itself as almost topological QFT identified as symplectic theory for 2-knots, braids and braid cobordisms. This comparison turns out to be extremely useful from TGD point of view.

1. A highly unique identification of string world sheets and therefore also of the braids whose ends carry quantum numbers of many particle states at partonic 2-surfaces emerges if one identifies the string word sheets as singular surfaces in the same ways as is done in Witten's approach. This identification need not of course be correct and in TGD framework the localization of the modes of the induced spinor fields at 2-D surfaces carrying vanishing induced W boson fields guaranteeing that the em charge of spinor modes is well-defined for a generic preferred extremal is natural. Besides string world sheets partonic 2-surfaces are good candidates for this kind of surfaces. It is not clear whether one can have continuous slicing of this kind by string world sheets and partonic 2-surfaces orthogonal to them or whether only discrete set of these surfaces is possible.

2. Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges. P would correspond to instanton number and F to the fermion number assignable to right handed neutrinos. The breaking of M^4 chiral invariance makes possible to realize Q physically. The finding that the generalizations of Wilson loops can be identified in terms of the gerbe fluxes $\int H_A J$ supports the conjecture that TGD as almost topological QFT corresponds essentially to a symplectic theory for braids and 2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of generalization Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired by zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are needed if bosonic emergence holds true.

- 1. For this purpose the notion of algebraic knot is introduced and the possibility that it could be applied to generalized Feynman diagrams is discussed. The algebraic structrures kei, quandle, rack, and biquandle and their algebraic modifications as such are not enough. The lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute. This poses several challenges: the crossing associated with braiding and crossing occurring in non-planar Feynman diagrams should be integrated to a more general notion; braids are replaced with sub-manifold braids; braids of braids....of braids are possible; the redistribution of braid strands in vertices should be algebraized. In the following I try to abstract the basic operations which should be algebraized in the case of generalized Feynman diagrams.
- 2. One should be also able to concretely identify braids and 2-braids (string world sheets) as well as partonic 2-surfaces and I have discussed several identifications during last years. Legendrian braids turn out to be very natural candidates for braids and their duals for the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of Lagrangian sub-manifolds or two minimal surfaces of space-time surface satisfying the weak form of electric-magnetic duality. The latter option turns out to be more plausible. This identification if correct would solve quantum TGD explicitly at string world sheet level which corresponds to finite measurement resolution.
- 3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This requires the identification of vertices, propagators, and prescription for integrating over al 3-surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are well-defined.

The appendix of the book gives a summary about basic concepts of TGD with illustrations. There are concept maps about topics related to the contents of the chapter prepared using CMAP realized as html files. Links to all CMAP files can be found at http://tgdtheory.fi/cmaphtml.html [L13].

10.2 Some TGD Background

What makes quantum TGD [L3, L4, L7, L8, L5, L2, L6, L9] interesting concerning the description of braids and braid cobordisms is that braids and braid cobordisms emerge both at the level of generalized Feynman diagrams and in the model of DNA as a topological quantum computer [K3].

10.2.1 Time-Like And Space-Like Braidings For Generalized Feynman Diagrams

1. In TGD framework space-times are 4-D surfaces in 8-D embedding space. Basic objects are partonic 2-surfaces at the two ends of causal diamonds CD (intersections of future and past directed light-cones of 4-D Minkowski space with each point replaced with CP_2). The light-like orbits of partonic 2-surfaces define 3-D light-like 3-surfaces identifiable as lines of generalized Feynman diagrams. At the vertices of generalized Feynman diagrams incoming and outgoing light-like 3-surfaces meet. These diagrams are not direct generalizations of string diagrams since they are singular as 4-D manifolds just like the ordinary Feynman diagrams.

By strong form of holography one can assign to the partonic 2-surfaces and their tangent space data space-time surfaces as preferred extremals of Kähler action. This guarantees also general coordinate invariance and allows to interpret the extremals as generalized Bohr orbits.

- 2. One can assign to the partonic 2-surfaces discrete sets of points carrying quantum numbers. These sets of points emerge from the solutions of the Kähler-Dirac equation, which are localized at 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - carrying vanishing induced W fields and also Z^0 fields above weak scale. These points and their orbits identifiable as boundaries of string world sheets define braid strands at the light-like orbits of partonic 2-surfaces. In the generic case the strands get tangled in time direction and one has linking and knotting giving rise to a time-like braiding. String world sheets and also partonic surfaces define 2-braids and 2-knots at 4-D space-time surface so that knot theory generalizes.
- 3. Also space-like braidings are possible. One can imagine that the partonic 2-surfaces are connected by space-like curves defining TGD counterparts for strings and that in the initial state these curves define space-like braids whose ends belong to different partonic 2-surfaces. Quite generally, the basic conjecture is that the preferred extremals define orbits of string-like objects with their ends at the partonic 2-surfaces. One would have slicing of space-time surfaces by string world sheets one one hand and by partonic 2-surface on one hand. This string model is very special due to the fact that the string orbits define what could be called braid cobordisms representing which could represent unknotting of braids. String orbits in higher dimensional space-times do not allow this topological interpretation.

10.2.2 Dance Metaphor

Time like braidings induces space-like braidings and one can speak of time-like or dynamical braiding and even duality of time-like and space-like braiding. What happens can be understood in terms of dance metaphor.

- 1. One can imagine that the points carrying quantum numbers are like dancers at parquettes defined by partonic 2-surfaces. These parquettes are somewhat special in that it is moving and changing its shape.
- 2. Space-like braidings means that the feet of the dancers at different parquettes are connected by threads. As the dance continues, the threads connecting the feet of different dancers at different parquettes get tangled so that the dance is coded to the braiding of the threads. Time-like braiding induce space-like braiding. One has what might be called a cobordism for space-like braiding transforming it to a new one.

10.2.3 DNA As Topological Quantum Computer

The model for topological quantum computation is based on the idea that time-like braidings defining topological quantum computer programs. These programs are robust since the topology of braiding is not affected by small deformations.

- The first key idea in the model of DNA as topological quantum computer is based on the observation that the lipids of cell membrane form a 2-D liquid whose flow defines the dance in which dancers are lipids which define a flow pattern defining a topological quantum computation. Lipid layers assignable to cellular and nuclear membranes are the parquettes. This 2-D flow pattern can be induced by the liquid flow near the cell membrane or in case of nerve pulse transmission by the nerve pulses flowing along the axon. This alone defines topological quantum computation.
- 2. In DNA as topological quantum computer model one however makes a stronger assumption motivated by the vision that DNA is the brain of cell and that information must be communicated to DNA level wherefrom it is communicated to what I call magnetic body. It is assumed that the lipids of the cell membrane are connected to DNA nucleotides by magnetic flux tubes defining a space-like braiding. It is also possible to connect lipids of cell membrane to the lipids of other cell membranes, to the tubulins at the surfaces of microtubules, and also to the aminoadics of proteins. The spectrum of possibilities is really wide.

The space-like braid strands would correspond to magnetic flux tubes connecting DNA nucleotides to lipids of nuclear or cell membrane. The running of the topological quantum computer program defined by the time-like braiding induced by the lipid flow would be coded to a space-like braiding of the magnetic flux tubes. The braiding of the flux tubes would define a universal memory storage mechanism and combined with 4-D view about memory provides a very simple view about how memories are stored and how they are recalled.

10.3 Could Braid Cobordisms Define More General Braid Invariants?

Witten says that one should somehow generalize the notion of knot invariant. The above described framework indeed suggests a very natural generalization of braid invariants to those of braid cobordisms reducing to braid invariants when the braid at the other end is trivial. This description is especially natural in TGD but allows a generalization in which Wilson loops in 4-D sense describe invariants of braid cobordisms.

10.3.1 Difference Between Knotting And Linking

Before my modest proposal of a more general invariant some comments about knotting and linking are in order.

- 1. One must distinguish between internal knotting of each braid strand and linking of 2 strands. They look the same in the 3-D case but in higher dimensions knotting and linking are not the same thing. Codimension 2 surfaces get knotted in the generic case, in particular the 2-D orbits of the braid strands can get knotted so that this gives additional topological flavor to the theory of strings in 4-D space-time. Linking occurs for two surfaces whose dimension d_1 and d_2 satisfying $d_1 + d_2 = D - 1$, where D is the dimension of the embedding space.
- 2. 2-D orbits of strings do not link in 4-D space-time but do something more radical since the sum of their dimensions is D = 4 rather than only D - 1 = 3. They intersect and it is impossible to eliminate the intersection without a change of topology of the stringy 2-surfaces: a hole is generated in either string world sheet. With a slight deformation intersection can be made to occur generically at discrete points.

10.3.2 Topological Strings In 4-D Space-Time Define Knot Cobordisms

What makes the 4-D braid cobordisms interesting is following.

1. The opening of knot by using brute force by forcing the strands to go through each other induces this kind of intersection point for the corresponding 2-surfaces. From 3-D perspective this looks like a temporary cutting of second string, drawing the string ends to some distance and bringing them back and gluing together as one approaches the moment when the strings

would go through each other. This surgical operation for either string produces a pair of nonintersecting 2-surfaces with the price that the second string world sheet becomes topologically non-trivial carrying a hole in the region were intersection would occur. This operation relates a given crossing of braid strands to its dual crossing in the construction of Jones polynomial in given step (string 1 above string 2 is transformed to string 2 above string 1).

- 2. One can also cut both strings temporarily and glue them back together in such a way that end a/b of string 1 is glued to the end c/d of string 2. This gives two possibilities corresponding to two kinds of reconnections. Reconnections appears as the second operation in the construction of Jones invariant besides the operation putting the string above the second one below it or vice versa. Jones polynomial (see http://tinyurl.com/2jctzy) relates in a simple manner to Kauffman bracket (see http://tinyurl.com/yc2wu47x) allowing a recursive construction. At a given step a crossing is replaced with a weighted sum of the two reconnected terms [A1, A12]. Reconnection represents the analog of trouser vertex for closed strings replaced with braid strands.
- 3. These observations suggest that stringy diagrams describe the braid cobordisms and a kind of topological open string model in 4-D space-time could be used to construct invariants of braid cobordisms. The dynamics of strand ends at the partonic 2-surfaces would partially induce the dynamics of the space-like braiding. This dynamics need not induce the un-knotting of space-like braids and simple string diagrams for open strings are enough to define a cobordism leading to un-knotting. The holes needed to realize the crossover for braid strands would contribute to the Wilson loop an additional factor corresponding to the rotation of the gauge potential around the boundary of the hole (non-integrable phase factor). In abelian case this gives simple commuting phase factor.

Note that braids are actually much more closer to the real world than knots since a useful strand of knotted structure must end somewhere. The abstract closed loops of mathematician floating in empty space are not very useful in real life albeit mathematically very convenient as Witten notices. Also the braid cobordisms with ends of a collection of space-like braids at the ends of causal diamond are more practical than 2-knots in 4-D space. Mathematician would see these objects as analogous to surfaces in relative homology allowed to have boundaries if they located at fixed sub-manifolds. Homology for curves with ends fixed to be on some surfaces is a good example of this. Now these fixed sub-manifolds would correspond to space-like 3-surfaces at the ends CDs and light-like wormhole throats at which the signature of the induced metric changes and which are carriers of elementary particle quantum numbers.

10.4 Invariants 2-Knots As Vacuum Expectations Of Wilson Loops In 4-D Space-Time?

The interpretation of string world sheets in terms of Wilson loops in 4-dimensional space-time is very natural. This raises the question whether Witten's a original identification of the Jones polynomial as vacuum expectation for a Wilson loop in 2+1-D space might be replaced with a vacuum expectation for a collection of Wilson loops in 3+1-D space-time and would characterize in the general case (multi-)braid cobordism rather than braid. If the braid at the lower or upped boundary is trivial, braid invariant is obtained. The intersections of the Wilson loops would correspond to the violent un-knotting operations and the boundaries of the resulting holes give an additional Wilson loop. An alternative interpretation would be as the analog of Jones polynomial for 2-D knots in 4-D space-time generalizing Witten's theory. This description looks completely general and does not require TGD at all.

The following considerations suggest that Wilson loops are not enough for the description of general 2-knots and that Wilson loops must be replaced with 2-D fluxes. This requires a generalization of gauge field concept so that it corresponds to a 3-form instead of 2-form is needed. In TGD framework this kind of generalized gauge fields exist and their gauge potentials correspond to classical color gauge fields. It is easy to imagine what ordinary knottedness means. One has circle imbedded in 3-space. One projects it in some plane and looks for crossings. If there are no crossings one knows that un-knot is in question. One can modify a given crossing by forcing the strands to go through each other and this either generates or removes knottedness. One can also destroy crossing by reconnection and this always reduces knottedness. Since knotting reduces to linking in 3-D case, one can find a simple interpretation for knottedness in terms of linking of two circles. For 2-knots linking is not what gives rise to knotting.

One might hope to find something similar in the case of 2-knots. Can one imagine some simple local operations which either increase of reduce 2-knottedness?

- 1. To proceed let us consider as simple situation as possible. Put sphere in 3-D time= constant section E^3 of 4-space. Add a another sphere to the same section E^3 such that the corresponding balls do not intersect. How could one build from these two spheres a knotted 2-sphere?
- 2. From two spheres one can build a single sphere in topological sense by connecting them with a small cylindrical tube connecting the boundaries of disks (circles) removed from the two spheres. If this is done in E^3 , a trivial 2-knot results. One can however do the gluing of the cylinder in a more exotic manner by going temporarily to "hyper-space", in other words making a time travel. Let the cylinder leave the second sphere from the outer surface, let it go to future or past and return back to recent but through the interior. This is a good candidate for a knotted sphere since the attempts to deform it to self-non-intersecting sphere in E^3 are expected to fail since the cylinder starting from interior necessarily goes through the surface of sphere if wants to the exterior of the sphere.
- 3. One has actually 2×2 ways to perform the connected sum of 2-spheres depending on whether the cylinders leave the spheres through exterior or interior. At least one of them (exteriorexterior) gives an un-knotted sphere and intuition suggests that all the three remaining options requiring getting out from the interior of sphere give a knotted 2-sphere. One can add to the resulting knotted sphere new spheres in the same manner and obtain an infinite number of them. As a matter fact, the proposed 1+3 possibilities correspond to different versions of connected sum and one could speak of knotting and non-knotting connected sums. If the addition of knotted spheres is performed by non-knotting connected sum, one obtains composites of already existing 2-knots. Connected sum composition is analogous to the composition of integer to a product of primes. One indeed speaks of prime knots and the number of prime knots is infinite. Of course, it is far from clear whether the connected sum operation is enough to build all knots. For instance it might well be that cobordisms of 1-braids produces knots not producible in this manner. In particular, the effects of timelike braiding induce braiding of space-like strands and this looks totally different from local knotting.

10.4.2 Are All Possible 2-Knots Possible For Stringy WorldSheets?

Whether all possible 2-knots are allowed for stringy world sheets, is not clear. In particular, if they are dynamically determined it might happen that many possibilities are not realized. For instance, the condition that the signature of the induced metric is Minkowskian could be an effective killer of 2-knottedness not reducing to braid cobordism.

1. One must start from string world sheets with Minkowskian signature of the induced metric. In other words, in the previous construction one must E^3 with 3-dimensional Minkowski space M^3 with metric signature 1+2 containing the spheres used in the construction. Time travel is replaced with a travel in space-like hyper dimension. This is not a problem as such. The spheres however have at least one two special points corresponding to extrema at which the time coordinate has a local minimum or maximum. At these points the induced metric is necessarily degenerate meaning that its determinant vanishes. If one allows this kind of singular points one can have elementary knotted spheres. This liberal attitude is encouraged by the fact that the light-like 3-surfaces defining the basic dynamical objects of quantum TGD correspond to surfaces at which 4-D induced metric is degenerate. Otherwise 2-knotting reduces to that induced by cobordisms of 1-braids. If one allows only the 2-knots assignable to the slicings of the space-time surface by string world sheets and even restricts the consideration to those suggested by the duality of 2-D generalization of Wilson loops for string world sheets and partonic 2-surfaces, it could happen that the string world sheets reduce to braidings.

2. The time=constant intersections define a representation of 2-knots as a continuous sequence of 1-braids. For critical times the character of the 1-braids changes. In the case of braiding this corresponds to the basic operations for 1-knots having interpretation as string diagrams (reconnection and analog of trouser vertex). The possibility of genuine 2-knottedness brings in also the possibility that strings pop up from vacuum as points, expand to closed strings, are fused to stringy words sheet temporarily by the analog of trouser vertex, and eventually return to the vacuum. Essentially trouser diagram but second string open and second string closed and beginning from vacuum and ending to it is in question. Vacuum bubble interacting with open string would be in question. The believer in string model might be eager to accept this picture but one must be cautious.

10.4.3 Are Wilson Loops Enough For 2-Knots?

Suppose that the space-like braid strands connecting partonic 2-surfaces at given boundary of CD and light-like braids connecting partonic 2-surfaces belonging to opposite boundaries of CD form connected closed strands. The collection of closed loops can be identified as boundaries of Wilson loops and the expectation value is defined as the product of traces assignable to the loops. The definition is exactly the same as in 2+1-D case [A42].

Is this generalization of Wilson loops enough to describe 2-knots? In the spirit of the proposed philosophy one could ask whether there exist two-knots not reducible to cobordisms of 1-knots whose knot invariants require cobordisms of 2-knots and therefore 2-braids in 5-D spacetime. Could it be that dimension D = 4 is somehow very special so that there is no need to go to D = 5? This might be the case since for ordinary knots Jones polynomial is very faithful invariant.

Innocent novice could try to answer the question in the following manner. Let us study what happens locally as the 2-D closed surface in 4-D space gets knotted.

- 1. In 1-D case knotting reduces to linking and means that the first homotopy group of the knot complement is changed so that the embedding of first circle implies that the there exists embedding of the second circle that cannot be transformed to each other without cutting the first circle temporarily. This phenomenon occurs also for single circle as the connected sum operation for two linked circles producing single knotted circle demonstrates.
- 2. In 2-D case the complement of knotted 2-sphere has a non-trivial second homotopy group so that 2-balls have homotopically non- equivalent embeddings, which cannot be transformed to each other without intersection of the 2-balls taking place during the process. Therefore the description of 2-knotting in the proposed manner would require cobordisms of 2-knots and thus 5-D space-time surfaces. However, since 3-D description for ordinary knots works so well, one could hope that the generalization the notion of Wilson loop could allow to avoid 5-D description altogether. The generalized Wilson loops would be assigned to 2-D surfaces and gauge potential A would be replaced with 2-gauge potential B defining a three-form F = dB as the analog of gauge field.
- 3. This generalization of bundle structure known as gerbe structure has been introduced in algebraic geometry [A8, A72] and studied also in theoretical physics [A62]. 3-forms appear as analogs of gauge fields also in the QFT limit of string model. Algebraic geometer would see gerbe as a generalization of bundle structure in which gauge group is replaced with a gauge groupoid. Essentially a structure of structures seems to be in question. For instance, the principal bundles with given structure group for given space defines a gerbe. In the recent case the space of gauge fields in space-time could be seen as a generalization of loop spaces. Lie groups define a much more mundane example about gerbe. The 3-form F is given by

F(X, Y, Z) = B(X, [Y, Z]), where B is Killing form and for U(n) reduces to $(g^{-1}dg)^3$. It will be found that classical color gauge fields define gerbe gauge potentials in TGD framework in a natural manner.

10.5 TGD Inspired Theory Of Braid Cobordisms And 2-Knots

In the sequel the considerations are restricted to TGD and to a comparison of Witten's ideas with those emerging in TGD framework.

10.5.1 Weak Form Of Electric-Magnetic Duality And Duality Of Space-Like And Time-Like Braidings

Witten notices that much of his work in physics relies on the assumption that magnetic charges exist and that rather frustratingly, cosmic inflation implies that all traces of them disappear. In TGD Universe the non-trivial topology of CP_2 makes possible Kähler magnetic charge and inflation is replaced with quantum criticality. The recent view about elementary particles is that they correspond to string like objects with length of order electro-weak scale with Kähler magnetically charged wormhole throats at their ends. Therefore magnetic charges would be there and LHC might be able to detect their signatures if LHC would get the idea of trying to do this.

Witten mentions also electric-magnetic duality. If I understood correctly, Witten believes that it might provide interesting new insights to the knot invariants. In TGD framework one speaks about weak form of electric magnetic duality. This duality states that Kähler electric fluxes at space-like ends of the space-time sheets inside CDs and at wormhole throats are proportional to Kähler magnetic fluxes so that the quantization of Kähler electric charge quantization reduces to purely homological quantization of Kähler magnetic charge.

The weak form of electric-magnetic duality fixes the boundary conditions of field equations at the light-like and space-like 3-surfaces. Together with the conjecture that the Kähler current is proportional to the corresponding instanton current this implies that Kähler action for the preferred extremal sof Kähler action reduces to 3-D Chern-Simons term so that TGD reduces to almost topological QFT. This means an enormous mathematical simplification of the theory and gives hopes about the solvability of the theory. Since knot invariants are defined in terms of Abelian Chern-Simons action for induced Kähler gauge potential, one might hope that TGD could as a by-product define invariants of braid cobordisms in terms of the unitary U-matrix of the theory between zero energy states. The detailed construction of U-matrix is discussed in [K46].

Electric magnetic duality is 4-D phenomenon as is also the duality between space-like and time like braidings essential also for the model of topological quantum computation. Also this suggests that some kind of topological string theory for the space-time sheets inside CDs could allow to define the braid cobordism invariants.

10.5.2 Could Kähler Magnetic Fluxes Define Invariants Of Braid Cobordisms?

Can one imagine of defining knot invariants or more generally, invariants of knot cobordism in this framework? As a matter fact, also Jones polynomial describes the process of unknotting and the replacement of unknotting with a general cobordism would define a more general invariant. Whether the Khovanov invariants might be understood in this more general framework is an interesting question.

1. One can assign to the 2-dimensional stringy surfaces defined by the orbits of space-like braid strands Kähler magnetic fluxes as flux integrals over these surfaces and these integrals depend only on the end points of the space-like strands so that one deform the space-like strands in an arbitrarily manner. One can in fact assign these kind of invariants to pairs of knots and these invariants define the dancing operation transforming these knots to each other. In the special case that the second knot is un-knot one obtains a knot-invariant (or link- or braid-invariant).

- 2. The objection is that these invariants depend on the orbits of the end points of the space-like braid strands. Does this mean that one should perform an averaging over the ends with the condition that space-like braid is not affected topologically by the allowed deformations for the positions of the end points?
- 3. Under what conditions on deformation the magnetic fluxes are not affect in the deformation of the braid strands at 3-D surfaces? The change of the Kähler magnetic flux is magnetic flux over the closed 2-surface defined by initial non-deformed and deformed stringy two-surfaces minus flux over the 2-surfaces defined by the original time-like and space-like braid strands connected by a thin 2-surface to their small deformations. This is the case if the deformation corresponds to a U(1) gauge transformation for a Kähler flux. That is diffeomorphism of M^4 and symplectic transformation of CP_2 inducing the U(1) gauge transformation.

Hence a natural equivalence for braids is defined by these transformations. This is quite not a topological equivalence but quite a general one. Symplectic transformations of CP_2 at light-like and space-like 3-surfaces define isometries of the world of classical worlds so that also in this sense the equivalence is natural. Note that the deformations of space-time surfaces correspond to this kind of transformations only at space-like 3-surfaces at the ends of CDs and at the light-like wormhole throats where the signature of the induced metric changes. In fact, in quantum TGD the sub-spaces of world of classical worlds with constant values of zero modes (non-quantum fluctuating degrees of freedom) correspond to orbits of 3-surfaces under symplectic transformations so that the symplectic restriction looks rather natural also from the point of view of quantum dynamics and the vacuum expectation defined by Kähler function be defined for physical states.

- 4. A further possibility is that the light-like and space-like 3-surfaces carry vanishing induced Kähler fields and represent surfaces in $M^4 \times Y^2$, where Y^2 is Lagrangian sub-manifold of CP_2 carrying vanishing Kähler form. The interior of space-time surface could in principle carry a non-vanishing Kähler form. In this case weak form of self-duality cannot hold true. This however implies that the Kähler magnetic fluxes vanish identically as circulations of Kähler gauge potential. The non-integrable phase factors defined by electroweak gauge potentials would however define non-trivial classical Wilson loops. Also electromagnetic field would do so. It would be therefore possible to imagine vacuum expectation value of Wilson loop for given quantum state. Exponent of Kähler action would define for non-vacuum extremals the weighting. For 4-D vacuum extremals this exponent is trivial and one might imagine of using imaginary exponent of electroweak Chern-Simons action. Whether the restriction to vacuum extremals in the definition of vacuum expectations of electroweak Wilson loops could define general enough invariants for braid cobordisms remains an open question.
- 5. The quantum expectation values for Wilson loops are non-Abelian generalizations of exponentials for the expectation values of Kähler magnetic fluxes. The classical color field is proportional to the induced Kähler form and its holonomy is Abelian which raises the question whether the non-Abelian Wilson loops for classical color gauge field could be expressible in terms of Kähler magnetic fluxes.

10.5.3 Classical Color Gauge Fields And Their Generalizations Define Gerbe Gauge Potentials Allowing To Replace Wilson Loops With Wilson Sheets

As already noticed, the description of 2-knots seems to necessitate the generalization of gauge field to 3-form and the introduction of a gerbe structure. This seems to be possible in TGD framework.

1. Classical color gauge fields are proportional to the products $B_A = H_A J$ of the Hamiltonians of color isometries and of Kähler form and the closed 3-form $F_A = dB_A = dH_A \wedge J$ could serve as a colored 3-form defining the analog of U(1) gauge field. What would be interesting that color would make F non-vanishing. The "circulation" $h_A = \oint H_A J$ over a closed partonic 2surface transforms covariantly under symplectic transformations of CP_2 , whose Hamiltonians can be assigned to irreps of SU(3): just the commutator of Hamiltonians defined by Poisson bracket appears in the infinitesimal transformation. One could hope that the expectation values for the exponents of the fluxes of B_A over 2-knots could define the covariants able to catch 2-knotted-ness in TGD framework. The exponent defining Wilson loop would be replaced with $exp(iQ^Ah_A)$, where Q^A denote color charges acting as operators on particles involved.

- 2. Since the symplectic group acting on partonic 2-surfaces at the boundary of CD replaces color group as a gauge group in TGD, one can ask whether symplectic SU(3) should be actually replaced with the entire symplectic group of $\cup_{\pm} \delta M_{\pm}^4 \times CP_2$ with Hamiltonians carrying both spin and color quantum numbers. The symplectic fluxes $\oint H_A J$ are indeed used in the construction of both quantum states and of WCW geometry. This generalization is indeed possible for the gauge potentials $B_A J$ so that one would have infinite number of classical gauge fields having also interpretation as gerbe gauge potentials.
- 3. The objection is that symplectic transformations are not symmetries of Kähler action. Therefore the action of symplectic transformation induced on the space-time surface reduces to a symplectic transformation only at the partonic 2-surfaces. This spoils the covariant transformation law for the 2-fluxes over stringy world sheets unless there exist preferred stringy world sheets for which the action is covariant. The proposed duality between the descriptions based on partonic 2-surfaces and stringy world sheets realized in terms of slicings of space-time surface by string world sheets and partonic 2-surfaces suggests that this might be the case.

This would mean that one can attach to a given partonic 2-surface a unique collection string world sheets. The duality suggests even stronger condition stating that the total exponents $exp(iQ^Ah_A)$ of fluxes are the same irrespective whether h_A evaluated for partonic 2-surfaces or for string world sheets defining the analog of 2-knot. This would mean an immense calculational simplification! This duality would correspond very closely to the weak form of electric magnetic duality whose various forms I have pondered as a must for the geometry of WCW. Partonic 2-surfaces indeed correspond to magnetic monopoles at least for elementary particles and stringy world sheets to surfaces carrying electric flux (note that in the exponent magnetic charges do not make themselves visible so that the identity can make sense also for $H_A = 1$).

4. Quantum expectation means in TGD framework a functional integral over the symplectic orbits of partonic 2-surfaces plus 4-D tangent space data assigned to the upper and lower boundaries of CD. Suppose that holography fixes the space-like 3-surfaces at the ends of CD and light-like orbits of partonic 2-surfaces. In completely general case the braids and the stringy space-time sheets could be fixed using a representation in terms of space-time coordinates so that the representation would be always the same but the embedding varies as also the values of the exponent of Kähler function, of the Wilson loop, and of its 2-D generalization. The functional integral over symplectic transforms of 3-surfaces implies that Wilson loop and its 2-D generalization varies.

The proposed duality however suggests that both Wilson loop and its 2-D generalization are actually fixed by the dynamics of quantum TGD. One can ask whether the presence of 2-D analog of Wilson loop has a direct physical meaning bringing into almost topological stringy dynamics associated with color quantum numbers and coding explicit information about space-time interior and topology of field lines so that color dynamics would also have interpretation as a theory of 2-knots. If the proposed duality suggested by holography holds true, only the data at partonic 2-surfaces would be needed to calculate the generalized Wilson loops.

In TGD framework the localization of the modes of the induced spinor fields at 2-D surfaces carrying vanishing induced W boson fields guaranteeing that the em charge of spinor modes is well-defined for a generic preferred extremal is natural [K84]. Besides string world sheets partonic 2-surfaces are good candidates for this kind of surfaces. It is not clear whether one can have a continuous slicing of this kind by string world sheets and partonic 2-surfaces orthogonal to them or whether only discrete set of these surfaces is possible.

This picture is very speculative and sounds too good to be true but follows if one consistently applies holography.

10.5.4 Summing Sup The Basic Ideas

Let us summarize the ideas discussed above.

1. Instead of knots, links, and braids one could study knot and link cobordisms, that is their dynamical evolutions concretizable in terms of dance metaphor and in terms of interacting string world sheets. Each space-like braid strand can have purely internal knotting and braid strands can be linked. TGD could allow to identify uniquely both space-like and time-like braid strands and thus also the stringy world sheets more or less uniquely and it could be that the dynamics induces automatically the temporary cutting of braid strands when knot is opened violently so that a hole is generated. Gerbe gauge potentials defined by classical color gauge fields could make also possible to characterize 2-knottedness in symplectic invariant manner in terms of color gauge fluxes over 2-surfaces.

The weak form of electric-magnetic duality would reduce the situation to almost topological QFT in general case with topological invariance replaced with symplectic one which corresponds to the fixing of the values of non-quantum fluctuating zero modes in quantum TGD. In the vacuum sector it would be possible to have the counterparts of Wilson loops weighted by 3-D electroweak Chern-Simons action defined by the induced spinor connection.

2. One could also leave TGD framework and define invariants of braid cobordisms and 2-D analogs of braids as vacuum expectations of Wilson loops using Chern-Simons action assigned to 3-surfaces at which space-like and time-like braid strands end. The presence of light-like and space-like 3-surfaces assignable to causal diamonds could be assumed also now.

I checked whether the article of Gukov, Scwhartz, and Vafa entitled "Khovanov-Rozansky Homology and Topological Strings" [A55, A55] relies on the primitive topological observations made above. This does not seem to be the case. The topological strings in this case are strings in 6-D space rather than 4-D space-time.

There is also an article by Dror Bar-Natan with title "Khovanov's homology for tangles and cobordisms" [A37]. The article states that the Khovanov homology theory for knots and links generalizes to tangles, cobordisms and 2-knots. The article does not say anything explicit about Wilson loops but talks about topological QFTs.

An article of Witten about his physical approach to Khovanov homology has appeared in arXiv [A43]. The article is more or less abracadabra for anyone not working with M-theory but the basic idea is simple. Witten reformulates 3-D Chern-Simons theory as a path integral for $\mathcal{N} = 4$ SYM in the 4-D half space $W \times ; R$. This allows him to use dualities and bring in the machinery of M-theory and 6-branes. The basic structure of TGD forces a highly analogous approach: replace 3-surfaces with 4-surfaces, consider knot cobordisms and also 2-knots, introduce gerbes, and be happy with symplectic instead of topological QFT, which might more or less be synonymous with TGD as almost topological QFT. Symplectic QFT would obviously make possible much more refined description of knots.

10.6 Witten's Approach To Khovanov Homology From TGD Point Of View

Witten's approach to Khovanov comohology [A43] relies on fivebranes as is natural if one tries to define 2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the difference in approaches it is very useful to try to find the counterparts of this approach in quantum TGD since this would allow to gain new insights to quantum TGD itself as almost topological QFT identified as symplectic theory for 2-knots, braids and braid cobordisms.

An essentially unique identification of string world sheets and therefore also of the braids whose ends carry quantum numbers of many particle states at partonic 2-surfaces emerges if one identifies the string word sheets as singular surfaces in the same manner as is done in Witten's approach [A43].

Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges. P would correspond to instanton number and F to the fermion number assignable to right handed neutrinos. The breaking of M^4 chiral invariance makes possible to realize Q physically. The finding that the generalizations of Wilson loops can be identified in terms of the gerbe fluxes $\int H_A J$ supports the conjecture that TGD as almost topological QFT corresponds essentially to a symplectic theory for braids and 2-knots.

10.6.1 Intersection Form And Space-Time Topology

The violent unknotting corresponds to a sequence of steps in which braid or knot becomes trivial and this very process defines braid invariants in TGD approach in nice concordance with the basic recipe for the construction of Jones polynomial. The topological invariant characterizing this process as a dynamics of 2-D string like objects defined by braid strands becomes knot invariant or more generally, invariant depending on the initial and final braids.

The process is describable in terms of string interaction vertices and also involves crossings of braid strands identifiable as self-intersections of the string world sheet. Hence the intersection form for the 2-surfaces defining braid strand orbits becomes a braid invariant. This intersection form is also a central invariant of 4-D manifolds and Donaldson's theorem [A5] says that for this invariant characterizes simply connected smooth 4-manifold completely. Rank, signature, and parity of this form in the basis defined by the generators of 2-homology (excluding torsion elements) characterize smooth closed and orientable 4-manifold. It is possible to diagonalize this form for smoothable 4-surfaces. Although the situation in the recent case differs from that in Donaldson theory in that the 4-surfaces have boundary and even fail to be manifolds, there are reasons to believe that the theory of braid cobordisms and 2-knots becomes part of the theory of topological invariants of 4-surfaces just as knot theory becomes part of the theory of 3-manifolds. The representation of 4-manifolds as space-time surfaces might also bring in physical insights.

This picture leads to ideas about string theory in 4-D space-time as a topological QFT. The string world sheets define the generators of second relative homology group. "Relative" means that closed surfaces are replaced with surfaces with boundaries at wormhole throats and ends of CD. These string world sheets, if one can fix them uniquely, would define a natural basis for homology group defining the intersection form in terms of violent unbraiding operations (note that also reconnections are involved).

Quantum classical correspondence encourages to ask whether also physical states must be restricted in such a way that only this minimum number of strings carrying quantum numbers at their ends ending to wormhole throats should be allowed. One might hope that there exists a unique identification of the topological strings implying the same for braids and allowing to identify various symplectic invariants as Hamiltonian fluxes for the string world sheets.

10.6.2 Framing Anomaly

In 3-D approach to knot theory the framing of links and knots represents an unavoidable technical problem [A43]. Framing means a slight shift of the link so that one can define self-linking number as a linking number for the link and its shift. The problem is that this framing of the link - or trivialization of its normal bundle in more technical terms- is not topological invariant and one obtains a large number of framings. For links in S^3 the framing giving vanishing self-linking number is the unique option and Atyiah has shown that also in more general case it is possible to identify a unique framing.

For 2-D surfaces self-linking is replaced with self-intersection. This is well-defined notion even without framing and indeed a key invariant. One might hope that framing is not needed also for string world sheets. If needed, this framing would induce the framing at the space-like and light-like 3-surfaces. The restriction of the section of the normal bundle of string world sheet to the 3-surfaces must lie in the tangent space of 3-surfaces. It is not clear whether this is enough to resolve the non-uniqueness problem.

10.6.3 Khovanov Homology Briefly

Khovanov homology involves three charges Q, F, and P. Q is analogous to super charge and satisfies $Q^2 = 0$ for the elements of homology. The basic commutation relations between the charges are [F,Q] = Q and [P,Q] = 0. One can show that the Khovanov homology $\kappa(L)$ for link can be expressed as a bi-graded direct sum of the eigen-spaces $V_{m,n}$ of F and P, which have integer valued spectra. Obviously Q increases the eigenvalue of F and maps $V_{m,n}$ to $V_{m+1,n}$ just as exterior derivative in de-Rham comology increases the degree of differential form. P acts as a symmetry allowing to label the elements of the homology by an integer valued charge n.

Jones polynomial can be expressed as an index assignable to Khovanov homology:

$$\mathcal{J}(q|L) = Tr((-1)^F q^P \ . \tag{10.6.1}$$

Here q defining the argument of Jones polynomial is root of unity in Chern-Simons theory but can be extended to complex numbers by extending the positive integer valued Chern-Simons coupling kto a complex number. The coefficients of the resulting Laurent polynomial are integers: this result does not follow from Chern-Simons approach alone. Jones polynomial depends on the spectrum of F only modulo 2 so that a lot of information is lost as the homology is replaced with the polynomial.

Both the need to have a more detailed characterization of links and the need to understand why the Wilson loop expectation is Laurent polynomial with integer coefficients serve as motivations of Witten for searching a physical approach to Khovanov polynomial.

The replacement of D = 2 in braid group approach to Jones polynomial with D = 3 for Chern-Simons approach replaced by something new in D = 4 would naturally correspond to the dimensional hierarchy of TGD in which partonic 2-surfaces plus their 2-D tangent space data fix the physics. One cannot quite do with partonic 2-surfaces and the inclusion of 2-D tangent space-data leads to holography and unique space time surfaces and perhaps also unique string world sheets serving as duals for partonic 2-surfaces. This would realize the weak form of electric magnetic duality at the level of homology much like Poincare duality relates cohomology and homology.

10.6.4 Surface Operators And The Choice Of The Preferred 2-Surfaces

The choice of preferred 2-surfaces and the identification of surface operators in $\mathcal{N} = 4$ YM theory is discussed in [A39]. The intuitive picture is that preferred 2-surfaces- now string world sheets defining braid cobordisms and 2-knots- correspond to singularities of classical gauge fields. Surface operator can be said to create this singularity. In functional integral this means the presence of the exponent defining the analog of Wilson loop.

- 1. In [A39] the 2-D singular surfaces are identified as poles for the magnitude r of the Higgs field. One can assign to the 2-surface fractional magnetic charges defined for the Cartan algebra part A_C of the gauge connection as circulations $\oint A_C$ around a small circle around the axis of singularity at $r = \infty$. What happens that 3-D r = constant surface reduces to a 2-D surface at $r = \infty$ whereas A_C and entire gauge potential behaves as $A = A_C = \alpha d\phi$ near singularity. Here ϕ is coordinate analogous to angle of cylindrical coordinates when t-z plane represents the singular 2-surface. α is a linear combination of Cartan algebra generators.
- 2. The phase factor assignable to the circulation is essentially $exp(i2\pi\alpha)$ and for non-fractional magnetic charges it differs from unity. One might perhaps say that string word sheets correspond to singularities for the slicing of space-time surface with 3-surfaces at which 3-surfaces reduce to 2-surfaces.

Consider now the situation in TGD framwork.

- 1. The gauge group is color gauge group and gauge color gauge potentials correspond to the quantities $H_A J$. One can also consider a generalization by allowing all Hamiltonians generating symplectic transformations of CP_2 . Kähler gauge potential is in essential role since color gauge field is proportional to Kähler form.
- 2. The singularities of color gauge fields can be identified by studing the theory locally as a field theory from CP_2 to M^4 . It is quite possible to have space-time surfaces for which M^4 coordinates are many-valued functions of CP_2 coordinates so that one has a covering of CP_2 locally. For singular 2-surfaces this covering becomes singular in the sense that separate sheets coincide. These coverings do not seem to correspond to those assignable to the hierarchy of Planck constants implied by the many-valuedness of the time derivatives

of the embedding space coordinates as functions of canonical momentum densities but one must be very cautious in making too strong conclusions here.

3. To proceed introduce the Eguchi-Hanson coordinates

 $(\xi^1,\xi^2) = [rcos(\theta/2)exp(i(\Psi+\Phi)/2), rsin(\theta/2)exp(i(-\Psi+\Phi)/2)]$

for CP_2 with the defining property that the coordinates transform linearly under $U(2) \subset SU(3)$. In QFT context these coordinates would be identified as Higgs fields. The choice of these coordinates is unique apart from the choice of the U(2) subgroup and rotation by element of U(2) once this choice has been made. In TGD framework the definition of CD involves the fixing of these coordinates and the interpretation is in terms of quantum classical correspondence realizing the choice of quantization axes of color at the level of the WCW geometry.

r has a natural identification as the magnitude of Higgs field invariant under $U(2) \subset SU(3)$. The $SU(2) \times U(1)$ invariant 3-sphere reduces to a homologically non-trivial geodesic 2-sphere at $r = \infty$ so that for this choice of coordinates this surface defines in very natural manner the counterpart of singular 2-surface in CP_2 geometry. At this sphere the second phase associated with CP_2 coordinates- Φ - becomes a redundant coordinate just like the angle Φ at the poles of sphere. There are two other similar spheres and these three spheres are completely analogous to North and South poles of 2-sphere.

- 4. One possibility is that the singular surfaces correspond to the inverse images for the projection of the embedding map to $r = \infty$ geodesic sphere of CP_2 for a CD corresponding to a given choice of quantization axes. Also the inverse images of all homological non-trivial geodesic spheres defining the three poles of CP_2 can be considered. The inverse images of this geodesic 2-sphere under the embedding-projection map would naturally correspond to 2-D string world sheets for the preferred extremals for a generic space-time surface. For cosmic strings and massless extremals the inverse image would be 4-dimensional but this problem can be circumvented easily. The identification turned out to be somewhat ad hoc and later a much more convincing unique identification of string world sheets emerged and will be discussed in the sequel. Despite this the general aspects of the proposal deserves a discussion.
- 5. The existence of dual slicings of space-time surface by 3-surfaces and lines on one hand and by string world sheets Y^2 and 2-surfaces X^2 with Euclidian signature of metric on one hand, is one of the basic conjectures about the properties of preferred extremals of Kähler action. A stronger conjecture is that partonic 2-surfaces represent particular instances of X^2 . The proposed picture suggests an amazingly simple and physically attractive identification of these slicings.
 - (a) The slicing induced by the slicing of CP_2 by r = constant surfaces defines an excellent candidate for the slicing by 3-surfaces. Physical the slices would correspond to equivalence classes of choices of the quantization axes for color group related by U(2). In gauge theory context they would correspond to different breakings of SU(3) symmetry labelled by the vacuum expectation of the Higgs field r which would be dynamical for CP_2 projections and play the role of time coordinate.
 - (b) The slicing by string world sheets would naturally correspond to the slicing induced by the 2-D space of homologically non-trivial geodesic spheres (or triplets of them) and could be called " CP_2/S^2 ". One has clearly bundle structure with S^2 as base space and " CP_2/S^2 " as fiber. Partonic 2-surfaces could be seen locally as sections of this bundle like structure assigning a point of " CP_2/S^2 " to each point of S^2 . Globally this does not make sense for partonic 2-surfaces with genus larger than g = 0.
- 6. In TGD framework the Cartan algebra of color gauge group is the natural identification for the Cartan algebra involved and the fluxes defining surface operators would be the classical fluxes $\int H_A J$ over the 2-surfaces in question restricted to Cartan algebra. What would be new is the interpretation as gerbe gauge potentials so that flux becomes completely analogous to Abelian circulation.

If one accepts the extension of the gauge algebra to a symplectic algebra, one would have the Cartan algebra of the symplectic algebra. This algebra is defined by generators which depend on the second half P_i or Q_i of Darboux coordinates. If P_i are chosen to be functions of the coordinates (r, θ) of CP_2 coordinates whose Poisson brackets with color isospin and hyper charge generators inducing rotations of phases (Ψ, Φ) of CP_2 complex coordinates vanish, the symplectic Cartan algebra would correspond to color neutral Hamiltonians. The spherical harmonics with non-vanishing angular momentum vanish at poles and one expects that same happens for CP_2 spherical harmonics at the three poles of CP_2 . Therefore Cartan algebra is selected automatically for gauge fluxes.

This subgroup leaves the ends of the points of braids at partonic 2-surfaces invariant so that symplectic transformations do not induce braiding.

If this picture -resulting as a rather straightforward translation of the picture applied in QFT context- is correct, TGD would predict uniquely the preferred 2-surfaces and therefore also the braids as inverse images of CP_2 geodesic sphere for the embedding of space-time surface to $CD \times CP_2$. Also the conjecture slicings by 3-surfaces and string world sheets could be identified. The identification of braids and slicings has been indeed one of the basic challenges in quantum TGD since in quantum theory one does not have anymore the luxury of topological invariance and I have proposed several identifications. If one accepts only these space-time sheets then the stringy content for a given space-time surface would be uniquely fixed.

The assignment of singularities to the homologically non-trivial geodesic sphere suggests that the homologically non-trivial space-time sheets could be seen as 1-dimensional idealizations of magnetic flux tubes carrying Kähler magnetic flux playing key role also in applications of TGD, in particular biological applications such as DNA as topological quantum computer and bio-control and catalysis.

10.6.5 The Identification Of Charges Q, P And F Of Khovanov Homology

The challenge is to identify physically the three operators Q, F, and P appearing in Khovanov homology. Taking seriously the proposal of Witten [A43] and looking for its direct counterpart in TGD leads to the identification and physical interpretation of these charges in TGD framework.

- 1. In Witten's approach P corresponds to instanton number assignable to the classical gauge field configuration in space-time. In TGD framework the instanton number would naturally correspond to that assignable to CP_2 Kähler form. One could consider the possibility of assigning this charge to the deformed CP_2 type vacuum extremals assigned to the spacelike regions of space-time representing the lines of generalized Feynman diagrams having elementary particle interpretation. P would be or at least contain the sum of unit instanton numbers assignable to the lines of generalized Feynman diagrams with sign of the instanton number depending on the orientation of CP_2 type vacuum extremal and perhaps telling whether the line corresponds to positive or negative energy state. Note that only pieces of vacuum extremals defined by the wormhole contacts are in question and it is somewhat questionable whether the rest of them in Minkowskian regions is included.
- 2. F corresponds to U(1) charge assignable to R-symmetry of N = 4 SUSY in Witten's theory. The proposed generalization of twistorial approach in TGD framework suggests strongly that this identification generalizes to TGD. In TGD framework all solutions of Kähler-Dirac equation at wormhole throats define super-symmetry generators but the supersymmetry is badly broken. The covariantly constant right handed neutrino defines the minimally broken supersymmetry since there are no direct couplings to gauge fields. This symmetry is however broken by the mixing of right and left handed M^4 chiralities present for both Dirac actions for induced gamma matrices and for Kähler-Dirac equations defined by Kähler action and Chern-Simons action at parton orbits. It is caused by the fact that both the induced and Kähler-Dirac gamma matrices are combinations of M^4 and CP_2 gamma matrices. F would therefore correspond to the net fermion number assignable to right handed neutrinos and antineutrinos. F is not conserved because of the chirality mixing and electroweak interactions respecting only the conservation of lepton number.

Note that the mixing of M^4 chiralities in sub-manifold geometry is a phenomenon characteristic for TGD and also a direct signature of particle massivation and SUSY breaking. It would be nice if it would allow the physical realization of Q operator of Khovanov homology.

- 3. Witten proposes an explicit formula for Q in terms of 5-dimensional time evolutions interpolating between two 4-D instantons and involving sum of sign factors assignable to Dirac determinants. In TGD framework the operator Q should increase the right handed neutrino number by one unit and therefore transform one right-handed neutrino to a left handed one in the minimal situation. In zero energy ontology Q should relate to a time evolution either between ends of CD or between the ends of single line of generalized Feynman diagram. If instanton number can be assigned solely to the wormhole contacts, this evolution should increase the number of CP_2 type extremals by one unit. 3-particle vertex in which right handed neutrino assignable to a partonic 2-surface transforms to a left handed one is thus a natural candidate for defining the action of Q.
- 4. Note that the almost topological QFT property of TGD together with the weak form of electric-magnetic duality implies that Kähler action reduces to Abelian Chern-Simons term. Ordinary Chern-Simons theory involves imaginary exponent of this term but in TGD the exponent would be real. Should one replace the real exponent of Kähler function with imaginary exponent? If so, TGD would be very near to topological QFT also in this respect. This would also force the quantization of the coupling parameter k in Chern-Simons action. On the other hand, the Chern-Simons theory makes sense also for purely imaginary k [A43].

10.6.6 What Does The Replacement Of Topological Invariance With Symplectic Invariance Mean?

One interpretation for the symplectic invariance is as an analog of diffeo-invariance. This would imply color confinement. Another interpretation would be based on the identification of symplectic group as a color group. Maybe the first interpretation is the proper restriction when one calculates invariants of braids and 2-knots.

The replacement of topological symmetry with symplectic invariance means that TGD based invariants for braids carry much more refined information than topological invariants. In TGD approach M^4 diffeomorphisms act freely on partonic 2-surfaces and 4-D tangent space data but the action in CP_2 degrees of freedom reduces to symplectic transformations. One could of course consider also the restriction to symplectic transformations of the light-cone boundary and this would give additional refinements.

It is is easy to see what symplectic invariance means by looking what it means for the ends of braids at a given partonic 2-surface.

- 1. Symplectic transformations respect the Kähler magnetic fluxes assignable to the triangles defined by the finite number of braid points so that these fluxes defining symplectic areas define some minimum number of coordinates parametrizing the moduli space in question. For topological invariance all *n*-point configurations obtained by continuous or smooth transformations are equivalent braid end configurations. These finite-dimensional moduli spaces would be contracted with point in topological QFT.
- 2. This picture led to a proposal of what I call symplectic QFT [K14] in which the associativity condition for symplectic fusion rules leads the hierarchy of algebras assigned with symplectic triangulations and forming a structures known as operad in category theory. The ends of braids at partonic 2-surfaces would would define unique triangulation of this kind if one accepts the identification of string like 2-surfaces as inverse images of homologically non-trivial geodesic sphere.

Note that both diffeomorphisms and symplectic transformations can in principle induce braiding of the braid strands connecting two partonic 2-surfaces. Should one consider the possibility that the allow transformations are restricted so that they do not induce braiding?

1. These transformations induce a transformation of the space-time surface which however is not a symplectic transformation in the interior in general. An attractive conjecture is that for the preferred extremals this is the case at the inverse images of the homologically nontrivial geodesic sphere. This would conform with the proposed duality between partonic 2-surfaces and string world sheets inspired by holography and also with quantum classical correspondence suggesting that at string world sheets the transformations induced by symplectic transformations at partonic 2-surfaces act like symplectic transformations.

2. If one allows only the symplectic transformations in Cartan algebra leaving the homologically non-trivial geodesic sphere invariant, the infinitesimal symplectic transformations would affect neither the string word sheets nor braidings but would modify the partonic 2-surfaces at all points except at the intersections with string world sheets.

10.7 Algebraic Braids, Sub-Manifold Braid Theory, And Generalized Feynman Diagrams

Ulla send me a link to an article by Sam Nelson about very interesting new-to-me notion known as algebraic knots (see http://tinyurl.com/yauy7asy) [A79, A66], which has initiated a revolution in knot theory. This notion was introduced 1996 by Louis Kauffmann [A68] so that it is already 15 year old concept. While reading the article I realized that this notion fits perfectly the needs of TGD and leads to a progress in attempts to articulate more precisely what generalized Feynman diagrams are.

In the following I will summarize briefly the vision about generalized Feynman diagrams, introduce the notion of algebraic knot, and after than discuss in more detail how the notion of algebraic knot could be applied to generalized Feynman diagrams. The algebraic structrures kei, quandle, rack, and biquandle and their algebraic modifications as such are not enough. The lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute. This poses several challenges: the crossing associated with braiding and crossing occurring in non-planar Feynman diagrams should be integrated to a more general notion; braids are replaced with submanifold braids; braids of braids....of braids are possible; the redistribution of braid strands in vertices should be algebraized. In the following I try to abstract the basic operations which should be algebraized in the case of generalized Feynman diagrams.

One should be also able to concretely identify braids and 2-braids (string world sheets) as well as partonic 2-surfaces and I have discussed several identifications during last years. Legendrian braids turn out to be very natural candidates for braids and their duals for the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of Lagrangian sub-manifolds or to minimal surfaces of space-time surface satisfying the weak form of electric-magnetic duality. The latter option turns out to be more plausible. Finite measurement resolution would be realized as symplectic invariance with respect to the subgroup of the symplectic group leaving the end points of braid strands invariant. In accordance with the general vision TGD as almost topological QFT would mean symplectic QFT. The identification of braids, partonic 2-surfaces and string world sheets - if correct - would solve quantum TGD explicitly at string world sheet level in other words in finite measurement resolution.

Irrespective of whether the algebraic knots are needed, the natural question is what generalized Feynman diagrams are. It seems that the basic building bricks can be identified so that one can write rather explicit Feynman rules already now. Of course, the rules are still far from something to be burned into the spine of the first year graduate student.

10.7.1 Generalized Feynman Diagrams, Feynman Diagrams, And Braid Diagrams

How knots and braids a la TGD differ from standard knots and braids?

TGD approach to knots and braids differs from the knot and braid theories in given abstract 3-manifold (4-manifold in case of 2-knots and 2-braids) is that space-time is in TGD framework identified as 4-D surface in $M^4 \times CP_2$ and preferred 3-surfaces correspond to light-like 3-surfaces defined by wormhole throats and space-like 3-surfaces defined by the ends of space-time sheets at the two light-like boundaries of causal diamond CD.

The notion of finite measurement resolution effectively replaces 3-surfaces of both kinds with braids and space-time surface with string world sheets having braids strands as their ends. The 4-dimensionality of space-time implies that string world sheets can be knotted and intersect at discrete points (counterpart of linking for ordinary knots). Also space-time surface can have self-intersections consisting of discrete points.

The ordinary knot theory in E^3 involves projection to a preferred 2-plane E^2 and one assigns to the crossing points of the projection an index distinguishing between two cases which are transformed to each other by violently taking the first piece of strand through another piece of strand. In TGD one must identify some physically preferred 2-dimensional manifold in embedding space to which the braid strands are projected. There are many possibilities even when one requires maximal symmetries. An obvious requirement is however that this 2-manifold is large enough.

- 1. For the braids at the ends of space-time surface the 2-manifold could be large enough sphere S^2 of light-cone boundary in coordinates in which the line connecting the tips of CD defines a preferred time direction and therefore unique light-like radial coordinate. In very small knots it could be also the geodesic sphere of CP_2 (apart from the action of isometries there are two geodesic spheres in CP_2).
- 2. For light-like braids the preferred plane would be naturally M^2 for which time direction corresponds to the line connecting the tips of CD and spatial direction to the quantization axis of spin. Note that these axes are fixed uniquely and the choices of M^2 are labelled by the points of projective sphere P^2 telling the direction of space-like axis. Preferred plane M^2 emerges naturally also from number theoretic vision and corresponds in octonionic pictures to hyper-complex plane of hyper-octonions. It is also forced by the condition that the choice of quantization axes has a geometric correlate both at the level of embedding space geometry and the geometry of the "world of classical worlds".

The braid theory in TGD framework could be called sub-manifold braid theory and certainly differs from the standard one.

- 1. If the first homology group of the 3-surface is non-trivial as it when the light-like 3-surfaces represents an orbit of partonic 2-surface with genus larger than zero, the winding of the braid strand (wrapping of branes in M-theory) meaning that it represents a homologically non-trivial curve brings in new effects not described by the ordinary knot theory. A typical new situation is the one in which 3-surface is locally a product of higher genus 2-surface and line segment so that knot strand can wind around the 2-surface. This gives rise to what are called non-planar braid diagrams for which the projection to plane produces non-standard crossings.
- 2. In the case of 2-knots similar exotic effects could be due to the non-trivial 2-homology of space-time surface. Wormhole throats assigned with elementary particle wormhole throats are homologically non-trivial 2-surfaces and might make this kind of effects possible for 2-knots if they are possible.

The challenge is to find a generalization of the usual knot and braid theories so that they apply in the case of braids (2-braids) imbedded in 3-D (4-D) surfaces with preferred highly symmetry sub-manifold of $M^4 \times CP_2$ defining the analog of plane to which the knots are projected. A proper description of exotic crossings due to non-trivial homology of 3-surface (4-surface) is needed.

Basic questions

The questions are following.

1. How the mathematical framework of standard knot theory should be modified in order to cope with the situation encountered in TGD? To my surprise I found that this kind of mathematical framework exists: so called algebraic knots [A79, A66] define a generalization of knot theory very probably able to cope with this kind of situation.

2. Second question is whether the generalized Feynman diagrams could be regarded as braid diagrams in generalized sense. Generalized Feynman diagrams are generalizations of ordinary Feynman diagrams. The lines of generalized Feynman diagrams correspond to the orbits of wormhole throats and of wormhole contacts with throats carrying elementary particle quantum numbers.

The lines meet at vertices which are partonic 2-surfaces. Single wormhole throat can describe fermion whereas bosons have wormhole contacts with fermion and anti-fermion at the opposite throats as building bricks. It seems however that all fermions carry Kähler magnetic charge so that physical particles are string like objects with magnetic charges at their ends.

The short range of weak interactions results from the screening of the axial isospin by neutrinos at the other end of string like object and also color confinement could be understood in this manner. One cannot exclude the possibility that the length of magnetic flux tube is of order Compton length.

3. Vertices of the generalized Feynman diagrams correspond to the partonic 2-surfaces along which light-like 3-surfaces meet and this is certainly a challenge for the required generalization of braid theory. The basic objection against the reduction to algebraic braid diagrams is that reaction vertices for particles cannot be described by ordinary braid theory: the splitting of braid strands is needed.

The notion of bosonic emergence however suggests that 3-vertex and possible higher vertices correspond to the splitting of braids rather than braid strands. By allowing braids which come from both past and future and identifying free fermions as wormhole throats and bosons as wormhole contacts consisting of a pair of wormhole throats carrying fermion and anti-fermion number, one can understand boson excanges as recombinations without anyneed to have splitting of braid strands. Strictly and technically speaking, one would have tangles like objects instead of braids. This would be an enormous simplification since n > 2-vertices which are the source of divergences in QFT: s would be absent.

- 4. Non-planar Feynman diagrams are the curse of the twistor approach and I have already earlier proposed that the generalized Feynman amplitudes and perhaps even twistorial amplitudes could be constructed as analogs of knot invariants by recursively transforming non-planar Feynman diagrams to planar ones for which one can write twistor amplitudes. This forces to answer two questions.
 - (a) Does the non-nonplanarity of Feynman diagrams completely combinatorial objects identified as diagrams in plane have anything to do with the non-planarity of algebraic knot diagrams and with the non-planarity of generalized Feynman diagrams which are purely geometric objects?
 - (b) Could these two kind of non-planarities be fused to together by identifying the projection 2-plane as preferred $M^2 \subset M^4$. This would mean that non-planarity in QFT sense is defined for entire braids: braid A can have virtual crossing with B. Non-planarity in the sense of knot theory would be defined for braid strands inside the braids. At vertices braid strands are redistributed between incoming lines and the analog of virtual crossing be identifiable as an exchange of braid strand between braids. Several kinds of non-planarities would be present and the idea about gradual unknotting of a non-planar diagram so that a planar diagram results as the final outcome might make sense and allow to generalize the recursion recipe for the twistorial amplitudes.
 - (c) This approach could be combined with the number theoretic vision that amplitudes correspond to sequences of computations with vertices identified as product and co-product for a Yangian variant of super-symplectic algebra [A26] [B22, B19, B20]. When incoming and outgoing algebraic objects are specified there would be unique smallest diagram leading from input to output. This diagram would be tree diagram in ordinary Feynman diagrammatics. This would mean huge generalization of the duality symmetry of string models if all diagrams connecting initial and final collections of algebraic objects correspond to the same amplitude.

Non-planar diagrams of quantum field theories should have natural counterpart and linking and knotting for braids defines it naturally. This suggests that the amplitudes can be interpreted as generalizations of braid diagrams defining braid invariants: braid strands would appear as legs of 3-vertices representing product and co-product. Amplitudes could be constructed as generalized braid invariants transforming recursively braided tree diagram to an un-braided diagram using same operations as for braids. In [L15] I considered a possible breaking of associativity occurring in weak sense for conformal field theories and was led to the vision that there is a fractal hierarchy of braids such that braid strands themselves correspond to braids. This hierarchy would define an operad with subgroups of permutation group in key role. Hence it seems that various approaches to the construction of amplitudes converge.

(d) One might consider the possibility that inside orbits of wormhole throats defining the lines of Feynman diagrams the *R*-matrix for integrable QFT in M^2 (only permutations of momenta are allowed) describes the dynamics so that one obtains just a permutation of momenta assigned to the braid strands. Ordinary braiding would be described by existing braid theories. The core problem would be the representation of the exchange of a strand between braids algebraically.

One can consider different and much simpler general approach to the non-planarity problem. In twistor Grassmannian approach [L12] generalized Feynman diagrams correspond to TGD variants of stringy diagrams. In stringy approach one gets rid of non-planarity problem altogether.

10.7.2 Brief Summary Of Algebraic Knot Theory

Basic ideas of algebraic knot theory

In ordinary knot theory one takes as a starting point the representation of knots of E^3 by their plane plane projections to which one attach a "color" to each crossing telling whether the strand goes over or under the strand it crosses in planar projection. These numbers are fixed uniquely as one traverses through the entire knot in given direction.

The so called Reidermeister moves are the fundamental modifications of knot leaving its isotopy equivalence class unchanged and correspond to continuous deformations of the knot. Any algebraic invariant assignable to the knot must remain unaffected under these moves. Reidermeister moves as such look completely trivial and the non-trivial point is that they represent the minimum number of independent moves which are represented algebraically.

In algebraic knot theory topological knots are replaced by typographical knots resulting as planar projections. This is a mapping of topology to algebra. It turns out that the existing knot invariants generalize and ordinary knot theory can be seen as a special case of the algebraic knot theory. In a loose sense one can say that the algebraic knots are to the classical knot theory what algebraic numbers are to rational numbers.

Virtual crossing is the key notion of the algebraic knot theory. Virtual crossing and their rules of interaction were introduced 1996 by Louis Kauffman as basic notions [A1]. For instance, a strand with only virtual crossings should be replaceable by any strand with the same number of virtual crossings and same end points. Reidermeister moves generalize to virtual moves. One can say that in this case crossing is self-intersection rather than going under or above. I cannot be eliminated by a small deformation of the knot. There are actually several kinds of non-standard crossings: examples listed in figure 7 of [A79]) are virtual, flat, singular, and twist bar crossings.

Algebraic knots have a concrete geometric interpretation.

(a) Virtual knots are obtained if one replaces E^3 as embedding space with a space which has non-trivial first homology group. This implies that knot can represent a homologically non-trivial curve giving an additional flavor to the unknottedness since homologically non-trivial curve cannot be transformed to a curve which is homologically non-trivial by any continuous deformation.

- (b) The violent projection to plane leads to the emergence of virtual crossings. The product $(S^1 \times S^1) \times D$, where $(S^1 \times S^1)$ is torus D is finite line segment, provides the simplest example. Torus can be identified as a rectangle with opposite sides identified and homologically non-trivial knots correspond to curves winding n_1 times around the first S^1 and n_2 times around the second S^1 . These curves are not continuous in the representation where $S^1 \times S^1$ is rectangle in plane.
- (c) A simple geometric visualization of virtual crossing is obtained by adding to the plane a handle along which the second strand traverses and in this manner avoids intersection. This visualization allows to understand the geometric motivation for the virtual moves.

This geometric interpretation is natural in TGD framework where the plane to which the projection occurs corresponds to $M^2 \subset M^4$ or is replaced with the sphere at the boundary of S^2 and 3-surfaces can have arbitrary topology and partonic 2-surfaces defining as their orbits light-like 3-surfaces can have arbitrary genus.

In TGD framework the situation is however more general than represented by sub-manifold braid theory. Single braid represents the line of generalized Feynman diagram. Vertices represent something new: in the vertex the lines meet and the braid strands are redistributed but do not disappear or pop up from anywhere. That the braid strands can come both from the future and past is also an important generalization. There are physical argments suggesting that there are only 3-vertices for braids but not higher ones [K16]. The challenge is to represent algebraically the vertices of generalized Feynman diagrams.

Algebraic knots

The basic idea in the algebraization of knots is rather simple. If x and y are the crossing portions of knot, the basic algebraic operation is binary operation giving "the result of xgoing under y", call it $x \triangleright y$ telling what happens to x. "Portion of knot" means the piece of knot between two crossings and $x \triangleright y$ denotes the portion of knot next to x. The definition is asymmetrical in x and y and the dual of the operation would be $y \triangleleft x$ would be "the result of y going above x". One can of course ask, why not to define the outcome of the operation as a pair ($x \triangleleft y, y \triangleright x$). This operation would be bi-local in a well-defined sense. One can of course do this: in this case one has binary operation from $X \times X \to X \times X$ mapping pairs of portions to pairs of portions. In the first case one has binary operation $X \times X \to X$.

The idea is to abstract this basic idea and replace X with a set endowed with operation \triangleright or \triangleleft or both and formulate the Reidermeister conditions given as conditions satisfied by the algebra. One ends up to four basic algebraic structures kei, quandle, rack, and biquandle.

- (a) In the case of non-oriented knots the kei is the algebraic structure. Kei or invontary quandle-is a set X with a map $X \times X \to X$ satisfying the conditions
 - i. $x \triangleright x = x$ (idenpotency, one of the Reidemeister moves)
 - ii. $(x \triangleright y) \triangleright y = x$ (operation is its own right inverse having also interpretation as Reidemeister move)
 - iii. $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$ (self-distributivity)

 $Z([t])/(t^2)$ module with $x \triangleright y = tx + (1-t)y$ is a kei.

(b) For orientable knot diagram there is preferred direction of travel along knot and one can distinguish between \triangleright and its right inverse \triangleright^{-1} . This gives quandle satisfying the axios

i. $x \triangleright x = x$

ii. $(x \triangleright y) \triangleright^{-1} y = (x \triangleright^{-1} y) \triangleright y = x$

iii.
$$(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$$

 $Z[t^{\pm 1}]$ nodule with $x \triangleright y = tx + (1-t)y$ is a quandle.

- (c) One can also introduce framed knots: intuitively one attaches to a knot very near to it. More precise formulation in terms of a section of normal bundle of the knot. This makes possible to speak about self-linking. Reidermeister moves must be modified appropriately. In this case rack is the appropriate structure. It satisfied the axioms of quandle except the first axiom since corresponding operation is not a move anymore. Rack axioms are eqivalent with the requirement that functions $f_y: X \to X$ defined by $f_y(x)x \triangleright y$ are automorphisms of the structure. Therefore the elements of rack represent its morphisms. The modules over $Z[t^{\pm 1}, s]/s(t + s - 1)$ are racks. Coxeter racks are inner product spaces with $x \triangleright y$ obtained by reflecting x across y.
- (d) Biquandle consists of arcs connecting the subsequent crossings (both under- and over-) of oriented knot diagram. Biquandle operation is a map $B: X \times X \to X \times X$ of order pairs satisfying certain invertibility conditions together with set theoretic Yang-Baxter equation:

$$(B \times I)(I \times B)(B \times I) = (I \times B)(B \times I)(I \times B)$$

Here $I: X \to X$ is the identity map. The three conditions to which Yang-Baxter equation decomposes gives the counterparts of the above discussed axioms. Alexander biquandle is the module $Z(t^{\pm 1}, s^{\pm 1}$ with B(x, y) = (ty + (1 - ts)x, sx) where one has $s \neq 1$. If one includes virtual, flat and singular crossings one obtains virtual/singular aundles and semiquandles.

10.7.3 Generalized Feynman Diagrams As Generalized Braid Diagrams?

Zero energy ontology suggests the interpretation of the generalized Feynman diagrams as generalized braid diagrams so that there would be no need for vertices at the fundamental braid strand level. The notion of algebraic braid (or tangle) might allow to formulate this idea more precisely.

Could one fuse the notions of braid diagram and Feynman diagram?

The challenge is to fuse the notions of braid diagram and Feynman diagram having quite different origin.

- (a) All generalized Feynman diagrams are reduced to sub-manifold braid diagrams at microscopic level by bosonic emergence (bosons as pairs of fermionic wormhole throats). Three-vertices appear only for entire braids and are purely topological whereas braid strands carrying quantum numbers are just re-distributed in vertices. No 3-vertices at the really microscopic level! This is an additional nail to the coffin of divergences in TGD Universe.
- (b) By projecting the braid strands of generalized Feynman diagrams to preferred plane $M^2 \subset M^4$ (or rather 2-D causal diamond), one could achieve a unified description of non-planar Feynman diagrams and braid diagrams. For Feynman diagrams the intersections have a purely combinatorial origin coming from representations as 2-D diagrams.

For braid diagrams the intersections have different origin and non-planarity has different meaning. The crossings of entire braids analogous to those appearing in non-planar Feynman diagrams should define one particular exotic crossing besides virtual crossings of braid strands due to non-trivial first homology of 3-surfaces.

- (c) The necessity to choose preferred plane M^2 looks strange from QFT point of view. In TGD framework it is forced by the number theoretic vision in which M^2 represents hyper-complex plane of sub-space of hyper-octonions which is subspace of complexified octonions. The choice of M^2 is also forced by the condition that the choice of quantization axes has a geometric correlate both at the level of embedding space geometry and the geometry of the "world of classical worlds".
- (d) Also 2-braid diagrams defined as projections of string world sheets are suggestive and would be defined by a projections to the 3-D boundary of CD or to $M^3 \subset M^4$. They would provide a more concrete stringy illustration about generalized Feynman diagram as analog of string diagram. Another attractive illustration is in terms of dance metaphor with the boundary of CD defining the 3-D space-like parquette. The duality between space-like and light-like braids is expected to be of importance.

The obvious conjecture is that Feynman amplitudes are a analogous to knot invariants constructible by gradually reducing non-planar Feynman diagrams to planar ones after which the already existing twistor theoretical machinery of $\mathcal{N} = 4$ SYMs would apply [K28, L12, L16].

Does 2-D integrable QFT dictate the scattering inside the lines of generalized Feynman diagrams

The preferred plane M^2 (more precisely, 2-D causal diamond having also interpretation as Penrose diagram) plays a key role as also the preferred sphere S^2 at the boundary of CD. It is perhaps not accident that a generalization of braiding was discovered in integrable quantum field theories in M^2 . The S-matrix of this theory is rather trivial looking: particle moving with different velocities cross each other and suffer a phase lag and permutation of 2-momenta which has physical effects only in the case of non-identical particles. The *R*-matrix describing this process reduces to the *R*-matrix describing the basic braiding operation in braid theories at the static limit.

I have already earler conjectured that this kind of integrable QFT is part of quantum TGD [K18]. The natural guess is that it describes what happens for the projections of 4-momenta in M^2 in scattering process inside lines of generalized Feynman diagrams. If integrable theories in M^2 control this scattering, it would cause only phase changes and permutation of the M^2 projections of the 4-momenta. The most plausible guess is that M^2 QFT characterized by R-matrix describes what happens to the braid momenta during the free propagation and the remaining challenge would be to understand what happens in the vertices defined by 2-D partonic surfaces at which re-distribution of braid strands takes place.

How quantum TGD as almost topological QFT differs from topological QFT for braids and 3-manifolds

One must distinguish between two topological QFTs. These correspond to topological QFT defining braid invariants and invariants of 3-manifolds respectively. The reason is that knots are an essential element in the procedure yielding 3-manifolds. Both 3-manifold invariants and knot invariants would be defined as Wilson loops involving path integral over gauge connections for a given 3-manifold with exponent o non-Abelkian f Chern-Simons action defining the weight.

(a) In TGD framework the topological QFT producing braid invariants for a given 3manifold is replaced with sub-manifold braid theory. Kähler action reduces Chern-Simons terms for preferred extremals and only these contribute to the functional integral. What is the counterpart of topological invariance in this framework? Are general isotopies allowed or should one allow only sub-group of symplectic group of CD boundary leaving the end points of braids invariant? For this option Reidermeister moves are undetectable in the finite measurement resolution defined by the subgroup of the symplectic group. Symplectic transformations would not affect 3-surfaces as the analogs of abstract contact manifold since induced Kähler form would not be affected and only the embedding would be changed.

In the approach based on inclusions of HFFs gauge invariance or its generalizations would represent finite measurement resolution (the action of included algebra would generate states not distiguishable from the original one).

(b) There is also ordinary topological QFT allowing to construct topological invariants for 3-manifold. In TGD framework the analog of topological QFT is defined by Chern-Simons-Kähler action in the space of preferred 3-surfaces. Now one sums over small deformations of 3-surface instead of gauge potentials. If extremals of Chern-Simons-Kähler action are in question, symplectic invariance is the most that one can hope for and this might be the situation quite generally. If all light-like 3-surfaces are allowed so that only weak form of electric-magnetic duality at them would bring metric into the theory, it might be possible to have topological invariance at 3-D level but not at 4-D level. It however seems that symplectic invariance with respect to subgroup leaving end points of braids invariant is the realistic expectation.

Could the allowed braids define Legendrian sub-manifolds of contact manifolds?

The basic questions concern the identification of braids and 2-braids. In quantum TGD they cannot be arbitrary but determined by dynamics providing space-time correlates for quantum dynamics. The deformations of braids should mean also deformations of 3-surfaces which as topological manifolds would however remain as such. Therefore topological QFT for given 3-manifold with path integral over gauge connections would in TGD correspond to functional integral of 3-surfaces corresponding to same topology even symplectic structure. The quantum fluctuating degrees of freedom indeed correspond to symplectic group divided by its subgroup defining measurement resolution.

What is the dynamics defining the braids strands? What selects them? I have considered this problem several times. Just two examples is enough here.

- (a) Could they be some special light-like curves? Could the condition that the end points of the curves correspond to rational points in some preferred coordinates allow to select these light-like curves? But what about light-like curves associated with the ends of the space-time surface?
- (b) The solutions of Kähler-Dirac equation [K84] are localized to curves by using the analog of periodic boundary conditions: the length of the curve is quantized in the effective metric defined by the Kähler-Dirac gamma matrices. Here one however introcuced a coordinate along light-like 3-surface and it is not clear how one should fix this preferred coordinate.

1. Legendrian and Lagrangian sub-manifolds

A hint about what is missing comes from the observation that a non-vanishing Chern-Simons-Kähler form A defines a contact structure (see http://tinyurl.com/yblj4hlq) [A4] at light-like 3-surfaces if one has $A \wedge dA \neq 0$. This condition states complete non-intebrability of the distribution of 2-planes defined by the condition $A_{\mu}t^{\mu} = 0$, where t is tangent vector in the tangent bundle of light-like 3-surface. It also states that the flow lines of A do not define global coordinate varying along them.

(a) It is however possible to have 1-dimensional curves for which $A_{\mu}t^{\mu} = 0$ holds true at each point. These curves are known as Legendrian sub-manifolds to be distinguished from Lagrangian manifolds for which the projection of symplectic form expressible locally as J = dA vanishes. The set of this curves is discrete so that one obtains braids. Legendrian knots are the simplest example of Legendrian sub-manifolds and the question is whether braid strands could be identified as Legendrian knots. For

Legendrian braids symplectic invariance replaces topological invariance and Legendrian knots and braids can be trivial in topological sense. In some situations the property of being Legendrian implies un-knottedness.

(b) For Legendrian braid strands the Kähler gauge potential vanishes. Since the solutions of the Kähler-Dirac equation are localized to braid strands, this means that the coupling to Kähler gauge potential vanishes. From physics point of view a generalization of Legendre braid strand by allowing gauge transformations $A \rightarrow A + d\Phi$ looks natural since it means that the coupling of induced spinors is pure gauge terms and can be eliminated by a gauge transformation.

2. 2-D duals of Legendrian sub-manifolds

One can consider also what might be called 2-dimensional duals of Legendrian sub-manifolds.

- (a) Also the one-form obtained from the dual of Kähler magnetic field defined as $B^{\mu} = \epsilon^{\mu\nu\gamma} J_{\nu\nu}$ defines a distribution of 2-planes. This vector field is ill-defined for light-like surfaces since contravariant metric is ill-defined. One can however multiply *B* with the square root of metric determining formally so that metric would disappear completely just as it disappears from Chern-Simons action. This looks however somewhat tricky mathematically. At the 3-D space-like ends of space-time sheets at boundaries of CD B^{μ} is however well-defined as such.
- (b) The distribution of 2-planes is integrable if one has $B \wedge dB = 0$ stating that one has Beltrami field: physically the conditions states that the current dB feels no Lorentz force. The geometric content is that B defines a global coordinate varying along its flow lines. For the preferred extremals of Kähler action Beltrami condition is satisfied by isometry currents and Kähler current in the interior of space-time sheets. If this condition holds at 3-surfaces, one would have an global time coordinate and integrable distribution of 2-planes defining a slicing of the 2-surface. This would realize the conjecture that space-time surface has a slicing by partonic 2-surfaces. One could say that the 2-surfaces defined by the distribution are orthogonal to B. This need not however mean that the projection of J to these 2-surfaces vanishes. The condition $B \wedge dB = 0$ on the space-like 3-surfaces could be interpreted in terms of effective 2-dimensionality. The simplest option posing no additional conditions would allow two types of braids at space-like 3-surfaces and only Legendrian braids at light-like 3-surfaces.

These observations inspire a question. Could it be that the conjectured dual slicings of spacetime sheets by space-like partonic 2-surfaces and by string world sheets are defined by A_{μ} and B^{μ} respectively associated with slicings by light-like 3-surfaces and space-like 3-surfaces? Could partonic 2-surfaces be identified as 2-D duals of 1-D Legendrian sub-manifolds?

The identification of braids as Legendrian braids for light-like 3-surfaces and with Legendrian braids or their duals for space-like 3-surfaces would in turn imply that topological braid theory is replaced with a symplectic braid theory in accordance with the view about TGD as almost topological QFT. If finite measurement resolution corresponds to the replacement of symplectic group with the coset space obtained by dividing by a subgroup, symplectic subgroup would take the role of isotopies in knot theory. This symplectic subgroup could be simply the symplectic group leaving the end points of braids invariant.

An attempt to identify the constraints on the braid algebra

The basic problems in understanding of quantum TGD are conceptual. One must proceed by trying to define various concepts precisely to remove the many possible sources of confusion. With this in mind I try collect essential points about generalized Feynman diagrams and their relation to braid diagrams and Feynman diagrams and discuss also the most obvious constraints on algebraization.

Let us first summarize what generalized Feynman diagrams are.

- (a) Generalized Feynman diagrams are 3-D (or 4-D, depends on taste) objects inside $CD \times CP_2$. Ordinary Feynman diagrams are in plane. If finite measurement resolution has as a space-time correlate discretization at the level of partonic 2-surfaces, both space-like and light-like 3-surfaces reduce to braids and the lines of generalized Feynman diagrams correspond to braids. It is possible to obtain the analogs of ordinary Feynman diagrams by projection to $M^2 \subset M^4$ defined uniquely for given CD. The resulting apparent intersections would represent ne particular kind of exotic intersection.
- (b) Light-like 3-surfaces define the lines of generalized Feynman diagrams and the braiding results naturally. Non-trivial first homology for the orbits of partonic 2-surfaces with genus g > 0 could be called homological virtual intersections.
- (c) It zero energy ontology braids must be characterized by time orientation. Also it seems that one must distinguish in zero energy ontology between on mass shell braids and off mass shell braid pairs which decompose to pairs of braids with positive and negative energy massless on mass shell states. In order to avoid confusion one should perhaps speak about tangles insie CD rather than braids. The operations of the algebra are same except that the braids can end either to the upper or lower light-like boundary of CD. The projection to M^2 effectively reduces the CD to a 2-dimensional causal diamond.
- (d) The vertices of generalized Feynman diagrams are partonic 2-surfaces at which the light-like 3-surfaces meet. This is a new element. If the notion of bosonic emergence is accepted no n > 2-vertices are needed so that braid strands are redistributed in the reaction vertices. The redistribution of braid strands in vertices must be introduced as an additional operation somewhat analogous to \triangleright and the challenge is to reduce this operation to something simple. Perhaps the basic operation reduces to an exchange of braid strand between braids. The process can be seen as a decay of of braid with the conservation of braid strands with strands from future and past having opposite strand numbers. Also for this operation the analogs of Reidermeister moves should be identified. In dance metaphor this operation corresponds to a situation in which the dancer leaves the group to which it belongs and goes to a new one.
- (e) A fusion of Feynman diagrammatic non-planarity and braid theoretic non-planarity is needed and the projection to M^2 could provide this fusion when at least two kinds of virtual crossings are allowed. The choice of M^2 could be global. An open question is whether the choice of M^2 could characterize separately each line of generalized Feynman diagram characterized by the four-momentum associated with it in the rest system defined by the tips of CD. Somehow the theory should be able to fuse the braiding matrix for integrable QFT in M^2 applying to entire braids with the braiding matrix for braid theory applying at the level of single braid.

Both integral QFTs in M^2 and braid theories suggest that biquandle structure is the structure that one should try to generalized.

- (a) The representations of resulting bi-quandle like structure could allow abstract interesting information about generalized Feynman diagrams themselves but the dream is to construct generalized Feynman diagrams as analogs of knot invariants by a recursive procedure analogous to un-knotting of a knot.
- (b) The analog of bi-quandle algebra should have a hierarchical structure containing braid strands at the lowest level, braids at next level, and braids of braids...of braids at higher levels. The notion of operad would be ideal for formulating this hierarchy and I have already proposed that this notion must be essential for the generalized Feynman diagrammatics. An essential element is the vanishing of total strand number in the vertex (completely analogous to conserved charged such as fermion number). Again a convenient visualization is in terms of dancers forming dynamical groups, forming groups of groups forming

I have already earlier suggested [K18] that the notion of operad [A18] relying on permutation group and its subgroups acting in tensor products of linear spaces is central for understanding generalized Feynman diagrams. $n \to n_1 + n_2$ decay vertex for n-braid would correspond to "symmetry breaking" $S_n \to S_{n_1} \times S_{n_2}$. Braid group represents the covering of permutation group so that braid group and its subgroups permuting braids would suggest itself as the basic group theoretical notion. One could assign to each strand of *n*-braid decaying to n_1 and n_2 braids a two-valued color telling whether it becomes a strand of n_1 -braid or n_2 -braid. Could also this "color" be interpreted as a particular kind of exotic crossing?

- (c) What could be the analogs of Reidermaster moves for braid strands?
 - i. If the braid strands are dynamically determined, arbitrary deformations are not possible. If however all isotopy classes are allowed, the interpretation would be that a kind of gauge choice selecting one preferred representation of strand among all possible ones obtained by continuous deformations is in question.
 - ii. Second option is that braid strands are dynamically determined within finite measurement resolution so that one would have braid theory in given length scale resolution.
 - iii. Third option is that topological QFT is replaced with symplectic QFT: this option is suggested by the possibility to identify braid strands as Legendrian knots or their duals. Subgroup of the symplectic group leaving the end points of braids invariant would act as the analog of continous transformations and play also the role of gauge group. The new element is that symplectic transformations affect partonic 2-surfaces and space-time surfaces except at the end points of braid.
- (d) Also 2-braids and perhaps also 2-knots could be useful and would provide string theory like approach to TGD. In this case the projections could be performed to the ends of CD or to M^3 , which can be identified uniquely for a given CD.
- (e) There are of course many additional subtleties involved. One should not forget loop corrections, which naturally correspond to sub-CDs. The hierarchy of Planck constants and number theoretical universality bring in additional complexities.

All this looks perhaps hopelessly complex but the Universe around is complex even if the basic principles could be very simple.

10.7.4 About String World Sheets, Partonic 2-Surfaces, And Two-Knots

String world sheets and partonic 2-surfaces provide a beatiful visualization of generalized Feynman diagrams as braids and also support for the duality of string world sheets and partonic 2-surfaces as duality of light-like and space-like braids. Dance metaphor is very helpful here.

- (a) The projection of string world sheets and partonic 2-surfaces to 3-D space replaces knot projection. In TGD context this 3-D of space could correspond to the 3-D light-like boundary of CD and 2-knot projection would correspond to the projection of the braids associated with the lines of generalized Feynman diagram. Another identification would be as $M^1 \times E^2$, where M^1 is the line connecting the tips of CD and E^2 the orthogonal complement of M^2 .
- (b) Using dance metaphor for light-like braiding, braids assignable to the lines of generalized Feynman diagrams would correspond to groups of dancers. At vertices the dancing groups would exchange members and completely new groups would be formed by the

dancers. The number of dancers (negative for those dancing in the reverse time direction) would be conserved. Dancers would be connected by threads representing strings having braid points at their ends. During the dance the light-like braiding would induce space-like braiding as the threads connecting the dancers would get entangled. This would suggest that the light-like braids and space-like braidings are equivalent in accordance with the conjectured duality between string-world sheets and partonic 2-surfaces. The presence of genuine 2-knottedness could spoil this equivalence unless it is completely local.

Can string world sheets and partonic 2-surfaces get knotted?

- (a) Since partonic 2-surfaces (wormhole throats) are imbedded in light-cone boundary, the preferred 3-D manifolds to which one can project them is light-cone boundary (boundary of CD). Since the projection reduces to inclusion these surfaces cannot get knotted. Only if the partonic 2-surfaces contains in its interior the tip of the light-cone something non-trivial identifiable as virtual 2-knottedness is obtained.
- (b) One might argue that the conjectured duality between the descriptions provided by partonic 2-surfaces and string world sheets requires that also string world sheets represent trivial 2-braids. I have shown earlier that nontrivial local knots glued to the string world sheet require that M^4 time coordinate has a local maximum. Does this mean that 2-knots are excluded? This is not obvious: TGD allows also regions of space-time surface with Euclidian signature and generalized Feynman graphs as 4-D space-time regions are indeed Euclidian. In these regions string world sheets could get knotted.

What happens for knot diagrams when the dimension of knot is increased to two? According to the articles of Nelson (see http://tinyurl.com/yauy7asy) [A79] and Carter (see http://tinyurl.com/yclgj739) [A66] the crossings for the projections of braid strands are replaced with more complex singularities for the projections of 2-knots. One can decompose the 2-knots to regions surrounded by boxes. Box can contain just single piece of 2-D surface; it can contain two intersection pieces of 2-surfaces as the counterpart of intersecting knot strands and one can tell which of them is above which; the box can contain also a discrete point in the intersection of projections of three disjoint regions of knot which consists of discrete points; and there is also a box containing so called cone point. Unfortunately, I failed to understand the meaning of the cone point.

For 2-knots Reidemeister moves are replaced with Roseman moves. The generalization would allow virtual self intersections for the projection and induced by the non-trivial second homology of 4-D embedding space. In TGD framework elementary particles have homologically non-trivial partonic 2-surfaces (magnetic monpoles) as their building bricks so that even if 2-knotting in standard sense might be not allowed, virtual 2-knotting would be possible. In TGD framework one works with a subgroup of symplectic transformations defining measurement resolution instead of isotopies and this might reduce the number of allowed mov

The dynamics of string world sheets and the expression for Kähler action

The dynamics of string world sheets is an open question. Effective 2-dimensionality suggests that Kähler action for the preferred extremal should be expressible using 2-D data but there are several guesses for what the explicit expression could be, and one can only make only guesses at this moment and apply internal consistency conditions in attempts to kill various options.

1. Could weak form of electric-magnetic duality hold true for string world sheets?

If one believes on duality between string world sheets and partonic 2-surfaces, one can argue that string world sheets are most naturally 2-surfaces at which the weak form of electric magnetic duality holds true. One can even consider the possibility that the weak form of electric-magnetic duality holds true only at the string world sheets and partonic 2-surfaces but not at the preferred 3-surfaces.

- (a) The weak form of electric magnetic duality would mean that induced Kähler form is non-vanishing at them and Kähler magnetic flux over string world sheet is proportional to Kähler electric flux.
- (b) The flux of the induced Kähler form of CP_2 over string world sheet would define a dimensionless "area". Could Kähler action for preferred extremals reduces to this flux apart from a proportionality constant. This "area" would have trivially extremum with respect to symplectic variations if the braid strands are Legendrian sub-manifolds since in this case the projection of Kähler gauge potential on them vanishes. This is a highly non-trivial point and favors weak form of electric-magnetic duality and the identification of Kähler action as Kähler magnetic flux. This option is also in spirit with the vision about TGD as almost topological QFT meaning that induced metric appears in the theory only via electric-magnetic duality.
- (c) Kähler magnetic flux over string world sheet has a continuous spectrum so that the identification as Kähler action could make sense. For partonic 2-surfaces the magnetic flux would be quantized and give constant term to the action perhaps identifiable as the contribution of CP_2 type vacuum extremals giving this kind of contribution.

The change of space-time orientation by changing the sign of permutation symbol would change the sign in electric-magnetic duality condition and would not be a symmetry. For a given magnetic charge the sign of electric charge changes when orientation is changed. The value of Kähler action does not depend on space-time orientation but weak form of electricmagnetic duality as boundary condition implies dependence of the Kähler action on spacetime orientation. The change of the sign of Kähler electric charge suggests the interpretation of orientation change as one aspect of charge conjugation. Could this orientation dependence be responsible for matter antimatter asymmetry?

2. Could string world sheets be Lagrangian sub-manifolds in generalized sense?

Legendrian sub-manifolds (see http://tinyurl.com/yblj4hlq) can be lifted to Lagrangian sub-manifolds [A4] Could one generalize this by replacing Lagrangian sub-manifold with 2-D sub-manifold of space-times surface for which the projection of the induced Kähler form vanishes? Could string world sheets be Lagrangian sub-manifolds?

I have also proposed that the inverse image of homologically non-trivial sphere of CP_2 under embedding map could define counterparts of string world sheets or partonic 2-surfaces. This conjecture does not work as such for cosmic strings, massless extremals having 2-D projection since the inverse image is in this case 4-dimensional. The option based on homologically non-trivial geodesic sphere is not consistent with the identification as analog of Lagrangian manifold but the identification as the inverse image of homologically trivial geodesic sphere is.

The most general option suggested is that string world sheet is mapped to 2-D Lagrangian sub-manifold of CP_2 in the embedding map. This would mean that theory is exactly solvable at string world sheet level. Vacuum extremals with a vanishing induced Kähler form would be exceptional in this framework since they would be mapped as a whole to Lagrangian sub-manifolds of CP_2 . The boundary condition would be that the boundaries of string world sheets defined by braids at preferred 3-surfaces are Legendrian sub-manifolds. The generalization would mean that Legendrian braid strands could be continued to Lagrangian string world sheets for which induced Kähler form vanishes. The physical interpretation would be that if particle moves along this kind of string world sheet, it feels no covariant Lorentz-Kähler force and contra variant Lorentz forces is orthogonal to the string world sheet.

There are however serious objections.

(a) This proposal does not respect the proposed duality between string world sheets and partonic 2-surfaces which as carries of Kähler magnetic charges cannot be Lagrangian 2-manifolds. (b) One loses the elegant identification of Kähler action as Kähler magnetic flux since Kähler magnetic flux vanishes. Apart from proportionality constant Kähler electric flux

$$\int_{Y^2} *J$$

is as a dimensionless scaling invariant a natural candidate for Kähler action but need not be extremum if braids are Legendrian sub-manifolds whereas for Kähler magnetic flux this is the case. There is however an explicit dependence on metric which does not conform with the idea that almost topological QFT is symplectic QFT.

- (c) The sign factor of the dual flux which depends on the orientation of the string world sheet and thus changes sign when the orientation of space-time sheet is changed by changing that of the string world sheet. This is in conflict with the independence of Kähler action on orientation. One can however argue that the orientation makes itself actually physically visible via the weak form of electric-magnetic duality. If the above discussed duality holds true, the net contribution to Kähler action would vanish as the total Kähler magnetic flux for partonic 2-surfaces. Therefore the duality cannot hold true if Kähler action reduces to dual flux.
- (d) There is also a purely formal counter argument. The inverse images of Lagrangian sub-manifolds of CP_2 can be 4-dimensional (cosmic strings and massless extremals) whereas string world sheets are 2-dimensional.

String world sheets as minimal surfaces

Effective 2-dimensionality suggests a reduction of Kähler action to Chern-Simons terms to thearea of minimal surfaces defined by string world sheets holds true [K35]. Skeptic could argue that the expressibility of Kähler action involving no dimensional parameters except CP_2 scaled does not favor this proposal. The connection of minimal surface property with holomorphy and conformal invariance however forces to take the proposal seriously and it is easy to imagine how string tension emerges since the size scale of CP_2 appears in the induced metric [K35].

One can ask whether the minimal surface property conforms with the proposal that string worlds sheets obey the weak form of electric-magnetic duality and with the proposal that they are generalized Lagrangian sub-manifolds.

- (a) The basic answer is simple: minimal surface property and possible additional conditions (Lagrangian sub-manifold property or the weak form of electric magnetic duality) poses only additional conditions forcing the space-time sheet to be such that the imbedded string world sheet is a minimal surface of space-time surface: minimal surface property is a condition on space-time sheet rather than string world sheet. The weak form of electric-magnetic duality is favored because it poses conditions on the first derivatives in the normal direction unlike Lagrangian sub-manifold property.
- (b) Any proposal for 2-D expression of Kähler action should be consistent with the proposed real-octonion analytic solution ansatz for the preferred extremals [K9]. The ansatz is based on real-octonion analytic map of embedding space to itself obtained by algebraically continuing real-complex analytic map of 2-D sub-manifold of embedding space to another such 2-D sub-manifold. Space-time surface is obtained by requiring that the "imaginary" part of the map vanishes so that image point is hyper-quaternion valued. Wick rotation allows to formulate the conditions using octonions and quaternions. Minimal surfaces (of space-time surface) are indeed objects for which the embedding maps are holomorphic and the real-octonion analyticity could be perhaps seen as algebraic continuation of this property.

(c) Does Kähler action for the preferred exremals reduce to the area of the string world sheet or to Kähler magnetic flux or are the representations equivalent so that the induced Kähler form would effectively define area form? If the Kähler form form associated with the induced metric on string world sheet is proportional to the induced Kähler form the Kähler magnetic flux is proportional to the area and Kähler action reduces to genuine area. Could one pose this condition as an additional constraint on string world sheets? For Lagrangian sub-manifolds Kähler electric field should be proportional to the area form and the condition involves information about space-time surface and is therefore more complex and does not look plausible.

Explicit conditions expressing the minimal surface property of the string world sheet

It is instructive to write explicitly the condition for the minimal surface property of the string world sheet and for the reduction of the area Kähler form to the induced Kähler form. For string world sheets with Minkowskian signature of the induced metric Kähler structure must be replaced by its hyper-complex analog involving hyper-complex unit e satisfying $e^2 = 1$ but replaced with real unit at the level hyper-complex coordinates. e can be represented as antisymmetric Kähler form J_g associated with the induced metric but now one has $J_g^2 = g$ instead of $J_g^2 = -g$. The condition that the signed area reduces to Kähler electric flux means that J_g must be proportional to the induced Kähler form: $J_g = kJ$, k = constant in a given space-time region.

One should make an educated guess for the embedding of the string world sheet into a preferred extremal of Kähler action. To achieve this it is natural to interpret the minimal surface property as a condition for the preferred Kähler extremal in the vicinity of the string world sheet guaranteeing that the sheet is a minimal surface satisfying $J_g = kJ$. By the weak form of electric-magnetic duality partonic 2-surfaces represent both electric and magnetic monopoles. The weak form of electric-magnetic duality requires for string world sheets that the Kähler magnetic field at string world sheet is proportional to the component of the Kähler electric field parallel to the string world sheet. Kähler electric field is assumed to have component only in the direction of string world sheet.

1. Minkowskian string world sheets

Let us try to formulate explicitly the conditions for the reduction of the signed area to Kähler electric flux in the case of Minkowskian string world sheets.

- (a) Let us assume that the space-time surface in Minkowskian regions has coordinates coordinates (u, v, w, \overline{w}) [K9]. The pair (u, v) defines light-like coordinates at the string world sheet having identification as hyper-complex coordinates with hyper-complex unit satisfying e = 1. u and v need not nor cannot as it turns out be light-like with respect to the metric of the space-time surface. One can use (u, v) as coordinates for string world sheet and assume that $w = x^1 + ix^2$ and \overline{w} are constant for the string world sheet. Without a loss of generality one can assume $w = \overline{w} = 0$ at string world sheet.
- (b) The induced Kähler structure must be consistent with the metric. This implies that the induced metric satisfies the conditions

$$g_{uu} = g_{vv} = 0 {.} {(10.7.1)}$$

The analogs of these conditions in regions with Euclidian signature would be $g_{zz} = g_{\overline{z}\overline{z}} = 0.$

(c) Assume that the embedding map for space-time surface has the form

$$s^{m} = s^{m}(u,v) + f^{m}(u,v,x^{m})_{kl}x^{k}x^{l} , \qquad (10.7.2)$$

so that the conditions

$$\partial_l k s^m = 0 , \ \partial_k \partial_u s^m = 0, \ \partial_k \partial_v s^m = 0 \tag{10.7.3}$$

are satisfies at string world sheet. These conditions imply that the only non-vanishing components of the induced CP_2 Kähler form at string world sheet are J_{uv} and $J_{w\overline{w}}$. Same applies to the induced metric if the metric of M^4 satisfies these conditions (no non-vanishing components of form m_{uk} or m_{vk}).

(d) Also the following conditions hold true for the induced metric of the space-time surface

$$\partial_k g_{uv} = 0$$
 , $\partial_u g_{kv} = 0$, $\partial_v g_{ku} = 0$. (10.7.4)

at string world sheet as is easy to see by using the ansatz.

Consider now the minimal surface conditions stating that the trace of the four components of the second fundamental form whose components are labelled by the coordinates $\{x^{\alpha}\} \equiv (u, v, w, \overline{w})$ vanish for string world sheet.

(a) Since only g_{uv} is non-vanishing, only the components H_{uv}^k of the second fundamental form appear in the minimal surface equations. They are given by the general formula

$$\begin{aligned}
H^{\alpha}_{uv} &= H^{\gamma} P^{\alpha}_{\gamma} , \\
H^{\alpha} &= \left(\partial_{u} \partial_{v} x^{\alpha} + \begin{pmatrix} \beta^{\alpha}_{\gamma} \end{pmatrix} \partial_{u} x^{\beta} \partial_{v} x^{\gamma} \right) .
\end{aligned} \tag{10.7.5}$$

Here P_{γ}^{α} is the projector to the normal space of the string world sheet. Formula contains also Christoffel symbols $\binom{\alpha}{\beta}{\gamma}$.

(b) Since the embedding map is simply $(u, v) \to (u, v, 0, 0)$ all second derivatives in the formula vanish. Also $H^k = 0$, $k \in \{w, \overline{w}\}$ holds true. One has also $\partial_u x^\alpha = \delta_u^\alpha$ and $\partial_v x^\beta = \delta_v^\beta$. This gives

$$H^{\alpha} = \begin{pmatrix} \alpha \\ u & v \end{pmatrix} \quad . \tag{10.7.6}$$

All these Christoffel symbols however vanish if the assumption $g_{uu} = g_{vv} = 0$ and the assumptions about embedding ansatz hold true. Hence a minimal surface is in question.

Consider now the conditions on the induced metric of the string world sheet

(a) The conditions reduce to

$$g_{uu} = g_{vv} = 0 {.} {(10.7.7)}$$

The conditions on the diagonal components of the metric are the analogs of Virasoro conditions fixing the coordinate choices in string models. The conditions state that the coordinate lines for u and v are light-like curves in the induced metric.

(b) The conditions can be expressed directly in terms of the induced metric and read

$$m_{uu} + s_{kl} \partial_u s^k \partial_u s^l = 0 ,$$

$$m_{vv} + s_{kl} \partial_v s^k \partial_v s^l = 0 .$$
(10.7.8)

The CP_2 contribution is negative for both equations. The conditions make sense only for $(m_{uu} > 0, m_{vv} > 0)$. Note that the determinant condition $m_{uu}m_{vv} - m_{uv}m_{vu} < 0$ expresses the Minkowskian signature of the (u, v) coordinate plane in M^4 .

The additional condition states

$$J_{uv}^g = k J_{uv} {.} {(10.7.9)}$$

It reduces signed area to Kähler electric flux. If the weak form of electric-magnetic duality holds true one can interpret the area as magnetic flux defined as the flux of the dual of induced Kähler form over space-like surface and defining electric charge. A further condition is that the boundary of string world sheet is Legendrean manifold so that the flux and thus area is extremized also at the boundaries.

2. Conditions for the Euclidian string world sheets

One can do the same calculation for string world sheet with Euclidian signature. The only difference is that (u, v) is replaced with (z, \overline{z}) . The embedding map has the same form assuming that space-time sheet with Euclidian signature allows coordinates $(z, \overline{z}, w, \overline{w})$ and the local conditions on the embedding are a direct generalization of the above described conditions. In this case the vanishing for the diagonal components of the string world sheet metric reads as

$$\begin{aligned} h_{kl}\partial_z s^k \partial_z s^l &= 0 , \\ h_{kl}\partial_{\overline{z}} s^k \partial_{\overline{z}} s^l &= 0 . \end{aligned}$$

$$(10.7.10)$$

The natural ansatz is that complex CP_2 coordinates are holomorphic functions of the complex coordinates of the space-time sheet.

3. Wick rotation for Minkowskian string world sheets leads to a more detailed solution ansatz

Wick rotation is a standard trick used in string models to map Minkowskian string world sheets to Euclidian ones. Wick rotation indeed allows to define what one means with realoctonion analyticity. Could one identify string world sheets in Minkowskian regions by using Wick rotation and does this give the same result as the direct approach?

Wick rotation transforms space-time surfaces in $M^4 \times CP_2$ to those in $E^4 \times CP_2$. In $E^4 \times CP_2$ octonion real-analyticity is a well-defined notion and one can identify the space-time surfaces surfaces at which the imaginary part of of octonion real-analytic function vanishes: imaginary part is defined via the decomposition of octonion to two quaternions as $o = q_1 + Iq_2$ where Iis a preferred octonion unit. The reverse of the Wick rotation maps the quaternionic surfaces to what might be called hyper-quaternionic surfaces in $M^4 \times CP_2$.

In this picture string world sheets would be hyper-complex surfaces defined as inverse imagines of complex surfaces of quaternionic space-time surface obtained by the inverse of Wick rotation. For this approach to be equivalent with the above one it seems necessary to require that the treatment of the conditions on metric should be equivalent to that for which hyper-complex unit e is not put equal to 1. This would mean that the conditions reduce to independent conditions for the real and imaginary parts of the real number formally represented as hyper-complex number with e = 1.

Wick rotation allows to guess the form of the ansatz for CP_2 coordinates as functions of spacetime coordinates In Euclidian context holomorphich functions of space-time coordinates are the natural ansatz. Therefore the natural guess is that one can map the hypercomplex number $t \pm ez$ to complex coordinate $t \pm iz$ by the analog of Wick rotation and assume that CP_2 complex coordinates are analytic functions of the complex space-time coordinates obtained in this manner.

The resulting induced metric could be obtained directly using real coordinates (t, z) for string world sheet or by calculating the induced metric in complex coordinates $t \pm iz$ and by mapping the expressions to hyper-complex numbers by Wick rotation (by replacing *i* with e = 1). If the diagonal components of the induced metric vanish for $t \pm iz$ they vanish also for hyper-complex coordinates so that this approach seem to make sense.

Electric-magnetic duality for flux Hamiltonians and the existence of Wilson sheets

One must distinguish between two conjectured dualities. The weak form of electric-magnetic duality and the duality between string world sheets and partonic 2-surfaces. Could the first duality imply equivalence of not only electric and magnetic flux Hamiltonians but also electric and magnetic Wilson sheets? Could the latter duality allow two different representations of flux Hamiltonians?

(a) For electric-magnetic duality holding true at string world sheets one would have nonvanishing Kähler form and the fluxes would be non-vanishing. The Hamiltonian fluxes

$$Q_{m,A} = \int_{X^2} JH_A dx^1 dx^2 = \int_{X^2} H_A J_{\alpha\beta} dx^\alpha \wedge dx^\beta$$
(10.7.11)

for partonic 2-surfaces X^2 define WCW Hamiltonians playing a key role in the definition of WCW Kähler geometry. They have also interpretation as a generalization of Wilson loops to Wilson 2-surfaces.

(b) Weak form of electric magnetic duality would imply both at partonic 2-surfaces and string world sheets the proportionality

$$Q_{m,A} = \int_{X^2} J H_A dx^1 \wedge dx^2 \propto Q_{m,A}^* = \int_{X^2} H_A * J_{\alpha\beta} dx^\alpha \wedge dx^\beta \quad . \tag{10.7.12}$$

Therefore the electric-magnetic duality would have a concrete meaning also at the level of WCW geometry.

(c) If string world sheets are Lagrangian sub-manifolds Hamiltonian fluxes would vanish identically so that the identification as Wilson sheets does not make sense. One would lose electric-magnetic duality for flux sheets. The dual fluxes

$$*Q_A = \int_{Y^2} *JH_A dx^1 \wedge dx^2 = \int_{Y^2} \epsilon_{\alpha\beta} \,^{\gamma\delta} J_{\gamma\delta} = \int_{Y^2} \frac{\sqrt{\det(g_4)}}{\det(g_2^\perp)} J_{34}^\perp dx^1 \wedge dx^2$$

for string world sheets Y^2 are however non-vanishing. Unlike fluxes, the dual fluxes depend on the induced metric although they are scaling invariant.

Under what conditions the conjectured duality between partonic 2-surface and string world sheets hold true at the level of WCW Hamiltonians?

(a) For the weak form of electric-magnetic duality at string world sheets the duality would mean that the sum of the fluxes for partonic 2-surfaces and sum of the fluxes for string world sheets are identical apart from a proportionality constant:

$$\sum_{i} Q_A(X_i^2) \propto \sum_{i} Q_A(Y_i^2) .$$
 (10.7.13)

Note that in zero ontology it seems necessary to sum over all the partonic surfaces (at both ends of the space-time sheet) and over all string world sheets.

(b) For Lagrangian sub-manifold option the duality can hold true only in the form

$$\sum_{i} Q_A(X_i^2) \propto \sum_{i} Q_A^*(Y_i^2) .$$
 (10.7.14)

Obviously this option is less symmetric and elegant.

Summary

There are several arguments favoring weak form of electric-magnetic duality for both string world sheets and partonic 2-surfaces. Legendrian sub-manifold property for braid strands follows from the assumption that Kähler action for preferred extremals is proportional to the Kähler magnetic flux associated with preferred 2-surfaces and is stationary with respect to the variations of the boundary. What is especially nice is that Legendrian sub-manifold property implies automatically unique braids. The minimal option favored by the idea that 3-surfaces are basic dynamical objects is the one for which weak form of electric-magnetic duality holds true only at partonic 2-surfaces and string world sheets. A stronger option assumes it at preferred 3-surfaces. Duality between string world sheets and partonic 2-surfaces suggests that WCW Hamiltonians can be defined as sums of Kähler magnetic fluxes for either partonic 2-surfaces or string world sheets.

10.7.5 What Generalized Feynman Rules Could Be?

After all these explanations the skeptic reader might ask whether this lengthy discussion gives any idea about what the generalized Feynman rules might look like. The attempt to answer this question is a good manner to make a map about what is understood and what is not understood. The basic questions are simple. What constraints does zero energy ontology (ZEO) pose? What does the necessity to project the four-momenta to a preferred plane M^2 mean? What mathematical expressions one should assign to the propagator lines and vertices? How does one perform the functional integral over 3-surfaces in finite measurement resolution? The following represents tentatative answers to these questions but does not say much about exact role of algebraic knots.

Zero energy ontology

Zero energy ontology (ZEO) poses very powerful constraints on generalized Feynman diagrams and gives hopes that both UV and IR divergences cancel.

(a) ZEO predicts that the fermions assigned with braid strands associated with the virtual particles are on mass shell massless particles for which the sign of energy can be also negative: in the case of wormhole throats this can give rise to a tachyonic exchange.
- (b) The on mass shell conditions for each wormhole throat in the diagram involving loops are very stringent and expected to eliminate very large classes of diagrams. If however given diagonal diagram leading from n-particle state to the same n-particle state completely analogous to self energy diagram- is possible then the ladders form by these diagrams are also possible and one one obtains infinite of this kind of diagrams as generalized self energy correction and is excellent hopes that geometric series gives a closed algebraic function.
- (c) IR divergences plaguing massless theories are cancelled if the incoming and outgoing particles are massive bound states of massless on mass shell particles. In the simplest manner this is achieved when the 3-momenta are in opposite direction. For internal lines the massive on-mass shell-condition is not needed at all. Therefore there is an almost complete separation of the problem how bound state masses are determined from the problem of constructing the scattering amplitudes.
- (d) What looks like a problematic aspect ZEO is that the massless on-mass-shell propagators would diverge for wormhole throats. The solution comes from the projection of 4-momenta to M^2 . In the generic the projection is time-like and one avoids the singularity. The study of solutions of the Kähler-Dirac equation [K84] and number theoretic vision [K68] indeed suggests that the four-momenta are obtained by rotating massless M^2 momenta and their projections to M^2 are in general integer multiples of hyper-complex primes or light-like. The light-like momenta would be treated like in the case of ordinary Feynman diagrams using *ie*-prescription of the propagator and would also give a finite contributions corresponding to integral over physical on mass shell states. This guarantees also the vanishing of the possible IR divergences coming from the summation over different M^2 momenta.

There is a strong temptation to identify - or at least relate - the M^2 momenta labeling the solutions of the Kähler-Dirac equation with the region momenta of twistor approach [L12]. The reduction of the region momenta to M^2 momenta could dramatically simplify the twistorial description. It does not seem however plausible that $\mathcal{N} = 4$ super-symmetric gauge theory could allow the identification of M^2 projections of 4-momenta as region momenta. On the other hand, there is no reason to expect the reduction of TGD certainly to a gauge theory containing QCD as part. For instance, color magnetic flux tubes in many-sheeted space-time are central for understanding jets, quark gluon plasma, hadronization and fragmentation [L10] but cannot be deduced from QCD. Note also that the splitting of parton momenta to their M^2 projections and transversal parts is an ad hoc assumption motivated by parton model rather than first principles.

(e) ZEO strongly suggests that all particles (including photons, gluons, and gravitons) have mass which can be arbitrarily small and could be perhaps seen as being due to the fact that particle "eats" Higgs like states giving it the otherwise lacking polarization states. This would mean a generalization of the notion of Higgs particle to a Higgs like particle with spin. It would also mean rearrangment of massless states at wormhole throat level to massives physical states. The slight massication of photon by p-adic thermodynamics does not however mean disappearance of Higgs from spectrum, and one can indeed construct a model for Higgs like states [K32].

The projection of the momenta to M^2 is consistent with this vision. The natural generalization of the gauge condition $p \cdot \epsilon = 0$ is obtained by replacing p with the projection of the total momentum of the boson to M^2 and ϵ with its polarization so that one has $p_{||} \cdot \epsilon$. If the projection to M^2 is light-like, three polarization states are possible in the generic case, so that massivation is required by internal consistency. Note that if intermediate states in the unitary condition were states with light-like M^2 -momentum one could have a problematic situation.

(f) A further assumption vulnerable to criticism is that the M^2 projections of all momenta assignable to braid strands are parallel. Only the projections of the momenta to the orthogonal complement E^2 of M^2 can be non-parallel and for massive wormhole throats they must be non-parallel. This assumption does not break Lorentz invariance since in the full amplitude one must integrate over possible choices of M^2 . It also interpret the gauge conditions either at the level of braid strands or of partons. Quantum classical correspondence in strong form would actually suggests that quantum 4-momenta should coincide with the classical ones. The restriction to M^2 projections is however necessary and seems also natural. For instance, for massless extremals only M^2 projection of wave-vector can be well-defined: in transversal degrees of freedom there is a superposition over Fourier components with diffrent transversal wave-vectors. Also the partonic description of hadrons gives for the M^2 projections of the parton momenta a preferred role. It is highly encouraging that this picture emerged first from the Kähler-Dirac equation and purely number theoretic vision based on the identification of M^2 momenta in terms of hyper-complex primes.

The number theoretical approach also suggests a number theoretical quantization of the transversal parts of the momenta [K68]: four-momenta would be obtained by rotating massless M^2 momenta in M^4 in such a way that the components of the resulting 3-momenta are integer valued. This leads to a classical problem of number theory which is to deduce the number of 3-vectors of fixed length with integer valued components. One encounters the n-dimensional generalization of this problem in the construction of discrete analogs of quantum groups (these "classical" groups are analogous to Bohr orbits) and emerge in quantum arithmetics [K51], which is a deformation of ordinary arithmetics characterized by p-adic prime and giving rigorous justification for the notion of canonical identification mapping p-adic numbers to reals.

- (g) The real beauty of Feynman rules is that they guarantee unitarity automatically. In fact, unitarity reduces to Cutkosky rules which can be formulated in terms of cut obtained by putting certain subset of interal lines on mass shell so that it represents on mass shell state. Cut analyticity implies the usual $iDisc(T) = TT^{\dagger}$. In the recent context the cutting of the internal lines by putting them on-mass-shell requires a generalization.
 - i. The first guess is that on mass shell property means that M^2 projection for the momenta is light-like. This would mean that also these momenta contribute to the amplitude but the contribution is finite just like in the usual case. In this formulation the real particles would be the massless wormhole throats.
 - ii. Second possibility is that the internal lines on on mass shell states corresponding to massive on mass-shell-particles. This would correspond to the experimental meaning of the unitary conditions if real particles are the massive on mass shell particles. Mathematically it seems possible to pick up from the amplitude the states which correspond to massive on mass shell states but one should understand why the discontinuity should be associated with physical net masses for wormhole contacts or many-particle states formed by them. General connection with unitarity and analyticity might allow to understand this.
- (h) CDs are labelled by various moduli and one must integrate over them. Once the tips of the CD and therefore a preferred M^1 is selected, the choice of angular momentum quantization axis orthogonal to M^1 remains: this choice means fixing M^2 . These choices are parameterized by sphere S^2 . It seems that an integration over different choices of M^2 is needed to achieve Poincare invariance.

How the propagators are determined?

In accordance with previous sections it will be assumed that the braid are Legendrian braids and therefore completely well-defined. One should assign propagator to the braid. A good guess is that the propagator reduces to a product of three terms.

- (a) A multi-particle propagator which is a product of collinear massless propagators for braid strands with fermionin number F = 0, 1 1. The constraint on the momenta is $p_i = \lambda_i p$ with $\sum_i \lambda_i = 1$. So that the fermionic propagator is $\frac{1}{\prod_i \lambda_i} p^k \gamma_k$. If one gas p = nP, where P is hyper-complex prime, one must sum over combinations of $\lambda_i = n_i$ satisfying $\sum_i n_i = n$.
- (b) A unitary S-matrix for integrable QFT in M^2 in which the velocities of particles assignable to braid strands appear for which fixed by R-matrix defines the basic 2vertex representing the process in which a particle passes through another one. For this S-matrix braids are the basic units. To each crossing appearing in non-planar Feynman diagram one would have an R-matrix representing the effect of a reconnection the ends of the lines coming to the crossing point. In this manner one could gradually transform the non-planar diagram to a planar diagram. One can ask whether a formulation in terms of a suitable R-matrix could allow to generalize twistor program to apply in the case of non-planar diagrams.
- (c) An S-matrix predicted by topological QFT for a given braid. This S-matrix should be constructible in terms of Chern-Simons term defining a sympletic QFT.

There are several questions about quantum numbers assignable to the braid strands.

- (a) Can braid strands be only fermionic or can they also carry purely bosonic quantum numbers corresponding to WCW Hamiltonians and therefore to Hamiltonians of $\delta M_{\pm}^4 \times CP_2$? Nothing is lost if one assumes that both purely bosonic and purely fermionic lines are possible and looks whether this leads to inconsistencies. If virtual fermions correspond to single wormhole throat they can have only time-like M^2 -momenta. If virtual fermions correspond to pairs of wormhole throats with second throat carrying purely bosonic quantum numbers, also fermionic can have space-like net momenta. The interpretation would be in terms of topological condensation. This is however not possible if all strands are fermionic. Situation changes if one identifies physical fermions wormhole throats at the ends of Kähler magnetic flux tube as one indeed does: in this case virtual net momentum can be space-like if the sign of energy is opposite for the ends of the flux tube.
- (b) Are the 3-momenta associated with the wormholes of wormhole contact parallel so that only the sign of energy could distinguish between them for space-like total momentum and M^2 mass squared would be the same? This assumption simplifies the situation but is not absolutely necessary.
- (c) What about the momentum components orthogonal to M^2 ? Are they restricted only by the massless mass shell conditions on internal lines and quantization of the M^2 projection of 4-momentum?
- (d) What kind of braids do elementary particles correspond? The braids assigned to the wormhole throat lines can have arbitrary number n of strands and for n = 1, 2 the treatment of braiding is almost trivial. A natural assumption is that propagator is simply a product of massless collinear propagators for M^2 projection of momentum [?]. Collinearity means that propagator is product of a multifermion propagator $\frac{1}{\lambda_i p_k \gamma_k}$, znd multiboson propagator $\frac{1}{\mu_i p_k \gamma_k}$, $\sum \lambda_i + \sum_i \mu_i = 1$. There are also quantization conditions on M^2 projections of momenta from Kähler-Dirac equation implying that multiplies of hyper-complex prime are in question in suitable units. Note however that it is not clear whether purely bosonic strands are present.
- (e) For ordinary elementary particles with propagators behaving like $\prod_i \lambda_i^{-1} 1 p^{-n}$, only $n \leq 2$ is possible. The topologically really interesting states with more than two braid strands are something else than what we have used to call elementary particles. The proposed interpretation is in terms of anyonic states [K54]. One important implication is that $\mathcal{N} = 1$ SUSY generated by right-handed neutrino or its antineutrino is

SUSY for which all members of the multiplet assigned to a wormhole throat have braid number smaller than 3. For $\mathcal{N} = 2$ SUSY generated by right-handed neutrino and its antiparticle the states containing fermion and neutrino-antineutrino pair have three braid strands and SUSY breaking is expected to be strong.

Vertices

Conformal invariance raises the hope that vertices can be deduced from super-conformal invariance as n-point functions. Therefore lines would come from integrable QFT in M^2 and topological braid theory and vertices from conformal field theory: both theories are integrable.

The basic questions is how the vertices are defined by the 2-D partonic surfaces at which the ends of lines meet. Finite measurement resolution reduces the lines to braids so that the vertices reduces to the intersection of braid strands with the partonic 2-surface.

- (a) Conformal invariance is the basic symmetry of quantum TGD. Does this mean that the vertices can be identified as n-point functions for points of the partonic 2-surface defined by the incoming and outgoing braid strands? How strong constraints can one pose on this conformal field theory? Is this field theory free and fixed by anti-commutation relations of induced spinor fields so that correlation function would reduce to product of fermionic two points functions with standard operator in the vertices represented by strand ends. If purely bosonic vertices are present, their correlation functions must result from the functional integral over WCW.
- (b) For the fermionic fields associated with each incoming braid the anti-commutators of fermions and anti-fermions are trivial just as the usual equal time anti-commutation relations. This means that the vertex reduces to sum of products of fermionic correlation functions with arguments belonging to different incoming and outgoing lines. How can one calculate the correlators?
 - i. Should one perform standard second quantization of fermions at light-like 3surface allowing infinite number of spinor modes, apply a finite measurement resolution to obtain braids, for each partonic 2-surface, and use the full fermion fields to calculate the correlators? In this case braid strands would be discontinuous in vertices. A possible problem might be that the cutoff in spinor modes seems to come from the theory itself: finite measurement resolution is a property of quantum state itself.
 - ii. Could finite measurement resolution allow to approximate the braid strands with continuous ones so that the correlators between strands belonging to different lines are given by anti-commutation relations? This would simplify enormously the situation and would conform with the idea of finite measurement resolution and the vision that interaction vertices reduce to braids. This vision is encouraged by the previous considerations and would mean that replication of braid strands analogous to replication of DNA strands can be seen as a fundamental process of Nature. This of course represents an important deviation from the standard picture.
- (c) Suppose that one accepts the latter option. What can happen in the vertex, where line goes from one braid to another one?
 - i. Can the direction of momentum changed as visual intuition suggests? Is the total braid momentum conservation the only constraint so that the velocities assignable braid strands in each line would be constrained by the total momentum of the line.

- ii. What kind of operators appear in the vertex? To get some idea about this one can look for the simplest possible vertex, namely FFB vertex which could in fact be the only fundamental vertex as the arguments of [K16] suggest. The propagator of spin one boson decomposes to product of a projection operator to the polarization states divited by p^2 factor. The projection operator sum over products $\epsilon_i^k \gamma_k$ at both ends where γ_k acts in the spinor space defined by fermions. Also fermion lines have spinor and its conjugate at their ends. This gives rise to $p^k \gamma_k / p^2$. $p^k \gamma_k$ is the analog of the bosonic polarization tensor factorizing into a sum over products of fermionic spinors and their conjugates. This gives the BFF vertex $\epsilon_i^k \gamma_k$ slashed between the fermionic propagators which are effectively 2-dimensional.
- iii. Note that if H-chiralities are same at the throats of the wormhole contact, only spin one states are possible. Scalars would be leptoquarks in accordance with general view about lepton and quark number conservation. One particular implication is that Higgs in the standard sense is not possible in TGD framework. It can appear only as a state with a polarization which is in CP_2 direction. In any case, Higgs like states would be eaten by massless state so that all particles would have at least a small mass.

Functional integral over 3-surfaces

The basic question is how one can functionally integrate over light-like 3-surfaces or space-like 3-surfaces.

- (a) Does effective 2-dimensionality allow to reduce the functional integration to that over partonic 2-surfaces assigned with space-time sheet inside CD plus radiative corrections from the hierarchy of sub-CDs?
- (b) Does finite measurement resolution reduce the functional integral to a ordinary integral over the positions of the end points of braids and could this integral reduce to a sum? Symplectic group of $\delta M_{\pm}^4 \times CP_2$ basically parametrizes the quantum fluctuating degrees of freedom in WCW. Could finite measurement resolution reduce the symplectic group of $\delta M_{\pm}^4 \times CP_2$ to a coset space obtained by dividing with symplectic transformations leaving the end points invariant and could the outcome be a discrete group as proposed? Functional integral would reduce to sum.
- (c) If K\u00e4hler action reduces to Chern-Simons-K\u00e4hler terms to surface area terms in the proposed manner, the integration over WCW would be very much analogous to a functional integral over string world sheets and the wisdom gained in string models might be of considerable help.

Summary

What can one conclude from these argument? To my view the situation gives rise to a considerable optimism. I believe that on basis of the proposed picture it should be possible to build a concrete mathematical models for the generalized Feynman graphics and the idea about reduction to generalized braid diagrams having algebraic representations could pose additional powerful constraints on the construction. Braid invariants could also be building bricks of the generalized Feynman diagrams. In particular, the treatment of the non-planarity of Feynman diagrams in terms of M^2 braiding matrix would be something new and therefore can be questioned.

Few years after writing these lines a view about generalized Feynman diagrams as a stringy generalization of twistor Grassmannian diagrams has emerged [L12]. This approach relies heavily on the localization of spinor modes on 2-D string world sheets (covariantly constant right-handed neutrino is an exception) [K84]. This approach can be regarded as an effective QFT (or rather, effective string theory) approach: all information about the microscopic

character of the fundamental particle like entities has been integrated out so that a string model type description at the level of imbdding space emerges. The presence of gigantic symmetries, in particular, the Yangian generalization of super-conformal symmetries, raises hopes that this approach could work. The approach to generalized Feynman diagrams considered above is obviously microscopic.

10.8 Electron As A Trefoil Or Something More General?

The possibility that electron, and also other elementary particles could correspond to knot is very interesting. The video model (see http://tinyurl.com/ycz4jm48) [B35] was so fascinating (I admire the skills of the programmers) that I started to question my belief that all related to knots and braids represents new physics (say anyons, see http://tinyurl.com/ y89xp4bu) [K54] and that it is hopeless to try to reduce standard model quantum numbers with purely group theoretical explanation (except family replication) to topological quantum numbers.

Electroweak and color quantum numbers should by quantum classical correspondence have geometric correlates in space-time geometry. Could these correlates be topological? As a matter of fact, the correlates existing if the present understanding of the situation is correct but they are not topological.

Despite this, I played with various options and found that in TGD Universe knot invariants do not provide plausible space-time correlates for electroweak quantum numbers. The knot invariants and many other topological invariants are however present and mean new physics. As following arguments try to show, elementary particles in TGD Universe are characterized by extremely rich spectrum of topological quantum numbers, in particular those associated with knotting and linking: this is basically due to the 3-dimensionality of 3-space.

For a representation of trefoil knot by R.W. Gray see http://tinyurl.com/ycz4jm48. The homepage of Louis Kauffman (see http://tinyurl.com/y7r3w5jq) [A9] is a treasure trove for anyone interested in ideas related to possible applications of knots to physics. One particular knotty idea is discussed in the article "Emergent Braided Matter of Quantum Geometry" (see http://tinyurl.com/y7lnn3wa) by Bilson-Thompson, Hackett, and Kauffman [B14].

10.8.1 Space-Time As 4-Surface And The Basic Argument

Space-time as a 4-surface in $M^4 \times CP_2$ is the key postulate. The dynamics of space-time surfaces is determined by so called Kähler action - essentially Maxwell action for the Kähler form of CP_2 induced to X^4 in induced metric. Only so called preferred extremals are accepted and one can in very loose sense say that general coordinate invariance is realized by assigning to a given 3-surface a unique 4-surface as a preferred extremal analogous to Bohr orbit for a particle identified as 3-D surface rather than point-like object.

One ends up with a radical generalization of space-time concept to what I call many-sheeted space-time. The sheets of many-sheeted space-time are at distance of CP_2 size scale (10⁴ Planck lengths as it turns out) and can touch each other which means formation of wormhole contact with wormhole throats as its ends. At throats the signature of the induced metric changes from Minkowskian to Euclidian. Euclidian regions are identified as 4-D analogs of lines of generalized Feynman diagrams and the M^4 projection of wormhole contact can be arbitrarily large: macroscopic, even astrophysical. Macroscopic object as particle like entity means that it is accompanied by Euclidian region of its size.

Elementary particles are identified as wormhole contacts. The wormhole contacts born in mere touching are not expected to be stable. The situation changes if there is a monopole magnetic flux (CP_2 carries self dual purely homological monopole Kähler form defining Maxwell field, this is not Dirac monopole) since one cannot split the contact. The lines of the Kähler magnetic field must be closed, and this requires that there is another wormhole contact nearby. The magnetic flux from the upper throat of contact A travels to the upper

throat of contact B along "upper" space-time sheet, goes to "lower" space-time sheet along contact B and returns back to the wormhole contact A so that closed loop results.

In principle, wormhole throat can have arbitrary orientable topology characterized by the number g of handles attached to sphere and known as genus. The closed flux tube corresponds to topology $X_g^2 \times S^1$, g=0, 1, 2, ... Genus-generation correspondence (see http://tinyurl.com/ybowqm5v) [K16] states that electron, muon, and tau lepton and similarly quark generations correspond to g = 0, 1, 2 in TGD Universe and CKM mixing is induced by topological mixing.

Suppose that one can assign to this flux tube a closed string: this is indeed possible but I will not bother reader with details yet. What one can say about the topology of this string?

- (a) X_g^2 has homology Z^{2g} and S^1 homology S^1 . The entire homology is Z^{2g+1} so that there are 2g + 1 additional integer valued topological quantum numbers besides genus. Z^{2g+1} obviously breaks topologically universality stating that fermion generations are exact copies of each other apart from mass. This would be new physics. If the size of the flux loop is of order Compton length, the topological excitations need not be too heavy. One should however know how to excite them.
- (b) The circle S^1 is imbedded in 3-surface and can get knotted. This means that all possible knots characterize the topological states of the fermion. Also this means extremely rich spectrum of new physics.

10.8.2 What Is The Origin Of Strings Going Around The Magnetic Flux Tube?

What is then the origin of these knotted strings? The study of the Kähler-Dirac equation [K84] determining the dynamics of induced spinor fields at space-time surface led to a considerable insight here. This requires however additional notions such as zero energy ontology (ZEO), and causal diamond (CD) defined as intersection of future and past directed light-cones (double 4-pyramid is the M^4 projection. Note that CD has CP_2 as Cartesian factor and is analogous to Penrose diagram.

- (a) ZEO means the assumption that space-time surfaces for a particular sub- WCW ("world of classical worlds") are contained inside given CD identifiable as a the correlate for the "spotlight of consciousness" in TGD inspired theory of consciousness. The space-time surface has ends at the upper and lower light-like boundaries of CD. The 3-surfaces at the ends define space-time correlates for the initial and final states in positive energy ordinary ontology. In ZEO they carry opposite total quantum numbers.
- (b) General coordinate invariance (GCI) requires that once the 3-D ends are known, spacetime surface connecting the ends is fixed (there is not path integral since it simply fails). This reduces ordinary holography to GCI and makes classical physics defined by preferred extremals an exact part of quantum theory, actually a key element in the definition of Kähler geometry of WCW.

Strong form of GCI is also possible. One can require that 3-D light-like orbits of wormhole throats at which the induced metric changes its signature, and space-like 3-surfaces at the ends of CD give equivalent descriptions. This implies that quantum physics is coded by the their intersections which I call partonic 2-surfaces - wormhole throats - plus the 4-D tangent spaces of X^4 associated with them. One has strong form of holography. Physics is almost 2-D but not quite: 4-D tangent space data is needed.

(c) The study of the Kähler-Dirac equation [K84] leads to further results. The mere conservation of electromagnetic charge defined group theoretically for the induced spinors of $M^4 \times CP_2$ carrying spin and electroweak quantum numbers implies that for all other fermion states except right handed neutrino (, which does not couple at all all to electroweak fields), are localized at 2-D string world sheets and partonic 2-surfaces. String world sheets intersect the light-like orbits of wormhole throats along 1-D curves having interpretation as time-like braid strands (a convenient metaphor: braiding in time direction si created by dancers in the parquette).

One can say that dynamics automatically implies effective discretization: the ends of time like braid strands at partonic 2-surfaces at the ends of CD define a collection of discrete points to each of which one can assign fermionic quantum numbers.

- (d) Both throats of the wormhole contact can carry many fermion state and known fermions correspond to states for which either throat carries single braid strand. Known bosons correspond to states for which throats carry fermion and anti-fermion number.
- (e) Partonic 2-surface is replaced with discrete set of points effectively. The interpretation is in terms of a space-time correlate for finite measurement resolution. Quantum correlate would be the inclusion of hyperfinite factors of type II_1 .

This interpretation brings in even more topology!

- (a) String world sheets present both in Euclidian and Minkowskian regions intersect the 3-surfaces at the ends of CD along curves - one could speak of strings. These strings give rise to the closed curves that I discussed above. These strings can be homologically non-trivial - in string models this corresponds to wrapping of branes.
- (b) For known bosons one has two closed loop but these loops could fuse to single. Spacelike 2-braiding (including linking) becomes possible besides knotting.
- (c) When the partonic 2-surface contains several fermionic braid ends one obtains even more complex situation than above when one has only single braid end. The loops associated with the braid ends and going around the monopole flux tube can form spacelike N-braids. The states containing several braid ends at either throat correspond to exotic particles not identifiable as ordinary elementary particles.

10.8.3 How Elementary Particles Interact As Knots?

Elementary particles could reveal their knotted and even braided character via the topological interactions of knots. There are two basic interactions.

(a) The basic interaction for single string is by self-touching and this can give to a local connected sum or a reconnection. In both cases the knot invariants can change and it is possible to achieve knotting or unknotting of the string by this mechanism. String can also split into two pieces but this might well be excluded in the recent case.

The space-time dynamics for these interactions is that of closed string model with 4-D target space. The first guess would be topological string model describing only the dynamics of knots. Note that string world sheets define 2-knots and braids.

(b) The basic interaction vertex for generalized Feynman diagrams (lines are 4-D space-time regions with Euclidian signature) is join along 3-D boundaries for the three particles involved: this is just like ordinary 3-vertex for Feynman diagrams and is not encountered in string models. The ends of lines must have same genus g. In this interaction vertex the homology charges in Z^{2g+1} is conserved so that these charges are analogous to U(1) gauge charges. The strings associated with the two particles can touch each other and connected sum or reconnection is the outcome.

Consider now in more detail connected sum and reconnection vertices responsible for knotting and un-knotting.

(a) The first interaction is connected sum (see http://tinyurl.com/lye7pvp) of knots [A3]. A little mental exercise demonstrates that a local connected sum for the pieces of knot for which planar projections cross, can lead to a change in knotted-ness. Local connected sum is actually used to un-knot the knot in the construction of knot invariants.

In dimension 3 knots form a module with respect to the connected sum. One can identify unique prime knots and construct all knots as products of prime knots with product defined as a connected sum of knots. In particular, one cannot have a situation on which a product of two non-trivial knots is un-knot so that one could speak about the inverse of a knot (indeed, the inverse of ordinary prime is not an integer!). For higherdimensional knots the situation changes (string world sheets at space-time surface could form 2-knots but instead of linking they intersect at discrete points).

Connected sum in the vertex of generalized Feynman graph (as described above) can lead to a decay of particle to two particles, which correspond to the summands in the connected sum as knots. Could one consider a situation in which un-knotted particle decomposes via the time inverse of the connected sum to a pair of knotted particles such that the knots are inverses of each other? This is not possible since knots do not have inverse.

- (b) Touching knots can also reconnect. For braids the strands $A \to B$ and $C \to D$ touch and one obtains strands $A \to D$ and $C \to B$. If this reaction takes place for strands whose planar projections cross, it can also change the character of the knot. One one can transform knot to un-knot by repeatedly applying connected sum and reconnection for crossing strands (the Alexandrian way).
- (c) In the evolution of knots as string world sheets these two vertices corresponds to closed string vertices. These vertices can lead to topological mixing of knots leading to a quantum superposition of different knots for a given elementary particle. This mixing would be analogous to CKM mixing understood to result from the topological mixing of fermion genera in TGD framework. It could also imply that knotted particles decay rapidly to un-knots and make the un-knot the only long-lived state.

A naïve application of Uncertainty Principle suggests that the size scale of string determines the life time of particular knot configuration. The dependence on the length scale would however suggest that purely topological string theory cannot be in question. Zero energy ontology suggests that the size scale of the causal diamond assignable to elementary particle determines the time scale for the rates as secondary p-adic time scale: in the case of electron the time scale would be.1 seconds corresponding to Mersenne prime $M_{127} = 2^{127} - 1$ so that knotting and unknotting would be very slow processes. For electron the estimate for the scale of mass differences between different knotted states would be about $10^{-19}m_e$: electron mass is known for certain for 9 decimals so that there is no hope of detecting these mass differences. The pessimistic estimate generalizes to all other elementary particles: for weak bosons characterized by M_{89} the mass difference would be of order $10^{-13}m_W$.

(d) A natural guess is that p-adic thermodynamics can be applied to the knotting. In p-adic thermodynamics Boltzmann weights in are of form $p^{H/T}$ (p-adic number) and the allowed values of the Hamiltonian H are non-negative integer powers of p. Clearly, H representing a contribution to p-adic valued mass squared must be a non-negative integer valued invariant additive under connected sum. This guarantees extremely rapid convergence of the partition function and mass squared expectation value as the number of prime knots in the decomposition increases.

An example of an knot invariant (see http://tinyurl.com/ya6pdykc) [A15] additive under connected sum is knot genus (see http://tinyurl.com/y8nfykh3) [A14] defined as the minimal genus of 2-surface having the knot as boundary (Seifert surface). For trefoil and figure eight knot one has g = 1. For torus knot $(p,q) \equiv (q,p)$ one has g = (p-1)(q-1)/2. Genus vanishes for un-knot so that it gives the dominating contribution to the partition function but a vanishing contribution to the p-adic mass squared.

p-Adic mass scale could be assumed to correspond to the primary p-adic mass scale just as in the ordinary p-adic mass calculations. If the p-adic temperature is T = 1 in natural units (highest possible), and if one has H = 2g, the lowest order contribution corresponds to the value H = 2 of the knot Hamiltonian, and is obtained for trefoil and figure eight knot so that the lowest order contribution to the mass would indeed be about $10^{-19}m_e$ for electron. An equivalent interpretation is that H = g and T = 1/2 as assumed for gauge bosons in p-adic mass calculations.

There is a slight technical complication involved. When the string has a non-trivial homology in $X_g^2 \times S^1$ (it always has by construction), it does not allow Seifert surface in the ordinary sense. One can however modify the definition of Seifert surface so that it isolates knottedness from homology. One can express the string as connected sum of homologically non-trivial un-knot carrying all the homology and of homologically trivial knot carrying all knottedness and in accordance with the additivity of genus define the genus of the original knot as that for the homologically trivial knot.

(e) If the knots assigned with the elementary particles have large enough size, both connected sum and reconnection could take place for the knots associated with different elementary particles and make the many particle system a single connected structure. TGD based model for quantum biology is indeed based on this kind of picture. In this case the braid strands are magnetic flux tubes and connect bio-molecules to single coherent whole. Could electrons form this kind of stable connected structures in condensed matter systems? Could this relate to super-conductivity and Cooper pairs somehow? If one takes p-adic thermodynamics for knots seriously then knotted and braided magnetic flux tubes are more attractive alternative in this respect.

What if the thermalization of knot degrees of freedom does not take place? One can also consider the possibility that knotting contributes only to the vacuum conformal weight and thus to the mass squared but that no thermalization of ground states takes place. If the increment Δm of inertial mass squared associated with knotting is of from kgp^2 , where k is positive integer and g the above described knot genus, one would have $\Delta m/m \simeq 1/p$. This is of order $M_{127}^{-1} \simeq 10^{-38}$ for electron.

Could the knotting and linking of elementary particles allow topological quantum computation at elementary particle level? The huge number of different knottings would give electron a huge ground state degeneracy making possible negentropic entanglement. For negentropic entanglement probabilities must belong to an algebraic extension of rationals: this would be the case in the intersection of p-adic and real worlds and there is a temptation to assign living matter to this intersection. Negentropy Maximization Principle could stabilize negentropic entanglement and therefore allow to circumvent the problems due to the fact that the energies involved are extremely tiny and far below thus thermal energy. In this situation bit would generalize to "nit" corresponding to N different ground states of particle differing by knotting.

A very naïve dimensional analysis using Uncertainty Principle would suggest that the number changes of electron state identifiable as quantum computation acting on q-nits is of order $1/\Delta t = \Delta m/\hbar$. More concretely, the minimum duration of the quantum computation would be of order $\Delta t = \hbar/\Delta m$. Single quantum computation would take an immense amount time: for electron single operation would take time of order 10^{17} s, which is of the order of the recent age of the Universe. Therefore this quantum computation would be of rather limited practical value!

10.9 Could $\mathcal{N} = 4$ Super-Conformal Symmetry Be Realized In TGD?

Both $\mathcal{N} = 4$ and possible $\mathcal{N} = 2$ super-conformal symmetry would be symmetries generated by the solutions of the Kähler-Dirac equation for the second quantized induced spinor fields at string world sheets. $\mathcal{N} = 2$ SUSY at space-time level would follow from corresponding superconformal algebra and would be naturally realized in terms of right handed neutrino and antineurino. It is however far from obvious whether large $\mathcal{N} = 4$ super-conformal symmetry makes sense.

- (a) One has two conserved fermionic numbers (quarks and leptons) and this allows 4-super generators but they SUSY generated by right-handed neutrino does not have any counterpart in quark sector so that one can hope only $\mathcal{N} = 4$ SCA broken down to $\mathcal{N} = 2$ realized by adding to quark or lepton state right-handed neutrino or antineutrino.
- (b) In the case of $\mathcal{N} = 2$ one has inherent $SU(2)_- \times U(1)$ symmetry assignable to CP_2 naturally. For $\mathcal{N} = 4$ one has inherent $SU(2)_+ \times SU(2)_- \times U(1)$ Kac-Moody symmetry, which should correspond to a fundamental partonic super-conformal symmetry in TGD framework.

The assignment of both SU(2) with CP_2 degrees of freedom is highly questionable since the holonomy group in these degrees of freedom reduces to electro-weak group. The assignment of the second SU(2) with M^4 spin is questionable since M^4 has trivial holonomy group. In zero energy ontology (ZEO) positive and negative energy parts of zero energy states are assigned to the light-like boundaries of causal diamond (CD) and having SU(2) as holonomy group. Could one assign the second SU(2) with it? One does not however have induced spinor connection in M^4 degrees of freedom that this identification is questionable.

The conservative conclusion would be that one has $\mathcal{N} = \in$ SCA with quarks and leptons defining separate irreducible representations of SCA. Despite this the $\mathcal{N} = \triangle$ alternative deserves a separate study.

Needless to say, a lot remains to be understood. One of the problems is that my understanding of $\mathcal{N} = 4$ super-conformal symmetry at technical level is rather modest. There are also profound differences between these two kinds of super conformal symmetries. In TGD framework super generators carry quark or lepton number, super-symplectic and super Kac-Moody generators are identified as Hamiltonians rather than vector fields, and symplectic group is infinite-dimensional whereas the Lie groups associated with Kac-Moody algebras are finite-dimensional. On the other hand, finite measurement resolution implies discretization and cutoff in conformal weight. Therefore the naïve attempt to re-interpret results of standard super-conformal symmetry to TGD framework might lead to erratic conclusions.

N > 0 super-conformal algebras contain besides super Virasoro generators also other types of generators and this raises the question whether it might be possible to find an algebra coding the basic quantum numbers of the induced spinor fields.

There are several variants of $\mathcal{N} = 4$ SCAs and they correspond to the Kac-Moody algebras SU(2) (small SCA), $SU(2) \times SU(2) \times U(1)$ (large SCA) and $SU(2) \times U(1)^4$. Rasmussen has found also a fourth variant based on $SU(2) \times U(1)$ Kac-Moody algebra [A64]. It seems that only minimal and maximal $\mathcal{N} = 4$ SCAs can represent realistic options. The reduction to almost topological string theory in critical phase is probably lost for other than minimal SCA but could result as an appropriate limit for other variants.

10.9.1 Large $\mathcal{N} = 4$ SCA

Large $\mathcal{N} = 4$ SCA is described in the following in detail since it might be a natural algebra in TGD framework.

The structure of large $\mathcal{N} = 4$ SCA algebra

A concise discussion of this symmetry with explicit expressions of commutation and anticommutation relations can be found in [A64]. The representations of SCA are characterized by three central extension parameters for Kac-Moody algebras but only two of them are independent and given by

$$\begin{aligned} k_{\pm} &\equiv k(SU(2)_{\pm}) , \\ k_{1} &\equiv k(U(1)) = k_{+} + k_{-} . \end{aligned}$$
 (10.9.1)

The central extension parameter c is given as

$$c = \frac{6k_+k_-}{k_++k_-} (10.9.2)$$

and is rational valued as required.

A much studied $\mathcal{N} = 4$ SCA corresponds to the special case

$$k_{-} = 1 , k_{+} = k + 1 , k_{1} = k + 2 ,$$

$$c = \frac{6(k+1)}{k+2} .$$
(10.9.3)

c = 0 would correspond to $k_{+} = 0, k_{-} = 1, k_{1} = 1$. For $k_{+} > 0$ one has $k_{1} = k_{+} + k_{-} \neq k_{+}$.

About unitary representations of large $\mathcal{N} = 4$ SCA

The unitary representations of large $\mathcal{N} = 4$ SCA are briefly discussed in [A47]. The representations are labeled by the ground state conformal weigh h, SU(2) spins l_+ , l_- , and U(1) charge u. Besides the inherent Kac-Moody algebra there is also "external" Kac-Moody group G involved and could correspond in TGD framework to the symplectic algebra associated with $\delta H_{\pm} = \delta M_{\pm}^4 \times CP_2$ or to Kac-Moody group respecting light-likeness of light-like 3-surfaces. External Kac-Moody algebra can be also assigned with color degrees of freedom.

Unitarity constraints apply completely generally irrespective of G so that one can apply them also in TGD framework. There are two kinds of unitary representations.

- (a) Generic/long/massive representations which are generated from vacuum state as usual. In this case there are no null vectors.
- (b) Short or massless representations have a null vector. The expression for the conformal weigt h_{short} of the null vector reads in terms of l_+, l_- and k_+, k_- as

$$h_{short} = \frac{1}{k_{+} + k_{-}} (k_{-}l_{+} + k_{+}l_{-} + (l_{+} - l_{-})^{2} + u^{2}) . \qquad (10.9.4)$$

Unitarity demands that both short and long representations lie at or above $h \ge h_{short}$ and that spins lie in the range $l_{\pm} = 0, 1/2, ..., (k_{\pm} - 1)/2$. (c) Interesting examples of N = 4 SCA are provided by WZW coset models W × U(1), where W is WZW model associated with a quaternionic (Wolf) space. Examples based on classical groups are W = G/H = SU(n)/SU(n-1)×U(1), SO(n)/SO(n-4)×SU(2), and Sp(2n)/Sp(2n-2). For n = 3 first series gives CP₂ whereas second series gives for N = 4 SO(4)/SU(2) = SU(2). In this case one has k₊ = κ + 1, and k₋ = ĉ_G, where κ is the level of the bosonic current algebra for G and ĉ_G is its dual Coxeter number.

WZW coset model $\mathcal{W} = G/H = CP_2$ is of special interest in TGD framework and could allow to bring in the color Kac-Moody algebra. The U(1) algebra might be however problematic since the standard model U(1) is already contained in the SCA.

10.9.2 Overall View About How Different $\mathcal{N} = 4$ SCAs Could Emerge In TGD Framework

The basic idea is simple $\mathcal{N} = 4$ fermion states obtained as different combinations of spin and isospin for given *H*-chirality of embedding space spinor correspond to $\mathcal{N} = 4$ multiplet. In the case of leptons the holonomy group of $S^2 \times CP_2$ for given spinor chirality is $SU(2)_R \times SU(2)_R$ or $SU(2)_L \times SU(2)_R$ depending on M^4 chirality of the spinor. In case of quark one has $SU(2)_L \times SU(2)_L$ or $SU(2)_R \times SU(2)_R$. The coupling to Kähler gauge potential adds to the group U(1) factor so that large $\mathcal{N} = 4$ SCA is obtained. For covariantly constant right handed neutrino electro-weak part of holonomy group drops away as also U(1) factor so that one obtains $SU(2)_L$ or $SU(2)_R$ and small $\mathcal{N} = 4$ SCA.

How maximal $\mathcal{N} = 4$ SCA could emerge in TGD framework?

Consider the Kac-Moody algebra $SU(2) \times SU(2) \times U(1)$ associated with the maximal $\mathcal{N} = 4$ SCA. Besides Kac-Moody currents it contains 4 spin 1/2 fermionic generators having an identification as quantum counterparts of leptonic spinor fields. The interpretation of the first SU(2) is as rotations as rotations leaving invariant the sphere $S^2 \subset \delta M^4_+$.

Here it is essential to notice that the holonomy of light-cone boundary is non-trivial unlike the holonomy of M^4 . In zero energy ontology (ZEO) assigning positive and negative energy parts of zero energy states to the boundaries of causal diamond (CD) this holonomy group would emerge naturally.

U(2) has interpretation as electro-weak gauge group and as maximal linearly realized subgroup of SU(3). This algebra acts naturally as symmetries of the 8-component spinors representing super partners of quaternions.

The algebra involves the integer value central extension parameters k_+ and k_- associated with the two SU(2) algebras as parameters. The value of U(1) central extension parameter k is given by $k = k_+ + k_-$. The value of central extension parameter c is given by

$$c = 6k_{-}\frac{x}{1+x} < 6k_{+}$$
 , $x = \frac{k_{+}}{k_{-}}$.

c can have all non-negative rational values m/n for positive values of k_{\pm} given by $k_{+} = rm, k_{-} = (6nr - 1)m$. Unitarity might pose further restrictions on the values of c. At the limit $k_{-} = k, k_{+} \to \infty$ the algebra reduces to the minimal $\mathcal{N} = 4$ SCA with c = 6k since the contributions from the second SU(2) and U(1) to super Virasoro currents vanish at this limit.

How small $\mathcal{N} = 4$ SCA could emerge in TGD framework?

Consider the TGD based interpretation of the small $\mathcal{N} = 4$ SCA.

(a) The group SU(2) associated with the small $\mathcal{N} = 4$ SCA and acting as rotations of covariantly constant right-handed neutrino spinors allows also an interpretation as

a group SO(3) leaving invariant the sphere S^2 of the light-cone boundary identified as $r_M = m^0$ =constant surface defining generalized Kähler and symplectic structures in δM^4_{\pm} . Electro-weak degrees of freedom are obviously completely frozen so that $SU(2)_- \times U1$ factor indeed drops out.

(b) The choice of the preferred coordinate system should have a physical justification. The interpretation of SO(3) as the isotropy group of the rest system defined by the total four-momentum assignable to the 3-surface containing partonic 2-surfaces is supported by the quantum classical correspondence. The subgroup U(1) of SU(2) acts naturally as rotations around the axis defined by the light ray from the tip of M_{\pm}^4 orthogonal to S^2 . For c = 0, k = 0 case these groups define local gauge symmetries. In the more general case local gauge invariance is broken whereas global invariance remains as it should.

In $M^2 \times E^2$ decomposition E^2 corresponds to the tangent space of S^2 at a given point and M^2 to the plane orthogonal to it. The natural assumption is that the right handed neutrino spinor is annihilated by the momentum space Dirac operator corresponding to the light-like momentum defining $M^2 \times E^2$ decomposition.

(c) For covariantly constant right handed neutrinos the dynamics would be essentially that defined by a topological quantum field theory and this kind of almost trivial dynamics is indeed associated with small $\mathcal{N} = 4$ SCA.

1. Why $\mathcal{N} = 4$ SUSY

 $\mathcal{N} = 2$ super-conformal invariance has been claimed to imply the vanishing of all amplitudes with more than 3 external legs for closed critical $\mathcal{N} = 2$ strings having c = 6, k = 1 which is proposed to correspond to $n \to \infty$ limit [A33, A67]. Only the partition function and $2 \leq N \leq 3$ scattering amplitudes would be non-vanishing. The argument of [A33] relies on the embedding of $\mathcal{N} = 2$ super-conformal field theory to $\mathcal{N} = 4$ topological string theory whereas in [A67] the Ward identities for additional unbroken symmetries associated with the chiral ring accompanying $\mathcal{N} = 2$ super-symmetry [A54] are utilized. In fact, $\mathcal{N} = 4$ topological string theory allows also embeddings of N = 1 super strings [A33].

The properties of c = 6 critical theory allowing only integral valued U(1) charges and fermion numbers would conform nicely with what we know about the perturbative electro-weak physics of leptons and gauge bosons. c = 1, k = 1 sector with $\mathcal{N} = 2$ super-conformal symmetry would involve genuinely stringy physics since all N-point functions would be nonvanishing and the earlier hypothesis that strong interactions can be identified as electro-weak interactions which have become strong inspired by HO-H duality [K70] could find a concrete realization.

In c = 6 phase $\mathcal{N} = 2$ -vertices the loop corrections coming from the presence of higher lepton genera in amplitude could be interpreted as topological mixing forced by unitarity implying in turn leptonic CKM mixing for leptons. The non-triviality of 3-point amplitudes would in turn be enough to have a stringy description of particle number changing reactions, such as single photon brehmstrahlung. The amplitude for the emission of more than one brehmstrahlung photons from a given lepton would vanish. Obviously the connection with quantum field theory picture would be extremely tight and imbeddability to a topological $\mathcal{N} = 4$ quantum field theory could make the theory to a high degree exactly solvable.

2. Objections

There are also several reasons for why one must take the idea about the usefulness of c = 6 super-conformal strings from the point of view of TGD with an extreme caution.

(a) Stringy diagrams have quite different interpretation in TGD framework. The target space for these theories has dimension four and metric signature (2, 2) or (0, 4) and the vanishing theorems hold only for (2, 2) signature. In lepton sector one might regard

the covariantly constant complex right-handed neutrino spinors as generators of $\mathcal{N} = 2$ super-symmetries but in quark sector there are no super-symmetries.

- (b) The spectrum looks unrealistic: all degrees of freedom are eliminated by symmetries except single massless scalar field so that one can wonder what is achieved by introducing the extremely heavy computational machinery of string theories. This argument relies on the assumption that time-like modes correspond to negative norm so that the target space reduces effectively to a 2-dimensional Euclidian sub-space E^2 so that only the vibrations in directions orthogonal to the string in E^2 remain. The situation changes if one assigns negative conformal weights and negative energies to the time like excitations. In the generalized coset representation used to construct physical states this is indeed assumed.
- (c) The central charge has only values c = 6k, where k is the central extension parameter of SU(2) algebra [A28] so that it seems impossible to realize the genuinely rational values of c which should correspond to the series of Jones inclusions. One manner to circumvent the problem would be the reduction to $\mathcal{N} = 2$ super-conformal symmetry.
- (d) SU(2) Kac-Moody algebra allows to introduce only 2-component spinors naturally whereas super-quaternions allow quantum counterparts of 8-component spinors.

The $\mathcal{N} = 2$ super-conformal algebra automatically extends to the so called small $\mathcal{N} = 4$ algebra with four super-generators G_{\pm} and their conjugates [A33]. In TGD framework G_{\pm} degeneracy corresponds to the two spin directions of the covariantly constant right handed neutrinos and the conjugate of G_{\pm} is obtained by charge conjugation of right handed neutrino. From these generators one can build up a right-handed SU(2) algebra.

Hence the SU(2) Kac-Moody of the small $\mathcal{N} = 4$ algebra corresponds to the three imaginary quaternionic units and the U(1) of $\mathcal{N} = 2$ algebra to ordinary imaginary unit. Energy momentum tensor T and SU(2) generators would correspond to quaternionic units. G_{\pm} to their super counterparts and their conjugates would define their "square roots".

What about $\mathcal{N} = 4$ SCA with $SU(2) \times U(1)$ Kac-Moody algebra?

Rasmussen [A64] has discovered an $\mathcal{N} = 4$ super-conformal algebra containing besides Virasoro generators and 4 Super-Virasoro generators $SU(2) \times U(1)$ Kac-Moody algebra and two spin 1/2 fermions and a scalar.

The first identification of $SU(2) \times U(1)$ is as electro-weak algebra for a given spin state. Second identification is as the algebra defined by rotation group and electromagnetic or Kähler charge acting on given charge state of fermion and naturally resulting in electro-weak symmetry breaking. Scalar might relate to Higgs field which is M^4 scalar but CP_2 vector.

There are actually two versions about Rasmussen's article [A64]: in the first version the author talks about $SU(2) \times U(1)$ Kac-Moody algebra and in the second one about $SL(2) \times U(1)$ Kac-Moody algebra.

10.9.3 How Large $\mathcal{N} = 4$ SCA Could Emerge In Quantum TGD?

The formulation of TGD as an almost topological super-conformal QFT with light-like partonic 3-surfaces identified as basic dynamical objects has increased considerably the understanding of super-conformal symmetries and their breaking in TGD framework. $\mathcal{N} = 4$ super-conformal algebra would correspond to the maximal algebra with $SU(2) \times U(2)$ Kac-Moody algebra as inherent fermionic Kac-Moody algebra.

Concerning the interpretation the first guess would be that $SU(2)_+$ and $SU(2)_-$ correspond to vectorial spinor rotations in M^4 and CP_2 and U(1) to Kähler charge or electromagnetic charge. For given embedding space chirality (lepton/quark) and M^4 chirality SU(2) groups are completely fixed.

There are many kinds of fermionic super generators and the role of these algebras is not yet well-understood.

Well-definedness of electromagnetic charge implies stringiness

There is also a new element not present in the original speculations. The condition that em charge is well defined for spinor modes implies that the space-time region in which spinor mode is non-vanishing has 2-D CP_2 projection such that the induced W boson fields are vanishing. The vanishing of classical Z^0 field can be poses as additional condition - at least in scales above weak scale. In the generic case this requires that the spinor mode is restricted to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting the modes are expected to allow restriction to 2-surfaces. This localization is possible only for Kähler-Dirac action.

Identification of super generators associated with WCW metric

The definition of the metric of "world of classical worlds" (WCW) is as anticommutators of WCW gamma matrices carrying fermion number and in one-one correspondence with the infinitesimal isometries of WCW. WCW gamma matrices can be interpreted as supergenerators but do not seem to be identifiable as super counterparts of Noether charges. Fermionic generators can be divided into those associated with symplectic transformations, isometries, or symplectic isometries.

- 1. Generators of the symplectic algebra of $\delta M_{\pm}^4 \times CP_2$ defined in terms of covariantly constant right-handed neutrino and second quantized induced spinor field. The form of current is $\overline{\nu}_R j_A^k \gamma_k \Psi$ and only leptonic Ψ contributes.
- 2. Fermionic generators defined in terms of all spinor modes for the symplectic isometries by the same formulas as in the case of symplectic algebra. This algebra is Kac-Moody type algebra with radial light-like coordinate r_M of δM_{\pm}^4 playing the role of complex coordinate. There is conformal weight associated with r_M but also with the fermionic modes since the fermions are localized to 2-D string world sheets and labelle by integer valued conformal weight. The form of the fermionic current is $\overline{\Psi}_n j_A^k \gamma_k \Psi$ and both quark-like and leptonic Ψ contribute.
- 3. One can also consider fermionic generators assignable as a Noether super charges to the isometries of $\delta M_{\pm}^4 = S^2 \times R_+$, which are in 1-1 correspondence with the conformal transformations of S^2 . The conformal scaling of S^2 is compensated by the S^2 dependent scaling of the light-like radial coordinate r_M . It is not completely clear whether these should be included. If not, it would be a slight dis-appointment since the metric 2-dimensionality of the δM_{\pm}^4 makes 4-D Minkowski space unique. Same applies to 4-D space-time since light-like 3-surfaces representing partonic 2-surfaces allow also 2-D conformal symmetries as isometries.

Supercharges accompanying conserved fermion numbers

There are also fermionic super-charges defined as super-currents serving as super counter-parts of conserved fermion number in quark-like and leptonic sector.

- 1. Assume that the Kähler-Dirac operator decomposition $D = D(Y^2) + D(X^2)$ reflecting the dual slicings of space-time surfaces to string world sheets Y^2 and partonic 2-surfaces X^2 . If the conditions guaranteing well-defined em charge hold true, when can forget the presence of X^2 and the parameters λ_k labelling spinor modes in these degrees of freedom. The highly non-trivial consistency condition possible for Kähler-Dirac action is that $D(X^2)$ vanishes at string world sheets and thus allows the localization.
- 2. Y^1 represents light-like direction and also string connecting braid strands at same component of X_l^3 or at two different components of X_l^3 . Kähler-Dirac equation implies that the charges

$$\int_{X_l^3} \overline{\Psi}_n \hat{\Gamma}^v \Psi \tag{10.9.5}$$

define conserved super charges in time direction associated with Y^1 and carrying quark or lepton number. Here Ψ_n corresponds to n: th conformal excitation of Ψ and has conformal weight n (plus possible ground state conformal weight). In the case of ordinary Dirac equation essentially fermionic oscillator operators would be in question.

3. The zero modes of $D(X^2)$ define a sub-algebra which is a good candidate for representing super gauge symmetries. If localizations to 2-D string world sheets takes place, only these transformations are present.

In particular, covariantly constant right handed neutrinos define this kind of super gauge super-symmetries. $\mathcal{N} = 2$ super-conformal symmetry would correspond in TGD framework to covariantly constant complex right handed neutrino spinors with two spin directions forming a right handed doublet and would be exact and act only in the leptonic sector relating WCW Hamiltonians and super-Hamiltonians. This algebra extends to the so called small $\mathcal{N} = 4$ algebra if one introduces the conjugates of the right handed neutrino spinors. This symmetry is exact if only leptonic chirality is present in theory or if free quarks carry leptonic charges.

A physically attractive realization of the braids - and more generally- of slicings of spacetime surface by 3-surfaces and string world sheets, is discussed in [K36] by starting from the observation that TGD defines an almost topological QFT of braids, braid cobordisms, and 2knots. The boundaries of the string world sheets at the space-like 3-surfaces at boundaries of CDs and wormhole throats would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface operators used in gauge theory approach to knots [A43] to TGD framework. It leads to the identification of slicing by 3-surfaces as that induced by the inverse images of r = constant surfaces of CP_2 , where r is U(2) invariant radial coordinate of CP_2 playing the role of Higgs field vacuum expectation value in gauge theories. $r = \infty$ surfaces correspond to geodesic spheres and define analogs of fractionally magnetically charged Dirac strings identifiable as preferred string world sheets. The union of these sheets labelled by subgroups $U(2) \subset SU(3)$ would define the slicing of space-time surface by string world sheets. The choice of U(2) relates directly to the choice of quantization axes for color quantum numbers characterizing CD and would have the choice of braids and string world sheets as a space-time correlate.

Identification of Kac-Moody generators

Consider next the generators of inherent Kac-Moody algebras for $SU(2) \times SU(2) \times U(1)$ and freely chosen group G.

- 1. Generators of Kac-Moody algebra associated with isometries correspond Noether currents associated with the infinitesimal action of Kac-Moody algebra to the induced spinor fields. Local $SO(3) \times SU(3)$ algebra is in question and excitations should have dependence on the coordinate u in direction of Y^1 . The most natural guess is that this algebra corresponds to the Kac-Moody algebra for group G.
- 2. The natural candidate for the inherent Kac-Moody algebra is the holonomy algebra associated with $S^2 \times CP_2$. This algebra should correspond to a broken symmetry.

The generalized eigen modes of $D(X^2)$ labeled by λ_k should from the representation space in this case: if localization to 2-D string world sheets occurs, this space is 1-D. If Kac-Moody symmetry were not broken these representations would correspond a degeneracy associated with given value of λ_k . Electro-weak symmetry breaking is however present and coded already into the geometry of CP_2 . Also SO(3) symmetry is broken due to the presence of classical electro-weak magnetic fields. The broken symmetries could be formulated in terms of initial values of generalized eigen modes at X^2 defining either end of X_l^3 . One can rotate these initial values by spinor rotations. Symmetry breaking would mean that the modes obtained by a rotation by angle $\phi = \pi$ from a mode with fixed eigenvalue λ_k have different eigenvalues. Four states would be obtained for a given embedding space chirality (quark or lepton). One expects that an analog of cyclotron spectrum with cutoff results with each cyclotron state split to four states with different eigenvalues λ_k . Kac-Moody generators could be expressed as matrices acting in the space spanned by the eigen modes.

Consistency with p-adic mass calculations

The consistency with p-adic mass calculations provides a strong guide line in attempts to interpret $\mathcal{N} = 4$ SCA. The basis ideas of p-adic mass calculations are following.

- 1. Fermionic partons move in color partial waves in their cm degrees of freedom. This gives to conformal weight a vacuum contribution equal to the CP_2 contribution to mass squared. The contribution depends on electro-weak isospin and equals $(h_c(U), h_c(D)) = (2, 3)$ for quarks and one has $(h_c(\nu), h_c(L)) = (1, 2)$.
- 2. The ground state can correspond also to non-negative value of L_0 for SKMV algebra, which gives rise to a thermal degeneracy of massless states. p-Adic mass calculations require $(h_{gr}(U), h_{gr}(D)) = (1, 0)$ and $(h_{gr}(\nu), h_{gr}(L)) = (2, 1)$ so that the super-symplectic operator O_c screening the anomalous color charge has conformal weight $h_c = -3$ for all fermions.

The simplest interpretation is that the free parameter h appearing in the representations of the SCA corresponds to the conformal weight due to the color partial wave so that the correlation with electromagnetic charge would indeed emerge but from the correlation of color partial waves and electro-weak quantum numbers.

The requirement that ground states are null states with respect to the SCV associated with the radial light-like coordinate of δM_{\pm}^4 gives an additional consistency condition and $h_c = -3$ should satisfy this condition. p-Adic mass calculations do not pose non-trivial conditions on h for option 1) if one makes the identification $u = Q_{em}$ since one has $h_{short} < 1$ for all values of $k_+ + k_-$. Therefore both options 1) and 2) can be considered.

About symmetry breaking for large $\mathcal{N} = 4$ SCA

Partonic formulation predicts that large $\mathcal{N} = 4$ SCA is a broken symmetry, and the first guess is that breaking occurs via several steps. First a "small" $\mathcal{N} = 4$ SCA with Kac-Moody group $SU(2)_+ \times U(1)$, where $SU(2)_+$ corresponds to ordinary rotations on spinor with fixed helicity, would result in electro-weak symmetry breaking. The next step in breaking of the spin symmetry would lead to $\mathcal{N} = 2$ SCA and the final step to N = 0 SCA. Several symmetry breaking scenarios are possible.

- 1. The interpretation of $SU(2)_+$ in terms of right- or left- handed spin rotations and U(1) as electromagnetic gauge group conforms with the general vision about electro-weak symmetry breaking in non-stringy phase. The interpretation certainly makes sense for covariantly constant right handed neutrinos for which spin direction is free. For left handed charged electro-weak bosons the action of right-handed spinor rotations is trivial so that the interpretation would make sense also now.
- 2. The next step in the symmetry breaking sequence would be $\mathcal{N} = 2$ SCA with electromagnetic Kac-Moody algebra as inherent Kac-Moody algebra U(1).

10.9.4 Relationship To Super String Models, M-theory And WZW Model

In hope of achieving more precise understanding one can try to understand the relationship of $\mathcal{N} = 4$ super conformal symmetry as it might appear in TGD to super strings, M theory and WZW model.

Relationship to super-strings and M-theory

The (4, 4) signature characterizing $\mathcal{N} = 4$ SCA topological field theory is not a problem since in TGD framework the target space becomes a fictive concept defined by the Cartan algebra. Both $M^4 \times CP_2$ decomposition of the embedding space and space-time dimension are crucial for the 2 + 2 + 2 + 2 + 2 structure of the Cartan algebra, which together with the notions of WCW and generalized coset representation formed from super Kac-Moody and super-symplectic algebras guarantees $\mathcal{N} = 4$ super-conformal invariance.

Including the 2 gauge degrees of freedom associated with M^2 factor of $M^4 = M^2 \times E^2$ the critical dimension becomes D = 10 and including the radial degree of light-cone boundary the critical dimension becomes D = 11 of M-theory. Hence the fictive target space associated with the vertex operator construction corresponds to a flat background of super-string theory and flat background of M-theory with one light-like direction. From TGD point view the difficulties of these approaches are due to the un-necessary assumption that the fictive target space defined by the Cartan algebra corresponds to the physical embedding space. The flatness of the fictive target space forces to introduce the notion of spontaneous compactification and dynamical embedding space and this in turn leads to the notion of landscape.

Consistency with critical dimension of super-string models and M-theory

Mass squared is identified as the conformal weight of the positive energy component of the state rather than as a contribution to the conformal weight canceling the total conformal weight. Also the Lorentz invariance of the p-adic thermodynamics requires this. As a consequence, the pseudo 4-momentum p assignable to M^4 super Kac-Moody algebra could be always light-like or even tachyonic.

Super-symplectic algebra would generate the negative conformal weight of the ground state required by the p-adic mass calculations and super-Kac Moody algebra would generate the non-negative net conformal weight identified as mass squared. In this interpretation SKM and SC degrees of freedom are independent and correspond to opposite signs for conformal weights.

The construction is consistent with p-adic mass calculations [K39, K39] and the critical dimension of super-string models.

- 1. Five Super Virasoro sectors are predicted as required by the p-adic mass calculations (the predicted mass spectrum depends only on the number of tensor factors). Super-symplectic algebra gives $Can(CP_2)$ and $Can(S^2)$. In SKM sector one has $SU(2)_L$, U(1), local SU(3), SO(2) and E^2 orthogonal to strong world sheets so that 5 sectors indeed result.
- 2. The Cartan algebras involved of SC is 2-dimensional and that of SKM is 7-dimensional so that 10-dimensional Cartan algebra results. This means that vertex operator construction implies generation of 10-dimensional target space which in super-string framework would be identified as embedding space. Note however that these dimensions have Euclidian signature unlike in superstring models. SKM algebra allows also the option $SO(3) \times E(3)$ in M^4 degrees of freedom: this would mean that SKM Cartan algebra is 10-dimensional and the whole algebra 11-dimensional.

$\mathcal{N} = 4$ super-conformal symmetry and WZW models

One can question the naïve idea that the basic structure $G_{int} = SU(2) \times U(2)$ structure of $\mathcal{N} = 4$ SCA generalizes as such to the recent framework.

- 1. $\mathcal{N} = 4$ SCA is originally associated with Majorana spinors. $\mathcal{N} = 4$ algebra can be transformed from a real form to complex form with 2 complex fermions and their conjugates corresponding to complex *H*-spinors of definite chirality having spin and weak isospin. At least at formal level the complexification of $\mathcal{N} = 4$ SCA algebra seems to make sense and might be interpreted as a direct sum of two $\mathcal{N} = 4$ SCAs and complexified quaternions. Central charge would remain $c = 6k_+k_-/(k_++k_-)$ if naïve complexification works. The fact that Kac-Moody algebra of spinor rotations is $G_{int} = SO(4) \times SO(4) \times U(1)$ is naturally assignable naturally to spinors of *H* suggests that it represents a natural generalization of $SO(4) \times U(1)$ algebra to inherent Kac-Moody algebra.
- 2. One might wonder whether the complex form of $\mathcal{N} = 4$ algebra could result from N = 8 SCA by posing the associativity condition.
- 3. The article of Gunaydin [A70] about the representations of $\mathcal{N} = 4$ super-conformal algebras realized in terms of Goddard-Kent-Olive construction and using gauged Wess-Zumino-Witten models forces however to question the straightforward translation of results about $\mathcal{N} = 4$ SCA to TGD framework and it must be admitted that the situation is something confusing. Of course, there is no deep reason to believe that WZW models are appropriate in TGD framework.

- (a) Gauged WZW models are constructed using super-space formalism which is not natural in TGD framework. The coset space $CP_2 \times U(2)$ where U(2), could be identified as subalgebra of color algebra or possibly as electro-weak algebra provides one such realization. Also the complexification of the $\mathcal{N} = 4$ algebra is something new.
- (b) The representation involves 5-grading by the values of color isospin for SU(3) and makes sense as a coset space realization for $G/H \times U(1)$ if H is chosen in such a way that $G/H \times SU(2)$ is quaternionic space. For SU(3) one has H = U(1) identifiable in terms of color hyper charge CP_2 is indeed quaternionic space. For SU(2) 5-grading degenerates since spin 1/2 Lie-algebra generators are absent and H is trivial group. In M^4 degrees of gauged WZW model would be trivial.
- (c) $\mathcal{N} = 4$ SCA results as an extension of $\mathcal{N} = 2$ SCA using so called Freudenthal triple system. $\mathcal{N} = 2$ SCA has realization in terms of $G/H \times U(1)$ gauged WZW theory whereas the extension to $\mathcal{N} = 4$ SCA gives $G \times U(1)/H$ gauged WZW model: note that $SU(3) \times U(1)/H$ does not have an obvious interpretation in TGD framework. The Kac-Moody central extension parameters satisfy the constraint $k_+ = k + 1$ and $k_- = \hat{g} - 1$, where k is the central extension parameter for G. For G = SU(3) one obtains $k_- = 1$ and c = 6(k+1)/(k+2). H = U(1) corresponding to color hyper-charge and U(1) for $\mathcal{N} = 2$ algebra corresponds to color isospin. The group U(1) appearing in $SU(3) \times U(1)$ might be interpreted in terms of fermion number or Kähler charge.
- (d) What looks somewhat puzzling is that the generators of second SU(2) algebra carry fermion number $F = 4I_3$. Note however that the sigma matrices of WCW with fermion number ± 2 are non-vanishing since corresponding gamma matrices anti-commute. Second strange feature is that fermionic generators correspond to 3+3 super-coordinates of the flag-manifold $SU(3)/U(1) \times U(1)$ plus 2 fermions and their conjugates. Perhaps the coset realization in CP_2 degrees of freedom is not appropriate in TGD framework and that one should work directly with the realization based on second quantized induced spinor fields.

10.9.5 The Interpretation Of The Critical Dimension D = 4 And The Objection Related To The Signature Of The Space-Time Metric

The first task is to show that D = 4 (D = 8) as critical dimension of target space for $\mathcal{N} = 2$ ($\mathcal{N} = 4$) super-conformal symmetry makes sense in TGD framework and that the signature (2, 2) ((4, 4) of the metric of the target space is not a fatal flaw. The lifting of TGD to twistor space seems the most promising manner to bring in (2, 2) signature. One must of course remember that super-conformal symmetry in TGD sense differs from that in the standard sense so that one must be very cautious with comparisons at this level.

Space-time as a target space for partonic string world sheets?

Since partonic 2-surfaces are sub-manifolds of 4-D space-time surface, it would be natural to interpret space-time surface as the target space for $\mathcal{N} = 2$ super-conformal string theory so that space-time dimension would find a natural explanation. Different Bohr orbit like solutions of the classical field equations could be the TGD counterpart for the dynamic target space metric of Mtheory. Since partonic two-surfaces belong to 3-surface X_V^3 , the correlations caused by the vacuum functional would imply non-trivial scattering amplitudes with CP_2 type extremals as pieces of X_V^3 providing the correlate for virtual particles. Hence the theory could be physically realistic in TGD framework and would conform with perturbative character for the interactions of leptons. $\mathcal{N} = 2$ super-conformal theory would of course not describe everything. This algebra seems to be still too small and the question remains how the functional integral over the configuration space degrees of freedom is carried out. It will be found that $\mathcal{N} = 4$ super-conformal algebra results neatly when super Kac-Moody and super-symplectic degrees of freedom are combined.

The interpretation of the critical signature

The basic problem with this interpretation is that the signature of the induced metric cannot be (2, 2) which is essential for obtaining the cancelation for $\mathcal{N} = 2$ SCA imbedded to $\mathcal{N} = 4$ SCA with critical dimension D = 8 and signature (4, 4). When super-generators carry fermion number and do not reduce to ordinary gamma matrices for vanishing conformal weights, there is no need to pose the condition of the metric signature. The (4, 4) signature of the target space metric is not so serious limitation as it looks if one is ready to consider the target space appearing in the calculation of N-point functions as a fictive notion.

The resolution of the problems relies on two observations.

- 1. The super Kac-Moody and super-symplectic Cartan algebras have dimension D = 2 in both M^4 and CP_2 degrees of freedom giving total effective dimension D = 8.
- 2. The generalized coset construction to be discussed in the sequel allows to assign opposite signatures of metric to super Kac-Moody Cartan algebra and corresponding super-symplectic Cartan algebra so that the desired signature (4, 4) results. Altogether one has 8-D effective target space with signature (4, 4) characterizing $\mathcal{N} = 4$ super-conformal topological strings. Hence the number of physical degrees of freedom is $D_{phys} = 8$ as in super-string theory. Including the non-physical M^2 degrees of freedom, one has critical dimension D = 10. If also the radial degree of freedom associated with δM_{\pm}^4 is taken into account, one obtains D = 11 as in M-theory.

Small $\mathcal{N} = 4$ SCA as sub-algebra of N = 8 SCA in TGD framework?

A possible interpretation of the small $\mathcal{N} = 4$ super-conformal algebra would be quaternionic sub-SCA of the non-associative octonionic SCA. The $\mathcal{N} = 4$ algebra associated with a fixed fermionic chirality would represent the fermionic counterpart for the restriction to the hyper-quaternionic sub-manifold of HO and $\mathcal{N} = 2$ algebra in the further restriction to commutative sub-manifold of HO so that this algebra would naturally appear at the parton level. Super-affine version of the quaternion algebra can be constructed straightforwardly as a special case of corresponding octonionic algebra [A29]. The construction implies 4 fermion spin doublets corresponding and unit quaternion naturally corresponds to right handed neutrino spin doublet. The interpretation is as leptonic spinor fields appearing in Sugawara representation of Super Virasoro algebra.

A possible octonionic generalization of Super Virasoro algebra would involve 4 doublets $G_{\pm}^{i)}$, i = 1, ..., 4 of super-generators and their conjugates having interpretation as SO(8) spinor and its its conjugate. $G_{\pm}^{i)}$ and their conjugates $\overline{G}_{\pm}^{i)}$ would anti-commute to SO(8) vector octet having an interpretation as a super-affine algebra defined by the octonionic units: this would conform nicely with SO(8) triality.

One could say that the energy momentum tensor T extends to an octonionic energy momentum tensor T as real component and affine generators as imaginary components: the real part would have conformal weight h = 2 and imaginary parts conformal weight h = 1 in the proposed constructions reflecting the special role of real numbers. The ordinary gamma matrices appearing in the expression of G in Sugawara construction should be represented by units of complexified octonions to achieve non-associativity. This construction would differ from that of [A29] in that G fields would define an SO(8) octet in the proposed construction: HO-H duality would however suggest that these constructions are equivalent.

One can consider two possible interpretations for $G^{i)}_{\pm}$ and corresponding analogs of super Kac-Moody generators in TGD framework.

1. Leptonic right handed neutrino spinors correspond to $G^{i)}_{\pm}$ generating quaternionic units and quark like left-handed neutrino spinors with leptonic charges to the remaining non-associative octonionic units. The interpretation in terms of so called mirror symmetry would be natural. What is is clear the direct sum of $\mathcal{N} = 4$ SCAs corresponding to the Kac-Moody group $SU(2) \times SU(2)$ would be exact symmetry if free quarks and leptons carry integer charges. One might however hope of getting also N = 8 super-conformal algebra. The problem with this interpretation is that SO(8) transformations would in general mix states with different fermion numbers. The only way out would be the allowance of mixtures of right-handed neutrinos of both chiralities and also of their conjugates which looks an ugly option.

In any case, the well-definedness of the fermion number would require the restriction to $\mathcal{N} = 4$ algebra. Obviously this restriction would be a super-symmetric version for the restriction to 4-D quaternionic- or co-quaternionic sub-manifold of H.

2. One can ask whether G_{\pm}^{ij} and their conjugates could be interpreted as components of leptonic H-spinor field. This would give 4 doublets plus their conjugates and mean N = 16 supersymmetry by generalizing the interpretation of $\mathcal{N} = 4$ super-symmetry. In this case fermion number conservation would not forbid the realization of SO(8) rotations. Super-conformal variant of complexified octonionic algebra obtained by adding a commuting imaginary unit would result. This option cannot be excluded since in TGD framework complexified octonions and quaternions play a key role. The fact that only right handed neutrinos generate associative super-symmetries would mean that the remaining components G_{\pm}^{ij} and their conjugates could be used to construct physical states. N = 8 super-symmetry would thus break down to small $\mathcal{N} = 4$ symmetry for purely number theoretic reasons and the geometry of CP_2 would reflect this breaking.

The objection is that the remaining fermion doublets do not allow covariantly constant modes at the level of embedding space. They could however allow these modes as induced H-spinors in some special cases which is however not enough and this option can be considered only if one accepts breaking of the super-conformal symmetry from beginning. The conclusion is that the N = 8 or even N = 16 algebra might appear as a spectrum generating algebra allowing elegant coding of the primary fermionic fields of the theory.

10.9.6 How Could Exotic Kac-Moody Algebras Emerge From Jones Inclusions?

Also other Kac-Moody algebras than those associated with the basic symmetries of quantum TGD could emerge from Jones inclusions. The interpretation would be the TGD is able to mimic various conformal field theories. The discussion is restricted to Jones inclusions defined by discrete groups acting in CP_2 degrees of freedom in TGD framework but the generalization to the case of M^4 degrees of freedom is straightforward.

$\mathcal{M}: \mathcal{N} = \beta < 4$ case

The first situation corresponds to $\mathcal{M}: \mathcal{N} = \beta < 4$ for which a finite subgroup $G \subset SU(2)_L$ defines Jones inclusion $\mathcal{N}^G \subset \mathcal{M}^G$, with G commuting with the Clifford algebra elements creating physical states. \mathcal{N} corresponds to a subalgebra of the entire infinite-dimensional Clifford algebra Cl for which one 8-D Clifford algebra factor identifiable as Clifford algebra of the embedding space is replaced with Clifford algebra of M^4 .

Each M^4 point corresponds to G orbit in CP_2 and the order of maximal cyclic subgroup of G defines the integer n defining the quantum phase $q = exp(i\pi/n)$. In this case the points in the covering give rise to a representation of G defining multiplets for Kac-Moody group \hat{G} assignable to G via the ADE diagram characterizing G using McKay correspondence. Partonic boundary component defines the Riemann surface in which the conformal field theory with Kac Moody symmetry is defined. The formula $n = k + h_{\hat{G}}$ would determine the value of Kac-Moody central extension parameter k. The singletness of fermionic oscillator operators with respect to Gwould be compensated by the emergence of representations of G realized in the covering of M^4 .

$\mathcal{M}: \mathcal{N} = \beta = 4$ case

Second situation corresponds to $\beta = 4$. In this case the inclusions are classified by extended ADE diagrams assignable to Kac Moody algebra. The interpretation $n = k + h_G$ assigning the quantum phase to SU(2) Kac Moody algebra corresponds to the Jones inclusion $\mathcal{N}^{\hat{G}} \subset \mathcal{M}^{\hat{G}}$ of WCW spinor s for $\hat{G} = SU(2)_L$ with index $\mathcal{M} : \mathcal{N} = 4$ and trivial quantum phase q = 1. The Clifford algebra elements in question would be products of fermionic oscillator operators having vanishing $SU(2)_L$ quantum numbers but arbitrary $U(1)_R$ quantum numbers if the identification $\hat{G} = SU(2)_L$ is correct. Thus only right handed fermions carrying homological magnetic charge would be allowed and obviously these fermions must behave like massless particles so that $\beta < 4$ could be interpreted in terms of massivation. The ends of cosmic strings $X^2 \times S^2 \subset M^4 \times CP_2$ would represent an example of this phase having only Abelian electro-weak interactions.

According to the proposal of [K83] the finite subgroup $G \subset SU(2)$ defining the quantum phase emerges from the effective decomposition of the geodesic sphere $S^2 \subset CP_2$ to a lattice having S^2/G as the unit cell. The discrete wave functions in the lattice would give rise to $SU(2)_L \supset G$ multiplets defining the Kac Moody representations and S^2/G would represent the 2-dimensional Riemann surface in which the conformal theory in question would be defined. Quantum phases would correspond to the holonomy of S^2/G . Therefore the singletness in fermionic degrees of freedom would be compensated by the emergence of G- multiplets in lattice degrees of freedom.

Chapter i

Appendix

A-1 Introduction

Originally this appendix was meant to be a purely technical summary of basic facts but in its recent form it tries to briefly summarize those basic visions about TGD which I dare to regarded stabilized. I have added illustrations making it easier to build mental images about what is involved and represented briefly the key arguments. This chapter is hoped to help the reader to get fast grasp about the concepts of TGD.

The basic properties of embedding space and related spaces are discussed and the relationship of CP_2 to the standard model is summarized. The basic vision is simple: the geometry of the embedding space $H = M^4 \times CP_2$ geometrizes standard model symmetries and quantum numbers. The assumption that space-time surfaces are basic objects, brings in dynamics as dynamics of 3-D surfaces based on the induced geometry. Second quantization of free spinor fields of H induces quantization at the level of H, which means a dramatic simplification.

The notions of induction of metric and spinor connection, and of spinor structure are discussed. Many-sheeted space-time and related notions such as topological field quantization and the relationship many-sheeted space-time to that of GRT space-time are discussed as well as the recent view about induced spinor fields and the emergence of fermionic strings. Also the relationship to string models is discussed briefly.

Various topics related to p-adic numbers are summarized with a brief definition of p-adic manifold and the idea about generalization of the number concept by gluing real and p-adic number fields to a larger book like structure analogous to adele [L18, L19]. In the recent view of quantum TGD [L49], both notions reduce to physics as number theory vision, which relies on $M^8 - H$ duality [L33, L34] and is complementary to the physics as geometry vision.

Zero energy ontology (ZEO) [L31] [K86] has become a central part of quantum TGD and leads to a TGD inspired theory of consciousness as a generalization of quantum measurement theory having quantum biology as an application. Also these aspects of TGD are briefly discussed.

A-2 Embedding space $M^4 \times CP_2$

Space-times are regarded as 4-surfaces in $H = M^4 \times CP_2$ the Cartesian product of empty Minkowski space - the space-time of special relativity - and compact 4-D space CP_2 with size scale of order 10^4 Planck lengths. One can say that embedding space is obtained by replacing each point m of empty Minkowski space with 4-D tiny CP_2 . The space-time of general relativity is replaced by a 4-D surface in H which has very complex topology. The notion of many-sheeted space-time gives an idea about what is involved.

Fig. 1. Embedding space $H = M^4 \times CP_2$ as Cartesian product of Minkowski space M^4 and complex projective space CP_2 . http://tgdtheory.fi/appfigures/Hoo.jpg

Denote by M^4_+ and M^4_- the future and past directed lightcones of M^4 . Denote their intersection, which is not unique, by CD. In zero energy ontology (ZEO) [L31, L39] [K86] causal diamond

(CD) is defined as cartesian product $CD \times CP_2$. Often I use CD to refer just to $CD \times CP_2$ since CP_2 factor is relevant from the point of view of ZEO.

Fig. 2. Future and past light-cones M_+^4 and M_-^4 . Causal diamonds (CD) are defined as their intersections. http://tgdtheory.fi/appfigures/futurepast.jpg

Fig. 3. Causal diamond (CD) is highly analogous to Penrose diagram but simpler. http: //tgdtheory.fi/appfigures/penrose.jpg

A rather recent discovery was that CP_2 is the only compact 4-manifold with Euclidian signature of metric allowing twistor space with Kähler structure. M^4 is in turn is the only 4-D space with Minkowskian signature of metric allowing twistor space with Kähler structure [A58] so that $H = M^4 \times CP_2$ is twistorially unique.

One can loosely say that quantum states in a given sector of "world of classical worlds" (WCW) are superpositions of space-time surfaces inside CDs and that positive and negative energy parts of zero energy states are localized and past and future boundaries of CDs. CDs form a hierarchy. One can have CDs within CDs and CDs can also overlap. The size of CD is characterized by the proper time distance between its two tips. One can perform both translations and also Lorentz boosts of CD leaving either boundary invariant. Therefore one can assign to CDs a moduli space and speak about wave function in this moduli space.

In number theoretic approach it is natural to restrict the allowed Lorentz boosts to some discrete subgroup of Lorentz group and also the distances between the tips of CDs to multiples of CP_2 radius defined by the length of its geodesic. Therefore the moduli space of CDs discretizes. The quantization of cosmic recession velocities for which there are indications, could relate to this quantization.

A-2.1 Basic facts about CP_2

 CP_2 as a four-manifold is very special. The following arguments demonstrate that it codes for the symmetries of standard models via its isometries and holonomies.

CP_2 as a manifold

 CP_2 , the complex projective space of two complex dimensions, is obtained by identifying the points of complex 3-space C^3 under the projective equivalence

$$(z^1, z^2, z^3) \equiv \lambda(z^1, z^2, z^3)$$
 (A-2.1)

Here λ is any non-zero complex number. Note that CP_2 can be also regarded as the coset space SU(3)/U(2). The pair z^i/z^j for fixed j and $z^i \neq 0$ defines a complex coordinate chart for CP_2 . As j runs from 1 to 3 one obtains an atlas of three coordinate charts covering CP_2 , the charts being holomorphically related to each other (e.g. CP_2 is a complex manifold). The points $z^3 \neq 0$ form a subset of CP_2 homoeomorphic to R^4 and the points with $z^3 = 0$ a set homeomorphic to S^2 . Therefore CP_2 is obtained by "adding the 2-sphere at infinity to R^{4*} ".

Besides the standard complex coordinates $\xi^i = z^i/z^3$, i = 1, 2 the coordinates of Eguchi and Freund [A45] will be used and their relation to the complex coordinates is given by

$$\xi^1 = z + it$$
,
 $\xi^2 = x + iy$. (A-2.2)

These are related to the "spherical coordinates" via the equations

$$\begin{split} \xi^1 &= rexp(i\frac{(\Psi+\Phi)}{2})cos(\frac{\Theta}{2}) ,\\ \xi^2 &= rexp(i\frac{(\Psi-\Phi)}{2})sin(\frac{\Theta}{2}) . \end{split} \tag{A-2.3}$$

The ranges of the variables r, Θ, Φ, Ψ are $[0, \infty], [0, \pi], [0, 4\pi], [0, 2\pi]$ respectively.

Considered as a real four-manifold CP_2 is compact and simply connected, with Euler number Euler number 3, Pontryagin number 3 and second b = 1.

Fig. 4. CP₂ as manifold. http://tgdtheory.fi/appfigures/cp2.jpg

Metric and Kähler structure of CP₂

In order to obtain a natural metric for CP_2 , observe that CP_2 can be thought of as a set of the orbits of the isometries $z^i \to exp(i\alpha)z^i$ on the sphere S^5 : $\sum z^i \bar{z}^i = R^2$. The metric of CP_2 is obtained by projecting the metric of S^5 orthogonally to the orbits of the isometries. Therefore the distance between the points of CP_2 is that between the representative orbits on S^5 .

The line element has the following form in the complex coordinates

$$ds^2 = g_{a\bar{b}}d\xi^a d\bar{\xi}^b , \qquad (A-2.4)$$

where the Hermitian, in fact Kähler metric $g_{a\bar{b}}$ is defined by

$$g_{a\bar{b}} = R^2 \partial_a \partial_{\bar{b}} K , \qquad (A-2.5)$$

where the function K, Kähler function, is defined as

$$K = log(F) ,$$

$$F = 1 + r^2 .$$
(A-2.6)

The Kähler function for S^2 has the same form. It gives the S^2 metric $dz d\overline{z}/(1+r^2)^2$ related to its standard form in spherical coordinates by the coordinate transformation $(r, \phi) = (tan(\theta/2), \phi)$.

The representation of the CP_2 metric is deducible from S^5 metric is obtained by putting the angle coordinate of a geodesic sphere constant in it and is given

$$\frac{ds^2}{R^2} = \frac{(dr^2 + r^2\sigma_3^2)}{F^2} + \frac{r^2(\sigma_1^2 + \sigma_2^2)}{F} , \qquad (A-2.7)$$

where the quantities σ_i are defined as

$$\begin{aligned} r^{2}\sigma_{1} &= Im(\xi^{1}d\xi^{2} - \xi^{2}d\xi^{1}) , \\ r^{2}\sigma_{2} &= -Re(\xi^{1}d\xi^{2} - \xi^{2}d\xi^{1}) , \\ r^{2}\sigma_{3} &= -Im(\xi^{1}d\bar{\xi}^{1} + \xi^{2}d\bar{\xi}^{2}) . \end{aligned}$$
 (A-2.8)

R denotes the radius of the geodesic circle of CP_2 . The vierbein forms, which satisfy the defining relation

$$s_{kl} = R^2 \sum_A e_k^A e_l^A , \qquad (A-2.9)$$

are given by

$$e^{0} = \frac{dr}{F}, \quad e^{1} = \frac{r\sigma_{1}}{\sqrt{F}}, \\
 e^{2} = \frac{r\sigma_{2}}{\sqrt{F}}, \quad e^{3} = \frac{r\sigma_{3}}{F}.$$
(A-2.10)

The explicit representations of vierbein vectors are given by

$$e^{0} = \frac{dr}{F} , \qquad e^{1} = \frac{r(\sin\Theta\cos\Psi d\Phi + \sin\Psi d\Theta)}{2\sqrt{F}} ,$$

$$e^{2} = \frac{r(\sin\Theta\sin\Psi d\Phi - \cos\Psi d\Theta)}{2\sqrt{F}} , \quad e^{3} = \frac{r(d\Psi + \cos\Theta d\Phi)}{2F} .$$
(A-2.11)

The explicit representation of the line element is given by the expression

$$ds^{2}/R^{2} = \frac{dr^{2}}{F^{2}} + \frac{r^{2}}{4F^{2}}(d\Psi + \cos\Theta d\Phi)^{2} + \frac{r^{2}}{4F}(d\Theta^{2} + \sin^{2}\Theta d\Phi^{2}) .$$
(A-2.12)

From this expression one finds that at coordinate infinity $r = \infty$ line element reduces to $\frac{r^2}{4F}(d\Theta^2 + sin^2\Theta d\Phi^2)$ of S^2 meaning that 3-sphere degenerates metrically to 2-sphere and one can say that CP_2 is obtained by adding to R^4 a 2-sphere at infinity.

The vierbein connection satisfying the defining relation

$$de^A = -V^A_B \wedge e^B , \qquad (A-2.13)$$

is given by

$$V_{01} = -\frac{e^{1}}{r_{2}}, \qquad V_{23} = \frac{e^{1}}{r_{2}}, V_{02} = -\frac{e}{r}, \qquad V_{31} = \frac{e^{2}}{r_{2}}, V_{03} = (r - \frac{1}{r})e^{3}, \qquad V_{12} = (2r + \frac{1}{r})e^{3}.$$
(A-2.14)

The representation of the covariantly constant curvature tensor is given by

$$\begin{array}{rcl}
R_{01} &=& e^{0} \wedge e^{1} - e^{2} \wedge e^{3} , & R_{23} &=& e^{0} \wedge e^{1} - e^{2} \wedge e^{3} , \\
R_{02} &=& e^{0} \wedge e^{2} - e^{3} \wedge e^{1} , & R_{31} &=& -e^{0} \wedge e^{2} + e^{3} \wedge e^{1} , \\
R_{03} &=& 4e^{0} \wedge e^{3} + 2e^{1} \wedge e^{2} , & R_{12} &=& 2e^{0} \wedge e^{3} + 4e^{1} \wedge e^{2} .
\end{array}$$
(A-2.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

$$J = -is_{a\bar{b}}d\xi^a d\bar{\xi}^b , \qquad (A-2.16)$$

the so called Kähler form. Kähler form J defines in CP_2 a symplectic structure because it satisfies the condition

$$J_{r}^{k}J^{rl} = -s^{kl} {.} {(A-2.17)}$$

The condition states that J and g give representations of real unit and imaginary units related by the formula $i^2 = -1$.

Kähler form is expressible locally in terms of Kähler gauge potential

$$J = dB , \qquad (A-2.18)$$

where B is the so called Kähler potential, which is not defined globally since J describes homological magnetic monopole.

dJ = ddB = 0 gives the topological half of Maxwell equations (vanishing of magnetic charges and Faraday's induction law) and self-duality *J = J reduces the remaining equations to dJ = 0. Hence the Kähler form can be regarded as a curvature form of a U(1) gauge potential B carrying a magnetic charge of unit 1/2g (g denotes the gauge coupling). The magnetic flux of J through a 2-surface in CP_2 is proportional to its homology equivalence class, which is integer valued. The explicit representations of J and B are given by

$$B = 2re^{3} ,$$

$$J = 2(e^{0} \wedge e^{3} + e^{1} \wedge e^{2}) = \frac{r}{F^{2}}dr \wedge (d\Psi + \cos\Theta d\Phi) + \frac{r^{2}}{2F}\sin\Theta d\Theta \wedge d\Phi .$$
(A-2.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex coordinates only components of type (1, 1).

Useful coordinates for CP_2 are the so called canonical (or symplectic or Darboux) coordinates in which the Kähler potential and Kähler form have very simple expressions

$$B = \sum_{k=1,2} P_k dQ_k ,$$

$$J = \sum_{k=1,2} dP_k \wedge dQ_k .$$
(A-2.20)

The relationship of the canonical coordinates to the "spherical" coordinates is given by the equations

$$P_{1} = -\frac{1}{1+r^{2}} ,$$

$$P_{2} = -\frac{r^{2}cos\Theta}{2(1+r^{2})} ,$$

$$Q_{1} = \Psi ,$$

$$Q_{2} = \Phi .$$
(A-2.21)

Spinors In CP₂

 CP_2 doesn't allow spinor structure in the conventional sense [A36]. However, the coupling of the spinors to a half odd multiple of the Kähler potential leads to a respectable spinor structure. Because the delicacies associated with the spinor structure of CP_2 play a fundamental role in TGD, the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel transport of the vierbein in a simply connected space M. The parallel propagation around a closed curve with a base point x leads to a rotated vierbein at x: $e^A = R_B^A e^B$ and one can associate to each closed path an element of SO(4).

Consider now a one-parameter family of closed curves $\gamma(v) : v \in (0, 1)$ with the same base point x and $\gamma(0)$ and $\gamma(1)$ trivial paths. Clearly these paths define a sphere S^2 in M and the element $R_B^A(v)$ defines a closed path in SO(4). When the sphere S^2 is contractible to a point e.g., homologically trivial, the path in SO(4) is also contractible to a point and therefore represents a trivial element of the homotopy group $\Pi_1(SO(4)) = Z_2$.

For a homologically nontrivial 2-surface S^2 the associated path in SO(4) can be homotopically nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4) (leading from the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also spinors and by the above construction associate a closed path of Spin(4) to the surface S^2 . Now, however this path corresponds to a lift of the corresponding SO(4) path and cannot be closed. Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed -1-factor associated with the parallel transport of the spinor around the sphere S^2 by coupling it to a gauge potential in such a way that in the parallel transport the gauge potential introduces a compensating -1-factor. For a U(1) gauge potential this factor is given by the exponential

 $exp(i2\Phi)$, where Φ is the magnetic flux through the surface. This factor has the value -1 provided the U(1) potential carries half odd multiple of Dirac charge 1/2g. In case of CP_2 the required gauge potential is half odd multiple of the Kähler potential B defined previously. In the case of $M^4 \times CP_2$ one can in addition couple the spinor components with different chiralities independently to an odd multiple of B/2.

Geodesic sub-manifolds of CP₂

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the embedding space. As a consequence the second fundamental form of the geodesic manifold vanishes, which means that the tangent vectors h_{α}^{k} (understood as vectors of H) are covariantly constant quantities with respect to the covariant derivative taking into account that the tangent vectors are vectors both with respect to H and X^{4} .

In [A78] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric space G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple systems of the Lie-algebra g of the group G. The Lie triple system t is defined as a subspace of g characterized by the closedness property with respect to double commutation

$$[X, [Y, Z]] \in t \text{ for } X, Y, Z \in t .$$
(A-2.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres. This is understood by observing that SU(3) allows two nonequivalent SU(2) algebras corresponding to subgroups SO(3) (orthogonal 3×3 matrices) and the usual isospin group SU(2). By taking any subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating this system, one obtains a 2-dimensional geodesic sub-manifold of CP_2 .

Standard representatives for the geodesic spheres of CP_2 are given by the equations

$$\begin{split} S_I^2 &: \ \xi^1 = \bar{\xi}^2 \ \text{or equivalently} \ (\Theta = \pi/2, \Psi = 0) \ , \\ S_{II}^2 &: \ \xi^1 = \xi^2 \ \text{or equivalently} \ (\Theta = \pi/2, \Phi = 0) \ . \end{split}$$

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as holomorphic transformations in CP_2 . The vanishing of the second fundamental form is also easy to verify. The first geodesic manifold is homologically trivial: in fact, the induced Kähler form vanishes identically for S_I^2 . S_{II}^2 is homologically nontrivial and the flux of the Kähler form gives its homology equivalence class.

A-2.2 CP₂ geometry and Standard Model symmetries

Identification of the electro-weak couplings

The delicacies of the spinor structure of CP_2 make it a unique candidate for space S. First, the coupling of the spinors to the U(1) gauge potential defined by the Kähler structure provides the missing U(1) factor in the gauge group. Secondly, it is possible to couple different H-chiralities independently to a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct spectrum for the electromagnetic charge are considerable. In the following it will be demonstrated that the couplings of the induced spinor connection are indeed those of the GWS model [B31] and in particular that the right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors. Spinors with fixed H-chirality $e = \pm 1$, CP_2 -chirality l, r and M^4 -chirality L, R are defined by the condition

$$\Gamma \Psi = e \Psi ,
 e = \pm 1 ,
 (A-2.23)$$

where Γ denotes the matrix $\Gamma_9 = \gamma_5 \otimes \gamma_5$, $1 \otimes \gamma_5$ and $\gamma_5 \otimes 1$ respectively. Clearly, for a fixed *H*-chirality CP_2 - and M^4 -chiralities are correlated.

The spinors with *H*-chirality $e = \pm 1$ can be identified as quark and lepton like spinors respectively. The separate conservation of baryon and lepton numbers can be understood as a consequence of generalized chiral invariance if this identification is accepted. For the spinors with a definite *H*-chirality one can identify the vielbein group of CP_2 as the electro-weak group: SO(4)having as its covering group $SU(2)_L \times SU(2)_R$.

The covariant derivatives are defined by the spinorial connection

$$A = V + \frac{B}{2}(n_{+}1_{+} + n_{-}1_{-}) . \qquad (A-2.24)$$

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and $1_{+(-)}$ projects to the spinor H-chirality +(-). The integers n_{\pm} are odd from the requirement of a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

$$\begin{aligned}
 V_{01} &= -\frac{e^1}{r}, & V_{23} &= \frac{e^1}{r}, \\
 V_{02} &= -\frac{e^2}{r}, & V_{31} &= \frac{e^2}{r}, \\
 V_{03} &= (r - \frac{1}{r})e^3, & V_{12} &= (2r + \frac{1}{r})e^3,
 \end{aligned}$$
(A-2.25)

and

$$B = 2re^3 , \qquad (A-2.26)$$

respectively. The explicit representation of the vielbein is not needed here.

Let us first show that the charged part of the spinor connection couples purely left handedly. Identifying Σ_3^0 and Σ_2^1 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that the charged part of the spinor connection is given by

$$A_{ch} = 2V_{23}I_L^1 + 2V_{13}I_L^2 , \qquad (A-2.27)$$

where one have defined

$$I_L^1 = \frac{(\Sigma_{01} - \Sigma_{23})}{2} ,$$

$$I_L^2 = \frac{(\Sigma_{02} - \Sigma_{13})}{2} .$$
(A-2.28)

 A_{ch} is clearly left handed so that one can perform the identification of the gauge potential as

$$W^{\pm} = \frac{2(e^1 \pm ie^2)}{r} , \qquad (A-2.29)$$

where W^{\pm} denotes the charged intermediate vector boson.

The covariantly constant curvature tensor is given by

$$R_{01} = -R_{23} = e^{0} \wedge e^{1} - e^{2} \wedge e^{3} ,$$

$$R_{02} = -R_{31} = e^{0} \wedge e^{2} - e^{3} \wedge e^{1} ,$$

$$R_{03} = 4e^{0} \wedge e^{3} + 2e^{1} \wedge e^{2} ,$$

$$R_{12} = 2e^{0} \wedge e^{3} + 4e^{1} \wedge e^{2} .$$
(A-2.30)

The charged part of the curvature tensor is left handed.

This is to be compared with the Weyl tensor, which defines a representation of quaternionic imaginary units.

$$W_{03} = W_{12} \equiv 2I_3 = 2(e^0 \wedge e^3 + e^1 \wedge e^2) ,$$

$$W_{01} = W_{23} \equiv I_1 = -e^0 \wedge e^1 - e^2 \wedge e^3 ,$$

$$W_{02} = W_{31} \equiv I_2 = -e^0 \wedge e^2 - e^3 \wedge e^1 .$$

(A-2.31)

The charged part of the Weyl tensor is right-handed and that the relative sign of the two terms in the curvature tensor and Weyl tensor are opposite.

Consider next the identification of the neutral gauge bosons γ and Z^0 as appropriate linear combinations of the two functionally independent quantities

$$X = re^3 ,$$

$$Y = \frac{e^3}{r} ,$$
(A-2.32)

appearing in the neutral part of the spinor connection. We show first that the mere requirement that photon couples vectorially implies the basic coupling structure of the GWS model leaving only the value of Weinberg angle undetermined.

To begin with let us define

$$\bar{\gamma} = aX + bY ,$$

$$\bar{Z}^0 = cX + dY ,$$
(A-2.33)

where the normalization condition

$$ad - bc = 1$$

is satisfied. The physical fields γ and Z^0 are related to $\bar{\gamma}$ and \bar{Z}^0 by simple normalization factors. Expressing the neutral part of the spinor connection in term of these fields one obtains

$$A_{nc} = [(c+d)2\Sigma_{03} + (2d-c)2\Sigma_{12} + d(n_{+}1_{+} + n_{-}1_{-})]\bar{\gamma} + [(a-b)2\Sigma_{03} + (a-2b)2\Sigma_{12} - b(n_{+}1_{+} + n_{-}1_{-})]\bar{Z}^{0} .$$
(A-2.34)

Identifying Σ_{12} and $\Sigma_{03} = 1 \times \gamma_5 \Sigma_{12}$ as vectorial and axial Lie-algebra generators, respectively, the requirement that γ couples vectorially leads to the condition

$$c = -d \quad . \tag{A-2.35}$$

Using this result plus previous equations, one obtains for the neutral part of the connection the expression

$$A_{nc} = \gamma Q_{em} + Z^0 (I_L^3 - \sin^2 \theta_W Q_{em}) .$$
 (A-2.36)

Here the electromagnetic charge Q_{em} and the weak isospin are defined by

$$Q_{em} = \Sigma^{12} + \frac{(n_+ 1_+ + n_- 1_-)}{6} ,$$

$$I_L^3 = \frac{(\Sigma^{12} - \Sigma^{03})}{2} .$$
(A-2.37)

The fields γ and Z^0 are defined via the relations

$$\gamma = 6d\bar{\gamma} = \frac{6}{(a+b)}(aX+bY) ,$$

$$Z^{0} = 4(a+b)\bar{Z}^{0} = 4(X-Y) .$$
(A-2.38)

The value of the Weinberg angle is given by

$$\sin^2\theta_W = \frac{3b}{2(a+b)} , \qquad (A-2.39)$$

and is not fixed completely. Observe that right handed neutrinos decouple completely from the electro-weak interactions.

The determination of the value of the Weinberg angle is a dynamical problem. The original approach was based on the assumption that it makes sense to talk about electroweak action defined at fundamental level and introduce a symmetry breaking by adding an additional term proportional to Kähler action. The recent view is that Kähler action plus volume term defines the fundamental action.

The Weinberg angle is completely fixed if one requires that the electroweak action contains no cross term of type γZ^0 . This leads to a definite value for the Weinberg angle.

One can however add a symmetry breaking term proportional to Kähler action and this changes the value of the Weinberg angle. As a matter fact, color gauge action identifying color gauge field as proportional to $H^A J_{\alpha\beta}$ is proportional to Kähler action. A possible interpretation would be as a sum of electroweak and color gauge interactions.

To evaluate the value of the Weinberg angle one can express the neutral part F_{nc} of the induced gauge field as

$$F_{nc} = 2R_{03}\Sigma^{03} + 2R_{12}\Sigma^{12} + J(n_+1_+ + n_-1_-) , \qquad (A-2.40)$$

where one has

$$R_{03} = 2(2e^{0} \wedge e^{3} + e^{1} \wedge e^{2}) ,$$

$$R_{12} = 2(e^{0} \wedge e^{3} + 2e^{1} \wedge e^{2}) ,$$

$$J = 2(e^{0} \wedge e^{3} + e^{1} \wedge e^{2}) ,$$

(A-2.41)

in terms of the fields γ and Z^0 (photon and Z- boson)

$$F_{nc} = \gamma Q_{em} + Z^0 (I_L^3 - \sin^2 \theta_W Q_{em}) .$$
 (A-2.42)

Evaluating the expressions above, one obtains for γ and Z^0 the expressions

$$\gamma = 3J - \sin^2 \theta_W R_{12} ,$$

 $Z^0 = 2R_{03} .$ (A-2.43)

For the Kähler field one obtains

$$J = \frac{1}{3}(\gamma + \sin^2\theta_W Z^0) .$$
 (A-2.44)

Expressing the neutral part of the symmetry broken YM action

$$L_{ew} = L_{sym} + f J^{\alpha\beta} J_{\alpha\beta} ,$$

$$L_{sym} = \frac{1}{4a^2} Tr(F^{\alpha\beta} F_{\alpha\beta}) ,$$
(A-2.45)

where the trace is taken in spinor representation, in terms of γ and Z^0 one obtains for the coefficient X of the γZ^0 cross term (this coefficient must vanish) the expression

$$X = -\frac{K}{2g^2} + \frac{fp}{18} ,$$

$$K = Tr \left[Q_{em} (I_L^3 - sin^2 \theta_W Q_{em}) \right] ,$$
(A-2.46)

This parameter can be calculated by substituting the values of quark and lepton charges and weak isospins.

In the general case the value of the coefficient K is given by

$$K = \sum_{i} \left[-\frac{(18+2n_{i}^{2})sin^{2}\theta_{W}}{9} \right] , \qquad (A-2.47)$$

where the sum is over the spinor chiralities, which appear as elementary fermions and n_i is the integer describing the coupling of the spinor field to the Kähler potential. The cross term vanishes provided the value of the Weinberg angle is given by

$$\sin^2 \theta_W = \frac{9\sum_i 1}{(fg^2 + 2\sum_i (18 + n_i^2))}$$
 (A-2.48)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg angle is given by

$$\sin^2 \theta_W = \frac{9}{\left(\frac{fg^2}{2} + 28\right)} . \tag{A-2.49}$$

The bare value of the Weinberg angle is 9/28 in this scenario, which is not far from the typical value 9/24 of GUTs at high energies [B10]. The experimental value at the scale length scale of the electron can be deduced from the ratio of W and Z boson masses as $\sin^2\theta_W = 1 - (m_W/m_Z)^2 \simeq .22290$. This ratio and also the weak boson masses depend on the length scale.

If one interprets the additional term proportional to J as color action, one could perhaps interpret the value of Weinberg angle as expressing a connection between strong and weak coupling constant evolution. The limit $f \to 0$ should correspond to an infinite value of color coupling strength and at this limit one would have $\sin^2\theta_W = \frac{9}{28}$ for $f/g^2 \to 0$. This does not make sense since the Weinberg angle is in the standard model much smaller in QCD scale Λ corresponding roughly to pion mass scale. The Weinberg angle is in principle predicted by the p-adic coupling constant evolution fixed by the number theoretical vision of TGD.

One could however have a sum of electroweak action, correction terms changing the value of Weinberg angle, and color action and coupling constant evolution could be understood in terms of the coupling parameters involved.

Electroweak symmetry breaking

One of the hardest challenges in the development of the TGD based view of weak symmetry breaking was the fact that classical field equations allow space-time surfaces with finite but arbitrarily large size. For a fixed space-time surface, the induced gauge fields, including classical weak fields, are long ranged. On the other hand, the large mass for weak bosons would require a short correlation length. How can one understand this together with the fact that a photon has a long correlation length?

In zero energy ontology quantum states are superpositions of space-time surfaces as analogs of almost unique Bohr orbits of particles identified as 3-D surfaces. For some reason the superposition should be such that the quantum averages of weak gauge boson fields vanish below the weak scale whereas the quantum average of electromagnetic fields is non-vanishing.

This is indeed the case.

- 1. The supersymplectic symmetries form isometries of the world of classical worlds (WCW) and they act in CP_2 degrees of freedom as symplectic transformations leaving the CP_2 symplectic form J invariant and therefore also its contribution to the electromagnetic field since this part is the same for all space-time surfaces in the superposition of space-time surfaces as a representation of supersymplectic isometry group (as a special case a representation of color group).
- 2. In TGD, color and electroweak symmetries acting as holonomies are not independent and for the $SU(2)_L$ part of induced spinor connection the symplectic transformations induces $SU(2)_L \times U(1)_R$ gauge transformation. This suggests that the quantum expectations of the induced weak fields over the space-time surfaces vanish above the quantum coherence scale. The averages of W and of the left handed part of Z^0 should therefore vanish.
- 3. $\langle Z^0 \rangle$ should vanish. For $U(1)_R$ part of Z^0 , the action of gauge transformation is trivial in gauge theory. Now however the space-time surface changes under symplectic transformations and this could make the average of the right-handed part of Z^0 vanishing. The vanishing of the average of the axial part of the Z^0 is suggested by the partially conserved axial current hypothesis.

One can formulate this picture quantitatively.

1. The electromagnetic field [L57] contains, besides the induced Kähler form, also the induced curvature form R_{12} , which couples vectorially. Conserved vector current hypothesis suggests that the average of R_{12} is non-vanishing. One can express the neutral part of the induced gauge field in terms of induced spinor curvature and Kähler form J as

$$\begin{aligned} R_{03} &= 2(2e^{0} \wedge e^{3} + e^{1} \wedge e^{2}) = J + 2e^{0} \wedge e^{3} , \\ J &= 2(e^{0} \wedge e^{3} + e^{1} \wedge e^{2}) , \\ R_{12} &= 2(e^{0} \wedge e^{3} + 2e^{1} \wedge e^{2}) = 3J - 2e^{0} \wedge e^{3} , \end{aligned}$$
(A-2.50)

2. The induced fields γ and Z^0 (photon and Z- boson) can be expressed as

$$\gamma = 3J - \sin^2 \theta_W R_{12} ,$$

$$Z^0 = 2R_{03} = 2(J + 2e^0 \wedge e^3)$$
(A-2.51)
per. (A-2.52)

The condition $\langle Z^0 \rangle = 0$ gives $2 \langle e^0 \wedge e^3 \rangle = -2J$ and this in turn gives $\langle R_{12} \rangle = 4J$. The average over γ would be

$$\langle \gamma \rangle = (3 - 4sin^2 \theta_W) J$$
.

For $sin^2\theta_W = 3/4 \ langle\gamma$ would vanish.

The quantum averages of classical weak fields quite generally vanish. What about correlation functions?

1. One expects that the correlators of classical weak fields as color invariants, and perhaps even symplectic invariants, are non-vanishing below the Compton length since in this kind of situation the points in the correlation function belong to the same 3-surface representing particle, such as hadron. 2. The intuitive picture is that in longer length scales one has disjoint 3-surfaces with a size scale of Compton length. If the states associated with two disjoint 3-surfaces are separately color invariant there are no correlations in color degrees of freedom and correlators reduce to the products of expectations of classical weak fields and vanish. This could also hold when the 3-surfaces are connected by flux tube bonds.

Below the Compton length weak bosons would thus behave as correlated massless fields. The Compton lengths of weak bosons are proportional to the value of effective Planck constant h_{eff} and in living systems the Compton lengths are proposed to be even of the order of cell size. This would explain the mysterious chiral selection in living systems requiring large parity violation.

3. What about the averages and correlators of color gauge fields? Classical color gauge fields are proportional to the products of Hamiltonians of color isometries induced Kähler form and the expectations of color Hamiltonians give vanishing average above Compton length and therefore vanishing average. Correlators are non-vanishing below the hadron scale. Gluons do not propagate in long scales for the same reason as weak bosons. This is implied by color confinement, which has also classical description in the sense that 3-surfaces have necessarily a finite size.

A large value of h_{eff} allows colored states even in biological scales below the Compton length since in this kind of situation the points in the correlation function belong to the same 3-surface representing particle, such as dark hadron.

Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:

- 1. Symmetries must be realized as purely geometric transformations.
- 2. Transformation properties of the field variables should be essentially the same as in the conventional quantum field theories [B15] .

The action of the reflection P on spinors of is given by

$$\Psi \quad \to \quad P\Psi = \gamma^0 \otimes \gamma^0 \Psi \quad . \tag{A-2.53}$$

in the representation of the gamma matrices for which γ^0 is diagonal. It should be noticed that W and Z^0 bosons break parity symmetry as they should since their charge matrices do not commute with the matrix of P.

The guess that a complex conjugation in CP_2 is associated with T transformation of the physicist turns out to be correct. One can verify by a direct calculation that pure Dirac action is invariant under T realized according to

$$\begin{array}{lll} m^k & \to & T(M^k) & , \\ \xi^k & \to & \bar{\xi}^k & , \\ \Psi & \to & \gamma^1 \gamma^3 \otimes 1\Psi & . \end{array}$$
 (A-2.54)

The operation bearing closest resemblance to the ordinary charge conjugation corresponds geometrically to complex conjugation in CP_2 :

$$\begin{aligned} \xi^k &\to \quad \bar{\xi}^k \ , \\ \Psi &\to \quad \Psi^{\dagger} \gamma^2 \gamma^0 \otimes 1 \ . \end{aligned} \tag{A-2.55}$$

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.

A-3 Induction procedure and many-sheeted space-time

Since the classical gauge fields are closely related in TGD framework, it is not possible to have space-time sheets carrying only single kind of gauge field. For instance, em fields are accompanied by Z^0 fields for extremals of Kähler action.

Classical em fields are always accompanied by Z^0 field and some components of color gauge field. For extremals having homologically non-trivial sphere as a CP_2 projection em and Z^0 fields are the only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields are non-vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although the net gauge field has U(1) holonomy by 2-dimensionality of the CP_2 projection. Color gauge field has U(1) holonomy for all space-time surfaces and quantum classical correspondence suggest a weak form of color confinement meaning that physical states correspond to color neutral members of color multiplets.

A-3.1 Induction procedure for gauge fields and spinor connection

Induction procedure for gauge potentials and spinor structure is a standard procedure of bundle theory. If one has embedding of some manifold to the base space of a bundle, the bundle structure can be induced so that it has as a base space the imbedded manifold, whose points have as fiber the fiber if embedding space at their image points. In the recent case the embedding of space-time surface to embedding space defines the induction procedure. The induced gauge potentials and gauge fields are projections of the spinor connection of the embedding space to the space-time surface (see http://tgdtheory.fi/appfigures/induct.jpg).

Induction procedure makes sense also for the spinor fields of embedding space and one obtains geometrization of both electroweak gauge potentials and of spinors. The new element is induction of gamma matrices which gives their projections at space-time surface.

As a matter fact, the induced gamma matrices cannot appear in the counterpart of massless Dirac equation. To achieve super-symmetry, Dirac action must be replaced with Kähler-Dirac action for which gamma matrices are contractions of the canonical momentum currents of Kähler action with embedding space gamma matrices. Induced gamma matrices in Dirac action would correspond to 4-volume as action.

Fig. 9. Induction of spinor connection and metric as projection to the space-time surface. http://tgdtheory.fi/appfigures/induct.jpg.

A-3.2 Induced gauge fields for space-times for which CP_2 projection is a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP₂ projection, only vacuum extremals and space-time surfaces for which CP₂ projection is a geodesic sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields and homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z^0 . This can be verified by explicit examples.

 $r = \infty$ surface gives rise to a homologically non-trivial geodesic sphere for which e_0 and e_3 vanish imply the vanishing of W field. For space-time sheets for which CP₂ projection is $r = \infty$ homologically non-trivial geodesic sphere of CP_2 one has

$$\gamma = (\frac{3}{4} - \frac{\sin^2(\theta_W)}{2})Z^0 \simeq \frac{5Z^0}{8}$$
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by SU(3) rotation.

 $Im(\xi^1) = Im(\xi^2) = 0$ corresponds to homologically trivial geodesic sphere. A more general representative is obtained by using for the phase angles of standard complex CP_2 coordinates constant values. In this case e^1 and e^3 vanish so that the induced em, Z^0 , and Kähler fields vanish but induced W fields are non-vanishing. This holds also for surfaces obtained by color rotation. Hence one can say that for non-vacuum extremals with 2-D CP₂ projection color rotations and weak symmetries commute.
A-3.3 Many-sheeted space-time

TGD space-time is many-sheeted: in other words, there are in general several space-sheets which have projection to the same M^4 region. Second manner to say this is that CP_2 coordinates are many-valued functions of M^4 coordinates. The original physical interpretation of many-sheeted space-time time was not correct: it was assumed that single sheet corresponds to GRT space-time and this obviously leads to difficulties since the induced gauge fields are expressible in terms of only four embedding space coordinates.

Fig. 10. Illustration of many-sheeted space-time of TGD. http://tgdtheory.fi/appfigures/ manysheeted.jpg

Superposition of effects instead of superposition of fields

The first objection against TGD is that superposition is not possible for induced gauge fields and induced metric. The resolution of the problem is that it is effects which need to superpose, not the fields.

Test particle topologically condenses simultaneously to all space-time sheets having a projection to same region of M^4 (that is touches them). The superposition of effects of fields at various space-time sheets replaces the superposition of fields. This is crucial for the understanding also how GRT space-time relates to TGD space-time, which is also in the appendix of this book).

Wormhole contacts

Wormhole contacts are key element of many-sheeted space-time. One does not expect them to be stable unless there is non-trivial Kähler magnetic flux flowing through then so that the throats look like Kähler magnetic monopoles.

Fig. 11. Wormhole contact. http://tgdtheory.fi/appfigures/wormholecontact.jpg

Since the flow lines of Kähler magnetic field must be closed this requires the presence of another wormhole contact so that one obtains closed monopole flux tube decomposing to two Minkowskian pieces at the two space-time sheets involved and two wormhole contacts with Euclidian signature of the induced metric. These objects are identified as space-time correlates of elementary particles and are clearly analogous to string like objects.

The relationship between the many-sheeted space-time of TGD and of GRT space-time

The space-time of general relativity is single-sheeted and there is no need to regard it as surface in H although the assumption about representability as vacuum extremal gives very powerful constraints in cosmology and astrophysics and might make sense in simple situations.

The space-time of GRT can be regarded as a long length scale approximation obtained by lumping together the sheets of the many-sheeted space-time to a region of M^4 and providing it with an effective metric obtained as sum of M^4 metric and deviations of the induced metrics of various space-time sheets from M^4 metric. Also induced gauge potentials sum up in the similar manner so that also the gauge fields of gauge theories would not be fundamental fields.

Fig. 12. The superposition of fields is replaced with the superposition of their effects in many-sheeted space-time. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg

Space-time surfaces of TGD are considerably simpler objects that the space-times of general relativity and relate to GRT space-time like elementary particles to systems of condensed matter physics. Same can be said about fields since all fields are expressible in terms of embedding space coordinates and their gradients, and general coordinate invariance means that the number of bosonic field degrees is reduced locally to 4. TGD space-time can be said to be a microscopic description whereas GRT space-time a macroscopic description. In TGD complexity of space-time topology replaces the complexity due to large number of fields in quantum field theory.

Topological field quantization and the notion of magnetic body

Topological field quantization also TGD from Maxwell's theory. TGD predicts topological light rays ("massless extremals (MEs)") as space-time sheets carrying waves or arbitrary shape propagating

with maximal signal velocity in single direction only and analogous to laser beams and carrying light-like gauge currents in the generi case. There are also magnetic flux quanta and electric flux quanta. The deformations of cosmic strings with 2-D string orbit as M^4 projection gives rise to magnetic flux tubes carrying monopole flux made possible by CP_2 topology allowing homological Kähler magnetic monopoles.

Fig. 13. Topological quantization for magnetic fields replaces magnetic fields with bundles of them defining flux tubes as topological field quanta. http://tgdtheory.fi/appfigures/field.jpg

The imbeddability condition for say magnetic field means that the region containing constant magnetic field splits into flux quanta, say tubes and sheets carrying constant magnetic field. Unless one assumes a separate boundary term in Kähler action, boundaries in the usual sense are forbidden except as ends of space-time surfaces at the boundaries of causal diamonds. One obtains typically pairs of sheets glued together along their boundaries giving rise to flux tubes with closed cross section possibly carrying monopole flux.

These kind of flux tubes might make possible magnetic fields in cosmic scales already during primordial period of cosmology since no currents are needed to generate these magnetic fields: cosmic string would be indeed this kind of objects and would dominated during the primordial period. Even superconductors and maybe even ferromagnets could involve this kind of monopole flux tubes.

A-3.4 Embedding space spinors and induced spinors

One can geometrize also fermionic degrees of freedom by inducing the spinor structure of $M^4 \times CP_2$.

 CP_2 does not allow spinor structure in the ordinary sense but one can couple the opposite H-chiralities of H-spinors to an n = 1 (n = 3) integer multiple of Kähler gauge potential to obtain a respectable modified spinor structure. The em charges of resulting spinors are fractional (integer valued) and the interpretation as quarks (leptons) makes sense since the couplings to the induced spinor connection having interpretation in terms electro-weak gauge potential are identical to those assumed in standard model.

The notion of quark color differs from that of standard model.

- 1. Spinors do not couple to color gauge potential although the identification of color gauge potential as projection of SU(3) Killing vector fields is possible. This coupling must emerge only at the effective gauge theory limit of TGD.
- 2. Spinor harmonics of embedding space correspond to triality t = 1 (t = 0) partial waves. The detailed correspondence between color and electroweak quantum numbers is however not correct as such and the interpretation of spinor harmonics of embedding space is as representations for ground states of super-conformal representations. The wormhole pairs associated with physical quarks and leptons must carry also neutrino pair to neutralize weak quantum numbers above the length scale of flux tube (weak scale or Compton length). The total color quantum numbers or these states must be those of standard model. For instance, the color quantum numbers of fundamental left-hand neutrino and lepton can compensate each other for the physical lepton. For fundamental quark-lepton pair they could sum up to those of physical quark.

The well-definedness of em charge is crucial condition.

- 1. Although the embedding space spinor connection carries W gauge potentials one can say that the embedding space spinor modes have well-defined em charge. One expects that this is true for induced spinor fields inside wormhole contacts with 4-D CP_2 projection and Euclidian signature of the induced metric.
- 2. The situation is not the same for the modes of induced spinor fields inside Minkowskian region and one must require that the CP_2 projection of the regions carrying induced spinor field is such that the induced W fields and above weak scale also the induced Z^0 fields vanish in order to avoid large parity breaking effects. This condition forces the CP_2 projection to be 2-dimensional. For a generic Minkowskian space-time region this is achieved only if the

spinor modes are localized at 2-D surfaces of space-time surface - string world sheets and possibly also partonic 2-surfaces.

- 3. Also the Kähler-Dirac gamma matrices appearing in the modified Dirac equation must vanish in the directions normal to the 2-D surface in order that Kähler-Dirac equation can be satisfied. This does not seem plausible for space-time regions with 4-D CP_2 projection.
- 4. One can thus say that strings emerge from TGD in Minkowskian space-time regions. In particular, elementary particles are accompanied by a pair of fermionic strings at the opposite space-time sheets and connecting wormhole contacts. Quite generally, fundamental fermions would propagate at the boundaries of string world sheets as massless particles and wormhole contacts would define the stringy vertices of generalized Feynman diagrams. One obtains geometrized diagrammatics, which brings looks like a combination of stringy and Feynman diagrammatics.
- 5. This is what happens in the generic situation. Cosmic strings could serve as examples about surfaces with 2-D CP_2 projection and carrying only em fields and allowing delocalization of spinor modes to the entire space-time surfaces.

A-3.5 About induced gauge fields

In the following the induced gauge fields are studied for general space-time surface without assuming the preferred extremal property (Bohr orbit property). Therefore the following arguments are somewhat obsolete in their generality.

Space-times with vanishing em, Z^0 , or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial geodesic sphere and extremal property are not assumed. It must be emphasized that this case is possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r, Θ, Ψ, Φ) for CP_2 , the expression of Kähler form reads as

$$J = \frac{r}{F^2} dr \wedge (d\Psi + \cos(\Theta)d\Phi) + \frac{r^2}{2F} \sin(\Theta)d\Theta \wedge d\Phi ,$$

$$F = 1 + r^2 .$$
(A-3.1)

The general expression of electromagnetic field reads as

$$F_{em} = (3+2p)\frac{r}{F^2}dr \wedge (d\Psi + \cos(\Theta)d\Phi) + (3+p)\frac{r^2}{2F}\sin(\Theta)d\Theta \wedge d\Phi ,$$

$$p = \sin^2(\Theta_W) , \qquad (A-3.2)$$

where Θ_W denotes Weinberg angle.

1. The vanishing of the electromagnetic fields is guaranteed, when the conditions

$$\Psi = k\Phi ,$$

(3+2p) $\frac{1}{r^2 F} (d(r^2)/d\Theta)(k + \cos(\Theta)) + (3+p)\sin(\Theta) = 0 ,$ (A-3.3)

hold true. The conditions imply that CP_2 projection of the electromagnetically neutral space-time is 2-dimensional. Solving the differential equation one obtains

$$\begin{aligned} r &= \sqrt{\frac{X}{1-X}} ,\\ X &= D\left[\left|\frac{k+u}{C}\right|\right]^{\epsilon} ,\\ u &\equiv \cos(\Theta) , \ C = k + \cos(\Theta_0) , \ D = \frac{r_0^2}{1+r_0^2} , \ \epsilon = \frac{3+p}{3+2p} , \end{aligned} \tag{A-3.4}$$

where C and D are integration constants. $0 \le X \le 1$ is required by the reality of r. r = 0would correspond to X = 0 giving u = -k achieved only for $|k| \le 1$ and $r = \infty$ to X = 1giving $|u + k| = [(1 + r_0^2)/r_0^2)]^{(3+2p)/(3+p)}$ achieved only for

$$sign(u+k) \times [\frac{1+r_0^2}{r_0^2}]^{\frac{3+2p}{3+p}} \le k+1$$
 ,

where sign(x) denotes the sign of x.

The expressions for Kähler form and Z^0 field are given by

$$J = -\frac{p}{3+2p} X du \wedge d\Phi ,$$

$$Z^{0} = -\frac{6}{p} J . \qquad (A-3.5)$$

The components of the electromagnetic field generated by varying vacuum parameters are proportional to the components of the Kähler field: in particular, the magnetic field is parallel to the Kähler magnetic field. The generation of a long range Z^0 vacuum field is a purely TGD based feature not encountered in the standard gauge theories.

- 2. The vanishing of Z^0 fields is achieved by the replacement of the parameter ϵ with $\epsilon = 1/2$ as becomes clear by considering the condition stating that Z^0 field vanishes identically. Also the relationship $F_{em} = 3J = -\frac{3}{4}\frac{r^2}{F}du \wedge d\Phi$ is useful.
- 3. The vanishing Kähler field corresponds to $\epsilon = 1, p = 0$ in the formula for em neutral spacetimes. In this case classical em and Z^0 fields are proportional to each other:

$$Z^{0} = 2e^{0} \wedge e^{3} = \frac{r}{F^{2}}(k+u)\frac{\partial r}{\partial u}du \wedge d\Phi = (k+u)du \wedge d\Phi ,$$

$$r = \sqrt{\frac{X}{1-X}} , \quad X = D|k+u| ,$$

$$\gamma = -\frac{p}{2}Z^{0} . \qquad (A-3.6)$$

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z^0 field remains as a long range gauge field. Vacuum extremals for which long range Z^0 field vanishes but em field is non-vanishing are not possible.

The effective form of CP_2 metric for surfaces with 2-dimensional CP_2 projection

The effective form of the CP_2 metric for a space-time having vanishing em, Z^0 , or Kähler field is of practical value in the case of vacuum extremals and is given by

$$\begin{aligned} ds_{eff}^{2} &= (s_{rr}(\frac{dr}{d\Theta})^{2} + s_{\Theta\Theta})d\Theta^{2} + (s_{\Phi\Phi} + 2ks_{\Phi\Psi})d\Phi^{2} = \frac{R^{2}}{4}[s_{\Theta\Theta}^{eff}d\Theta^{2} + s_{\Phi\Phi}^{eff}d\Phi^{2}] ,\\ s_{\Theta\Theta}^{eff} &= X \times \left[\frac{\epsilon^{2}(1-u^{2})}{(k+u)^{2}} \times \frac{1}{1-X} + 1 - X\right] ,\\ s_{\Phi\Phi}^{eff} &= X \times \left[(1-X)(k+u)^{2} + 1 - u^{2}\right] , \end{aligned}$$
(A-3.7)

and is useful in the construction of vacuum embedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z^0 , or Kähler field vanishes decompose into regions characterized by six vacuum parameters: two of these quantum numbers (ω_1 and ω_2) are frequency type parameters, two (k_1 and k_2) are wave vector like quantum numbers, two of the quantum numbers (n_1 and n_2) are integers. The parameters ω_i and n_i will be referred as electric and magnetic quantum numbers. The existence of these quantum numbers is not a feature of these solutions alone but represents a much more general phenomenon differentiating in a clear cut manner between TGD and Maxwell's electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the derivatives of CP_2 coordinates on the common boundary of two neighboring regions with different vacuum quantum numbers is topological field quantization, 3-space decomposes into disjoint topological field quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

$$\Psi = \omega_2 m^0 + k_2 m^3 + n_2 \phi + \text{Fourier expansion} ,$$

$$\Phi = \omega_1 m^0 + k_1 m^3 + n_1 \phi + \text{Fourier expansion} .$$
(A-3.8)

 m^0, m^3 and ϕ denote the coordinate variables of the cylindrical M^4 coordinates) so that one has $k = \omega_2/\omega_1 = n_2/n_1 = k_2/k_1$. The regions of the space-time surface with given values of the vacuum parameters ω_i, k_i and n_i and m and C are bounded by the surfaces at which space-time surface becomes ill-defined, say by r > 0 or $r < \infty$ surfaces.

The space-time surface decomposes into regions characterized by different values of the vacuum parameters r_0 and Θ_0 . At $r = \infty$ surfaces n_2, ω_2 and m can change since all values of Ψ correspond to the same point of CP_2 : at r = 0 surfaces also n_1 and ω_1 can change since all values of Φ correspond to same point of CP_2 , too. If r = 0 or $r = \infty$ is not in the allowed range space-time surface develops a boundary.

This implies what might be called topological quantization since in general it is not possible to find a smooth global embedding for, say a constant magnetic field. Although global embedding exists it decomposes into regions with different values of the vacuum parameters and the coordinate u in general possesses discontinuous derivative at r = 0 and $r = \infty$ surfaces. A possible manner to avoid edges of space-time is to allow field quantization so that 3-space (and field) decomposes into disjoint quanta, which can be regarded as structurally stable units a 3-space (and of the gauge field). This doesn't exclude partial join along boundaries for neighboring field quanta provided some additional conditions guaranteeing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

$$\Omega \equiv \frac{\omega_2}{n_2} - \frac{\omega_1}{n_1} = 0 \quad , \tag{A-3.9}$$

is satisfied. In particular, the ratio ω_2/ω_1 is rational number for the electromagnetically neutral regions of space-time surface. The change of the parameter n_1 and n_2 (ω_1 and ω_2) in general generates magnetic field and therefore these integers will be referred to as magnetic (electric) quantum numbers.

A-4 The relationship of TGD to QFT and string models

The recent view of the relationship of TGD to QFT and string models has developed slowly during years and it seems that in a certain sense TGD means a return to roots: instead of QFT like description involving path integral one would have wave mechanics for 3-surfaces.

A-4.1 TGD as a generalization of wave mechanism obtained by replacing point-like particles with 3-surfaces

The first vision of TGD was as a generalization of quantum field theory (string models) obtained by replacing pointlike particles (strings) as fundamental objects with 3-surfaces.

The later work has revealed that TGD could be seen as a generalization of the wave mechanism based on the replacement of a point-like particle with 3-D surface. This is due to holography implied by general coordinate invariance. The definition of the metric of the "world of classical worlds" (WCW) must assign a unique or at least almost unique space-time surface to a given 3-surface. This 4-surface is analogous to Bohr orbit so that also Bohr orbitology becomes an exact part of quantum physics. The failure of strict determinism forces to replace 3-surfaces with 4surfaces and this leads to zero energy ontology (ZEO) in which quantum states are superpositions of space-time surfaces [K35, K19, K61] [L40, L49].

Fig. 5. TGD replaces point-like particles with 3-surfaces. http://tgdtheory.fi/appfigures/particletgd.jpg

A-4.2 Extension of superconformal invariance

The fact that light-like 3-surfaces are effectively metrically 2-dimensional and thus possess generalization of 2-dimensional conformal symmetries with light-like radial coordinate defining the analog of second complex coordinate suggests that this generalization could work and extend the super-conformal symmetries to their 4-D analogs.

The boundary $\delta M_+^4 = S^2 \times R_+$ - of 4-D light-cone M_+^4 is also metrically 2-dimensional and allows extended conformal invariance. Also the group of isometries of light-cone boundary and of light-like 3-surfaces is infinite-dimensional since the conformal scalings of S^2 can be compensated by S^2 -local scaling of the light-like radial coordinate of R_+ . These simple facts mean that 4dimensional Minkowski space and 4-dimensional space-time surfaces are in a completely unique position as far as symmetries are considered.

In fact, this leads to a generalization of the Kac-Moody type symmetries of string models. $\delta M_+^4 \times CP_2$ allows huge supersymplectic symmetries for which the radial light-like coordinate of δM_+^4 plays the role of complex string coordinate in string models. These symmetries are assumed to act as isometries of WCW.

A-4.3 String-like objects and strings

String like objects obtained as deformations of cosmic strings $X^2 \times Y^2$, where X^2 is minimal surface in M^4 and Y^2 a holomorphic surface of CP_2 are fundamental extremals of Kähler action having string world sheet as M^4 projections. Cosmic strings dominate the primordial cosmology of the TGD Universe and the inflationary period corresponds to the transition to radiation dominated cosmology for which space-time sheets with 4-D M^4 projection dominate.

Also genuine string-like objects emerge from TGD. The conditions that the em charge of modes of induces spinor fields is well-defined requires in the generic case the localization of the modes at 2-D surfaces -string world sheets and possibly also partonic 2-surfaces. This in Minkowskian space-time regions.

Fig. 6. Well-definedness of em charge forces the localization of induced spinor modes to 2-D surfaces in generic situations in Minkowskian regions of space-time surface. http://tgdtheory.fi/appfigures/fermistring.jpg

A-4.4 TGD view of elementary particles

The TGD based view about elementary particles has two key aspects.

- 1. The space-time correlates of elementary particles are identified as pairs of wormhole contacts with Euclidean signature of metric and having 4-D CP_2 projection. Their throats behave effectively as Kähler magnetic monopoles so that wormhole throats must be connected by Kähler magnetic flux tubes with monopole flux so that closed flux tubes are obtained.
- 2. At the level of H Fermion number is carried by the modes of the induced spinor field. In space-time regions with Minkowski signature the modes are localized at string world sheets connecting the wormhole contacts.

Fig. 7. TGD view about elementary particles. a) Particle orbit corresponds to a 4-D generalization of a world line or b) with its light-like 3-D boundary (holography). c) Particle world lines have Euclidean signature of the induced metric. d) They can be identified as wormhole contacts. e) The throats of wormhole contacts carry effective Kähler magnetic charges so that wormhole contacts must appear as pairs in order to obtain closed flux tubes. f) Wormhole contacts are accompanied by fermionic strings connecting the throats at the same sheet: the strings do not extend inside the wormhole contacts. http://tgdtheory.fi/appfigures/elparticletgd.jpg

Particle interactions involve both stringy and QFT aspects.

- 1. The boundaries of string world sheets correspond to fundamental fermions. This gives rise to massless propagator lines in generalized Feynman diagrammatics. One can speak of "long" string connecting wormhole contacts and having a hadronic string as a physical counterpart. Long strings should be distinguished from wormhole contacts which due to their superconformal invariance behave like "short" strings with length scale given by CP_2 size, which is 10^4 times longer than Planck scale characterizing strings in string models.
- 2. Wormhole contact defines basic stringy interaction vertex for fermion-fermion scattering. The propagator is essentially the inverse of the superconformal scaling generator L_0 . Wormhole contacts containing fermion and antifermion at its opposite throats behave like virtual bosons so that one has BFF type vertices typically.
- 3. In topological sense one has 3-vertices serving as generalizations of 3-vertices of Feynman diagrams. In these vertices 4-D "lines" of generalized Feynman diagrams meet along their 3-D ends. One obtains also the analogs of stringy diagrams but stringy vertices do not have the usual interpretation in terms of particle decays but in terms of propagation of particles along two different routes.

Fig. 8. a) TGD analogs of Feynman and string diagrammatics at the level of spacetime topology. b) The 4-D analogs of both string diagrams and QFT diagrams appear but the interpretation of the analogs stringy diagrams is different. http://tgdtheory.fi/appfigures/ tgdgraphs.jpg

A-5 About the selection of the action defining the Kähler function of the "world of classical worlds" (WCW)

The proposal is that space-time surfaces correspond to preferred extremals of some action principle, being analogous to Bohr orbits, so that they are almost deterministic. The action for the preferred extremal would define the Kähler function of WCW [K35, K61].

How unique is the choice of the action defining WCW Kähler metric? The problem is that twistor lift strongly suggests the identification of the preferred extremals as 4-D surfaces having 4-D generalization of complex structure and that a large number of general coordinate invariant actions constructible in terms of the induced geometry have the same preferred extremals.

A-5.1 Could twistor lift fix the choice of the action uniquely?

The twistor lift of TGD [L20] [L40, L42, L43] generalizes the notion of induction to the level of twistor fields and leads to a proposal that the action is obtained by dimensional reduction of the action having as its preferred extremals the counterpart of twistor space of the space-time surface identified as 6-D surface in the product $T(M^4) \times T(CP_2)$ twistor spaces of $T(M^4)$ and $T(CP_2)$ of M^4 and CP_2 . Only M^4 and CP_2 allow a twistor space with Kähler structure [A58] so that TGD would be unique. Dimensional reduction is forced by the condition that the 6-surface has S^2 -bundle structure characterizing twistor spaces and the base space would be the space-time surface.

- 1. Dimensional reduction of 6-D Kähler action implies that at the space-time level the fundamental action can be identified as the sum of Kähler action and volume term (cosmological constant). Other choices of the action do not look natural in this picture although they would have the same preferred extremals.
- 2. Preferred extremals are proposed to correspond to minimal surfaces with singularities such that they are also extremals of 4-D Kähler action outside the singularities. The physical analogue are soap films spanned by frames and one can localize the violation of the strict determinism and of strict holography to the frames.
- 3. The preferred extremal property is realized as the holomorphicity characterizing string world sheets, which generalizes to the 4-D situation. This in turn implies that the preferred extremals are the same for any general coordinate invariant action defined on the induced gauge fields and induced metric apart from possible extremals with vanishing CP_2 Kähler action.

For instance, 4-D Kähler action and Weyl action as the sum of the tensor squares of the components of the Weyl tensor of CP_2 representing quaternionic imaginary units constructed from the Weyl tensor of CP_2 as an analog of gauge field would have the same preferred extremals and only the definition of Kähler function and therefore Kähler metric of WCW would change. One can even consider the possibility that the volume term in the 4-D action could be assigned to the tensor square of the induced metric representing a quaternionic or octonionic real unit.

Action principle does not seem to be unique. On the other hand, the WCW Kähler form and metric should be unique since its existence requires maximal isometries.

Unique action is not the only way to achieve this. One cannot exclude the possibility that the Kähler gauge potential of WCW in the complex coordinates of WCW differs only by a complex gradient of a holomorphic function for different actions so that they would give the same Kähler form for WCW. This gradient is induced by a symplectic transformation of WCW inducing a U(1) gauge transformation. The Kähler metric is the same if the symplectic transformation is an isometry.

Symplectic transformations of WCW could give rise to inequivalent representations of the theory in terms of action at space-time level. Maybe the length scale dependent coupling parameters of an effective action could be interpreted in terms of a choice of WCW Kähler function, which maximally simplifies the computations at a given scale.

- 1. The 6-D analogues of electroweak action and color action reducing to Kähler action in 4-D case exist. The 6-D analog of Weyl action based on the tensor representation of quaternionic imaginary units does not however exist. One could however consider the possibility that only the base space of twistor space $T(M^4)$ and $T(CP_2)$ have quaternionic structure.
- 2. Kähler action has a huge vacuum degeneracy, which clearly distinguishes it from other actions. The presence of the volume term removes this degeneracy. However, for minimal surfaces having CP_2 projections, which are Lagrangian manifolds and therefore have a vanishing induced Kähler form, would be preferred extremals according to the proposed definition. For these 4-surfaces, the existence of the generalized complex structure is dubious.

For the electroweak action, the terms corresponding to charged weak bosons eliminate these extremals and one could argue that electroweak action or its sum with the analogue of color action, also proportional Kähler action, defines the more plausible choice. Interestingly, also the neutral part of electroweak action is proportional to Kähler action.

Twistor lift strongly suggests that also M^4 has the analog of Kähler structure. M^8 must be complexified by adding a commuting imaginary unit *i*. In the E^8 subspace, the Kähler structure of E^4 is defined in the standard sense and it is proposed that this generalizes to M^4 allowing also generalization of the quaternionic structure. M^4 Kähler structure violates Lorentz invariance but could be realized at the level of moduli space of these structures.

The minimal possibility is that the M^4 Kähler form vanishes: one can have a different representation of the Kähler gauge potential for it obtained as generalization of symplectic transformations acting non-trivially in M^4 . The recent picture about the second quantization of spinors of $M^4 \times CP_2$ assumes however non-trivial Kähler structure in M^4 .

A-5.2 Two paradoxes

TGD view leads to two apparent paradoxes.

- 1. If the preferred extremals satisfy 4-D generalization of holomorphicity, a very large set of actions gives rise to the same preferred extremals unless there are some additional conditions restricting the number of preferred extremals for a given action.
- 2. WCW metric has an infinite number of zero modes, which appear as parameters of the metric but do not contribute to the line element. The induced Kähler form depends on these degrees of freedom. The existence of the Kähler metric requires maximal isometries, which suggests that the Kähler metric is uniquely fixed apart from a conformal scaling factor Ω depending on zero modes. This cannot be true: galaxy and elementary particle cannot correspond to the same Kähler metric.

Number theoretical vision and the hierarchy of inclusions of HFFs associated with supersymplectic algebra actings as isometries of WcW provide equivalent realizations of the measurement resolution. This solves these paradoxes and predicts that WCW decomposes into sectors for which Kähler metrics of WCW differ in a natural way.

The hierarchy subalgebras of supersymplectic algebra implies the decomposition of WCW into sectors with different actions

Supersymplectic algebra of $\delta M_+^4 \times CP_2$ is assumed to act as isometries of WCW [L49]. There are also other important algebras but these will not be discussed now.

1. The symplectic algebra A of $\delta M_+^4 \times CP_2$ has the structure of a conformal algebra in the sense that the radial conformal weights with non-negative real part, which is half integer, label the elements of the algebra have an interpretation as conformal weights.

The super symplectic algebra A has an infinite hierarchy of sub-algebras [L49] such that the conformal weights of sub-algebras $A_{n(SS)}$ are integer multiples of the conformal weights of the entire algebra. The superconformal gauge conditions are weakened. Only the subalgebra $A_{n(SS)}$ and the commutator $[A_{n(SS)}, A]$ annihilate the physical states. Also the corresponding classical Noether charges vanish for allowed space-time surfaces.

This weakening makes sense also for ordinary superconformal algebras and associated Kac-Moody algebras. This hierarchy can be interpreted as a hierarchy symmetry breakings, meaning that sub-algebra $A_{n(SS)}$ acts as genuine dynamical symmetries rather than mere gauge symmetries. It is natural to assume that the super-symplectic algebra A does not affect the coupling parameters of the action.

2. The generators of A correspond to the dynamical quantum degrees of freedom and leave the induced Kähler form invariant. They affect the induced space-time metric but this effect is gravitational and very small for Einsteinian space-time surfaces with 4-D M^4 projection.

The number of dynamical degrees of freedom increases with n(SS). Therefore WCW decomposes into sectors labelled by n(SS) with different numbers of dynamical degrees of freedom so that their Kähler metrics cannot be equivalent and cannot be related by a symplectic isometry. They can correspond to different actions.

Number theoretic vision implies the decomposition of WCW into sectors with different actions

The number theoretical vision leads to the same conclusion as the hierarchy of HFFs. The number theoretic vision of TGD based on $M^8 - H$ duality [L49] predicts a hierarchy with levels labelled by the degrees n(P) of rational polynomials P and corresponding extensions of rationals characterized by Galois groups and by ramified primes defining p-adic length scales.

These sequences allow us to imagine several discrete coupling constant evolutions realized at the level H in terms of action whose coupling parameters depend on the number theoretic parameters.

1. Coupling constant evolution with respect to n(P)

The first coupling constant evolution would be with respect to n(P).

- 1. The coupling constants characterizing action could depend on the degree n(P) of the polynomial defining the space-time region by $M^8 H$ duality. The complexity of the space-time surface would increase with n(P) and new degrees of freedom would emerge as the number of the rational coefficients of P.
- 2. This coupling constant evolution could naturally correspond to that assignable to the inclusion hierarchy of hyperfinite factors of type II₁ (HFFs). I have indeed proposed [L49] that the degree n(P) equals to the number n(braid) of braids assignable to HFF for which super symplectic algebra subalgebra $A_{n(SS)}$ with radial conformal weights coming as n(SS)-multiples of those of entire algebra A. One would have n(P) = n(braid) = n(SS). The number of dynamical degrees of freedom increases with n which just as it increases with n(P) and n(SS).
- 3. The actions related to different values of n(P) = n(braid) = n(SS) cannot define the same Kähler metric since the number of allowed space-time surfaces depends on n(SS).

WCW could decompose to sub-WCWs corresponding to different actions, a kind of theory space. These theories would not be equivalent. A possible interpretation would be as a hierarchy of effective field theories.

4. Hierarchies of composite polynomials define sequences of polynomials with increasing values of n(P) such that the order of a polynomial at a given level is divided by those at the lower levels. The proposal is that the inclusion sequences of extensions are realized at quantum level as inclusion hierarchies of hyperfinite factors of type II₁.

A given inclusion hierarchy corresponds to a sequence $n(SS)_i$ such that $n(SS)_i$ divides $n(SS)_{i+1}$. Therefore the degree of the composite polynomials increases very rapidly. The values of $n(SS)_i$ can be chosen to be primes and these primes correspond to the degrees of so called prime polynomials [L46] so that the decompositions correspond to prime factorizations of integers. The "densest" sequence of this kind would come in powers of 2 as $n(SS)_i = 2^i$. The corresponding p-adic length scales (assignable to maximal ramified primes for given $n(SS)_i$) are expected to increase roughly exponentially, say as 2^{r2^i} . r = 1/2 would give a subset of scales $2^{r/2}$ allowed by the p-adic length scale hypothesis. These transitions would be very rare.

A theory corresponding to a given composite polynomial would contain as sub-theories the theories corresponding to lower polynomial composites. The evolution with respect to n(SS) would correspond to a sequence of phase transitions in which the action genuinely changes. For instance, color confinement could be seen as an example of this phase transition.

5. A subset of p-adic primes allowed by the p-adic length scale hypothesis $p \simeq 2^k$ defining the proposed p-adic length scale hierarchy could relate to n_S changing phase transition. TGD suggests a hierarchy of hadron physics corresponding to a scale hierarchy defined by Mersenne primes and their Gaussian counterparts [K43, K44]). Each of them would be characterized by a confinement phase transition in which n_S and therefore also the action changes.

2. Coupling constant evolutions with respect to ramified primes for a given value of n(P)

For a given value of n(P), one could have coupling constant sub-evolutions with respect to the set of ramified primes of P and dimensions $n = h_{eff}/h_0$ of algebraic extensions. The action would only change by U(1) gauge transformation induced by a symplectic isometry of WCW. Coupling parameters could change but the actions would be equivalent.

The choice of the action in an optimal manner in a given scale could be seen as a choice of the most appropriate effective field theory in which radiative corrections would be taken into account. One can interpret the possibility to use a single choice of coupling parameters in terms of quantum criticality.

The range of the p-adic length scales labelled by ramified primes and effective Planck constants h_{eff}/h_0 is finite for a given value of n(SS).

The first coupling constant evolution of this kind corresponds to ramified primes defining p-adic length scales for given n(SS).

1. Ramified primes are factors of the discriminant D(P) of P, which is expressible as a product of non-vanishing root differents and reduces to a polynomial of the n coefficients of P. Ramified primes define p-adic length scales assignable to the particles in the amplitudes scattering amplitudes defined by zero energy states.

P would represent the space-time surface defining an interaction region in N--particle scattering. The N ramified primes dividing D(P) would characterize the p-adic length scales assignable to these particles. If D(P) reduces to a single ramified prime, one has elementary particle [L46], and the forward scattering amplitude corresponds to the propagator.

This would give rise to a multi-scale p-adic length scale evolution of the amplitudes analogous to the ordinary continuous coupling constant evolution of n-point scattering amplitudes with respect to momentum scales of the particles. This kind of evolutions extend also to evolutions with respect to n(SS).

2. According to [L46], physical constraints require that n(P) and the maximum size of the ramified prime of P correlate.

A given rational polynomial of degree n(P) can be always transformed to a polynomial with integer coefficients. If the integer coefficients are smaller than n(P), there is an upper bound for the ramified primes. This assumption also implies that finite fields become fundamental number fields in number theoretical vision [L46].

3. p-Adic length scale hypothesis [L50] in its basic form states that there exist preferred primes $p \simeq 2^k$ near some powers of 2. A more general hypothesis states that also primes near some powers of 3 possibly also other small primes are preferred physically. The challenge is to understand the origin of these preferred scales.

For polynomials P with a given degree n(P) for which discriminant D(P) is prime, there exists a maximal ramified prime. Numerical calculations suggest that the upper bound depends exponentially on n(P).

Could these maximal ramified primes satisfy the p-adic length scale hypothesis or its generalization? The maximal prime defines a fixed point of coupling constant evolution in accordance with the earlier proposal. For instance, could one think that one has $p \simeq 2^k$, k = n(SS)? Each p-adic prime would correspond to a p-adic coupling constant sub-evolution representable in terms of symplectic isometries.

Also the dimension n of the algebraic extension associated with P, which is identified in terms of effective Planck constant $h_{eff}/h_0 = n$ labelling different phases of the ordinary matter behaving like dark matter, could give rise to coupling constant evolution for given n(SS). The range of allowed values of n is finite. Note however that several polynomials of a given degree can correspond to the same dimension of extension.

Number theoretic discretization of WCW and maxima of WCW Kähler function

Number theoretic approach involves a unique discretization of space-time surface and also of WCW. The question is how the points of the discretized WCW correspond to the preferred extremals.

1. The exponents of Kähler function for the maxima of Kähler function, which correspond to the universal preferred extremals, appear in the scattering amplitudes. The number theoretical approach involves a unique discretization of space-time surfaces defining the WCW coordinates of the space-time surface regarded as a point of WCW.

In [L49] it is assumed that these WCW points appearing in the number theoretical discretization correspond to the maxima of the Kähler function. The maxima would depend on the action and would differ for ghd maxima associated with different actions unless they are not related by symplectic WCW isometry.

2. The symplectic transformations of WCW acting as isometries are assumed to be induced by the symplectic transformations of $\delta M_+^4 \times CP_2$ [K35, K19]. As isometries they would naturally permute the maxima with each other.

A-6 Number theoretic vision of TGD

Physics as number theory vision is complementary to the physics as geometry vision and has developed gradually since 1993. Langlands program is the counterpart of this vision in mathematics [L48].

The notion of p-adic number fields emerged with the motivation coming from the observation that elementary particle mass scales and mass ratios could be understood in terms of the so-called p-adic length scale hypothesis [K47, K39, K16]. The fusion of the various p-adic physics leads to what I call adelic physics [L18, L19]. Later the hypothesis about hierarchy of Planck constants labelling phases of ordinary matter behaving like dark matter emerged [K21, K22, K23, K24].

Eventually this led to that the values of effective Planck constant could be identified as the dimension of an algebraic extension of rationals assignable to polynomials with rational coefficients. This led to the number theoretic vision in which so-called $M^8 - H$ duality [L33, L34] plays a key role. M^8 (actually a complexification of real M^8) is analogous to momentum space so that the duality generalizes momentum position duality for point-like particles. M^8 has an interpretation as complexified octonions.

The dynamics of 4-surfaces in M^8 is coded by polynomials with rational coefficients, whose roots define mass shells H^3 of $M^4 \subset M^8$. It has turned out that the polynomials satisfy stringent additional conditions and one can speak of number theoretic holography [L46, L48]. Also the ordinary $3 \rightarrow 4$ holography is needed to assign 4-surfaces with these 3-D mass shells. The number theoretic dynamics is based on the condition that the normal space of the 4-surface in M^8 is associative (quaternionic) and contains a commutative complex sub-space. This makes it possible to assign to this surface space-time surface in $H = M^4 \times CP_2$.

At the level of H the space-time surfaces are by holography preferred extremals and are assumed to be determined by the twistor lift of TGD [L20] giving rise to an action which is sum of the Kähler action and volume term. The preferred extremals would be minimal surfaces analogous to soap films spanned by frames. Outside frames they would be simultaneous extremals of the Kähler action, which requires a generalization of the holomorphy characterizing string world sheets.

In the following only p-adic numbers and hierarchy of Planck constants will be discussed.

A-6.1 p-Adic numbers and TGD

p-Adic number fields

p-Adic numbers (p is prime: 2, 3, 5, ...) can be regarded as a completion of the rational numbers using a norm, which is different from the ordinary norm of real numbers [A34]. p-Adic numbers are representable as power expansion of the prime number p of form

$$x = \sum_{k \ge k_0} x(k)p^k, \ x(k) = 0, \dots, p-1 \ . \tag{A-6.1}$$

The norm of a p-adic number is given by

$$|x| = p^{-k_0(x)} (A-6.2)$$

Here $k_0(x)$ is the lowest power in the expansion of the p-adic number. The norm differs drastically from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the p-adic number only. Arbitrarily high powers in the expansion are possible since the norm of the p-adic number is finite also for numbers, which are infinite with respect to the ordinary norm. A convenient representation for p-adic numbers is in the form

$$x = p^{k_0} \varepsilon(x) , \qquad (A-6.3)$$

where $\varepsilon(x) = k + \dots$ with 0 < k < p, is p-adic number with unit norm and analogous to the phase factor $exp(i\phi)$ of a complex number.

The distance function $d(x, y) = |x - y|_p$ defined by the p-adic norm possesses a very general property called ultra-metricity:

$$d(x,z) \leq \max\{d(x,y), d(y,z)\} . \tag{A-6.4}$$

The properties of the distance function make it possible to decompose R_p into a union of disjoint sets using the criterion that x and y belong to same class if the distance between x and y satisfies the condition

$$d(x,y) \leq D . \tag{A-6.5}$$

This division of the metric space into classes has following properties:

- 1. Distances between the members of two different classes X and Y do not depend on the choice of points x and y inside classes. One can therefore speak about distance function between classes.
- 2. Distances of points x and y inside single class are smaller than distances between different classes.
- 3. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin glasses and is believed to have also applications in biology [B25]. The emergence of p-adic topology as the topology of the effective space-time would make ultra-metricity property basic feature of physics.

Canonical correspondence between p-adic and real numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the p-adic physics to real numbers. p-Adic probabilities provide a basic example in this respect. Identification via common rationals and canonical identification and its variants have turned out to play a key role in this respect.

1. Basic form of the canonical identification

There exists a natural continuous map $I : R_p \to R_+$ from p-adic numbers to non-negative real numbers given by the "pinary" expansion of the real number for $x \in R$ and $y \in R_p$ this correspondence reads

$$y = \sum_{k>N} y_k p^k \to x = \sum_{k

$$y_k \in \{0, 1, ..., p-1\} .$$
(A-6.6)$$

This map is continuous as one easily finds out. There is however a little difficulty associated with the definition of the inverse map since the pinary expansion like also decimal expansion is not unique (1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of pinary digits

$$x = \sum_{k=N_0}^{N} x_k p^{-k} ,$$

$$x = \sum_{k=N_0}^{N-1} x_k p^{-k} + (x_N - 1) p^{-N} + (p - 1) p^{-N-1} \sum_{k=0,..} p^{-k} .$$
(A-6.7)

The p-adic images associated with these expansions are different

$$y_{1} = \sum_{k=N_{0}}^{N} x_{k} p^{k} ,$$

$$y_{2} = \sum_{k=N_{0}}^{N-1} x_{k} p^{k} + (x_{N} - 1)p^{N} + (p - 1)p^{N+1} \sum_{k=0,..} p^{k}$$

$$= y_{1} + (x_{N} - 1)p^{N} - p^{N+1} ,$$
(A-6.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite pinary digits or single valued and discontinuous and non-surjective if one makes pinary expansion unique by choosing the one with finite pinary digits. The finite pinary digit expansion is a natural choice since in the numerical work one always must use a pinary cutoff on the real axis.

2. The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers differs from the ordinary topology. The difference is easily understood by interpreting the p-adic norm as a norm in the set of the real numbers. The norm is constant in each interval $[p^k, p^{k+1})$ (see **Fig. A-6.1**) and is equal to the usual real norm at the points $x = p^k$: the usual linear norm is replaced with a piecewise constant norm. This means that p-adic topology is coarser than the usual real topology and the higher the value of p is, the coarser the resulting topology is above a given length scale. This hierarchical ordering of the p-adic topologies will be a central feature as far as the proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology is rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from right as is clear already from the properties of the p-adic norm (the graph of the norm is indeed continuous from right). This feature is one clear signature of the p-adic topology.

Fig. 14. The real norm induced by canonical identification from 2-adic norm. http://tgdtheory.fi/appfigures/norm.png

The linear structure of the p-adic numbers induces a corresponding structure in the set of the non-negative real numbers and p-adic linearity in general differs from the ordinary concept of linearity. For example, p-adic sum is equal to real sum only provided the summands have no common pinary digits. Furthermore, the condition $x +_p y < max\{x, y\}$ holds in general for the padic sum of the real numbers. p-Adic multiplication is equivalent with the ordinary multiplication only provided that either of the members of the product is power of p. Moreover one has $x \times_p y <$ $x \times y$ in general. The p-Adic negative -1_p associated with p-adic unit 1 is given by $(-1)_p =$ $\sum_k (p-1)p^k$ and defines p-adic negative for each real number x. An interesting possibility is that p-adic linearity might replace the ordinary linearity in some strongly nonlinear systems so these systems would look simple in the p-adic topology.

These results suggest that canonical identification is involved with some deeper mathematical structure. The following inequalities hold true:

$$(x+y)_R \leq x_R + y_R$$
,
 $x|_p|y|_R \leq (xy)_R \leq x_R y_R$, (A-6.9)

where $|x|_p$ denotes p-adic norm. These inequalities can be generalized to the case of $(R_p)^n$ (a linear vector space over the p-adic numbers).

$$(x+y)_R \leq x_R + y_R ,$$

$$\lambda|_p|y|_R \leq (\lambda y)_R \leq \lambda_R y_R , \qquad (A-6.10)$$

where the norm of the vector $x \in T_p^n$ is defined in some manner. The case of Euclidian space suggests the definition

$$(x_R)^2 = (\sum_n x_n^2)_R . (A-6.11)$$

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might have a generalization and physically the generalization might apply to the description of some non-linear systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm under scaling.

3. Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symmetries even approximately. This led to a search of variants which would do better in this respect. The modification of the canonical identification applying to rationals only and given by

$$I_Q(q = p^k \times \frac{r}{s}) = p^k \times \frac{I(r)}{I(s)}$$
(A-6.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under exchange of target and domain. This map reduces to a direct identification of rationals for $0 \le r < p$ and $0 \le s < p$. It has turned out that it is this map which most naturally appears in the applications. The map is obviously continuous locally since p-adically small modifications of r and s mean small modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle masses. The predictions for the light elementary particle masses are within extreme accuracy same for I and I_Q but I_Q is theoretically preferred since the real probabilities obtained from p-adic ones by I_Q sum up to one in p-adic thermodynamics.

4. Generalization of number concept and notion of embedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic number fields along common rationals is in question. This induces a similar fusion of real and p-adic embedding spaces. Since finite p-adic numbers correspond always to non-negative reals *n*-dimensional space \mathbb{R}^n must be covered by 2^n copies of the p-adic variant \mathbb{R}^n_p of \mathbb{R}^n each of which projects to a copy of \mathbb{R}^n_+ (four quadrants in the case of plane). The common points of p-adic and real embedding spaces are rational points and most p-adic points are at real infinity.

Real numbers and various algebraic extensions of p-adic number fields are thus glued together along common rationals and also numbers in algebraic extension of rationals whose number belong to the algebraic extension of p-adic numbers. This gives rise to a book like structure with rationals and various algebraic extensions of rationals taking the role of the back of the book. Note that Neper number is exceptional in the sense that it is algebraic number in p-adic number field Q_p satisfying $e^p \mod p = 1$. Fig. 15. Various number fields combine to form a book like structure. http://tgdtheory.fi/appfigures/book.jpg

For a given p-adic space-time sheet most points are literally infinite as real points and the projection to the real embedding space consists of a discrete set of rational points: the interpretation in terms of the unavoidable discreteness of the physical representations of cognition is natural. Purely local p-adic physics implies real p-adic fractality and thus long range correlations for the real space-time surfaces having enough common points with this projection.

p-Adic fractality means that M^4 projections for the rational points of space-time surface X^4 are related by a direct identification whereas CP_2 coordinates of X^4 at these points are related by I, I_Q or some of its variants implying long range correlates for CP_2 coordinates. Since only a discrete set of points are related in this manner, both real and p-adic field equations can be satisfied and there are no problems with symmetries. p-Adic effective topology is expected to be a good approximation only within some length scale range which means infrared and UV cutoffs. Also multi-p-fractality is possible.

The notion of p-adic manifold

The notion of p-adic manifold is needed in order to fuse real physics and various p-adic physics to a larger structure which suggests that real and p-adic number fields should be glued together along common rationals bringing in mind adeles. The notion is problematic because p-adic topology is totally disconnected implying that p-adic balls are either disjoint or nested so that ordinary definition of manifold using p-adic chart maps fails. A cure is suggested to be based on chart maps from p-adics to reals rather than to p-adics (see the appendix of the book)

The chart maps are interpreted as cognitive maps, "thought bubbles".

Fig. 16. The basic idea between p-adic manifold. http://tgdtheory.fi/appfigures/padmanifold.jpg

There are some problems.

- 1. Canonical identification does not respect symmetries since it does not commute with second pinary cutoff so that only a discrete set of rational points is mapped to their real counterparts by chart map arithmetic operations which requires pinary cutoff below which chart map takes rationals to rationals so that commutativity with arithmetics and symmetries is achieved in finite resolution: above the cutoff canonical identification is used
- 2. Canonical identification is continuous but does not map smooth p-adic surfaces to smooth real surfaces requiring second pinary cutoff so that only a discrete set of rational points is mapped to their real counterparts by chart map requiring completion of the image to smooth preferred extremal of Kähler action so that chart map is not unique in accordance with finite measurement resolution
- 3. Canonical identification violates general coordinate invariance of chart map: (cognitioninduced symmetry breaking) minimized if p-adic manifold structure is induced from that for p-adic embedding space with chart maps to real embedding space and assuming preferred coordinates made possible by isometries of embedding space: one however obtains several inequivalent p-adic manifold structures depending on the choice of coordinates: these cognitive representations are not equivalent.

A-6.2 Hierarchy of Planck constants and dark matter hierarchy

Hierarchy of Planck constants was motivated by the "impossible" quantal effects of ELF em fields on vertebrate cyclotron energies $E = hf = \hbar \times eB/m$ are above thermal energy is possible only if \hbar has value much larger than its standard value. Also Nottale's finding that planetary orbits migh be understood as Bohr orbits for a gigantic gravitational Planck constant.

Hierachy of Planck constant would mean that the values of Planck constant come as integer multiples of ordinary Planck constant: $h_{eff} = n \times h$. The particles at magnetic flux tubes characterized by h_{eff} would correspond to dark matter which would be invisible in the sense that only particle with same value of h_{eff} appear in the same vertex of Feynman diagram.

Hierarchy of Planck constants would be due to the non-determism of the Kähler action predicting huge vacuum degeneracy allowing all space-time surfaces which are sub-manfolds of any $M^4 \times Y^2$, where Y^2 is Lagrangian sub-manifold of CP_2 . For agiven Y^2 one obtains new manifolds Y^2 by applying symplectic transformations of CP_2 .

Non-determinism would mean that the 3-surface at the ends of causal diamond (CD) can be connected by several space-time surfaces carrying same conserved Kähler charges and having same values of Kähler action. Conformal symmetries defined by Kac-Moody algebra associated with the embedding space isometries could act as gauge transformations and respect the lightlikeness property of partonic orbits at which the signature of the induced metric changes from Minkowskian to Euclidian (Minkowskianb space-time region transforms to wormhole contact say). The number of conformal equivalence classes of these surfaces could be finite number n and define discrete physical degree of freedom and one would have $h_{eff} = n \times h$. This degeneracy would mean "second quantization" for the sheets of n-furcation: not only one but several sheets can be realized.

This relates also to quantum criticality postulated to be the basic characteristics of the dynamics of quantum TGD. Quantum criticalities would correspond to an infinite fractal hierarchy of broken conformal symmetries defined by sub-algebras of conformal algebra with conformal weights coming as integer multiples of n. This leads also to connections with quantum criticality and hierarchy of broken conformal symmetries, p-adicity, and negentropic entanglement which by consistency with standard quantum measurement theory would be described in terms of density matrix proportional $n \times n$ identity matrix and being due to unitary entanglement coefficients (typical for quantum computing systems).

Formally the situation could be described by regarding space-time surfaces as surfaces in singular n-fold singular coverings of embedding space. A stronger assumption would be that they are expressible as as products of n_1 -fold covering of M^4 and n_2 -fold covering of CP_2 meaning analogy with multi-sheeted Riemann surfaces and that M^4 coordinates are n_1 -valued functions and CP_2 coordinates n_2 -valued functions of space-time coordinates for $n = n_1 \times n_2$. These singular coverings of embedding space form a book like structure with singularities of the coverings localizable at the boundaries of causal diamonds defining the back of the book like structure.

Fig. 17. Hierarchy of Planck constants. http://tgdtheory.fi/appfigures/planckhierarchy.jpg

A-6.3 $M^8 - H$ duality as it is towards the end of 2021

The view of M^8-H duality (see Appendix ??) has changed considerably towards the end 2021 [L40] after the realization that this duality is the TGD counterpart of momentum position duality of wave mechanics, which is lost in QFTs. Therefore M^8 and also space-time surface is analogous to momentum space. This forced us to give up the original simple identification of the points $M^4 \subset M^4 \times E^4 = M^8$ and of $M^4 \times CP_2$ so that it respects Uncertainty Principle (UP).

The first improved guess for the duality map was the replacement with the inversion $p^k \rightarrow m^k = \hbar_{eff} p^k / p^2$ conforming in spirit with UP but turned out to be too naive.

The improved form [L40] of the $M^8 - H$ duality map takes mass shells $p^2 = m^2$ of $M^4 \subset M^8$ to cds with size $L(m) = \hbar_{eff}/m$ with a common center. The slicing by mass shells is mapped to a Russian doll like slicing by cds. Therefore would be no CDs in M^8 contrary to what I believed first.

Quantum classical correspondence (QCC) inspires the proposal that the point $p^k \in M^8$ is mapped to a geodesic line corresponding to momentum p^k starting from the common center of cds. Its intersection with the opposite boundary of cd with size L(m) defines the image point. This is not yet quite enough to satisfy UP but the additional details [L40] are not needed in the sequel.

The 6-D brane-like special solutions in M^8 are of special interest in the TGD inspired theory of consciousness. They have an M^4 projection which is $E = E_n$ 3-ball. Here E_n is a root of the real polynomial P defining $X^4 \subset M_c^8$ (M^8 is complexified to M_c^8) as a "root" of its octonionic continuation [L33, L34]. E_n has an interpretation as energy, which can be complex. The original interpretation was as moment of time. For this interpretation, $M^8 - H$ duality would be a linear identification and these hyper planes would be mapped to hyperplanes in $M^4 \subset H$. This motivated the term "very special moment in the life of self" for the image of the $E = E_n$ section of $X^4 \subset M^8$ [L29]. This notion does not make sense at the level M^8 anymore.

The modified $M^8 - H$ duality forces us to modify the original interpretation [L40]. The point $(E_n, p = 0)$ is mapped $(t_n = \hbar_{eff}/E_n, 0)$. The momenta (E_n, p) in $E = E_n$ plane are mapped to the boundary of cd and correspond to a continuous time interval at the boundary of CD: "very special moment" becomes a "very special time interval".

The quantum state however corresponds to a set of points corresponding to quark momenta, which belong to a cognitive representation and are therefore algebraic integers in the extension determined by the polynomial. These active points in E_n are mapped to a discrete set at the boundary of cd(m). A "very special moment" is replaced with a sequence of "very special moments".

So called Galois confinement [L37] forces the total momenta for bound states of quarks and antiquarks to be rational integers invariant under Galois group of extension of rationals determined by the polynomial P [L40]. These states correspond to states at boundaries of sub-CDs so that one obtains a hierarchy. Galois confinement provides a universal number theoretic mechanism for the formation of bound states.

A-7 Zero energy ontology (ZEO)

ZEO is implied by the holography forced in the TGD framework by general coordinate invariance.

A-7.1 Basic motivations and ideas of ZEO

The following gives a brief summary of ZEO [L31] [K86].

1. In ZEO quantum states are not 3-dimensional but superpositions of 4-dimensional deterministic time evolutions connecting ordinary initial 3-dimensional states. By holography they are equivalent to pairs of ordinary 3-D states identified as initial and final states of time evolution. One can say that in the TGD framework general coordinate invariance implies holography and the slight failure of its determinism in turn forces ZEO.

Quantum jumps replace this state with a new one: a superposition of deterministic time evolutions is replaced with a new superposition. Classical determinism of individual time evolution is not violated and this solves the basic paradox of quantum measurement theory. There are two kinds of quantum jumps: ordinary ("big") state function reductions (BSFRs) changing the arrow of time and "small" state function reductions (SSFRs) (weak measurements) preserving it and giving rise to the analog of Zeno effect [L31].

- 2. To avoid getting totally confused it is good to emphasize some aspects of ZEO.
 - (a) ZEO does not mean that physical states in the usual 3-D sense as snapshots of time evolution would have zero energy state pairs defining zero energy states as initial and final states have same conserved quantities such as energy. Conservation implies that one can adopt the conventions that the values of conserved quantities are opposite for these states so that their sum vanishes: one can think that incoming and outgoing particles come from geometric past and future is the picture used in quantum field theories.
 - (b) ZEO means two times: subjective time as sequence of quantum jumps and geometric time as space-time coordinate. These times are identifiable but are strongly correlated.
- 3. In BSFRs the arrow of time is changed and the time evolution in the final state occurs backwards with respect to the time of the external observer. BSFRs can occur in all scales since TGD predicts a hierarchy of effective Planck constants with arbitrarily large values. There is empirical support for BSFRs.
 - (a) The findings of Minev et al [L26] in atomic scale can be explained by the same mechanism [L26]. In BSFR a final zero energy state as a superposition of classical deterministic time evolutions emerges and for an observer with a standard arrow of time looks

like a superposition of deterministic smooth time evolutions leading to the final state. Interestingly, once this evolution has started, it cannot be stopped unless one changes the stimulus signal inducing the evolution in which case the process does not lead to anywhere: the interpretation would be that BSFR back to the initial state occurs!

- (b) Libets' experiments about active aspects of consciousness [?] can be understood. Subject person raises his finger and neural activity starts before the conscious decision to do so. In the physicalistic framework it is thought to lead to raising of the finger. The problem with the explanation is that the activity beginning .5 seconds earlier seems to be dissipation with a reversed arrow of time: from chaotic and disordered to ordered at around .15 seconds. ZEO explanation is that macroscopic quantum jump occurred and generated a signal proceeding backwards in time and generated neural activity and dissipated to randomness.
- (c) Earthquakes involve a strange anomaly: they are preceded by ELF radiation. One would expect that they generate ELF radiation. The identification as BSFR would explain the anomaly [L28]. In biology the reversal of the arrow of time would occur routinely and be a central element of biological self-organization, in particular self-organized quantum criticality (see [L30, L66].

A-7.2 Some implications of ZEO

ZEO has profound implications for understanding self-organization and self-organized quantum criticality in terms of dissipation with non-standard arrow of time looking like generation of structures [L30, L66]. ZEO could also allow understanding of what planned actions - like realizing the experiment under consideration - could be.

1. Second law in the standard sense does not favor - perhaps even not allow - realization of planned actions. ZEO forces a generalization of thermodynamics: dissipation with a non-standard arrow of time for a subsystem would look like self-organization and planned action and its realization.

Could most if not all planned action be like this - induced by BSFR in the geometric future and only apparently planned? There would be however the experience of planning and realizing induced by the signals from geometric future by a higher level in the hierarchy of conscious entities predicted by TGD! In long time scales we would be realizing our fates or wishes of higher level conscious entities rather than agents with completely free will.

2. The notion of magnetic body (MB) serving as a boss of ordinary matter would be central. MB carries dark matter as $h_{eff} = nh_0$ phases of ordinary matter with n serving as a measure for algebraic complexity of extension of rationals as its dimension and defining a kind of universal IQ. There is a hierarchy of these phases and MBs labelled by extension of rationals and the value of n.

MBs would form a hierarchy of bosses - a realization for master slave hierarchy. Ordinary matter would be at the bottom and its coherent behavior would be induced from quantum coherence at higher levels. BSFR for higher level MB would give rise to what looks like planned actions and experienced as planned action at the lower levels of hierarchy. One could speak of planned actions inducing a cascade of planned actions in shorter time scales and eventually proceeding to atomic level.

A-8 Some notions relevant to TGD inspired consciousness and quantum biology

Below some notions relevant to TGD inspired theory of consciousness and quantum biology.

A-8.1 The notion of magnetic body

Topological field quantization inspires the notion of field body about which magnetic body is especially important example and plays key role in TGD inspired quantum biology and consciousness theory. This is a crucial departure fromt the Maxwellian view. Magnetic body brings in third level to the description of living system as a system interacting strongly with environment. Magnetic body would serve as an intentional agent using biological body as a motor instrument and sensory receptor. EEG would communicated the information from biological body to magnetic body and Libet's findings from time delays of consciousness support this view.

The following pictures illustrate the notion of magnetic body and its dynamics relevant for quantum biology in TGD Universe.

Fig. 18. Magnetic body associated with dipole field. http://tgdtheory.fi/appfigures/fluxquant.jpg

Fig. 19. Illustration of the reconnection by magnetic flux loops. http://tgdtheory.fi/appfigures/reconnect1.jpg

Fig. 20. Illustration of the reconnection by flux tubes connecting pairs of molecules. http: //tgdtheory.fi/appfigures/reconect2.jpg

Fig. 21. Flux tube dynamics. a) Reconnection making possible magnetic body to "recognize" the presence of another magnetic body, b) braiding, knotting and linking of flux tubes making possible topological quantum computation, c) contraction of flux tube in phase transition reducing the value of h_{eff} allowing two molecules to find each other in dense molecular soup. http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg

A-8.2 Number theoretic entropy and negentropic entanglement

TGD inspired theory of consciousness relies heavily p-Adic norm allows an to define the notion of Shannon entropy for rational probabilities (and even those in algebraic extension of rationals) by replacing the argument of logarithm of probability with its p-adic norm. The resulting entropy can be negative and the interpretation is that number theoretic entanglement entropy defined by this formula for the p-adic prime minimizing its value serves as a measure for conscious information. This negentropy characterizes two-particle system and has nothing to do with the formal negative negentropy assignable to thermodynamic entropy characterizing single particle. Negentropy Maximization Principle (NMP) implies that number theoretic negentropy increases during evolution by quantum jumps. The condition that NMP is consistent with the standard quantum measurement theory requires that negentropic entanglement has a density matrix proportional to unit matrix so that in 2-particle case the entanglement matrix is unitary.

Fig. 22. Schrödinger cat is neither dead or alive. For negentropic entanglement this state would be stable. http://tgdtheory.fi/appfigures/cat.jpg

A-8.3 Life as something residing in the intersection of reality and padjusted adjusted adju

In TGD inspired theory of consciousness p-adic space-time sheets correspond to space-time correlates for thoughts and intentions. The intersections of real and p-adic preferred extremals consist of points whose coordinates are rational or belong to some extension of rational numbers in preferred embedding space coordinates. They would correspond to the intersection of reality and various p-adicities representing the "mind stuff" of Descartes. There is temptation to assign life to the intersection of realities and p-adicities. The discretization of the chart map assigning to real space-time surface its p-adic counterpart would reflect finite cognitive resolution.

At the level of "world of classical worlds" (WCW) the intersection of reality and various p-adicities would correspond to space-time surfaces (or possibly partonic 2-surfaces) representable in terms of rational functions with polynomial coefficients with are rational or belong to algebraic extension of rationals.

The quantum jump replacing real space-time sheet with p-adic one (vice versa) would correspond to a buildup of cognitive representation (realization of intentional action).

Fig. 23. The quantum jump replacing real space-time surface with corresponding padic manifold can be interpreted as formation of though, cognitive representation. Its reversal would correspond to a transformation of intention to action. http://tgdtheory.fi/appfigures/ padictoreal.jpg

A-8.4 Sharing of mental images

The 3-surfaces serving as correlates for sub-selves can topologically condense to disjoint large space-time sheets representing selves. These 3-surfaces can also have flux tube connections and this makes possible entanglement of sub-selves, which unentangled in the resolution defined by the size of sub-selves. The interpretation for this negentropic entanglement would be in terms of sharing of mental images. This would mean that contents of consciousness are not completely private as assumed in neuroscience.

Fig. 24. Sharing of mental images by entanglement of subselves made possible by flux tube connections between topologically condensed space-time sheets associated with mental images. http://tgdtheory.fi/appfigures/sharing.jpg

A-8.5 Time mirror mechanism

Zero energy ontology (ZEO) is crucial part of both TGD and TGD inspired consciousness and leads to the understanding of the relationship between geometric time and experience time and how the arrow of psychological time emerges. One of the basic predictions is the possibility of negative energy signals propagating backwards in geometric time and having the property that entropy basically associated with subjective time grows in reversed direction of geometric time. Negative energy signals inspire time mirror mechanism (see **Fig.** http://tgdtheory.fi/appfigures/timemirror.jpg or **Fig.** 24 in the appendix of this book) providing mechanisms of both memory recall, realization of intentational action initiating action already in geometric past, and remote metabolism. What happens that negative energy signal travels to past and is reflected as positive energy signal and returns to the sender. This process works also in the reverse time direction.

Fig. 25. Zero energy ontology allows time mirror mechanism as a mechanism of memory recall. Essentially "seeing" in time direction is in question. http://tgdtheory.fi/appfigures/timemirror.jpg

Acknowledgements: I am grateful for Dainis Zeps for enlightnening discussions concerning CP_2 geometry.

REFERENCES

Mathematics

- [A1] Bracket Polynomial. Available at: https://en.wikipedia.org/wiki/Bracket_polynomial.
- [A2] Catastrophe Theory. Available at: https://en.wikipedia.org/wiki/Catastrophe_ theory#Cusp_catastrophe.

- [A3] Connected sum. Available at: https://en.wikipedia.org/wiki/Connected_sum.
- [A4] Contact geometry. Available at: https://en.wikipedia.org/wiki/Contact_geometry.
- [A5] Donaldson theorem. Available at: https://en.wikipedia.org/wiki/Donaldson's_ theorem.
- [A6] Einstein manifold. Available at: https://en.wikipedia.org/wiki/Einstein_manifold.
- [A7] Frobenius theorem (differential topology). Available at: https://en.wikipedia.org/wiki/ Frobenius_theorem_(differential_topology).
- [A8] Gerbe. Available at: https://en.wikipedia.org/wiki/Gerbe.
- [A9] Homepage of Louis Kauffman. Available at: https://homepages.math.uic.edu/ ~kauffman/.
- [A10] Homogenous space. Available at: https://en.wikipedia.org/wiki/Homogenous_space.
- [A11] Hyperbolic manifold. Available at: https://en.wikipedia.org/wiki/Hyperbolic_ manifold.
- [A12] Jones Polynomial. Available at: https://en.wikipedia.org/wiki/Jones_polynomial.
- [A13] Kac-Moody algebra. Available at: https://en.wikipedia.org/wiki/Kac\OT1\ textendashMoody_algebra.
- [A14] Knot genus. Available at: https://en.wikipedia.org/wiki/Knot_genus.
- [A15] Knot invariants. Available at: https://en.wikipedia.org/wiki/Knot_invariants.
- [A16] Mostow Rigidity Theorem. Available at: https://en.wikipedia.org/wiki/Mostow_ rigidity_theorem.
- [A17] Octonions. Available at: https://en.wikipedia.org/wiki/Octonions.
- [A18] Operad theory. Available at: https://en.wikipedia.org/wiki/Operad.
- [A19] Quaternions. Available at: https://en.wikipedia.org/wiki/Quaternion.
- [A20] Ricci flow. Available at: https://en.wikipedia.org/wiki/Ricci_flow.
- [A21] Riemann-Hilbert problem. Available at: https://en.wikipedia.org/wiki/ Riemann-Hilbert_problem.
- [A22] Super Virasoro algebra. Available at: https://en.wikipedia.org/wiki/Super_Virasoro_ algebra.
- [A23] Symmetric space. Available at: https://en.wikipedia.org/wiki/Symmetric_space.
- [A24] Thurston's theorem. Available at: https://en.wikipedia.org/wiki/Thurston's_ theorem.
- [A25] Video about Edward Witten's talk relating to his work with knot invariants. Available at: https://video.ias.edu/webfm_send/1787.
- [A26] Yangian symmetry. Available at: https://en.wikipedia.org/wiki/Yangian.
- [A27] Abouzaid A and Blumberg AJ. Arnold Conjecture and Morava K-theory, 2021. Available at: https://arxiv.org/abs/2103.01507.
- [A28] Ali A. Types of 2-dimensional N = 4 superconformal field theories. *Pramana*, 61(6):1065–1078, 2003.
- [A29] Ali A. An N=8 superaffine Malcev algebra and its N=8 Sugawara, 2003. Available at: https: //arxiv.org/abs/hep-th/01015313.

- [A30] Prastaro A. Geometry of PDEs: I: Integral bordism groups in PDEs. J Math Anal & Appl, 319(2):547-566, 2006. Available at: https://www.sciencedirect.com/science/article/ pii/S0022247X05005998.
- [A31] Prastaro A. Geometry of PDEs: II: Integral bordism groups in PDEs. J Math Anal & Appl. Available at: https://www.sciencedirect.com/science/article/pii/ S0022247X05008115, 321(2):930-948, 2006. Available at: https://www.sciencedirect.com/ science/article/pii/S0022247X05005998.
- [A32] Hitschin N Atyiah M. The Geometry and Dynamics of Magnetic Monopoles. Princeton University Press, 1988.
- [A33] Vafa C Berkovits N. N = 4 topological strings, 1994. Available at: https://arxiv.org/ abs/hep-th/9407190.
- [A34] Shafarevich IR Borevich ZI. Number Theory. Academic Press, 1966.
- [A35] Kassel C. Quantum Groups. Springer Verlag, 1995.
- [A36] Pope CN. Eigenfunctions and $Spin^c$ Structures on CP_2 , 1980.
- [A37] Bar-Natan D. Khovanov's homology for tangles and cobordisms, 2005. Available at: https: //www.math.toronto.edu/~drorbn/papers/Cobordism/Cobordism.pdf.
- [A38] Ma H Dorfmeister KF. A new look at equivariant minimal Lagrangian surfaces in CP², 2015. Available at: https://www.researchgate.net/publication/272521619_A_new_look_at_ equivariant_minimal_Lagrangian_surfaces_in_mathbbCP2.
- [A39] Matsuura S Drukker N, Gomis J. Probing N = 4 SYM With Surface Operators, 2006. Available at: https://arxiv.org/pdf/0805.4199v1.
- [A40] Freed DS. The Geometry of Loop Groups, 1985.
- [A41] Heckmann GJ Duistermaat JJ. Inv Math, 69, 1982.
- [A42] Witten E. Quantum field theory and the Jones polynomial. Comm Math Phys, 121:351–399, 1989.
- [A43] Witten E. Fivebranes and Knots, 2010. Available at: https://arxiv.org/pdf/1101. 3216v1.
- [A44] Zeeman EC. Catastrophe Theory. Addison-Wessley Publishing Company, 1977.
- [A45] Hanson J Eguchi T, Gilkey B. Phys Rep, 66, 1980.
- [A46] Eisenhart. Riemannian Geometry. Princeton University Press, 1964.
- [A47] Gukov S et al. An Index for 2D field theories with large N=4 super-conformal symmetry, 2004. Available at: https://arxiv.org/abs/hep-th/0404023.
- [A48] Jones FR. Braid groups, Hecke algebras and type II_1 factors. 1983.
- [A49] Etesi G. Exotica or the failure of the strong cosmic censorship in four dimensions, 2015. Available at: http://arxiv.org/abs/1503.04945v4.
- [A50] Fiore G. On q-Deformations of Clifford Algebras, 2000. Available at: https://arxiv.org/ pdf/math/0002194v2.pdf.
- [A51] Shapiro ZYa Gelfand IM, Minklos RA. Representations of the rotation and Lorentz groups and their applications. Pergamon Press, 1963.
- [A52] Pope CN Gibbons GW. CP₂ as gravitational instanton. Comm Math Phys, 55, 1977.
- [A53] Olive D Goddard P. Kac-Moody and Virasoro algebras in relation to Quantum Physics.

- [A54] Sierra G Gomez C, Ruiz-Altaba M. Quantum Groups and Two-Dimensional Physics. Cambridge University Press, Cambridge, 1996.
- [A55] Vafa C Gukov S, Schwartz A. Khovanov-Rozansky Homology and Topological Strings, 2005. Available at: https://arxiv.org/pdf/hep-th/0412243v3.
- [A56] Sugawara H. A field theory of currents. Phys Rev, 176, 1968.
- [A57] Pope CN Hawking SW. Generalized Spin Structures in Quantum Gravity. Phys Lett, (1), 1978.
- [A58] N. Hitchin. Kählerian twistor spaces. Proc London Math Soc, 8(43):133–151, 1981. Available at: https://tinyurl.com/pb8zpqo.
- [A59] Besse AL. Arthur L (Besse is a pseudonym for a group of mathematicians mostly in France). Einstein Manifolds. Springer Verlag, 1987.
- [A60] Dixmier J. Von Neumann Algebras. North-Holland, Amsterdam, 1981. First published in French in 1957: Les Algebres d'Operateurs dans l'Espace Hilbertien, Paris: Gauthier-Villars.
- [A61] Mickelson J. Current Algebras and Groups. Plenum, New York, 1989.
- [A62] Mickelson J. Gerbes, (Twisted) K-Theory, and the Supersymmetric WZW Model, 2002. Available at: https://arxiv.org/abs/hep-th/0206139.
- [A63] Milnor J. Topology form Differential Point of View. The University Press of Virginia, Virginia, 1965.
- [A64] Rasmussen J. Comments on N = 4 super-conformal algebras, 2000. Available at: https://arxiv.org/abs/hep-th/0003035.
- [A65] Baez JC. The Octonions. Bull Amer Math Soc, 39(2002), 2001. Available at: https://math.ucr.edu/home/baez/Octonions/octonions.html.
- [A66] Carter JS. A Survey of Quandle Ideas, 2010. Available at: https://arxiv.org/pdf/1002. 4429v2.
- [A67] Lechtenfeld O Jueneman K. Ward identities and the vanishing theorem for loop amplitudes of the closed N = 2 string, 1999. Available at: https://arxiv.org/abs/hep-th/9912016.
- [A68] Kauffman L. Virtual knot theory. Eur J Combin, 20:663–690, 1999.
- [A69] Rotelli P Leo de S. A New Definition of Hypercomplex Analyticity, 1997. Available at: https://arxiv.org/pdf/funct-an/9701004.pdf.
- [A70] Gunaydin M. N = 4 superconformal algebras and gauges Wess-Zumino-Witten models. Phys Rev D, 47(8), 1993.
- [A71] Spivak M. Differential Geometry I, II, III, IV. Publish or Perish, Boston, 1970.
- [A72] Hitchin N. What is a Gerbe? Notices AMS, (2), 2003. Available at: https://www.ams. org/notices/200302/what-is.pdf.
- [A73] Romon P. A Weierstrass-type representation for Lagrangian surfaces in complex Euclidean 2-space, 2000.Available at: https://hal.science/hal-00858084/document.
- [A74] Storm R. A note on Lagrangian submanifolds of twistor spaces and their relation to superminimal surfaces. Differential Geometry and its Applications, 73, 2020. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0926224520300784.
- [A75] Thom R. Comm Math Helvet, 28, 1954.
- [A76] Gompf RE. Three exotic R⁴'s and other anomalies. J. Differential Geometry, 18:317–328, 1983.Available at: http://projecteuclid.org/download/pdf_1/euclid.jdg/1214437666.

- [A77] Geroch RP. Topology in general relativity. J Math Phys, 8:782–786, 1967.
- [A78] Helgason S. Differential Geometry and Symmetric Spaces. Academic Press, New York, 1962.
- [A79] Nelson S. The Combinatorial Revolution in Knot Theory. Notices AMS, pages 1553-1561, 2011. Available at: https://www.lqp.uni-goettingen.de/papers/99/04/99042900.html.
- [A80] Salamon S. Quaternionic Kähler manifolds. Invent Math, 67:143, 1982.
- [A81] Sawin S. Links, Quantum Groups, and TQFT's, 1995. Available at: https://arxiv.org/ abs/q-alg/9506002.
- [A82] Asselman-Maluga T and Brans CH. World Scientific. https://docs.google.com/ document/d/1Hp656gzbKzlrHtmWvTUtOA5zsYZ415R3HHIe2eI-tP0/edit., 2007.
- [A83] Wallace. Differential Topology. W. A. Benjamin, New York, 1968.
- [A84] Vandoren S Wit de B, Rocek M. Hypermultiplets, Hyperkähler Cones and Quaternion-Kähler Geometry, 2001. Available at: https://arxiv.org/pdf/hep-th/0101161.pdf.
- [A85] Ge ML Yang CN. Braid Group, Knot Theory, and Statistical Mechanics. World Scientific, 1989.

Theoretical Physics

- [B1] Chern-Simons theory. Available at: https://en.wikipedia.org/wiki/Chern\OT1\ textendashSimons_theory.
- [B2] Korteweg-de Vries equation. Available at: https://en.wikipedia.org/wiki/Korteweg\ OT1\textendashde_Vries_equation.
- [B3] Lax pair. Available at: https://en.wikipedia.org/wiki/Lax_pair.
- [B4] Montonen Olive Duality. Available at: https://en.wikipedia.org/wiki/Montonen-Olive_ duality.
- [B5] Non-linear Schrödinger equation. Available at: https://en.wikipedia.org/wiki/ Non-linear_Schr\unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\ hbox{o\global\mathchardef\accent@spacefactor\spacefactor}\let\begingroup\ endgroup\relax\let\ignorespaces\relax\accent127o\egroup\spacefactor\accent@ spacefactordinger_equation.
- [B6] Self-Organized Criticality. Available at: https://en.wikipedia.org/wiki/ Self-organized_criticality.
- [B7] Sine-Gordon equation. Available at: https://en.wikipedia.org/wiki/Sine-Gordon.
- [B8] Israel Gelfand, 2009. Available at: https://terrytao.wordpress.com/2009/10/07/ israel-gelfand/#more-2860.
- [B9] Lakthakia A. Beltrami Fields in Chiral Media, volume 2. World Scientific, Singapore, 1994.
- [B10] Zee A. The Unity of Forces in the Universe. World Sci Press, Singapore, 1982.
- [B11] Maldacena J Alday LF. Comments on gluon scattering amplitudes via AdS/CFT, 2011. Available at: https://arxiv.org/pdf/0710.1060.

- [B12] Freedman DZ Alvarez-Gaume L. Geometrical Structure and Ultraviolet Finiteness in the Super-symmetric σ -Model. Comm Math Phys, 80, 1981.
- [B13] Trnka Y Arkani-Hamed N. The Amplituhedron, 2013. Available at: https://arxiv.org/ abs/1312.2007.
- [B14] Kauffman L Bilson-Thompson S, Hackett J. Emergent Braided Matter of Quantum Geometry, 2011. Available at: https://arxiv.org/pdf/1109.0080v2.pdf.
- [B15] Drell S Björken J. Relativistic Quantum Fields. Mc Graw-Hill, New York, 1965.
- [B16] Rajeev SG Bowick MM. The holomorphic geometry of closed bosonic string theory and $Diff(S^1)/S^1$. Nucl Phys B, 293, 1987.
- [B17] Rapoport D. Stochastic processes in conformal Riemann-Cartan-Weyl gravitation, 1991. Available at: https://link.springer.com/article/10.1007/BF00675614.
- [B18] Olle Haro de S. Quantum Gravity and the Holographic Principle, 2001. Available at: https://arxiv.org/abs/hep-th/0107032.
- [B19] Witten E Dolan L, Nappi CR. Yangian Symmetry in D = 4 superconformal Yang-Mills theory, 2004. Available at: https://arxiv.org/abs/hep-th/0401243.
- [B20] Plefka J Drummond J, Henn J. Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, 2009. Available at: https://cdsweb.cern.ch/record/1162372/files/ jhep052009046.pdf.
- [B21] Witten E. Coadjoint orbits of the Virasoro Group, 1987. PUPT-1061 preprint.
- [B22] Arkani-Hamed N et al. The All-Loop Integrand For Scattering Amplitudes in Planar N=4 SYM, 2010. Available at: https://arxiv.org/abs/1008.2958.
- [B23] Minev ZK et al. To catch and reverse a quantum jump mid-flight, 2019. Available at: https://arxiv.org/abs/1803.00545.
- [B24] Wang Z Freedman M, Larsen H. A modular functor which is universal for quantum computation. Comm Math Phys, 1(2):605-622, 2002. Available at: https://arxiv.org/abs/ quant-ph/0001108.
- [B25] Parisi G. Field Theory, Disorder and Simulations. World Scientific, 1992.
- [B26] Seki S Girodano M, Peschanski R. $\mathcal{N} = 4$ SYM Regge Amplitudes and Minimal Surfaces in AdS/CFT Correspondences, 2011. Available at: https://arxiv.org/pdf/1110.3680.
- [B27] Witten E Green MB, Schwartz JH. Superstring Theory. Cambridge University Press, Cambridge, 1987.
- [B28] Zuber J-B Itzykson C. Quantum Field Theory. Mc Graw-Hill, New York, 1980.
- [B29] Schwartz JH. Super strings. The first 15 years of Superstring Theory. World Scientific, 1985.
- [B30] Maldacena JM. The Large N Limit of Superconformal Field Theories and Supergravity. Adv Theor Math Phys, 2:231-252, 1995. Available at:https://arxiv.org/abs/hep-th/9711200.
- [B31] Huang K. Quarks, Leptons & Gauge Fields. World Scientific, 1982.
- [B32] Rocek M Karlhede A, Lindström U. Hyper Kähler Metrics and Super Symmetry. Comm Math Phys, 108(4), 1987.
- [B33] Stelle KS Pope CN. The Witten index for the supermembrane, 1988.
- [B34] Jackiw R. In Gauge Theories of Eighties, Conference Proceedings, Akäslompolo, Finland, Lecture Notes in Physics. Springer Verlag, 1983.

- [B35] Gray RW. Another type of Structure and Dynamics: Trefoil Knot, 2011. Available at: https://www.rwgrayprojects.com/Lynn/Presentation20070926/p008.html.
- [B36] Takayanagi T Ryu S. Holographic derivation of entanglement entropy from ads/cft, 2008. Available at: https://arxiv.org/pdf/hep-th/0603001v2.pdf.
- [B37] Christensen SM. Quantum Theory of Gravity. Adam Hilger Ltd, 1984.

Particle and Nuclear Physics

Condensed Matter Physics

- [D1] Morris DJ et al. Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7. Physics World, 326(5951):411-414, 2009.Available at: https://physicsworld.com/cws/article/ news/40302.
- [D2] Sachdev S. Quantum phase transitions (summary). Physics World, pages 33–38, April 1999.

Cosmology and Astro-Physics

[E1] Nottale L Da Rocha D. Gravitational Structure Formation in Scale Relativity, 2003. Available at: https://arxiv.org/abs/astro-ph/0310036.

Books related to TGD

[K1] Pitkänen M Gariaev P. Model for the Findings about Hologram Generating Properties of DNA. In Genes and Memes: Part I. https://tgdtheory.fi/tgdhtml/Bgenememe1.html. Available at: https://tgdtheory.fi/pdfpool/dnahologram.pdf, 2023.

- [K2] Pitkänen M. Topological Geometrodynamics. 1983. Thesis in Helsinki University 1983.
- [K3] Pitkänen M. DNA as Topological Quantum Computer. In Quantum and Classical Computation in TGD Universe. https://tgdtheory.fi/tgdtheory.fi/tgdtheory.html. Available at: https://tgdtheory.fi/pdfpool/dnatqc.pdf, 2015.
- [K4] Pitkänen M. Philosophy of Adelic Physics. In TGD as a Generalized Number Theory: Part I. https://tgdtheory.fi/tgdhtml/Btgdnumber1.html.Available at: https://tgdtheory. fi/pdfpool/adelephysics.pdf, 2017.
- [K5] Pitkänen M. Some comments related to Zero Energy Ontology (ZEO). In TGD and Nuclear Physics. https://tgdtheory.fi/tgdhtml/Bnucl.html. Available at: https: //tgdtheory.fi/pdfpool/zeoquestions.pdf, 2019.
- [K6] Pitkänen M. About Nature of Time. In TGD Inspired Theory of Consciousness: Part I. https://tgdtheory.fi/tgdhtml/Btgdconsc1.html. Available at: https://tgdtheory. fi/pdfpool/timenature.pdf, 2023.
- [K7] Pitkänen M. About Preferred Extremals of Kähler Action. In Physics in Many-Sheeted Space-Time: Part I. https://tgdtheory.fi/tgdhtml/Btgdclass1.html. Available at: https: //tgdtheory.fi/pdfpool/prext.pdf, 2023.
- [K8] Pitkänen M. About twistor lift of TGD? In Quantum TGD: Part III. https: //tgdtheory.fi/tgdhtml/Btgdquantum3.html. Available at: https://tgdtheory.fi/ pdfpool/hgrtwistor.pdf, 2023.
- [K9] Pitkänen M. Basic Extremals of Kähler Action. In Physics in Many-Sheeted Space-Time: Part I. https://tgdtheory.fi/tgdhtml/Btgdclass1.html. Available at: https: //tgdtheory.fi/pdfpool/class.pdf, 2023.
- [K10] Pitkänen M. Basic Properties of CP₂ and Elementary Facts about p-Adic Numbers. In Quantum TGD: Part I. https://tgdtheory.fi/tgdhtml/Btgdquantum1.html. Available at: https://www.tgdtheory.fi/public_html/pdfpool/append.pdf, 2023.
- [K11] Pitkänen M. Bio-Systems as Conscious Holograms. Online book. Available at: https: //www.tgdtheory.fi/tgdhtml/holography.html., 2023.
- [K12] Pitkänen M. Bio-Systems as Self-Organizing Quantum Systems. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/bioselforg.html., 2023.
- [K13] Pitkänen M. Breaking of CP, P, and T in cosmological scales in TGD Universe. In Physics in Many-Sheeted Space-Time: Part II. https://tgdtheory.fi/tgdhtml/Btgdclass2.html. Available at: https://tgdtheory.fi/pdfpool/rotuniverse.pdf, 2023.
- [K14] Pitkänen M. Category Theory and Quantum TGD. In TGD and Hyper-finite Factors. https://tgdtheory.fi/tgdhtml/BHFF.html. Available at: https://tgdtheory. fi/pdfpool/categorynew.pdf, 2023.
- [K15] Pitkänen M. Classical TGD. In Topological Geometrodynamics: Overview: Part I:https://tgdtheory.fi/tgdhtml/Btgdview1.html. Available at: https://tgdtheory. fi/pdfpool/tgdclass.pdf, 2023.
- [K16] Pitkänen M. Construction of elementary particle vacuum functionals. In p-Adic Physics. https://tgdtheory.fi/tgdhtml/Bpadphys.html.Available at: https://tgdtheory.fi/ pdfpool/elvafu.pdf, 2023.
- [K17] Pitkänen M. Construction of Quantum Theory: M-matrix. In Quantum TGD: Part I. https://tgdtheory.fi/tgdhtml/Btgdquantum1.html. Available at: https:// tgdtheory.fi/pdfpool/towards.pdf, 2023.

- [K18] Pitkänen M. Construction of Quantum Theory: Symmetries. In Quantum TGD: Part I. https://tgdtheory.fi/tgdhtml/Btgdquantum1.html. Available at: https:// tgdtheory.fi/pdfpool/quthe.pdf, 2023.
- [K19] Pitkänen M. Construction of WCW Kähler Geometry from Symmetry Principles. In Quantum Physics as Infinite-Dimensional Geometry. https://tgdtheory.fi/tgdhtml/ Btgdgeom.html. Available at: https://tgdtheory.fi/pdfpool/compl1.pdf, 2023.
- [K20] Pitkänen M. Could categories, tensor networks, and Yangians provide the tools for handling the complexity of TGD? In TGD and Hyper-finite Factors. https://tgdtheory.fi/ tgdhtml/BHFF.html. Available at: https://tgdtheory.fi/pdfpool/Yangianagain.pdf, 2023.
- [K21] Pitkänen M. Criticality and dark matter: part I. In Dark Matter and TGD: https: //tgdtheory.fi/tgdhtml/Bdark.html. Available at: https://tgdtheory.fi/pdfpool/ qcritdark1.pdf, 2023.
- [K22] Pitkänen M. Criticality and dark matter: part II. In Dark Matter and TGD: https: //tgdtheory.fi/tgdhtml/Bdark.html. Available at: https://tgdtheory.fi/pdfpool/ qcritdark2.pdf, 2023.
- [K23] Pitkänen M. Criticality and dark matter: part III. In Dark Matter and TGD: https: //tgdtheory.fi/tgdhtml/Bdark.html. Available at: https://tgdtheory.fi/pdfpool/ qcritdark3.pdf, 2023.
- [K24] Pitkänen M. Criticality and dark matter: part IV. In Dark Matter and TGD: https: //tgdtheory.fi/tgdhtml/Bdark.html. Available at: https://tgdtheory.fi/pdfpool/ qcritdark4.pdf, 2023.
- [K25] Pitkänen M. Does M⁸ H duality reduce classical TGD to octonionic algebraic geometry?: Part I. In TGD as a Generalized Number Theory: Part II. https://tgdtheory.fi/ tgdhtml/Btgdnumber2.html. Available at: https://tgdtheory.fi/pdfpool/ratpoints1, 2023.
- [K26] Pitkänen M. Does M⁸ H duality reduce classical TGD to octonionic algebraic geometry?: Part I. In TGD as a Generalized Number Theory: Part II. https://tgdtheory.fi/ tgdhtml/Btgdnumber2.html. Available at: https://tgdtheory.fi/pdfpool/ratpoints2, 2023.
- [K27] Pitkänen M. Does TGD Predict a Spectrum of Planck Constants? In Dark Matter and TGD: https://tgdtheory.fi/tgdhtml/Bdark.html. Available at: https://tgdtheory. fi/pdfpool/Planck, 2023.
- [K28] Pitkänen M. From Principles to Diagrams. In Quantum TGD: Part III. https: //tgdtheory.fi/tgdhtml/Btgdquantum3.html. Available at: https://tgdtheory.fi/ pdfpool/diagrams.pdf, 2023.
- [K29] Pitkänen M. Fusion of p-Adic and Real Variants of Quantum TGD to a More General Theory. In TGD as a Generalized Number Theory: Part I. https://tgdtheory.fi/tgdhtml/ Btgdnumber1.html. Available at: https://tgdtheory.fi/pdfpool/mblocks.pdf, 2023.
- [K30] Pitkänen M. Genes and Memes. Online book. Available at: https://www.tgdtheory.fi/ tgdhtml/genememe.html., 2023.
- [K31] Pitkänen M. Geometric Theory of Bio-Harmony. In Genes and Memes: Part II. https://tgdtheory.fi/tgdhtml/Bgenememe2.html. Available at: https://tgdtheory. fi/pdfpool/harmonytheory.pdf, 2023.
- [K32] Pitkänen M. Higgs or Something Else? In LENGTH https://tgdtheory.fi/tgdhtml/ padphys.html. Available at: https://tgdtheory.fi/pdfpool/higgs.pdf, 2023.

- [K33] Pitkänen M. Holography and Hamilton-Jacobi Structure as a 4-D Generalization of 2-D Complex Structure. In Physics in Many-Sheeted Space-Time: Part I. https://tgdtheory. fi/tgdhtml/Btgdclass1.html. Available at: https://tgdtheory.fi/pdfpool/HJ.pdf, 2023.
- [K34] Pitkänen M. Hyper-finite Factors and Dark Matter Hierarchy. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/neuplanck.html., 2023.
- [K35] Pitkänen M. Identification of the WCW Kähler Function. In Quantum Physics as Infinite-Dimensional Geometry. https://tgdtheory.fi/tgdhtml/Btgdgeom.html. Available at: https://tgdtheory.fi/pdfpool/kahler.pdf., 2023.
- [K36] Pitkänen M. Knots and TGD. In Quantum Physics as Infinite-Dimensional Geometry. https://tgdtheory.fi/tgdhtml/Btgdgeom.html.Available at: https://tgdtheory.fi/ pdfpool/knotstgd.pdf, 2023.
- [K37] Pitkänen M. Langlands Program and TGD. In TGD as a Generalized Number Theory: Part II. https://tgdtheory.fi/tgdhtml/Btgdnumber2.html. Available at: https: //tgdtheory.fi/pdfpool/Langlands.pdf, 2023.
- [K38] Pitkänen M. Magnetospheric Consciousness. Online book. Available at: https://www. tgdtheory.fi/tgdhtml/magnconsc.html., 2023.
- [K39] Pitkänen M. Massless states and particle massivation. In p-Adic Physics. https:// tgdtheory.fi/tgdhtml/Bpadphys.html. Available at: https://tgdtheory.fi/pdfpool/ mless.pdf, 2023.
- [K40] Pitkänen M. Mathematical Aspects of Consciousness Theory. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/mathconsc.html, 2023.
- [K41] Pitkänen M. Motives and Infinite Primes. In TGD as a Generalized Number Theory: Part III. https://tgdtheory.fi/tgdhtml/Btgdnumber3.html. Available at: https:// tgdtheory.fi/pdfpool/infmotives.pdf, 2023.
- [K42] Pitkänen M. Negentropy Maximization Principle. In TGD Inspired Theory of Consciousness: Part I. https://tgdtheory.fi/tgdhtml/Btgdconsc1.html. Available at: https: //tgdtheory.fi/pdfpool/nmpc.pdf, 2023.
- [K43] Pitkänen M. New Physics Predicted by TGD: Part I. In p-Adic Physics. https:// tgdtheory.fi/tgdhtml/Bpadphys.html. Available at: https://tgdtheory.fi/pdfpool/ TGDnewphys1.pdf, 2023.
- [K44] Pitkänen M. New Physics Predicted by TGD: Part II. In p-Adic Physics. https:// tgdtheory.fi/tgdhtml/Bpadphys.html. Available at: https://tgdtheory.fi/pdfpool/ TGDnewphys2.pdf, 2023.
- [K45] Pitkänen M. Nuclear String Hypothesis. In TGD and Nuclear Physics. https: //tgdtheory.fi/tgdhtml/Bnucl.html. Available at: https://tgdtheory.fi/pdfpool/ nuclstring.pdf, 2023.
- [K46] Pitkänen M. Number theoretic vision, Hyper-finite Factors and S-matrix. In Quantum TGD: Part I. https://tgdtheory.fi/tgdhtml/Btgdquantum1.html. Available at: https://tgdtheory.fi/pdfpool/UandM.pdf, 2023.
- [K47] Pitkänen M. p-Adic length Scale Hypothesis. Online book. Available at: https://www. tgdtheory.fi/tgdhtml/padphys.html., 2023.
- [K48] Pitkänen M. p-Adic Particle Massivation: Hadron Masses. In p-Adic Physics. https:// tgdtheory.fi/tgdhtml/Bpadphys.html. Available at: https://tgdtheory.fi/pdfpool/ mass3.pdf, 2023.

- [K49] Pitkänen M. p-Adic Physics: Physical Ideas. In TGD as a Generalized Number Theory: Part I. https://tgdtheory.fi/tgdhtml/Btgdnumber1.html. Available at: https: //tgdtheory.fi/pdfpool/phblocks.pdf, 2023.
- [K50] Pitkänen M. Physics as a Generalized Number Theory. In Topological Geometrodynamics: Overview: Part I. https://tgdtheory.fi/tgdhtml/Btgdview1.html. Available at: https://tgdtheory.fi/pdfpool/tgdnumber.pdf, 2023.
- [K51] Pitkänen M. Quantum Arithmetics and the Relationship between Real and p-Adic Physics. In TGD as a Generalized Number Theory: Part III. https://tgdtheory.fi/tgdhtml/ Btgdnumber3.html. Available at: https://tgdtheory.fi/pdfpool/qarithmetics.pdf, 2023.
- [K52] Pitkänen M. Quantum Astrophysics. In Physics in Many-Sheeted Space-Time: Part II. https://tgdtheory.fi/tgdhtml/Btgdclass2.html. Available at: https://tgdtheory. fi/pdfpool/qastro.pdf, 2023.
- [K53] Pitkänen M. Quantum gravity, dark matter, and prebiotic evolution. In Evolution in TGD Universe. https://tgdtheory.fi/tgdhtml/Btgdevolution.html. Available at: https: //tgdtheory.fi/pdfpool/hgrprebio.pdf, 2023.
- [K54] Pitkänen M. Quantum Hall effect and Hierarchy of Planck Constants. In TGD and Condensed Matter. https://tgdtheory.fi/tgdhtml/BTGDcondmat.html. Available at: https://tgdtheory.fi/pdfpool/anyontgd.pdf, 2023.
- [K55] Pitkänen M. Quantum Hardware of Living Matter. Online book. Available at: https: //www.tgdtheory.fi/tgdhtml/bioware.html., 2023.
- [K56] Pitkänen M. Quantum Mind and Neuroscience. In TGD and EEG: Part I. https:// tgdtheory.fi/tgdhtml/Btgdeeg1.html. Available at: https://tgdtheory.fi/pdfpool/ lianPN.pdf, 2023.
- [K57] Pitkänen M. Quantum Model for Bio-Superconductivity: I. In TGD and Quantum Biology: Part I. https://tgdtheory.fi/tgdhtml/Bqbio1.html. Available at: https: //tgdtheory.fi/pdfpool/biosupercondI.pdf, 2023.
- [K58] Pitkänen M. Quantum Model for Bio-Superconductivity: II. In TGD and Quantum Biology: Part I. https://tgdtheory.fi/tgdhtml/Bqbio1.html. Available at: https: //tgdtheory.fi/pdfpool/biosupercondII.pdf, 2023.
- [K59] Pitkänen M. Quantum Model for Nerve Pulse. In TGD and EEG: Part I. https:// tgdtheory.fi/tgdhtml/Btgdeeg1.html. Available at: https://tgdtheory.fi/pdfpool/ nervepulse.pdf, 2023.
- [K60] Pitkänen M. Quantum TGD. Online book. Available at: https://www.tgdtheory.fi/ tgdhtml/tgdquantum.html., 2023.
- [K61] Pitkänen M. Recent View about Kähler Geometry and Spin Structure of WCW. In Quantum Physics as Infinite-Dimensional Geometry. https://tgdtheory.fi/tgdthelpdgeom. html. Available at: https://tgdtheory.fi/pdfpool/wcwnew.pdf, 2023.
- [K62] Pitkänen M. Some questions related to the twistor lift of TGD. In Quantum TGD: Part III. https://tgdtheory.fi/tgdhtml/Btgdquantum3.html. Available at: https: //tgdtheory.fi/pdfpool/twistquestions.pdf, 2023.
- [K63] Pitkänen M. Symmetries and Geometry of the "World of Classical Worlds". In Quantum Physics as Infinite-Dimensional Geometry. https://tgdtheory.fi/tgdtheory.fi/tgdtheory. html. Available at: https://tgdtheory.fi/pdfpool/wcwsymm.pdf, 2023.
- [K64] Pitkänen M. TGD and Astrophysics. In Physics in Many-Sheeted Space-Time: Part II. https://tgdtheory.fi/tgdhtml/Btgdclass2.html. Available at: https://tgdtheory. fi/pdfpool/astro.pdf, 2023.

- [K65] Pitkänen M. TGD and Cosmology. In Physics in Many-Sheeted Space-Time: Part II. https://tgdtheory.fi/tgdhtml/Btgdclass2.html. Available at: https://tgdtheory. fi/pdfpool/cosmo.pdf, 2023.
- [K66] Pitkänen M. TGD and EEG. Online book. Available at: https://www.tgdtheory.fi/ tgdhtml/tgdeeg.html, 2023.
- [K67] Pitkänen M. TGD and Fringe Physics. Online book. Available at: https://www. tgdtheory.fi/tgdhtml/freenergy.html., 2023.
- [K68] Pitkänen M. TGD as a Generalized Number Theory: Infinite Primes. In TGD as a Generalized Number Theory: Part I. https://tgdtheory.fi/tgdhtml/Btgdnumber1.html. Available at: https://tgdtheory.fi/pdfpool/visionc.pdf, 2023.
- [K69] Pitkänen M. TGD as a Generalized Number Theory: p-Adicization Program. In Quantum Physics as Number Theory: Part I. https://tgdtheory.fi/tgdhtml/Btgdnumber1.html. Available at: https://tgdtheory.fi/pdfpool/visiona.pdf, 2023.
- [K70] Pitkänen M. TGD as a Generalized Number Theory: Quaternions, Octonions, and their Hyper Counterparts. In TGD as a Generalized Number Theory: Part I. https: //tgdtheory.fi/tgdtheol/Btgdnumber1.html. Available at: https://tgdtheory.fi/ pdfpool/visionb.pdf, 2023.
- [K71] Pitkänen M. TGD Based View About Living Matter and Remote Mental Interactions. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/tgdlian.html, 2023.
- [K72] Pitkänen M. TGD Inspired Theory of Consciousness. Online book. Available at: https: //www.tgdtheory.fi/tgdhtml/tgdconsc.html., 2023.
- [K73] Pitkänen M. TGD View about Coupling Constant Evolution. In Quantum TGD: Part II. https://tgdtheory.fi/tgdhtml/Btgdquantum2.html. Available at: https:// tgdtheory.fi/pdfpool/ccevolution.pdf, 2023.
- [K74] Pitkänen M. The classical part of the twistor story. In Quantum TGD: Part III. https: //tgdtheory.fi/tgdhtml/Btgdquantum3.html. Available at: https://tgdtheory.fi/ pdfpool/twistorstory.pdf, 2023.
- [K75] Pitkänen M. The Geometry of the World of the Classical Worlds. In Topological Geometrodynamics: Overview: Part I:https://tgdtheory.fi/tgdhtml/Btgdview1.html. Available at: https://tgdtheory.fi/pdfpool/tgdgeom.pdf, 2023.
- [K76] Pitkänen M. The Recent Status of Lepto-hadron Hypothesis. In p-Adic Physics. https:// tgdtheory.fi/tgdhtml/Bpadphys.html. Available at: https://tgdtheory.fi/pdfpool/ leptc.pdf, 2023.
- [K77] Pitkänen M. The Recent View about Twistorialization in TGD Framework. In Quantum TGD: Part III. https://tgdtheory.fi/tgdhtml/Btgdquantum3.html. Available at: https://tgdtheory.fi/pdfpool/smatrix.pdf, 2023.
- [K78] Pitkänen M. The Relationship Between TGD and GRT. In Physics in Many-Sheeted Space-Time: Part I. https://tgdtheory.fi/tgdhtml/Btgdclass1.html. Available at: https: //tgdtheory.fi/pdfpool/tgdgrt.pdf., 2023.
- [K79] Pitkänen M. Three new physics realizations of the genetic code and the role of dark matter in bio-systems. In Genes and Memes: Part II. https://tgdtheory.fi/tgdhtml/ Bgenememe2.html. Available at: https://tgdtheory.fi/pdfpool/dnatqccodes.pdf, 2023.
- [K80] Pitkänen M. Topological Geometrodynamics: an Overview. Online book.Available at: https://www.tgdtheory.fi/tgdhtml/tgdview.html., 2023.
- [K81] Pitkänen M. Topological Geometrodynamics: Basic Visions. In TGD Inspired Theory of Consciousness: Part I. https://tgdtheory.fi/tgdhtml/Btgdconsc1.html. Available at: https://tgdtheory.fi/pdfpool/lianPTGD.pdf, 2023.

- [K82] Pitkänen M. Unified Number Theoretical Vision. In TGD as a Generalized Number Theory: Part I. https://tgdtheory.fi/tgdhtml/Btgdnumber1.html. Available at: https://tgdtheory.fi/pdfpool/numbervision.pdf, 2023.
- [K83] Pitkänen M. Was von Neumann Right After All? In TGD and Hyper-finite Factors. https://tgdtheory.fi/tgdhtml/BHFF.html. Available at: https://tgdtheory. fi/pdfpool/vNeumann.pdf, 2023.
- [K84] Pitkänen M. WCW Spinor Structure. In Quantum Physics as Infinite-Dimensional Geometry. https://tgdtheory.fi/tgdhtml/Btgdgeom.html. Available at: https:// tgdtheory.fi/pdfpool/cspin.pdf, 2023.
- [K85] Pitkänen M. Why TGD and What TGD is? In Topological Geometrodynamics: an Overview. https://tgdtheory.fi/tgdhtml/Btgdview1.html. Available at: https://tgdtheory. fi/pdfpool/WhyTGD.pdf, 2023.
- [K86] Pitkänen M. Zero Energy Ontology. In Quantum TGD: Part I. https://tgdtheory.fi/ tgdhtml/Btgdquantum1.html. Available at: https://tgdtheory.fi/pdfpool/ZEO.pdf, 2023.
- [K87] Pitkänen M. Zero energy ontology, hierarchy of Planck constants, and Kähler metric replacing unitary S-matrix: three pillars of new quantum theory. In *Topological Geometrody*namics: Overview: Part II. https://tgdtheory.fi/tgdhtml/Btgdoverview2. Available at: https://tgdtheory.fi/pdfpool/kahlersm, 2023.
- [K88] Gariaev P Pitkänen M. Quantum Model for Remote Replication. In Genes and Memes: Part I. https://tgdtheory.fi/tgdhtml/Bgenememe1.html. Available at: https:// tgdtheory.fi/pdfpool/remotereplication.pdf, 2023.

Articles about TGD

- [L1] Pitkänen M. Basic Properties of CP₂ and Elementary Facts about p-Adic Numbers. Available at: https://tgdtheory.fi/pdfpool/append.pdf., 2006.
- [L2] Pitkänen M. Physics as Generalized Number Theory II: Classical Number Fields, 2010.
- [L3] Pitkänen M. Physics as Infinite-dimensional Geometry I: Identification of the Configuration Space Kähler Function, 2010.
- [L4] Pitkänen M. Physics as Infinite-dimensional Geometry II: Configuration Space Kähler Geometry from Symmetry Principles, 2010.
- [L5] Pitkänen M. Physics as Generalized Number Theory I: p-Adic Physics and Number Theoretic Universality, 2010.
- [L6] Pitkänen M. Physics as Generalized Number Theory III: Infinite Primes, 2010.
- [L7] Pitkänen M. Physics as Infinite-dimensional Geometry III: Configuration Space Spinor Structure, 2010.
- [L8] Pitkänen M. Physics as Infinite-dimensional Geometry IV: Weak Form of Electric-Magnetic Duality and Its Implications, 2010.
- [L9] Pitkänen M. The Geometry of CP_2 and its Relationship to Standard Model, 2010.

- [L10] Pitkänen M. QCD and TGD. Available at: https://tgdtheory.fi/public_html/ articles/qcdtgd.pdf., 2011.
- [L11] Pitkänen M. TGD inspired vision about entropic gravitation. Available at: https:// tgdtheory.fi/public_html/articles/egtgd.pdf., 2011.
- [L12] Pitkänen M. Classical part of the twistor story. Available at: https://tgdtheory.fi/ public_html/articles/twistorstory.pdf., 2014.
- [L13] Pitkänen M. CMAP representations about TGD. Available at: https://www.tgdtheory. fi/cmaphtml.html, 2014.
- [L14] Pitkänen M. CMAP representations about TGD, and TGD inspired theory of consciousness and quantum biology. Available at: https://www.tgdtheory.fi/tgdglossary.pdf., 2014.
- [L15] Pitkänen M. Is Non-Associative Physics and Language Possible Only in Many-Sheeted Spacetime? . Available at: https://tgdtheory.fi/public_html/articles/braidparse.pdf., 2015.
- [L16] Pitkänen M. How the hierarchy of Planck constants might relate to the almost vacuum degeneracy for twistor lift of TGD? Available at: https://tgdtheory.fi/public_html/ articles/hgrtwistor.pdf., 2016.
- [L17] Pitkänen M. Does $M^8 H$ duality reduce classical TGD to octonionic algebraic geometry? Available at: https://tgdtheory.fi/public_html/articles/ratpoints.pdf., 2017.
- [L18] Pitkänen M. Philosophy of Adelic Physics. In Trends and Mathematical Methods in Interdisciplinary Mathematical Sciences, pages 241-319. Springer.Available at: https://link. springer.com/chapter/10.1007/978-3-319-55612-3_11, 2017.
- [L19] Pitkänen M. Philosophy of Adelic Physics. Available at: https://tgdtheory.fi/public_ html/articles/adelephysics.pdf., 2017.
- [L20] Pitkänen M. Questions about twistor lift of TGD. Available at: https://tgdtheory.fi/ public_html/articles/twistquestions.pdf., 2017.
- [L21] Pitkänen M. Further comments about classical field equations in TGD framework. Available at: https://tgdtheory.fi/public_html/articles/morecomments.pdf., 2018.
- [L22] Pitkänen M. TGD view about coupling constant evolution. Available at: https:// tgdtheory.fi/public_html/articles/ccevolution.pdf., 2018.
- [L23] Pitkänen M. TGD view about quasars. Available at: https://tgdtheory.fi/public_ html/articles/meco.pdf., 2018.
- [L24] Pitkänen M. The Recent View about Twistorialization in TGD Framework. Available at: https://tgdtheory.fi/public_html/articles/smatrix.pdf., 2018.
- [L25] Pitkänen M. An overall view about models of genetic code and bio-harmony. Available at: https://tgdtheory.fi/public_html/articles/gcharm.pdf., 2019.
- [L26] Pitkänen M. Copenhagen interpretation dead: long live ZEO based quantum measurement theory! Available at: https://tgdtheory.fi/public_html/articles/Bohrdead.pdf., 2019.
- [L27] Pitkänen M. Does coupling constant evolution reduce to that of cosmological constant? Available at: https://tgdtheory.fi/public_html/articles/ccevoTGD.pdf., 2019.
- [L28] Pitkänen M. Earhquakes and volcanic eruptions as macroscopic quantum jumps in zero energy ontology. Available at: https://tgdtheory.fi/public_html/articles/earthquakes. pdf., 2019.
- [L29] Pitkänen M. M⁸ H duality and consciousness. Available at: https://tgdtheory.fi/ public_html/articles/M8Hconsc.pdf., 2019.

- [L30] Pitkänen M. Quantum self-organization by h_{eff} changing phase transitions. Available at: https://tgdtheory.fi/public_html/articles/heffselforg.pdf., 2019.
- [L31] Pitkänen M. Some comments related to Zero Energy Ontology (ZEO). Available at: https: //tgdtheory.fi/public_html/articles/zeoquestions.pdf., 2019.
- [L32] Pitkänen M. Twistors in TGD. Available at: https://tgdtheory.fi/public_html/ articles/twistorTGD.pdf., 2019.
- [L33] Pitkänen M. A critical re-examination of M⁸ H duality hypothesis: part I. Available at: https://tgdtheory.fi/public_html/articles/M8H1.pdf., 2020.
- [L34] Pitkänen M. A critical re-examination of M⁸ H duality hypothesis: part II. Available at: https://tgdtheory.fi/public_html/articles/M8H2.pdf., 2020.
- [L35] Pitkänen M. The dynamics of SSFRs as quantum measurement cascades in the group algebra of Galois group. Available at: https://tgdtheory.fi/public_html/articles/ SSFRGalois.pdf., 2020.
- [L36] Pitkänen M. Zero energy ontology, hierarchy of Planck constants, and Kähler metric replacing unitary S-matrix: three pillars of new quantum theory (short version). Available at: https://tgdtheory.fi/public_html/articles/kahlersm.pdf., 2020.
- [L37] Pitkänen M. About the role of Galois groups in TGD framework. https://tgdtheory.fi/ public_html/articles/GaloisTGD.pdf., 2021.
- [L38] Pitkänen M. Is genetic code part of fundamental physics in TGD framework? Available at: https://tgdtheory.fi/public_html/articles/TIH.pdf., 2021.
- [L39] Pitkänen M. Some questions concerning zero energy ontology. https://tgdtheory.fi/ public_html/articles/zeonew.pdf., 2021.
- [L40] Pitkänen M. TGD as it is towards the end of 2021. https://tgdtheory.fi/public_html/ articles/TGD2021.pdf., 2021.
- [L41] Pitkänen M. What could 2-D minimal surfaces teach about TGD? https://tgdtheory. fi/public_html/articles/minimal.pdf., 2021.
- [L42] Pitkänen M. About TGD counterparts of twistor amplitudes: part I. https://tgdtheory. fi/public_html/articles/twisttgd1.pdf., 2022.
- [L43] Pitkänen M. About TGD counterparts of twistor amplitudes: part II. https://tgdtheory. fi/public_html/articles/twisttgd2.pdf., 2022.
- [L44] Pitkänen M. About the number theoretic aspects of zero energy ontology. https: //tgdtheory.fi/public_html/articles/ZEOnumber.pdf., 2022.
- [L45] Pitkänen M. Comparison of Orch-OR hypothesis with the TGD point of view. https: //tgdtheory.fi/public_html/articles/penrose.pdf., 2022.
- [L46] Pitkänen M. Finite Fields and TGD. https://tgdtheory.fi/public_html/articles/ finitefieldsTGD.pdf., 2022.
- [L47] Pitkänen M. Intersection form for 4-manifolds, knots and 2-knots, smooth exotics, and TGD. https://tgdtheory.fi/public_html/articles/finitefieldsTGD.pdf., 2022.
- [L48] Pitkänen M. Some New Ideas Related to Langlands Program viz. TGD. https:// tgdtheory.fi/public_html/articles/Langlands2022.pdf., 2022.
- [L49] Pitkänen M. Trying to fuse the basic mathematical ideas of quantum TGD to a single coherent whole. https://tgdtheory.fi/public_html/articles/fusionTGD.pdf., 2022.
- [L50] Pitkänen M. Two objections against p-adic thermodynamics and their resolution. https: //tgdtheory.fi/public_html/articles/padmass2022.pdf., 2022.

- [L51] Pitkänen M. About the Relationships Between Weak and Strong Interactions and Quantum Gravity in the TGD Universe . https://tgdtheory.fi/public_html/articles/SW.pdf., 2023.
- [L52] Pitkänen M. About the TGD based views of family replication phenomenon and color confinement. https://tgdtheory.fi/public_html/articles/emuanomaly.pdf., 2023.
- [L53] Pitkänen M. Holography and Hamilton-Jacobi Structure as 4-D generalization of 2-D complex structure. https://tgdtheory.fi/public_html/articles/HJ.pdf., 2023.
- [L54] Pitkänen M. Magnetic Bubbles in TGD Universe: Part I. https://tgdtheory.fi/public_ html/articles/magnbubble1.pdf., 2023.
- [L55] Pitkänen M. New findings related to the number theoretical view of TGD. https:// tgdtheory.fi/public_html/articles/M8Hagain.pdf., 2023.
- [L56] Pitkänen M. New result about causal diamonds from the TGD view point of view. https: //tgdtheory.fi/public_html/articles/CDconformal.pdf., 2023.
- [L57] Pitkänen M. Reduction of standard model structure to CP₂ geometry and other key ideas of TGD. https://tgdtheory.fi/public_html/articles/cp2etc.pdf., 2023.
- [L58] Pitkänen M. Symmetries and Geometry of the "World of Classical Worlds". https:// tgdtheory.fi/public_html/articles/wcwsymm.pdf., 2023.
- [L59] Pitkänen M. A fresh look at M⁸ H duality and Poincare invariance. https://tgdtheory. fi/public_html/articles/TGDcritics.pdf., 2024.
- [L60] Pitkänen M. About Langlands correspondence in the TGD framework. https://tgdtheory. fi/public_html/articles/Frenkel.pdf., 2024.
- [L61] Pitkänen M. About some number theoretical aspects of TGD. https://tgdtheory.fi/ public_html/articles/numberaspects.pdf., 2024.
- [L62] Pitkänen M. TGD as it is towards the end of 2024: part I. https://tgdtheory.fi/public_ html/articles/TGD2024I.pdf., 2024.
- [L63] Pitkänen M. TGD as it is towards the end of 2024: part II. https://tgdtheory.fi/ public_html/articles/TGD2024II.pdf., 2024.
- [L64] Pitkänen M. The twistor space of $H = M^4 \times CP_2$ allows Lagrangian 6-surfaces: what does this mean physically? https://tgdtheory.fi/public_html/articles/superminimal. pdf., 2024.
- [L65] Pitkänen M. What gravitons are and could one detect them in TGD Universe? https: //tgdtheory.fi/public_html/articles/whatgravitons.pdf., 2024.
- [L66] Pitkänen M and Rastmanesh R. Homeostasis as self-organized quantum criticality. Available at: https://tgdtheory.fi/public_html/articles/SP.pdf., 2020.
Index

 $\begin{array}{c} CP_2,\, 109,\, 138,\, 189,\, 247\\ M^4,\, 25,\, 108,\, 137,\, 247,\, 364\\ \delta M^4_+,\, 25,\, 138 \end{array}$

, 422, 423

absolute minimization of Kähler action, 110, 125 almost topological QFT, 363

Bohr orbit, 24, 108, 109 bosonic emergence, 364 braid, 189, 363 braiding, 364

Cartan algebra, 25 causal diamond, 24, 108, 111, 126, 136 central extension, 139 Chern-Simons action, 363 Chern-Simons term, 190 classical color gauge fields, 363 Clifford algebra, 189 commutativity, 111, 126 complexified octonions, 110, 126 conformal algebra, 139 conformal invariance, 25, 40, 138 coset construction, 25, 137, 248 coset space, 137 coupling constant evolution, 24, 40, 108

density matrix, 76 Diff⁴ degeneracy, 109 Dirac determinant, 25, 189 discretization, 191, 248

effective 2-dimensionality, 138, 248 Einstein's equations, 25, 40 embedding space, 41, 111, 126 energy momentum tensor, 40 extremal, 52

Feynman diagram, 364 field equations, 40 functional integral, 136

gamma matrices, 25, 41, 108, 188, 248

Hamilton-Jacobi structure, 111, 126 Hamiltonian, 139 Hermitian structure, 40 hierarchy of Planck constants, 111, 126 holography, 25, 76, 140, 191, 247 induced gamma matrices, 191 induced Kähler form, 137 induced metric, 248 induced spinor field, 25, 111, 126, 189 induced spinor structure, 188 infinite-dimensional symmetric space, 25 instanton, 364 isometry algebra, 139 isometry group, 138 Kähler coupling strength, 40 Kähler form, 109 Kähler function, 25, 109, 136, 247 Kähler geometry, 24, 108, 136, 247 Kähler metric, 138 Kähler-Dirac action, 111, 126, 190 Kähler-Dirac equation, 248 Kähler-Dirac operator, 191 Lagrangian, 364 light-cone, 24, 108, 247 light-like 3-surface, 24, 108, 137 line element, 25, 109 loop space, 25 Lorentz group, 139 many-sheeted space-time, 247 measurement resolution, 111, 126, 138 metric 2-dimensionality, 137 minimal surface, 40 Minkowski space, 109 Minkowskian signature, 40, 137 Noether charge, 102, 306 non-determinism, 24, 108, 111, 126 parity breaking, 111, 126, 191 path integral, 247, 363 Poincare invariance, 25, 247 quantum criticality, 25, 111, 126 Riemann, 25 Riemann connection, 109 right-handed neutrino, 191, 248 second quantization, 188 singular covering, 40

slicing, 111, 126, 248 spinor structure, 24, 108 standard model, 248 strong form of general coordinate invariance, 190 strong form of holography, 248 super current, 248 Super Kac-Moody algebra, 25, 108 super-conformal invariance, 190 super-symplectic algebra, 140 symmetric space, 25, 139 symplectic group, 137 symplectic transformation, 139

TGD inspired theory of consciousness, 27 topological QFT, 363 trace, 40 $\,$

union of symmetric spaces, 109, 247

vacuum Einstein equations, 25 Virasoro algebra, 248

WCW, 41, 108, 136, 188, 247 WCW gamma matrices, 24, 108 WCW of 3-surfaces, 24 WCW spinor, 25

ZEO, 126 zero energy ontology, 111, 136 zero mode, 25