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0.1 PREFACE

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours
to print out the predictions of this kind of unified theory as an article in the desired format. TGD
is something different and I am not ashamed to confess that I have devoted the last 37 years of
my life to this enterprise and am still unable to write The Rules.

If T remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual difficulties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization is
consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space
factor of imbedding space is 4-dimensional. During last year it became clear that 4-D Minkowski
space and 4-D complex projective space C'P, are completely unique in the sense that they allow
twistor space with Kéhler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (C'P;) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

e Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to
be vacuum extremals with respect to the inertial energy. About 25 years was needed to
realize that the sign of the inertial energy can be also negative and in cosmological scales the
density of inertial energy vanishes: physically acceptable universes are creatable from vacuum.
Eventually this led to the notion of zero energy ontology (ZEO) which deviates dramatically
from the standard ontology being however consistent with the crossing symmetry of quantum
field theories. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of so called causal diamonds defined as intersections of future and
past directed light-cones. The notion of energy-momentum becomes length scale dependent
since one has a scale hierarchy for causal diamonds. This allows to understand the non-
conservation of energy as apparent.

Equivalence Principle as it is expressed by Einstein’s equations follows from Poincare invari-
ance once it is realized that GRT space-time is obtained from the many-sheeted space-time of
TGD by lumping together the space-time sheets to a regionof Minkowski space and endowing
it with an effective metric given as a sum of Minkowski metric and deviations of the metrices
of space-time sheets from Minkowski metric. Similar description relates classical gauge po-
tentials identified as components of induced spinor connection to Yang-Mills gauge potentials
in GRT space-time. Various topological inhomogenities below resolution scale identified as
particles are described using energy momentum tensor and gauge currents.
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e From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields.

It took about 26 years to gain the maturity to admit the obvious: these fields are classical
correlates for long range color and weak interactions assignable to dark matter. The only
possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal
copies of standard model physics. Also the understanding of electro-weak massivation and
screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution
of the problem and provides also surprisingly powerful insights to the mathematical structure
of quantum TGD.

The latest development was the realization that the well- definedness of electromagnetic
charge as quantum number for the modes of the induced spinors field requires that the C' Py
projection of the region in which they are non-vanishing carries vanishing W boson field and
is 2-D. This implies in the generic case their localization to 2-D surfaces: string world sheets
and possibly also partonic 2-surfaces. This localization applies to all modes except covariantly
constant right handed neutrino generating supersymmetry and mplies that string model in
4-D space-time is part of TGD. Localization is possible only for Kahler-Dirac assigned with
Kéhler action defining the dynamics of space-time surfaces. One must however leave open the
question whether W field might vanish for the space-time of GRT if related to many-sheeted
space-time in the proposed manner even when they do not vanish for space-time sheets.

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be
enough to construct the quantum theory but the first discovery made already during first year of
TGD was that these formalisms might be useless due to the extreme non-linearity and enormous
vacuum degeneracy of the theory. This turned out to be the case.

e It took some years to discover that the only working approach is based on the generalization of
Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
“world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and in positive energyontology implies that space-time surfaces are
analogous to Bohr orbits. This in positive energy ontology in which space-like 3-surface is
basic object. It is not clear whether Bohr orbitology is necessary also in ZEO in which space-
time surfaces connect space-like 3-surfaces at the light-like boundaries of causal diamond CD
obtained as intersection of future and past directed light-cones (with C'P, factor included).
The reason is that the pair of 3-surfaces replaces the boundary conditions at single 3-surface
involving also time derivatives. If one assumes Bohr orbitology then strong correlations
between the 3-surfaces at the ends of CD follow. Still a couple of years and I discovered that
quantum states of the Universe can be identified as classical spinor fields in WCW. Only
quantum jump remains the genuinely quantal aspect of quantum physics.

e During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with
sheets representing physical subsystems of various sizes. At the beginning of 90s I became
dimly aware of the importance of p-adic number fields and soon ended up with the idea that
p-adic thermodynamics for a conformally invariant system allows to understand elementary
particle massivation with amazingly few input assumptions. The attempts to understand p-
adicity from basic principles led gradually to the vision about physics as a generalized number
theory as an approach complementary to the physics as an infinite-dimensional spinor ge-
ometry of WCW approach. One of its elements was a generalization of the number concept
obtained by fusing real numbers and various p-adic numbers along common rationals. The
number theoretical trinity involves besides p-adic number fields also quaternions and octo-
nions and the notion of infinite prime.

e TGD inspired theory of consciousness entered the scheme after 1995 as I started to write
a book about consciousness. Gradually it became difficult to say where physics ends and
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consciousness theory begins since consciousness theory could be seen as a generalization of
quantum measurement theory by identifying quantum jump as a moment of consciousness
and by replacing the observer with the notion of self identified as a system which is conscious
as long as it can avoid entanglement with environment. The somewhat cryptic statement
“Everything is conscious and consciousness can be only lost” summarizes the basic philosophy
neatly.

The idea about p-adic physics as physics of cognition and intentionality emerged also rather
naturally and implies perhaps the most dramatic generalization of the space-time concept in
which most points of p-adic space-time sheets are infinite in real sense and the projection
to the real imbedding space consists of discrete set of points. One of the most fascinating
outcomes was the observation that the entropy based on p-adic norm can be negative. This
observation led to the vision that life can be regarded as something in the intersection of real
and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various
positively colored aspects of conscious experience and means also the possibility of strongly
correlated states stable under state function reduction and different from the conventional
bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Pronciple with standard measure-
ment theory, negentropic entanglement defined in terms of number theoretic negentropy is
necessarily associated with a density matrix proportional to unit matrix and is maximal and
is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal
for a p-adic unique prime dividing n.

e One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions
can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants
comes from bio-electromagnetism suggesting that in living systems Planck constant could
have large values making macroscopic quantum coherence possible. The interpretation of
dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck
constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpreta-
tion of TGD emerged. One of these insights was the realization that the postulated hierarchy
of Planck constants might follow from the basic structure of quantum TGD. The point is that
due to the extreme non-linearity of the classical action principle the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is
one-to-many and the natural description of the situation is in terms of local singular covering
spaces of the imbedding space. One could speak about effective value of Planck constant
heff = n x h coming as a multiple of minimal value of Planck constant. Quite recently it
became clear that the non-determinism of Kéahler action is indeed the fundamental justifi-
cation for the hierarchy: the integer n can be also interpreted as the integer characterizing
the dimension of unit matrix characterizing negentropic entanglement made possible by the
many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets
must be replaced with conformal equivalence classes of space-time sheets and conformal
transformations correspond to quantum critical deformations leaving the ends of space-time
surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which
conformal weights are divisible by n act as gauge symmetries. Thus deep connections be-
tween conformal invariance related to quantum criticality, hierarchy of Planck constants,
negentropic entanglement, effective p-adic topology, and non-determinism of Kéahler action
perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distin-
guishing between TGD and competing theories cannot be under-estimated.
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From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. It has indeed turned out that the dream about explicit
formula is unrealistic before one has understood what happens in quantum jump. Symmetries
and general physical principles have turned out to be the proper guide line here. To give some
impressions about what is required some highlights are in order.

e With the emergence of ZEO the notion of S-matrix was replaced with M-matrix defined
between positive and negative energy parts of zero energy states. M-matrix can be interpreted
as a complex square root of density matrix representable as a diagonal and positive square
root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to
define a square root of thermodynamics at least formally. M-matrices in turn bombine to
form the rows of unitary U-matrix defined between zero energy states.

e A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces
at which the induced metric of space-time surfaces changes its signature and in terms of
space-like 3-surfaces are equivalent. This means effective 2-dimensionality in the sense that
partonic 2-surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent
space data at partonic 2-surfaces code for the physics. Quantum classical correspondence
requires the coding of the quantum numbers characterizing quantum states assigned to the
partonic 2-surfaces to the geometry of space-time surface. This is achieved by adding to the
modified Dirac action a measurement interaction term assigned with light-like 3-surfaces.

e The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further gen-
eralization of these symmetries to non-local Yangian symmetries generalizing the recently
discovered Yangian symmetry of N’ = 4 supersymmetric Yang-Mills theories is highly sug-
gestive. Here the replacement of point like particles with partonic 2-surfaces means the
replacement of conformal symmetry of Minkowski space with infinite-dimensional super-
conformal algebras. Yangian symmetry provides also a further refinement to the notion of
conserved quantum numbers allowing to define them for bound states using non-local energy
conserved currents.

e A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kahler action for the preferred extremals defining WCW
Kahler function reduces to a 3-D boundary term. This takes place if the conserved currents
are so called Beltrami fields with the defining property that the coordinates associated with
flow lines extend to single global coordinate variable. This ansatz together with the weak
form of electric-magnetic duality reduces the Kéahler action to Chern-Simons term with the
condition that the 3-surfaces are extremals of Chern-Simons action subject to the constraint
force defined by the weak form of electric magnetic duality. It is the latter constraint which
prevents the trivialization of the theory to a topological quantum field theory. Also the
identification of the Kéahler function of WCW as Dirac determinant finds support as well as
the description of the scattering amplitudes in terms of braids with interpretation in terms of
finite measurement resolution coded to the basic structure of the solutions of field equations.

e In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual
particles are taken only as a convenient mathematical tool in quantum field theories. QFT
approach is however plagued by UV and IR divergences and one must keep mind open for
the possibility that a genuine progress might mean opening of the black box of the virtual
particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.
Light-like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D
partonic 2-surfaces. The approximate localization of the nodes of induced spinor fields to 2-D
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string world sheets (and possibly also to partonic 2-surfaces) implies a stringy formulation
of the theory analogous to stringy variant of twistor formalism with string world sheets
having interpretation as 2-braids. In TGD framework fermionic variant of twistor Grassmann
formalism leads to a stringy variant of twistor diagrammatics in which basic fermions can be
said to be on mass-shell but carry non-physical helicities in the internal lines. This suggests
the generalization of the Yangian symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Karkkila, October 30, 2010, Finland

Matti Pitkanen
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Chapter 1

Introduction

1.1 Basic Ideas of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTSs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged towards
the end of 1977 - would emerge now it would be seen as an attempt to solve the difficulties of
these approaches to unification.

The basic physical picture behind the geometric vision of TGD corresponds to a fusion
of two rather disparate approaches: namely TGD as a Poincare invariant theory of gravitation
and TGD as a generalization of the old-fashioned string model. After 1995 number theoretic
vision started to develop and was initiated by the success of mass calculations based on p-adic
thermodynamics. Number theoretic vision involves all number fields and is complementary to
the geometric vision: one can say that this duality is analogous to momentum-position duality of
wave mechanics. TGD can be also regarded as topological quantum theory in a very general sense
as already the attribute ”Topological” in ”TGD” makes clear. Space-time surfaces as minimal
surfaces can be regarded as representatives of homology equivalence classes and p-adic topologies
generalize the notion of local topology and apply to the description of correlates of cognition.

1.1.1 Geometric Vision Very Briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description
of basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K3].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional embedding space H = M* x
CP,, where M* is 4-dimensional (4-D) Minkowski space and C P, is 4-D complex projective
space (see Appendix).

2. Induction procedure (a standard procedure in fiber bundle theory, see Appendix) allows to
geometrize various fields. Space-time metric characterizing gravitational fields corresponds to
the induced metric obtained by projecting the metric tensor of H to the space-time surface.
Electroweak gauge potentials are identified as projections of the components of C'P; spinor
connection to the space-time surface, and color gauge potentials as projections of CPy
Killing vector fields representing color symmetries. Also spinor structure can be induced:
induced spinor gamma matrices are projections of gamma matrices of H and induced spinor
fields just H spinor fields restricted to space-time surface. Spinor connection is also projected.
The interpretation is that distances are measured in embedding space metric and parallel
translation using spinor connection of embedding space.
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Twistor lift of TGD means that one can lift space-time surfaces in H to 6-D surfaces a
analogs of twistor space of space-time surface in the Cartesian product of the twistor spaces
of M* and CP,, which are the only 4-manifolds allowing twistor space with Kéahler structure
[A57]. The twistor structure would be induced in some sense, and should coincide with that
associated with the induced metric. Clearly, the 2-spheres defining the fibers of twistor spaces
of M* and CP, must allow identification: this 2-sphere defines the S? fiber of the twistor
space of the space-time surface. This poses a constraint on the embedding of the twistor
space of space-time surfaces as sub-manifold in the Cartesian product of twistor spaces. The
existence of Kahler structure allows to lift 4-D Ké&hler action to its 6-D counterparts and the
6-D counterpart of twistor space is obtained by its dimensional reduction so that one obtains
a sphere bundle. This makes possible twistorialization for all space-time surfaces: in general
relativity the general metric does not allow this.

. A geometrization of quantum numbers is achieved. The isometry group of the geometry
of C'P, codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of C' P, geometry so that
standard model gauge group results. There are also important deviations from the standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this difference is expected to be seen only in C'P; scale. In contrast to GUTs, quark and
lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M* and CP, are unique choices for many other reasons. For instance, they are the unique
4-D space-times allowing twistor space with Kihler structure. M?* light-cone boundary
allows a huge extension of 2-D conformal symmetries. M* and CP, allow quaternionic
structures. Therefore standard model symmetries have number theoretic meaning.

. Induced gauge potentials are expressible in terms of embedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field-like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions
in the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particles in space-time can be identified as a topological inhomogeneities in background
space-time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distances of about 10* Planck lengths (CP; size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their effects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as effective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore a
microscopic theory from which the standard model and general relativity follow as a topo-
logical simplification, however forcing a dramatic increase of the number of fundamental field
variables.

. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking effects due to weak interactions. These
effects are indeed observed but only in living matter. The basic problem is that one has long
ranged classical electroweak gauge fields. The resolution of the problem is that the quantum
averages of induced weak and color gauge fields vanish due to the fact that color rotations
affect both space-time surfaces and induced weak and color fields. Only the averages of



1.1. Basic Ideas of Topological Geometrodynamics (TGD) 3

electromagnetic fields are nonvanishing. The correlations functions for weak fields are non-
vanishing below Compton lengths of weak bosons. In living matter large values of effective
Planck constant labelling phases of ordinary matter identified as dark matter make possible
long ranged weak fields and color fields.

6. General coordinate invariance requires holography so that space-time surfaces are analogous
to Bohr orbits for particles identified as 3-surfaces. Bohr orbit property would be naturally
realized by a 4-D generalization of holomorphy of string world sheets and implies that the
space-time surfaces are minimal surfaces apart from singularities. This holds true for any
action as long as it is general coordinate invariant and constructible in terms of the induced
geometry. String world sheets and light-like orbits of partonic 2-surfaces correspond to
singularities at which the minimal surface property of the space-time surfaces realizing the
preferred extremal property fails. Preferred extremals are not completely deterministic,
which implies what T call zero energy ontology (ZEO) meaning that the Bohr orbits are the
fundamental objects. This leads to a solution of the basic paradox of quantum measurement
theory. Also the mathematically ill-defined path integral disappears and leaves only the
well-defined functional integral over the Bohr orbits.

7. A string model-like picture emerges from TGD and one ends up with a rather concrete view
about the topological counterpart of Feynman diagrammatics. The natural stringy action
would be given by the string world sheet area, which is present only in the space-time regions
with Minkowskian signature. Gravitational constant could be present as a fundamental con-
stant in string action and the ratio A/G/R? would be determined by quantum criticality
conditions. The hierarchy of Planck constants hesr/h = n assigned to dark matter in TGD
framework would allow to circumvent the objection that only objects of length of order
Planck length are possible since string tension given by T' = 1/h.f;G apart from numerical
factor could be arbitrary small. This would make possible gravitational bound states as par-
tonic 2-surfaces as structures connected by strings and solve the basic problem of superstring
theories. This option allows the natural interpretation of M* type vacuum extremals with
C P, projection, which is Lagrange manifold as good approximations for space-time sheets at
macroscopic length scales. String area does not contribute to the Kahler function at all.

Whether induced spinor fields associated with Kéhler-Dirac action and de-localized inside
the entire space-time surface should be allowed remains an open question: super-conformal
symmetry strongly suggests their presence. A possible interpretation for the corresponding
spinor modes could be in terms of dark matter, sparticles, and hierarchy of Planck constants.

It is perhaps useful to make clear what TGD is not and also what new TGD can give to
physics.

1. TGD is not just General Relativity made concrete by using embeddings: the 4-surface
property is absolutely essential for unifying standard model physics with gravitation and
to circumvent the incurable conceptual problems of General Relativity. The many-sheeted
space-time of TGD gives rise only at the macroscopic limit to GRT space-time as a slightly
curved Minkowski space. TGD is not a Kaluza-Klein theory although color gauge potentials
are analogous to gauge potentials in these theories.

TGD space-time is 4-D and its dimension is due to completely unique conformal properties of
light-cone boundary and 3-D light-like surfaces implying enormous extension of the ordinary
conformal symmetries. Light-like 3-surfaces represent orbits of partonic 2-surfaces and carry
fundamental fermions at 1-D boundaries of string world sheets. TGD is not obtained
by performing Poincare gauging of space-time to introduce gravitation and is plagued by
profound conceptual problems.

2. TGD is not a particular string model although string world sheets emerge in TGD very
naturally as loci for spinor modes: their 2-dimensionality makes among other things possible
quantum deformation of quantization known to be physically realized in condensed matter,
and conjectured in TGD framework to be crucial for understanding the notion of finite
measurement resolution. Hierarchy of objects of dimension up to 4 emerge from TGD: this
obviously means analogy with branes of super-string models.
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TGD is not one more item in the collection of string models of quantum gravitation relying
on Planck length mystics. Dark matter becomes an essential element of quantum gravitation
and quantum coherence in astrophysical scales is predicted just from the assumption that
strings connecting partonic 2-surfaces are responsible for gravitational bound states.

TGD is not a particular string model although AdS/CFT duality of super-string models
generalizes due to the huge extension of conformal symmetries and by the identification
of WCW gamma matrices as Noether super-charges of super-symplectic algebra having a
natural conformal structure.

3. TGD is not a gauge theory. In TGD framework the counterparts of also ordinary gauge
symmetries are assigned to super-symplectic algebra (and its Yangian [A17] [B21l [B15, B14]),
which is a generalization of Kac-Moody algebras rather than gauge algebra and suffers a
fractal hierarchy of symmetry breakings defining hierarchy of criticalities. TGD is not one
more quantum field theory like structure based on path integral formalism: path integral
is replaced with functional integral over 3-surfaces, and the notion of classical space-time
becomes an exact part of the theory. Quantum theory becomes formally a purely classical
theory of WCW spinor fields: only state function reduction is something genuinely quantal.

4. TGD view about spinor fields is not the standard one. Spinor fields appear at three levels.
Spinor modes of the embedding space are analogs of spinor modes characterizing incoming
and outgoing states in quantum field theories. Induced second quantized spinor fields at
space-time level are analogs of stringy spinor fields. Their modes are localized by the well-
definedness of electro-magnetic charge and by number theoretic arguments at string world
sheets. Kaéhler-Dirac action is fixed by supersymmetry implying that ordinary gamma
matrices are replaced by what I call Kéhler-Dirac gamma matrices - this something new.
WCW spinor fields, which are classical in the sense that they are not second quantized, serve
as analogs of fields of string field theory and imply a geometrization of quantum theory.

5. TGD is in some sense an extremely conservative geometrization of entire quantum physics:
no additional structures such as gauge fields as independent dynamical degrees of freedom
are introduced: Kahler geometry and associated spinor structure are enough. “Topological”
in TGD should not be understood as an attempt to reduce physics to torsion (see for instance
[B14]) or something similar. Rather, TGD space-time is topologically non-trivial in all scales
and even the visible structures of the everyday world represent non-trivial topology of space-
time in the TGD Universe.

6. Twistor space - or rather, a generalization of twistor approach replacing masslessness in 4-D
sense with masslessness in 8-D sense and thus allowing description of also massive particles
- emerged originally as a technical tool, and its K&hler structure is possible only for H =
M* x CP,. It however turned out that much more than a technical tool is in question. What
is genuinely new is the infinite-dimensional character of the Kahler geometry making it highly
unique, and its generalization to p-adic number fields to describe correlates of cognition. Also
the hierarchy of Planck constants heys = nxh reduces to the quantum criticality of the TGD
Universe and p-adic length scales and Zero Energy Ontology represent something genuinely
new.

The great challenge is to construct a mathematical theory around these physically very
attractive ideas and I have devoted the last 45 years to the realization of this dream and this
has resulted in 26 online books about TGD and nine online books about TGD inspired theory of
consciousness and of quantum biology.

A collection of 30 online books is now (August 2023) under preparation. The goal is to
minimize overlap between the topics of the books and make the focus of a given book sharper.

1.1.2 Two Visions About TGD as Geometrization of Physics and Their
Fusion

As already mentioned, TGD as a geometrization of physics can be interpreted both as a modifi-
cation of general relativity and generalization of string models.
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TGD as a Poincare Invariant Theory of Gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
is regarded as a surface in the 8-dimensional space H = M2 CP,, where M* denotes Minkowski
space and CP, = SU(3)/U(2) is the complex projective space of two complex dimensions [A43]
A506, [A31l [A50].

The identification of the space-time as a sub-manifold [A44l [A80] of M?* x CP;, leads to
an exact Poincare invariance and solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in struc-
ture than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of C' Py
explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors corre-
spond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
concept results. The projections of the CPs spinor connection, Killing vector fields of C'P, and
of H-metric to four-surface define classical electro-weak, color gauge fields and metric in X%.

The choice of H is unique from the condition that TGD has standard model symmetries.
Also number theoretical vision selects H = M* x CP, uniquely. M* and CP, are also unique
spaces allowing twistor space with Kahler structure.

TGD as a Generalization of the Hadronic String Model

The second approach was based on the  generalization of the mesonic string model describing
mesons as strings with quarks attached to the ends of the string. In the 3-dimensional generalization
3-surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex
of string models. Indeed, the important difference between TGD and string models is that the
analogs of string world sheet diagrams do not describe particle decays but the propagation of
particles via different routes. Particle reactions are described by generalized Feynman diagrams
for which 3-D light-like surface describing particle propagating join along their ends at vertices. As
4-manifolds the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Quite recently, it has turned out that fermionic strings inside space-time surfaces define an
exact part of quantum TGD and that this is essential for understanding gravitation in long length
scales. Also the analog of AdS/CFT duality emerges in that the Kéhler metric can be defined
either in terms of Kéhler function identifiable as Kéahler action assignable to Euclidian space-time
regions or Kahler action + string action assignable to Minkowskian regions.

The recent view about construction of scattering amplitudes is very “stringy”. By strong
form of holography string world sheets and partonic 2-surfaces provide the data needed to con-
struct scattering amplitudes. Space-time surfaces are however needed to realize quantum-classical
correspondence necessary to understand the classical correlates of quantum measurement. There
is a huge generalization of the duality symmetry of hadronic string models.

The proposal is that scattering amplitudes can be regarded as sequences of computational
operations for the Yangian of super-symplectic algebra. Product and co-product define the basic
vertices and realized geometrically as partonic 2-surfaces and algebraically as multiplication for the
elements of Yangian identified as super-symplectic Noether charges assignable to strings. Any com-
putational sequences connecting given collections of algebraic objects at the opposite boundaries
of causal diamond (CD) produce identical scattering amplitudes.

Fusion of the Two Approaches via a Generalization of the Space-Time Concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
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trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a “topological condensate” containing matter as
particle like 3-surfaces “glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
“topological condensate” there could be “vapor phase” that is a “gas” of particle like 3-surfaces
and string like objects (counterpart of the “baby universes” of GRT) and the non-conservation
of energy in GRT corresponds to the transfer of energy between different sheets of the space-time
and possible existence vapour phase.

. What one obtains is what I have christened as many-sheeted space-time (see Fig. http:
//tgdtheory.fi/appfigures/manysheeted. jpg or Fig. ?? in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of
topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory the physical
system does not possess this kind of field identity. The notion of the magnetic body is one of
the key players in TGD inspired theory of consciousness and quantum biology. The existence of
monopole flux tubes requiring no current as a source of the magnetic field makes it possible to
understand the existence of magnetic fields in cosmological and astrophysical scales.

This picture became more detailed with the advent of zero energy ontology (ZEO). The
basic notion of ZEO is causal diamond (CD) identified as the Cartesian product of C'P,
and of the intersection of future and past directed light-cones and having scale coming as an
integer multiple of C'P; size is fundamental. CDs form a fractal hierarchy and zero energy states
decompose to products of positive and negative energy parts assignable to the opposite boundaries
of CD defining the ends of the space-time surface. The counterpart of zero energy state in positive
energy ontology is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the
opposite light-like boundaries of CD. Since the extremals of Kéhler action connect these, one can
say that by holography the basic dynamical objects are the space-time surface connecting these
3-surfaces and identifiable as analogs of Bohr orbits. This changes totally the vision about notions
like self-organization: self-organization by quantum jumps does not take for a 3-D system but for
the entire 4-D field pattern associated with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as
space-like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that
space-time surface is analogous to Bohr orbit. An alternative identification of the lines of gener-
alized Feynman diagrams is as light-like 3-surfaces at which the signature of the induced metric
changes from Minkowskian to Euclidian . Also the Euclidian 4-D regions can have a similar in-
terpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in
question is due to the effects caused by the failure of strict determinism of K&hler action. In
finite length scale resolution these effects can be neglected below UV cutoff and above IR cutoff.
One can also speak about a strong form of holography.

The understanding of the super symplectic invariance leads to the proposal that super
symplectic algebra and other Kac-Moody type algebras labelled by non-negative multiples of
basic conformal weights allow a hierarchy of symmetry breakings in which the analog of gauge
symmetry breaks down to a genuine dynamical symmetry. This gives rise to fractal hierarchies of
algebras and symmetry breakings. This breaking can occur also for ordinary conformal algebras
if one restricts the conformal weights to be non-negative integers.

1.1.3 Basic Objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four embedding space
coordinates only- essentially C'P, coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-
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sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed.
Particles topologically condense to several space-time sheets simultaneously and experience the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified
theory the number of primary field variables is countered in hundreds if not thousands, now it is
just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-time
due to the embeddability to 8-D embedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation makes
it possible to understand the relationship to GRT space-time and how the Equivalence Principle
(EP) follows from Poincare invariance of TGD. The interpretation of GRT space-time is as effective
space-time obtained by replacing many-sheeted space-time with Minkowski space with effective
metric determined as a sum of Minkowski metric and sum over the deviations of the induced metrics
of the space-time sheets from Minkowski metric. Poincare invariance strongly suggests classical EP
for the GRT limit in long length scales at least. One can also consider other kinds of limits such
as the analog of GRT limit for Euclidian space-time regions assignable to elementary particles.
In this case deformations of C' P, metric define a natural starting point and C'P, indeed defines a
gravitational instanton with a very large cosmological constant in Einstein-Maxwell theory. Also
gauge potentials of the standard model correspond classically to superpositions of induced gauge
potentials over space-time sheets.

Topological Field Quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to different space-time sheets and only their effects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 Quantum TGD as Spinor Geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was “Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones.

‘World of Classical Worlds

The notion of WCW reduces the interacting quantum theory to a theory of free WCW spinor
fields.

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrodinger amplitude identified as WCW spinor in the configuration space CH (“world of
classical worlds”, WCW) consisting of all possible 3-surfaces in H. “All possible” means that
surfaces with arbitrary many disjoint components and with arbitrary internal topology and
also singular surfaces topologically intermediate between two different manifold topologies
are included.

2. 4-D general coordinate invariance forces holography and replaces the ill-defined path integral
over all space-time surfaces with a discrete sum over 4-D analogs of Bohr orbits for particles
identified as 3-surfaces. Holography means that basic objects are these analogs of Bohr orbits.
Since there is no quantization at the level of WCW, one has an analog of wave mechanics
with point-like particles replaced with 4-D Bohr orbits.
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3. One must geometrize WCW as the space of Bohr orbits. In an infinite-dimensional situation
the existence of geometry requires maximal symmetries already in the case of loop spaces.
Physics is unique from its mathematical existence.

WCW is endowed with  metric and spinor structure so that one can define various metric
related differential operators, say Dirac operators, appearing in the field equations of the

theory E|

Identification of Kahler function

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kéhler function. Kéhler function is
Kéhler action for a preferred extremal assignable to a given 3-surface but what this preferred
extremal is? The obvious first guess was as absolute minimum of Kéhler action but could not be
proven to be right or wrong. One big step in the progress was boosted by the idea that TGD should
reduce to almost topological QFT in which braids would replace 3-surfaces in finite measurement
resolution, which could be inherent property of the theory itself and imply discretization at partonic
2-surfaces with discrete points carrying fermion number.

It took long time to realize that there is no discretization in 4-D sense - this would lead to
difficulties with basic symmetries. Rather, the discretization occurs for the parameters character-
izing co-dimension 2 objects representing the information about space-time surface so that they
belong to some algebraic extension of rationals. These 2-surfaces - string world sheets and partonic
2-surfaces - are genuine physical objects rather than a computational approximation. Physics itself
approximates itself, one might say! This is of course nothing but strong form of holography.

1. TGD as almost topological QFT vision suggests that Kéhler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coeffi-
cients and in Minkowskian regions the /g4 factorc coming from metric would be imaginary
so that one would obtain sum of real term identifiable as Kéahler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference effects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The way to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulomb
contribution to Kéhler action is required and is true for all known extremals if one makes
a general ansatz about the form of classical conserved currents. The so called weak form of
electric-magnetic duality defines a boundary condition reducing the resulting 3-D terms to
Chern-Simons terms. In this way almost topological QFT results. But only “almost” since
the Lagrange multiplier term forcing electric-magnetic duality implies that Chern-Simons
action for preferred extremals depends on metric.

WCW spinor fields

Classical WCW spinor fields are analogous to Schrodinger amplitudes and the construction of
WCW Kéhler geometry reduces to the second quantization of free spinor fields of H.

1There are four kinds of Dirac operators in TGD. The geometrization of quantum theory requires Kihler metric
definable either in terms of Ké&hler function identified as a the bosonic action for Euclidian space-time regions
or as anti-commutators for WCW gamma matrices identified as conformal Noether super-charges associated with
the second quantized modified Dirac action consisting of string world sheet term and possibly also modified Dirac
action in Minkowskian space-time regions. These two possible definitions reflect a duality analogous to AdS/CFT
duality.
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1.

The WCW metric is given by anticommutators of WCW gamma matrices which also have
interpretation as supercharges assignable to the generators of WCW isometries and allow-
ing expression as non-conserved Noether charges. Holography implies zero energy ontology
(ZEO) meaning that zero energy states are superpositions of Bohr orbits connecting bound-
aries of causal diamond (CD). CDs form a fractal hierarchy and their space forming the
spine of WCW is finite-dimensional and can be geometrized. The alternative interpretation
is as a superposition of pairs of ordinary 3-D fermionic states assignable to the ends of the
space-time surfaces.

There are several Dirac operators. WCW Dirac operator Dy cw appears in Super-symplectic
gauge conditions analogous to Super Virasoro conditions. The algebraic variant of the H
Dirac operator Dy appears in fermionic correlation functions: this is due to the fact that
free fermions appearing as building bricks of WCW gamma matrices are modes of Dpy. The
modes of pH define the ground states of super-symplectic representations. There is also
the modified Dirac operator D y+ acting on the induced spinors at space-time surfaces and
it is dictated by symmetry one the action fixing the space-time surfaces as Bohr orbits is
fixed. Dy is needed since it determines the expressions of WCW gamma matrices as
Noether charges assignable to 3-surfaces at the ends of WCW.

The role of modified Dirac action

1.

By quantum classical correspondence, the construction of WCW spinor structure in sectors
assignable to CDs reduces to the second quantization of the induced spinor fields of H. The
basic action is so called modified Dirac action in which gamma matrices are replaced with
the modified) gamma matrices defined as contractions of the canonical momentum currents
of the bosonic action defining the space-time surfaces with the embedding space gamma
matrices. In this way one achieves super-conformal symmetry and conservation of fermionic
currents among other things and a consistent Dirac equation.

Modified Dirac action is needed to define WCW gamma matrices as super charges assignable
to WCW isometry generators identified as generators of symplectic transformations and by
holography are needed only at the 3-surface at the boundaries of WCW. It is important to
notice that the modified Dirac equation does not determine propagators since induced spinor
fields are obtained from free second quantized spinor fields of H. This means enormous
simplification and makes the theory calculable.

An important interpretational problem relates to the notion of the induced spinor connec-
tion. The presence of classical W boson fields is in conflict with the classical conservation
of em charge since the coupling to classical W fields changes em charge.

One way out of the problem is the fact that the quantum averages of weak and gluon fields
vanish unlike the quantum average of the em field. This leads to a rather precise understand-
ing of electroweak symmetry breaking as being due the fact that color symmetries rotate
space-time surfaces and also affect the induced weak fields.

One can also consider a stronger condition. If one requires that the spinor modes have well-
defined em charge, one must assume that the modes in the generic situation are localized at
2-D surfaces - string world sheets or perhaps also partonic 2-surfaces - at which classical W bo-
son fields vanish. Covariantly constant right handed neutrinos generating super-symmetries
forms an exception. The vanishing of the Z° field is possible for Kihler-Dirac action and
should hold true at least above weak length scales. This implies that the string model in 4-D
space-time becomes part of TGD. Without these conditions classical weak fields can vanish
above weak scale only for the GRT limit of TGD for which gauge potentials are sums over
those for space-time sheets.

The localization would simplify the mathematics enormously and one can solve exactly the
Kahler-Dirac equation for the modes of the induced spinor field just like in super string
models.

At the light-like 3-surfaces the signature of the induced metric changes from Euclidian to
Minkowskian so that /g4 vanishes. One can pose the condition that the algebraic analog of



10 Chapter 1. Introduction

the massless Dirac equation is satisfied by the modes of the modified-Dirac action assignable
to the Chern-Simons-Kéahler action.

1.1.5 Construction of scattering amplitudes
Reduction of particle reactions to space-time topology

Particle reactions are identified as topology changes [A65, [A86] [A100]. For instance, the decay of
a 3-surface to two 3-surfaces corresponds to the decay A — B + C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrédinger amplitude localized to 1-particle sector
to two-particle sector. All coupling constants should result as predictions of the theory since no
nonlinearities are introduced.

During years this naive and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong form
of General Coordinate Invariance has led to a rather detailed and in many respects un-expected
visions. This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also introduced the word “world of classical worlds” (WCW) instead of
rather formal “configuration space”. I hope that “WCW?” does not induce despair in the reader
having tendency to think about the technicalities involved!

Construction of the counterparts of S-matrices

What does one mean with the counterpart of S-matrix in the TGD framework has been a long
standing problem. The development of ZEO based quantum measurement theory has led to a
rough overall view of the situation.

1. There are two kinds of state function reductions (SFRs). ”Small” SFRs (SSFRs) following the
TGD counterpart of a unitary time evolution defines a sequence of SFRs, which is analogous
to a sequence of repeated quantum measurements associated with the Zeno effect. In wave
mechanics nothing happens in these measurements. In quantum optics these measurements
correspond to weak measurements. In TGD SSFR affects the zero energy state but leaves
the 3-D state at the passive boundary of CD unaffected.

2. In TGD framework each SSFR is preceded by a counterpart of a unitary time evolution,
which means dispersion in the space of CDs and unitary time evolution in fermionic degrees
of freedom such that the passive boundary of CDs and 3-D states at it are unaffected but a
superposition of CDs with varying active boundaries in the space of CDs is formed. In SSFR
a localization in the space of CDs occurs such that the active is fixed. In a statistical sense
the size of the CD increases and the increasing distance between the tips of the CD gives rise
to the arrow of geometric time.

3. Also "big” SFRS (BSFRs) can occur and they correspond to ordinary SFRs. In BSFR the
roles of the active and passive boundary are changed and this means that the arrow of time
is changed. Big SFR occurs when the SSFR corresponds to a quantum measurement, which
does not commute with the operators, which define the states at the passive boundary of CD
as their eigenstates. This means a radical deviation from standard quantum measurement
theory and has predictions in all scales.

4. One can assign the counterpart of S-matrix to the unitary time evolution between two sub-
sequent SSFRs and also to the counterpart of S-matrix associated with BSFR. At least in
the latter case the dimension of the state space can increase since at least BSFRs lead to
the increase of the dimension of algebraic extension of rationals assignable to the space-time
surface by M® — H duality. Unitarity is therefore replaced with isometry.

5. T have also considered the possibility that unitary S-matrix could be replaced in the fermionic
degrees of freedom with Kahler metric of the state space satisfying analogs of unitarity
conditions but it seems that this is un-necessary and also too outlandish an idea.
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The notion of M-matrix

1. The most ambitious dream is that zero energy states correspond to a complete solution basis
for the Dirac operators associated with WCWs associated with the spaces of CDs with fixed
passive boundary: this would define an S-matrix assignable to SFR. Also the analog of S-
matrix for the localizations of the states to the active boundary assignable to the BSFR
changing the state at the passive boundary of CD is needed.

2. If one allows entanglement between positive and energy parts of the zero energy state but
assumes that the states at the passive boundary are fixed, one must introduce the counterpart
of the density matrix, or rather its square root. This classical free field theory would dictate
what I have called M-matrices defined between positive and negative energy parts of zero
energy states which form orthonormal rows of what I call U-matrix as a matrix defined
between zero energy states. A biven M-matrix in turn would decompose to a product of a
hermitian square root of density matrix and unitary S-matrix.

3. M-matrix would define time-like entanglement coefficients between positive and negative en-
ergy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in a well-defined sense a square root of thermodynamics. The
orthogonality and hermiticity of the M-matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebras acting as symmetries of the S-matrix. Therefore quan-
tum TGD would reduce to group theory in a well-defined sense.

4. In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained
by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also
the analog of Yangian algebra involving only non-negative powers of S-matrix is possible and
would correspond to a hierarchy of CDs with the temporal distances between tips coming as
integer multiples of the C' P, time.

The M-matrices associated with CDs are obtained by a discrete scaling from the minimal
CD and characterized by integer n are naturally proportional to a representation matrix of
scaling: S(n) = 5™, where S is unitary S-matrix associated with the minimal CD [K76]. This
conforms with the idea about unitary time evolution as exponent of Hamiltonian discretized
to integer power of S and represented as scaling with respect to the logarithm of the proper
time distance between the tips of CD.

5. I have also considered the notion of U-matrix. U-matrix elements between M-matrices for
various CDs are proportional to the inner products Tr[S~"to H H70S™2 \], where \ represents
unitarily the discrete Lorentz boost relating the moduli of the active boundary of CD and
H' form an orthonormal basis of Hermitian square roots of density matrices. o tells that S
acts at the active boundary of CD only. I have proposed a general representation for the
U-matrix, reducing its construction to that of the S-matrix.

1.1.6 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional config-
uration space (“world of classical worlds”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name “TGD as a gen-
eralized number theory”. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already,
the formulation of quantum TGD in terms of complexified counterparts of classical number fields,
and the notion of infinite prime. Note that one can identify subrings such as hyper-quaternions and
hyper-octonions as sub-spaces of complexified classical number fields with Minkowskian signature
of the metric defined by the complexified inner product.
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The Threads in the Development of Quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name “TGD as
a generalized number theory”. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and rather fruitful revision
of the basic views about what the final form and physical content of quantum TGD might
be. Together with the vision about the fusion of p-adic and real physics to a larger coherent
structure these sub-threads fused to the “physics as generalized number theory” thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite
primes as sub-threads of a thread which might be called “physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to three corresponding to
geometric, number theoretic and topological views of physics.

TGD forces the generalization of physics to a quantum theory of consciousness, and TGD
as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics
of cognitive representations.

Number theoretic vision very briefly

Number theoretic vision about quantum TGD involves notions like adelic physics, M® — H duality
and number theoretic universality. A short review of the basic ideas that have developed during
years is in order.

1. The physical interpretation of M8 is as an analog of momentum space and M® — H duality
is analogous to momentum-position duality of ordinary wave mechanics.

2. Adelic physics means that all classical number fields, all p-adic number fields and their
extensions induced by extensions of rationals and defining adeles, and also finite number
fields are basic mathematical building bricks of physics.

The complexification of M8, identified as complexified octonions, would provide a realization
of this picture and M® — H duality would map the algebraic physics in M3 to the ordinary
physics in M* x CP, described in terms of partial differential equations.
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3. Negentropy Maximization Principle (NMP) states that the conscious information assignable
with cognition representable measured in terms of p-adic negentropy increases in statistical
sense.

NMP is mathematically completely analogous to the second law of thermodynamics and
number theoretic evolution as an unavoidable statistical increase of the dimension of the
algebraic extension of rationals characterizing a given space-time region implies it. There is
no paradox involved: the p-adic negentropy measures the conscious information assignable
to the entanglement of two systems regarded as a conscious entity whereas ordinary entropy
measures the lack of information about the quantums state of either entangled system.

4. Number theoretical universality requires that space-time surfaces or at least their M® — H
duals in M8 are defined for both reals and various p-adic number fields. This is true if they are
defined by polynomials with integer coefficients as surfaces in M® obeying number theoretic
holography realized as associativity of the normal space of 4-D surface using as holographic
data 3-surfaces at mass shells identified in terms of roots of a polynomial. A physically
motivated additional condition is that the coefficients of the polynomials are smaller than
their degrees.

5. Galois confinement is a key piece of the number theoretic vision. It states that the momenta of
physical states are algebraic integers in the extensions of rationals assignable to the space-time
region considered. These numbers are in general complex and are not consistent with particle
in box quantization. The proposal is that physical states satisfy Galois confinement being
thus Galois singlets and having therefore total momenta, whose components are ordinary
integers, when momentum unit defined by the scale of causal diamond (CD) is used.

6. The notion of p-adic prime was introduced in p-adic mass calculations that started the
developments around 1995. p-Adic length scale hypothesis states that p-adic primes near
powers of 2 have a special physical role (as possibly also the powers of other small primes
such as p = 3).

The proposal is that p-adic primes correspond to ramified primes assignable to the extension
and identified as divisors of the polynomial defined by the products of the root differences
for the roots of the polynomial defining space-time space and having interpretation as values
of, in general complex, virtual mass squared.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might
be important for TGD. Experimentation with p-adic numbers led to the notion of canonical iden-
tification mapping reals to p-adics and vice versa. The breakthrough came with the successful
p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group. Al-
though the details of the calculations have varied from year to year, it was clear that p-adic physics
reduces not only the ratio of proton and Planck mass, the great mystery number of physics, but all
elementary particle mass scales, to number theory if one assumes that primes near prime powers of
two are in a physically favored position. Why this is the case, became one of the key puzzles and
led to a number of arguments with a common gist: evolution is present already at the elementary
particle level and the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired “Universe as Computer” vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.
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In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in different number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that
clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades central
problem in the frontier of mathematics and a lot of profound work has been done along same
intuitive lines as I have proceeded in TGD framework. The basic idea is certainly the notion
of algebraic continuation from the world of rationals belonging to the intersection of real world
and various p-adic worlds.

Despite various uncertainties, the number of the applications of the poorly defined p-adic
physics has grown steadily and the applications turned out to be relatively stable so that it was
clear that the solution to these problems must exist. It became only gradually clear that the
solution of the problems might require going down to a deeper level than that represented by reals
and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structure.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of embedding space and space-time concept
and one can speak about real and p-adic space-time sheets. One can talk about adelic space-time,
embedding space, and WCW.

The corresponds of real 4-surfaces with the p-adic ones is induced by number theoretical
discretization using points of 4-surfaces Y C M¢ identifiable as 8-momenta, whose components are
assumed to be algebraic integers in an extension of rationals defined by the extension of rationals
associated with a polynomial P with integer coefficients smaller than the degree of P. These points
define a cognitive representation, which is universal in the sense that it exists also in the algebraic
extensions of p-adic numbers. The points of the cognitive representations associated with the mass
shells with mass squared values identified as roots of P are enough since M® — H duality can be
used at both M?® and H sides and also in the p-adic context. The mass shells are special in that
they allow for Minkowski coordinates very large cognitive representations unlike the interiors of the
4-surfaces determined by holography by using the data defined by the 3-surfaces at the mass shells.
The higher the dimension of the algebraic extension associated with P, the better the accuracy of
the cognitive representation.

Adelization providing number theoretical universality reduces to algebraic continuation for
the amplitudes from this intersection of reality and various p-adicities - analogous to a back of a
book - to various number fields. There are no problems with symmetries but canonical identification
is needed: various group invariant of the amplitude are mapped by canonical identification to
various p-adic number fields. This is nothing but a generalization of the mapping of the p-adic
mass squared to its real counterpart in p-adic mass calculations.

This leads to surprisingly detailed predictions and far reaching conjectures. For instance,
the number theoretic generalization of entropy concept allows negentropic entanglement central
for the applications to living matter (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or
Fig. 77 in the appendix of this book). One can also understand how preferred p-adic primes could
emerge as so called ramified primes of algebraic extension of rationals in question and characterizing
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string world sheets and partonic 2-surfaces. Preferred p-adic primes would be ramified primes for
extensions for which the number of p-adic continuations of two-surfaces to space-time surfaces
(imaginations) allowing also real continuation (realization of imagination) would be especially
large. These ramifications would be winners in the fight for number theoretical survival. Also a
generalization of p-adic length scale hypothesis emerges from NMP [K72].

The characteristic non-determinism of the p-adic differential equations suggests strongly that
p-adic regions correspond to “mind stuff”, the regions of space-time where cognitive representations
reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is
probably a brilliant simulator of Nature, the natural idea is to study the p-adic physics of the
cognitive representations to derive information about the real physics. This view encouraged by
TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear
interpretation for the predictions of p-adic physics.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined
by a repeatedly second quantized arithmetic quantum field theory gave a further boost for the
speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly repre-
sentable as surfaces geometrically, it was clear how TGD might be formulated as a generalized
number theory with infinite primes forming the bridge between classical and quantum such that
real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from
algebraic physics as various completions of the algebraic extensions of complexified quaternions
and octonions. Complete algebraic, topological and dimensional democracy would characterize
the theory.

The infinite primes at the first level of hierarchy, which represent analogs of bound states,
can be mapped to irreducible polynomials, which in turn characterize the algebraic extensions of
rationals defining a hierarchy of algebraic physics continuable to real and p-adic number fields.
The products of infinite primes in turn define more general algebraic extensions of rationals. The
interesting question concerns the physical interpretation of the higher levels in the hierarchy of
infinite primes and integers mappable to polynomials of n > 1 variables.

1.1.7 An explicit formula for M® — H duality

M?® — H duality is a generalization of momentum-position duality relating the number theoretic
and geometric views of physics in TGD and, despite that it still involves poorly understood aspects,
it has become a fundamental building block of TGD. One has 4-D surfaces Y* C M2, where
M3 is complexified M® having interpretation as an analog of complex momentum space and 4-D
spacetime surfaces X* C H = M* x CP,. M8, equivalently ES, can be regarded as complexified
octonions. M$ has a subspace M2 containing M*.

Comment: One should be very cautious with the meaning of ”complex”. Complexified
octonions involve a complex imaginary unit ¢ commuting with the octonionic imaginary units
I. i is assumed to also appear as an imaginary unit also in complex algebraic numbers defined
by the roots of polynomials P defining holographic data in M?.

In the following M® — H duality and its twistor lift are discussed and an explicit formula
for the dualities are deduced. Also possible variants of the duality are discussed.

Holography in H

X* C H satisfies holography and is analogous to the Bohr orbit of a particle identified as a 3-
surface. The proposal is that holography reduces to a 4-D generalization of holomorphy so that
X% is a simultaneous zero of two functions of complex C P, coordinates and of what I have called
Hamilton-Jacobi coordinates of M* with a generalized Kihler structure.

The simplest choice of the Hamilton-Jacobi coordinates is defined by the decomposition
M* = M? x E?, where M? is endowed with hypercomplex structure defined by light-like coor-
dinates (u,v), which are analogous to z and Z. Any analytic map u — f(u) defines a new set
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of light-like coordinates and corresponds to a solution of the massless d’Alembert equation in M?2.
E? has some complex coordinates with imaginary unit defined by 4.

The conjecture is that also more general Hamilton-Jacobi structures for which the tangent
space decomposition is local are possible. Therefore one would have M?* = M?(x) x E?(z). These
would correspond to non-equivalent complex and Kihler structures of M* analogous to those
possessed by 2-D Riemann surfaces and parametrized by moduli space.

Number theoretic holography in M3

Y4 C M$ satisfies number theoretic holography defining dynamics, which should reduce to asso-
ciativity in some sense. The Euclidian complexified normal space N*(y) at a given point y of Y*
is required to be associative, i.e. quaternionic. Besides this, N*(i) contains a preferred complex
Euclidian 2-D subspace Y?2(y). Also the spaces Y?(x) define an integrable distribution. I have
assumed that Y?(z) can depend on the point y of Y*.

These assumptions imply that the normal space N(y) of Y* can be parameterized by
a point of CP, = SU(3)/U(2). This distribution is always integrable unlike quaternionic tangent
space distributions. M?® — H duality assigns to the normal space N(y) a point of CP,. M2
point y is mapped to a point = € M* C M* x CP, defined by the real part of its inversion
(conformal transformation): this formula involves effective Planck constant for dimensional reasons.

The 3-D holographic data, which partially fixes 4-surfaces Y* is partially determined by a
polynomial P with real integer coefficients smaller than the degree of P. The roots define mass
squared values which are in general complex algebraic numbers and define complex analogs of mass
shells in M2 C M, which are analogs of hyperbolic spaces H3. The 3-surfaces at these mass
shells define 3-D holographic data continued to a surface Y4 by requiring that the normal space
of Y* is associative, i.e. quaternionic. These 3-surfaces are not completely fixed but an interesting
conjecture is that they correspond to fundamental domains of tessellations of H3.

What does the complexity of the mass shells mean? The simplest interpretation is that
the space-like M* coordinates  (3-momentum components) are real whereas the time-like
coordinate (energy) is complex and determined by the mass shell condition. One would have
Re?(E) — Im(E)? — p? = Re(m?) and 2Re(E)Im(E) = Im(m?). The condition for the real parts
gives H3 when /Re2(E) — Im(E)? is taken as a time coordinate. The second condition allows
to solve Im(FE) in terms of Re(FE) so that the first condition reduces to an equation of mass shell
when \/(Re(E)? — Im(E)?), expressed in terms of Re(E), is taken as new energy coordinate
E.;t = \/(Re(E)?—Im(FE)?). Ts this deformation of H?® in imaginary time direction equivalent
with a region of the hyperbolic 3-space H>?

One can look at the formula in more detail. Mass shell condition gives Re?(E) —Im(E)? —
p? = Re(m?) and 2Re(E)Im(E) = Im(m?). The condition for the real parts gives H3, when
V/Re2(E) — Im(E)? is taken as an effective energy. The second condition allows to solve Im(E)
in terms of Re(FE) so that the first condition reduces to a dispersion relation for Re(E)?.

2Im(m?2)?
(Re(m?) — Im(m?) + p?)?

1
Re(E)? = 5(J%e(m?) — Im(m?) +p*)(1 + \/1 + (1.1.1)
Only the positive root gives a non-tachyonic result for Re(m?) — I'm(m?) > 0. For real roots with
Im(m?) = 0 and at the high momentum limit the formula coincides with the standard formula.
For Re(m?) = Im(m?) one obtains Re(E)? — Im(m?)/v/2 at the low momentum limit p? — 0.
Energy does not depend on momentum at all: the situation resembles that for plasma waves.

Can one find an explicit formula for M® — H duality?

The dream is an explicit formula for the M® — H duality mapping Y* € M8 to X* C H. This
formula should be consistent with the assumption that the generalized holomorphy holds true for
X4,

The following proposal is a more detailed variant of the earlier proposal for which Y# is
determined by a map g of M? — SU(3). C Ga,, where Ga . is the complexified automorphism
group of octonions and SU(3).. is interpreted as a complexified color group.
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This map defines a trivial SU(3). gauge field. The real part of ¢ however defines a
non-trivial real color gauge field by the non-linearity of the non-abelian gauge field with respect to
the gauge potential. The quadratic terms involving the imaginary part of the gauge potential give
an additional condition to the real part in the complex situation and cancel it. If only the real
part of g contributes, this contribution would be absent and the gauge field is non-vanishing.

How could the automorphism g(z) C SU(3) C Go give rise to M® — H duality?

1. The interpretation is that g(y) at given point y of Y relates the normal space at y to a
fixed quaternionic/associative normal space at point yo, which corresponds is fixed by some
subgroup U(2)g C SU(3). The automorphism property of g guarantees that the normal
space is quaternionic/associative at y. This simplifies the construction dramatically.

2. The quaternionic normal sub-space (which has Euclidian signature) contains a complex sub-
space which corresponds to a point of sphere S? = SO(3)/O(2), where SO(3) is the quater-
nionic automorphism group. The interpretation could be in terms of a selection of spin
quantization axes. The local choice of the preferred complex plane would not be unique
and is analogous to the possibility of having non-trivial Hamilton Jacobi structures in M*
characterized by the choice of M?(x) and equivalently its normal subspace E?(z).

These two structures are independent apart from dependencies forced by the number theoretic
dynamics. Hamilton-Jacobi structure means a selection of the quantization axis of spin and
energy by fixing a distribution of light-like tangent vectors of M* and the choice of the
quaternionic normal sub-space fixes a choice of preferred quaternionic imaginary unit defining
a quantization axis of the weak isospin.

3. The real part Re(g(y)) defines a point of SU(3) and the bundle projection SU(3) — CP;
in turn defines a point of CP, = SU(3)/U(2). Hence one can assign to g a point of CP;
as M8 — H duality requires and deduce an explicit formula for the point. This means a
realization of the dream.

4. The construction requires a fixing of a quaternionic normal space Ny at yo containing a
preferred complex subspace at a single point of Y plus a selection of the function g. If M*
coordinates are possible for Y4, the first guess is that g as a function of complexified M*
coordinates obeys generalized holomorphy with respect to complexified M* coordinates in
the same sense and in the case of X*. This might guarantee that the M® — H image of Y*
satisfies the generalized holomorphy.

5. Also space-time surfaces X* with M* projection having a dimension smaller than 4 are al-
lowed. I have proposed that they might correspond to singular cases for the above formula:
a kind of blow-up would be involved. One can also consider a more general definition of
Y*# allowing it to have a M* projection with dimension smaller than 4 (say cosmic strings).
Could one have implicit equations for the surface Y* in terms of the complex coordinates of
SU(3). and M*? Could this give for instance cosmic strings with a 2-D M* projection and
CP, type extremals with 4-D C P, projection and 1-D light-like M* projection?

What could the number theoretic holography mean physically?

What could be physical meaning of the number theoretic holography? The condition that has been
assumed is that the C'P, coordinates at the mass shells of M? C M mapped to mass shells H?
of M* C M* x CP, are constant at the H3. This is true if the g(y) defines the same C'P, point
for a given component XJ of the 3-surface at a given mass shell. g is therefore fixed apart from
a local U(2) transformation leaving the C'P, point invariant. A stronger condition would be that
the CP, point is the same for each component of X? and even at each mass shell but this
condition seems to be unnecessarily strong.

Comment: One can o criticize this condition as too strong and one can consider giving
up this condition. The motivation for this condition is that the number of algebraic points at the
3-surfaces associated with H?3 explodes since the coordinates associated with normal directions
vanish. Kind of cognitive explosion would be in question.

SU(3) corresponds to a subgroup of Gy and one can wonder what the fixing of this subgroup
could mean physically. G5 is 14-D and the coset space G2/SU(3) is 6-D and a good guess is that
it is just the 6-D twistor space SU(3)/U(1) x U(1) of C'P,: at least the isometries are the same.
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The fixing of the SU(3) subgroup means fixing of a CP, twistor. Physically this means the
fixing of the quantization axis of color isospin and hypercharge.

Twistor lift of the holography

What is interesting is that by replacing SU(3) with G, one obtains an explicit formula form the
generalization of M® — H duality to that for the twistorial lift of TGD!

One can also consider a twistorial generalization of the above proposal for the number
theoretic holography by allowing local G2 automorphisms interpreted as local choices of the color
quantization axis. G2 elements would be fixed apart from a local SU(3) transformation at the
components of 3-surfaces at mass shells. The choice of the color quantization axes for a connected
3-surface at a given mass shell would be the same everywhere. This choice is indeed very natural
physically since 3-surface corresponds to a particle.

Is this proposal consistent with the boundary condition of the number theoretical holog-
raphy mean in the case of 4-surfaces in M§ and M* x CPy?

1. The selection of SU(3) C Gy for ordinary M® — H duality means that the Gz . gauge field
vanishes everywhere and the choice of color quantization axis is the same at all points of the
4-surface. The fixing of the CP, point to be constant at H> implies that the color gauge
field at H® C M? and its image H?® C H vanish. One would have color confinement at the
mass shells H}, where the observations are made. Is this condition too strong?

2. The constancy of the Go element at mass shells makes sense physically and means a fixed
color quantization axis. The selection of a fixed SU(3) C G2 for entire space-time surface
is in conflict with the non-constancy of G5 element unless G2 element differs at different
points of 4-surface only by a multiplication of a local SU(3)y element, that is local SU(3)
transformation. This kind of variation of the G5 element would mean a fixed color group
but varying choice of color quantization axis.

3. Could one consider the possibility that the local G element is free and defines the twistor
lift of M® — H duality as something more fundamental than the ordinary M® — H duality
based on SU(3).. This duality would make sense only at the mass shells so that only the
spaces H?® x C'P, assignable to mass shells would make sense physically? In the interior C' P,
would be replaced with the twistor space SU(3)/U(1) x U(1). Color gauge fields would be
non-vanishing at the mass shells but outside the mass shells one would have G5 gauge fields.

There is also a physical objection against the G5 option. The 14-D Lie algebra representation
of G4 acts on the imaginary octonions which decompose with respect to the color group to
1® 3 @ 3. The automorphism property requires that 1 can be transformed to 3 or 3 to
themselves: this requires that the decomposition contains 3 @ 3. Furthermore, it must be
possible to transform 3 and 3 to themselves, which requires the presence of 8. This leaves
only the decomposition 8 @ 3 @ 3. G2 gluons would both color octet and triplets. In the
TDG framework the only conceivable interpretation would be in terms of ordinary gluons and
leptoquark-like gluons. This does not fit with the basic vision of TGD.

The choice of twistor as a selection of quantization axes should make sense also in the
M* degrees of freedom. M* twistor corresponds to a choice of light-like direction at a given point
of M*. The spatial component of the light-like vector fixes the spin quantization axis. Its
choice together with the light-likeness fixes the time direction and therefore the rest system and
energy quantization axis. Light-like vector fixes also the choice of M? and of E? as its orthogonal
complement. Therefore the fixing of M* twistor as a point of SU(4)/SU(3) x U(1) corresponds
to a choice of the spin quantization axis and the time-like axis defining the rest system in which
the energy is measured. This choice would naturally correspond to the Hamilton-Jacobi structure
fixing the decompositions M?(z) x E?(x). At a given mass shell the choice of the quantization
axis would be constant for a given X3.

1.1.8 Hierarchy of Planck Constants and Dark Matter Hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
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Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark Matter as Large /i Phases

D. Da Rocha and Laurent Nottale [E13] have proposed that Schrodinger equation with Planck

constant h replaced with what might be called gravitational Planck constant Ay, = G:}’;M (h=c=

1). wp is a velocity parameter having the value vy = 144.7 £ .7 km/s giving vo/c = 4.6 x 107
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of vy seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrodinger equation results from a fractal hy-
drodynamics. Many-sheeted space-time however suggests that astrophysical systems are at some
levels of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets
in question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hg.. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hg, would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K100].

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative “pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Certain experimental findings suggest the identification hefy = nx = hg,. The large value
of hg, can be seen as a way to reduce the string tension of fermionic strings so that gravitational
(in fact alll) bound states can be described in terms of strings connecting the partonic 2-surfaces
defining particles (analogous to AdS/CFT description). The values hesf/h = n can be interpreted
in terms of a hierarchy of breakings of super-conformal symmetry in which the super-conformal
generators act as gauge symmetries only for a sub-algebras with conformal weights coming as
multiples of n. Macroscopic quantum coherence in astrophysical scales is implied. If also Kahler-
Dirac action is present, part of the interior degrees of freedom associated with the Kéahler-Dirac
part of conformal algebra become physical. A possible is that tfermionic oscillator operators
generate super-symmetries and sparticles correspond almost by definition to dark matter with
heff/h =n > 1. One implication would be that at least part if not all gravitons would be dark and
be observed only through their decays to ordinary high frequency graviton (E = hfhigh = heff fiow)
of bunch of n low energy gravitons.

Hierarchy of Planck Constants from the Anomalies of Neuroscience and Biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological effects and
affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10719 times
lower than thermal energy at physiological temperatures- so that quantal effects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.
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This inspired the hypothesis that these photons correspond to so large a value of Planck
constant that the energy of photons is above the thermal energy. The proposed interpretation was
as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter
with non-standard value of Planck constant. If only particles with the same value of Planck
constant can appear in the same vertex of Feynman diagram, the phases with different value of
Planck constant are dark relative to each other. The phase transitions changing Planck constant
can however make possible interactions between phases with different Planck constant but these
interactions do not manifest themselves in particle physics. Also the interactions mediated by
classical fields should be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis heyy = hyr - at least for microscopic particles - implies that cyclotron
energies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
hess reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K90L K91l [K87] ) support the view that dark
matter might be a key player in living matter.

Dark Matter as a Source of Long Ranged Weak and Color Fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)c,,
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kéhler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z°
field can vanish. The latter would guarantee the absence of large parity breaking effects above
intermediate boson scale scaling like h.yy.

1.1.9 Twistors in TGD and connection with Veneziano duality

The twistorialization of TGD has two aspects. The attempt to generalize twistor Grassmannian
approach emerged first. It was however followed by the realization that also the twistor lift of TGD
at classical space-time level is needed. It turned out that the progress in the understanding of the
classical twistor lift has been much faster - probably this is due to my rather limited technical QFT
skills.

Twistor lift at space-time level

8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [K114].
The reason is that M* and C'P, are completely exceptional in the sense that they are the only 4-D
manifolds allowing twistor space with Kihler structure [A57]. The twistor space of M* x CP; is
Cartesian product of those of M* and C'P,. The obvious idea is that space-time surfaces allowing
twistor structure if they are orientable are representable as surfaces in H such that the properly
induced twistor structure co-incides with the twistor structure defined by the induced metric.

In fact, it is enough to generalize the induction of spinor structure to that of twistor structure
so that the induced twistor structure need not be identical with the ordinary twistor structure
possibly assignable to the space-time surface. The induction procedure reduces to a dimensional
reduction of 6-D Kahler action giving rise to 6-D surfaces having bundle structure with twistor
sphere as fiber and space-time as base. The twistor sphere of this bundle is imbedded as sphere in
the product of twistor spheres of twistor spaces of M* and CP;.



1.1. Basic Ideas of Topological Geometrodynamics (TGD) 21

This condition would define the dynamics, and the original conjecture was that this dynamics
is equivalent with the identification of space-time surfaces as preferred extremals of Kahler action.
The dynamics of space-time surfaces would be lifted to the dynamics of twistor spaces, which
are sphere bundles over space-time surfaces. What is remarkable that the powerful machinery of
complex analysis becomes available.

It however turned out that twistor lift of TGD is much more than a mere technical tool.
First of all, the dimensionally reduction of 6-D Ké&hler action contained besides 4-D Kéhler action
also a volume term having interpretation in terms of cosmological constant. This need not bring
anything new, since all known extremals of Kéhler action with non-vanishing induced Kéahler form
are minimal surfaces. There is however a large number of embeddings of twistor sphere of space-
time surface to the product of twistor spheres. Cosmological constant has spectrum and depends on
length scale, and the proposal is that coupling constant evolution reduces to that for cosmological
constant playing the role of cutoff length. That cosmological constant could transform from a mere
nuisance to a key element of fundamental physics was something totally new and unexpected.

1. The twistor lift of TGD at space-time level forces to replace 4-D Kahler action with 6-D
dimensionally reduced Kéhler action for 6-D surface in the 12-D Cartesian product of 6-D
twistor spaces of M* and CP,. The 6-D surface has bundle structure with twistor sphere as
fiber and space-time surface as base.

Twistor structure is obtained by inducing the twistor structure of 12-D twistor space using
dimensional reduction. The dimensionally reduced 6-D Kahler action is sum of 4-D Kahler
action and volume term having interpretation in terms of a dynamical cosmological constant
depending on the size scale of space-time surface (or of causal diamond CD in zero energy
ontology (ZEO)) and determined by the representation of twistor sphere of space-time surface
in the Cartesian product of the twistor spheres of M* and CP;.

2. The preferred extremal property as a representation of quantum criticality would naturally
correspond to minimal surface property meaning that the space-time surface is separately
an extremal of both Ké&hler action and volume term almost everywhere so that there is no
coupling between them. This is the case for all known extremals of Kéahler action with non-
vanishing induced Kéhler form.

Minimal surface property could however fail at 2-D string world sheets, their boundaries and
perhaps also at partonic 2-surfaces. The failure is realized in minimal sense if the 3-surface
has 1-D edges/folds (strings) and 4-surface 2-D edges/folds (string world sheets) at which
some partial derivatives of the embedding space coordinates are discontinuous but canonical
momentum densities for the entire action are continuous.

There would be no flow of canonical momentum between interior and string world sheet and
minimal surface equations would be satisfied for the string world sheet, whose 4-D counterpart
in twistor bundle is determined by the analog of 4-D Ké&hler action. These conditions allow the
transfer of canonical momenta between Kéhler- and volume degrees of freedom at string world
sheets. These no-flow conditions could hold true at least asymptotically (near the boundaries
of CD).

M8 — H duality suggests that string world sheets (partonic 2-surfaces) correspond to images
of complex 2-sub-manifolds of M?® (having tangent (normal) space which is complex 2-plane
of octonionic M?).

3. Cosmological constant would depend on p-adic length scales and one ends up to a concrete

model for the evolution of cosmological constant as a function of p-adic length scale and other
number theoretic parameters (such as Planck constant as the order of Galois group): this
conforms with the earlier picture.
Inflation is replaced with its TGD counterpart in which the thickening of cosmic strings to
flux tubes leads to a transformation of Kéhler magnetic energy to ordinary and dark matter.
Since the increase of volume increases volume energy, this leads rapidly to energy minimum
at some flux tube thickness. The reduction of cosmological constant by a phase transition
however leads to a new expansion phase. These jerks would replace smooth cosmic expansion
of GRT. The discrete coupling constant evolution predicted by the number theoretical vision
could be understood as being induced by that of cosmological constant taking the role of
cutoff parameter in QFT picture [L73].
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Twistor lift at the level of scattering amplitudes and connection with Veneziano du-
ality

The classical part of twistor lift of TGD is rather well-understood. Concerning the twistorialization
at the level of scattering amplitudes the situation is much more difficult conceptually - I already
mentioned my limited QFT skills.

1. From the classical picture described above it is clear that one should construct the 8-D
twistorial counterpart of theory involving space-time surfaces, string world sheets and their
boundaries, plus partonic 2-surfaces and that this should lead to concrete expressions for the
scattering amplitudes.

The light-like boundaries of string world sheets as carriers of fermion numbers would corre-
spond to twistors as they appear in twistor Grassmann approach and define the analog for
the massless sector of string theories. The attempts to understand twistorialization have been
restricted to this sector.

2. The beautiful basic prediction would be that particles massless in 8-D sense can be massive
in 4-D sense. Also the infrared cutoff problematic in twistor approach emerges naturally and
reduces basically to the dynamical cosmological constant provided by classical twistor lift.

One can assign 4-momentum both to the spinor harmonics of the embedding space represent-
ing ground states of super-conformal representations and to light-like boundaries of string
world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identical
by quantum classical correspondence: this could be seen as a concretization of Equivalence
Principle. Also a connection with string model emerges.

3. As far as symmetries are considered, the picture looks rather clear. Ordinary twistor Grass-
mannian approach boils down to the construction of scattering amplitudes in terms of Yangian
invariants for conformal group of M*. Therefore a generalization of super-symplectic symme-
tries to their Yangian counterpart seems necessary. These symmetries would be gigantic but
how to deduce their implications?

4. The notion of positive Grassmannian is central in the twistor approach to the scattering am-
plitudes in calN = 4 SUSYs. TGD provides a possible generalization and number theoretic
interpretation of this notion. TGD generalizes the observation that scattering amplitudes in
twistor Grassmann approach correspond to representations for permutations. Since 2-vertex
is the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering am-
plitudes are representations for braidings.

Braid interpretation encourages the conjecture that non-planar diagrams can be reduced to
ordinary ones by a procedure analogous to the construction of braid (knot) invariants by
gradual un-braiding (un-knotting).

This is however not the only vision about a solution of non-planarity. Quantum criticality
provides different view leading to a totally unexpected connection with string models, actually
with the Veneziano duality, which was the starting point of dual resonance model in turn leading
via dual resonance models to super string models.

1. Quantum criticality in TGD framework means that coupling constant evolution is discrete in
the sense that coupling constants are piecewise constant functions of length scale replaced by
dynamical cosmological constant. Loop corrections would vanish identically and the recursion
formulas for the scattering amplitudes (allowing only planar diagrams) deduced in twistor
Grassmann would involve no loop corrections. In particular, cuts would be replaced by
sequences of poles mimicking them like sequences of point charge mimic line charges. In
momentum discretization this picture follows automatically.

2. This would make sense in finite measurement resolution realized in number theoretical vi-
sion by number-theoretic discretization of the space-time surface (cognitive representation)
as points with coordinates in the extension of rationals defining the adele [L49]. Similar dis-
cretization would take place for momenta. Loops would vanish at the level of discretization
but what would happen at the possibly existing continuum limit: does the sequence of poles
integrate to cuts? Or is representation as sum of resonances something much deeper?
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3. Maybe it is! The basic idea of behind the original Veneziano amplitudes (seehttp://tinyurl.
com/yyhwvbqgb) was Veneziano duality. This 4-particle amplitude was generalized by Yoshiro
Nambu, Holber-Beck Nielsen, and Leonard Susskind to N-particle amplitude (see http://
tinyurl.com/yyvkx7as) based on string picture, and the resulting model was called dual
resonance model. The model was forgotten as QCD emerged. Later came superstring models
and led to M-theory. Now it has become clear that something went wrong, and it seems that
one must return to the roots. Could the return to the roots mean a careful reconsideration
of the dual resonance model?

4. Recall that Veneziano duality (1968) was deduced by assuming that scattering amplitude can
be described as sum over s-channel resonances or t-channel Regge exchanges and Veneziano
duality stated that hadronic scattering amplitudes have representation as sums over s- or
t-channel resonance poles identified as excitations of strings. The sum over exchanges defined
by t-channel resonances indeed reduces at larger values of s to Regge form.

The resonances had zero width, which was not consistent with unitarity. Further, there
were no counterparts for the sum of s-, t-, and u-channel diagrams with continuous cuts
in the kinematical regions encountered in QFT approach. What puts bells ringing is the u-
channel diagrams would be non-planar and non-planarity is the problem of twistor Grassmann
approach.

5. Veneziano duality is true only for s- and t- channels but not been s- and u-channel. Stringy de-
scription makes t-channel and s-channel pictures equivalent. Could it be that in fundamental
description u-channels diagrams cannot be distinguished from s-channel diagrams or t-channel
diagrams? Could the stringy representation of the scattering diagrams make u-channel twist
somehow trivial if handles of string world sheet representing stringy loops in turn representing
the analog of non-planarity of Feynman diagrams are absent? The permutation of external
momenta for tree diagram in absence of loops in planar representation would be a twist of
7 in the representation of planar diagram as string world sheet and would not change the
topology of the string world sheet and would not involve non-trivial world sheet topology.

For string world sheets loops would correspond to handles. The presence of handle would
give an edge with a loop at the level of 3-surface (self energy correction in QFT). Handles
are not allowed if the induced metric for the string world sheet has Minkowskian signature.
If the stringy counterparts of loops are absent, also the loops in scattering amplitudes should
be absent.

This argument applies only inside the Minkowskian space-time regions. If string world sheets
are present also in Euclidian regions, they might have handles and loop corrections could
emerge in this manner. In TGD framework strings (string world sheets) are identified to 1-D
edges/folds of 3-surface at which minimal surface property and topological QFT property
fails (minimal surfaces as calibrations). Could the interpretation of edge/fold as discontinuity
of some partial derivatives exclude loopy edges: perhaps the branching points would be too
singular?

A reduction to a sum over s-channel resonances is what the vanishing of loops would suggest.
Could the presence of string world sheets make possible the vanishing of continuous cuts even at
the continuum limit so that continuum cuts would emerge only in the approximation as the density
of resonances is high enough?

The replacement of continuous cut with a sum of infinitely narrow resonances is certainly an
approximation. Could it be that the stringy representation as a sum of resonances with finite width
is an essential aspect of quantum physics allowing to get rid of infinities necessarily accompanying
loops? Consider now the arguments against this idea.

1. How to get rid of the problems with unitarity caused by the zero width of resonances? Could
finite resonance widths make unitarity possible? Ordinary twistor Grassmannian approach
predicts that the virtual momenta are light-like but complex: obviously, the imaginary part
of the energy in rest frame would have interpretation as resonance with.

In TGD framework this generalizes for 8-D momenta. By quantum-classical correspondence
(QCC) the classical Noether charges are equal to the eigenvalues of the fermionic charges
in Cartan algebrable (maximal set of mutually commuting observables) and classical TGD
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indeed predicts complex momenta (K&hler coupling strength is naturally complex). QCC thus
supports this proposal.

Sum over resonances/exchanges picture is in conflict with QFT picture about scattering of
particles. Could finite resonance widths due to the complex momenta give rise to the QFT
type scattering amplitudes as one develops the amplitudes in Taylor series with respect to the
resonance width? Unitarity condition indeed gives the first estimate for the resonance width.
QFT amplitudes should emerge in an approximation obtained by replacing the discrete set of
finite width resonances with a cut as the distance between poles is shorter than the resolution
for mass squared.

In superstring models string tension has single very large value and one cannot obtain QFT
type behavior at low energies (for instance, scattering amplitudes in hadronic string model are
concentrated in forward direction). TGD however predicts an entire hierarchy of p-adic length
scales with varying string tension. The hierarchy of mass scales corresponding roughly to the
lengths and thickness of magnetic flux tubes as thickened cosmic strings and characterized
by the value of cosmological constant predicted by twistor lift of TGD. Could this give rise
to continuous QCT type cuts at the limit when measurement resolution cannot distinguish
between resonances?

The dominating term in the sum over sums of resonances in t-channel gives near forward
direction approximately the lowest mass resonance for strings with the smallest string tension.
This gives the behavior 1/(t — m2,,,.), where m,,;, corresponds to the longest mass scale
involved (the largest space-time sheet involved), approximating the 1/¢-behavior of massless
theories. This also brings in IR cutoff, the lack of which is a problem of gauge theories.
This should give rise to continuous QFT type cuts at the limit when measurement resolution
cannot distinguish between resonances.

1.2 Bird’s Eye of View about the ”Topics of Hyper-finite

Factors and Hierarchy of Planck Constants: Part I”

The book ”"Bird’s Eye of View about the Topics of Hyper-finite Factors and Hierarchy of Planck
Constants: Part I” is organized to 2 parts.

The first part of the part I is devoted to hyper-finite factors and hierarchy of Planck con-

stants.

1. Configuration space spinors indeed define a canonical example about hyper-finite factor of

type II;. The work with TGD inspired model for quantum computation led to the realization
that von Neumann algebras, in particular hyper-finite factors of type II; could provide the
mathematics needed to develop a more explicit view about the construction of M-matrix. This
has turned out to be the case to the extent that a general master formula for M-matrix with
interactions described as a deformation of ordinary tensor product to Connes tensor products
emerges.

The idea about hierarchy of Planck constants emerged from anomalies of biology and the
strange finding that planetary orbits could be regarded as Bohr orbits but with a gigantic
value of Planck constant. This lead to the vision that dark matter corresponds to ordinary
particles but with non-standard value of Planck constant and to a generalization of the 8-D
imbedding space to a book like structure with pages partially characterized by the value of
Planck constant. Using the intuition provided by the inclusions of hyper-finite factors of type
II; one ends up to a prediction for the spectrum of Planck constants associated with M* and
CPy degrees of freedom. This inspires the proposal that dark matter could be in quantum
Hall like phase localized at light-like 3-surfaces with macroscopic size and behaving in many
respects like black hole horizons.

In the 2nd part of part I some applications are discussed.

The first chapter is devoted to the applications of TGD view about quantum criticality and
in various fields of physics and also in biology. There is also a chapter about the Nottale’s
formula for the gravitational Planck constant hg = GMm/vy = ngrhg. The are arguments
suggesting how the value of the velocity parameter vy < ¢ is determined.
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The possibility that Planck length [p and C' P, length R are identical is considered. The
first guess G = R?/ hgr holding true at gravitational flux tubes predicts too large variation
of G. One can however interpret space-time surfaces as ni-fold coverings of C' P, and no-fold
coverings of M* and one has hgr = nina. The value of ny is expected to be bounded by
strong constraints. The formula G = R?/nyhq gives a correct size scale for G for ny ~ 1035
and one could also understand why the variation of G is relatively small but too large to be
consistent with the existing views.

2. TGD based view about quasars as TGD analogs of white holes is discussed. They would
be much more structured than ordinary blackholes. Quasars, galaxies, and even stars and
planets would emerge as tangles to cosmic strings, and have topology resembling that of
dipole magnetic field. They would possess magnetic fields and empty disk around the central
region, and lack horizon. The inspiration came from the notion of MECO and one can ask
whether even ordinary blackholes are replaced in TGD framework by these objects or their
time reversals.

3. There is also a chapter devoted to the vision about 3-space as a network with nodes connected
by flux tubes making possible quantum entanglement between nodes possible in arbitrary long
length scales due to the hierarchy of Planck constants.

1.3 Sources

The eight online books about TGD [K122 [K115|, K94l [K81] [K29| K77, [K56, [K103] and nine online
books about TGD inspired theory of consciousness and quantum biology [K111) [K22| K86 K20
K53l K64, [K67, [K102, [K110] are warmly recommended for the reader willing to get overall view
about what is involved.

My homepage (http://tinyurl.com/ybv8dt4n) contains a lot of material about TGD. In
particular, a TGD glossary at http://tinyurl.com/yd6j£307).

I have published articles about TGD and its applications to consciousness and living mat-
ter in Journal of Non-Locality (http://tinyurl.com/ycyrxj4o founded by Lian Sidorov and in
Prespacetime Journal (http://tinyurl.com/ycvktjhn), Journal of Consciousness Research and
Exploration (http://tinyurl.com/ybadf672), and DNA Decipher Journal (http://tinyurl.
com/y9z52khg), all of them founded by Huping Hu. One can find the list about the articles pub-
lished at http://tinyurl.com/ybv8dt4n. I am grateful for these far-sighted people for providing
a communication channel, whose importance one cannot overestimate.

1.4 The contents of the book

1.4.1 PART I. HYPER-FINITE FACTORS AND HIERARCHY OF
PLANCK CONSTANTS

What von Neumann Right After All?

The work with TGD inspired model for topological quantum computation led to the realization
that von Neumann algebras, in particular so called hyper-finite factors of type I, seem to provide
the mathematics needed to develop a more explicit view about the construction of S-matrix. The
original discussion has transformed during years from free speculation reflecting in many aspects my
ignorance about the mathematics involved to a more realistic view about the role of these algebras
in quantum TGD. The discussions of this chapter have been restricted to the basic notions are
discussed and only short mention is made to TGD applications discussed in second chapter.

The goal of von Neumann was to generalize the algebra of quantum mechanical observables.
The basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements
allow Hermitian conjugation * and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
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states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to
1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projec-
tion probabilities. Quantum measurements can lead with a finite probability only to mixed states
with a density matrix which is projection operator to infinite-dimensional subspace. The simple
von Neumann algebras for which unit operator has unit trace are known as factors of type I1[;.

The definitions of adopted by von Neumann allow however more general algebras. Type I,
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I, associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras
of type III non-trivial traces are always infinite and the notion of trace becomes useless being
replaced by the notion of state which is generalization of the notion of thermodynamical state.
The fascinating feature of this notion of state is that it defines a unique modular automorphism
of the factor defined apart from unitary inner automorphism and the question is whether this
notion or its generalization might be relevant for the construction of M-matrix in TGD. It however
seems that in TGD framework based on Zero Energy Ontology identifiable as “square root” of
thermodynamics a square root of thermodynamical state is needed.

The inclusions of hyper-finite factors define an excellent candidate for the description of finite
measurement resolution with included factor representing the degrees of freedom below measure-
ment resolution. The would also give connection to the notion of quantum group whose physical
interpretation has remained unclear. This idea is central to the proposed applications to quantum
TGD discussed in separate chapter.

Evolution of Ideas about Hyper-finite Factors in TGD

The work with TGD inspired model for quantum computation led to the realization that von
Neumann algebras, in particular hyper-finite factors, could provide the mathematics needed to
develop a more explicit view about the construction of M-matrix generalizing the notion of S-
matrix in zero energy ontology (ZEO). In this chapter I will discuss various aspects of hyper-finite
factors and their possible physical interpretation in TGD framework.

1. Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite fac-
tors (HFFs) of type III; appearing in relativistic quantum field theories provide also the proper
mathematical framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II;. Therefore also the Clifford algebra at a given point (light-like 3-surface)
of world of classical worlds (WCW) is HFF of type II;. If the fermionic Fock algebra defined
by the fermionic oscillator operators assignable to the induced spinor fields (this is actually
not obvious!) is infinite-dimensional it defines a representation for HFF of type II;. Super-
conformal symmetry suggests that the extension of the Clifford algebra defining the fermionic
part of a super-conformal algebra by adding bosonic super-generators representing symmetries
of WCW respects the HFF property. It could however occur that HFF of type Il results.

2. WCW is a union of sub-WCWs associated with causal diamonds (C'D) defined as intersections
of future and past directed light-cones. One can allow also unions of C'Ds and the proposal
is that C'Ds within C' Ds are possible. Whether C'Ds can intersect is not clear.

3. The assumption that the M* proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
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L(a) = SO(3,1)/S0(3). Therefore the C Ds with a free position of lower tip are parameterized
by M* x L(a). A possible interpretation is in terms of quantum cosmology with a identified
as cosmic time. Since Lorentz boosts define a non-compact group, the generalization of so
called crossed product construction strongly suggests that the local Clifford algebra of WCW
is HFF of type III;. If one allows all values of @, one ends up with M* x Mi as the space of
moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products
of unit matrix 1 and 7-D gamma matrices v; and Pauli sigma matrices by replacing 1 and
Y, by octonions. This inspires the idea that it might be possible to end up with quantum
TGD from purely number theoretical arguments. One can start from a local octonionic
Clifford algebra in M®. Associativity (co-associativity) condition is satisfied if one restricts
the octonionic algebra to a subalgebra associated with any hyper-quaternionic and thus 4-D
sub-manifold of M?®. This means that the induced gamma matrices associated with the Kihler
action span a complex quaternionic (complex co-quaternionic) sub-space at each point of the
sub-manifold. This associative (co-associative) sub-algebra can be mapped a matrix algebra.
Together with M8 — H duality this leads automatically to quantum TGD and therefore also to
the notion of WCW and its Clifford algebra which is however only mappable to an associative
(co-associative( algebra and thus to HFF of type II;.

2. Hyper-finite factors and M-matriz
HFFs of type III; provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism A% (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could be
used to define the M-matrix of quantum TGD. This is not the case as is obvious already from
the fact that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors
is a more appropriate starting point than the notion modular automorphism but as a gener-
alization of thermodynamical state is certainly not enough for the purposes of quantum TGD
and quantum field theories (algebraic quantum field theorists might disagree!). Zero energy
ontology requires that the notion of thermodynamical state should be replaced with its “com-
plex square root” abstracting the idea about M-matrix as a product of positive square root
of a diagonal density matrix and a unitary S-matrix. This generalization of thermodynamical
state -if it exists- would provide a firm mathematical basis for the notion of M-matrix and for
the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology (ZEO): the two vacua can be assigned with the positive and negative energy
parts of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions meaning the analog of state function
collapse in zero modes fixing the classical conserved charges equal to the quantal counterparts.
Classical charges would be parameters characterizing zero modes.

A concrete construction of M-matrix motivated the recent rather precise view about basic
variational principles is proposed. Fundamental fermions localized to string world sheets can be
said to propagate as massless particles along their boundaries. The fundamental interaction vertices
correspond to two fermion scattering for fermions at opposite throats of wormhole contact and the
inverse of the conformal scaling generator Ly would define the stringy propagator characterizing
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this interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite
throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with
monopole Kahler magnetic flux flowing around a loop going through wormhole contacts.

3. Connes tensor product as a realization of finite measurement resolution

The inclusions N' C M of factors allow an attractive mathematical description of finite
measurement resolution in terms of Connes tensor product but do not fix M-matrix as was the
original optimistic belief.

1. In ZEO N would create states experimentally indistinguishable from the original one. There-
fore A/ takes the role of complex numbers in non-commutative quantum theory. The space
M /N would correspond to the operators creating physical states modulo measurement reso-
lution and has typically fractal dimension given as the index of the inclusion. The correspond-
ing spinor spaces have an identification as quantum spaces with non-commutative A -valued
coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their A “averaged” counterparts. The “averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally
or path integral over the degrees of freedom below measurement resolution defined by (say)
length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as A/-“averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to A/. The condition that N/
averaging in terms of a complex square root of N state produces this kind of M-matrix poses
a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

4. Analogs of quantum matriz groups from finite measurement resolution?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions of von
Neumann algebras allowing to describe mathematically the notion of finite measurement resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution. The basic idea is to replace complex matrix
elements with operators expressible as products of non-negative hermitian operators and unitary
operators analogous to the products of modulus and phase as a representation for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its
development with respect to a fixed row or column does not pose additional conditions. Strong
definition of determinant requires its invariance under permutations of rows and columns. The
permutation of rows/columns turns out to have interpretation as braiding for the hermitian op-
erators defined by the moduli of operator valued matrix elements. The commutativity of all sub-
determinants is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian
operators and sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but
provide a concrete representation and interpretation for quantum group in terms of finite measure-
ment resolution if ¢ is a root of unity. For ¢ = +1 (Bose-Einstein or Fermi-Dirac statistics) one
obtains quantum matrices for which the determinant is apart from possible change by sign factor
invariant under the permutations of both rows and columns. One could also understand the fractal
structure of inclusion sequences of hyper-finite factors resulting by recursively replacing operators
appearing as matrix elements with quantum matrices.

5. Quantum spinors and fuzzy quantum mechanics
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The notion of quantum spinor leads to a quantum mechanical description of fuzzy prob-
abilities. For quantum spinors state function reduction cannot be performed unless quantum
deformation parameter equals to ¢ = 1. The reason is that the components of quantum spinor
do not commute: it is however possible to measure the commuting operators representing moduli
squared of the components giving the probabilities associated with “true” and “false”. The univer-
sal eigenvalue spectrum for probabilities does not in general contain (1,0) so that quantum gbits
are inherently fuzzy. State function reduction would occur only after a transition to q=1 phase
and decoherence is not a problem as long as it does not induce this transition.

Trying to fuse the basic mathematical ideas of quantum TGD to a single coherent
whole

The theoretical framework behind TGD involves several different strands and the goal is to unify
them to a single coherent whole. TGD involves number theoretic and geometric visions about
physics and M® — H duality, analogous to Langlands duality, is proposed to unify them. Also
quantum classical correspondence (QCC) is a central aspect of TGD. One should understand both
the M?® — H duality and QCC at the level of detail.

The following mathematical notions are expected to be of relevance for this goal.

1. Von Neumann algebras, call them M, in particular hyperfinite factors of type IT; (HFFs), are
in a central role. Both the geometric and number theoretic side, QCC could mathematically
correspond to the relationship between M and its commutant M’.

For instance, symplectic transformations leave induced Ké&hler form invariant and various
fluxes of Kéhler form are symplectic invariants and correspond to classical physics commuting
with quantum physics coded by the super symplectic algebra (SSA). On the number theoretic
side, the Galois invariants assignable to the polynomials determining space-time surfaces are
analogous classical invariants.

2. The generalization of ordinary arithmetics to quantum arithmetics obtained by replacing +
and x with @& and ® allows us to replace the notions of finite and p-adic number fields with
their quantum variants. The same applies to various algebras.

3. Number theoretic vision leads to adelic physics involving a fusion of various p-adic physics
and real physics and to hierarchies of extensions of rationals involving hierarchies of Galois
groups involving inclusions of normal subgroups. The notion of adele can be generalized by
replacing various p-adic number fields with the p-adic representations of various algebras.

4. The physical interpretation of the notion of infinite prime has remained elusive although a
formal interpretation in terms of a repeated quantization of a supersymmetric arithmetic QFT
is highly suggestive. One can also generalize infinite primes to their quantum variants. The
proposal is that the hierarchy of infinite primes generalizes the notion of adele.

The formulation of physics as Kéhler geometry of the ”world of classical worlds” (WCW)
involves f 3 kinds of algebras A; supersymplectic isometries SSA acting on (5Mf|1r x C'Ps, affine
algebras Af f acting on light-like partonic orbits, and isometries I of light-cone boundary 6Mi,
allowing hierarchies A,,.

The braided Galois group algebras at the number theory side and algebras {4, } at the
geometric side define excellent candidates for inclusion hierarchies of HFFs. M® — H duality
suggests that n corresponds to the degree nof the polynomial P defining space-time surface and
that the n roots of P correspond to n braid strands at H side. Braided Galois group would act in
A,, and hierarchies of Galois groups would induce hierarchies of inclusions of HFFs. The ramified
primes of P would correspond to physically preferred p-adic primes in the adelic structure formed
by p-adic variants of A, with + and x replaced with & and ®.

TGD view about Mckay Correspondence, ADE Hierarchy, Inclusions of Hyperfinite
Factors, and Twistors

In this chapter 4 topics are discussed. McKay correspondence, SUSY, and twistors are discussed
from TGD point of view, and new aspects of M® — H duality are considered.

1. McKay correspondence in TGD framework
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There are two mysterious looking correspondences involving ADE groups. McKay corre-
spondence between McKay graphs characterizing tensor products for finite subgroups of SU(2)
and Dynkin diagrams of affine ADE groups is the first one. The correspondence between principal
diagrams characterizing inclusions of hyper-finite factors of type II; (HFFs) with Dynkin diagrams
for a subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

These correspondences are discussed from number theoretic point of view suggested by TGD
and based on the interpretation of discrete subgroups of SU(2) as subgroups of the covering group
of quaternionic automorphisms SO(3) (analog of Galois group) and generalization of these groups
to semi-direct products Gal(K) < SU(2)k of Galois group for extension K of rationals with the
discrete subgroup SU(2)k of SU(2) with representation matrix elements in K. The identification
of the inclusion hierarchy of HFFs with the hierarchy of extensions of rationals and their Galois
groups is proposed.

A further mystery whether Gal(K)<SU(2)k could give rise to quantum groups or affine al-
gebras. In TGD framework the infinite-D group of isometries of “world of classical worlds” (WCW)
is identified as an infinite-D symplectic group for which the discrete subgroups characterized by
K have infinite-D representations so that hyper-finite factors are natural for their representations.
Symplectic algebra SS A allows hierarchy of isomorphic sub-algebras SSA,,. The gauge conditions
for SSA,, and [SSA,, SSA] would define measurement resolution giving rise to hierarchies of in-
clusions and ADE type Kac-Moody type algebras or quantum algebras representing symmetries
modulo measurement resolution.

A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) < SU(2)k and free field representation of ADE type Kac-Moody algebra identi-
fying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements defined by the
traces of representation matrices (characters).

2. New aspects of M® — H duality

M?® — H duality is now a central part of TGD and leads to new findings. M®— H duality can
be formulated both at the level of space-time surfaces and light-like 8-momenta. Since the choice of
M* in the decomposition of momentum space M® = M* x E* is rather free, it is always possible to
find a choice for which light-like 8-momentum reduces to light-like 4-momentum in M* - the notion
of 4-D mass is relative. This leads to what might be called SO(4) — SU(3) duality corresponding
to the hadronic and partonic views about hadron physics. Particles, which are eigenstates of mass
squared are massless in M* x CP, picture and massive in M?® picture. The massivation in this
picture is a universal mechanism having nothing to do with dynamics and results in zero energy
ontology automatically if the zero energy states are superpositions of states with different masses.
p-Adic thermodynamics describes this massivation. Also a proposal for the realization of ADE
hierarchy emerges.

4-D space-time surfaces correspond to roots of octonionic polynomials P (o) with real coef-
ficients corresponding to the vanishing of the real or imaginary part of P(0). These polynomials
however allow universal roots, which are not 4-D but analogs of 6-D branes and having topology
of S%. Their M* projections are time =constant snapshots ¢t = 7,73 < r,, 3-balls of M* light-
cone (r, is root of P(x)). At each point the ball there is a sphere S® shrinking to a point about
boundaries of the 3-ball. These special values of M* time lead to a deeper understanding of ZEO
based quantum measurement theory and consciousness theory.

3. Is the identification of twistor space of M* really correct?

The critical questions concerning the identification of twistor space of M* as M?* x S§2
led to consider a more conservative identification as C'P; with hyperbolic signature (3,-3) and
replacement of H with H = cdeons X C'Pa, where cdeons is CP2 with hyperbolic signature (1,-3).
This approach reproduces the nice results of the earlier picture but means that the hierarchy of
CDs in M® is mapped to a hierarchy of spaces cdcons with sizes of CDs. This conforms with
Poincare symmetry from which everything started since Poincare group acts in the moduli space
of octonionic structures of M8. Note that also the original form of M?® — H duality continues to
make sense and results from the modification by projection from CPs ), to M* rather than C'P, .

The outcome of octo-twistor approach applied at level of M?® together with modified M3 — H
duality leads to a nice picture view about twistorial description of massive states based on quater-
nionic generalization of twistor (super-)Grassmannian approach. A radically new view is that
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descriptions in terms of massive and massless states are alternative options, and correspond to
two different alternative twistorial descriptions and leads to the interpretation of p-adic thermody-
namics as completely universal massivation mechanism having nothing to do with dynamics. As
a side product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which are
not 4-D but analogs of 6-D branes. This part of article is not a mere side track since by M® — H
duality the finite sub-groups of SU(2) of McKay correspondence appear quite concretely in the
description of the measurement resolution of 8-momentum.

Does TGD predict spectrum of Planck constants?

The quantization of Planck constant has been the basic theme of TGD since 2005. The basic idea
was stimulated by the suggestion of Nottale that planetary orbits could be seen as Bohr orbits with
enormous value of Planck constant given by Ay, = GMy M3 /vg, where the velocity parameter vg has
the approximate value vg ~ 271! for the inner planets. This inspired the ideas that quantization
is due to a condensation of ordinary matter around dark matter concentrated near Bohr orbits
and that dark matter is in macroscopic quantum phase in astrophysical scales. The second crucial
empirical input were the anomalies associated with living matter. The recent version of the chapter
represents the evolution of ideas about quantization of Planck constants from a perspective given
by seven years’s work with the idea. A very concise summary about the situation is as follows.

1. Basic physical ideas
The basic phenomenological rules are simple.

1. The phases with non-standard values of effective Planck constant are identified as dark matter.
The motivation comes from the natural assumption that only the particles with the same value
of effective Planck can appear in the same vertex. One can illustrate the situation in terms of
the book metaphor. Effective embedding spaces with different values of Planck constant form
a book like structure and matter can be transferred between different pages only through the
back of the book where the pages are glued together. One important implication is that light
exotic charged particles lighter than weak bosons are possible if they have non-standard value
of Planck constant. The standard argument excluding them is based on decay widths of weak
bosons and has led to a neglect of large number of particle physics anomalies.

2. Large effective or real value of Planck constant scales up Compton length - or at least de

Broglie wave length - and its geometric correlate at space-time level identified as size scale of
the space-time sheet assignable to the particle. This could correspond to the Kéhler magnetic
flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets
and short flux tubes at ends with length of order C'P; size.
This rule has far reaching implications in quantum biology and neuroscience since macro-
scopic quantum phases become possible as the basic criterion stating that macroscopic quan-
tum phase becomes possible if the density of particles is so high that particles as Compton
length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One
implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG
frequency range on vertebrate brain: F = hf implies that the energies for the ordinary value
of Planck constant are much below the thermal threshold but large value of Planck constant
changes the situation. Also the phase transitions modifying the value of Planck constant and
changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also
reconnections of the flux tubes.

The hierarchy of Planck constants suggests also a new interpretation for FQHE (fractional
quantum Hall effect) in terms of anyonic phases with non-standard value of effective Planck
constant realized in terms of the effective multi-sheeted covering of embedding space: multi-
sheeted space-time is to be distinguished from many-sheeted space-time.

In astrophysics and cosmology the implications are even more dramatic. The interpretation of
hgr introduced by Nottale in TGD framework is as an effective Planck constant associated with
space-time sheets mediating gravitational interaction between masses M and m. The huge
value of /iy, means that the integer fig, /Ao interpreted as the number of sheets of covering is
gigantic and that Universe possesses gravitational quantum coherence in astronomical scales.
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The gravitational Compton length GM /vy = rg/2vy does not depend on m so that all particles
around say Sun say same gravitational Compton length.

By the independence of gravitational acceleration and gravitational Compton length on par-
ticle mass, it is enough to assume that only microscopic particles couple to the dark gravitons
propagating along flux tubes mediating gravitational interaction. Therefore hg, = hcry could
be true in microscopic scales and would predict that cyclotron energies have no dependence on
the mass of the charged particle meaning that the spectrum ordinary photons resulting in the
transformation of dark photons to ordinary photons is universal. An attractive identification
of these photons would be as bio-photons with energies in visible and UV range and thus
inducing molecular transitions making control of biochemistry by dark photons. This changes
the view about gravitons and suggests that gravitational radiation is emitted as dark gravi-
tons which decay to pulses of ordinary gravitons replacing continuous flow of gravitational
radiation. The energy of the graviton is gigantic unless the emission is assume to take place
from a microscopic systems with large but not gigantic hy,..

3. Why Nature would like to have large - maybe even gigantic - value of effective value of
Planck constant? A possible answer relies on the observation that in perturbation theory
the expansion takes in powers of gauge couplings strengths o = ¢2/47h. If the effective
value of h replaces its real value as one might expect to happen for multi-sheeted particles
behaving like single particle, « is scaled down and perturbative expansion converges for the
new particles. One could say that Mother Nature loves theoreticians and comes in rescue in
their attempts to calculate. In quantum gravitation the problem is especially acute since the
dimensionless parameter GMm/h has gigantic value. Replacing i with %y, = GMm/vy the
coupling strength becomes vy < 1.

2. Space-time correlates for the hierarchy of Planck constants

The hierarchy of Planck constants was introduced to TGD originally as an additional pos-
tulate and formulated as the existence of a hierarchy of embedding spaces defined as Cartesian
products of singular coverings of M* and C'P, with numbers of sheets given by integers n, and ns
and A = nhy. n = nynp.

With the advent of zero energy ontology (ZEQO), it became clear that the notion of singular
covering space of the embedding space could be only a convenient auxiliary notion. Singular means
that the sheets fuse together at the boundary of multi-sheeted region. In ZEO 3-surfaces are unions
of space-like 3-surface at opposite boundaries of CD. The non-determinism of Kahler action due
to the huge vacuum degeneracy would naturally explain the existence of several space-time sheets
connecting the two 3-surfaces at the opposite boundaries of CD. Quantum criticality suggests
strongly conformal invariance and the identification of n as the number of conformal equivalence
classes of these space-time sheets. Also a connection with the notion of negentropic entanglement
emerges.

Mathematical speculations inspired by the hierarchy of Planck constants

This chapter contains the purely mathematical speculations about the hierarchy of Planck con-
stants (actually only effective hierarchy if the recent interpretation is correct) as separate from
the material describing the physical ideas, key mathematical concepts, and the basic applications.
These mathematical speculations emerged during the first stormy years in the evolution of the
ideas about Planck constant and must be taken with a big grain of salt. I feel myself rather con-
servative as compared to the fellow who produced this stuff for 7 years ago. This all is of course
very relative. Many readers might experience this recent me as a reckless speculator.

The first speculative question is about possible relationship between Jones inclusions of
hyperfinite factors of type II; (hyper-finite factors are von Neuman algebras emerging naturally
in TGD framework). The basic idea is that the discrete groups assignable to inclusions could
correspond to discrete groups acting in the effective covering spaces of embedding space assignable
to the hierarchy of Planck constants.

There are also speculations relating to the hierarchy of Planck constants, Mc-Kay corre-
spondence, and Jones inclusions. Even Farey sequences, Riemann hypothesis and and N-tangles
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are discussed. Depending on reader these speculations might be experienced as irritating or enter-
taining. It would be interesting to go this stuff through in the light of recent understanding of the
effective hierarchy of Planck constants to see what portion of its survives.

Negentropy Maximization Principle

In TGD Universe the moments of consciousness are associated with quantum jumps between
quantum histories. The proposal is that the dynamics of consciousness is governed by Negentropy
Maximization Principle (NMP), which states the information content of conscious experience is
maximal. The formulation of NMP is the basic topic of this chapter.

NMP codes for the dynamics of standard state function reduction and states that the state
function reduction process following U-process gives rise to a maximal reduction of entanglement
entropy at each step. In the generic case this implies at each step a decomposition of the system
to unique unentangled subsystems and the process repeats itself for these subsystems. The process
stops when the resulting subsystem cannot be decomposed to a pair of free systems since energy
conservation makes the reduction of entanglement kinematically impossible in the case of bound
states. The natural assumption is that self loses consciousness when it entangles via bound state
entanglement.

There is an important exception to this vision based on ordinary Shannon entropy. There
exists an infinite hierarchy of number theoretical entropies making sense for rational or even alge-
braic entanglement probabilities. In this case the entanglement negentropy can be negative so that
NMP favors the generation of negentropic entanglement (NE), which is not bound state entangle-
ment in standard sense since the condition that state function reduction leads to an eigenstate of
density matrix requires the final state density matrix to be a projection operator.

NE might serve as a correlate for emotions like love and experience of understanding. The
reduction of ordinary entanglement entropy to random final state implies second law at the level
of ensemble. For the generation of NE the outcome of the reduction is not random: the prediction
is that second law is not a universal truth holding true in all scales. Since number theoretic
entropies are natural in the intersection of real and p-adic worlds, this suggests that life resides
in this intersection. The existence effectively bound states with no binding energy might have
important implications for the understanding the stability of basic bio-polymers and the key aspects
of metabolism. A natural assumption is that self experiences expansion of consciousness as it
entangles in this manner. Quite generally, an infinite self hierarchy with the entire Universe at the
top is predicted.

There are two options to consider. Strong form of NMP, which would demand maximal
negentropy gain: this would not allow morally responsible free will if ethics is defined in terms of
evolution as increase of NE resources. Weak form of NMP would allow self to choose also lower-
dimensional sub-space of the projector defining the final state sub-space for strong form of NMP.
Weak form turns out to have several highly desirable consequences: it favours dimensions of final
state space coming as powers of prime, and in particular dimensions which are primes near powers
of prime: as a special case, p-adic length scale hypothesis follows. Weak form of NMP allows also
quantum computations, which halt unlike strong form of NMP.

Besides number theoretic negentropies there are also other new elements as compared to the
earlier formulation of NMP.

1. ZEO modifies dramatically the formulation of NMP since U-matrix acts between zero energy
states and can be regarded as a collection of orthonormal M-matrices, which generalize the
ordinary S-matrix and define what might be called a complex square root of density matrix
so that kind of a square root of thermodynamics at single particle level justifying also p-adic
mass calculations based on p-adic thermodynamics is in question.

2. The hierarchy of Planck constants labelling a hierarchy of quantum criticalities is a further
new element having important implications for conciousness and biology.

3. Hyper-finite factors of type II; represent an additional technical complication requiring sep-
arate treatment of NMP taking into account finite measurement resolution realized in terms
of inclusions of these factors.

NMP has wide range of important implications.
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1. In particular, one must give up the standard view about second law and replace it with
NMP taking into account the hierarchy of CDs assigned with ZEO and dark matter hierarchy
labelled by the values of Planck constants, as well as the effects due to NE. The breaking of
second law in standard sense is expected to take place and be crucial for the understanding
of evolution.

2. Self hierarchy having the hierarchy of CDs as embedding space correlate leads naturally to
a description of the contents of consciousness analogous to thermodynamics except that the
entropy is replaced with negentropy.

3. In the case of living matter NMP allows to understand the origin of metabolism. NMP
demands that self generates somehow negentropy: otherwise a state function reduction to tjhe
opposite boundary of CD takes place and means death and re-incarnation of self. Metabolism
as gathering of nutrients, which by definition carry NE is the manner to avoid this fate. This
leads to a vision about the role of NE in the generation of sensory qualia and a connection
with metabolism. Metabolites would carry NE and each metabolite would correspond to
a particular qualia (not only energy but also other quantum numbers would correspond to
metabolites). That primary qualia would be associated with nutrient flow is not actually
surprising!

4. NE leads to a vision about cognition. Negentropically entangled state consisting of a superpo-
sition of pairs can be interpreted as a conscious abstraction or rule: negentropically entangled
Schrodinger cat knows that it is better to keep the bottle closed.

5. NMP implies continual generation of NE. One might refer to this ever expanding universal
library as “Akaschic records”. NE could be experienced directly during the repeated state
function reductions to the passive boundary of CD - that is during the life cycle of sub-self
defining the mental image. Another, less feasible option is that interaction free measurement
is required to assign to NE conscious experience. As mentioned, qualia characterizing the
metabolite carrying the NE could characterize this conscious experience.

6. A connection with fuzzy qubits and quantum groups with NE is highly suggestive. The
implications are highly non-trivial also for quantum computation allowed by weak form of
NMP since NE is by definition stable and lasts the lifetime of self in question.

Philosophy of Adelic Physics

The p-adic aspects of Topological Geometrodynamics (TGD) will be discussed. Introduction gives
a short summary about classical and quantum TGD. This is needed since the p-adic ideas are
inspired by TGD based view about physics.

p-Adic mass calculations relying on p-adic generalization of thermodynamics and super-
symplectic and super-conformal symmetries are summarized. Number theoretical existence con-
strains lead to highly non-trivial and successful physical predictions. The notion of canonical
identification mapping p-adic mass squared to real mass squared emerges, and is expected to be a
key player of adelic physics allowing to map various invariants from p-adics to reals and vice versa.

A view about p-adicization and adelization of real number based physics is proposed. The
proposal is a fusion of real physics and various p-adic physics to single coherent whole achieved
by a generalization of number concept by fusing reals and extensions of p-adic numbers induced
by given extension of rationals to a larger structure and having the extension of rationals as their
intersection.

The existence of p-adic variants of definite integral, Fourier analysis, Hilbert space, and
Riemann geometry is far from obvious and various constraints lead to the idea of number theoretic
universality (NTU) and finite measurement resolution realized in terms of number theory. An
attractive manner to overcome the problems in case of symmetric spaces relies on the replacement
of angle variables and their hyperbolic analogs with their exponentials identified as roots of unity
and roots of e existing in finite-dimensional algebraic extension of p-adic numbers. Only group
invariants - typically squares of distances and norms - are mapped by canonical identification from
p-adic to real realm and various phases are mapped to themselves as number theoretically universal
entities.

Also the understanding of the correspondence between real and p-adic physics at various
levels - space-time level, embedding space level, and level of “world of classical worlds” (WCW) - is
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a challenge. The gigantic isometry group of WCW and the maximal isometry group of embedding
space give hopes about a resolution of the problems. Strong form of holography (SH) allows a
non-local correspondence between real and p-adic space-time surfaces induced by algebraic contin-
uation from common string world sheets and partonic 2-surfaces. Also local correspondence seems
intuitively plausible and is based on number theoretic discretization as intersection of real and
p-adic surfaces providing automatically finite “cognitive” resolution. he existence p-adic variants
of Kéhler geometry of WCW is a challenge, and NTU might allow to realize it.

I will also sum up the role of p-adic physics in TGD inspired theory of consciousness. Negen-
tropic entanglement (NE) characterized by number theoretical entanglement negentropy (NEN)
plays a key role. Negentropy Maximization Principle (NMP) forces the generation of NE. The
interpretation is in terms of evolution as increase of negentropy resources.

The Recent View about SUSY in TGD Universe

The progress in understanding of M® — H duality throws also light to the problem whether SUSY
is realized in TGD and what SUSY breaking does mean. It is now rather clear that sparticles are
predicted and SUSY remains exact but that p-adic thermodynamics causes thermal massivation:
unlike Higgs mechanism, this massivation mechanism is universal and has nothing to do with
dynamics. This is due to the fact that zero energy states are superpositions of states with different
masses. The selection of p-adic prime characterizing the sparticle causes the mass splitting between
members of super-multiplets although the mass formula is same for all of them.

The question how to realize super-field formalism at the level of H = M* x CP; led to
a dramatic progress in the identification of elementary particles and SUSY dynamics. The most
surprising outcome was the possibility to interpret leptons and corresponding neutrinos as local
3-quark composites with quantum numbers of anti-proton and anti-neutron. Leptons belong to
the same super-multiplet as quarks and are antiparticles of neutron and proton as far quantum
numbers are consided. One implication is the understanding of matter-antimatter asymmetry.
Also bosons can be interpreted as local composites of quark and anti-quark.

Hadrons and hadronic gluons would still correspond to the analog of monopole phase in
QFTs. Homology charge would appear as space-time correlate for color at space-time level and
explain color confinement. Also color octet variants of weak bosons, Higgs, and Higgs like particle
and the predicted new pseudo-scalar are predicted. They could explain the successes of conserved
vector current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC).

One ends up with the precise understanding of quantum criticality and understand the
relation between its descriptions at M® level and H-level. Polynomials describing a hierarchy of
dark matters describe also a hierarchy of criticalities and one can identify inclusion hierarchies
as sub-hierarchies formed by functional composition of polynomials. The Wick contractions of
quark-antiquark monomials appearing in the expansion of super-coordinate of H could define the
analog of radiative corrections in discrete approach. M?® — H duality and number theoretic vision
require that the number of non-vanishing Wick contractions is finite. The number of contractions
is indeed bounded by the finite number of points in cognitive representation and increases with
the degree of the octonionic polynomial and gives rise to a discrete coupling constant evolution
parameterized by the extensions of rationals.

Quark oscillator operators in cognitive representation correspond to quark field ¢g. Only
terms with quark number 1 appear in ¢ and leptons emerge in Kahler action as local 3-quark
composites. Internal consistency requires that ¢ must be the super-spinor field satisfying super
Dirac equation. This leads to a self-referential condition ¢; = ¢ identifying ¢ and its super-
counterpart ¢s. Also super-coordinate hs must satisfy analogous condition (hs)s = hs, where
hs — (hs)s means replacement of h in the argument of hy with hg.

The conditions have an interpretation in terms of a fixed point of iteration and expression
of quantum criticality. The coefficients of various terms in ¢; and h, are analogous to coupling
constants can be fixed from this condition so that one obtains discrete number theoretical coupling
constant evolution. The basic equations are quantum criticality condition hs = (hs)s, ¢ = ¢s,
D, I'Y =0 coming from Kahler action, and the super-Dirac equation Dsq = 0.

One also ends up to the first completely concrete proposal for how to construct S-matrix
directly from the solutions of super-Dirac equations and super-field equations for space-time super-
surfaces. The idea inspired by WKB approximation is that the exponent of the super variant
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of Kahler function including also super-variant of Dirac action defines S-matrix elements as its
matrix elements between the positive and negative energy parts of the zero energy states formed
from the corresponding vacua at the two boundaries of CD annihilated by annihilation operators
and resp. creation operators. The states would be created by the monomials appearing in the
super-coordinates and super-spinor.

Super-Dirac action vanishes on-mass-shell. The proposed construction relying on ZEO al-
lows however to get scattering amplitudes between all possible states using the exponential of
super-Kéhler action. Super-Dirac equation is however needed and makes possible to express the
derivatives of the quark oscillator operators (values of quark field at points of cognitive represen-
tation) so that one can use only the points of cognitive representation without introducing lattice
discretization. Discrete coupling constant evolution conforms with the fact that the contractions of
oscillator operators occur at the boundary of CD and their number is limited by the finite number
of points of cognitive representation.

1.4.2 PART II: SOME APPLICATIONS
Quantum criticality and dark matter: part I

Quantum criticality is one of the corner stone assumptions of TGD. The value of Kéhler coupling
strength fixes quantum TGD and is analogous to critical temperature. TGD Universe would be
quantum critical. What does this mean is however far from obvious and I have pondered the
notion repeatedly both from the point of view of mathematical description and phenomenology.
Dark matter as a hierarchy of phases of ordinary matter labelled by the value of effective Planck
constant h.ys following as prediction of adelic physics suggests a general approach to quantum
criticality. In the first part of the chapter about quantum criticality general ideas about quantum
criticality and phase transitions are discussed.

Quantum criticality and dark matter: part II

Quantum criticality is one of the corner stone assumptions of TGD. The value of Kahler coupling
strength fixes quantum TGD and is analogous to critical temperature. TGD Universe would be
quantum critical. What does this mean is however far from obvious and I have pondered the notion
repeatedly both from the point of view of mathematical description and phenomenology. Dark
matter as a hierarchy of phases of ordinary matter labelled by the value of effective Planck constant
hess following as prediction of adelic physics suggests a general approach to quantum criticality.
In the second part of the chapter about quantum criticality condensed matter applications are
discussed.

Quantum criticality and dark matter: part III

Quantum criticality is one of the corner stone assumptions of TGD. The value of Kahler coupling
strength fixes quantum TGD and is analogous to critical temperature. TGD Universe would be
quantum critical. What does this mean is however far from obvious and I have pondered the
notion repeatedly both from the point of view of mathematical description and phenomenology.
Dark matter as a hierarchy of phases of ordinary matter labelled by the value of effective Planck
constant h.ss following as prediction of adelic physics suggests a general approach to quantum
criticality. In the third part of the chapter about quantum criticality biological applications are
discussed.

Quantum criticality and dark matter: part IV

Quantum criticality is one of the corner stone assumptions of TGD. The value of Kéhler coupling
strength fixes quantum TGD and is analogous to critical temperature. TGD Universe would be
quantum critical. What does this mean is however far from obvious and I have pondered the
notion repeatedly both from the point of view of mathematical description and phenomenology.
Dark matter as a hierarchy of phases of ordinary matter labelled by the value of effective Planck
constant heys following as prediction of adelic physics suggests a general approach to quantum
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criticality. In the fourth part of the chapter about quantum criticality applications, which might
be labelled as miscellaneous, are discussed.

About the Nottale’s formula for hy, and the possibility that Planck length [p and CP;
length R are identical giving G = R?/h.s?

Nottale’s formula for the gravitational Planck constant fi,. = GMm/vy involves parameter vy
with dimensions of velocity. I have worked with the quantum interpretation of the formula but
the physical origin of vy - or equivalently the dimensionless parameter Sy = vg/c (to be used in
the sequel) appearing in the formula has remained open hitherto. In this chapter a possible inter-
pretation based on many-sheeted space-time concept, many-sheeted cosmology, and zero energy
ontology (ZEO) is discussed. In ZEO the non-changing parts of zero energy states are assigned to
the passive boundary of CD and Sy should be assigned to it.

There are two measures for the size of the system. The M* size L4 is identifiable as the
maximum of the radial M* distance from the tip of CD associated with the center of mass of
the system along the light-like geodesic at the boundary of CD. System has also size L;,q defined
defined in terms of the induced metric of the space-time surface, which is space-like at the boundary
of CD. One has L;,q < Ly. The identification Sy = Lys4/Ly does not allow the identification
of Ly = Lyna. Ly would however naturally corresponds to the size of the magnetic body of the
system in turn identifiable as the size of CD.

One can deduce an estimate for 5y by approximating the space-time surface as Robertson-
Walker cosmology expected to be a good approximation near the passive light-like boundary of
CD. The resulting formula is tested for planetary system and Earth. The dark matter assignable
to Earth can be identified as the innermost part of inner core with volume, which is .01 per cent of
the volume of Earth. Also the consistency of the Bohr quantization for dark and ordinary matter
is discussed and leads to a number theoretical condition on the ratio of the ordinary and dark
masses.

Bo/4m is analogous to gravitational fine structure constant for hegr = hgr. Could one see
it as fundamental coupling parameter appearing also in other interactions at quantum criticality
in which ordinary perturbation series diverges? Remarkably, the value of G does not appear at
all in the perturbative expansion in this region! Could G have several values? This suggests the
generalization G = 1% /h — G = R?/h.yy so that G would indeed have a spectrum and that Planck
length [ p would be equal to C P, radius R so that only one fundamental length would be associated
with twistorialization. Ordinary Newton’s constant would be given by G = R? /h.fs with hesr/ho
having value in the range 107 — 108.

The second topic of the chapter relates to the the fact that the measurements of G give
differing results with differences between measurements larger than the measurement accuracy.
This suggests that there might be some new physics involved. In TGD framework the hierarchy of
Planck constants h.yy = nhg, h = 6ho together with the condition that theory contains CP, size
scale R as only fundamental length scale, suggest the possibility that Newtons constant is given by
G = R?/heysys, where R replaces Planck length ( Ip = VAG — lp = R) and hess/h is in the range
10% — 107. The spectrum of Newton’ constant is consistent with Newton’s equations if the scaling
of hess inducing scaling G is accompanied by opposite scaling of M* coordinates in M* x CPy:
dark matter hierarchy would correspond to discrete hierarchy of scales given by breaking of scale
invariance. In the special case hefy = hgr = GMm/v0 quantum critical dynamics as gravitational
fine structure constant (vo/c)/4m as coupling constant and it has no dependence of the value of G
or masses M and m.

In this chapter I consider a possible interpretation for the finding of a Chinese research
group measuring two different values of G differing by 47 ppm in terms of varying hers. Also a
model for fountain effect of superfluidity as de-localization of wave function and increase of the
maximal height of vertical orbit due to the change of the gravitational acceleration g at surface
of Earth induced by a change of h.sy due to super-fluidity is discussed. Also Podkletnov effect is
considered. TGD inspired theory of consciousness allows to speculate about levitation experiences
possibly induced by the modification of G.¢s at the flux tubes for some part of the magnetic body
accompanying biological body in TGD based quantum biology.
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TGD View about Quasars

The work of Rudolph Schild and his colleagues Darryl Letier and Stanley Robertson (among others)
suggests that quasars are not supermassive blackholes but something else - MECOs, magnetic
eternally collapsing objects having no horizon and possessing magnetic moment. Schild et al argue
that the same applies to galactic blackhole candidates and active galactic nuclei, perhaps even to
ordinary blackholes as Abhas Mitra, the developer of the notion of MECO proposes.

In the sequel TGD inspired view about quasars relying on the general model for how galaxies
are generated as the energy of thickened cosmic strings decays to ordinary matter is proposed.
Quasars would not be be blackhole like objects but would serve as an analog of the decay of
inflaton field producing the galactic matter. The energy of the string like object would replace
galactic dark matter and automatically predict a flat velocity spectrum.

TGD is assumed to have standard model and GRT as QFT limit in long length scales. Could
MECOs provide this limit? It seems that the answer is negative: MECOs represent still collapsing
objects. The energy of inflaton field is replaced with the sum of the magnetic energy of cosmic
string and positive volume energy, which both decrease as the thickness of flux tube increases.
The liberated energy transforms to ordinary particles and their dark variants in TGD sense. Time
reversal of blackhole would be more appropriate interpretation. One can of course ask, whether
the blackhole candidates in galactic nuclei are time reversals of quasars in TGD sense.

The writing of the article led also to a considerable understanding of two key aspects of
TGD. The understanding of twistor lift and p-adic evolution of cosmological constant improved
considerably. Also the understanding of gravitational Planck constant and the notion of space-time
as a covering space became much more detailed in turn allowing much more refined view about
the anatomy of magnetic body.

Solar Surprise

The detection of gamma rays from Sun has yielded a surprises. There are 5 times more gamma
rays than expected and the spectrum has a deep and narrow dip around 30-50 GeV. Spectrum
continues to much higher energies than expected, at least up to 100 GeV. One proposal is that
there could be dark matter in the interior of Sun yielding the gamma rays but is unclear how
they could get to the surface without experiencing the same fate as ordinary gammas from nuclear
reactions.

The findings provide a test bench for TGD based view about magnetic fields and the first
challenge is to understand the solar cycle. The model is follows from the model for the formation
of galaxies, stars, and planets as tangles of long cosmic strings thickened to flux tube. Wormhole
magnetic fields correspond to closed flux tubes with monopole flux returning along different sheet.
If M* projections of the sheets co-incide and test particle touching them experiences no net mag-
netic force but the energy of flux tubes is dark making itself visible through gravitational fields.
For disjoint projections sheets carry measurable magnetic fields.

Polarization reversal could be understood as a quantum analog of spontaneous magnetization
generating first dipole loops of type II (I) taking measured B to zero. After this dipole loops of
type I (IT) would split by reconnection and decay to smaller loops and leave Sun. This defines first
half-cycle and for second half-cycle the roles of loops are changed.

The model discussed explains qualitatively the findings in terms of cosmic rays entering to
the flux tubes of dipole fields and accelerated in the electric field of the closed flux tube and making
possibly several cycles before being detected. This predicts band structure of the spectrum.

The model suggests also inversion as a Zy symmetry changing the roles of the flux tube
portions in the interior and exterior of the solar surface. Inversion symmetry is also a symmetry
of Maxwell’s equations. The notions of of monopole flux tube and associated approximate Zo
symmetry acting either as reflection or inversion could be universal. Zs can be also represented as
a subgroup of the group of Galois symmetries predicted by adelic physics.

This picture leads to highly non-trivial predictions. For instance, the “Axis of Evil” anomaly
of CMB can be understood. For instance, quantum correlations in cosmological scales explain why
the plane of planetary system makes itself visible in CMB. One can also add highly non-trivial
detail to the TGD inspired view about quantum biology and consciousness.
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Holography and Quantum Error Correcting Codes: TGD View

Preskill et all suggest a highly interesting representation of holography in terms of quantum error
correction codes The idea is that time= constant section of AdS, which is hyperbolic space allowing
tessellations, can define tensor networks. So called perfect tensors are building bricks of the tensor
networks providing representation for holography and at the same time defining error correcting
codes by mapping localized interior states (logical qubits) to highly entangled non-local boundary
states (physical qubits).

There are three observations that put bells ringing and actually motivated this article.

1. Perfect tensors define entanglement which TGD framework corresponds negentropic entan-
glement playing key role in TGD inspired theory of consciousness and of living matter.

2. In TGD framework the hyperbolic tesselations are realized at hyperbolic spaces H3(a) defining
light-cone proper time hyperboloids of M* light-cone.

3. TGD replaces AdS/CFT correspondence with strong form of holography.

A very attractive idea is that in living matter magnetic flux tube networks defining quantum
computational networks provide a realization of tensor networks realizing also holographic error
correction mechanism: negentropic entanglement - perfect tensors - would be the key element. As
I have proposed, these flux tube networks would define kind of central nervous system make it
possible for living matter to experience consciously its biological body using magnetic body.

These networks would also give rise to the counterpart of condensed matter physics of
dark matter at the level of magnetic body: the replacement of lattices based on subgroups of
translation group with infinite number of tesselations means that this analog of condensed matter
physics describes quantum complexity.
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Chapter 2

Was von Neumann Right After
All?

2.1 Introduction

The work with TGD inspired model [K5] for topological quantum computation [B28] led to the
realization that von Neumann algebras [A82] [A99] [A87, [AG3] , in particular so called hyper-finite
factors of type II; [A48] , seem to provide the mathematics needed to develop a more explicit
view about the construction of S-matrix. The lecture notes of R. Longo [A85] give a concise and
readable summary about the basic definitions and results related to von Neumann algebras and I
have used this material freely in this chapter.

The original discussion has transformed during years from a free speculation reflecting in
many aspects my ignorance about the mathematics involved to a more realistic view about the
role of these algebras in quantum TGD. In this chapter I will discuss various aspects of hyperfinite
factors with only a brief digression to TGD inspired applications whose evolution discussed in
separate chapter [K48].

2.1.1 Philosophical Ideas Behind Von Neumann Algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation * and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to
1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one
is that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing pro-
jection probabilities. Quantum measurements can lead with a finite probability only to mixed
states with a density matrix which is projection operator to infinite-dimensional subspace. The
simple von Neumann algebras for which unit operator has unit trace are known as factors of type
IT, [A43] .

The definitions of adopted by von Neumann allow however more general algebras. Type I,
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algebras correspond to finite-dimensional matrix algebras with finite traces whereas I, associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras
of type III non-trivial traces are always infinite and the notion of trace becomes useless being
replaced by the notion of state which is generalization of the notion of thermodynamical state.
The fascinating feature of this notion of state is that it defines a unique modular automorphism
of the factor defined apart from unitary inner automorphism and the question is whether this
notion or its generalization might be relevant for the construction of M-matrix in TGD. It however
seems that in TGD framework based on Zero Energy Ontology identifiable as “square root” of
thermodynamics a square root of thermodynamical state is needed.

The inclusions of hyper-finite factors define an excellent candidate for the description of finite
measurement resolution with included factor representing the degrees of freedom below measure-
ment resolution. The would also give connection to the notion of quantum group whose physical
interpretation has remained unclear. This idea is central to the proposed applications to quantum
TGD discussed in separate chapter.

2.1.2 Von Neumann, Dirac, And Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type Il; as funda-
mental and factors of type III as pathological. The highly pragmatic and successful approach of
Dirac [A83] based on the notion of delta function, plus the emergence of s [A89] , the possibility
to formulate the notion of delta function rigorously in terms of distributions [A49] [AT2] , and the
emergence of path integral approach [A88] meant that von Neumann approach was forgotten by
particle physicists.

Algebras of type I3 have emerged only much later in conformal and topological quantum
field theories [A92] [A41] allowing to deduce invariants of knots, links and 3-manifolds. Also alge-
braic structures known as bi-algebras, Hopf algebras, and ribbon algebras [A29] relate closely to
type II; factors. In topological quantum computation [B28] based on braid groups [A101] modular
S-matrices they play an especially important role.

In algebraic quantum field theory [B31] defined in Minkowski space the algebras of ob-
servables associated with bounded space-time regions correspond quite generally to the type 1114
hyper-finite factor [B6, [B32].

I have restricted the considerations of this chapter mostly to the technical aspects and
Appendix includes sections about inclusions of HFFs. The evolution of ideas about possible appli-
cations to quantum TGD is summarized in chapter, which was originally part of this chapter [K48].

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L4].

2.2 Von Neumann Algebras

In this section basic facts about von Neumann algebras are summarized using as a background
material the concise summary given in the lecture notes of Longo [A85] .

2.2.1 Basic Definitions

A formal definition of von Neumann algebra [A99, [A87] [AG3] is as a *-subalgebra of the set of
bounded operators B(#H) on a Hilbert space H closed under weak operator topology, stable under
the conjugation J =*: x — x*, and containing identity operator I'd. This definition allows also von
Neumann algebras for which the trace of the unit operator is not finite.

Identity operator is the only operator commuting with a simple von Neumann algebra. A
general von Neumann algebra allows a decomposition as a direct integral of simple algebras, which


http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf

44 Chapter 2. Was von Neumann Right After All?

von Neumann called factors. Classification of von Neumann algebras reduces to that for factors.
B(H) has involution * and is thus a *-algebra. B(#) has order order structure A > 0 :
(Az,z) > 0. This is equivalent to A = BB* so that order structure is determined by algebraic
structure. B(H) has metric structure in the sense that norm defined as supremum of ||Az||,
|[z]| < 1 defines the notion of continuity. [|A||?> = inf{\ > 0 : AA* < M} so that algebraic
structure determines metric structure.
There are also other topologies for B(H) besides norm topology.

1. A; — Astrongly if ||Ax— A;x|| — 0 for all . This topology defines the topology of C* algebra.
B(H) is a Banach algebra that is ||AB|| < ||A]| x ||B|| (inner product is not necessary) and
also C* algebra that is [|AA*|| = ||A]]2.

2. A; — A weakly if (4;2,y) — (Az,y) for all pairs (x,y) (inner product is necessary). This
topology defines the topology of von Neumann algebra as a sub-algebra of B(H).

Denote by M’ the commutant of M which is also algebra. Von Neumann’s bicommutant theorem
says that M equals to its own bi-commutant. Depending on whether the identity operator has a
finite trace or not, one distinguishes between algebras of type Il; and type I1.,. I factor allow
trace with properties tr(Id) = 1, tr(zy) = tr(yz), and tr(z*z) > 0, for all z # 0. Let L?(M) be
the Hilbert space obtained by completing M respect to the inner product defined (z|y) = tr(z*y)
defines inner product in M interpreted as Hilbert space. The normalized trace induces a trace in
M’ natural trace Trys, which is however not necessarily normalized. JxzJ defines an element of
M': if H = L?(M), the natural trace is given by Tryp (JxJ) = try(z) for all z € M and bounded.

2.2.2 Basic Classification Of Von Neumann Algebras

Consider first some definitions. First of all, Hermitian operators with positive trace expressible as
products xz* are of special interest since their sums with positive coefficients are also positive.

In quantum mechanics Hermitian operators can be expressed in terms of projectors to the
eigen states. There is a natural partial order in the set of isomorphism classes of projectors by
inclusion: F < F' if the image of H by E is contained to the image of H by a suitable isomorph
of F. Projectors are said to be metrically equivalent if there exist a partial isometry which maps
the images H by them to each other. In the finite-dimensional case metric equivalence means that
isomorphism classes are identical ' = F'.

The algebras possessing a minimal projection FEy satisfying Ey < F for any F are called
type I algebras. Bounded operators of n-dimensional Hilbert space define algebras I,, whereas the
bounded operators of infinite-dimensional separable Hilbert space define the algebra I.. I, and
I, correspond to the operator algebras of quantum mechanics. The states of harmonic oscillator
correspond to a factor of type I.

The projection F' is said to be finite if F' < E and F = E implies F' = E. Hence metric
equivalence means identity. Simple von Neumann algebras possessing finite projections but no
minimal projections so that any projection E can be further decomposed as £ = F' + G, are called
factors of type II.

Hyper-finiteness means that any finite set of elements can be approximated arbitrary well
with the elements of a finite-dimensional sub-algebra. The hyper-finite 1., algebra can be regarded
as a tensor product of hyper-finite 117 and I, algebras. Hyper-finite I1; algebra can be regarded
as a Clifford algebra of an infinite-dimensional separable Hilbert space sub-algebra of 1.

Hyper-finite I; algebra can be constructed using Clifford algebras C'(2n) of 2n-dimensional
spaces and identifying the element z of 2™ x 2" dimensional C'(n) as the element diag(z,x)/2 of
2n+1 % 27+l dimensional C(n + 1). The union of algebras C'(n) is formed and completed in the
weak operator topology to give a hyper-finite 11 factor. This algebra defines the Clifford algebra
of infinite-dimensional separable Hilbert space and is thus a sub-algebra of I, so that hyper-finite
11, algebra is more regular than .

von Neumann algebras possessing no finite projections (all traces are infinite or zero) are
called algebras of type III. It was later shown by [A32] [AT9] that these algebras are labeled by
a parameter varying in the range [0, 1], and referred to as algebras of type I11,. I1I; category
contains a unique hyper-finite algebra. It has been found that the algebras of observables associated
with bounded regions of 4-dimensional Minkowski space in quantum field theories correspond to
hyper-finite factors of type I11; [A85] . Also statistical systems at finite temperature correspond
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to factors of type 111 and temperature parameterizes one-parameter set of automorphisms of this
algebra [B6] . Zero temperature limit correspond to I factor and infinite temperature limit to
11, factor.

2.2.3 Non-Commutative Measure Theory And Non-Commutative Topolo-
gies And Geometries

von Neumann algebras and C* algebras give rise to non-commutative generalizations of ordinary
measure theory (integration), topology, and geometry. It must be emphasized that these structures
are completely natural aspects of quantum theory. In particular, for the hyper-finite type I3
factors quantum groups and Kac Moody algebras [B34] emerge quite naturally without any need
for ad hoc modifications such as making space-time coordinates non-commutative. The effective
2-dimensionality of quantum TGD (partonic or stringy 2-surfaces code for states) means that these
structures appear completely naturally in TGD framework.

Non-commutative measure theory

von Neumann algebras define what might be a non-commutative generalization of measure theory
and probability theory [A85] .

1. Consider first the commutative case. Measure theory is something more general than topology
since the existence of measure (integral) does not necessitate topology. Any measurable
function f in the space L>°(X, ) in measure space (X, p) defines a bounded operator My
in the space B(L?*(X,p)) of bounded operators in the space L?(X,u) of square integrable
functions with action of My defined as Mg = fg.

2. Integral over M is very much like trace of an operator f,, = f(z)d(x,y). Thus trace is a
natural non-commutative generalization of integral (measure) to the non-commutative case
and defined for von Neumann algebras. In particular, generalization of probability measure
results if the case tr(Id) = 1 and algebras of type I,, and I are thus very natural from the
point of view of non-commutative probability theory.

The trace can be expressed in terms of a cyclic vector Q or vacuum/ground state in physicist’s
terminology. 2 is said to be cyclic if the completion M2 = H and separating if x{) vanishes only
for x = 0. Q is cyclic for M if and only if it is separating for M’. The expression for the trace
given by

Tr(ab) = <mb—;—ba)79) (2.2.1)
is symmetric and allows to defined also inner product as (a,b) = Tr(a*b) in M. If Q has unit
norm (£2,) = 1, unit operator has unit norm and the algebra is of type II;. Fermionic oscillator
operator algebra with discrete index labeling the oscillators defines I1; factor. Group algebra is
second example of II; factor.

The notion of probability measure can be abstracted using the notion of state. State w
on a C* algebra with unit is a positive linear functional on U, w(l) = 1. By so called KMS
construction [A85] any state w in C* algebra U can be expressed as w(z) = (7(z)Q, Q) for some
cyclic vector Q and 7 is a homomorphism U — B(H).

Non-commutative topology and geometry
C* algebras generalize in a well-defined sense ordinary topology to non-commutative topology.

1. In the Abelian case Gelfand Naimark theorem [A85] states that there exists a contravariant
functor F' from the category of unital abelian C* algebras and category of compact topological
spaces. The inverse of this functor assigns to space X the continuous functions f on X
with norm defined by the maximum of f. The functor assigns to these functions having
interpretation as eigen states of mutually commuting observables defined by the function
algebra. These eigen states are delta functions localized at single point of X. The points
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of X label the eigenfunctions and thus define the spectrum and obviously span X. The
connection with topology comes from the fact that continuous map Y — X corresponds to
homomorphism C(X) — C(Y).

2. In non-commutative topology the function algebra C'(X) is replaced with a general C* algebra.
Spectrum is identified as labels of simultaneous eigen states of the Cartan algebra of C* and
defines what can be observed about non-commutative space X.

3. Non-commutative geometry can be very roughly said to correspond to *-subalgebras of C*
algebras plus additional structure such as symmetries. The non-commutative geometry of
Connes [A20)] is a basic example here.

2.2.4 Modular Automorphisms

von Neumann algebras allow a canonical unitary evolution associated with any state w fixed by
the selection of the vacuum state 2 [A85] . This unitary evolution is an automorphism fixed apart
form unitary automorphisms A — UAU™* related with the choice of Q.

Let w be a normal faithful state: w(xz*z) > 0 for any z. One can map M to L?(M) defined
as a completion of M by x — zQ. The conjugation * in M has image at Hilbert space level as
a map Sp : Q) = x*Q. The closure of Sy is an anti-linear operator and has polar decomposition
S = JAY2, A = §S*. A is positive self-adjoint operator and J anti-unitary involution. The
following conditions are satisfied

AitMA—it — M ,
JMJ = M . (2.2.2)

A is obviously analogous to the time evolution induced by positive definite Hamiltonian and
induces also the evolution of the expectation w as m — A¥r A=,

2.2.5 Joint Modular Structure And Sectors

Let N' C M be an inclusion. The unitary operator v = JyJys defines a canonical endomorphisms
M — N in the sense that it depends only up to inner automorphism on N, v defines a sector of
M. The sectors of M are defined as Sect(M) = End(M)/Inn(M) and form a semi-ring with
respected to direct sum and composition by the usual operator product. It allows also conjugation.

L?(M) is a normal bi-module in the sense that it allows commuting left and right multiplica-
tions. For a,b € M and x € L?(M) these multiplications are defined as axb = aJb* Jz and it is easy
to verify the commutativity using the factor Jy*J € M’. [A32] [A20] has shown that all normal
bi-modules arise in this way up to unitary equivalence so that representation concepts make sense.
It is possible to assign to any endomorphism p index Ind(p) = M : p(M). This means that the
sectors are in 1-1 correspondence with inclusions. For instance, in the case of hyper-finite 117 they
are labeled by Jones index. Furthermore, the objects with non-integral dimension /[M : p(M)]
can be identified as quantum groups, loop groups, infinite-dimensional Lie algebras, etc...

2.2.6 Basic Facts About Hyper-Finite Factors Of Type III

Hyper-finite factors of type 111, 1, and 111y, I11y, 1115, X € (0,1), allow by definition hierarchy
of finite approximations and are unique as von Neumann algebras. Also hyper-finite factors of
type Il and type 111 could be relevant for the formulation of TGD. HFF's of type I1,, and I1]
could appear at the level operator algebra but that at the level of quantum states one would obtain
HFFs of type II;. These extended factors inspire highly non-trivial conjectures about quantum
TGD. The book of Connes [A20] provides a detailed view about von Neumann algebras in general.

Basic definitions and facts

A highly non-trivial result is that HFFs of type Il are expressible as tensor products I, =
I ® I, where I is hyper-finite [A20)] .

1. The existence of one-parameter family of outer automorphisms
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The unique feature of factors of type I11 is the existence of one-parameter unitary group of
outer automorphisms. The automorphism group originates in the following manner.

1. Introduce the notion of linear functional in the algebra as a map w : M — C. w is said to be
hermitian it respects conjugation in M; positive if it is consistent with the notion of positivity
for elements of M in which case it is called weight; state if it is positive and normalized
meaning that w(1) = 1, faithful if w(A) > 0 for all positive A; a trace if w(AB) = w(BA),
a vector state if w(A) is “vacuum expectation” wq(A) = (2, w(A)?) for a non-degenerate
representation (H, ) of M and some vector Q € H with ||Q|| = 1.

2. The existence of trace is essential for hyper-finite factors of type II;. Trace does not exist
for factors of type II1 and is replaced with the weaker notion of state. State defines inner
product via the formula (z,y) = ¢(y*x) and * is isometry of the inner product. *-operator has
property known as pre-closedness implying polar decomposition S = JA'/2 of its closure. A is
positive definite unbounded operator and J is isometry which restores the symmetry between
M and its commutant M’ in the Hilbert space Hg, where M acts via left multiplication:
M = JMJ.

3. The basic result of Tomita-Takesaki theory is that A defines a one-parameter group Ufz& (z) =
Az A% of automorphisms of M since one has A MA~%* = M. This unitary evolution is
an automorphism fixed apart from unitary automorphism A — UAU* related with the choice
of ¢. For factors of type I and II this automorphism reduces to inner automorphism so that
the group of outer automorphisms is trivial as is also the outer automorphism associated with
w. For factors of type I11 the group of these automorphisms divided by inner automorphisms
gives a one-parameter group of Out(M) of outer automorphisms, which does not depend at
all on the choice of the state ¢.

More precisely, let w be a normal faithful state: w(z*z) > 0 for any z. One can map M to L?(M)
defined as a completion of M by x — z§. The conjugation * in M has image at Hilbert space level
as a map Sy : Q2 = z*Q. The closure of Sy is an anti-linear operator and has polar decomposition
S = JAY?2 A = SS*. A is positive self-adjoint operator and J anti-unitary involution. The
following conditions are satisfied

ATMAT = M,
JMJ = M . (2.2.3)

A is obviously analogous to the time evolution induced by positive definite Hamiltonian and
induces also the evolution of the expectation w as 7 — A¥7rA~%. What makes this result thought
provoking is that it might mean a universal quantum dynamics apart from inner automorphisms
and thus a realization of general coordinate invariance and gauge invariance at the level of Hilbert
space.

2. Classification of HFFs of type 111

Connes achieved an almost complete classification of hyper-finite factors of type I1I com-
pleted later by others. He demonstrated that they are labeled by single parameter 0 < A < 1] and
that factors of type 111y, 0 < A < 1 are unique. Haagerup showed the uniqueness for A\ = 1. The
idea was that the group has an invariant, the kernel T'(M) of the map from time like R to Out(M),
consisting of those values of the parameter ¢ for which O'(tb reduces to an inner automorphism and
to unity as outer automorphism. Connes also discovered also an invariant, which he called spec-
trum S(M) of M identified as the intersection of spectra of A,\{0}, which is closed multiplicative
subgroup of R*.

Connes showed that there are three cases according to whether S(M) is

1. RY, type II1I,
2. {\",n € Z}, type III,.
3. {1}, type III,.

The value range of A is this by convention. For the reversal of the automorphism it would be
that associated with 1/A.
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Connes constructed also an explicit representation of the factors 0 < A < 1 as crossed product
I1,, factor N and group Z represented as powers of automorphism of Il factor inducing the
scaling of trace by A. The classification of HFF's of type I1I reduced thus to the classification of
automorphisms of N'® B(#H. In this sense the theory of HFF's of type 111 was reduced to that for
HFFs of type I, or even II;. The representation of Connes might be also physically interesting.

Probabilistic view about factors of type III

Second very concise representation of HFFs relies on thermodynamical thinking and realizes factors
as infinite tensor product of finite-dimensional matrix algebras acting on state spaces of finite state
systems with a varying and finite dimension n such that one assigns to each factor a density
matrix characterized by its eigen values. Intuitively one can think the finite matrix factors as
associated with n-state system characterized by its energies with density matrix p defining a
thermodynamics. The logarithm of the p defines the single particle quantum Hamiltonian as
H = log(p) and A = p = exp(H) defines the automorphism o, for each finite tensor factor as
exp(iHt). Obviously free field representation is in question.

Depending on the asymptotic behavior of the eigenvalue spectrum one obtains different
factors [A20)] .

1. Factor of type I corresponds to ordinary thermodynamics for which the density matrix as a
function of matrix factor approaches sufficiently fast that for a system for which only ground
state has non-vanishing Boltzmann weight.

2. Factor of type II; results if the density matrix approaches to identity matrix sufficiently fast.
This means that the states are completely degenerate which for ordinary thermodynamics
results only at the limit of infinite temperature. Spin glass could be a counterpart for this
kind of situation.

3. Factor of type I11I results if one of the eigenvalues is above some lower bound for all tensor
factors in such a way that neither factor of type I or Il results but thermodynamics for
systems having infinite number of degrees of freedom could yield this kind of situation.

This construction demonstrates how varied representations factors can have, a fact which
might look frustrating for a novice in the field. In particular, the infinite tensor power of M (2, C)
with state defined as an infinite tensor power of M (2,(C') state assigning to the matrix A the
complex number (AY/2A;; + A7Y2 ¢(A) = Ago)/(AY/2 + A71/2) defines HFF 111, [A20] , [C20] .
Formally the same algebra which for A = 1 gives ordinary trace and HFF of type 117, gives I11
factor only by replacing trace with state. This simple model was discovered by Powers in 1967.

It is indeed the notion of state or thermodynamics is what distinguishes between factors.
This looks somewhat weird unless one realizes that the Hilbert space inner product is defined by the
“thermodynamical” state ¢ and thus probability distribution for operators and for their thermal
expectation values. Inner product in turn defines the notion of norm and thus of continuity and it
is this notion which differs dramatically for A = 1 and A < 1 so that the completions of the algebra
differ dramatically.

In particular, there is no sign about I, tensor factor or crossed product with Z represented
as automorphisms inducing the scaling of trace by A. By taking tensor product of I, factor
represented as tensor power with induces running from —oo to 0 and I/; HFF with indices running
from 1 to oo one can make explicit the representation of the automorphism of 11, factor inducing
scaling of trace by A and transforming matrix factors possessing trace given by square root of index
M : N to those with trace 2.

2.3 Braid Group, Von Neumann Algebras, Quantum TGD,
And Formation Of Bound States

The article of Vaughan Jones in [AI01] discusses the relation between knot theory, statistical
physics, and von Neumann algebras. The intriguing results represented stimulate concrete ideas
about how to understand the formation of bound states quantitatively using the notion of join
along boundaries bond. All mathematical results represented in the following discussion can be
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found in [A101] and in the references cited therein so that I will not bother to refer repeatedly to
this article in the sequel.

2.3.1 Factors Of Von Neumann Algebras

Von Neumann algebras M are algebras of bounded linear operators acting in Hilbert space. These
algebras contain identity, are closed with respect to Hermitian conjugation, and are topologically
complete. Finite-dimensional von Neuman algebras decompose into a direct sum of algebras M,
which act essentially as matrix algebras in Hilbert spaces H,,,,, which are tensor products C" @ H,,,.
Here H,, is an m-dimensional Hilbert space in which M, acts trivially. m is called the multiplicity
of M,,.

A factor of von Neumann algebra is a von Neumann algebra whose center is just the scalar
multiples of identity. The algebra of bounded operators in an infinite-dimensional Hilbert space is
certainly a factor. This algebra decomposes into “atoms” represented by one-dimensional projec-
tion operators. This kind of von Neumann algebras are called type I factors.

The so called type II; factors and type III factors came as a surprise even for Murray and
von Neumann. II; factors are infinite-dimensional and analogs of the matrix algebra factors M,,.
They allow a trace making possible to define an inner product in the algebra. The trace defines a
generalized dimension for any subspace as the trace of the corresponding projection operator. This
dimension is however continuous and in the range [0, 1]: the finite-dimensional analog would be the
dimension of the sub-space divided by the dimension of #,, and having values (0,1/n,2/n, ..., 1).
II; factors are isomorphic and there exists a minimal “hyper-finite” II; factor is contained by every
other II; factor.

Just as in the finite-dimensional case, one can to assign a multiplicity to the Hilbert spaces
where II; factors act on. This multiplicity, call it dimps(H) is analogous to the dimension of the
Hilbert space tensor factor H,,, in which II; factor acts trivially. This multiplicity can have all
positive real values. Quite generally, von Neumann factors of type I and II; are in many respects
analogous to the coefficient field of a vector space.

2.3.2 Sub-Factors

Sub-factors N C M, where N and M are of type II; and have same identity, can be also defined.
The observation that M is analogous to an algebraic extension of N motivates the introduction of
index |M : N|, which is essentially the dimension of M with respect to N. This dimension is an
analog for the complex dimension of C'P, equal to 2 or for the algebraic dimension of the extension
of p-adic numbers.

The following highly non-trivial results about the dimensions of the tensor factors hold true.

1. If N C M are II; factors and |[M : N| < 4, there is an integer n > 3 such |M : N| =r =
4cos®(m/n), n > 3.

2. For each number r = 4cos?(r/n) and for all r > 4 there is a sub-factor R, C R with
|R:R.|=r.
One can say that M effectively decomposes to a tensor product of N with a space, whose
dimension is quantized to a certain algebraic number r. The values of r corresponding to
n=3,4,5,6...arer = 1,2, 14+ ® ~ 2.61, 3, ... and approach to the limiting value » = 4. For
r > 4 the dimension becomes continuous.

An even more intriguing result is that by starting from N C M with a projection en:
M — N one can extend M to a larger II; algebra (M, eyn) such that one has

[(M,en): M| = |M:N|,
tr(rex) = |M:N|'tr(z) , xe€ M . (2.3.1)
One can continue this process and the outcome is a tower of II; factors M; C M, defined by

My =N, My =M, M;11 = (M;,epn;_, ). Furthermore, the projection operators eps, = e; define a
Temperley-Lieb representation of the braid algebra via the formulas
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2

€; = € ,
€;€;+1€;, = T€; , T = 1/|M : N|
€ie; = €€ , ‘Z - jl > 2 . (232)

Temperley Lieb algebra will be discussed in more detail later. Obviously the addition of a tensor
factor of dimension 7 is analogous with the addition of a strand to a braid.

The hyper-finite algebra R is generated by the set of braid generators {ej,ea,.....} in the
braid representation corresponding to r. Sub-factor R; is obtained simply by dropping the lowest
generator e, Ry by dropping e; and es, etc..

2.3.3 Ii; Factors And The Spinor Structure Of WCW

The following observations serve as very suggestive guidelines for how one could interpret the above
described results in TGD framework.

1. The discrete spectrum of dimensions 1,2,1 + &, 3, .. below r < 4 brings in mind the discrete
energy spectrum for bound states whereas the for » > 4 the spectrum of dimensions is anal-
ogous to a continuum of unbound states. The fact that r is an algebraic number for r < 4
conforms with the vision that bound state entanglement corresponds to entanglement proba-
bilities in an extension of rationals defining a finite-dimensional extension of p-adic numbers
for every prime p.

2. The discrete values of r correspond precisely to the angles ¢ allowed by the unitarity of
Temperley-Lieb representations of the braid algebra with d = —/r. For r > 4 Temperley-
Lieb representation is not unitary since cos?(m/n) becomes formally larger than one (n would
become imaginary and continuous). This could mean that » > 4, which in the generic case is
a transcendental number, represents unbound entanglement, which in TGD Universe is not
stable against state preparation and state function reduction processes.

3. The formula tr(zex) = |M : N|~'tr(x) is completely analogous to the formula characterizing
the normalization of the link invariant induced by the second Markov move in which a new
strand is added to a braid such that it braids only with the leftmost strand and therefore does
not change the knot resulting as a link closure. Hence the addition of a single strand seems
to correspond to an introduction of an r-dimensional sub-factor to II; factor.

In TGD framework the generation of bound state has the formation of (possibly braided
join along boundaries bonds as a space-time correlate and this encourages a rather concrete inter-
pretation of these findings. Also the I; factors themselves have a nice interpretation in terms of
the WCW spinor structure.

1. The interpretation of Iy factors in terms of Clifford algebra of WCW

The Clifford algebra of an infinite-dimensional Hilbert space defines a II; factor. The coun-
terparts for e; would naturally correspond to the analogs of projection operators (1 4 o;)/2 and
thus to operators of form (1+X;;)/2, defined by a subset of sigma matrices. The first guess is that
the index pairs are (4,7) = (1,2),(2,3), (3,4), ..... The dimension of the Clifford algebra is 2V for
N-dimensional space so that AN = 1 would correspond to r = 2 in the classical case and to one
qubit. The problem with this interpretation is r > 2 has no physical interpretation: the formation
of bound states is expected to reduce the value of r from its classical value rather than increase it.

One can however consider also the sequence (4, j) = (1, 1+k), (14+k, 14+2k), (1+2k, 1+3k), ....
For k = 2 the reduction of r from r = 4 would be due to the loss of degrees of freedom due to the
formation of a bound state and (r = 4, AN = 2) would correspond to the classical limit resulting
at the limit of weak binding. The effective elimination of the projection operators from the braid
algebra would reflect this loss of degrees of freedom. This interpretation could at least be an
appropriate starting point in TGD framework.

In TGD Universe physical states correspond to WCW spinor fields, whose gamma matrix
algebra is constructed in terms of second quantized free induced spinor fields defined at space-time
sheets. The original motivation was the idea that the quantum states of the Universe correspond
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to the modes of purely classical free spinor fields in the infinite-dimensional configuration space
of 3-surfaces (the “world of classical worlds”, WCW) possessing general coordinate invariant (in
4-dimensional sense!) Kéahler geometry. Quantum information-theoretical motivation could have
come from the requirement that these fields must be able to code information about the properties
of the point (3-surface, and corresponding space-time sheet). Scalar fields would treat the 3-surfaces
as points and are thus not enough. Induced spinor fields allow however an infinite number of modes:
according to the naive Fourier analyst’s intuition these modes are in one-one correspondence with
the points of the 3-surface. Second quantization gives much more. Also non-local information
about the induced geometry and topology must be coded, and here quantum entanglement for
states generated by the fermionic oscillator operators coding information about the geometry of
3-surface provides enormous information storage capacity.

In algebraic geometry also the algebra of the embedding space of algebraic variety divided
by the ideal formed by functions vanishing on the surface codes information about the surface:
for instance, the maximal ideals of this algebra code for the points of the surface (functions of
embedding space vanishing at a particular point). The function algebra of the embedding space
indeed plays a key role in the construction of WCW-geometry besides second quantized fermions.

The Clifford algebra generated by the WCW gamma matrices at a given point (3-surface)
of WCW of 3-surfaces could be regarded as a II;-factor associated with the local tangent space
endowed with Hilbert space structure (WCW Kéhler metric). The counterparts for e; would
naturally correspond to the analogs of projection operators (1 + 0;)/2 and thus operators of form
(G4p % 14 X5p) formed as linear combinations of components of the Kahler metric and of the
sigma matrices defined by gamma matrices and contracted with the generators of the isometries
of WCW. The addition of single complex degree of freedom corresponds to AN = 2 and r = 4 and
the classical limit and would correspond to the addition of single braid. (r < 4, AN < 2) would
be due to the binding effects.

r = 1 corresponds to AN = 0. The first interpretation is in terms of strong binding
so that the addition of particle does not increase the number of degrees of freedom. In TGD
framework r = 1 might also correspond to the addition of zero modes which do not contribute to
the WCW metric and spinor structure but have a deep physical significance. (r = 2;AN = 1)
would correspond to strong binding reducing the spinor and space-time degrees of freedom by a
factor of half. r = ®2 (n = 5) resp. r = 3 (n = 6) corresponds to AN, ~ 1.3885 resp. AN, = 1.585.
Using the terminology of quantum field theories, one might say that in the infinite-dimensional
context a given complex bound state degree of freedom possesses anomalous real dimension r < 2.
r > 4 would correspond to a unbound entanglement and increasingly classical behavior.

2.3.4 About Possible Space-Time Correlates For The Hierarchy Of II;
Sub-Factors

By quantum classical correspondence the infinite-dimensional physics at WCW level should have
definite space-time correlates. In particular, the dimension r should have some fractal dimension
as a space-time correlate.

1. Quantum classical correspondence

Join along boundaries bonds serve as correlates for bound state formation. The presence
of join along boundaries bonds would lead to a generation of bound states just by reducing the
degrees of freedom to those of connected 3-surface. The bonds would constrain the two 3-surfaces
to single space-like section of embedding space.

This picture would allow to understand the difficulties related to Bethe-Salpeter equations
for bound states based on the assumption that particles are points moving in M*. The restriction
of particles to time=constant section leads to a successful theory which is however non-relativistic.
The basic binding energy would relate to the entanglement of the states associated with the bonded
3-surfaces. Since the classical energy associated with the bonds is positive, the binding energy tends
to be reduced as r increases.

By spin glass degeneracy join along boundaries bonds have an infinite number of degrees
of freedom in the ordinary sense. Since the system is infinite-dimensional and quantum critical,
one expects that the number r of degrees freedom associated with a single join along boundaries
bond is universal. Since join along boundaries bonds correspond to the strands of a braid and are
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correlates for the bound state formation, the natural guess is that r = 4cos?(7/n), n = 3,4,5, ...
holds true. r < 4 should characterize both binding energy and the dimension of the effective tensor
factor introduced by a new join along boundaries bond.

The assignment of 2 “bare” and AN < 2 renormalized real dimensions to single join along
boundaries bond is consistent with the effective two-dimensionality of anyon systems and with the
very notion of the braid group. The picture conforms also with the fact that the degrees of freedom
in question are associated with metrically 2-dimensional light-like boundaries (of say magnetic flux
tubes) acting as causal determinants. Also vibrational degrees of freedom described by Kac-Moody
algebra are present and the effective 2-dimensionality means that these degrees of freedom are not
excited and only topological degrees of freedom coded by the position of the puncture remain.

(r > 4,AN > 2), if possible at all, would mean that the tensor factor associated with the
join along boundaries bond is effectively more than 4-dimensional due to the excitation of the
vibrational Kac-Moody degrees of freedom. The finite value of r would mean that most of theme
are eliminated also now but that their number is so large that bound state entanglement is not
possible anymore.

The introduction of non-integer dimension could be seen as an effective description of an
infinite-dimensional system as a finite-dimensional system in the spirit of renormalization group
philosophy. The non-unitarity of » > 4 Temperley-Lieb representations could mean that they
correspond to unbound entanglement unstable against state function reduction and preparation
processes. Since this kind of entanglement does not survive in quantum jump it is not representable
in terms of braid groups.

2. Does r define a fractal dimension of C Py projection of partonic 2-surface?

On basis of the quantum classical correspondence one expects that r should define some
fractal dimension at the space-time level. Since r varies in the range 1, ..,4 and corresponds to the
fractal dimension of 2-D Clifford algebra the corresponding spinors would have dimension d = /.
There are two options.

1. D = r/2 is suggested on basis of the construction of quantum version of M?.

2. D = logs(r) is natural on basis of the dimension d = 2P /2 of spinors in D-dimensional space.

r can be assigned with C'P, degrees of freedom in the model for the quantization of Planck
constant based on the explicit identification of Josephson inclusions in terms of finite subgroups
of SU(2) C SU(3). Hence D should relate to the C'P, projection of the partonic 2-surface and
one could have D = D(X?), the latter being the average dimension of the C'P, projection of the
partonic 2-surface for the preferred extremals of Kéahler action.

Since a strongly interacting non-perturbative phase should be in question, the dimension for
the C' P, projection of the space-time surface must be at least D(X*) = 2 to guarantee that non-
vacuum extremals are in question. This is true for D(X?) = r/2 > 1. The logarithmic formula
D(X?) = loga(r) > 0 gives D(X?) = 0 for n = 3 meaning that partonic 2-surfaces are vacua:
space-time surface can still be a non-vacuum extremal.

As n increases, the number of C' P, points covering a given M* point and related by the finite
subgroup of G C SU(2) C SU(3) defining the inclusion increases so that the fractal dimension of
the C'P, projection is expected to increase also. D(X?2) = 2 would correspond to the space-time
surfaces for which partons have topological magnetic charge forcing them to have a 2-dimensional
C'P, projection. There are reasons to believe that the projection must be homologically non-trivial
geodesic sphere of CPs.

2.3.5 Could Binding Energy Spectra Reflect The Hierarchy Of Effective
Tensor Factor Dimensions?

If one takes completely seriously the idea that join along boundaries bonds are a correlate of binding
then the spectrum of binding energies might reveal the hierarchy of the fractal dimensions r(n).
Hydrogen atom and harmonic oscillator have become symbols for bound state systems. Hence it
is of interest to find whether the binding energy spectrum of these systems might be expressed in
terms of the “binding dimension” z(n) = 4 — r(n) characterizing the deviation of dimension from
that at the limit of a vanishing binding energy. The binding energies of hydrogen atom are in a
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good approximation given by E(n)/E(1) = 1/n? whereas in the case of harmonic oscillator one
has E(n)/Ey = 2n + 1. The constraint n > 3 implies that the principal quantum number must
correspond n — 2 in the case of hydrogen atom and to n — 3 in the case of harmonic oscillator.

Before continuing one must face an obvious objection. By previous arguments different
values of r correspond to different values of A. The value of A cannot however differ for the states
of hydrogen atom. This is certainly true. The objection however leaves open the possibility that
the states of the light-like boundaries of join along boundaries bonds correspond to reflective level
and represent some aspects of the physics of, say, hydrogen atom.

In the general case the energy spectrum satisfies the condition

= , (2.3.3)

where f is some function. The simplest assumption is that the spectrum of binding energies
Eg(n) = E(n) — E(o0) is a linear function of r(n) — 4:

4
= = fsinZ(%) - — X = . (2.3.4)

In the linear approximation the ratio E(n + 1)/E(n) approaches (n/n + 1)? as in the case of
hydrogen atom but for small values the linear approximation fails badly. An exact correspondence
results for

1
E1) — n?

1

7 arcsin (w / lfr(n+2)/4> B

Also the ionized states with r» > 4 would correspond to bound states in the sense that two particle
would be constrained to move in the same space-like section of space-time surface and should be
distinguished from genuinely free states when particles correspond to disjoint space-time sheets.

For the harmonic oscillator one express E(n) — E(0) instead of E(n) — E(c0) as a function
of t =4 — r and one would have

n =

E(n) _
W—Qn"'l s

1

m arcsin (\ / 1—r(n+3)/4) -

In this case ionized states would not be possible due to the infinite depth of the harmonic oscillator
potential well.

n =

2.3.6 Four-Color Problem, II; Factors, And Anyons

The so called four-color problem can be phrased as a question whether it is possible to color the
regions of a plane map using only four colors in such a way that no adjacent regions have the
same color (for an enjoyable discussion of the problem see [AGT] ). One might call this kind of
coloring complete. There is no loss of generality in assuming that the map can be represented as
a graph with regions represented as triangle shaped faces of the graph. For the dual graph the
coloring of faces becomes coloring of vertices and the question becomes whether the coloring is
possible in such a way that no vertices at the ends of the same edge have same color. The problem
can be generalized by replacing planar maps with maps defined on any two-dimensional surface
with or without boundary and arbitrary topology. The four-color problem has been solved with
an extensive use of computer [A25] but it would be nice to understand why the complete coloring
with four colors is indeed possible.

There is a mysterious looking connection between four-color problem and the dimensions
r(n) = 4cos?(m/n), which are in fact known as Beraha numbers in honor of the discoverer of this
connection [A53] . Consider a more general problem of coloring two-dimensional map using m
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colors. One can construct a polynomial P(m), so called chromatic polynomial, which tells the
number of colorings satisfying the condition that no neighboring vertices have the same color. The
vanishing of the chromatic polynomial for an integer value of m tells that the complete coloring
using m colors is not possible.

P(m) has also other than integer valued real roots. The strange discovery due to Beraha is
that the numbers B(n) appear as approximate roots of the chromatic polynomial in many situa-
tions. For instance, the four non-integral real roots of the chromatic polynomial of the truncated
icosahedron are very close to B(5), B(7), B(8) and B(9). These findings led Beraha to formulate
the following conjecture. Let P; be a sequence of chromatic polynomials for a graph for which the
number of vertices approaches infinity. If r; is a root of the polynomial approaching a well-defined
value at the limit ¢ — oo, then the limiting value of r(¢) is Beraha number.

A physicist’s proof for Beraha’s conjecture based on quantum groups and conformal theory
has been proposed [A53] . It is interesting to look for the a possible physical interpretation of
4-color problem and Beraha’s conjecture in TGD framework.

1. In TGD framework B(n) corresponds to a renormalized dimension for a 2-spin system con-
sisting of two qubits, which corresponds to 4 different colors. For B(n) = 4 two spin 1/2
fermions obeying Fermi statistics are in question. Since the system is 2-dimensional, the gen-
eral case corresponds to two anyons with fractional spin B(n)/4 giving rise to B(n) < 4 colors
and obeying fractional statistics instead of Fermi statistics. One can replace coloring problem
with the problem whether an ideal antiferro-magnetic lattice using anyons with fractional spin
B(n)/4 is possible energetically. In other words, does this system form a quantum mechanical
bound state even at the limit when the lengths of the edges approach to zero.

2. The failure of coloring means that there are at least two neighboring vertices in the lattice
with the property that the spins at the ends of the same edge are in the same direction.
Lattice defect would be in question. At the limit of an infinitesimally short edge length the
failure of coloring is certainly not an energetically favored option for fermionic spins (m = 4)
but is allowed by anyonic statistics for m = B(n) < 4. Thus one has reasons to expect that
when anyonic spin is B(n)/4 the formation of a purely 2-anyon bound states becomes possible
and they form at the limit of an infinitesimal edge length a kind of topological macroscopic
quantum phase with a non-vanishing binding energy. That B(n) are roots of the chromatic
polynomial at the continuum limit would have a clear physical interpretation.

3. Only B(n) < 4 defines a sub-factor of von Neumann algebra allowing unitary Temperley-Lieb
representations. This is consistent with the fact that for m = 4 complete coloring must exists.
The physical argument is that otherwise a macroscopic quantum phase with non-vanishing
binding energy could result at the continuum limit and the upper bound for r from unitarity
would be larger than 4. For m = 4 the completely anti-ferromagnetic state would represent
the ground state and the absence of anyon-pair condensate would mean a vanishing binding
energy.

2.4 Inclusions Of I/, And /1], Factors

Inclusions N/ € M of von Neumann algebras have physical interpretation as a mathematical
description for sub-system-system relation. For type I algebras the inclusions are trivial and
tensor product description applies as such. For factors of II; and III the inclusions are highly
non-trivial. The inclusion of type II; factors were understood by Vaughan Jones [A2] and those
of factors of type ITT by Alain Connes [AT9] .

Sub-factor AV of M is defined as a closed *-stable C-subalgebra of M. Let A be a sub-
factor of type II; factor M. Jones index M : A for the inclusion N' C M can be defined as
M : N = dimy(L*(M)) = Try:(idr2(p). One can say that the dimension of completion of M
as N module is in question.

2.4.1 Basic Findings About Inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite I1; factors by index M : A/ which can be said to the dimension
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of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N. It is important to notice that M : ' does not characterize either M or M, only
the embedding.

1.

The basic facts proved by Jones are following [A2] .

For pairs A/ C M with a finite principal graph the values of M : A/ are given by

a) M : N =4cos?(w/h) , h>3,
(2.4.1)
b) M:N >4 .

the numbers at right hand side are known as Beraha numbers [A53] . The comments below
give a rough idea about what finiteness of principal graph means.

. As explained in [B34] , for M : N' < 4 one can assign to the inclusion Dynkin graph of ADE

type Lie-algebra g with h equal to the Coxeter number A of the Lie algebra given in terms of
its dimension and dimension r of Cartan algebra r as h = (dimg(g) —r)/r. The Lie algebras of
SU(n), E7 and Ds,, 1 are however not allowed. For M : ' = 4 one can assign to the inclusion
an extended Dynkin graph of type ADE characterizing Kac Moody algebra. Extended ADE
diagrams characterize also the subgroups of SU(2) and the interpretation proposed in [A96] is
following. The ADE diagrams are associated with the n = oo case having M : N' > 4. There
are diagrams corresponding to infinite subgroups: SU(2) itself, circle group U(1), and infinite
dihedral groups (generated by a rotation by a non-rational angle and reflection. The diagrams
corresponding to finite subgroups are extension of A,, for cyclic groups, of D,, dihedral groups,
and of F,, with n=6,7,8 for tetrahedron, cube, dodecahedron. For M : A/ < 4 ordinary Dynkin
graphs of Do, and Fg, Eg are allowed.

The interpretation of [A96] is that the subfactors correspond to inclusions N C M defined

in the following manner.

1.

Let G be a finite subgroup of SU(2). Denote by R the infinite-dimensional Clifford algebras
resulting from infinite-dimensional tensor power of Ms(C') and by Ry its subalgebra obtained
by restricting Ma(C') element of the first factor to be unit matrix. Let G act by automorphisms
in each tensor factor. G leaves Ry invariant. Denote by RS and R the sub-algebras which
remain element wise invariant under the action of G. The resulting Jones inclusions RS’ € R
are consistent with the ADE correspondence.

. The argument suggests the existence of quantum versions of subgroups of SU(2) for which

representations are truncations of those for ordinary subgroups. The results have been gen-
eralized to other Lie groups.

. Also SL(2,C) acts as automorphisms of Ms(C). An interesting question is what happens

if one allows G to be any discrete subgroups of SL(2,C). Could this give inclusions with
M : N > 47. The strong analogy of the spectrum of indices with spectrum of energies with
hydrogen atom would encourage this interpretation: the subgroup SL(2,C) not reducing to
those of SU(2) would correspond to the possibility for the particle to move with respect to
each other with constant velocity.

2.4.2 The Fundamental Construction And Temperley-Lieb Algebras

It was shown by Jones [A52] that for a given Jones inclusion with 8 = M : N < oo there exists a
tower of finite I factors My for k =0,1,2,.... such that

1.
2.

Mo =N, My =M,

M1 = Endpm,_, My is the von Neumann algebra of operators on L?(M}) generated by
M, and an orthogonal projection ey : L2(My) — L?(Mj,_q) for k > 1, where My, is regarded
as a subalgebra of M1 under right multiplication.

It can be shown that My is a finite factor. The sequence of projections on My, = Ur>o My
satisfies the relations
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2 _ =
€ =€, € € ,

e; = fe;eje; for |i—jl=1, (2.4.2)
e;e;j =e;e;  for |i—j]>2 .

The construction of hyper-finite 11 factor using Clifford algebra C(2) represented by 2 x
2 matrices allows to understand the theorem in f = 4 case in a straightforward manner. In
particular, the second formula involving 3 follows from the identification of z at (k — 1) level
with (1/8)diag(z,z) at k" level.

By replacing 2 x 2 matrices with 1/ x 1/8 matrices one can understand heuristically what
is involved in the more general case. M, is Mjy_; module with dimension /8 and My is the
space of v/B x v/B matrices Mj,_1 valued entries acting in My. The transition from My, to Mj_;
linear maps of M}, happens in the transition to the next level.  at (k — 1)** level is identified as
(x/B) x Id,/5,./5 at the next level. The projection ey, picks up the projection of the matrix with
M._1 valued entries in the direction of the Id\//?x\/ﬁ

The union of algebras Ag i generated by 1, e, ..., e, defines Temperley-Lieb algebra Ag [A94]
. This algebra is naturally associated with braids. Addition of one strand to a braid adds one
generator to this algebra and the representations of the Temperley Lieb algebra provide link, knot,
and 3-manifold invariants [A10I] . There is also a connection with systems of statistical physics
and with Yang-Baxter algebras [A28] .

A further interesting fact about the inclusion hierarchy is that the elements in M; belonging
to the commutator N of N form finite-dimensional spaces. Presumably the dimension approaches
infinity for n — co.

2.4.3 Connection With Dynkin Diagrams

The possibility to assign Dynkin diagrams (§ < 4) and extended Dynkin diagrams (5 = 4 to Jones
inclusions can be understood heuristically by considering a characterization of so called bipartite
graphs [A9§] , [B34] by the norm of the adjacency matrix of the graph.

Bipartite graphs I' is a finite, connected graph with multiple edges and black and white
vertices such that any edge connects white and black vertex and starts from a white one. Denote
by w(T') (b(T')) the number of white (black) vertices. Define the adjacency matrix A = A(T") of size
b(T') x w(T') by

[ m(e) if there exists e such that de =b—w |,
Wow = { 0 otherwise . (24.3)
Here m(e) is the multiplicity of the edge e.
Define norm ||T'|| as
1XI[ = maz{[[X][|; [l«]] <1},
_ |0 A(T)
ol = oI = || gy o || - (2.4.4)

Note that the matrix appearing in the formula is (m + n) x (m + n) symmetric square matrix so
that the norm is the eigenvalue with largest absolute value.

Suppose that T' is a connected finite graph with multiple edges (sequences of edges are
regarded as edges). Then

1. If ||T]] < 2 and if T has a multiple edge, ||T'|| = 2 and I' = A}, the extended Dynkin diagram
for SU(2) Kac Moody algebra.

2. ||| < 2 if and only T is one of the Dynkin diagrams of A,D,E. In this case ||T'|| = 2cos(n/h),
where h is the Coxeter number of T

3. ||IT|| = 2 if and only if T" is one of the extended Dynkin diagrams A, D, E.



2.5. TGD And Hyper-Finite Factors Of Type II; 57

This result suggests that one can indeed assign to the Jones inclusions Dynkin diagrams. To really
understand how the inclusions can be characterized in terms bipartite diagrams would require a
deeper understanding of von Neumann algebras. The following argument only demonstrates that
bipartite graphs naturally describe inclusions of algebras.

1. Consider a bipartite graph. Assign to each white vertex linear space W (w) and to each edge
of a linear space W (b, w). Assign to a given black vertex the vector space Bge—p— W (b, w) ®
W (w) where (b, w) corresponds to an edge ending to b.

2. Define N as the direct sum of algebras End(W (w)) associated with white vertices and M as
direct sum of algebras @se—p—w End(W (b, w)) ® End(W (w)) associated with black vertices.

3. There is homomorphism N — M defined by embedding direct sum of white endomorphisms
x to direct sum of tensor products x with the identity endomorphisms associated with the
edges starting from z.

It is possible to show that Jones inclusions correspond to the Dynkin diagrams of A,, Ds,, and
Eg, Es and extended Dynkin diagrams of ADE type. In particular, the dual of the bi-partite graph
associated with M,,_; C M, obtained by exchanging the roles of white and black vertices de-
scribes the inclusion M,, C M,,1 so that two subsequent Jones inclusions might define something
fundamental (the corresponding space-time dimension is 2 x loga(M : N) < 4.

2.4.4 Indices For The Inclusions Of Type [1I; Factors

Type 111, factors appear in relativistic quantum field theory defined in 4-dimensional Minkowski
space [B6] . An overall summary of basic results discovered in algebraic quantum field theory is
described in the lectures of Longo [A85] . In this case the inclusions for algebras of observables are
induced by the inclusions for bounded regions of M* in axiomatic quantum field theory. Tomita’s
theory of modular Hilbert algebras [A8T] , [B32] forms the mathematical corner stone of the theory.
The basic notion is Haag-Kastler net [AT8] consisting of bounded regions of M*. Double cone
serves as a representative example. The von Neumann algebra A(O) is generated by observables
localized in bounded region O. The net satisfies the conditions implied by local causality:

1. Isotony: O; C Og implies A(O1) C A(O2).
2. Locality: Oy C Of implies A(O1) C A(O3z) with O’ defined as {z : (x,y) <0 for all y € O}.
3. Haag duality A(O") = A(O).

Besides this Poincare covariance, positive energy condition, and the existence of vacuum state
is assumed.

DHR (Doplicher-Haag-Roberts) [A36] theory allows to deduce the values of Jones index
and they are squares of integers in dimensions D > 2 so that the situation is rather trivial. The
2-dimensional case is distinguished from higher dimensional situations in that braid group replaces
permutation group since the paths representing the flows permuting identical particles can be
linked in X2 x T and anyonic statistics [D33} [D36] becomes possible. In the case of 2-D Minkowski
space M? Jones inclusions with M : N < 4 plus a set of discrete values of M : N in the range
(4,6) are possible. In [A85] some values are given (M : N = 5,5.5049...,5.236....,5.828...).

At least intersections of future and past light cones seem to appear naturally in TGD
framework such that the boundaries of future/past directed light cones serve as seats for incom-
ing/outgoing states defined as intersections of space-time surface with these light cones. III;
sectors cannot thus be excluded as factors in TGD framework. On the other hand, the construc-
tion of S-matrix at space-time level is reduced to I1; case by effective 2-dimensionality.

2.5 TGD And Hyper-Finite Factors Of Type II;

By effective 2-dimensionality of the construction of quantum states the hyper-finite factors of type
11 fit naturally to TGD framework. In particular, infinite dimensional spinors define a canonical
representations of this kind of factor. The basic question is whether only hyper-finite factors of type
11, appear in TGD framework. Affirmative answer would allow to interpret physical M-matrix as
time like entanglement coefficients.
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2.5.1 What Kind Of Hyper-Finite Factors One Can Imagine In TGD?

The working hypothesis has been that only hyper-finite factors of type 113 appear in TGD. The
basic motivation has been that they allow a new view about M-matrix as an operator representable
as time-like entanglement coefficients of zero energy states so that physical states would represent
laws of physics in their structure. They allow also the introduction of the notion of measurement
resolution directly to the definition of reaction probabilities by using Jones inclusion and the
replacement of state space with a finite-dimensional state space defined by quantum spinors. This
hypothesis is of course just an attractive working hypothesis and deserves to be challenged.

WCW spinors

For WCW spinor s the HFF 17 property is very natural because of the properties of infinite-
dimensional Clifford algebra and the inner product defined by the WCW geometry does not allow
other factors than this. A good guess is that the values of conformal weights label the factors
appearing in the tensor power defining WCW spinor s. Because of the non-degeneracy and super-
symplectic symmetries the density matrix representing metric must be essentially unit matrix for
each conformal weight which would be the defining characteristic of hyper-finite factor of type 1.

Bosonic degrees of freedom

The bosonic part of the super-symplectic algebra consists of Hamiltonians of C'H in one-one corre-
spondence with those of §M{ x C'P,. Also the Kac-Moody algebra acting leaving the light-likeness
of the partonic 3-surfaces intact contributes to the bosonic degrees of freedom. The commutator
of these algebras annihilates physical states and there are also Virasoro conditions associated with
ordinary conformal symmetries of partonic 2-surface [K35] . The labels of Hamiltonians of WCW
and spin indices contribute to bosonic degrees of freedom.

Hyper-finite factors of type II; result naturally if the system is an infinite tensor product
finite-dimensional matrix algebra associated with finite dimensional systems [A20] . Unfortunately,
neither Virasoro, symplectic nor Kac-Moody algebras do have decomposition into this kind of
infinite tensor product. If bosonic degrees for super-symplectic and super-Kac Moody algebra
indeed give I, factor one has HFF if type I1.,. This looks the most natural option but threatens
to spoil the beautiful idea about M-matrix as time-like entanglement coefficients between positive
and negative energy parts of zero energy state.

The resolution of the problem is surprisingly simple and trivial after one has discovered
it. The requirement that state is normalizable forces to project M-matrix to a finite-dimensional
sub-space in bosonic degrees of freedom so that the reduction I, — I,, occurs and one has the
reduction 1., — II; x I,, = I1; to the desired HFF.

One can consider also the possibility of taking the limit n — oco. One could indeed say
that since I factor can be mapped to an infinite tensor power of M(2,C) characterized by a
state which is not trace, it is possible to map this representation to HFF by replacing state with
trace [A20] . The question is whether the forcing the bosonic foot to fermionic shoe is physically
natural. One could also regard the II; type notion of probability as fundamental and also argue
that it is required by full super-symmetry realized also at the level of many-particle states rather
than mere single particle states.

How the bosonic cutoff is realized?

Normalizability of state requires that projection to a finite-dimensional bosonic sub-space is car-
ried out for the bosonic part of the M-matrix. This requires a cutoff in quantum numbers of
super-conformal algebras. The cutoff for the values of conformal weight could be formulated by
replacing integers with Z, or with some finite field G(p,1). The cutoff for the labels associated
with Hamiltonians defined as an upper bound for the dimension of the representation looks also
natural.

Number theoretical braids which are discrete and finite structures would define space-time
correlate for this cutoff. p-Adic length scale p ~ 2 hypothesis could be interpreted as stating
the fact that only powers of p up to p* are significant in p-adic thermodynamics which would
correspond to finite field G(k, 1) if k is prime. This has no consequences for p-adic mass calculations
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since already the first two terms give practically exact results for the large primes associated with
elementary particles [K77] .

Finite number of strands for the theoretical braids would serve as a correlate for the reduction
of the representation of Galois group S, of rationals to an infinite produce of diagonal copies of
finite-dimensional Galois group so that same braid would repeat itself like a unit cell of lattice i
condensed matter [K59] .

HFF of type II1 for field operators and HFF of type II; for states?

One could also argue that the Hamiltonians with fixed conformal weight are included in fermionic
11, factor and bosonic factor I, factor, and that the inclusion of conformal weights leads to a
factor of type III. Conformal weight could relate to the integer appearing in the crossed product
representation [1] = Z X I, of HFF of type IT1 [A20)] .

The value of conformal weight is non-negative for physical states which suggests that Z
reduces to semigroup NN so that a factor of type I1I would reduce to a factor of type Il since
trace would become finite. If unitary process corresponds to an automorphism for 17, factor,
the action of automorphisms affecting scaling must be uni-directional. Also thermodynamical
irreversibility suggests the same. The assumption that state function reduction for positive energy
part of state implies unitary process for negative energy state and vice versa would only mean that
the shifts for positive and negative energy parts of state are opposite so that Z — N reduction
would still hold true.

HFF of type II; for the maxima of Kahler function?

Probabilistic interpretation allows to gain heuristic insights about whether and how hyper-finite
factors of type type I1; might be associated with WCW degrees of freedom. They can appear both
in quantum fluctuating degrees of freedom associated with a given maximum of Ké&hler function
and in the discrete space of maxima of Kéhler function.

Spin glass degeneracy is the basic prediction of classical TGD and means that instead of a
single maximum of K&hler function analogous to single free energy minimum of a thermodynamical
system there is a fractal spin glass energy landscape with valleys inside valleys. The discretization
of WCW in terms of the maxima of Kéhler function crucial for the p-adicization problem, leads
to the analog of spin glass energy landscape and hyper-finite factor of type II; might be the
appropriate description of the situation.

The presence of the tensor product structure is a powerful additional constraint and some-
thing analogous to this should emerge in WCW degrees of freedom. Fractality of the many-sheeted
space-time is a natural candidate here since the decomposition of the original geometric structure
to parts and replacing them with the scaled down variant of original structure is the geometric
analog of forming a tensor power of the original structure.

2.5.2 Direct Sum Of HFFs Of Type I/, As A Minimal Option

HFF I, property for the Clifford algebra of WCW means a definite distinction from the ordinary
Clifford algebra defined by the fermionic oscillator operators since the trace of the unit matrix of
the Clifford algebra is normalized to one. This does not affect the anti-commutation relations at the
basic level and delta functions can appear in them at space-time level. At the level of momentum
space I, property requires discrete basis and anti-commutators involve only Kronecker deltas. This
conforms with the fact that HFF of type I; can be identified as the Clifford algebra associated
with a separable Hilbert space.

11, factor or direct sum of HFFs of type I1;?

The expectation is that super-symplectic algebra is a direct sum over HFFs of type II; labeled by
the radial conformal weight. In the same manner the algebra defined by fermionic anti-commutation
relations at partonic 2-surface would decompose to a direct sum of algebras labeled by the conformal
weight associated with the light-like coordinate of X. Super-conformal symmetry suggests that
also the configuration space degrees of freedom correspond to a direct sum of HFF's of type I1;.
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One can of course ask why not I, = I, x Il structures so that one would have single
factor rather than a direct sum of factors.

1. The physical motivation is that the direct sum property allow to decompose M-matrix to
direct summands associated with various sectors with weights whose moduli squared have an
interpretation in terms of the density matrix. This is also consistent with p-adic thermody-
namics where conformal weights take the place of energy eigen values.

2. 11, property would predict automorphisms scaling the trace by an arbitrary positive real
number A € R, . These automorphisms would require the scaling of the trace of the projectors
of Clifford algebra having values in the range [0,1] and it is difficult to imagine how these
automorphisms could be realized geometrically.

How HFF property reflects itself in the construction of geometry of WCW?

The interesting question is what HFF property and finite measurement resolution realizing itself
as the use of projection operators means concretely at the level of WCW geometry.

Super-Hamiltonians define the Clifford algebra of the configuration space. Super-conformal
symmetry suggests that the unavoidable restriction to projection operators instead of complex rays
is realized also WCW degrees of freedom. Of course, infinite precision in the determination of the
shape of 3-surface would be physically a completely unrealistic idea.

In the fermionic situation the anti-commutators for the gamma matrices associated with
WCW individual Hamiltonians in 3-D sense are replaced with anti-commutators where Hamil-
tonians are replaced with projectors to subspaces of the space spanned by Hamiltonians. This
projection is realized by restricting the anti-commutator to partonic 2-surfaces so that the anti-
commutator depends only the restriction of the Hamiltonian to those surfaces.

What is interesting that the measurement resolution has a concrete particle physical meaning
since the parton content of the system characterizes the projection. The larger the number of
partons, the better the resolution about WCW degrees of freedom is. The degeneracy of WCW
metric would be interpreted in terms of finite measurement resolution inherent to HFFs of type
11, which is not due to Jones inclusions but due to the fact that one can project only to infinite-D
subspaces rather than complex rays.

Effective 2-dimensionality in the sense that WCW Hamiltonians reduce to functionals of
the partonic 2-surfaces of X}’ rather than functionals of X could be interpreted in this manner.
For a wide class of Hamiltonians actually effective 1-dimensionality holds true in accordance with
conformal invariance.

The generalization of WCW Hamiltonians and super-Hamiltonians by allowing integrals over
the 2-D boundaries of the patches of X f would be natural and is suggested by the requirement of
discretized 3-dimensionality at the level of WCW.

By quantum classical correspondence the inclusions of HFF's related to the measurement res-
olution should also have a geometric description. Measurement resolution corresponds to braids in
given time scale and as already explained there is a hierarchy of braids in time scales coming as neg-
ative powers of two corresponding to the addition of zero energy components to positive/negative
energy state. Note however that particle reactions understood as decays and fusions of braid
strands could also lead to a notion of measurement resolution.

2.5.3 Bott Periodicity, Its Generalization, And Dimension D = 8As An
Inherent Property Of The Hyper-Finite //; Factor

Hyper-finite I1; factor can be constructed as infinite-dimensional tensor power of the Clifford
algebra M5(C) = C(2) in dimension D = 2. More precisely, one forms the union of the Clifford
algebras C(2n) = C(2)®" of 2n-dimensional spaces by identifying the element 2 € C(2n) as block
diagonal elements diag(x,z) of C(2(n + 1)). The union of these algebras is completed in weak
operator topology and can be regarded as a Clifford algebra of real infinite-dimensional separable
Hilbert space and thus as sub-algebra of I,. Also generalizations obtained by replacing complex
numbers by quaternions and octions are possible.

1. The dimension 8 is an inherent property of the hyper-finite 11; factor since Bott periodicity
theorem states C(n+8) = C,,(16). In other words, the Clifford algebra C'(n+8) is equivalent
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with the algebra of 16 x 16 matrices with entries in C'(n). Or articulating it still differently:
C(n+8) can be regarded as 16 x 16 dimensional module with C(n) valued coefficients. Hence
the elements in the union defining the canonical representation of hyper-finite Il factor are
16™ x 16™ matrices having C(0), C(2), C(4) or C(6) valued valued elements.

2. The idea about a local variant of the infinite-dimensional Clifford algebra defined by power
series of space-time coordinate with Taylor coefficients which are Clifford algebra elements
fixes the interpretation. The representation as a linear combination of the generators of
Clifford algebra of the finite-dimensional space allows quantum generalization only in the
case of Minkowski spaces. However, if Clifford algebra generators are representable as gamma
matrices, the powers of coordinate can be absorbed to the Clifford algebra and the local
algebra is lost. Only if the generators are represented as quantum versions of octonions
allowing no matrix representation because of their non-associativity, the local algebra makes
sense. From this it is easy to deduce both quantum and classical TGD.

2.5.4 The Interpretation Of Jones Inclusions In TGD Framework

By the basic self-referential property of von Neumann algebras one can consider several interpre-
tations of Jones inclusions consistent with sub-system-system relationship, and it is better to start
by considering the options that one can imagine.

How Jones inclusions relate to the new view about sub-system?

Jones inclusion characterizes the embedding of sub-system N to Mand M as a finite-dimensional
N-module is the counterpart for the tensor product in finite-dimensional context. The possibility
to express M as N module M /N states fractality and can be regarded as a kind of self-referential
“Brahman=Atman identity” at the level of infinite-dimensional systems.

Also the mysterious looking almost identity CH? = CH for the WCW would fit nicely
with the identity M @ M = M. M ® M C M in WCW Clifford algebra degrees of freedom is
also implied and the construction of M as a union of tensor powers of C'(2) suggests that M @ M
allows M : N' = 4 inclusion to M. This paradoxical result conforms with the strange self-referential
property of factors of I1;.

The notion of many-sheeted space-time forces a considerable generalization of the notion
of sub-system and simple tensor product description is not enough. Topological picture based
on the length scale resolution suggests even the possibility of entanglement between sub-systems
of un-entangled sub-systems. The possibility that hyper-finite I1;-factors describe the physics of
TGD also in bosonic degrees of freedom is suggested by WCW super-symmetry. On the other
hand, bosonic degrees could naturally correspond to I, factor so that hyper-finite 11, would be
the net result.

The most general view is that Jones inclusion describes all kinds of sub-system-system
inclusions. The possibility to assign conformal field theory to the inclusion gives hopes of rather
detailed view about dynamics of inclusion.

1. The topological condensation of space-time sheet to a larger space-time sheet mediated by
wormhole contacts could be regarded as Jones inclusion. N would correspond to the condens-
ing space-time sheet, M to the system consisting of both space-time sheets, and vV M : N
would characterize the number of quantum spinorial degrees of freedom associated with the
interaction between space-time sheets. Note that by general results M : N characterizes the
fractal dimension of quantum group (M : N < 4) or Kac-Moody algebra (M : N' = 4) [B34]

2. The branchings of space-time sheets (space-time surface is thus homologically like branching
like of Feynman diagram) correspond naturally to n-particle vertices in TGD framework.
What is nice is that vertices are nice 2-dimensional surfaces rather than surfaces having
typically pinch singularities. Jones inclusion would naturally appear as inclusion of operator
spaces N; (essentially Fock spaces for fermionic oscillator operators) creating states at various
lines as sub-spaces IN; C M of operators creating states in common von Neumann factor M.
This would allow to construct vertices and vertices in natural manner using quantum groups
or Kac-Moody algebras.
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The fundamental N'C M C M ®y M inclusion suggests a concrete representation based on
the identification N; = M, where M is the universal Clifford algebra associated with incoming
line and A is defined by the condition that M /A is the quantum variant of Clifford algebra
of H. N-particle vertices could be defined as traces of Connes products of the operators
creating incoming and outgoing states. It will be found that this leads to a master formula
for S-matrix if the generalization of the old-fashioned string model duality implying that all
generalized Feynman diagrams reduce to diagrams involving only single vertex is accepted.

3. If 4-surfaces can branch as the construction of vertices requires, it is difficult to argue that 3-
surfaces and partonic/stringy 2-surfaces could not do the same. As a matter fact, the master
formula for S-matrix to be discussed later explains the branching of 4-surfaces as an apparent
effect. Despite this one can consider the possibility that this kind of joins are possible so that
a new kind of mechanism of topological condensation would become possible. 3-space-sheets
and partonic 2-surfaces whose p-adic fractality is characterized by different p-adic primes
could be connected by “joins” representing branchings of 2-surfaces. The structures formed
by soap film foam provide a very concrete illustration about what would happen. In the TGD
based model of hadrons [K79) it has been assumed that join along boundaries bonds (JABs)
connect quark space-time space-time sheets to the hadronic space-time sheet. The problem
is that, at least for identical primes, the formation of join along boundaries bond fuses two
systems to single bound state. If JABs are replaced joins, this objection is circumvented.

4. The space-time correlate for the formation of bound states is the formation of JABs. Standard
intuition tells that the number of degrees of freedom associated with the bound state is smaller
than the number of degrees of freedom associated with the pair of free systems. Hence the
inclusion of the bound state to the tensor product could be regarded as Jones inclusion. On
the other hand, one could argue that the JABs carry additional vibrational degrees of freedom
so that the idea about reduction of degrees of freedom might be wrong: free system could
be regarded as sub-system of bound state by Jones inclusion. The self-referential holographic
properties of von Neumann algebras allow both interpretations: any system can be regarded
as sub-system of any system in accordance with the bootstrap idea.

5. Maximal deterministic regions inside given space-time sheet bounded by light-like causal
determinants define also sub-systems in a natural manner and also their inclusions would
naturally correspond to Jones inclusions.

6. The TGD inspired model for topological quantum computation involves the magnetic flux
tubes defined by join along boundaries bonds connecting space-time sheets having light-like
boundaries. These tubes condensed to background 3-space can become linked and knotted
and code for quantum computations in this manner. In this case the addition of new strand to
the system corresponds to Jones inclusion in the hierarchy associated with inclusion N C M.
The anyon states associated with strands would be represented by a finite tensor product of
quantum spinors assignable to M /A and representing quantum counterpart of H-spinors.

One can regard M : N degrees of freedom correspond to quantum group or Kac-Moody
degrees of freedom. Quantum group degrees of freedom relate closely to the conformal and topo-
logical degrees of freedom as the connection of II; factors with topological quantum field theories
and braid matrices suggests itself. For the canonical inclusion this factorization would correspond
to factorization of quantum H-spinor from WCW spinor .

A more detailed study of canonical inclusions to be carried out later demonstrates what
this factorization corresponds at the space-time level to a formation of space-time sheets which
can be regarded as multiple coverings of M* and CP, with invariance group G = G, x Gy C
SL(2,C)xSU(2), SU(2) C SU(3). The unexpected outcome is that Planck constants assignable to
M* and CP, degrees of freedom depend on the canonical inclusions. The existence of macroscopic
quantum phases with arbitrarily large Planck constants is predicted.

It would seem possible to assign the M : N degrees quantum spinorial degrees of freedom
to the interface between subsystems represented by A" and M. The interface could correspond to
the wormhole contacts, joins, JABs, or light-like causal determinants serving as boundary between
maximal deterministic regions, etc... In terms of the bipartite diagrams representing the inclusions,
joins (say) would correspond to the edges connecting white vertices representing sub-system (the
entire system without the joins) to black vertices (entire system).
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About the interpretation of M : A degrees of freedom

The Clifford algebra A associated with a system formed by two space-time sheet can be regarded
as 1 < M : N < 4-dimensional module having A as its coefficients. It is possible to imagine
several interpretations the degrees of freedom labeled by 3.

1. The 8 = M : N degrees of freedom could relate to the interaction of the space-time sheets.
Beraha numbers appear in the construction of S-matrices of topological quantum field theories
and an interpretation in terms of braids is possible. This would suggest that the interaction
between space-time sheets can be described in terms of conformal quantum field theory and
the S-matrices associated with braids describe this interaction. Jones inclusions would charac-
terize the effective number of active conformal degrees of freedom. At n = 3 limit these degrees
of freedom disappear completely since the conformal field theory defined by the Chern-Simons
action describing this interaction would become trivial (¢ = 0 as will be found).

2. The interpretation in terms of embedding space Clifford algebra would suggest that 8-dimensional
Clifford algebra of v/B-dimensional spinor space is in question. For 3 = 4 the algebra would
be the Clifford algebra of 2-dimensional space. M /N would have interpretation as complex
quantum spinors with components satisfying z1zo = ¢z22; and its conjugate and having frac-
tal complex dimension /5. This would conform with the effective 2-dimensionality of TGD.
For 8 < 4 the fractal dimension of partonic quantum spinors defining the basic conformal
fields would be reduced and become d = 1 for n = 3: the interpretation is in terms of strong
correlations caused by the non-commutativity of the components of quantum spinor. For
number theoretical generalizations of infinite-dimensional Clifford algebras CI(C') obtained
by replacing C with Abelian complexification of quaternions or octonions one would obtain
higher-dimensional spinors.

2.5.5 WCW, Space-Time, Embedding Space AndHyper-Finite Type I,
Factors

The preceding considerations have by-passed the question about the relationship of WCW tangent
space to its Clifford algebra. Also the relationship between space-time and embedding space and
their quantum variants could be better. In particular, one should understand how effective 2-
dimensionality can be consistent with the 4-dimensionality of space-time.

Super-conformal symmetry and WCW Poisson algebra as hyper-finite type I1; factor

It would be highly desirable to achieve also a description of the WCW degrees of freedom using
von Neumann algebras. Super-conformal symmetry relating fermionic degrees of freedom and
WCW degrees of freedom suggests that this might be the case. Super-symplectic algebra has as
its generators configuration space Hamiltonians and their super-counterparts identifiable as CH
gamma matrices. Super-symmetry requires that the Clifford algebra of C'H and the Hamiltonian
vector fields of CH with symplectic central extension both define hyper-finite I1; factors. By
super-symmetry Poisson bracket corresponds to an anti-commutator for gamma matrices. The
ordinary quantized version of Poisson bracket is obtained as {P;,Q;} — [P, Q;] = Ji;Id. Finite
trace version results by assuming that Id corresponds to the projector C'H Clifford algebra having
unit norm. The presence of zero modes means direct integral over these factors.

WCW gamma matrices anti-commuting to identity operator with unit norm corresponds to
the tangent space T(CH) of CH. Thus it would be not be surprising if T(C'H) could be imbedded
in the sigma matrix algebra as a sub-space of operators defined by the gamma matrices generating
this algebra. At least for 5 = 4 construction of hyper-finite I1; factor this definitely makes sense.

The dimension of WCW defined as the trace of the projection operator to the sub-space
spanned by gamma matrices is obviously zero. Thus WCW has in this sense the dimensionality
of single space-time point. This sounds perhaps absurd but the generalization of the number
concept implied by infinite primes indeed leads to the view that single space-time point is infinitely
structured in the number theoretical sense although in the real sense all states of the point are
equivalen. The reason is that there is infinitely many numbers expressible as ratios of infinite
integers having unit real norm in the real sense but having different p-adic norms.
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How to understand the dimensions of space-time and embedding space?

One should be able to understand the dimensions of 3-space, space-time and embedding space in a
convincing matter in the proposed framework. There is also the question whether space-time and
embedding space emerge uniquely from the mathematics of von Neumann algebras alone.

1. The dimensions of space-time and embedding space

Two sub-sequent inclusions dual to each other define a special kind of inclusion giving rise
to a quantum counterpart of D = 4 naturally. This would mean that space-time is something
which emerges at the level of cognitive states.

The special role of classical division algebras in the construction of quantum TGD [K107] ,
D = 8 Bott periodicity generalized to quantum context, plus self-referential property of type I3
factors might explain why 8-dimensional embedding space is the only possibility.

State space has naturally quantum dimension D < 8 as the following simple argument
shows. The space of quantum states has quark and lepton sectors which both are super-symmetric
implying D < 4 for each. Since these sectors correspond to different Hamiltonian algebras (triality
one for quarks and triality zero for leptonic sector), the state space has quantum dimension D < 8.

2. How the lacking two space-time dimensions emerge?

3-surface is the basic dynamical unit in TGD framework. This seems to be in conflict with
the effective 2-dimensionality [K107] meaning that partonic 2-surface code for quantum states, and
with the fact that hyper-finite I'1; factors have intrinsic quantum dimension 2.

A possible resolution of the problem is that the foliation of 3-surface by partonic two-surfaces
defines a one-dimensional direct integral of isomorphic hyper-finite type I1; factors, and the zero
mode labeling the 2-surfaces in the foliation serves as the third spatial coordinate. For a given
3-surface the contribution to the WCW metric can come only from 2-D partonic surfaces defined
as intersections of 3-D light-like CDs with X [K36] . Hence the direct integral should somehow
relate to the classical non-determinism of Kéhler action.

1. The one-parameter family of intersections of light-like CD with X7 inside X* N X7T could
indeed be basically due to the classical non-determinism of Kéhler action. The contribution
to the metric from the normal light-like direction to X? = X*N X can cause the vanishing of
the metric determinant /g4 of the space-time metric at X 2 C X3 under some conditions on
X2, This would mean that the space-time surface X*(X?) is not uniquely determined by the
minimization principle defining the value of the Kéhler action, and the complete dynamical
specification of X3 requires the specification of partonic 2-surfaces X? with V91 =10.

2. The known solutions of field equations [K18| define a double foliation of the space-time sur-
face defined by Hamilton-Jacobi coordinates consisting of complex transversal coordinate and
two light-like coordinates for M* (rather than space-time surface). Number theoretical con-
siderations inspire the hypothesis that this foliation exists always [K107] . Hence a natural
hypothesis is that the allowed partonic 2-surfaces correspond to the 2-surfaces in the restric-
tion of the double foliation of the space-time surface by partonic 2-surfaces to X2, and are
thus locally parameterized by single parameter defining the third spatial coordinate.

3. There is however also a second light-like coordinate involved and one might ask whether
both light-like coordinates appear in the direct sum decomposition of I1; factors defining
T(CH). The presence of two kinds of light-like CDs would provide the lacking two space-time
coordinates and quantum dimension D = 4 would emerge at the limit of full non-determinism.
Note that the duality of space-like partonic and light-like stringy 2-surfaces conforms with
this interpretation since it corresponds to a selection of partonic/stringy 2-surface inside given
3-D CD whereas the dual pairs correspond to different CDs.

4. That the quantum dimension would be 2D, = 8 < 4 above C' P, length scale conforms with
the fact that non-determinism is only partial and time direction is dynamically frozen to a
high degree. For vacuum extremals there is strong non-determinism but in this case there
is no real dynamics. For C'P, type extremals, which are not vacuum extremals as far action
and small perturbations are considered, and which correspond to = 4 there is a complete
non-determinism in time direction since the M* projection of the extremal is a light-like
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random curve and there is full 4-D dynamics. Light-likeness gives rise to conformal symmetry
consistent with the emergence of Kac Moody algebra [KI8] .

3. Time and cognition

In a completely deterministic physics time dimension is strictly speaking redundant since the
information about physical states is coded by the initial values at 3-dimensional slice of space-time.
Hence the notion of time should emerge at the level of cognitive representations possible by to the
non-determinism of the classical dynamics of TGD.

Since Jones inclusion means the emergence of cognitive representation, the space-time view
about physics should correspond to cognitive representations provided by Feynman diagram states
with zero energy with entanglement defined by a two-sided projection of the lowest level S-matrix.
These states would represent the “laws of quantum physics” cognitively. Also space-time surface
serves as a classical correlate for the evolution by quantum jumps with maximal deterministic
regions serving as correlates of quantum states. Thus the classical non-determinism making possible
cognitive representations would bring in time. The fact that quantum dimension of space-time is
smaller than D = 4 would reflect the fact that the loss of determinism is not complete.

4. Do space-time and embedding space emerge from the theory of von Neumann algebras and number theor

The considerations above force to ask whether the notions of space-time and embedding
space emerge from von Neumann algebras as predictions rather than input. The fact that it
seems possible to formulate the S-matrix and its generalization in terms of inherent properties of
infinite-dimensional Clifford algebras suggest that this might be the case.

Inner automorphisms as universal gauge symmetries?

The continuous outer automorphisms A% of HFFs of type III are not completely unique and one
can worry about the interpretation of the inner automorphisms. A possible resolution of the worries
is that inner automorphisms act as universal gauge symmetries containing various super-conformal
symmetries as a special case. For hyper-finite factors of type I1; in the representation as an infinite
tensor power of My(C) this would mean that the transformations non-trivial in a finite number
of tensor factors only act as analogs of local gauge symmetries. In the representation as a group
algebra of S, all unitary transformations acting on a finite number of braid strands act as gauge
transformations whereas the infinite powers P x P x ..., P € S,,, would act as counterparts of global
gauge transformations. In particular, the Galois group of the closure of rationals would act as local
gauge transformations but diagonally represented finite Galois groups would act like global gauge
transformations and periodicity would make possible to have finite braids as space-time correlates
without a loss of information.

Do unitary isomorphisms between tensor powers of II; define vertices?

What would be left would be the construction of unitary isomorphisms between the tensor products
of the HFF's of type II; ® I,, = II; at the partonic 2-surfaces defining the vertices. This would be
the only new element added to the construction of braiding M-matrices.

As a matter fact, this element is actually not completely new since it generalizes the fusion
rules of conformal field theories, about which standard example is the fusion rule ¢; = ¢, ’ k¢j¢5k
for primary fields. These fusion rules would tell how a state of incoming HFF decomposes to the
states of tensor product of two outgoing HFFs.

These rules indeed have interpretation in terms of Connes tensor products M & ... @ v M
for which the sub-factor A takes the role of complex numbers [A45] so that one has M becomes
N bimodule and “quantum quantum states” have N as coefficients instead of complex numbers.
In TGD framework this has interpretation as quantum measurement resolution characterized by
N (the group G characterizing leaving the elements of A/ invariant defines the measured quantum
numbers).
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2.5.6 Quaternions, Octonions, And Hyper-Finite Type [[,Factors

Quaternions and octonions as well as their hyper counterparts obtained by multiplying imaginary
units by commuting v/—1 and forming a sub-space of complexified division algebra, are in in a
central role in the number theoretical vision about quantum TGD [K107] . Therefore the question
arises whether complexified quaternions and perhaps even octonions could be somehow inherent
properties of von Neumann algebras. One can also wonder whether the quantum counterparts
of quaternions and octonions could emerge naturally from von Neumann algebras. The following
considerations allow to get grasp of the problem.

Quantum quaternions and quantum octonions

Quantum quaternions have been constructed as deformation of quaternions [A91] . The key ob-
servation that the Glebsch Gordan coefficients for the tensor product 3®3 =5® B3 & 1 of spin 1
representation of SU(2) with itself gives the anti-commutative part of quaternionic product as spin
1 part in the decomposition whereas the commutative part giving spin 0 representation is identifi-
able as the scalar product of the imaginary parts. By combining spin 0 and spin 1 representations,
quaternionic product can be expressed in terms of Glebsh-Gordan coefficients. By replacing GGC:s
by their quantum group versions for group si(2),, one obtains quantum quaternions.

There are two different proposals for the construction of quantum octonions [A75[AT] . Also
now the idea is to express quaternionic and octonionic multiplication in terms of Glebsch-Gordan
coefficients and replace them with their quantum versions.

1. The first proposal [A75] relies on the observation that for the tensor product of j = 3 repre-
sentations of SU(2) the Glebsch-Gordan coefficients for 7@ 7 - 7in 7T 7=9070503d1
defines a product, which is equivalent with the antisymmetric part of the product of octonionic
imaginary units. As a matter fact, the antisymmetry defines 7-dimensional Malcev algebra
defined by the anti-commutator of octonion units and satisfying b definition the identity

(2,9, 2], 2] = [2,y, [2,2]] (29,2 = [ [y, 2] + [y, [z, 2] + 2, [, 9]) (2.5.1)

7-element Malcev algebra defining derivations of octonionic algebra is the only complex Malcev
algebra not reducing to a Lie algebra. The j = 0 part of the product corresponds also now
to scalar product for imaginary units. Octonions are constructed as sums of j =0 and j = 3
parts and quantum Glebsch-Gordan coefficients define the octonionic product.

2. In the second proposal [Al] the quantum group associated with SO(8) is used. This repre-
sentation does not allow unit but produces a quantum version of octonionic triality assigning
to three octonions a real number.

Quaternionic or octonionic quantum mechanics?

There have been numerous attempts to introduce quaternions and octonions to quantum theory.
Quaternionic or octonionic quantum mechanics, which means the replacement of the complex
numbers as coefficient field of Hilbert space with quaternions or octonions, is the most obvious
approach (for example and references to the literature see for instance [A73] .

In both cases non-commutativity poses serious interpretational problems. In the octonionic
case the non-associativity causes even more serious obstacles [B38| [A73] , [B3§] .

1. Assuming that an orthonormalized state basis with respect to an octonion valued inner prod-
uct has been found, the multiplication of any basis with octonion spoils the orthonormal-
ity. The proposal to circumvent this difficulty discussed in [B38] , [B38] eliminates non-
associativity by assuming that octonions multiply states one by one (rather than multiplying
each other before multiplying the state). Effectively this means that octonions are replaced
with 8 x 8-matrices.

2. The definition of the tensor product leads also to difficulties since associativity is lost (recall
that Yang-Baxter equation codes for associativity in case of braid statistics [A29] ).
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3. The notion of hermitian conjugation is problematic and forces a selection of a preferred
imaginary unit, which does not look nice. Note however that the local selection of a preferred
imaginary unit is in a key role in the proposed construction of space-time surfaces as

hyper-quaternionic or co-hyper-quaternionic surfaces and allows to interpret space-time sur-
faces either as surfaces in 8-D Minkowski space M® of hyper-octonions or in M* x C' P;. This
selection turns out to have quite different interpretation in the proposed framework.

Hyper-finite factor I1; has a natural Hyper-Kéahler structure

In the case of hyper-finite factors of type II; quaternions a more natural approach is based on
the generalization of the Hyper-Kéhler structure rather than quaternionic quantum mechanics.
The reason is that also WCW tangent space should and is expected to have this structure [K36]
. The Hilbert space remains a complex Hilbert space but the quaternionic units are represented
as operators in Hilbert space. The selection of the preferred unit is necessary and natural. The
identity operator representing quaternionic real unit has trace equal to one, is expected to give rise
to the series of quantum quaternion algebras in terms of inclusions N’ C M having interpretation
as N-modules.

The representation of the quaternion units is rather explicit in the structure of hyper-finite
II; factor. The M : N' = 8 = 4 hierarchical construction can be regarded as Connes tensor
product of infinite number of 4-D Clifford algebras of Euclidian plane with Euclidian signature of
metric (diag(—1,—1)). This algebra is nothing but the quaternionic algebra in the representation
of quaternionic imaginary units by Pauli spin matrices multiplied by 1.

The imaginary unit of the underlying complex Hilbert space must be chosen and there is
whole sphere S? of choices and in every point of WCW the choice can be made differently. The
space-time correlate for this local choice of preferred hyper-octonionic unit [K107] . At the level
of WCW geometry the quaternion structure of the tangent space means the existence of Hyper-
Kahler structure guaranteeing that WCW has a vanishing Einstein tensor. It it would not vanish,
curvature scalar would be infinite by symmetric space property (as in case of loop spaces) and
induce a divergence in the functional integral over 3-surfaces from the expansion of /g [K36] .

The quaternionic units for the Il; factor, are simply limiting case for the direct sums of
2 x 2 units normalized to one. Generalizing from 5 = 4 to § < 4, the natural expectation is that
the representation of the algebra as 8 = M : N-dimensional A-module gives rise to quantum
quaternions with quaternion units defined as infinite sums of /B x /B matrices.

At Hilbert space level one has an infinite Connes tensor product of 2-component spinor spaces
on which quaternionic matrices have a natural action. The tensor product of Clifford algebras gives
the algebra of 2 x 2 quaternionic matrices acting on 2-component quaternionic spinors (complex
4-component spinors). Thus double inclusion could correspond to (hyper-)quaternionic structure
at space-time level. Note however that the correspondence is not complete since hyper-quaternions
appear at space-time level and quaternions at Hilbert space level.

Von Neumann algebras and octonions

The octonionic generalization of the Hyper-Kéahler manifold does not make sense as such since
octonionic units are not representable as linear operators. The allowance of anti-linear operators
inherently present in von Neumann algebras could however save the situation. Indeed, the Cayley-
Dickson construction for the division algebras (for a nice explanation see [A67] ), which allows to
extend any * algebra, and thus also any von Neumann algebra, by adding an imaginary unit it and
identified as *, comes in rescue.

The basic idea of the Cayley-Dickson construction is following. The * operator, call it J,
representing a conjugation defines an anti-linear operator in the original algebra A. One can
extend A by adding this operator as a new element to the algebra. The conditions satisfied by J
are

*

a(Jb) = J(a*b) , (aJ)b= (ab*)J , (Ja)(bJ™')= (ab)* . (2.5.2)

In the associative case the conditions are equivalent to the first condition.
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It is intuitively clear that this addition extends the hyper-Kéahler structure to an octonionic
structure at the level of the operator algebra. The quantum version of the octonionic algebra
is fixed by the quantum quaternion algebra uniquely and is consistent with the Cayley-Dickson
construction. It is not clear whether the construction is equivalent with either of the earlier
proposals [A75, [A1] . It would however seem that the proposal is simpler.

Physical interpretation of quantum octonion structure

Without further restrictions the extension by J would mean that vertices contain operators, which
are superpositions of linear and anti-linear operators. This would give superpositions of states and
their time-reversals and mean that state could be a superposition of states with opposite values
of say fermion numbers. The problem disappears if either the linear operators A or anti-linear
operators JA can be used to construct physical states from vacuum. The fact, that space-time
surfaces are either hyper-quaternionic or co-hyper-quaternionic, is a space-time correlate for this
restriction.

The HQ — coHQ duality discussed in [K107] states that the descriptions based on hyper-
quaternionic and co-hyper-quaternionic surfaces are dual to each other. The duality can have two
meanings.

1. The vacuum is invariant under J so that one can use either complexified quaternionic operators
A or their co-counterparts of form JA to create physical states from vacuum.

2. The vacuum is not invariant under J. This could relate to the breaking of CP and T invari-
ance known to occur in meson-antimeson systems. In TGD framework two kinds of vacua
are predicted corresponding intuitively to vacua in which either the product of all positive
or negative energy fermionic oscillator operators defines the vacuum state, and these two
vacua could correspond to a vacuum and its J conjugate, and thus to positive and negative
energy states. In this case the two state spaces would not be equivalent although the physics
associated with them would be equivalent.

The considerations of [K107] related to the detailed dynamics of HQ — coHQ duality demon-
strate that the variational principles defining the dynamics of hyper-quaternionic and co-hyper-
quaternionic space-time surfaces are antagonistic and correspond to world as seen by a conscientous
book-keeper on one hand and an imaginative artist on the other hand. H(@ case is conservative:
differences measured by the magnitude of K&hler action tend to be minimized, the dynamics is
highly predictive, and minimizes the classical energy of the initial state. coHQ case is radical:
differences are maximized (this is what the construction of sensory representations would require).
The interpretation proposed in [K107] was that the two space-time dynamics are just different pre-
dictions for what would happen (has happened) if no quantum jumps would occur (had occurred).
A stronger assumption is that these two views are associated with systems related by time reversal
symmetry.

What comes in mind first is that this antagonism follows from the assumption that these
dynamics are actually time-reversals of each other with respect to M* time (the rapid elimination
of differences in the first dynamics would correspond to their rapid enhancement in the second
dynamics). This is not the case so that 7" and C'P symmetries are predicted to be broken in
accordance with the C'P breaking in meson-antimeson systems [K73] and cosmological matter-
antimatter asymmetry [K101] .

2.5.7 Does The Hierarchy Of Infinite Primes Relate To The Hierarchy
Of 11, Factors?

The hierarchy of Feynman diagrams accompanying the hierarchy defined by Jones inclusions Mg C
My C ... gives a concrete representation for the hierarchy of cognitive dynamics providing a
representation for the material world at the lowest level of the hierarchy. This hierarchy seems to
relate directly to the hierarchy of space-time sheets.

Also the construction of infinite primes [K105] leads to an infinite hierarchy. Infinite primes
at the lowest level correspond to polynomials of single variable x; with rational coefficients, next
level to polynomials x; for which coefficients are rational functions of variable x5, etc... so that a
natural ordering of the variables is involved.
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If the variables z; are hyper-octonions (subs-space of complexified octonions for which el-
ements are of form x + /—1y, where z is real number and y imaginary octonion and /—1 is
commuting imaginary unit, this hierarchy of states could provide a realistic representation of phys-
ical states as far as quantum numbers related to embedding space degrees of freedom are considered
in M® picture dual to M* x CP, picture [K107] . Infinite primes are mapped to space-time surfaces
in a way analogous to the mapping of polynomials to the loci of their zeros so that infinite primes,
integers, and rationals become concrete geometrical objects.

Infinite primes are also obtained by a repeated second quantization of a super-symmetric
arithmetic quantum field theory. Infinite rational numbers correspond in this description to pairs
of positive energy and negative energy states of opposite energies having interpretation as pairs of
initial and final states so that higher level states indeed represent transitions between the states.
For these reasons this hierarchy has been interpreted as a correlate for a cognitive hierarchy coding
information about quantum dynamics at lower levels. This hierarchy has also been assigned with
the hierarchy of space-time sheets. Just as the hierarchy of generalized Feynman diagrams provides
self representations of the lowest matter level and is coded by it, finite primes code the hierarchy
of infinite primes.

Infinite primes, integers, and rationals have finite p-adic norms equal to 1, and one can
wonder whether a Hilbert space like structure with dimension given by an infinite prime or integer
makes sense, and whether it has anything to do with the Hilbert space for which dimension is
infinite in the sense of the limiting value for a dimension of sub-space. The Hilbert spaces with
dimension equal to infinite prime would define primes for the tensor product of these spaces. The
dimension of this kind of space defined as any p-adic norm would be equal to one.

One cannot exclude the possibility that infinite primes could express the infinite dimensions
of hyper-finite I11; factors, which cannot be excluded and correspond to that part of quantum
TGD which relates to the embedding space rather than space-time surface. Indeed, infinite primes
code naturally for the quantum numbers associated with the embedding space. Secondly, the
appearance of 7-D light-like causal determinants X[ = M3} x CP, forming nested structures in
the construction of S-matrix brings in mind similar nested structures of algebraic quantum field
theory [B6] . If this is were the case, the hierarchy of Beraha numbers possibly associated with
the phase resolution could correspond to hyper-finite factors of type I1;, and the decomposition of
space-time surface to regions labeled by p-adic primes and characterized by infinite primes could
correspond to hyper-finite factors of type 111 and represent embedding space degrees of freedom.

The state space would in this picture correspond to the tensor products of hyper-finite factors
of type Il and I1I; (of course, also factors I, and I, are also possible). I1I; factors could be
assigned to the sub-WCWs defined by 3-surfaces in regions of M* expressible in terms of unions
and intersections of X = M4 x CP,. By conservation of four-momentum, bounded regions of this
kind are possible only for the states of zero net energy appearing at the higher levels of hierarchy.
These sub-WCWs would be characterized by the positions of the tips of light cones Mt C M*
involved. This indeed brings in continuous spectrum of four-momenta forcing to introduce non-
separable Hilbert spaces for momentum eigen states and necessitating I11; factors. Infinities would
be avoided since the dynamics proper would occur at the level of space-time surfaces and involve
only II; factors.

2.6 HFFs Of Type II] And TGD

One can imagine several ways for how HFFs of type III could emerge in TGD although the
proposed view about M-matrix in zero energy ontology suggests that HFF's of type I11; should be
only an auxiliary tool at best. Same is suggested with interpretational problems associated with
them. Both TGD inspired quantum measurement theory, the idea about a variant of HFF of type
11 analogous to a local gauge algebra, and some other arguments, suggest that HFFs of type I11
could be seen as a useful idealization allowing to make non-trivial conjectures both about quantum
TGD and about HFF's of type III. Quantum fields would correspond to HFF's of type 111 and I,
whereas physical states (M-matrix) would correspond to HFF of type II;. I have summarized first
the problems of I11; factors so that reader can decide whether the further reading is worth of it.
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2.6.1 Problems Associated With The Physical Interpretation Of /[,
Factors

Algebraic quantum field theory approach [B31l [B6] has led to a considerable understanding of
relativistic quantum field theories in terms of hyper-finite I11; factors. There are however several
reasons to suspect that the resulting picture is in conflict with physical intuition. Also the infinities
of non-trivial relativistic QFTs suggest that something goes wrong.

Are the infinities of quantum field theories due the wrong type of von Neumann
algebra?

The infinities of quantum field theories involve basically infinite traces and it is now known that
the algebras of observables for relativistic quantum field theories for bounded regions of Minkowski
space correspond to hyper-finite I11; algebras, for which non-trivial traces are always infinite. This
might be the basic cause of the divergence problems of relativistic quantum field theory.

On basis of this observations there is some temptation to think that the finite traces of
hyper-finite I1; algebras might provide a resolution to the problems but not necessarily in QFT
context. One can play with the thought that the subtraction of infinities might be actually a
process in which I11; algebra is transformed to II; algebra. A more plausible idea suggested by
dimensional regularization is that the elimination of infinities actually gives rise to I1; inclusion
at the limit M : N' — 4. Tt is indeed known that the dimensional regularization procedure of
quantum field theories can be formulated in terms of bi-algebras assignable to Feynman diagrams
and [A21] and the emergence of bi-algebras suggests that a connection with I; factors and critical
role of dimension D = 4 might exist.

Continuum of inequivalent representations of commutation relations

There is also a second difficulty related to type III algebras. There is a continuum of inequivalent
representations for canonical commutation relations [A84] . In thermodynamics this is blessing
since temperature parameterizes these representations. In quantum field theory context situation
is however different and this problem has been usually put under the rug.

Entanglement and von Neumann algebras

In quantum field theories where 4-D regions of space-time are assigned to observables. In this case
hyper-finite type I11; von Neumann factors appear. Also now inclusions make sense and has been
studiedin fact, the parameters characterizing Jones inclusions appear also now and this due to the
very general properties of the inclusions.

The algebras of type I11; have rather counter-intuitive properties from the point of view of
entanglement. For instance, product states between systems having space-like separation are not
possible at all so that one can speak of intrinsic entanglement [A58] . What looks worse is that
the decomposition of entangled state to product states is highly non-unique.

Mimicking the steps of von Neumann one could ask what the notion of observables could
mean in TGD framework. Effective 2-dimensionality states that quantum states can be constructed
using the data given at partonic or stringy 2-surfaces. This data includes also information about
normal derivatives so that 3-dimensionality actually lurks in. In any case this would mean that
observables are assignable to 2-D surfaces. This would suggest that hyper-finite I1; factors appear
in quantum TGD at least as the contribution of single space-time surface to S-matrix is considered.
The contributions for WCW degrees of freedom meaning functional (not path-) integral over 3-
surfaces could of course change the situation.

Also in case of I factors, entanglement shows completely new features which need not
however be in conflict with TGD inspired view about entanglement. The eigen values of density
matrices are infinitely degenerate and quantum measurement can remove this degeneracy only par-
tially. TGD inspired theory of consciousness has led to the identification of rational (more generally
algebraic entanglement) as bound state entanglement stable in state function reduction. When an
infinite number of states are entangled, the entanglement would correspond to rational (algebraic
number) valued traces for the projections to the eigen states of the density matrix. The symplectic
transformations of C'P, are almost U(1) gauge symmetries broken only by classical gravitation.
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They imply a gigantic spin glass degeneracy which could be behind the infinite degeneracies of
eigen states of density matrices in case of Il; factors.

2.6.2 Quantum Measurement Theory And HFFs Of Type II1

The attempt to interpret the HFFs of type II] in terms of quantum measurement theory based
on Jones inclusions leads to highly non-trivial conjectures about these factors.

Could the scalings of trace relate to quantum measurements?

What should be understood is the physical meaning of the automorphism inducing the scaling of
trace. In the representation based of factors based on infinite tensor powers the action of g should
transform single n x n matrix factor with density matrix Id/n to a density matrix e;; of a pure
state.

Obviously the number of degrees of freedom is affected and this can be interpreted in terms of
appearance or disappearance of correlations. Quantization and emergence of non-commutativity
indeed implies the emergence of correlations and effective reduction of degrees of freedom. In
particular, the fundamental quantum Clifford algebra has reduced dimension M : N = r < 4
instead of r = 4 since the replacement of complex valued matrix elements with N valued ones
implies non-commutativity and correlations.

The transformation would be induced by the shift of finite-dimensional state to right or left
so that the number of matrix factors overlapping with I, part increases or is reduced. Could
it have interpretation in terms of quantum measurement for a quantum Clifford factor? Could
quantum measurement for M /A degrees of freedom reducing the state in these degrees of freedom
to a pure state be interpreted as a transformation of single finite-dimensional matrix factor to a
type I factor inducing the scaling of the trace and could the scalings associated with automorphisms
of HFF's of type II1 also be interpreted in terms of quantum measurement?

This interpretation does not as such say anything about HFF factors of type I11 since only
a decomposition of I1; factor to I¥ factor and II; factor with a reduced trace of projector to the
latter. However, one can ask whether the scaling of trace for HFF's of type 111 could correspond
to a situation in which infinite number of finite-dimensional factors have been quantum measured.
This would correspond to the inclusion N' C My, = U, M,, where N' C M C ...M,,... defines the
canonical inclusion sequence. Physicist can of course ask whether the presence of infinite number
of I5-, or more generally, I,,-factors is at all relevant to quantum measurement and it has already
become clear that situation at the level of M-matrix reduces to I,,.

Could the theory of HHF's of type III relate to the theory of Jones inclusions?

The idea about a connection of HFF's of type I1] and quantum measurement theory seems to be
consistent with the basic facts about inclusions and HFFs of type I11;.

1. Quantum measurement would scale the trace by a factor 2¥/v/M : N since the trace would
become a product for the trace of the projector to the newly born M (2, C)®* factor and the
trace for the projection to N given by 1/v/ M : N. The continuous range of values M : N' > 4
gives good hopes that all values of \ are realized. The prediction would be that 28/ M : N > 1
holds always true.

2. The values M : N € {r, = 4cos®*(w/n)} for which the single M(2,C) factor emerges in
state function reduction would define preferred values of the inverse of A = /M : N /4
parameterizing factors I1I. These preferred values vary in the range [1/2,1].

3. A =1 at the end of continuum would correspond to HFF I71; and to Jones inclusions defined
by infinite cyclic subgroups dense in U(1) C SU(2) and this group combined with reflection.
These groups correspond to the Dynkin diagrams A., and D.,. Also the classical values of
M : N' = n? characterizing the dimension of the quantum Clifford M : A/ are possible. In this
case the scaling of trace would be trivial since the factor n to the trace would be compensated
by the factor 1/n due to the disappearance of M /N factor I11; factor.

4. Inclusions with M : A" = oo are also possible and they would correspond to A = 0 so that
also I, factor would also have a natural identification in this framework. These factors
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correspond to ergodic systems and one might perhaps argue that quantum measurement in
this case would give infinite amount of information.

This picture makes sense also physically. p-Adic thermodynamics for the representations of
super-conformal algebra could be formulated in terms of factors of type I, and in excellent
approximation using factors I,,. The generation of arbitrary number of type II; factors in
quantum measurement allow this possibility.

The end points of spectrum of preferred values of A are physically special

The fact that the end points of the spectrum of preferred values of A\ are physically special, supports
the hopes that this picture might have something to do with reality.

1. The Jones inclusion with ¢ = exp(im/n), n = 3 (with principal diagram reducing to a Dynkin

diagram of group SU(3)) corresponds to A = 1/2, which corresponds to HFF I1I; differing
in essential manner from factors IT1y, A < 1. On the other hand, SU(3) corresponds to
color group which appears as an isometry group and important subgroup of automorphisms
of octonions thus differs physically from the ADE gauge groups predicted to be realized
dynamically by the TGD based view about McKay correspondence [K59] .

. For r = 4 SU(2) inclusion parameterized by extended ADE diagrams M (2,C)®? would be

created in the state function reduction and also this would give A = 1/2 and scaling by a factor
of 2. Hence the end points of the range of discrete spectrum would correspond to the same
scaling factor and same HFF of type III. SU(2) could be interpreted either as electro-weak
gauge group, group of rotations of th geodesic sphere of §M4, or a subgroup of SU(3). In
TGD interpretation for McKay correspondence a phase transition replacing gauge symmetry
with Kac-Moody symmetry.

The scalings of trace by factor 2 seem to be preferred physically which should be contrasted
with the fact that primes near prime powers of 2 and with the fact that quantum phases
q = exp(in/n) with n equal to Fermat integer proportional to power of 2 and product of the
Fermat primes (the known ones are 5, 17, 257, and 216 + 1) are in a special role in TGD
Universe.

2.6.3 What Could One Say About I/, Automorphism Associated With

The /1., Automorphism Defining Factor Of Type 1117

An interesting question relates to the interpretation of the automorphisms of I, factor inducing
the scaling of trace.

1. If the automorphism for Jones inclusion involves the generator of cyclic automorphism sub-

group Z, of II; factor then it would seem that for other values of A this group cannot be
cyclic. SU(2) has discrete subgroups generated by arbitrary phase ¢ and these are dense in
U(1) € SU(2) sub-group. If the interpretation in terms of Jones inclusion makes sense then

the identification A = v M : N//2* makes sense.

If HFF of type I1; is realized as group algebra of infinite symmetric group [K59] , the outer
automorphism induced by the diagonally imbedded finite Galois groups can induce only in-
teger values of n and Z,, would correspond to cyclic subgroups. This interpretation conforms
with the fact that the automorphisms in the completion of inner automorphisms of HFF of
type II; induce trivial scalings. Therefore only automorphisms which do not belong to this
completion can define HFF's of type III.

2.6.4 What Could Be The Physical Interpretation Of Two Kinds Of

Invariants Associated With HFF's Type 1117

TGD predicts two kinds of counterparts for S-matrix: M-matrix and U-matrix. Both are expected
to be more or less universal.

There are also two kinds of invariants and automorphisms associated with HFF's of type III.
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1. The first invariant corresponds to the scaling A €]0, 1| of the trace associated with the auto-
morphism of factor of I1,,. Also the end points of the interval make sense. The inverse of
this scaling accompanies the inverse of this automorphism.

2. Second invariant corresponds to the time scales t = T for which the outer automorphism
ot reduces to inner automorphism. It turns out that T, and A are related by the formula
ATo = 1, which gives the allowed values of Ty as Ty = n2w/log(\) [A20] . This formula
can be understood intuitively by realizing that A corresponds to the eigenvalue of the density
matrix A = e in the simplest possible realization of the state ¢.

The presence of two automorphisms and invariants brings in mind U matrix characterizing
the unitary process occurring in quantum jump and M-matrix characterizing time like entangle-
ment.

1. If one accepts the vision based on quantum measurement theory then A corresponds to the
scaling of the trace resulting when quantum Clifford algebra M /A reduces to a tensor power
of M(2,C) factor in the state function reduction. The proposed interpretation for U process
would be as the inverse of state function reduction transforming this factor back to M/N.
Thus U process and state function reduction would correspond naturally to the scaling and
its inverse. This picture might apply not only in single particle case but also for zero energy
states which can be seen as states associated the a tensor power of HFFs of type I1; associated
with partons.

2. The implication is that U process can occur only in the direction in which trace is reduced.
This would suggest that the full I11; factor is not a physical notion and that one must restrict
the group Z in the crossed product Z X.. Il to the group N of non-negative integers. In
this kind of situation the trace is well defined since the traces for the terms in the crossed
product comes as powers A~ so that the net result is finite. This would mean a reduction to
11, factor.

3. Since time t is a natural parameter in elementary particle physics experiment, one could argue
that o; could define naturally M-matrix. Time parameter would most naturally correspond
to a parameter of scaling affecting all M} coordinates rather than linear time. This conforms
also with the fundamental role of conformal transformations and scalings in TGD framework.

The identification of the full M-matrix in terms of o does not seem to make sense generally.
It would however make sense for incoming and outgoing number theoretic braids so that ¢ could
define universal braiding M-matrices. Inner automorphisms would bring in the dependence on
experimental situation. The reduction of the braiding matrix to an inner automorphism for critical
values of ¢ which could be interpreted in terms of scaling by power of p. This trivialization would
be a counterpart for the elimination of propagator legs from M-matrix element. Vertex itself could
be interpreted as unitary isomorphism between tensor product of incoming and outgoing HFFs of
type II; would code all what is relevant about the particle reaction.

2.6.5 Does The Time Parameter 7' Represent Time Translation Or Scal-
ing?

The connection T;, = n2w/log(\) would give a relationship between the scaling of trace and value of
time parameter for which the outer automorphism represented by ¢ reduces to inner automorphism.
It must be emphasized that the time parameter ¢ appearing in ¢ need not have anything to do
with time translation. The alternative interpretation is in terms of M$ scaling (implying also time
scaling) but one cannot exclude even preferred Lorentz boosts in the direction of quantization axis
of angular momentum.

Could the time parameter correspond to scaling?

The central role of conformal invariance in quantum TGD suggests that ¢ parameterizes scaling
rather than translation. In this case scalings would correspond to powers of (K'A)™. The numerical
factor K which cannot be excluded a priori, seems to reduce to K = 1.
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1. The scalings by powers of p have a simple realization in terms of the representation of HFF of
type Il as infinite tensor power of M (p, C') with suitably chosen densities matrices in factors
to get product of I, and I1; factor. These matrix algebras have the remarkable property of
defining prime tensor power factors of finite matrix algebras. Thus p-adic fractality would
reflect directly basic properties of matrix algebras as suggested already earlier. That scalings
by powers of p would correspond to automorphism reducing to inner automorphisms would
conform with p-adic fractality.

2. Also scalings by powers [vM : N'/2¥]" would be physically preferred if one takes previous
arguments about Jones inclusions seriously and if also in this case scalings are involved.
For ¢ = exp(in/n), n = 5 the minimal value of n allowing universal topological quantum
computation would correspond to a scaling by Golden Mean and these fractal scalings indeed

play a key role in living matter. In particular, Golden Mean makes it visible in the geometry
of DNA.

Could the time parameter correspond to time translation?

One can consider also the interpretation of o, as time translation. TGD predicts a hierarchy of
Planck constants parameterized by rational numbers such that integer multiples are favored. In
particular, integers defining ruler and compass polygons are predicted to be in a very special role
physically. Since the geometric time span associated with zero energy state should scale as Planck
constant one expects that preferred values of time t associated with o are quantized as rational
multiples of some fundamental time scales, say the basic time scale defined by C'P; length or p-adic
time scales.

1. For A = 1/p, p prime, the time scale would be T,, = nTy, T1 = Ty = 27 /log(p) which is not
what p-adic length scale hypothesis would suggest.

2. For Jones inclusions one would have T}, /Ty = n27/log(22/M : N). In the limit when A
becomes very small (the number k of reduced M (2,C) factors is large one obtains T,, =
(n/k)ty, Ty = Tomw/log(2). Approximate rational multiples of the basic length scale would be
obtained as also predicted by the general quantization of Planck constant.

p-Adic thermodynamics from first principles

Quantum field theory at non-zero temperature can be formulated in the functional integral formal-
ism by replacing the time parameter associated with the unitary time evolution operator U (t) with
a complexified time containing as imaginary part the inverse of the temperature: ¢t — ¢t +ih/7T. In
the framework of standard quantum field theory this is a mere computational trick but the time
parameter associated with the automorphisms o; of HFF of type I11] is a temperature like param-
eter from the beginning, and its complexification would naturally lead to the analog of thermal
QFT.

Thus thermal equilibrium state would be a genuine quantum state rather than fictive but
useful auxiliary notion. Thermal equilibrium is defined separately for each incoming parton braid
and perhaps even braid (partons can have arbitrarily large size). At elementary particle level
p-adic thermodynamics could be in question so that particle massivation would have first prin-
ciple description. p-Adic thermodynamics is under relatively mild conditions equivalent with its
real counterpart obtained by the replacement of plo interpreted as a p-adic number with p=Lo
interpreted as a real number.

2.6.6 HFFs Of Type [1] And The Dynamics In M{ Degrees Of Freedom?

HFFs of type I1I could be also assigned with the poorly understood dynamics in M3 degrees of
freedom which should have a lot of to do with four-dimensional quantum field theory. Hyper-finite
factors of type II11; might emerge when one extends II; to a local algebra by multiplying it with
hyper-octonions replaced as analog of matrix factor and considers hyper-quaternionic subalgebra.
The resulting algebra would be the analog of local gauge algebra and the elements of algebra
would be analogous to conformal fields with complex argument replaced with hyper-octonionic,
-quaternionic, or -complex one. Since quantum field theory in M? gives rise to hyper-finite I11;
factors one might guess that the hyper-quaternionic restriction indeed gives these factors.
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The expansion of the local HFF Il element as O(m) = Y. m"0,,, where M* coordinate
m is interpreted as hyper-quaternion, could have interpretation as expansion in which O,, belongs
to Mg™ in the crossed product N X..{g™,n € Z}. The analogy with conformal fields suggests that
the power g™ inducing A\™ fold scaling of trace increases the conformal weight by n.

One can ask whether the scaling of trace by powers of A defines an inclusion hierarchy of
sub-algebras of conformal sub-algebras as suggested by previous arguments. One such hierarchy
would be the hierarchy of sub-algebras containing only the generators O,, with conformal weight
m>n,neZ.

It has been suggested that the automorphism A could correspond to scaling inside light-cone.
This interpretation would fit nicely with Lorentz invariance and TGD in general. The factors 11,
with A generating semi-subgroups of integers (in particular powers of primes) could be of special
physical importance in TGD framework. The values of ¢ for which automorphism reduces to inner
automorphism should be of special physical importance in TGD framework. These automorphisms
correspond to scalings identifiable in terms of powers of p-adic prime p so that p-adic fractality
would find an explanation at the fundamental level.

If the above mentioned expansion in powers of m™ of M} coordinate makes sense then the
action of ¢! representing a scaling by p™ would leave the elements O invariant or induce a mere
inner automorphism. Conformal weight n corresponds naturally to n-ary p-adic length scale by
uncertainty principle in p-adic mass calculations.

The basic question is the physical interpretation of the automorphism inducing the scaling
of trace by A and its detailed action in HFF. This scaling could relate to a scaling in M* and to
the appearance in the trace of an integral over M* or subspace of it defining the trace. Fractal
structures suggests itself strongly here. At the level of construction of physical states one always
selects some minimum non-positive conformal weight defining the tachyonic ground state and
physical states have non-negative conformal weights. The interpretation would be as a reduction
to HHF of type I, or even I1;.

2.6.7 Could The Continuation Of Braidings To Homotopies Involve A’f
Automorphisms

The representation of braidings as special case of homotopies might lead from discrete automor-
phisms for HFF's type 117 to continuous outer automorphisms for HFFs of type I11;. The question
is whether the periodic automorphism of IT; represented as a discrete sub-group of U(1) would be
continued to U(1) in the transition.

The automorphism of I1,, HFF associated with a given value of the scaling factor A is
unique. If Jones inclusions defined by the preferred values of A\ as A = v M : N/2F (see the
previous considerations), then this automorphism could involve a periodic automorphism of Iy
factor defined by the generator of cyclic subgroup Z, for M : N' < 4 besides additional shift
transforming Iy factor to I factor and inducing the scaling.

2.6.8 HFFs Of Type I1] As Super-Structures Providing Additional Unique-
ness?

If the braiding M-matrices are as such highly unique. One could however consider the possibility
that they are induced from the automorphisms o; for the HFFs of type II1 restricted to HFF's of
type I1. If a reduction to inner automorphism in HFF of type 111 implies same with respect to
HFF of type I1, and even I, they could be trivial for special values of time scaling ¢t assignable
to the partons and identifiable as a power of prime p characterizing the parton. This would allow
to eliminate incoming and outgoing legs. This elimination would be the counterpart of the division
of propagator legs in quantum field theories. Particle masses would however play no role in this
process now although the power of padic prime would fix the mass scale of the particle.
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2.7 Appendix: Inclusions Of Hyper-Finite Factors Of Type
15

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[A76] . It would seem to me that the notion Jones inclusion includes them all so that various
names would correspond to different concrete realizations of the inclusions conjugate under outer
automorphisms.

1. According to [A76] for inclusions with M : N' < 4 (with Agl) excluded) there exists a countable
infinity of sub-factors with are pairwise non inner conjugate but conjugate to N.

2. Also for any finite group G and its outer action there exists uncountably many sub-factors
which are pairwise non inner conjugate but conjugate to the fixed point algebra of G [AT6] .
For any amenable group G the inclusion is also unique apart from outer automorphism [A45]

Thus it seems that not only Jones inclusions but also more general inclusions are unique apart
from outer automorphism.

Any *-endomorphism o, which is unit preserving, faithful, and weakly continuous, defines
a sub-factor of type II; factor [A76] . The construction of Jones leads to a standard inclusion
sequence N' C M C M!' C ... This sequence means addition of projectors e;, i < 0, having
visualization as an addition of braid strand in braid picture. This hierarchy exists for all factors of
type II. At the limit M> = U;M? the braid sequence extends from —oo to co. Inclusion hierarchy
can be understood as a hierarchy of Connes tensor powers M ®x M.... @ M. Also the ordinary
tensor powers of hyper-finite factors of type II; (HFF) as well as their tensor products with finite-
dimensional matrix algebras are isomorphic to the original HFF so that these objects share the
magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For
a finite index an infinite inclusion hierarchy of factors results with the same value of index. o
is said to be basic if it can be extended to *-endomorphisms from M?! to M. This means that
the hierarchy of inclusions can be continued in the opposite direction: this means elimination of
strands in the braid picture. For finite factors (as opposed to hyper-finite ones) there are no basic
*-endomorphisms of M having fixed point algebra of non-abelian G as a sub-factor [AT76] .

2.7.1 Jones Inclusions

For hyper-finite factors of type II; Jones inclusions allow basic *-endomorphism. They exist for
all values of M : N' = r with r € {4cos*(m/n)|n > 3} N [4,00) [AT6] . They are defined for an
algebra defined by projectors e;, i > 1. All but nearest neighbor projectors commute. A = 1/r
appears in the relations for the generators of the algebra given by e;eje; = Ae;, |i—j| =1. N C M
is identified as the double commutator of algebra generated by e;, i > 2.

This means that principal graph and its dual are equivalent and the braid defined by pro-
jectors can be continued not only to —oo but that also the dropping of arbitrary number of strands
is possible [AT6] . Tt would seem that ADE property of the principal graph meaning single root
length codes for the duality in the case of r < 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q'NP = P'NP =C.
For r > 4 one has dim(Q' N P) = 2. The operators commuting with @ contain besides identify
operator of @ also the identify operator of P. ) would contain a single finite-dimensional matrix
factor less than P in this case. Basic *-endomorphisms with o(P) = Q is o(e;) = e;41. The
difference between genuine symmetries of quantum TGD and symmetries which can be mimicked
by TGD could relate to the irreducibility for r < 4 and raise these inclusions in a unique position.
This difference could partially justify the hypothesis [K47] that only the groups G, x Gy, C SU(2) x
SU(2) € SL(2,C) x SU(3) define orbifold coverings of Hy = M} x CPy — Hy /G, x Gy,

2.7.2 Wassermann’s Inclusion

Wasserman’s construction of r» = 4 factors clarifies the role of the subgroup of G C SU(2) for these
inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G C SU(2) and is
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given by (1@ M)% C (My(C) x M), According to [AT6] Jones inclusions are irreducible also for
r = 4. The definition of Wasserman inclusion for » = 4 seems however to imply that the identity
matrices of both MY and (M(2,C) ® M)¢ commute with M% so that the inclusion should be
reducible for r = 4.

Note that G leaves both the elements of N' and M invariant whereas SU(2) leaves the
elements of A invariant. M(2,C) is effectively replaced with the orbifold M (2,C)/G, with G
acting as automorphisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as M“ C M. The representation of G as outer automorphism
must change step by step in the inclusion sequence ... C N' C M C ... since otherwise G would act
trivially as one proceeds in the inclusion sequence. This is true since each step brings in additional
finite-dimensional tensor factor in which G acts as automorphisms so that although M can be
invariant under G it is not invariant under Gs.

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N' = M% C M with G acting non-trivially in M /N quantum Clifford algebra. N
would decompose by 7 = 4 inclusion to N7 C N with SU(2) taking the role of G. N/ quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S? to
the orbifold S?/G. The coverings Hy — H /G, x G} should relate to these double inclusions and
SU(2) inclusion could mean Kac-Moody type gauge symmetry for A/. Note that the presence of
the factor containing only unit matrix should relate directly to the generator d in the generator
set of affine algebra in the McKay construction [K59] . The physical interpretation of the fact that
almost all ADE type extended diagrams (DSP must have n > 4) are allowed for » = 4 inclusions
whereas Do, 11 and Ejg are not allowed for r < 4, remains open.

2.7.3 Generalization From Su(2) To Arbitrary Compact Group

The inclusions with index M : N < 4 have one-dimensional relative commutant N/ UM. The most
obvious conjecture that M : N' > 4 corresponds to a non-trivial relative commutant is wrong. The
index for Jones inclusion is identifiable as the square of quantum dimension of the fundamental
representation of SU(2). This identification generalizes to an arbitrary representation of arbitrary
compact Lie group.

In his thesis Wenzl [A55] studied the representations of Hecke algebras H,(q) of type A,
obtained from the defining relations of symmetric group by the replacement e? = (¢—1)e;+q. H, is
isomorphic to complex group algebra of .S, if ¢ is not a root of unity and for ¢ = 1 the irreducible
representations of H,(q) reduce trivially to Young’s representations of symmetric groups. For
primitive roots of unity ¢ = exp(i27/l), | = 4,5..., the representations of H,(oo) give rise to
inclusions for which index corresponds to a quantum dimension of any irreducible representation
of SU(k), k > 2. For SU(2) also the value [ = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ey from Ho,(¢) and taking
double commutant of both H., and the resulting algebra. The relative commutant corresponds
to H,,(q). By reducing by the minimal projection to relative commutant one obtains an inclusion
with a trivial relative commutant. These inclusions are analogous to a discrete states superposed
in continuum. Thus the results of Jones generalize from the fundamental representation of SU(2)
to all representations of all groups SU(k), and in fact to those of general compact groups as it
turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU (k) reads as

sin? (A — Xs + s —1)7/1)
sin? ((s —r)n/l)

M:N = H

1<r<s<k

(2.7.1)

Here ), is the number of boxes in the 7" row of the Yang diagram with n boxes characterizing
the representations and the condition 1 < k <1 — 1 holds true. Only Young diagrams satisfying
the condition | — k = Ay — A, are allowed.

The result would allow to restrict the generalization of the embedding space in such a
way that only cyclic group Z, appears in the covering of M* — M*/G, or CP, — CPy/Gy
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factor. Be as it may, it seems that quantum representations of any compact Lie group can be
realized using the generalization of the embedding space. In the case of SU(2) the interpretation of
higher-dimensional quantum representations in terms of Connes tensor products of 2-dimensional
fundamental representations is highly suggestive.

The groups SO(3,1) x SU(3) and SL(2,C) x U(2)eq have a distinguished position both in
physics and quantum TGD and the vision about physics as a generalized number theory implies
them. Also the general pattern for inclusions selects these groups, and one can say that the
condition that all possible statistics are realized is guaranteed by the choice M* x CP;.

1. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means that
braid statistics for Jones inclusions cannot give the usual fermionic statistics. That Fermi
statistics cannot “emerge” conforms with the role of infinite-D Clifford algebra as a canonical
representation of HFF of type II;. SO(3,1) as isometries of H gives Z, statistics via the
action on spinors of M* and U(2) holonomies for C'P, realize Z, statistics in CP, degrees of
freedom.

2. n > 3 for more general inclusions in turn excludes Zs statistics as braid statistics in the
general case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but trivial
action at the embedding space level so that Z3 statistics would be in question.



Chapter 3

Evolution of Ideas about
Hyper-finite Factors in TGD

3.1 Introduction

This chapter has emerged from a splitting of a chapter devote to the possible role of von Neumann
algebras known as hyper-finite factors in quantum TGD. Second chapter emerging from the split-
ting is a representation of basic notions to chapter “Was von Neumann right after all?” [K125]
representing only very briefly ideas about application to quantum TGD only briefly.

In the sequel the ideas about TGD applications are reviewed more or less chronologically.
A summary about evolution of ideas is in question, not a coherent final structure, and as always
the first speculations - in this case roughly for a decade ago - might look rather weird. The vision
has however gradually become more realistic looking as deeper physical understanding of factors
has evolved slowly.

The mathematics involved is extremely difficult for a physicist like me, and to really learn
it at the level of proofs one should reincarnate as a mathematician. Therefore the only practical
approach relies on the use of physical intuition to see whether HFFs might the correct structure and
what HFFs do mean. What is needed is a concretization of the extremely abstract mathematics
involved: mathematics represents only the bones to which physics should add flesh.

3.1.1 Hyper-Finite Factors In Quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFF's)
of type III; appearing in relativistic quantum field theories provide also the proper mathematical
framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II;. There also the Clifford algebra at a given point (light-like 3-surface) of
world of classical worlds (WCW) is therefore HFF of type II;. If the fermionic Fock algebra
defined by the fermionic oscillator operators assignable to the induced spinor fields (this is
actually not obvious!) is infinite-dimensional it defines a representation for HFF of type II;.
Super-conformal symmetry suggests that the extension of the Clifford algebra defining the
fermionic part of a super-conformal algebra by adding bosonic super-generators representing
symmetries of WCW respects the HFF property. It could however occur that HFF of type
11, results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal is
that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M* proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
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L(a) = S0O(3,1)/S0(3). Therefore the CDs with a free position of lower tip are parameterized
by M* x L(a). A possible interpretation is in terms of quantum cosmology with a identified
as cosmic time [KI01] . Since Lorentz boosts define a non-compact group, the generalization
of so called crossed product construction strongly suggests that the local Clifford algebra of
WCW is HFF of type III;. If one allows all values of a, one ends up with M* x Mjl_ as the
space of moduli for WCW.

An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products
of unit matrix 1 and 7-D gamma matrices 7y, and Pauli sigma matrices by replacing 1 and
v, by octonions. This inspires the idea that it might be possible to end up with quantum
TGD from purely number theoretical arguments. This seems to be the case. One can start
from a local octonionic Clifford algebra in M®. Associativity condition is satisfied if one
restricts the octonionic algebra to a subalgebra associated with any hyper-quaternionic and
thus 4-D sub-manifold of M®. This means that the Kéhler-Dirac gamma matrices associated
with the Kahler action span a complex quaternionic sub-space at each point of the sub-
manifold. This associative sub-algebra can be mapped a matrix algebra. Together with
M?® — H duality [K126, [K35] this leads automatically to quantum TGD and therefore also to
the notion of WCW and its Clifford algebra which is however only mappable to an associative
algebra and thus to HFF of type II;.

3.1.2 Hyper-Finite Factors And M-Matrix

HFFs of type III; provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism A% (fixed apart from unitary

inner automorphism). This raises the question whether the modular automorphism could be
used to define the M-matrix of quantum TGD. This is not the case as is obvious already from
the fact that unitary time evolution is not a sensible concept in zero energy ontology.

Concerning the identification of M-matrix the notion of state as it is used in theory of factors
is a more appropriate starting point than the notion modular automorphism but as a gener-
alization of thermodynamical state is certainly not enough for the purposes of quantum TGD
and quantum field theories (algebraic quantum field theorists might disagree!). Zero energy
ontology requires that the notion of thermodynamical state should be replaced with its “com-
plex square root” abstracting the idea about M-matrix as a product of positive square root
of a diagonal density matrix and a unitary S-matrix. This generalization of thermodynamical
state -if it exists- would provide a firm mathematical basis for the notion of M-matrix and for
the fuzzy notion of path integral.

The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology: the two vacua can be assigned with the positive and negative energy parts
of the zero energy states entangled by M-matrix.

There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kéahler functions of
WCW differing only by a real part of holomorphic function of complex coordinates of WCW
and arbitrary function of zero mode coordinates and giving rise to the same Kéahler metric of

WCW.



3.1. Introduction 81

3.1.3 Connes Tensor Product As A Realization Of Finite Measurement
Resolution

The inclusions N' C M of factors allow an attractive mathematical description of finite measure-
ment resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the origi-
nal one. Therefore A/ takes the role of complex numbers in non-commutative quantum theory.
The space M /N would correspond to the operators creating physical states modulo measure-
ment resolution and has typically fractal dimension given as the index of the inclusion. The
corresponding spinor spaces have an identification as quantum spaces with non-commutative
N-valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their A/ “averaged” counterparts. The “averaging”
would be in terms of the complex square root of A/-state and a direct analog of functionally
or path integral over the degrees of freedom below measurement resolution defined by (say)
length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that A acts like complex numbers on M-matrix elements as far as A/ “averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to N'. The condition that N
averaging in terms of a complex square root of N state produces this kind of M-matrix poses
a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

3.1.4 Concrete Realization Of The Inclusion Hierarchies

A concrete construction of M-matrix motivated by the recent rather precise view about basic
variational principles of TGD allows to identify rather concretely the inclusions of HFFs in TGD
framework and relate them to the hierarchies of broken conformal symmetries accompanying quan-
tum criticalities.

1. Fundamental fermions localized to string world sheets can be said to propagate as massless
particles along their boundaries. The fundamental interaction vertices correspond to two
fermion scattering for fermions at opposite throats of wormhole contact and the inverse of
the conformal scaling generator Ly would define the stringy propagator characterizing this
interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite
throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with
monopole Kahler magnetic flux flowing around a loop going through wormhole contacts.

2. The formulation of scattering amplitudes in terms of Yangian of the super-symplectic alge-
bra leads to a rather detailed view about scattering amplitudes [K114]. In this formulation
scattering amplitudes are representations for sequences of algebraic operations connecting col-
lections of elements of Yangian and sequences produce the same result. A huge generalization
of the duality symmetry of the hadronic string models is in question.

3. The reduction of the hierarchy of Planck constants hess/h = n to a hierarchy of quantum
criticalities accompanied by a hierarchy of sub-algebras of super-symplectic algebra acting as
conformal gauge symmetries leads to the identification of inclusions of HFF's as inclusions of
WCW Clifford algebras characterizing by n(i) and n(i+1) = m(¢) x n(7) so that hierarchies of
von Neuman algebras, of Planck constants, and of quantum criticalities would be very closely
related. In the transition n(i) — n(i + 1) = m(i) x n(i) the measurement accuracy indeed
increases since some conformal gauge degrees of freedom are transformed to physical ones. An
open question is whether one could interpret m(i) as the integer characterizing inclusion: the
problem is that also m(i) = 2 with M : N = 4 seems to be allowed whereas Jones inclusions
allow only m > 3.
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Even more, number theoretic universality and strong form of holography leads to a detailed vi-
sion about the construction of scattering amplitudes suggesting that the hierarchy of algebraic
extensions of rationals relates to the above mentioned hierarchies.

3.1.5 Analogs of quantum matrix groups from finite measurement res-
olution?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions
of von Neumann algebras allowing to describe mathematically the notion of finite measurement
resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution. The basic idea is to replace complex matrix
elements with operators expressible as products of non-negative hermitian operators and unitary
operators analogous to the products of modulus and phase as a representation for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its
development with respect to a fixed row or column does not pose additional conditions. Strong
definition of determinant requires its invariance under permutations of rows and columns. The
permutation of rows/columns turns out to have interpretation as braiding for the hermitian op-
erators defined by the moduli of operator valued matrix elements. The commutativity of all sub-
determinants is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian
operators and sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but
provide a concrete representation and interpretation for quantum group in terms of finite measure-
ment resolution if ¢ is a root of unity. For ¢ = +1 (Bose-Einstein or Fermi-Dirac statistics) one
obtains quantum matrices for which the determinant is apart from possible change by sign factor
invariant under the permutations of both rows and columns. One could also understand the fractal
structure of inclusion sequences of hyper-finite factors resulting by recursively replacing operators
appearing as matrix elements with quantum matrices.

3.1.6 Quantum Spinors And Fuzzy Quantum Mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities.
For quantum spinors state function reduction cannot be performed unless quantum deformation
parameter equals to ¢ = 1. The reason is that the components of quantum spinor do not commute:
it is however possible to measure the commuting operators representing moduli squared of the
components giving the probabilities associated with “true” and “false”. The universal eigenvalue
spectrum for probabilities does not in general contain (1,0) so that quantum gbits are inherently
fuzzy. State function reduction would occur only after a transition to q=1 phase and de-coherence
is not a problem as long as it does not induce this transition.

This chapter represents a summary about the development of the ideas with last sections
representing the recent latest about the realization and role of HFFs in TGD. I have saved the
reader from those speculations that have turned out to reflect my own ignorance or are inconsistent
with what I regarded established parts of quantum TGD.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L4].

3.2 A Vision About The Role Of HFFs In TGD

It is clear that at least the hyper-finite factors of type II; assignable to WCW spinors must have
a profound role in TGD. Whether also HFFs of type III; appearing also in relativistic quantum
field theories emerge when WCW spinors are replaced with spinor fields is not completely clear. T


http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf

3.2. A Vision About The Role Of HFFs In TGD 83

have proposed several ideas about the role of hyper-finite factors in TGD framework. In particular,
Connes tensor product is an excellent candidate for defining the notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by ZEO and the
recent advances in the understanding of M-matrix using the notion of bosonic emergence. The
conclusion is that the notion of state as it appears in the theory of factors is not enough for the
purposes of quantum TGD. The reason is that state in this sense is essentially the counterpart of
thermodynamical state. The construction of M-matrix might be understood in the framework of
factors if one replaces state with its “complex square root” natural if quantum theory is regarded
as a “complex square root” of thermodynamics. It is also found that the idea that Connes tensor
product could fix M-matrix is too optimistic but an elegant formulation in terms of partial trace for
the notion of M-matrix modulo measurement resolution exists and Connes tensor product allows
interpretation as entanglement between sub-spaces consisting of states not distinguishable in the
measurement resolution used. The partial trace also gives rise to non-pure states naturally.

The newest element in the vision is the proposal that quantum criticality of TGD Universe
is realized as hierarchies of inclusions of super-conformal algebras with conformal weights coming
as multiples of integer n, where n varies. If n; divides ny then various super-conformal algebras
Cy, are contained in Cy,,. This would define naturally the inclusion.

3.2.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more mature
than or at least complementary to the summary that I could afford when I started the work with
factors for more than half decade ago. I of course admit that this just a humble attempt of a
physicist to express physical vision in terms of only superficially understood mathematical notions.

Basic notions

First some standard notations. Let B(#H) denote the algebra of linear operators of Hilbert space
‘H bounded in the norm topology with norm defined by the supremum for the length of the image
of a point of unit sphere H. This algebra has a lot of common with complex numbers in that
the counterparts of complex conjugation, order structure and metric structure determined by the
algebraic structure exist. This means the existence involution -that is *- algebra property. The
order structure determined by algebraic structure means following: A > 0 defined as the condition
(A, €) > 0 is equivalent with A = B*B. The algebra has also metric structure ||AB|| < ||Al|||B|
(Banach algebra property) determined by the algebraic structure. The algebra is also C* algebra:
||A*A|| = ||A||? meaning that the norm is algebraically like that for complex numbers.

A von Neumann algebra M [A16] is defined as a weakly closed non-degenerate *-subalgebra
of B(#H) and has therefore all the above mentioned properties. From the point of view of physicist
it is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

1. Let M be subalgebra of B(H) and denote by M’ its commutant (#) commuting with it and
allowing to express B(H) as B(H) = M Vv M.

2. A factor is defined as a von Neumann algebra satisfying M” = M M is called factor. The
equality of double commutant with the original algebra is thus the defining condition so that
also the commutant is a factor. An equivalent definition for factor is as the condition that the
intersection of the algebra and its commutant reduces to a complex line spanned by a unit
operator. The condition that the only operator commuting with all operators of the factor is
unit operator corresponds to irreducibility in representation theory.

3. Some further basic definitions are needed. Q € H is cyclic if the closure of M is ‘H and
separating if the only element of M annihilating ) is zero. 2 is cyclic for M if and only if
it is separating for its commutant. In so called standard representation €2 is both cyclic and
separating.

4. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is
dense in the factor exists. This roughly means that one can approximate the algebra in
arbitrary accuracy with a finite-dimensional sub-algebra.
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The definition of the factor might look somewhat artificial unless one is aware of the underly-

ing physical motivations. The motivating question is what the decomposition of a physical system
to non-interacting sub-systems could mean. The decomposition of B(H) to V product realizes this
decomposition.

1.

4.

Tensor product H = H; ® Ho is the decomposition according to the standard quantum
measurement theory and means the decomposition of operators in B(#) to tensor products
of mutually commuting operators in M = B(H;) and M’ = B(H2). The information about
M can be coded in terms of projection operators. In this case projection operators projecting
to a complex ray of Hilbert space exist and arbitrary compact operator can be expressed as
a sum of these projectors. For factors of type I minimal projectors exist. Factors of type
I,, correspond to sub-algebras of B(#) associated with infinite-dimensional Hilbert space and
I to B(H) itself. These factors appear in the standard quantum measurement theory where
state function reduction can lead to a ray of Hilbert space.

For factors of type II no minimal projectors exists whereas finite projectors exist. For factors
of type II; all projectors have trace not larger than one and the trace varies in the range
(0,1]. In this case cyclic vectors € exist. State function reduction can lead only to an infinite-
dimensional subspace characterized by a projector with trace smaller than 1 but larger than
zero. The natural interpretation would be in terms of finite measurement resolution. The
tensor product of II; factor and I is Il factor for which the trace for a projector can
have arbitrarily large values. II; factor has a unique finite tracial state and the set of traces
of projections spans unit interval. There is uncountable number of factors of type II but
hyper-finite factors of type II; are the exceptional ones and physically most interesting.

Factors of type III correspond to an extreme situation. In this case the projection operators
FE spanning the factor have either infinite or vanishing trace and there exists an isometry
mapping EH to H meaning that the projection operator spans almost all of H. All projectors
are also related to each other by isometry. Factors of type III are smallest if the factors
are regarded as sub-algebras of a fixed B(H) where H corresponds to isomorphism class of
Hilbert spaces. Situation changes when one speaks about concrete representations. Also now
hyper-finite factors are exceptional.

Von Neumann algebras define a non-commutative measure theory. Commutative von Neu-
mann algebras indeed reduce to L>°(X) for some measure space (X, u) and vice versa.

Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann algebras.

1.

CU

A weight of von Neumann algebra is a linear map from the set of positive elements (those of
form a*a) to non-negative reals.

A positive linear functional is weight with w(1) finite.
A state is a weight with w(1) = 1.
A trace is a weight with w(aa*) = w(a*a) for all a.

A tracial state is a weight with w(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of

projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the same
trace. Factors of type I,, the values of trace are equal to multiples of 1/n. For a factor of type
I, the value of trace are 0, 1,2, .... For factors of type II; the values span the range [0, 1] and for
factors of type Il n the range [0,00). For factors of type III the values of the trace are 0, and oco.

Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

1.

Let w(z) be a faithful state of von Neumann algebra so that one has w(zz*) > 0 for z > 0.
Assume by Riesz lemma the representation of w as a vacuum expectation value: w = (-Q,Q),
where 2 is cyclic and separating state.
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2. Let

L*M)=M , L*(M)=H , L'M)=M,, (3.2.1)

where M, is the pre-dual of M defined by linear functionals in M. One has M * = M.

3. The conjugation z — z* is isometric in M and defines a map M — L?(M) via 2 — 2. The
map Sp; {2 — x* is however non-isometric.

4. Denote by S the closure of the anti-linear operator Sy and by S = JAY? its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J. Therefore A = S*S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of A reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor A'/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that A would act non-trivially only vacuum state so that
A > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

ATMA = M IMT =M .

2. The latter formula implies that M and M’ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A34, [AG6] A is Hermitian and
positive definite so that the eigenvalues of log(A) are real but can be negative. A® is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. w — 0¥ = AdA™ defines a canonical evolution -modular automorphism- associated with w
and depending on it. The A:s associated with different w:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of A can be used to classify the factors of type II and III.

Modular automorphisms
Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the
factor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(A) is formally a Hermitian operator.

2. The fundamental group of the type II; factor defined as fundamental group group of cor-
responding I, factor characterizes partially a factor of type II;. This group consists real
numbers A such that there is an automorphism scaling the trace by A\. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values A for which w
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(#)) is mapped to itself in the modular automorphism defines
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the Connes spectrum of the factor. For factors of type 111, this set consists of powers of
A < 1. For factors of type I11j this set contains only identity automorphism so that there is
no periodicity. For factors of type III; Connes spectrum contains all real numbers so that the
automorphisms do not affect the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not integer
valued in general. The so called standard module has a cyclic separating vector and each factor
has a standard representation possessing antilinear involution J such that M’ = JM.J holds true
(note that J changes the order of the operators in conjugation). The inclusions of factors define
modules having interpretation in terms of a finite measurement resolution defined by M.

Crossed product as a way to construct factors of type III

By using so called crossed product crossedproduct for a group G acting in algebra A one can obtain
new von Neumann algebras. One ends up with crossed product by a two-step generalization by
starting from the semidirect product G< H for groups defined as (g1, h1)(g2, h2) = (91h1(g2), h1h2)
(note that Poincare group has interpretation as a semidirect product M*<S0O(3,1) of Lorentz and
translation groups). At the first step one replaces the group H with its group algebra. At the
second step the the group algebra is replaced with a more general algebra. What is formed is the
semidirect product A < G which is sum of algebras Ag. The product is given by (a1, 91)(az2,g2) =
(a191(a2),g192). This construction works for both locally compact groups and quantum groups.
A not too highly educated guess is that the construction in the case of quantum groups gives the
factor M as a crossed product of the included factor A" and quantum group defined by the factor
space M/N.

The construction allows to express factors of type III as crossed products of factors of type
11, and the 1-parameter group G of modular automorphisms assignable to any vector which is
cyclic for both factor and its commutant. The ergodic flow ) scales the trace of projector in I
factor by A > 0. The dual flow defined by G restricted to the center of 11, factor does not depend
on the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of
the kernel of the dual flow defined as set of values of flow parameter A for which the flow in the
center is trivial. Kernel equals to {0} for 1]y, contains numbers of form log(\)Z for factors of
type III, and contains all real numbers for factors of type III; meaning that the flow does not
affect the center.

Inclusions and Connes tensor product

Inclusions N' C M of von Neumann algebras have physical interpretation as a mathematical de-
scription for sub-system-system relation. In [K125] there is more extensive TGD colored description
of inclusions and their role in TGD. Here only basic facts are listed and the Connes tensor product
is explained.

For type I algebras the inclusions are trivial and tensor product description applies as such.
For factors of 11, and II1 the inclusions are highly non-trivial. The inclusion of type Il; factors
were understood by Vaughan Jones [A2] and those of factors of type IT11 by Alain Connes [A19] .

Formally sub-factor A/ of M is defined as a closed *-stable C-subalgebra of M. Let N be a
sub-factor of type II; factor M. Jones index M : N for the inclusion N' C M can be defined as
M : N = dimy(L*(M)) = Try:(idp2(pmy). One can say that the dimension of completion of M
as N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position of A/ in M matters. This position is
characterized in case of hyper-finite I1; factors by index M : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N. It is important to notice that M : AV does not characterize either M or M, only
the embedding.



3.2. A Vision About The Role Of HFFs In TGD 87

The basic facts proved by Jones are following [A2] .
1. For pairs N' C M with a finite principal graph the values of M : N are given by

a) M : N =4cos®(x/h) , h>3 ,
(3.2.2)
by M:N >4 .

the numbers at right hand side are known as Beraha numbers [A53] . The comments below
give a rough idea about what finiteness of principal graph means.

2. As explained in [B34] , for M : NV < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in
terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g) — r)/r. For
M : N < 4 ordinary Dynkin graphs of D, and Eg, Eg are allowed. The Dynkin graphs of
Lie algebras of SU(n), E7 and Da,1 are however not allowed. FEg, E7,andEs correspond
to symmetry groups of tetrahedron, octahedron/cube, and icosahedron/dodecahedron. The
group for octahedron/cube is missing: what could this mean?

For M : N' = 4 one can assign to the inclusion an extended Dynkin graph of type ADE
characterizing Kac Moody algebra. Extended ADE diagrams characterize also the subgroups
of SU(2) and the interpretation proposed in [A96] is following-

The ADE diagrams are associated with the n = oo case having M : N' > 4. There are
diagrams corresponding to infinite subgroups: A corresponding to SU(2) itself, A_ oo
corresponding to circle group U(1), and infinite dihedral groups (generated by a rotation by
a non-rational angle and reflection.

One can construct also inclusions for which the diagrams corresponding to finite subgroups
G C SU(2) are extension of A, for cyclic groups, of D,, dihedral groups, and of F,, with
n = 6,7,8 for tetrahedron, cube, dodecahedron. These extensions correspond to ADE type
Kac-Moody algebras.

The extension is constructed by constructing first factor R as infinite tensor power of M (C)
(complexified quaternions). Sub-factor Ry consists elements of of R of form Id ® x. SU(2)
preserves Ry and for any subgroup G of SU(2) one can identify the inclusion N C M in terms
of N = R§ and M = R®, where N = RS’ and M = RY consists of fixed points of Ry and R
under the action of G. The principal graph for N C M is the extended Coxeter-Dynk graph
for the subgroup G.

Physicist might try to interpret this by saying that one considers only sub-algebras Rg and
RY of observables invariant under G and obtains extended Dynkin diagram of G defining an
ADE type Kac-Moody algebra. Could the condition that Kac-Moody algebra elements with
non-vanishing conformal weight annihilate the physical states state that the state is invariant
under Ry defining measurement resolution. Besides this the states are also invariant under
finite group G? Could R§ and R correspond just to states which are also invariant under
finite group G.

Connes tensor product

The basic idea of Connes tensor product is that a sub-space generated sub-factor N takes the role

of the complex ray of Hilbert space. The physical interpretation is in terms of finite measurement

resolution: it is not possible to distinguish between states obtained by applying elements of N.
Intuitively it is clear that it should be possible to decompose M to a tensor product of factor

space M /N and N:
M = MNON . (3.2.3)
One could regard the factor space M /N as a non-commutative space in which each point cor-

responds to a particular representative in the equivalence class of points defined by A. The
connections between quantum groups and Jones inclusions suggest that this space closely relates
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to quantum groups. An alternative interpretation is as an ordinary linear space obtained by map-
ping N rays to ordinary complex rays. These spaces appear in the representations of quantum
groups. Similar procedure makes sense also for the Hilbert spaces in which M acts.

Connes tensor product can be defined in the space M ® M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N' multiplication from right is
equivalent with A/ multiplication from left so that A acts like complex numbers on states. One
can imagine variants of the Connes tensor product and in TGD framework one particular variant
appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n x n matrices acts on V' from right, V' can be regarded
as a space formed by m x n matrices for some value of m. If N acts from left on W, W can be
regarded as space of n X r matrices.

1. In the first representation the Connes tensor product of spaces V and W consists of m x
r matrices and Connes tensor product is represented as the product VW of matrices as
(VW)™ . In this representation the information about N disappears completely as the
interpretation in terms of measurement resolution suggests. The sum over intermediate states
defined by N brings in mind path integral.

2. An alternative and more physical representation is as a state
> Vi Ware™™ @ ™"
n

in the tensor product V @ W.

3. One can also consider two spaces V and W in which N acts from right and define Connes
tensor product for AT @ y B or its tensor product counterpart. This case corresponds to
the modification of the Connes tensor product of positive and negative energy states. Since
Hermitian conjugation is involved, matrix product does not define the Connes tensor product
now. For m = r case entanglement coefficients should define a unitary matrix commuting with
the action of the Hermitian matrices of N and interpretation would be in terms of symmetry.
HFF property would encourage to think that this representation has an analog in the case of
HFFs of type I1;.

4. Also type I,, factors are possible and for them Connes tensor product makes sense if one can
assign the inclusion of finite-D matrix algebras to a measurement resolution.

Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A85, [A34] [A66] . There are good
arguments showing that in HFFs of III; appear are relativistic quantum field theories. In non-
relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group is
essential. Factors of type III; and I1], appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M*, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that V product
should make sense.

Some basic mathematical results of algebraic quantum field theory [A66] deserve to be listed
since they are suggestive also from the point of view of TGD.

1. Let O be a bounded region of R* and define the region of M* as a union U, < (O + z)
where (O + z) is the translate of O and |z| denotes Minkowski norm. Then every projection
E € M(O) can be written as WW* with W € M(O,) and W*W = 1. Note that the union
is not a bounded set of M*. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III;. Lorentz
boosts induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a
tensor product in relativistic QFTs is believed to hold true. This means that the HFFs of
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type III; associated with causally disjoint regions are sub-factors of factor of type I,,. This
means

My CBH)x1 , MyCl®B(Hs) .

An infinite hierarchy of inclusions of HFF's of type I1I;s is induced by set theoretic inclusions.

3.2.2 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.

The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual
and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

1. Under what conditions the assumptions of Tomita-Takesaki formula stating the existence of
modular automorphism and isomorphy of the factor and its commutant hold true? What is
the physical interpretation of the formula M’ = JMJ relating factor and its commutant in
TGD framework?

2. Is the identification M = A sensible is quantum TGD and ZEO, where M-matrix is “complex
square root” of exponent of Hamiltonian defining thermodynamical state and the notion
of unitary time evolution is given up? The notion of state w leading to A is essentially
thermodynamical and one can wonder whether one should take also a “complex square root”
of w to get M-matrix giving rise to a genuine quantum theory.

3. TGD based quantum measurement theory involves both quantum fluctuating degrees of free-
dom assignable to light-like 3-surfaces and zero modes identifiable as classical degrees of
freedom assignable to interior of the space-time sheet. Zero modes have also fermionic coun-
terparts. State preparation should generate entanglement between the quantal and classical
states. What this means at the level of von Neumann algebras?

4. What is the TGD counterpart for causal disjointness. At space-time level different space-time
sheets could correspond to such regions whereas at embedding space level causally disjoint
CDs would represent such regions.

2. Technical problems

There are also more technical questions.

1. What is the von Neumann algebra needed in TGD framework? Does one have a a direct
integral over factors? Which factors appear in it? Can one construct the factor as a crossed
product of some group G with direct physical interpretation and of naturally appearing factor
A? Is A a HFF of type 11,7 assignable to a fixed CD? What is the natural Hilbert space H
in which A acts?

2. What are the geometric transformations inducing modular automorphisms of 11, inducing
the scaling down of the trace? Is the action of G induced by the boosts in Lorentz group.
Could also translations and scalings induce the action? What is the factor associated with
the union of Poincare transforms of CD? log(A) is Hermitian algebraically: what does the
non-unitarity of exp(log(A)it) mean physically?

3. Could € correspond to a vacuum which in conformal degrees of freedom depends on the choice
of the sphere S? defining the radial coordinate playing the role of complex variable in the case
of the radial conformal algebra. Does *-operation in M correspond to Hermitian conjugation
for fermionic oscillator operators and change of sign of super conformal weights?
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The exponent of the Ké&hler-Dirac action gives rise to the exponent of Kéahler function
as Dirac determinant and fermionic inner product defined by fermionic Feynman rules. It is
implausible that this exponent could as such correspond to w or A% having conceptual roots in
thermodynamics rather than QFT. If one assumes that the exponent of the Kahler-Dirac action
defines a “complex square root” of w the situation changes. This raises technical questions relating
to the notion of square root of w.

1. Does the complex square root of w have a polar decomposition to a product of positive definite
matrix (square root of the density matrix) and unitary matrix and does w'/? correspond to
the modulus in the decomposition? Does the square root of A have similar decomposition
with modulus equal equal to A'/2 in standard picture so that modular automorphism, which
is inherent property of von Neumann algebra, would not be affected?

2. A" or rather its generalization is defined modulo a unitary operator defined by some Hamil-
tonian and is therefore highly non-unique as such. This non-uniqueness applies also to |A|.
Could this non-uniqueness correspond to the thermodynamical degrees of freedom?

ZEO and factors

The first question concerns the identification of the Hilbert space associated with the factors in
ZEO. As the positive or negative energy part of the zero energy state space or as the entire space
of zero energy states? The latter option would look more natural physically and is forced by the
condition that the vacuum state is cyclic and separating.

1. The commutant of HFF given as M’ = JMJ, where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like bound-
aries of CD are analogous to upper and lower hemispheres of S? in conformal field theory.
The presence of J representing essentially Hermitian conjugation would suggest that positive
and zero energy parts of zero energy states are related by this formula so that state space
decomposes to a tensor product of positive and negative energy states and M-matrix can be
regarded as a map between these two sub-spaces.

2. The fact that HFF of type II; has the algebra of fermionic oscillator operators as a canonical
representation makes the situation puzzling for a novice. The assumption that the vacuum is
cyclic and separating means that neither creation nor annihilation operators can annihilate it.
Therefore Fermionic Fock space cannot appear as the Hilbert space in the Tomita-Takesaki
theorem. The paradox is circumvented if the action of * transforms creation operators acting
on the positive energy part of the state to annihilation operators acting on negative energy
part of the state. If J permutes the two Fock vacuums in their tensor product, the action of
S indeed maps permutes the tensor factors associated with M and M.

Tt is far from obvious whether the identification M = A® makes sense in ZEO.

1. In ZEO M-matrix defines time-like entanglement coefficients between positive and negative
energy parts of the state. M-matrix is essentially “complex square root” of the density matrix
and quantum theory similar square root of thermodynamics. The notion of state as it appears
in the theory of HFFs is however essentially thermodynamical. Therefore it is good to ask
whether the “complex square root of state” could make sense in the theory of factors.

2. Quantum field theory suggests an obvious proposal concerning the meaning of the square root:
one replaces exponent of Hamiltonian with imaginary exponential of action at 7' — 0 limit.
In quantum TGD the exponent of Kahler-Dirac action giving exponent of Kéhler function as
real exponent could be the manner to take this complex square root. Kahler-Dirac action can
therefore be regarded as a “square root” of Kéhler action.

3. The identification M = A relies on the idea of unitary time evolution which is given up in
ZEO based on CDs? Is the reduction of the quantum dynamics to a flow a realistic idea? As
will be found this automorphism could correspond to a time translation or scaling for either
upper or lower light-cone defining CD and can ask whether A% corresponds to the exponent
of scaling operator L( defining single particle propagator as one integrates over t. Its complex
square root would correspond to fermionic propagator.
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4. In this framework JA® would map the positive energy and negative energy sectors to each

other. If the positive and negative energy state spaces can identified by isometry then M =
JA™ identification can be considered but seems unrealistic. S = JAY2 maps positive and
negative energy states to each other: could S or its generalization appear in M-matrix as
a part which gives thermodynamics? The exponent of the Kahler-Dirac action does not
seem to provide thermodynamical aspect and p-adic thermodynamics suggests strongly the
presence exponent of exp(—Lgo/T,) with T, chose in such manner that consistency with p-
adic thermodynamics is obtained. Could the generalization of JA"™/? with A replaced with
its “square root” give rise to padic thermodynamics and also ordinary thermodynamics at
the level of density matrix? The minimal option would be that power of A% which imaginary
value of t is responsible for thermodynamical degrees of freedom whereas everything else is
dictated by the unitary S-matrix appearing as phase of the “square root” of w.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the
relationship between zero modes and HFFs involves further conceptual problems.

1.

The presence of zero modes means that one has a direct integral over HFFs labeled by zero
modes which by definition do not contribute to WCW line element. The realization of quan-
tum criticality in terms of Kéhler-Dirac action [K126] suggests that also fermionic zero mode
degrees of freedom are present and correspond to conserved charges assignable to the critical
deformations of the pace-time sheets. Induced Kahler form characterizes the values of zero
modes for a given space-time sheet and the symplectic group of light-cone boundary charac-
terizes the quantum fluctuating degrees of freedom. The entanglement between zero modes
and quantum fluctuating degrees of freedom is essential for quantum measurement theory.
One should understand this entanglement.

. Physical intuition suggests that classical observables should correspond to longer length scale

than quantal ones. Hence it would seem that the interior degrees of freedom outside CD
should correspond to classical degrees of freedom correlating with quantum fluctuating degrees
of freedom of CD.

. Quantum criticality means that K&hler-Dirac action allows an infinite number of conserved

charges which correspond to deformations leaving metric invariant and therefore act on zero
modes. Does this super-conformal algebra commute with the super-conformal algebra asso-
ciated with quantum fluctuating degrees of freedom? Could the restriction of elements of
quantum fluctuating currents to 3-D light-like 3-surfaces actually imply this commutativity.
Quantum holography would suggest a duality between these algebras. Quantum measurement
theory suggests even 1-1 correspondence between the elements of the two super-conformal al-
gebras. The entanglement between classical and quantum degrees of freedom would mean
that prepared quantum states are created by operators for which the operators in the two
algebras are entangled in diagonal manner.

The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions
of hyper-finite factors for which sub-factor defines the resolution in the sense that its action
creates states not distinguishable from each other in the resolution used. The notion of
finite measurement resolution suggests that one should speak about entanglement between
sub-factors and corresponding sub-spaces rather than between states. Connes tensor product
would code for the idea that the action of sub-factors is analogous to that of complex numbers
and tracing over sub-factor realizes this idea.

. Just for fun one can ask whether the duality between zero modes and quantum fluctuating

degrees of freedom representing quantum holography could correspond to M’ = JM.J? This
interpretation must be consistent with the interpretation forced by zero energy ontology. If
this crazy guess is correct (very probably not!), both positive and negative energy states
would be observed in quantum measurement but in totally different manner. Since this
identity would simplify enormously the structure of the theory, it deserves therefore to be
shown wrong.
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Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic chal-
lenge. Consider first the question how HFF's of type 11, emerge, how modular automorphisms act
on them, and how one can understand the non-unitary character of the A* in an apparent conflict
with the hermiticity and positivity of A.

1. The Clifford algebra at a given point of WCW(CD) (light-like 3-surfaces with ends at the
boundaries of CD) defines HFF of type II; or possibly a direct integral of them. For a given
CD having compact isotropy group SO(3) leaving the rest frame defined by the tips of CD
invariant the factor defined by Clifford algebra valued fields in WCW(CD) is most naturally
HFF of type I1,,. The Hilbert space in which this Clifford algebra acts, consists of spinor fields
in WCW(CD). Also the symplectic transformations of light-cone boundary leaving light-like
3-surfaces inside CD can be included to GG. In fact all conformal algebras leaving CD invariant
could be included in CD.

2. The downwards scalings of the radial coordinate rj; of the light-cone boundary applied to
the basis of WCW (CD) spinor fields could induce modular automorphism. These scalings
reduce the size of the portion of light-cone in which the WCW spinor fields are non-vanishing
and effectively scale down the size of CD. exp(iLg) as algebraic operator acts as a phase mul-
tiplication on eigen states of conformal weight and therefore as apparently unitary operator.
The geometric flow however contracts the CD so that the interpretation of exp(itLg) as a
unitary modular automorphism is not possible. The scaling down of CD reduces the value of
the trace if it involves integral over the boundary of CD. A similar reduction is implied by
the downward shift of the upper boundary of CD so that also time translations would induce
modular automorphism. These shifts seem to be necessary to define rest energies of positive
and negative energy parts of the zero energy state.

3. The non-triviality of the modular automorphisms of 11, factor reflects different choices of w.
The degeneracy of w could be due to the non-uniqueness of conformal vacuum which is part of
the definition of w. The radial Virasoro algebra of light-cone boundary is generated by L, =
L*,, n#0and Ly = L{ and negative and positive frequencies are in asymmetric position.
The conformal gauge is fixed by the choice of SO(3) subgroup of Lorentz group defining the
slicing of light-cone boundary by spheres and the tips of CD fix SO(3) uniquely. One can
however consider also alternative choices of SO(3) and each corresponds to a slicing of the
light-cone boundary by spheres but in general the sphere defining the intersection of the two
light-cone does not belong to the slicing. Hence the action of Lorentz transformation inducing
different choice of SO(3) can lead out from the preferred state space so that its representation
must be non-unitary unless Virasoro generators annihilate the physical states. The non-
vanishing of the conformal central charge ¢ and vacuum weight h seems to be necessary and
indeed can take place for super-symplectic algebra and Super Kac-Moody algebra since only
the differences of the algebra elements are assumed to annihilate physical states.

Modular automorphism of HFFs type III; can be induced by several geometric transforma-
tions for HFFs of type III; obtained using the crossed product construction from I, factor by
extending CD to a union of its Lorentz transforms.

1. The crossed product would correspond to an extension of I1,, by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD cannot
correspond to these transformations. Same applies to time translations acting on either
boundary but not to ordinary translations. As found, the modular automorphisms reducing
the size of CD could act in HFF of type I1.

2. The geometric counterparts of the modular transformations would most naturally correspond
to any non-compact one parameter sub-group of Lorentz group as also QFT suggests. The
Lorentz boosts would replace the radial coordinate rj; of the light-cone boundary associated
with the radial Virasoro algebra with a new one so that the slicing of light-cone boundary
with spheres would be affected and one could speak of a new conformal gauge. The temporal
distance between tips of CD in the rest frame would not be affected. The effect would seem
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to be however unitary because the transformation does not only modify the states but also
transforms CD.

3. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal
gauge defining the radial coordinate of the light-cone boundary, they affect also the definition
of the conformal vacuum so that also w is affected so that the interpretation as a modular
automorphism makes sense. The simplistic intuition of the novice suggests that if one allows
wave functions in the space of Lorentz transforms of CD, unitarity of A% is possible. Note
that the hierarchy of Planck constants assigns to CD preferred M? and thus direction of
quantization axes of angular momentum and boosts in this direction would be in preferred
role.

4. One can also consider the HFF of type III, if the radial scalings by negative powers of
2 correspond to the automorphism group of Il factor as the vision about allowed CDs
suggests. A = 1/2 would naturally hold true for the factor obtained by allowing only the
radial scalings. Lorentz boosts would expand the factor to HFF of type III;. Why scalings
by powers of 2 would give rise to periodicity should be understood.

The identification of M-matrix as modular automorphism A%, where ¢ is complex number
having as its real part the temporal distance between tips of CD quantized as 2™ and temperature
as imaginary part, looks at first highly attractive, since it would mean that M-matrix indeed exists
mathematically. The proposed interpretations of modular automorphisms do not support the idea
that they could define the S-matrix of the theory. In any case, the identification as modular
automorphism would not lead to a magic universal formula since arbitrary unitary transformation
is involved.

Quantum criticality and inclusions of factors

Quantum criticality fixes the value of Kéhler coupling strength but is expected to have also an
interpretation in terms of a hierarchies of broken conformal gauge symmetries suggesting hierarchies
of inclusions.

1. In ZEO 3-surfaces are unions of space-like 3-surfaces at the ends of causal diamond (CD).
Space-time surfaces connect 3-surfaces at the boundaries of CD. The non-determinism of
Kahler action allows the possibility of having several space-time sheets connecting the ends
of space-time surface but the conditions that classical charges are same for them reduces this
number so that it could be finite. Quantum criticality in this sense implies non-determinism
analogous to that of critical systems since preferred extremals can co-incide and suffer this kind
of bifurcation in the interior of CD. This quantum criticality can be assigned to the hierarchy
of Planck constants and the integer n in h.y; = n x h [K47] corresponds to the number of
degenerate space-time sheets with same Kahler action and conserved classical charges.

2. Also now one expects a hierarchy of criticalities and since criticality and conformal invariance
are closely related, a natural conjecture is that the fractal hierarchy of sub-algebras of confor-
mal algebra isomorphic to conformal algebra itself and having conformal weights coming as
multiples of n corresponds to the hierarchy of Planck constants. This hierarchy would define
a hierarchy of symmetry breakings in the sense that only the sub-algebra would act as gauge
symmetries.

3. The assignment of this hierarchy with super-symplectic algebra having conformal structure
with respect to the light-like radial coordinate of light-cone boundary looks very attractive.
An interesting question is what is the role of the super-conformal algebra associated with the
isometries of light-cone boundary R, x S? which are conformal transformations of sphere
52 with a scaling of radial coordinate compensating the scaling induced by the conformal
transformation. Does it act as dynamical or gauge symmetries?

4. The natural proposal is that the inclusions of various superconformal algebras in the hierar-
chy define inclusions of hyper-finite factors which would be thus labelled by integers. Any
sequences of integers for which n; divides n;y; would define a hierarchy of inclusions pro-
ceeding in reverse direction. Physically inclusion hierarchy would correspond to an infinite
hierarchy of criticalities within criticalities.
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3.2.3 Can one identify M-matrix from physical arguments?

Consider next the identification of M-matrix from physical arguments from the point of view of
factors.

A proposal for M-matrix

The proposed general picture reduces the core of U-matrix to the construction of S-matrix possibly
having the real square roots of density matrices as symmetry algebra. This structure can be taken
as a template as one tries to to imagine how the construction of M-matrix could proceed in
quantum TGD proper.

1. At the bosonic sector one would have converging functional integral over WCW . This is
analogous to the path integral over bosonic fields in QFTs. The presence of Kéhler function
would make this integral well-defined and would not encounter the difficulties met in the case
of path integrals.

2. In fermionic sector 1-D Dirac action and its bosonic counterpart imply that spinors modes lo-
calized at string world sheets are eigenstates of induced Dirac operator with generalized eigen-
value p*v;, defining light-like 8-D momentum so that one would obtain fermionic propagators
massless in 8-D sense at light-light geodesics of embedding space. The 8-D generalization
of twistor Grassmann approach is suggestive and would mean that the residue integral over
fermionic virtual momenta gives only integral over massless momenta and virtual fermions
differ from real fermions only in that they have non-physical polarizations so that massless
Dirac operator replacing the propagator does not annihilate the spinors at the other end of
the line.

3. Fundamental bosons (not elementary particles) correspond to wormhole contacts having
fermion and antifermion at opposite throats and bosonic propagators are composite of mass-
less fermion propagators. The directions of virtual momenta are obviously strongly correlated
so that the approximation as a gauge theory with gauge symmetry breaking in almost massless
sector is natural. Massivation follows necessary from the fact that also elementary particles
are bound states of two wormhole contacts.

4. Physical fermions and bosons correspond to pairs of wormhole contacts with throats carry-
ing Kéhler magnetic charge equal to Kéahler electric charge (dyon). The absence of Dirac
monopoles (as opposed to homological magnetic monopoles due to C'P, topology) implies
that wormhole contacts must appear as pairs (also large numbers of them are possible and 3
valence quarks inside baryons could form Ké&hler magnetic tripole). Hence elementary parti-
cles would correspond to pairs of monopoles and are accompanied by Kéhler magnetic flux
loop running along the two space-time sheets involved as well as fermionic strings connecting
the monopole throats.

There seems to be no specific need to assign string to the wormhole contact and if is a piece
of deformed C'P», type vacuum extremal this might not be even possible: the K&hler-Dirac
gamma matrices would not span 2-D space in this case since the C' P, projection is 4-D. Hence
massless fermion propagators would be assigned only with the boundaries of string world
sheets at Minkowskian regions of space-time surface. One could say that physical particles
are bound states of massless fundamental fermions and the non-collinearity of their four-
momenta can make them massive. Therefore the breaking of conformal invariance would be
due to the bound state formation and this would also resolve the infrared divergence problems
plaguing Grassmann twistor approach by introducing natural length scale assignable to the
size of particles defined by the string like flux tube connecting the wormhole contacts. This
point is discussed in more detail in [K114].

The bound states would form representations of super-conformal algebras so that stringy
mass formula would emerge naturally. p-Adic mass calculations indeed assume conformal
invariance in C'P2 length scale assignable to wormhole contacts. Also the long flux tube
strings contribute to the particle masses and would explain gauge boson masses.

5. The interaction vertices would correspond topologically to decays of 3-surface by splitting in
complete analogy with ordinary Feynman diagrams. At the level of orbits of partonic 2-surface
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the vertices would be represented by partonic 2-surfaces. In [K114] the interpretation of scat-
tering ampiltudes as sequences of algebraic operations for the Yangian of super-symplectic
algebra is proposed: product and co-product would define time 3-vertex and its time re-
versal. At the level of fermions the diagrams reduce to braid diagrams since fermions are
“free”. At vertices fermions can however reflect in time direction so that fermion-antifermion
annihilations in classical fields can be said to appear in the vertices.

The Yangian is generated by super-symplectic fermionic Noether charges assignable to the
strings connecting partonic 2-surfaces. The interpretation of vertices as algebraic operations
implies that all sequences of operations connecting given collections of elements of Yangian
at the opposite boundaries of CD give rise to the same amplitude. This means a huge gen-
eralization of the duality symmetry of hadronic string models that I have proposed already
earlier: the chapter [K16] is a remnant of an “idea that came too early”. The propagators are
associated with the fermionic lines identifiable as boundaries of string world sheets. These
lines are light-like geodesics of H and fermion lines correspond topartial wave in the space
S3 of light like 8-momenta with fixed M* momentum. For external lines M® momentum
corresponds to the M* x C'P, quantum numbers of a spinor harmonic.

The amplitudes can be formulated using only partonic 2-surfaces and string world sheets
and the algebraic continuation to achieve number theoretic Universality should be rather
straightforward: the parameters characterizing 2-surfaces - by conformal invariance various
conformal moduli - in the algebraic extension of rationals are replaced with real and various
p-adic numbers.

6. Wormhole contacts represent fundamental interaction vertex pairs and propagators between
them and one has stringy super-conformal invariance. Therefore there are excellent reasons to
expect that the perturbation theory is free of divergences. Without stringy contributions for
massive conformal excitations of wormhole contacts one would obtain the usual logarithmic
UV divergences of massless gauge theories. The fact that physical particles are bound states
of massless particles, gives good hopes of avoiding IR divergences of massless theories.

The figures 7?7, 7?7 (http://tgdtheory.fi/appfigures/elparticletgd. jpghttp://tgdtleory.
fi/appfigures/tgdgrpahs. jpg) in the appendix of this book illustrate the relationship between
TGD diagrammatics, QFT diagrammatics and stringy diagrammatics. In [K114] a more detailed
construction based on the generalization of twistor approach and the idea that scattering ampli-
tudes represent sequences of algebraic operation in the Yangian of super-symplectic algebra, is
considered.

Quantum TGD as square root of thermodynamics

ZEO (ZEO) suggests strongly that quantum TGD corresponds to what might be called square
root of thermodynamics. Since fermionic sector of TGD corresponds naturally to a hyper-finite
factor of type Iy, and super-conformal sector relates fermionic and bosonic sectors (WCW degrees
of freedom), there is a temptation to suggest that the mathematics of von Neumann algebras
generalizes: in other worlds it is possible to speak about the complex square root of w defining a
state of von Neumann algebra [A85] [K125]. This square root would bring in also the fermionic
sector and realized super-conformal symmetry. The reduction of determinant with WCW vacuum
functional would be one manifestation of this supersymmetry.

The exponent of Kéahler function identified as real part of Kéhler action for preferred ex-
tremals coming from Fuclidian space-time regions defines the modulus of the bosonic vacuum
functional appearing in the functional integral over WCW. The imaginary part of Kahler action
coming from the Minkowskian regions is analogous to action of quantum field theories and would
give rise to interference effects distinguishing thermodynamics from quantum theory. This would
be something new from the point of view of the canonical theory of von Neumann algebra. The
saddle points of the imaginary part appear in stationary phase approximation and the imaginary
part serves the role of Morse function for WCW.

The exponent of Kéahler function depends on the real part of t identified as Minkowski
distance between the tips of CD. This dependence is not consistent with the dependence of the
canonical unitary automorphism A% of von Neumann algebra on ¢ [A85], [K125] and the natural
interpretation is that the vacuum functional can be included in the definition of the inner product
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for spinors fields of WCW. More formally, the exponent of Kéahler function would define w in
bosonic degrees of freedom.

Note that the imaginary exponent is more natural for the imaginary part of Kéhler action
coming from Minkowskian region. In any case, one has combination of thermodynamics and QFT
and the presence of thermodynamics makes the functional integral mathematically well-defined.

Number theoretic vision requiring number theoretical universality suggests that the value of
CD size scales as defined by the distance between the tips is expected to come as integer multiples
of C'P; length scale - at least in the intersection of real and p-adic worlds. If this is the case the
continuous faimily of modular automorphisms would be replaced with a discretize family.

Quantum criticality and hierarchy of inclusions

Quantum criticality and related fractal hierarchies of breakings of conformal symmetry could allow
to understand the inclusion hierarchies for hyper-finite factors. Quantum criticality - implied
by the condition that the Kéahler-Dirac action gives rise to conserved currents assignable to the
deformations of the space-time surface - means the vanishing of the second variation of Kihler
action for these deformations. Preferred extremals correspond to these 4-surfaces and M8 — M* x
CP, duality would allow to identify them also as associative (co-associative) space-time surfaces.

Quantum criticality is basically due to the failure of strict determinism for Kahler action
and leads to the hierarchy of dark matter phases labelled by the effective value of Planck constant
hefr = m x h. These phases correspond to space-time surfaces connecting 3-surfaces at the ends
of CD which are multi-sheeted having n conformal equivalence classes.

Conformal invariance indeed relates naturally to quantum criticality. This brings in n dis-
crete degrees of freedom and one can technically describe the situation by using n-fold singular
covering of the embedding space [K47]. One can say that there is hierarchy of broken conformal
symmetries in the sense that for hesy = n x h the sub-algebra of conformal algebras with conformal
weights coming as multiples of n act as gauge symmetries. This implies that classical symplectic
Noether charges vanish for this sub-algebra. The quantal conformal charges associated with in-
duced spinor fields annihilate the physical states. Therefore it seems that the measured quantities
are the symplectic charges and there is not need to introduce any measurement interaction term
and the formalism simplifies dramatically.

The resolution increases with herp/h = n. Also the number of of strings connecting par-
tonic 2-surfaces (in practice elementary particles and their dark counterparts plus bound states
generated by connecting dark strings) characterizes physically the finite measurement resolution.
Their presence is also visible in the geometry of the space-time surfaces through the conditions that
induced W fields vanish at them (well-definedness of em charge), and by the condition that the
canonical momentum currents for Kahler action define an integrable distribution of planes parallel
to the string world sheet. In spirit with holography, preferred extremal is constructed by fixing
string world sheets and partonic 2-surfaces and possibly also their light-like orbits (should one fix
wormbhole contacts is not quite clear). If the analog of AdS/CFT correspondence holds true, the
value of Kéahler function is expressible as the energy of string defined by area in the effective metric
defined by the anti-commutators of K-D gamma matrices.

Super-symplectic algebra, whose charges are represented by Noether charges associated with
strings connecting partonic 2-surfaces extends to a Yangian algebra with multi-stringy genera-
tors [K114]. The better the measurement resolution, the larger the maximal number of strings
associated with the multilocal generator.

Kac-Moody type transformations preserving light-likeness of partonic orbits and possibly
also the light-like character of the boundaries of string world sheets carrying modes of induced
spinor field underlie the conformal gauge symmetry. The minimal option is that only the light-
likeness of the string end world line is preserved by the conformal symmetries. In fact, conformal
symmetries was originally deduced from the light-likeness condition for the M* projection of C' Py
type vacuum extremals.

The inclusions of super-symplectic Yangians form a hierarchy and would naturally corre-
spond to inclusions of hyperfinite factors of type Il;. Conformal symmetries acting as gauge
transformations would naturally correspond to degrees of freedom below measurement resolution
and would correspond to included subalgebra. As hefs increases, infinite number of these gauge
degrees of freedom become dynamical and measurement resolution is increased. This picture is
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definitely in conflict with the original view but the reduction of criticality in the increase of heyy
forces it.

Summary

On basis of above considerations it seems that the idea about “complex square root” of the state
w of von Neumann algebras might make sense in quantum TGD. Also the discretized versions of
modular automorphism assignable to the hierarchy of CDs would make sense and because of its
non-uniqueness the generator A of the canonical automorphism could bring in the flexibility needed
one wants thermodynamics. Stringy picture forces to ask whether A could in some situation be
proportional exp(Lg), where L represents as the infinitesimal scaling generator of either super-
symplectic algebra or super Kac-Moody algebra (the choice does not matter since the differences of
the generators annihilate physical states in coset construction). This would allow to reproduce real
thermodynamics consistent with p-adic thermodynamics. Note that also p-adic thermodynamics
would be replaced by its square root in ZEO.

3.2.4 Finite measurement resolution and HFF's

The finite resolution of quantum measurement leads in TGD framework naturally to the notion
of quantum M-matrix for which elements have values in sub-factor A/ of HFF rather than being
complex numbers. M-matrix in the factor space M /N is obtained by tracing over N'. The condition
that A/ acts like complex numbers in the tracing implies that M-matrix elements are proportional
to maximal projectors to A so that M-matrix is effectively a matrix in M /N and situation becomes
finite-dimensional. It is still possible to satisfy generalized unitarity conditions but in general case
tracing gives a weighted sum of unitary M-matrices defining what can be regarded as a square root
of density matrix.

About the notion of observable in ZEO
Some clarifications concerning the notion of observable in zero energy ontology are in order.

1. Asin standard quantum theory observables correspond to hermitian operators acting on either
positive or negative energy part of the state. One can indeed define hermitian conjugation
for positive and negative energy parts of the states in standard manner.

2. Also the conjugation A — JAJ is analogous to hermitian conjugation. It exchanges the
positive and negative energy parts of the states also maps the light-like 3-surfaces at the
upper boundary of CD to the lower boundary and vice versa. The map is induced by time
reflection in the rest frame of CD with respect to the origin at the center of CD and has a
well defined action on light-like 3-surfaces and space-time surfaces. This operation cannot
correspond to the sought for hermitian conjugation since JAJ and A commute.

3. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This suggests
strongly a connection with quantum field theory and an 8-D generalization of twistor Grass-
mannian approach. By field equations the bosonic part of this action does not contribute
to the Kéhler action. Chern-Simons Dirac terms to which Kéahler action reduces could be
responsible for the breaking of CP and T symmetries as they appear in CKM matrix.

4. ZEO gives Cartan sub-algebra of the Lie algebra of symmetries a special status. Only Cartan
algebra acting on either positive or negative states respects the zero energy property but this
is enough to define quantum numbers of the state. In absence of symmetry breaking positive
and negative energy parts of the state combine to form a state in a singlet representation of
group. Since only the net quantum numbers must vanish ZEO allows a symmetry breaking
respecting a chosen Cartan algebra.

5. In order to speak about four-momenta for positive and negative energy parts of the states
one must be able to define how the translations act on CDs. The most natural action is a
shift of the upper (lower) tip of CD. In the scale of entire CD this transformation induced
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Lorentz boost fixing the other tip. The value of mass squared is identified as proportional to
the average of conformal weight in p-adic thermodynamics for the scaling generator L for
either super-symplectic or Super Kac-Moody algebra.

Inclusion of HFFs as characterizer of finite measurement resolution at the level of
S-matrix

The inclusion N' C M of factors characterizes naturally finite measurement resolution. This means
following things.

1.

Complex rays of state space resulting usually in an ideal state function reduction are re-
placed by A -rays since N defines the measurement resolution and takes the role of complex
numbers in ordinary quantum theory so that non-commutative quantum theory results. Non-
commutativity corresponds to a finite measurement resolution rather than something exotic
occurring in Planck length scales. The quantum Clifford algebra M /N creates physical states
modulo resolution. The fact that N takes the role of gauge algebra suggests that it might
be necessary to fix a gauge by assigning to each element of M/N a unique element of M.
Quantum Clifford algebra with fractal dimension 3 = M : A/ creates physical states having
interpretation as quantum spinors of fractal dimension d = /3. Hence direct connection with
quantum groups emerges.

. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary and

hermitian matrices and AN -valued. Eigenvalues are Hermitian elements of AV and thus corre-
spond entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues
guarantees that it is possible to speak about state function reduction for quantum spinors.
In the simplest case of a 2-component quantum spinor this means that second component of
quantum spinor vanishes in the sense that second component of spinor annihilates physical
state and second acts as element of N on it. The non-commutativity of spinor components
implies correlations between then and thus fractal dimension is smaller than 2.

The intuition about ordinary tensor products suggests that one can decompose Tr in M as

Trm(X) = Traygw xTrar(X) . (3.2.4)

Suppose one has fixed gauge by selecting basis |ry) for M/A. In this case one expects that
operator in M defines an operator in M /A by a projection to the preferred elements of M.

(r1|Xlre) = (r|Tra(X)|ra) . (3.2.5)

Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1) and |r3) is obtained by summing over the final
states obtained by the action of A/ from |rs) and taking the analog of spin average over the
states created in the similar from |rq). N average requires a division by Tr(Py) =1/ M : N
defining fractal dimension of A/. This gives

p(ri —12) = M:N x (r|Tra(SPySH|ra) . (3.2.6)

This formula is consistent with probability conservation since one has
Y opri =) = M:NxTry(SST) = M:N xTr(Py)=1 . (3.2.7)
T2

Unitarity at the level of M /A can be achieved if the unit operator Id for M can be de-
composed into an analog of tensor product for the unit operators of M/A and N and M
decomposes to a tensor product of unitary M-matrices in M /N and . For HFFs of type II
projection operators of AV with varying traces are present and one expects a weighted sum of
unitary M-matrices to result from the tracing having interpretation in terms of square root
of thermodynamics.
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6. This argument assumes that A/ is HFF of type II; with finite trace. For HFFs of type III; this
assumption must be given up. This might be possible if one compensates the trace over N by
dividing with the trace of the infinite trace of the projection operator to A/. This probably
requires a limiting procedure which indeed makes sense for HFF's.

Quantum M-matrix

The description of finite measurement resolution in terms of inclusion A/ C M seems to boil down
to a simple rule. Replace ordinary quantum mechanics in complex number field C' with that in
N. This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced with
their N counterparts.

The full M-matrix in M should be reducible to a finite-dimensional quantum M-matrix in
the state space generated by quantum Clifford algebra M /N which can be regarded as a finite-
dimensional matrix algebra with non-commuting A/-valued matrix elements. This suggests that full
M-matrix can be expressed as M-matrix with A/-valued elements satisfying A/-unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum .S-
matrix must be commuting hermitian A -valued operators inside every row and column. The
traces of these operators give N-averaged transition probabilities. The eigenvalue spectrum of these
Hermitian matrices gives more detailed information about details below experimental resolution.
N-hermicity and commutativity pose powerful additional restrictions on the M-matrix.

Quantum M-matrix defines N -valued entanglement coefficients between quantum states
with A -valued coefficients. How this affects the situation? The non-commutativity of quantum
spinors has a natural interpretation in terms of fuzzy state function reduction meaning that quan-
tum spinor corresponds effectively to a statistical ensemble which cannot correspond to pure state.
Does this mean that predictions for transition probabilities must be averaged over the ensemble
defined by “quantum quantum states”?

Quantum fluctuations and inclusions

Inclusions N C M of factors provide also a first principle description of quantum fluctuations since
quantum fluctuations are by definition quantum dynamics below the measurement resolution. This
gives hopes for articulating precisely what the important phrase “long range quantum fluctuations
around quantum criticality” really means mathematically.

1. Phase transitions involve a change of symmetry. One might hope that the change of the
symmetry group G, X Gy could universally code this aspect of phase transitions. This need
not always mean a change of Planck constant but it means always a leakage between sectors
of embedding space. At quantum criticality 3-surfaces would have regions belonging to at
least two sectors of H.

2. The long range of quantum fluctuations would naturally relate to a partial or total leakage of
the 3-surface to a sector of embedding space with larger Planck constant meaning zooming
up of various quantal lengths.

3. For M-matrix in M /N regarded as cal N module quantum criticality would mean a special
kind of eigen state for the transition probability operator defined by the M-matrix. The
properties of the number theoretic braids contributing to the M-matrix should characterize
this state. The strands of the critical braids would correspond to fixed points for G, x G} or
its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states
give a precise formulation for M-matrix in finite measurement resolution and the Connes tensor
product involved. The original expectation that Connes tensor product could lead to a unique
M-matrix is wrong. The replacement of w with its complex square root could lead to a unique
hierarchy of M-matrices with finite measurement resolution and allow completely finite theory
despite the fact that projectors have infinite trace for HFF's of type III;.
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In ZEO the counterpart of Hermitian conjugation for operator is replaced with M — JMJ
permuting the factors. Therefore N € A acting to positive (negative) energy part of state
corresponds to N — N’ = JNJ acting on negative (positive) energy part of the state.

The allowed elements of N much be such that zero energy state remains zero energy state.
The superposition of zero energy states involved can however change. Hence one must have
that the counterparts of complex numbers are of form N = JN;J V No, where N1 and Ny
have same quantum numbers. A superposition of terms of this kind with varying quantum
numbers for positive energy part of the state is possible.

The condition that Ny; and No; act like complex numbers in AN -trace means that the effect of
JN1;J V No; and JNo;Ji V Ny; to the trace are identical and correspond to a multiplication
by a constant. If A/ is HFF of type II; this follows from the decomposition M = M/N @ N
and from Tr(AB) = Tr(BA) assuming that M is of form M = My, x Py. Contrary to
the original hopes that Connes tensor product could fix the M-matrix there are no conditions
on Mq,n which would give rise to a finite-dimensional M-matrix for Jones inclusions. One
can replaced the projector Py with a more general state if one takes this into account in *
operation.

In the case of HFFs of type I11; the trace is infinite so that the replacement of Try with
a state wy in the sense of factors looks more natural. This means that the counterpart of *
operation exchanging N; and Nj represented as SAQ = A*Q involves A via S = JAY2. The
exchange of N7 and N gives altogether A. In this case the KMS condition wa (AB) = warAA)
guarantees the effective complex number property [A§] .

Quantum TGD more or less requires the replacement of w with its “complex square root”
so that also a unitary matrix U multiplying A is expected to appear in the formula for S
and guarantee the symmetry. One could speak of a square root of KMS condition [AS] in
this case. The QFT counterpart would be a cutoff involving path integral over the degrees
of freedom below the measurement resolution. In TGD framework it would mean a cutoff in
the functional integral over WCW and for the modes of the second quantized induced spinor
fields and also cutoff in sizes of causal diamonds. Discretization in terms of braids replacing
light-like 3-surfaces should be the counterpart for the cutoff.

If one has M-matrix in M expressible as a sum of M-matrices of form Ma,nr X My with
coefficients which correspond to the square roots of probabilities defining density matrix the
tracing operation gives rise to square root of density matrix in M.

Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities in
which N-trace or its generalization in terms of state wy is needed. One might however dream of
something more.

1.

Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the M-
matrices in finite measurement resolution for all inclusions N/ C M. This would mean that
one can write

M = Muyn @ My (3.2.8)

for any physically reasonable choice of A/. This would formally express the idea that M is as
near as possible to M-matrix of free theory. Also fractality suggests itself in the sense that
My is essentially the same as My in the same sense as N is same as M. It might be that
the trivial solution M = 1 is the only possible solution to the condition.

Maq/ar would be obtained by the analog of Trx or wy operation involving the “complex
square root” of the state w in case of HFF's of type III;. The QFT counterpart would be path
integration over the degrees of freedom below cutoff to get effective action.

Universality probably requires assumptions about the thermodynamical part of the universal
M-matrix. A possible alternative form of the condition is that it holds true only for canonical
choice of “complex square root” of w or for the S-matrix part of M:
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S = Sy @Sy (3.2.9)

for any physically reasonable choice N.

4. In TGD framework the condition would say that the M-matrix defined by the Kéahler-Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration
over the degrees of freedom below the measurement resolution.

An obvious counter argument against the universality is that if the M-matrix is “complex
square root of state” cannot be unique and there are infinitely many choices related by a unitary
transformation induced by the flows representing modular automorphism giving rise to new choices.
This would actually be a well-come result and make possible quantum measurement theory.

In the section “Handful of problems with a common resolution” it was found that one can add
to both Kéhler action and Kahler-Dirac action a measurement interaction term characterizing the
values of measured observables. The measurement interaction term in Kéhler action is Lagrange
multiplier term at the space-like ends of space-time surface fixing the value of classical charges
for the space-time sheets in the quantum superposition to be equal with corresponding quantum
charges. The term in K&hler-Dirac action is obtained from this by assigning to this term canonical
momentum densities and contracting them with gamma matrices to obtain Kahler-Dirac gamma
matrices appearing in 3-D analog of Dirac action. The constraint terms would leave Kéahler function
and Ké&hler metric invariant but would restrict the vacuum functional to the subset of 3-surfaces
with fixed classical conserved charges (in Cartan algebra) equal to their quantum counterparts.

Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and also
now it makes sense to speak about measurement resolution. Hence one can ask whether Connes
tensor product should be posed as a constraint on space-like entanglement. The interpretation
could be in terms of the formation of bound states. The reducibility of HFF's and inclusions means
that the tensor product is not uniquely fixed and ordinary entanglement could correspond to this
kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The inter-
pretation of Connes tensor product would be as the variance of the states with respect to some
subgroup of U(n) associated with the measurement resolution: the analog of color confinement
would be in question.

2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A61] are playing with very formal looking formal structures obtained
by replacing vectors with vector spaces. Direct sum and tensor product serve as the basic arithmetic
operations for the vector spaces and one can define category of n-tuples of vectors spaces with
morphisms defined by linear maps between vectors spaces of the tuple. n-tuples allow also element-
wise product and sum. They obtain results which make them happy. For instance, the category of
linear representations of a given group forms 2-vector spaces since direct sums and tensor products
of representations as well as n-tuples make sense. The 2-vector space however looks more or less
trivial from the point of physics.

The situation could become more interesting in quantum measurement theory with finite
measurement resolution described in terms of inclusions of hyper-finite factors of type II;. The
reason is that Connes tensor product replaces ordinary tensor product and brings in interactions
via irreducible entanglement as a representation of finite measurement resolution. The category in
question could give Connes tensor products of quantum state spaces and describing interactions.
For instance, one could multiply M-matrices via Connes tensor product to obtain category of
M-matrices having also the structure of 2-operator algebra.

1. The included algebra represents measurement resolution and this means that the infinite-D
sub-Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor takes the
role of complex numbers in generalized QM so that one obtains non-commutative quantum
mechanics. For instance, quantum entanglement for two systems of this kind would not be
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between rays but between infinite-D subspaces corresponding to sub-factors. One could build
a generalization of QM by replacing rays with sub-spaces and it would seem that quantum
group concept does more or less this: the states in representations of quantum groups could
be seen as infinite-dimensional Hilbert spaces.

2. One could speak about both operator algebras and corresponding state spaces modulo finite
measurement resolution as quantum operator algebras and quantum state spaces with fractal
dimension defined as factor space like entities obtained from HFF by dividing with the action
of included HFF. Possible values of the fractal dimension are fixed completely for Jones inclu-
sions. Maybe these quantum state spaces could define the notions of quantum 2-Hilbert space
and 2-operator algebra via direct sum and tensor production operations. Fractal dimensions
would make the situation interesting both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

1. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF con-
taining included algebras replaced with direct sum of included HFFs.

2. The tensor products for quantum state spaces and quantum operator algebras are not anymore
trivial. The condition that measurement algebras act effectively like complex numbers would
require Connes tensor product involving irreducible entanglement between elements belonging
to the two HFFs. This would have direct physical relevance since this entanglement cannot
be reduced in state function reduction. The category would defined interactions in terms of
Connes tensor product and finite measurement resolution.

3. The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using the
2-Hilbert spaces and quantum 2-operator algebras.

3.2.5 Questions about quantum measurement theory in Zero Energy
Ontology

The following summary about quantum measurement theory in ZEO is somewhat out-of-date and
somewhat sketchy. For more detailed view see [K72l, [K121l [K9].

Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time scale
imply the conditions at shorter time scales. On the other hand, in shorter time scales the inclusion
would be deeper and would give rise to a larger reducibility of the representation of A in M.
Formally, as N approaches to a trivial algebra, one would have a square root of density matrix
and trivial S-matrix in accordance with the idea about asymptotic freedom.

M-matrix would give rise to a matrix of probabilities via the expression P(Py — P_) =
Tr[P, M'P_M], where P, and P_ are projectors to positive and negative energy energy A -rays.
The projectors give rise to the averaging over the initial and final states inside N ray. The
reduction could continue step by step to shorter length scales so that one would obtain a sequence
of inclusions. If the U-process of the next quantum jump can return the M-matrix associated with
M or some larger HFF, U process would be kind of reversal for state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams
and wild actions to the age when most decisions relate to the routine daily activities; the progress
of science from macroscopic to microscopic scales; even biological decay processes: all these have
an intriguing resemblance to the fractal state function reduction process proceeding to shorter and
shorter time scales. Since this means increasing thermality of M-matrix, U process as a reversal
of state function reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by
U process giving rise to new zero energy states can bring in something new and is responsible for
evolution. The non-conservative option is that the biological death is the U-process of the next
quantum jump leading to a new life cycle. Breathing would become a universal metaphor for what
happens in quantum Universe. The 4-D body would be lived again and again.
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quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X*(X?3) defined by the
Kihler function depends however only on the partonic 3-surface X3, and one must be able to
assign to a given quantum state the most probable X3 - call it X3 - depending on its quantum
numbers.

X4(X3 ..) should carry the gauge fields created by classical gauge charges associated with
the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and
ZY charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral is
restricted to 3-surfaces X3 with exponent of Kéhler function bringing in genuine convergence and
that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type vacuum
degeneracy of Kahler action.

Stationary phase approximation selects X3, if the quantum state contains a phase factor
depending not only on X3 but also on the quantum numbers of the state. A good guess is that
the needed phase factor corresponds to either Chern-Simons type action or an action describing
the interaction of the induced gauge field with the charges associated with the braid strand. This
action would be defined for the induced gauge fields. YM action seems to be excluded since it is

singular for light-like 3-surfaces associated with the light-like wormhole throats (not only \/det(gs)
but also y/det(g4) vanishes).

S ) carries correct
gauge charges. Kind of electric-magnetic duality should relate the normal components F,; of the
gauge fields in X*(X3,,) to the gauge fields F}; induced at X3. An alternative interpretation is
in terms of quantum gravitational holography.

The challenge is to show that this is enough to guarantee that X*(X?2

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M-matrix in the case of HFFs of type II; (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.

Quantum measurements in ZEO

ZEO based quantum measurement theory leads directly to a theory of conscious entities. The
basic idea is that state function reduction localizes the second boundary of CD so that it becomes
a piece of light-cone boundary (more precisely M3 x CP).

Repeated reductions are possible as in standard quantum measurement theory and leave the
passive boundary of CD. Repeated reduction begins with U process generating a superposition of
CDs with the active boundary of CD being de-localized in the moduli space of CDs, and is followed
by a localization in this moduli space so that single CD is the outcome. This process tends to
increase the distance between the ends of the CD and has interpretation as a space-time correlate
for the flow of subjective time.

Self as a conscious entity corresponds to this sequence of repeated reductions on passive
boundary of CD. The first reduction at opposite boundary means death of self and its re-incarnation
at the opposite boundary of CD. Also the increase of Planck constant and generation of negentropic
entanglement is expected to be associated with this state function reduction.

Weak form of NMP is the most plausible variational principle to characterize the state
function reduction. It does not require maximal negentropy gain for state function reductions but
allows it. In other words, the outcome of reduction is n-dimensional eigen space of density matrix
space but this space need not have maximum possible dimension and even 1-D ray is possible in
which case the entanglement negentropy vanishes for the final state and system becomes isolated
from the rest of the world. Weak form of NMP brings in free will and can allow also larger
negentropy gain than the strong form if n is a product of primes. The beauty of this option is that
one can understand how the generalization of p-adic length scale hypothesis emerges.
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Hyper-finite factors of type II; and quantum measurement theory with a finite mea-
surement resolution

The realization that the von Neumann algebra known as hyper-finite factor of type II; is tailor made
for quantum TGD has led to a considerable progress in the understanding of the mathematical
structure of the theory and these algebras provide a justification for several ideas introduced earlier
on basis of physical intuition.

Hyper-finite factor of type II; has a canonical realization as an infinite-dimensional Clifford
algebra and the obvious guess is that it corresponds to the algebra spanned by the gamma matrices
of WCW. Also the local Clifford algebra of the embedding space H = M* x C'P» in octonionic
representation of gamma matrices of H is important and the entire quantum TGD emerges from
the associativity or co-associativity conditions for the sub-algebras of this algebra which are local
algebras localized to maximal associative or co-associate sub-manifolds of the embedding space
identifiable as space-time surfaces.

The notion of inclusion for hyper-finite factors provides an elegant description for the notion
of measurement resolution absent from the standard quantum measurement theory.

1. The included sub-factor creates in ZEO states not distinguishable from the original one and
the formally the coset space of factors defining quantum spinor space defines the space of
physical states modulo finite measurement resolution.

2. The quantum measurement theory for hyperfinite factors differs from that for factors of type
I since it is not possible to localize the state into single ray of state space. Rather, the ray
is replaced with the sub-space obtained by the action of the included algebra defining the
measurement resolution. The role of complex numbers in standard quantum measurement
theory is taken by the non-commutative included algebra so that a non-commutative quantum
theory is the outcome.

3. This leads also to the notion of quantum group. For instance, the finite measurement reso-
lution means that the components of spinor do not commute anymore and it is not possible
to reduce the state to a precise eigenstate of spin. It is however perform a reduction to an
eigenstate of an observable which corresponds to the probability for either spin state.

4. For HFFs the dimension of infinite-dimensional state space is finite and 1 by convention. For
included HFF A/ C M the dimension of the tensor factor space containing only the degrees of
freedom which are above measurement resolution is given by the index of inclusion d = M :
N. One can say that the dimension associated with degrees of freedom below measurement
resolution is D = 1/d. This number is never large than 1 for the inclusions and contains
a set of discrete values d = 4cos®(2m/n), n > 3, plus the continuum above it. The fractal
generalization of the formula for entanglement entropy gives S = —log(1/D) = —log(d) <0
so that one can say that the entanglement negentropy assignable to the projection operators
to the sub-factor is positive except for n = 3 for which it vanishes. The non-measured degrees
of freedom carry information rather than entropy.

5. Clearly both HFFs of type I and II allow entanglement negentropy and allow to assign it with
finite measurement resolution. In the case of factors its is not clear whether the weak form
of NMP allows makes sense.

As already explained, the topology of the many-sheeted space-time encourages the general-
ization of the notion of quantum entanglement in such a way that unentangled systems can possess
entangled sub-systems. One can say that the entanglement between sub-selves is not visible in the
resolution characterizing selves. This makes possible sharing and fusion of mental images central
for TGD inspired theory of consciousness. These concepts find a deeper justification from the
quantum measurement theory for hyper-finite factors of type II; for which the finite measurement
resolution is basic notion.

Hierarchies of conformal symmetry breakings, Planck constants, and inclusions of
HFFs

The basic almost prediction of TGD is a fractal hierarchy of breakings of symplectic symmetry as
a gauge symmetry.
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It is good to briefly summarize the basic facts about the symplectic algebra assigned with
SM{ x CPy first.

1. Symplectic algebra has the structure of Virasoro algebra with respect to the light-like radial
coordinate rj; of the light-cone boundary taking the role of complex coordinate for ordinary
conformal symmetry. The Hamiltonians generating symplectic symmetries can be chosen to
be proportional to functions f,,(ras). What is the natural choice for f,(ras) is not quite clear.
Ordinary conformal invariance would suggests f,,(rar) = r};. A more adventurous possibility
is that the algebra is generated by Hamiltonians with f,,(ry) = =%, where s is a root of
Riemann Zeta so that one has either s = 1/2 + iy (roots at critical line) or s = —2n, n > 0
(roots at negative real axis).

2. The set of conformal weights would be linear space spanned by combinations of all roots
with integer coefficients s = n — iy, s = > n;y;, n > —ng, where —ng > 0 is negative
conformal weight. Mass squared is proportional to the total conformal weight and must be
real demanding y = Y y; = 0 for physical states: I call this conformal confinement analogous
to color confinement. One could even consider introducing the analog of binding energy as
“binding conformal weight”.

Mass squared must be also non-negative (no tachyons) giving no > 0. The generating confor-
mal weights however have negative real part -1/2 and are thus tachyonic. Rather remarkably,
p-adic mass calculations force to assume negative half-integer valued ground state conformal
weight. This plus the fact that the zeros of Riemann Zeta has been indeed assigned with
critical systems forces to take the Riemannian variant of conformal weight spectrum with
seriousness. The algebra allows also now infinite hierarchy of conformal sub-algebras with
weights coming as n-ples of the conformal weights of the entire algebra.

3. The outcome would be an infinite number of hierarchies of symplectic conformal symmetry
breakings. Only the generators of the sub-algebra of the symplectic algebra with radial con-
formal weight proportional to n would act as gauge symmetries at given level of the hierarchy.
In the hierarchy n; divides n;41. In the symmetry breaking n;, — n;y1 the conformal charges,
which vanished earlier, would become non-vanishing. Gauge degrees of freedom would trans-
form to physical degrees of freedom.

4. What about the conformal Kac-Moody algebras associated with spinor modes. It seems that
in this case one can assume that the conformal gauge symmetry is exact just as in string
models.

The natural interpretation of the conformal hierarchies n;, — mn;;1 would be in terms of
increasing measurement resolution.

1. Conformal degrees of freedom below measurement resolution would be gauge degrees of free-
dom and correspond to generators with conformal weight proportional to n;. Conformal
hierarchies and associated hierarchies of Planck constants and n-fold coverings of space-time
surface connecting the 3-surfaces at the ends of causal diamond would give a concrete real-
ization of the inclusion hierarchies for hyper-finite factors of type I1; [K125].

n; could correspond to the integer labelling Jones inclusions and associating with them the
quantum group phase factor U,, = exp(i27/n), n > 3 and the index of inclusion given by
M : N| = 4cos*(2m/n) defining the fractal dimension assignable to the degrees of freedom
above the measurement resolution. The sub-algebra with weights coming as n-multiples of the
basic conformal weights would act as gauge symmetries realizing the idea that these degrees
of freedom are below measurement resolution.

2. If herp = n x h defines the conformal gauge sub-algebra, the improvement of the resolution
would scale up the Compton scales and would quite concretely correspond to a zoom analogous
to that done for Mandelbrot fractal to get new details visible. From the point of view of
cognition the improving resolution would fit nicely with the recent view about hess/h as a
kind of intelligence quotient.

This interpretation might make sense for the symplectic algebra of §M% x C'P, for which the
light-like radial coordinate rj; of light-cone boundary takes the role of complex coordinate.
The reason is that symplectic algebra acts as isometries.
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3.

If Kéhler action has vanishing total variation under deformations defined by the broken con-
formal symmetries, the corresponding conformal charges are conserved. The components of
WCW Kahler metric expressible in terms of second derivatives of Kéhler function can be
however non-vanishing and have also components, which correspond to WCW coordinates
associated with different partonic 2-surfaces. This conforms with the idea that conformal
algebras extend to Yangian algebras generalizing the Yangian symmetry of N’ = 4 symmetric
gauge theories. The deformations defined by symplectic transformations acting gauge sym-
metries the second variation vanishes and there is not contribution to WCW Kahler metric.

One can interpret the situation also in terms of consciousness theory. The larger the value
of heyy, the lower the criticality, the more sensitive the measurement instrument since new
degrees of freedom become physical, the better the resolution. In p-adic context large n
means better resolution in angle degrees of freedom by introducing the phase exp(i27/n) to
the algebraic extension and better cognitive resolution. Also the emergence of negentropic
entanglement characterized by n x n unitary matrix with density matrix proportional to unit
matrix means higher level conceptualization with more abstract concepts.

The extension of the super-conformal algebra to a larger Yangian algebra is highly suggestive

and gives and additional aspect to the notion of measurement resolution.

1.

Yangian would be generated from the algebra of super-conformal charges assigned with the
points pairs belonging to two partonic 2-surfaces as stringy Noether charges assignable to
strings connecting them. For super-conformal algebra associated with pair of partonic surface
only single string associated with the partonic 2-surface. This measurement resolution is the
almost the poorest possible (no strings at all would be no measurement resolution at alll).

Situation improves if one has a collection of strings connecting set of points of partonic 2-
surface to other partonic 2-surface(s). This requires generalization of the super-conformal
algebra in order to get the appropriate mathematics. Tensor powers of single string super-
conformal charges spaces are obviously involved and the extended super-conformal generators
must be multi-local and carry multi-stringy information about physics.

The generalization at the first step is simple and based on the idea that co-product is the
”time inverse” of product assigning to single generator sum of tensor products of generators
giving via commutator rise to the generator. The outcome would be expressible using the
structure constants of the super-conformal algebra schematically a QY4 = f7°Qp ® Qc.
Here @p and Q¢ are super-conformal charges associated with separate strings so that 2-local
generators are obtained. One can iterate this construction and get a hierarchy of n-local
generators involving products of n stringy super-conformal charges. The larger the value of
n, the better the resolution, the more information is coded to the fermionic state about the
partonic 2-surface and 3-surface. This affects the space-time surface and hence WCW metric
but not the 3-surface so that the interpretation in terms of improved measurement resolution
makes sense. This super-symplectic Yangian would be behind the quantum groups and Jones
inclusions in TGD Universe.

n gives also the number of space-time sheets in the singular covering. One possible interpre-
tation is in terms measurement resolution for counting the number of space-time sheets. Our
recent quantum physics would only see single space-time sheet representing visible manner
and dark matter would become visible only for n > 1.

It is not an accident that quantum phases are assignable to Yangian algebras, to quantum

groups, and to inclusions of HFFs. The new deep notion added to this existing complex of high
level mathematical concepts are hierarchy of Planck constants, dark matter hierarchy, hierarchy
of criticalities, and negentropic entanglement representing physical notions. All these aspects
represent new physics.

3.2.6 Planar Algebras And Generalized Feynman Diagrams

Planar algebras [A1I] are a very gencral notion due to Vaughan Jones and a special class of
them is known to characterize inclusion sequences of hyper-finite factors of type IT; [A35] . In
the following an argument is developed that planar algebras might have interpretation in terms
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of planar projections of generalized Feynman diagrams (these structures are metrically 2-D by
presence of one light-like direction so that 2-D representation is especially natural). In [K27] the
role of planar algebras and their generalizations is also discussed.

Planar algebra very briefly
First a brief definition of planar algebra.

1. One starts from planar k-tangles obtained by putting disks inside a big disk. Inner disks are
empty. Big disk contains 2k braid strands starting from its boundary and returning back or
ending to the boundaries of small empty disks in the interior containing also even number of
incoming lines. It is possible to have also loops. Disk boundaries and braid strands connecting
them are different objects. A black-white coloring of the disjoint regions of k-tangle is assumed
and there are two possible options (photo and its negative). Equivalence of planar tangles
under diffeomorphisms is assumed.

2. One can define a product of k-tangles by identifying k-tangle along its outer boundary with
some inner disk of another k-tangle. Obviously the product is not unique when the number
of inner disks is larger than one. In the product one deletes the inner disk boundary but if
one interprets this disk as a vertex-parton, it would be better to keep the boundary.

3. One assigns to the planar k-tangle a vector space Vi and a linear map from the tensor
product of spaces Vj, associated with the inner disks such that this map is consistent with
the decomposition k-tangles. Under certain additional conditions the resulting algebra gives
rise to an algebra characterizing multi-step inclusion of HFF's of type I1;.

4. Tt is possible to bring in additional structure and in TGD framework it seems necessary to
assign to each line of tangle an arrow telling whether it corresponds to a strand of a braid
associated with positive or negative energy parton. One can also wonder whether disks could
be replaced with closed 2-D surfaces characterized by genus if braids are defined on partonic
surfaces of genus g. In this case there is no topological distinction between big disk and
small disks. Ome can also ask why not allow the strands to get linked (as suggested by
the interpretation as planar projections of generalized Feynman diagrams) in which case one
would not have a planar tangle anymore.

General arguments favoring the assignment of a planar algebra to a generalized Feyn-
man diagram

There are some general arguments in favor of the assignment of planar algebra to generalized
Feynman diagrams.

1. Planar diagrams describe sequences of inclusions of HFF:s and assign to them a multi-
parameter algebra corresponding indices of inclusions. They describe also Connes tensor
powers in the simplest situation corresponding to Jones inclusion sequence. Suppose that
also general Connes tensor product has a description in terms of planar diagrams. This might
be trivial.

2. Generalized vertices identified geometrically as partonic 2-surfaces indeed contain Connes
tensor products. The smallest sub-factor N would play the role of complex numbers meaning
that due to a finite measurement resolution one can speak only about N-rays of state space
and the situation becomes effectively finite-dimensional but non-commutative.

3. The product of planar diagrams could be seen as a projection of 3-D Feynman diagram to
plane or to one of the partonic vertices. It would contain a set of 2-D partonic 2-surfaces.
Some of them would correspond vertices and the rest to partonic 2-surfaces at future and past
directed light-cones corresponding to the incoming and outgoing particles.

4. The question is how to distinguish between vertex-partons and incoming and outgoing partons.
If one does not delete the disk boundary of inner disk in the product, the fact that lines
arrive at it from both sides could distinguish it as a vertex-parton whereas outgoing partons
would correspond to empty disks. The direction of the arrows associated with the lines of
planar diagram would allow to distinguish between positive and negative energy partons (note
however line returning back).
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5. One could worry about preferred role of the big disk identifiable as incoming or outgoing
parton but this role is only apparent since by compactifying to say S? the big disk exterior
becomes an interior of a small disk.

A more detailed view

The basic fact about planar algebras is that in the product of planar diagrams one glues two disks
with identical boundary data together. One should understand the counterpart of this in more
detail.

1. The boundaries of disks would correspond to 1-D closed space-like stringy curves at partonic
2-surfaces along which fermionic anti-commutators vanish.

2. The lines connecting the boundaries of disks to each other would correspond to the strands
of number theoretic braids and thus to braidy time evolutions. The intersection points of
lines with disk boundaries would correspond to the intersection points of strands of number
theoretic braids meeting at the generalized vertex.

[Number theoretic braid belongs to an algebraic intersection of a real parton 3-surface and its
p-adic counterpart obeying same algebraic equations: of course, in time direction algebraicity
allows only a sequence of snapshots about braid evolution].

3. Planar diagrams contain lines, which begin and return to the same disk boundary. Also
“vacuum bubbles” are possible. Braid strands would disappear or appear in pairwise manner
since they correspond to zeros of a polynomial and can transform from complex to real and
vice versa under rather stringent algebraic conditions.

4. Planar diagrams contain also lines connecting any pair of disk boundaries. Stringy decay of
partonic 2-surfaces with some strands of braid taken by the first and some strands by the
second parton might bring in the lines connecting boundaries of any given pair of disks (if
really possible!).

5. There is also something to worry about. The number of lines associated with disks is even
in the case of k-tangles. In TGD framework incoming and outgoing tangles could have odd
number of strands whereas partonic vertices would contain even number of k-tangles from
fermion number conservation. One can wonder whether the replacement of boson lines with
fermion lines could imply naturally the notion of half-k-tangle or whether one could assign
half-k-tangles to the spinors of WCW (“world of classical worlds”) whereas corresponding
Clifford algebra defining HFF of type I1; would correspond to k-tangles.

3.2.7 Miscellaneous

The following considerations are somewhat out-of-date: hence the title “Miscellaneous”.

Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M-matrix with physically
acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal
field theory suggest that Connes tensor product is essentially equivalent with the fusion rules for
conformal fields defined by the Clifford algebra elements of CH(CD) (4-surfaces associated with
3-surfaces at the boundary of causal diamond CD in M%), extended to local fields in M* with
gamma matrices acting on WCW spinor s assignable to the partonic boundary components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms
of Connes tensor product [A96] and refers to the work of Wassermann about the fusion of loop
group representations as a demonstration of the possibility to formula the fusion rules in terms of
Connes tensor product [A23] .

Fusion rules are indeed something more intricate that the naive product of free fields ex-
panded using oscillator operators. By its very definition Connes tensor product means a dramatic
reduction of degrees of freedom and this indeed happens also in conformal field theories.

1. For non-vanishing n-point functions the tensor product of representations of Kac Moody group
associated with the conformal fields must give singlet representation.
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2. The ordinary tensor product of Kac Moody representations characterized by given value of
central extension parameter k is not possible since k would be additive.

3. A much stronger restriction comes from the fact that the allowed representations must define
integrable representations of Kac-Moody group [A30] . For instance, in case of SU(2); Kac
Moody algebra only spins j < k/2 are allowed. In this case the quantum phase corresponds
ton =k +2. SU(2) is indeed very natural in TGD framework since it corresponds to both
electro-weak SU(2);, and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical
states would replace naive tensor product with something more intricate. The naivest approach
would start from M* local variants of gamma matrices since gamma matrices generate the Clifford
algebra C! associated with CH(CD). This is certainly too naive an approach. The next step
would be the localization of more general products of Clifford algebra elements elements of Kac
Moody algebras creating physical states and defining free on mass shell quantum fields. In standard
quantum field theory the next step would be the introduction of purely local interaction vertices
leading to divergence difficulties. In the recent case one transfers the partonic states assignable to
the light-cone boundaries M1 (m;) x CP; to the common partonic 2-surfaces X2 along X3 , so
that the products of field operators at the same space-time point do not appear and one avoids
infinities.

The remaining problem would be the construction an explicit realization of Connes tensor
product. The formal definition states that left and right A/ actions in the Connes tensor product
M @ n M are identical so that the elements nm; ® mo and my ® maon are identified. This implies
a reduction of degrees of freedom so that free tensor product is not in question. One might hope
that at least in the simplest choices for N characterizing the limitations of quantum measurement
this reduction is equivalent with the reduction of degrees of freedom caused by the integrability
constraints for Kac-Moody representations and dropping away of higher spins from the ordinary
tensor product for the representations of quantum groups. If fusion rules are equivalent with
Connes tensor product, each type of quantum measurement would be characterized by its own
conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided by
quantum field theories. In [K34] a rather precise vision about generalized Feynman diagrams is
developed and the challenge is to relate this vision to Connes tensor product.

Connection with topological quantum field theories defined by Chern-Simons action

There is also connection with topological quantum field theories (TQFTs) defined by Chern- Simons
action [A41] .

1. The light-like 3-surfaces X} defining propagators can contain unitary matrix characterizing
the braiding of the lines connecting fermions at the ends of the propagator line. Therefore
the modular S-matrix representing the braiding would become part of propagator line. Also
incoming particle lines can contain similar S-matrices but they should not be visible in the
M-matrix. Also entanglement between different partonic boundary components of a given
incoming 3-surface by a modular S-matrix is possible.

2. Besides C'P, type extremals MEs with light-like momenta can appear as brehmstrahlung
like exchanges always accompanied by exchanges of C'P», type extremals making possible
momentum conservation. Also light-like boundaries of magnetic flux tubes having macroscopic
size could carry light-like momenta and represent similar brehmstrahlung like exchanges. In
this case the modular S-matrix could make possible topological quantum computations in
g # 1 phase [K5] . Notice the somewhat counter intuitive implication that magnetic flux
tubes of macroscopic size would represent change in quantum jump rather than quantum
state. These quantum jumps can have an arbitrary long geometric duration in macroscopic
quantum phases with large Planck constant [K44] .

There is also a connection with topological QFT defined by Chern-Simons action allowing
to assign topological invariants to the 3-manifolds [A41] . If the light-like CDs X %71- are boundary
components, the 3-surfaces associated with particles are glued together somewhat like they are
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glued in the process allowing to construct 3-manifold by gluing them together along boundaries.
All 3-manifold topologies can be constructed by using only torus like boundary components.

This would suggest a connection with 2+41-dimensional topological quantum field theory
defined by Chern-Simons action allowing to define invariants for knots, links, and braids and 3-
manifolds using surgery along links in terms of Wilson lines. In these theories one consider gluing
of two 3-manifolds, say 3-spheres S® along a link to obtain a topologically non-trivial 3-manifold.
The replacement of link with Wilson lines in S2#53 = S2 reduces the calculation of link invariants
defined in this manner to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-
manifolds are glued together along link so that a singular 3-manifolds with a book like structure
are possible. The allowance of CDs which are not boundaries, typically 3-D light-like throats of
wormhole contacts at which induced metric transforms from Minkowskian to Euclidian, brings in
additional richness of structure. If the scaling factor of C'P, metric can be arbitrary large as the
quantization of Planck constant predicts, this kind of structure could be macroscopic and could
be also linked and knotted. In fact, topological condensation could be seen as a process in which
two 4-manifolds are glued together by drilling light-like CDs and connected by a piece of C'P» type
extremal.

3.3 Fresh View About Hyper-Finite Factors In TGD Frame-
work

In the following I will discuss the basic ideas about the role of hyper-finite factors in TGD with the
background given by a work of more than half decade. First I summarize the input ideas which
I combine with the TGD inspired intuitive wisdom about HFFs of type Il; and their inclusions
allowing to represent finite measurement resolution and leading to notion of quantum spaces with
algebraic number valued dimension defined by the index of the inclusion.

Also an argument suggesting that the inclusions define “skewed” inclusions of lattices to
larger lattices giving rise to quasicrystals is proposed. The core of the argument is that the
included HFF of type II; algebra is a projection of the including algebra to a subspace with
dimension D < 1. The projection operator defines the analog of a projection of a bigger lattice to
the included lattice. Also the fact that the dimension of the tensor product is product of dimensions
of factors just like the number of elements in finite group is product of numbers of elements of
coset space and subgroup, supports this interpretation.

One also ends up with a detailed identification of the hyper-finite factors in orbital degrees
of freedom in terms of symplectic group associated with §M$ x CPp and the group algebras of
their discrete subgroups define what could be called “orbital degrees of freedom” for WCW spinor
fields. By very general argument this group algebra is HFF of type II, maybe even I1;.

3.3.1 Crystals, Quasicrystals, Non-Commutativity And Inclusions Of
Hyperfinite Factors Of Type 1,

I list first the basic ideas about non-commutative geometries and give simple argument suggesting
that inclusions of HFF's correspond to “skewed” inclusions of lattices as quasicrystals.

1. Quasicrystals (see http://tinyurl.com/67kz3qo)) (say Penrose tilings) [A13] can be regarded
as subsets of real crystals and one can speak about “skewed” inclusion of real lattice to larger
lattice as quasicrystal. What this means that included lattice is obtained by projecting the
larger lattice to some lower-dimensional subspace of lattice.

2. The argument of Connes concerning definition of non-commutative geometry can be found in
the book of Michel Lapidus at page 200. Quantum space is identified as a space of equivalence
classes. One assigns to pairs of elements inside equivalence class matrix elements having the
element pair as indices (one assumes numerable equivalence class). One considers irreducible
representations of the algebra defined by the matrices and identifies the equivalent irreducible
representations. If I have understood correctly, the equivalence classes of irreps define a
discrete point set representing the equivalence class and it can often happen that there is just
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single point as one might expect. This I do not quite understand since it requires that all
irreps are equivalent.

3. It seems that in the case of linear spaces - von Neumann algebras and accompanying Hilbert
spaces - one obtains a connection with the inclusions of HFFs and corresponding quantum
factor spaces that should exist as analogs of quantum plane. One replaces matrices with
elements labelled by element pairs with linear operators in HFF of type Il;. Index pairs
correspond to pairs in linear basis for the HFF or corresponding Hilbert space.

4. Discrete infinite enumerable basis for these operators as a linear space generates a lattice in
summation. Inclusion N C M defines inclusion of the lattice/crystal for N to the correspond-
ing lattice of M. Physical intuition suggests that if this inclusion is “skewed” one obtains
quasicrystal. The fact the index of the inclusion is algebraic number suggests that the coset
space M /N is indeed analogous to quasicrystal.

More precisely, the index of inclusion is defined for hyper-finite factors of type II; using the
fact that quantum trace of unit matrix equals to unity Tr(Id(M)) = 1, and from the tensor
product composition M = (M/N) x N given Tr(Id(M)) =1 = Ind(M/N)Tr(P(M — N)),
where P(M — N is projection operator from M to N. Clearly, Ind(M/N) =1/Tr(P(M —
N)) defines index as a dimension of quantum space M/N.

For Jones inclusions characterized by quantum phases ¢ = exp(i27/n), n = 3,4, ... the values
of index are given by Ind(M/N) = 4cos*(r/n), n = 3,4,.... There is also another range
inclusions Ind(M/N) > 4: note that Tr(P(M — N)) defining the dimension of N as included
sub-space is never larger than one for HFFs of type I1;. The projection operator P(M — N)
is obviously the counterpart of the projector projecting lattice to some lower-dimensional
sub-space of the lattice.

5. Jones inclusions are between linear spaces but there is a strong analogy with non-linear coset

spaces since for the tensor product the dimension is product of dimensions and for discrete
coset spaces G/H one has also the product formula n(G) = n(H) x n(G/H) for the numbers
of elements. Noticing that space of quantum amplitudes in discrete space has dimension
equal to the number of elements of the space, one could say that Jones inclusion represents
quantized variant for classical inclusion raised from the level of discrete space to the level
of space of quantum states with the number of elements of set replaced by dimension. In
fact, group algebras of infinite and enumerable groups defined HFFs of type I1 under rather
general conditions (see below).
Could one generalize Jones inclusions so that they would apply to non-linear coset spaces
analogs of the linear spaces involved ? For instance, could one think of infinite-dimensional
groups G and H for which Lie-algebras defining their tangent spaces can be regarded as HFF's
of type II1? The dimension of the tangent space is dimension of the non-linear manifold:
could this mean that the non-linear infinite-dimensional inclusions reduce to tangent space
level and thus to the inclusions for Lie-algebras regarded hyper-finite factors of type I1; or
more generally, type 11?7 This would would rise to quantum spaces which have finite but
algebraic valued quantum dimension and in TGD framework take into account the finite
measurement resolution.

6. To concretize this analogy one can check what is the number of points map from 5-D space
containing aperiodic lattice as a projection to a 2-D irrational plane containing only origin as
common point with the 5-D lattice. It is easy to get convinced that the projection is 1-to-1
so that the number of points projected to a given point is 1. By the analogy with Jones
inclusions this would mean that the included space has same von Neumann dimension 1 -
just like the including one. In this case quantum phase equals ¢ = exp(i27/n), n = 3 - the
lowest possible value of n. Could one imagine the analogs of n > 3 inclusions for which the
number of points projected to a given point would be larger than 17 In 1-D case the rational
lines y = (k/l)x define 1-D rational analogs of quasi crystals. The points (x,y) = (m,n),
m mod | =0 are projected to the same point. The number of points is now infinite and the
ratio of points of 2-D lattice and 1-D crystal like structure equals to [ and serves as the analog
for the quantum dimension d, = 4cos?(7/n).

To sum up, this this is just physicist’s intuition: it could be wrong or something totally
trivial from the point of view of mathematician. The main message is that the inclusions of HFFs
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might define also inclusions of lattices as quasicrystals.

3.3.2 HFFs And Their Inclusions In TGD Framework

In TGD framework the inclusions of HFFs have interpretation in terms of finite measurement
resolution. If the inclusions define quasicrystals then finite measurement resolution would lead to
quasicrystals.

1. The automorphic action of N in M D N and in associated Hilbert space Hj; where N acts
generates physical operators and accompanying stas (operator rays and rays) not distinguish-
able from the original one. States in finite measurement resolution correspond to N-rays
rather than complex rays. It might be natural to restrict to unitary elements of N.

This leads to the need to construct the counterpart of coset space M/N and corresponding
linear space Hy;/Hpy. Physical intuition tells that the indices of inclusions defining the
“dimension” of M/N are algebraic numbers given by Jones index formula.

2. Here the above argument would assign to the inclusions also inclusions of lattices as qua-
sicrystals.

Degrees of freedom for WCW spinor field

Consider first the identification of various kinds of degrees of freedom in TGD Universe.

1. Very roughly, WCW (“world of classical worlds”) spinor is a state generated by fermionic
creation operators from vacuum at given 3-surface. WCW spinor field assigns this kind of
spinor to each 3-surface. WCW spinor fields decompose to tensor product of spin part (Fock
state) and orbital part (“wave” in WCW) just as ordinary spinor fields.

2. The conjecture motivated by super-symmetry has been that both WCW spinors and their
orbital parts (analogs of scalar field) define HFF's of type I1; in quantum fluctuating degrees
of freedom.

3. Besides these there are zero modes, which by definition do not contribute to WCW Kahler
metric.

(a) If the zero zero modes are symplectic invariants, they appear only in conformal factor of
WCW metric. Symplectically invariant zero modes represent purely classical degrees of
freedom - direction of a pointer of measurement apparatus in quantum measurement -
and in given experimental arrangement they entangle with quantum fluctuating degrees
of freedom in one-one manner so that state function reduction assigns to the outcome of
state function reduction position of pointer. I forget symplectically invariant zero modes
and other analogous variables in the following and concentrate to the degrees of freedom
contributing WCW line-element.

(b) There are also zero modes which are not symplectic invariants and are analogous to
degrees of freedom generated by the generators of Kac-Moody algebra having vanishing
conformal weight. They represent “center of mass degrees of freedom” and this part
of symmetric algebra creates the representations representing the ground states of Kac-
Moody representations. Restriction to these degrees of freedom gives QFT limit in string
theory. In the following I will speak about “cm degrees of freedom”.

The general vision about symplectic degrees of freedom (the analog of “orbital degrees of
freedom” for ordinary spinor field) is following.

1. WCW (assignable to given CD) is a union over the sub-WCWs labeled by zero modes and

each sub-WCW representing quantum fluctuating degrees of freedom and “cm degrees of
freedom” is infinite-D symmetric space. If symplectic group assignable to d M fﬁ x C'Py acts as
as isometries of WCW then “orbital degrees of freedom” are parametrized by the symplectic
group or its coset space (note that light-cone boundary is 3-D but radial dimension is light-like
so that symplectic - or rather contact structure - exists).
Let S? be ry; = constant sphere at light-cone boundary (ry; is the radial light-like coordinate
fixed apart from Lorentz transformation). The full symplectic group would act as isometries
of WCW but does not - nor cannot do so - act as symmetries of Kahler action except in the
huge vacuum sector of the theory correspond to vacuum extremals.
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2. WCW Hamiltonians can be deduced as “fluxes” of the Hamiltonians of 5Mi x C'P, taken
over partonic 2-surfaces. These Hamiltonians expressed as products of Hamiltonians of S?
and C'P, multiplied by powers 7};. Note that r3; plays the role of the complex coordinate z
for Kac-Moody algebras and the group G defining KM is replaced with symplectic group of
5% x C'P,. Hamiltonians can be assumed to have well-defined spin (SO(3)) and color (SU(3))
quantum numbers.

3. The generators with vanishing radial conformal weight (n = 0) correspond to the symplectic
group of S? x CP,. They are not symplectic invariants but are zero modes. They would
correspond to “cm degrees of freedom” characterizing the ground states of representations of
the full symplectic group.

Discretization at the level of WCW
The general vision about finite measurement resolution implies discretization at the level of WCW.

1. Finite measurement resolution at the level of WCW means discretization. Therefore the
symplectic groups of JM{ x CP, resp. S? x C'P, are replaced by an enumerable discrete
subgroup. WCW is discretized in both quantum fluctuating degrees of freedom and “center
of mass” degrees of freedom.

2. The elements of the group algebras of these discrete groups define the “orbitals parts” of
WCW spinor fields in discretization. I will later develop an argument stating that they are
HFF's of type II - maybe even II;. Note that also function spaces associated with the coset
spaces of these discrete subgroups could be considered.

3. Discretization applies also in the spin degrees of freedom. Since fermionic Fock basis generates
quantum counterpart of Boolean algebra the interpretation in terms of the physical correlates
of Boolean cognition is motivated (fermion number 1/0 and various spins in decomposition
to a tensor product of lower-dimensional spinors represent bits). Note that in ZEO fermion
number conservation does not pose problems and zero states actually define what might be
regarded as quantum counterparts of Boolean rules A — B.

4. Note that 3-surfaces correspond by the strong form of GCI/holography to collections of par-
tonic 2-surfaces and string world sheets of space-time surface intersecting at discrete set of
points carrying fermionic quantum numbers. WCW spinors are constructed from second
quantized induced spinor fields and fermionic Fock algebra generates HFF of type I1;.

Does WCW spinor field decompose to a tensor product of two HFF's of type 11?7

The group algebras associated with infinite discrete subgroups of the symplectic group define the
discretized analogs of waves in WCW having quantum fluctuating part and cm part. The proposal
is that these group algebras are HFF's of type I1;. The spinorial degrees of freedom correspond to
fermionic Fock space and this is known to be HFF. Therefore WCW spinor fields would defined
tensor product of HFFs of type II;. The interpretation would be in terms of supersymmetry at
the level of WCW. Super-conformal symmetry is indeed the basic symmetry of TGD so that this
result is a physical “must”. The argument goes as follows.

1. In non-zero modes WCW is symplectic group of 6M{ x CPs (call this group just Sympl)
reduces to the analog of Kac-Moody group associated with S? x C'P,, where S? is ry; =
constant sphere of light-cone boundary and z is replaced with radial coordinate. The Hamil-
tonians, which do not depend on 7,; would correspond to zero modes and one could not assign
metric to them although symplectic structure is possible. In “cm degrees of freedom” one has
symplectic group associated with S? x CP,.

2. Finite measurement resolution, which seems to be coded already in the structure of the
preferred extremals and of the solutions of the Ké&hler-Dirac equation, suggests strongly that
this symplectic group is replaced by its discrete subgroup or symmetric coset space. What this
group is, depends on measurement resolution defined by the cutoffs inherent to the solutions.
These subgroups and coset spaces would define the analogs of Platonic solids in WCW!
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3. Why the discrete infinite subgroups of Sympl would lead naturally to HFFs of type 117 There
is a very general result stating that group algebra of an enumerable discrete group, which has
infinite conjugacy classes, and is amenable so that its regular representation in group algebra
decomposes to all unitary irreducibles is HFF of type II. See for examples about HFFs of type
IT listed in Wikipedia article (see http://tinyurl.com/y8445w8q) [AT].

4. Suppose that the group algebras associated the discrete subgroups Sympl are indeed HFF's
of type Il or even type II;. Their inclusions would define finite measurement resolution
the orbital degrees of freedom for WCW spinor fields. Included algebra would create rays of
state space not distinguishable experimentally. The inclusion would be characterized by the
inclusion of the lattice defined by the generators of included algebra by linearity. One would
have inclusion of this lattice to a lattice associated with a larger discrete group. Inclusions of
lattices are however known to give rise to quasicrystals (Penrose tilings are basic example),
which define basic non-commutative structures. This is indeed what one expects since the
dimension of the coset space defined by inclusion is algebraic number rather than integer.

5. Also in fermionic degrees of freedom finite measurement resolution would be realized in terms
of inclusions of HFFs- now certainly of type II;. Therefore one could obtain hierarchies of
lattices included as quasicrystals.

What about zero modes which are symplectic invariants and define classical variables? They
are certainly discretized too. One might hope that one-one correlation between zero modes (clas-
sical variables) and quantum fluctuating degrees of freedom suggested by quantum measurement
theory allows to effectively eliminate them. Besides zero modes there are also modular degrees of
freedom associated with partonic 2-surfaces defining together with their 4-D tangent space data
basis objects by strong form of holography. Also these degrees of freedom are automatically dis-
cretized. But could one consider finite measurement resolution also in these degrees of freedom. If
the symplectic group of S2 x C'P, defines zero modes then one could apply similar argument also
in these degrees of freedom to discrete subgroups of S? x CP,.

3.3.3 Little Appendix: Comparison Of WCW Spinor Fields With Ordi-
nary Second Quantized Spinor Fields

In TGD one identifies states of Hilbert space as WCW spinor fields. The analogy with ordinary
spinor field helps to understand what they are. I try to explain by comparison with QFT.

Ordinary second quantized spinor fields

Consider first ordinary fermionic QFT in fixed space-time. Ordinary spinor is attached to an space-
time point and there is 2P/2 dimensional space of spin degrees of freedom. Spinor field attaches
spinor to every point of space-time in a continuous/smooth manner. Spinor fields satisfying Dirac
equation define in Euclidian metric a Hilbert space with a unitary inner product. In Minkowskian
case this does not work and one must introduce second quantization and Fock space to get a
unitary inner product. This brings in what is essentially a basic realization of HFF of type 117 as
allowed operators acting in this Fock space. It is operator algebra rather than state space which
is HFF of type II; but they are of course closely related.

Classical WCW spinor fields as quantum states

What happens TGD where one has quantum superpositions of 4-surface/3-surfaces by GCI/partonic
2-surfaces with 4-D tangent space data by strong form of GCI.

1. First guess: space-time point is replaced with 3-surface. Point like particle becomes 3-surface
representing particle. WCW spinors are fermionic Fock states at this surface. WCW spinor
fields are Fock state as a functional of 3-surface. Inner product decomposes to Fock space
inner product plus functional integral over 3-surfaces (no path integral!). One could speak
of quantum multiverse. Not single space-time but quantum superposition of them. This
quantum multiverse character is something new as compared to QFT.

2. Second guess: forced by ZEO, by geometrization of Feynman diagrams, etc.
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(a) 3-surfaces are actually not connected 3-surfaces. They are collections of components at
both ends of CD and connected to single connected structure by 4-surface. Components
of 3-surface are like incoming and outgoing particles in connected Feynman diagrams.
Lines are identified as regions of Euclidian signature or equivalently as the 3-D light-like
boundaries between Minkowskian and Euclidian signature of the induced metric.

(b) Spinors(!) are defined now by the fermionic Fock space of second quantized induced
spinor fields at these 3-surfaced and by holography at 4-surface. This fermionic Fock
space is assigned to all multicomponent 3-surfaces defined in this manner and WCW
spinor fields are defined as in the first guess. This brings integration over WCW to the
inner product.

3. Third, even more improved guess: motivated by the solution ansatz for preferred extremals
and for K&hler-Dirac equation [K126] giving a connection with string models.

The general solution ansatz restricts all spinor components but right-handed neutrino to
string world sheets and partonic 2-surfaces: this means effective 2-dimensionality. String
world sheets and partonic 2-surfaces intersect at the common ends of light-like and space-like
braids at ends of CD and at along wormhole throat orbits so that effectively discretization
occurs. This fermionic Fock space replaces the Fock space of ordinary second quantization.

3.4 The idea of Connes about inherent time evolution of
certain algebraic structures from TGD point of view

Jonathan Disckau asked me about what I think about the proposal of Connes represented in the
summary of progress of noncommutative geometry in ”Noncommutative Geometry Year 2000”
[A22] (see https://arxiv.org/abs/math/0011193) that certain mathematical structures have
inherent time evolution coded into their structure.

I have written years ago about Connes’s proposal. At that time I was trying to figure out how
to understand the construction of scattering amplitudes in the TGD framework and the proposal
of Connes looked attractive. Later I had to give up this idea. However, the basic idea is beautiful.
One should only replace the notion of time evolution from a one-parameter group of automorphisms
to something more interesting. Also time evolution as increasing algebraic complexity is a more
attractive interpretation.

The inclusion hierarchies of hyperfinite factors (HFFs) - closely related to the work of Connes
- are a key element of TGD and crucial for understanding evolutionary hierarchies in TGD. Is it
possible that mathematical structure evolves in time in some sense? The TGD based answer is
that quantum jump as a fundamental evolutionary step - moment of subjective time evolution - is a
necessary new element. The sequence of moments of consciousness as quantum jumps would have
an interpretation as hopping around in the space of mathematical structures leading to increasingly
complex structures.

The generalization of the idea of Connes is discussed in this framework. In particular,
the inclusion hierarchies of hyper-finite factors, the extension hierarchies of rationals, and fractal
inclusion hierarchies of subalgebras of supersymplectic algebra isomorphic with the entire algebra
are proposed to be more or less one and the same thing in TGD framework.

The time evolution operator of Connes could corresponds to super-symplectic algebra (SSA)
to the time evolution generated by exp(iLgT) so that the operator A of Connes would be identified
as A = exp(Lg). This identification allows number theoretical universality if 7 is quantized.
Furthermore, one ends up with a model for the subjective time evolution by small state function
reductions (SSFRs) for SSA with SSA,, gauge conditions: the unitary time evolution for given
SSFR would be generated by a linear combination of Virasoro generators not annihilating the
states. This model would generalize the model for harmonic oscillator in external force allowing
exact S-matrix.

3.4.1 Connes proposal and TGD

In this section I develop in more detail the analog of Connes proposal in TGD framework.
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What does Connes suggest?
One must first make clear what the automorphism of HFFs discovered by Connes is.
1. Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. I have described the theory
earlier [K76, [K4§].
First some definitions.

1. Let w(z) be a faithful state of von Neumann algebra so that one has w(zx*) > 0 for = > 0.
Assume by Riesz lemma the representation of w as a vacuum expectation value: w = (-Q,Q),
where 2 is cyclic and separating state.

2. Let

L*M)=M , IA(M)=H , L' (M)=M, , (3.4.1)

where M, is the pre-dual of M defined by linear functionals in M. One has M * = M.

3. The conjugation z — z* is isometric in M and defines a map M — L?(M) via z — 2. The
map Sp; 2 — x*) is however non-isometric.

4. Denote by S the closure of the anti-linear operator Sy and by S = JA'/? its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J. Therefore A = §*S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of A reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor A'/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that A would act non-trivially only vacuum state so that
A > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

ACTMATE =M  JMT =M.

2. The latter formula implies that M and M’ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A34, [AG6] A is Hermitian and
positive definite so that the eigenvalues of log(A) are real but can be negative. A® is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. w — 0¥ = AdA™ defines a canonical evolution -modular automorphism- associated with w
and depending on it. The A:s associated with different w:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of A can be used to classify the factors of type II and III.

The definition of A¥ reduces in eigenstate basis of A to the definition of complex function
d’*. Note that is positive so that the logarithm of d is real.

In TGD framework number theoretic universality poses additional conditions. In diagonal
basis €/°9(Dit must exist. A simply manner to solve the conditions is e = exp(m/r) existing p-
adically for an extension of rational allowing r:th root of e. This requires also quantization of as a
root of unity so that the exponent reduces to a root of unity.
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1.

2. Modular automorphisms
Modular automorphisms of factors are central for their classification.

One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the
factor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(A) is formally a Hermitian operator.

. The fundamental group of the type II; factor defined as fundamental group group of corre-

sponding II, factor characterizes partially a factor of type II;. This group consists of real
numbers A such that there is an automorphism scaling the trace by A\. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

. Factors of type III allow a one-parameter group of modular automorphisms, which can be

used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values A for which w
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
the Connes spectrum of the factor. For factors of type III) this set consists of powers of
A < 1. For factors of type 111 this set contains only identity automorphism so that there is
no periodicity. For factors of type III; Connes spectrum contains all real numbers so that the
automorphisms do not affect the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.

These modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not integer
valued in general. The so called standard module has a cyclic separating vector and each factor
has a standard representation possessing antilinear involution J such that M’ = JM.J holds true
(note that J changes the order of the operators in conjugation). The inclusions of factors define
modules having interpretation in terms of a finite measurement resolution defined by M.

1.

3. Objections against the idea of Connes
One can represent objections against this idea.

Ordinary time evolution in wave mechanics is a unitary automorphism, so that in this frame-
work they would not have physical meaning but act as gauge transformations. If outer auto-
morphisms define time evolutions, they must act as gauge transformations. One would have
an analog of gauge field theory in HFF. This would be of course highly interesting: when
I gave up the idea of Connes, I did not consider this possibility. Super-symplectic algebras
having fractal structure are however extremely natural candidate for defining HFF and there
is infinite number of gauge conditions.

. An automorphism is indeed in question so that the algebraic system would not be actually

affected. Therefore one cannot say that HFF has inherent time evolution and time. However,
one can represent in HFF dynamical systems obeying this inherent time evolution. This
possibility is highly interesting as a kind of universal gauge theory.

On the other hand, outer automorphisms affect the trace of the projector defining the identity
matrix for a given factor. Does the scaling factor A represent some kind of renormalization
operation? Could it relate to the action of scalings in the TGD framework where scalings
replace time translations at the fundamental level? What the number theoretic vision of TGD
could mean? Could this quantize the continuous spectrum of the scalings A for HFF's so that
they belong to the extension? Could one have a spectrum of A for each extension of rationals?
Are different extensions related by inclusions of HFF's?

The notion of time evolution itself is an essentially Newtonian concept: selecting a preferred
time coordinate breaks Lorentz invariance. In TGD however time coordinate is replace by
scaling parameter and the situation changes.

The proposal of Connes is not general enough if evolution is interpreted as an increase of
complexity.

For these reasons I gave up the automorphism proposed by Connes as a candidate for defining

time evolution giving rise to scattering amplitudes in TGD framework.
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Two views about TGD
The two dual views about what TGD is described briefly in [L110].

1. Physics as geometry of the world of "world of classical worlds” (WCW) identified as the
space of space-time surfaces in M* x CP, [K95]. Twistor lift of TGD [K98|] implies that
the space-time surfaces are minimal surfaces which can be also regarded as extermals of the
Kéhler action. This implies holography required by the general coordinate invariance in TGD
framework.

2. TGD as generalized number theory forcing to generalize physics to adelic physics [L49] fus-
ing real physics as correlate of sensory experience and various p-adic physics as correlates of
cognition. Now space-times are naturally co-associative surfaces in complexified M® (com-
plexified octonions) defined as ”"roots” of octonionic polynomials determined by polynomials
with rational coefficients [L100, [L101, [L117]. Now holography extends dramatically: finite
number of rational numbers/roots of rational polynomial /points of space-time region dictate
it.

M?® — H duality relates these two views and is actually a generalization of Fourier transform
and realizes generalization of momentum-position duality.

The notion of time evolution in TGD

Concerning various time evolutions in TGD, the general situation is now rather well understood.

There are two quantal time evolutions: geometric one assignable to single CD and and
subjective time evolution which reflects the generalization of point-like particle to a 3-surface and
the introduction of CD as 4-D perceptive field of particle in ZEO [L91].

1. Geometric time evolution corresponds to the standard scattering amplitudes for which I have
a general formula now in terms of zero energy ontology (ZEO) [L112] [L100} .10} L117]. The
analog of S-matrix corresponds to entanglement coefficients between members of zero energy
state at opposite boundaries of causal diamond (CD).

2. Subjective time evolution of conscious entity corresponds to a sequence of ”small” state func-
tion reductions (SSFRs) as moments of consciousness: each SSFR. is preceded by an analog of
unitary time evolution, call it U. SSFRs are the TGD counterparts of ”weak” measurements.
U(t) is generated by the scaling generator Ly scaling light-like radial coordinate of light-
cone boundary and is a generalization of corresponding operator in superconformal and string
theories and defined for super-symplectic algebras acting as isometries of the world of classical
worlds (WCW) [L117]. U(¢) is not the exponential of energy as a generator of time translation
as in QFTs but an exponential of the mass squared operator and corresponds to the scaling of
radial light-like coordinate r of the light-like boundary of CD: r is analogous to the complex
coordinate z in conformal field theories.

Also "big” SFRs (BSFRs) are possible and correspond to ”ordinary” SFRs and in TGD
framework mean death of self in the universal sense and followed by reincarnation as time
reversed subjective time evolution [L77].

3. There is also classical time evolution at the level of space-time surfaces. Here the assumption
that X* belongs to H = M* x C'P, defines Minkowski coordinates of M* as almost unique
space-time coordinates of X4 is the M* projection of X* is 4-D. This generalizes also to the
case of M®. Symmetries make it possible to identify an essentially a unique time coordinate.
This means enormous simplification. General coordinate invariance is a marvellous symmetry
but it leads to the problem of specifying space-time coordinates that is finding preferred
coordinates. This seems impossible since 3-metric is dynamical. M* provides a fixed reference
system and the problem disappears. M* is dynamical by its Minkowskian signature and one
can speak about classical signals.

4. There is also classical time evolution for the induced spinor fields. At the level of H the spinor
field is a superposition of modes of the massless Dirac operator (massless in 8-D sense). This
spinor field is free and second quantized. Second quantization of induced spinor trivializes
and this is absolutely crucial for obtaining scattering amplitudes for fermions and avoiding
the usual problems for quantization of fermions in curved background.
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The induced spinor field is a restriction of this spinor field to the space-time surface and
satisfies modified Dirac equation automatically. There is no need for second quantization
at the level of space-time surface and propagators etc.... are directly calculable. This is an
enormous simplification.

There are therefore as many as 4 time evolutions and subjective time evolution by BSFRs
and possibly also by SSFRs is a natural candidate for time evolution as genuine evolution as
emergence of more complex algebraic structures.

Could the inherent time evolution of HFF have a physical meaning in TGD after all?

The idea about inherent time evolution defined by HFF itself as one parameter group of outer
automorphisms is very attractive by its universality: physics would become part of mathematics.

1. Thermodynamic interpretation, with inverse temperature identified as an analog of time co-
ordinate, comes first in mind but need not be the correct interpretation.

2. Outer automorphisms should act at a very fundamental level analogous to the state space
of topological field theories. Fundamental group is after all in question! The assignment of
the S-matrix of particle physics to the outer automorphism does not look reasonable since
the time evolution would be with respect to the linear Minkowski coordinate, which is not
Lorentz invariant.

For these reasons I gave up the idea of Connes when considering it for the first time.
However, TGD inspired theory of consciousness as a generalization of quantum measurement theory
has evolved since then and the situation is different now.

The sequence of SSFRs defines subjective time evolution having no counterpart in QFTs.
Each SSFR is preceded by a unitary time evolution, which however corresponds to the scaling
of the light-like radial coordinate of the light-cone boundary [L117] rather than time translation.
Hamiltonian is replaced with the scaling generator L¢ acting as Lorentz invariant mass squared
operator so that Lorentz invariance is not lost.

Could the time evolution assignable to Lg correspond to the outer automorphism of Connes
when one poses an infinite number of gauge conditions making inner automorphisms gauge trans-
formations? The connection of Connes proposal with conformal field theories and with TGD is
indeed suggestive.

1. Conformally invariant systems obey infinite number of gauge conditions stating that the

conformal generators L,, n > 0, annihilate physical states and carry vanishing Noether
charges.
These gauge conditions bring in mind the condition that infinitesimal inner automorphisms
do not change the system physically. Does this mean that Connes outer automorphism gen-
erates the time evolution and inner automorphisms act as gauge symmetries? One would
have an analog of gauge field theory in HFF.

2. In TGD framework one has an infinite hierarchy of systems satisfying conditions analogous
to the conformal gauge conditions. The generators of the super-symplectic algebra (SCA)
acting as isometries of the ”world of classical worlds” (WCW) are labelled by non-negative
conformal weight n and it has infinite hierarchy of algebras SCAj isomorphic to it with
conformal weights given by k-multiple of those of the entire algebra, k = 1,2, .....

Gauge conditions state for SC Ay that the generators of SC Ay and its commutator with
SCA annihilate physical states. The interpretation is in terms of a hierarchy of improving
measurement resolutions with degrees of freedom below measurement resolution acting like
gauge transformations.

The Connes automorphism would ”see” only the time evolution in the degrees of freedom
above measurement resolution and as k increases, their number would increase.

In the case of hyperfinite factors of type I]; (HFFs) the fundamental group of corresponding
factor Il consists of all reals: I hope I am right here.

1. The hyperfinite factors of type II; and corresponding factors I, are natural in the TGD
context. Therefore the spectrum would consist of reals unless one poses additional conditions.
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2. Could the automorphisms correspond to the scalings of the lightcone proper time, which
replace time translations as fundamental dynamics. Also in string models scalings take the
role of time translations.

3. In zero energy ontology (ZEO) the scalings would act in the moduli space of causal diamonds
which is finite-dimensional. This moduli space defines the backbone of the ”world of classical
worlds”. WCW itself consists of a union of sub-WCs as bundle structures over CDs [L136].
The fiber consists of space-time surfaces inside a given CD analogous to Bohr orbits and
satisfying holography reducing to generalized holomorphy.  The scalings as automorphisms
scale the causal diamonds. The space of CDs is a finite-dimensional coset space and has
also other symmetry transformations.

4. The number theoretic vision suggests a quantization of the spectrum of A so that for a given

extension of rationals the spectrum would belong to the extension. HFFs would be labelled
at least partially by the extensions of rationals. The recent view of M® — H duality [LI38] is
dramatically simpler than the earlier view [L100, [L101l ?] and predicts that the space-time
regions are determined by a pair of analytic functions with rational coefficients forced by
number theoretical universality meaning that the space-time surfaces have interpretation also
as p-adic surfaces.
The simplest analytic functions are polynomials with integer coefficients and if one requires
that the coeflicients are smaller than the degree of the polynomial, the number of polynomials
is finite for a given degree. This would give very precise meaning for the concept of number
theoretic evolution.

There would be an evolutionary hierarchy of pairs of polynomials characterized by increasing
complexity and one can assign to these polynomials extension of rationals characterized by
ramified primes depending on the polynomials. The ramified primes would have interpretation
as p-adic primes characterizing the space-time region considered. Extensions of rationals and
ramified primes could also characterize HFFs. This is a rather dramatic conjecture at the
level of pure mathematics.

5. Scalings define renormalization group in standard physics. Now they scale the size of the
CD. Could the scalings as automorphisms of HFFs correspond to discrete renormalization
operations?

Three views about finite measurement resolution

Evolution could be seen physically as improving finite measurement resolution: this applies to both
sensory experience and cognition. There are 3 views about finite measurement resolution (FMR)
in TGD.

1. Hyper finite factors (HFFs) and FMR

HFF's are an essential part of Connes’s work and I encountered them about 15 years ago or
so [K125] [K48§].

The inclusions of hyper-finite factors HFFs provide one of the three - as it seems equivalent
- ways to describe finite measurement resolution (FMR) in TGD framework: the included factor
defines an analog for gauge degrees of freedom which correspond to those below measurement
resolution.

2. Cognitive representations and FMR

Another description for FMR, in the framework of adelic physics would be in terms of cog-
nitive representations [L83]. First some background about M® — H duality.

1. There are number theoretic and geometric views about dynamics. In algebraic dynamics at
the level of M8, the space-time surfaces are roots of polynomials. There are no partial
differential equations like in the geometric dynamics at the level of H.

2. The algebraic ”dynamics” of space-time surfaces in M® is dictated by co-associativity, which
means that the normal space of the space-time surface is associative and thus quaternionic.
That normal space rather than tangent space must be associative became clear last year
[L100} L101].
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3. M8 — H duality maps these algebraic surfaces in M® to H = M* x CP, and the one obtains
the usual dynamics based on variational principle giving minimal surfaces which are non-
linear analogs for the solutions of massless field equations. Instead of polynomials the natural
functions at the level of H are periodic functions used in Fourier analysis [L117].

At level of complexified M?® cognitive representation would consist of points of co-associative
space-time surface X* in complexified M® (complexified octonions), whose coordinates belong to
extension of rationals and therefore make sense also p-adically for extension of p-adic numbers
induced by extension of rationals. M® — H duality maps the cognitive representations to H.

Cognitive representations form a hierarchy: the larger the extension of rationals, the larger
the number of points in the extension and in the unique discretization of space-time surface.
Therefore also the measurement resolution improves.

The surprise was that the cognitive representations which are typically finite, are for the
"roots” of octonionic polynomials infinite [[L100, [L101]. Also in this case the density of points of
cognitive representation increases as the dimension of extensions increases.

The understanding of the physical interpretation of M® — H duality increased dramatically
during the last half year.

1. X% in M? is highly analogous to momentum space (4-D analog of Fermi ball one might say)
and H to position space. Physical states correspond to discrete sets of points - 4-momenta -
in X*. This is just the description used in particle physics for physical states. Time and space
in this description are replaced by energy and 4-momentum. At the level of H one space-time
and classical fields and one talks about frequencies and wavelengths instead of momenta.

2. M8 — H duality is a generalization of Fourier transform. Hitherto I have assumed that the
space-time surface in M?® is mapped to H. The momentum space interpretation at the level
of M8 however requires that the image must be a superposition of translates of the image in
plane wave with some momentum: only the translates inside some bigger CD are allowed -
this means infrared cutoff.

The total momentum as sum of momenta for two half-cones of CD in M?® is indeed well-
defined.  One has a generalization of a plane wave over translational degrees of freedom of
CD and restricted to a bigger CD.

At the limit of infinitely large size for bigger CD, the result is non-vanishing only when the
sum of the momenta for two half-cones of CD vanishes: this corresponds to conservation of
4-momentum as a consequence of Poincare invariance rather than assumption as in the earlier
approach [L117].

This generalizes the position-momentum duality of wave mechanics lost in quantum field
theory. Point-like particle becomes a quantum superposition of space-time surfaces inside the
causal diamond (CD). Plane wave is a plane wave for the superposition of space-time surfaces
inside CD having the cm coordinates of CD as argument.

3. Inclusion hierarchy of supersymplectic algebras and FMR

The third inclusion hierarchy allowing to describe finite measurement resolution is defined
by supersymplectic algebras acting as the isometries of the "world of classical worlds” (WCW)
consisting of space-time surfaces are preferred extremals ("roots” of polynomials in M® and minimal
surfaces satisfying infinite-D set of additional ”gauge conditions” in H).

At a given level of hierarchy generators with conformal weight larger than n act like gauge
generators as also their commutators with generators with conformal weight smaller than n corre-
spond to vanishing Noether charges. This defines ”gauge conditions”.

To sum up, there are therefore 3 hierarchies allowing to describe finite measurement resolu-
tion and they must be essentially equivalent in TGD framework.

Three evolutionary hierarchies

There are three evolutionary hierarchies: hierarchies of extensions of extensions of... ofrationals...;
inclusions of inclusions of .... of HFF's, and inclusions of isomorphic super symplectic algebras.

1. Extensions of rationals
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The extensions of rationals become algebraically increasingly complex as their dimension
increases. The co-associative space-time surfaces in M?® are "roots” of real polynomials with ra-
tional coefficients to guarantee number theoretical universality and this means space-time surfaces
are characterized by extension of rationals.

Each extension of rationals defines extensions for p-adic number fields and entire adele. The
interpretation is as a cognitive leap: the system’s intelligence/algebraic complexity increases when
the extension is extended further.

The extensions of extensions of .... define hierarchies with Galois groups in certain sense
products of extensions involved. Exceptional extensions are those which do not allow this decom-
position. In this case Galois group is a simple group. Simple groups are primes of finite groups and
correspond to elementary particles of cognition. Kind of fundamental, non-decomposable ideas.
Mystic might speak of pure states of consciousnesswith no thoughts.

In the evolution by quantum jumps the dimension of extension increases in statistical sense
and evolution is unavoidable. This evolution is due to subjective time evolution by quantum jumps,
something which is in spirit with Connes proposal but replaces time evolution by a sequence of
evolutionary leaps.

2. Inclusions of HFF's as a hierarchy

HFFs are fractals. They have infinite inclusion hierarchies in which sub-HFF isomorphicto
entire HFF's is included to HFF.

Also the hierarchies of inclusions define evolutionary hierarchies: HFF which is isomorphic
with original becomes larger and in some sense more complex than the included factor. Also now
one has sequences of inclusions of inclusions of.... These sequences would correspond to sequences
for extensions of extensions... of rationals. Note that the inclusion hierarchy would be the basic
object: not only single HFF in the hierarchy.

3. Inclusions of supersymplectic algebras as an evolutionary hierarchy

The third hierarchy is defined by the fractal hierarchy of sub-algebras of supersymplectic
algebra isomorphic to the algebra itself. At a given level of hierarchy generators with conformal
weight larger than n correspond to gauge degrees of freedom. As n increases the number of physical
degrees of freedom above measurement resolution increases which means evolution. This hierarchy
should correspond rather concretely to that for the extensions of rationals. These hierarchies would
be essentially one and the same thing in the TGD Universe.

TGD based model for subjective time development

The understanding of subjective time development as sequences of SSFRs preceded by unitary
”time” evolution has improved quite considerably recently [L117]. The idea is that the subjective
time development as a sequence of scalings at the light-cone boundary generated by the vibrational
part Lo of the scaling generator Ly = p? — Lo (Lo annihilates the physical states). Also p-adic
mass calculations use IA/O .

For more than 10 years ago [KT76, [K48], I considered the possibility that Connes time
evolution operator that he assigned with thermo-dynamical time could have a significant role in
the definition of S-matrix in standard sense but had to give up the idea.

It however seems that for super-symplectic algebra Lo generates an outer automorphism
since the algebra has only generators with conformal with n > 0 and its extension to included
also generators with n < 0 is required to introduce Lg: since Ly contains annihilation operators,
it indeed generates outer automorphism in SCA. The two views could be equivalent! Whereas
Connes considered thermo-dynamical time evolution, in TGD framework the time evolution would
be subjective time evolution by SSFRs.

1. The guess would be that the exponential of the scaling operator Ly gives the time evolution.
The problem is that Ly annihilates the physical states. The solution of the problem would be
the same as in p-adic thermodynamics. Ly decomposes as Lo = p? — I:o and the vibrational
part Lo this gives mass spectrum as eigenvalues of p?. The thermo-dynamical state in p-adic
thermodynamics is p“°?. This operator exists p-adically in the p-adic number field defined
by prime p.
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2. Could unitary subjective time development involve the operator exp(i2wLoT) T = log(T/Tv)?
This requires T/Ty = exp(n/m) guaranteeing that exponential is a root of unity for an
eigenstate of Ly. The scalings are discretized and scalings come as powers of e'/™. This is
possible using extensions of rationals generated by a root of e. The unique feature of p-adics
is that eP is ordinary p-adic number. This alone would give periodic time evolution for
eigenstates of Ly with integer eigenvalues n.

SSA and SSA,

Supersymplectic algebra SSA has fractal hierarchies of subalgebras SSA,. The integers in a
given hierarchy are of forn ny,nins, n1nong, ... and correspond naturally to hierarchies of inclusions
of HFFs. Conformal weights are positive: n > 0. For ordinary conformal algebras also negative
weights are allowed. Yangians have only non-negative weights. This is of utmost importance.

SSA, with generators have radial light-like conformal weights coming as multiples of
n. SSA, annihilates physical states and [SSA,,, SSA] does the same. Hence the generators with
conformal weight larger than n annihilate the physical states.

What about generators with conformal weights smaller than n? At least a subset of them
need not annihilate the physical states. Since L,, are superpositions of creation operators, the idea
that analogs of coherent states could be in question.

It would be nice to have a situation in which L,, n < m commute. [Lg, L;] = 0 effectively
for k+1>m.

The simplest way to obtain a set of effectively commuting operators is to take the generators
Ly, [m/2] < k < m, where [m/2] is nearest integer larger than m/2.

This raises interesting questions.

1. Could the Virasoro generators O({cx}) = >_jc(m/2),m kL as linear combinations of creation
operators generate a set of coherent states as eigenstates of their Hermitian conjugates.

2. Some facts about coherent states are in order.

(a) When one adds to quantum harmonic oscillator Hamiltonian oscillator a time depen-
dent perturbation which lasts for a finite the vacuum state evolves to an oscillator vacuum
whose position is displacemented. The displacement is complex and is a Fourier com-
ponent of the external force f(t) corresponding to the harmonic oscillator frequency w.
Time evolution picks up only this component.

(b) Coherent state property means that the state is eigenstate of the annihilation creation
operator with eivengeu o = —ig(w) where g(omega) = [ f(u)exp(—iwu)du is Fourier
transform of f(t).

(c) Coherent states are not orthogonal and form an overcomplete set. The overlaps of
coherent states are proportional to a Gaussian depending on the complex parameters
characterizing them. One can however develop any state in terms of coherent states as
a unique expansion since one can represent unitary in terms of coherent states.

(d) Coherent state obtained from the vacuum state by time evolution in presence of f(t)
by a unitary displacement operator D(a) = exp(aa’ — @a). (https://en.wikipedia.
org/wiki/Displacement_operator).

The displacement operator is a unitary operator and in the general case the displacement
is complex. The product of two displacement operators would be apart from a phase
factor a displacement operator associated with the sum of displacements.

(e) Harmonic oscillator coherent states are indeed maximally classical since wave packets
have minimal width in both q and p space. Furthermore, the classical expectation values
for ¢ and p obey classical equations of motion.

These observations raise interesting questions about how the evolution by SSFRs could be
modelled.

1. Instead of harmonic oscillator in g-space, one would have time evolution in the space of
scalings of causal diamond parameterized by the scaling parameter 7 = log(T/Ty), where T
can be identified as the radial light-like coordinate of light-cone boundary.

The analogs of harmonic oscillator states would be defined in this space and would be essen-
tially wave packets with ground state minimizing the width of the wave packet.
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2.

The role of harmonic oscillator Hamiltonian in absence of external force would be taken by
the generator Lo (Lo = p* — Ly acts trivially) and gives rise to mass squared quantization.
The situation would be highly analogous to that in p-adic thermodynamics. The role of w
would be taken by the minimal conformal weight h,,;, such that the eigenvalues of Lg are
its multiples. It seems that this weight must be equal to hy,;, = 1.

The commutations of ALy with Ly, k > 0 would be as for Ly so what the replacement should
not affect the situation.

The scaling parameter 7 is analogous to the spatial coordinate ¢ for the harmonic oscillator.
Can one identify the analog of the external force f(t) acting during unitary evolution between
two SSFRs? Or is it enough to use only the analog of g(w — himin = 1) - that is the coefficients
Cy.

To identify f(¢), one needs a time coordinate ¢. This was already identified as 7. This one
would have ¢ = t, which looks strange. = The space in which time evolution is the space of
scalings and the time evolutions are scalings and thus time evolution means translation in
this space. The analog for this would be Hamiltonian H = ihd/dq.

Number theoretical universality allows only the values of 7 = /s whose exponents give roots
of unity. Also exp(nr) makes sense p-adically for these values. This would mean that the
Fourier transform defining g would become discrete and be sum over the values f(7 = r/s).

What happens if one replaces Lo with L. In this case one would have the replacement of w
with hyee = 0. Also the analog of Fourier transform with zero frequency makes sense. Lo =
p?—Lg is the most natural choice for the Hamiltonian defining the time evolution operator but
is trivial. Could A*" describe the inherent time evolution. It would be outer automorphism
since it is not defined solely in terms of SCA. So: could one have A = emp([:()) so that A"
coincide with exp(iLor)? This would mean the identification

A= exp([jo) ,

which is a positive definite operator. The exponents coming from exp(iLo7) can be number
theoretically universal if 7 = log(T/Ty) is a rational number implying T/Ty = exp(r/s),
which is possible number theoretically) and the extension of rationals contains some roots of
e.

Could one have A = Ly? Also now that positivity condition would be satisfied if SSA
conformal weights satisfy n > 0.
The problem with this operation is that it is not number theoretically universal since the
exponents exp(ilog(n)T) do not exist p-adically without introducing infinite-D extension of
p-adic number making log(n) well-defined.

What is however intriguing is that the ”time” evolution operator A’™ in the eigenstate basis
would have trace equal to Tr(A™) S~ d(n)n'™, where d(n) is the degeneracy of the state. This
is a typical zeta function: for Riemann Zeta one has d(n) = 1.

For A = exp(Lg) option Tr(AT) = 3" d(n)exp(int) exists for 7 = r/s if r:th root of e belongs
to the extension of p-adics.

To sum up, one would have Gaussian wave packet as harmonic oscillator vacuum in the

space of scaled variants of CD. The unitary time evolution associated with SSFR would displace

the

peak of the wave packet to a larger scalings. The Gaussian wave function in the space of

scaled CDs has been proposed earlier.

1.

Could this time evolution make sense and be even realistic?

The analogs of harmonic oscillator states are defined in the space of scalings as Gaussians
and states obtained from them using oscillator operators. There would be a wave function in
the moduli space of CDs analogous to a state of harmonic oscillator.

SSFR. following the time evolutions would project to an eigenstate of harmonic oscillator
having in general displaced argument. The unitary displacement operator D should commute
with the operators having the members of zero energy states at the passive boundary of CD
as eigenstates. This poses strong conditions. At least number theoretic measurements could
satisfy these conditions.



3.5.

MIP*= RE: What could this mean physically? 125

. SSFRs are identified as weak measurements as near as possible to classical measurements.

Time evolution by the displacement would be indeed highly analogous to classical time evo-
lution for theeharmonic oscillator.

The unitary displacement operator corresponds to the arbitrary external force on the harmonic
oscillator and it seems that it would be selected in SSFR for the unitary evolution after SSFR.
This means fixing the coefficients C}, in the operator > Cy Ly.

What is the subjective "time” evolution operator when in the case of SSA,?

The scaling analog of the unitary displacement operator D as D = > exp(>. Cx Ly —CrL_)

is highly suggestive and would take the oscillator vacuum to a coherent state. Coefficients
C) would be proportional to 7. There would be a large number of choices for the unitary
displacement operator. One can also consider complex values of 7 since one has complexified
M3,

. There should be a normalization for the coefficients: without this it is not possible to talk

about a special value of 7 does not make sense. For instance, the sum of their moduli
squared could be equal to 1. This would give interpretation as a quantum state in the degrees
of freedom considered. The width of the Gaussian would increase slowly during the unitary
time evolution and be proportional to log(T/Tp).

The width of the Gaussian would increase slowly as a function of T during the unitary time
evolution and be proportional to log(T/Ty). The condition that ¢ are proportional the same
complex number times 7 is too strong.

. The arbitrariness in the choice of C would bring in a kind of non-determinism as a selection

of this superposition. The ability to engineer physical systems is in conflict with the de-
terminism of classical physics and also difficult to understand in standard quantum physics.
Could one interpret this choice as an analog for engineering a Hamiltonian as in say quan-
tum computation or build-up of an electric circuit for some purpose? Could goal directed
action correspond to this choice?

If so engineerable degrees of freedom would correspond to intermediate degrees of freedom
associated with Ly, [m/2] < k < m. They would be totally absent for kK = 1 and this would
correspond to a situation analogous to the standard physics without any intentional action.

3.5 MIP*= RE: What could this mean physically?

I received a very interesting link to a popular article (https://cutt.ly/sfd5UQF) explaining a
recently discovered deep result in mathematics having implications also in physics. The article
[AT0] (https://cutt.ly/rffiYdc) by Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John
Wright, and Henry Yuen has a rather concise title “MIP*=RE”. In the following I try to express
the impressions of a (non-mainstream) physicist about the result.

The following is the result expressed using the concepts of computer science about which I

know very little at the hard technical level. The results are however told to state something highly
non-trivial about physics.

1.

RE (recursively enumerable languages) denotes all problems solvable by computer. P denotes
the problems solvable in a polynomial time. NP does not refer to a non-polynomial time but
to “non-deterministic polynomial acceptable problems” - I hope this helps the reader- I am a
little bit confused! It is not known whether P = NP is true.

. IP problems (P is now for “prover” that can be solved by a collaboration of an interrogator and

prover who tries to convince the interrogator that her proof is convincing with high enough
probability. MIP involves multiple | provers treated as criminals trying to prove that they
are innocent and being not allowed to communicate. MIP* is the class of solvable problems
in which the provers are allowed to entangle.

The finding, which is characterized as shocking, is that all problems solvable by a Turing

computer belong to this class: MIP*=RE. All problems solvable by computer would reduce to
problems in the class MIP*! Quantum computation would indeed add something genuinely new
to the classical computation.
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Quantum entanglement would play an essential role in quantum computation. Also the
implications for physics are highly non-trivial.

1. Connes embedding problem asking whether all infinite-D matrices can always be approxi-
mated by finite-D matrices has a negative solution.Therefore MIP*= RE does not hold true
for hyperfinite factors of type II; (HFFs) central in quantum TGD. Also the Tirelson prob-
lem finds a solution. The measurements of commuting observers performed by two observers
are equivalent to the measurements of tensor products of observables only in finite-D case and
for HFFs.  That quantum entanglement would not have any role in HFFs is in conflict
with intuition.

2. In the TGD framework finite measurement resolution is realized in terms of HFFs at Hilbert
space level and in terms of cognitive representations at space-time level defined purely number-
theoretically. This leads to a hierarchy of adeles defined by extensions of rationals and the
Hilbert spaces must have algebraic extensions of rationals as a coefficient field. Therefore one
cannot in general case find a unitary transformation mapping the entangled situation to an
unentangled one, and quantum entanglement plays a key role. It seems that computationalism
formulated in terms of recursive functions of natural numbers must be formulated for the
hierarchy of extensions of rationals in terms of algebraic integers.

3. In TGD inspired theory of consciousness entanglement between observers could be seen as
a kind of telepathy helping to perform conscious quantum computations. Zero energy
ontology also suggests a modification of the views about quantum computation. TGD can
be formulated also for real and p-adic continua identified as correlates of sensory experience
and cognition, and it seems that computational paradigm need not apply in the continuum
cases.

3.5.1 Two physically interesting applications

There are two physically interesting applications of the theorem interesting also from the TGD
point of view and force to make explicit the assumptions involved.

About the quantum physical interpretation of MP*

To proceed one must clarify the quantum physical interpretation of MIP*.

Quantum measurement requires entanglement of the observer O with the measured system

M. What is basically measured is the density matrix of M (or equivalently that of O).
State function reduction gives as an outcome a state, which corresponds to an eigenvalue
of the density matrix. Note that this state can be an entangled state if the density matrix
has degenerate eigenvalues. Quantum measurement can be regarded as a question to the
measured system: “What are the values of given commuting observables?”. The final
state of quantum measurement provides an eigenstate of the observables as the answer to
this question. M would be in the role of the prover and O; would serve as interrogators.
In the first case multiple interrogators measurements would entangle M with unentangled
states of the tensor product H; ® Hs for O followed by a state function reduction splitting
the state of M to un-entangled state in the tensor product M; ® Ms.

In the second case the entire M would be interrogated using entanglement of M with
entangled states of Hy ® Hy using measurements of several commuting observables.  The
theorem would state that interrogation in this manner is more efficient in infinite-D case
unless HFFs are involved.

3. This interpretation differs from the interpretation in terms of computational problem solving
in which one would have several provers and one interrogator. Could these interpretations
be dual as the complete symmetry of the quantum measurement with respect to O and M
suggests? In the case of multiple provers (analogous to accused criminals) it is advanta-
geous to isolate them. In the case of multiple interrogators the best result is obtained if the
interrogator does not effectively split itself into several ones.
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Connes embedding problem and the notion of finite measurement/cognitive resolution

Alain Connes formulated what has become known as Connes embedding problem. The question
is whether infinite matrices forming factor of type II; can be always approximated by finite-D
matrices that is imbedded in a hyperfinite factor of type II; (HFF). Factors of type II and their
HFFs are special classes of von Neumann algebras possibly relevant for quantum theory.

This result means that if one has measured of a complete set of for a product of commuting
observables acting in the full space, one can find in the finite-dimensional case a unitary transfor-
mation transforming the observables to tensor products of observables associated with the factors
of a tensor product. In the infinite-D case this is not true.

What seems to put alarms ringing is that in TGD there are excellent arguments suggesting
that the state space has HFF's as building bricks. Does the result mean that entanglement cannot
help in quantum computation in TGD Universe? I do not want to live in this kind of Universe!

Tsirelson problem

Tsirelson problem (see this) is another problem mentioned in the popular article as a physically
interesting application. The problem relates to the mathematical description of quantum measure-
ment.

Three systems are considered. There are two systems O; and O, representing observers
and the third representing the measured system M. The measurement reducing the entanglement
between M and O; or Oy can regarded as producing correspondence between state of M and O
or Oz, and one can think that O; or Os measures only obserservables in its own state space as a
kind of image of M. There are two ways to see the situation. The provers correspond now to the
observers and the two situations correspond to provers without and with entanglement.

Consider first a situation in which one has single Hilbert space H and single observer O.
This situation is analogous to IP.

1. The state of the system is described statistically by a density matrix - not necessarily pure
state -, whose diagonal elements have interpretation as reduction probabilities of states in
this bases. The measurement situation fixes the state basis used. Assume an ensemble of
identical copies of the system in this state. Assume that one has a complete set of commuting
observables.

2. By measuring all observables for the members of the ensemble one obtains the probabilities
as diagonal elements of the density matrix. If the observable is the density matrix having
no- degenerate eigenvalues, the situation is simplified dramatically. It is enough to use the
density matrix as an observable. TGD based quantum measurement theory assumes that
the density matrix describing the entanglement between two subsystems is in a universal
observable measure in state function reductions reducing their entanglement.

3. Can one deduce also the state of M as a superposition of states in the basic chosen by the
observer? This basis need not be the same as the basis defined by - say density matrix if the
system has interacted with some system and this ineracton has led to an eigenstate of the
density matrix. Assume that one can prepare the latter basis by a physical process such as
this kind of interaction.

The coefficients of the state form a set of N? complex numbers defining a unitary N x N
matrix. Unitarity conditions give N conditions telling that the complex rows and unit vectors:
these numbers are given by the measurement of all observables. There are also N(N — 1)
conditions telling that the rows are orthogonal. Together these N + N (N —1) = N2 numbers
fix the elements of the unitary matrix and therefore the complex coefficients of the state basis
of the system can be deduced from a complete set of measurements for all elements of the
basis.

Consider now the analog of the MIS* involving more than one observer. For simplicity
consider two observers.

1. Assume that the state space H of M decomposes to a tensor product H = Hy ® H» of state
spaces Hy and Hs such that O; measures observables X in H; and Oy measuresobservables
X5 in Hy. The observables X; and X commute since they act in different tensor factors.
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The absence of interaction between the factors corresponds to the inability of the provers to
communicate. As in the previous case, one can deduce the probabilities for the various out-
comes of the joint measurements interpreted as measurements of a complete set of observables
X1 ® Xs.

2. One can also think that the two systems form a single system O so that O; and O, can
entangle. This corresponds to a situation in which entanglement between the provers is
allowed. Now X; and X5 are not in general independent but also now they must commute.
One can deduce the probabilities for various outcomes as eigenstates of observables X; X5 and
deduce the diagonal elements of the density matrix as probabilities.

Are these ways to see the situation equivalent? Tsirelson demonstrated that this is the case
for finite-dimensional Hilbert spaces, which can indeed be decomposed to a tensor product of factors
associated with O; and Oy. This means that one finds a unitary transformation transforming the
entangled situation to an unentangled one and to tensor product observables.

For the infinite-dimensional case the situation remained open. According to the article,
the new result implies that this is not the case. For hyperfinite factors the situation can be
approximated with a finite-D Hilbert space so that the situations are equivalent in arbitrary precise
approximation.

3.5.2 The connection with TGD

The result looks at first a bad news from the TGD point of view, where HFF's are highly suggestive.
One must be however very careful with the basic definitions.

Measurement resolution
Measurement resolution is the basic notion.

1. There are intuitive physicist’s arguments demonstrating that in TGD the operator algebras
involved with TGD are HFFs provides a description of finite measurement resolution. The
inclusion of HFFs defines the notion of resolution: included factor represents the degrees
of freedom not seen in the resolution used [K125 [K48| (http://tgdtheoryd.fi/pfpool/
vNeumann.pdf) and http://tgdtheoryd.fi/pfpool/vNeumannnew.pdf).

Hyperfinite factors involve new structures like quantum groups and quantum algebras reflect-
ing the presence of additional symmetries: actually the “world of classical worlds” (WCW) as
the space of space-time surfaces as maximal group of isometries and this group has a fractal
hierarchy of isomorphic groups imply inclusion hierarchies of HFF's. By the analogs of gauge
conditions this infinite-D group reduces to a hierarchy of effectively finite-D groups. For
quantum groups the infinite number of irreps of the corresponding compact group effectively
reduces to a finite number of them, which conforms with the notion of hyper-finiteness.

It looks that the reduction of the most general quantum theory to TGD-like theory relying on
HFFs is not possible. This would not be surprising taking into account gigantic symmetries

responsible for the cancellation of infinities in TGD framework and the very existence of
WCW geometry.

2. Second TGD based approach to finite resolution is purely number theoretic [L50] and involves
adelic physics as a fusion of the real physics with various p-adic physics as correlates of cog-
nition. Cognitive representations are purely number theoretic and unique discretizations of
space-time surfaces defined by a given extension of rationals forming an evolutionary hier-
archy: the coordinates for the points of space-time as a 4-surface of the embedding space
H = M* x CP; or of its dual M?® are in the extension of rationals defining the adele. In the
case of M® the preferred coordinates are unique apart from time translation. These two views
would define descriptions of the finite resolution at the level of space-time and Hilbert space.
In particular, the hierarchies of extensions of rationals should define hierarchies of inclusions
of HFF's.

For hyperfinite factors the analog of MIP*=RE cannot hold true. Doesn’t the TGD Universe
allow a solution of all the problems solvable by Turing Computer? There is a loophole in this
argument.
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1.

The point is that for the hierarchy of extensions of rationals also Hilbert spaces have as a
coefficient field the extension of rationals! Unitary transformations are restricted to matrices
with elements in the extension. In general it is not possible to realize the unitary transforma-
tion mapping the entangled situation to an un-entangled one! The weakening of the theorem
would hold true for the hierarchy of adeles and entanglement would give something genuinely
new for quantum computation!

. A second deep implication is that the density matrix characterizing the entanglement between

two systems cannot in general be diagonalized such that all diagonal elements identifiable as
probabilities would be in the extension considered. One would have stable or partially stable
entanglement (could the projection make sense for the states or subspaces with entanglement
probability in the extension). For these bound states the binding mechanism is purely number
theoretical. For a given extension of p-adic numbers one can assign to algebraic entanglement
also information measure as a generalization of Shannon entropy as a p-adic entanglement
entropy (real valued). This entropy can be negative and the possible interpretation is that
the entanglement carries conscious information.

What about transcendental extensions?

During the writing of this article an interesting question popped up.

1.

Also transcendental extensions of rationals are possible, and one can consider the gener-
alization of the computationalism by also allowing functions in transcendental extensions.
Could the hierarchy of algebraic extensions could continue with transcendental extensions?
Could one even play with the idea that the discovery of transcendentals meant a quantum
leap leading to an extension involving for instance e and 7 as basic transcendentals? Could
one generalize the notion of polynomial root to a root of a function allowing Taylor expansion
f(x) = > gna™ with rational coefficients so that the roots of f(z) = 0 could be used define
transcendental extensions of rationals?

. Powers of e or its root define and infinite-D extensions having the special property that they

are finite-D for p-adic number fields because eP is ordinary p-adic number. In the p-adic
context e can be defined as a root of the equation 2 — > p™/n! = 0 making sense also for
rationals. The numbers log(p;) such that p; appears a factor for integers smaller than p
define infinite-D extension of both rationals and p-adic numbers. They are obtained as roots
of e* —p; = 0.

. The numbers (2n 4+ 1) (2n7) can be defined as roots of sin(x) = 0 (cos(x) = 0. The

extension by 7 is infinite-dimensional and the conditions defining it would serve as consistency
conditions when the extension contains roots of unity and effectively replaces them.

4. What about other transcendentals appearing in mathematical physics? The values ((n) of

Riemann Zeta appearing in scattering amplitudes are for even values of n given by ((2n) =
(—=1)"*1 By, (27)?"/2(2n + 1)!.  This follows from the functional identity for Riemann zeta
and from the expression ((—n) = (=1)"Bp4+1/(n+1) ( (B(—=1/2) = —1/2) (https://cutt.
ly/dfgtgmw). The Bernoulli numbers B,, are rational and vanish for odd values of n. An
open question is whether also the odd values are proportional to 7™ with a rational coefficient
or whether they represent “new” transcendentals.

What about the situation for the continuum version of TGD?

At least the cognitively finitely representable physics would have the HFF property with coefficient
field of Hilbert spaces replaced by an extension of rationals. Number theoretical universality would
suggest that HFF property characterizes also the physics of continuum TGD. This leads to a series
of questions.

1.

Does the new theorem imply that in the continuum version of TGD all quantum computations
allowed by the Turing paradigm for real coefficients field for quantum states are not possible:
MIPx C RE? The hierarchy of extensions of rationals allows utilization of entanglement, and
one can even wonder whether one could have MIPx = RE at the limit of algebraic numbers.


https://cutt.ly/dfgtgmw
https://cutt.ly/dfgtgmw

130

Chapter 3. Evolution of Ideas about Hyper-finite Factors in TGD

2.

Could the number theoretic vision force change also the view about quantum computation?
What does RE actually mean in this framework? Can one really assume complex entanglement
coefficients in computation. Does the computational paradigm makes sense at all in the
continuum picture?

Are both real and p-adic continuum theories unreachable by computation giving rise to cog-
nitive representations in the algebraic intersubsection of the sensory and cognitive worlds? I
have indeed identified real continuum physics as a correlate for sensory experience and vari-
ous p-adic physics as correlates of cognition in TGD: They would represent the computionally
unreachable parts of existence.

Continuum physics involves transcendentals and in mathematics this brings in analytic for-
mulas and partial differential equations. At least at the level of mathematical consciousness
the emergence of the notion of continuum means a gigantic step. Also this suggests that
transcendentality is something very real and that computation cannot catch all of it.

Adelic theorem allows to express the norm of a rational number as a product of inverses of its
p-adic norms. Very probably this representation holds true also for the analogs of rationals
formed from algebraic integeres. Reals can be approximated by rationals. Could extensions
of all p-adic numbers fields restricted to the extension of rationals say about real physics only
what can be expressed using language?

Also fermions are highly interesting in the recent context. In TGD spinor structure can be

seen as a square root of K&hler geometry, in particular for the “world of classical worlds” (WCW).
Fermions are identified as correlates of Boolean cognition. The continuum case for fermions does
not follow as a naive limit of algebraic picture.

1.

The quantization of the induced spinors in TGD looks different in discrete and continuum
cases. Discrete case is very simple since equal-time anticommutators give discrete Kronecker
deltas. In the continuum case one has delta functions possibly causing infinite vacuum energy
like divergences in conserved Noether charges (Dirac sea).

In [L106] (https://cutt.ly/zfftoK6) I have proposed how these problems could be avoided
by avoiding anticommutators giving delta-function. The proposed solution is based on zero
energy ontology and TGD based view about space-time. One also obtains a long-sought-for
concrete realization for the idea that second quantized induce spinor fields are obtained as
restrictions of second quantized free spinor fields in H = M* x CP, to space-time surface.
The fermionic variant of M® — H-duality [LI07] provides further insights and gives a very
concrete picture about the dynamics of fermions in TGD.

These considerations relate in an interesting manner to consciousness. Quantum entangle-

ment makes in the TGD framework possible telepathic sharing of mental images represented by
sub-selves of self. For the series of discretizations of physics by HFFs and cognitive representations
associated with extensions of rationals, the result indeed means something new.

What does one mean with quantum computation in TGD Universe?

The TGD approach raises some questions about computation.

1.

The ordinary computational paradigm is formulated for Turing machines manipulating natural
numbers by recursive algorithms. Programs would essentially represent a recursive function
n — f(n). What happens to this paradigm when extensions of rationals define cognitive
representations as unique space-time discretizations with algebraic numbers as the limit giving
rise to a dense in the set of reals.

The usual picture would be that since reals can be approximated by rationals, the situation is
not changed. TGD however suggests that one should replace at least the quantum version of
the Turing paradigm by considering functions mapping algebraic integers (algebraic rational)
to algebraic integers.

Quite concretely, one can manipulate algebraic numbers without approximation as a rational
and only at the end perform this approximation and computations would construct recursive
functions in this manner. This would raise entanglement to an active role even if one has


https://cutt.ly/zfftoK6

3.5. MIP*= RE: What could this mean physically? 131

HFF's and even if classical computations could still look very much like ordinary computation
using integers.

This suggests that computationalism usually formulated in terms of recursive functions of
natural or rational numbers could be replaced with a hierarchy of computationalisms for the
hierarchy of extensions of rationals. One would have recursively definable functions defined
and having values in the extensions of rationals. These functions would be analogs of analytic
functions (or polynomials) with the complex variable replaced with an integer or a rational
of the extension. This poses very powerful constraints and there are good reasons to expect
an increase of computational effectiveness. One can hope that at the limit of algebraic
numbers of these functions allow arbitrarily precise approximations to real functions.  If
the real world phenomena can be indeed approximated by cognitive representations in the
TGD sense, one can imagine a highly interesting approach to Al

2. ZEO brings in also time reversal occurring in “big” (ordinary) quantum jumps and this mod-
ifies the views about quantum computation. In ZEO based conscious quantum computation
halting means “death” and “reincarnation” of conscious entity, self? How the processes in-
volving series of haltings in this sense differs from ordinary quantum computation: could one
shorten the computation time by going forth and back in time.

There are many interesting questions to be considered. M® — H duality gives justifications
for the vision about algebraic physics. TGD leads also to the notion of infinite prime and I have
considered the possibility that infinite primes could give a precise meaning for the dimension of
infinite-D Hilbert space. Could the number-theoretic view about infinite be considerably richer
than the idea about infinity as limit would suggest [K105].

The construction of infinite primes is analogous to a repeated second quantization of arith-
metic supersymmetric quantum field theory allowing also bound states at each level and a concrete
correspondence with the hierarchy of space-time sheets is suggestive. For the infinite primes at
the lowest level of the hierarchy single particle states correspond to rationals and bound states to
polynomials and therefore to the sets of their roots. This strongly suggests a connection with M3
picture.

Could the number field of computable reals (p-adics) be enough for physics?

For some reason I have managed to not encounter the notion of computable number (see
https://cutt.ly/pTeSSfR) as opposed to that of non-computable number (see https://cutt.
1y/gTeD9vF). The reason is perhaps that I have been too lazy to take computationalism seriously
enough.

Computable real number is a number, which can be produced to an arbitrary accuracy by
a Turing computer, which by definition has a finite number of internal states, has input which
is natural number and produces output which is natural numbers. Turing computer computes
values of a function from natural numbers to itself by applying a recursive algorithm.

The following three formal definitions of the notion are equivalent.

1. The real number a is computable, if it can be expressed in terms of a computable function
n — f(n) from natural numbers to natural numbers characterized by the property

S 1), J )

n n

For rational @ = ¢, f(n) = nq satisfies the conditions. Note that this definition does not
work for p-adic numbers since they are not well-ordered.

2. The number a is computable if for an arbitrarily small rational number € there exists a
computable function producing a rational number r satisfying |r — < e. This definition
works also for p-adic numbers since it involves only the p-adic norm which has values which
are powers of p and is therefore real valued.

3. a is computable if there exists a computable sequence of rational numbers r; converging to
a such that |a — r;| < 27* holds true. This definition works also for 2-adic numbers and its
variant obtained by replacing 2 with the p-adic prime p makes sense for p-adic numbers.
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The set R. of computable real numbers and the p-adic counterparts @, . of R., have
highly interesting properties.

1. R, is enumerable and therefore can be mapped to a subset of rationals: even the ordering
can be preserved. Also (), . is enumerable but now one cannot speak of ordering. As a
consequence, most real (p-adic) numbers are non-computable. Note that the pinary expansion
of a rational is periodic after some pinary digit. For a p-adic transcendental this is not
the case.

2. Algebraic numbers are computable so that one can regard R, as a kind of completion of
algebraic numbers obtained by adding computable reals. For instance, m and e are computable.
27 can be computed by replacing the unit circle with a regular polygon with n sides and
estimating the length as nL,. L, the length of the side. e can be computed from the standard
formula. Interestingly, eP is an ordinary p-adic number. An interesting question is whether
there are other similar numbers. Certainly many algebraic numbers correspond to ordinary
p-adic numbers.

3. R. (Qp,c) is a number field since the arithmetic binary operations +, —x, / are computable.
Also differential and integral calculus can be constructed. The calculation of a derivative
as a limit can be carried out by restricting the consideration to computable reals and there
is always a computable real between two computable reals. Also Riemann sum can be
evaluated as a limit involving only computable reals.

4. An interesting distinction between real and p-adic numbers is that in the sum of real numbers
the sum of arbitrarily high digits can affect even all lower digits so that it requires computa-
tional work to predict the outcome. For p-adic numbers memory digits affect only the higher
digits. This is why p-adic numbers are tailor made for computational purposes.Canonical
identification Y x,p" — > x,p~ " used in p-adic mass calculations to map p-adic mass
squared to its real counterpart [K66] maps p-adics to reals in a continuous manner. For inte-
gers this corresponds is 2-to-1 due to the fact that the p-adic numbers —1 = (p — 1)/(1 — p)
and 1/p are mapped to p.

5. For computable numbers, one cannot define the relation =. One can only define equality in
some resolution €. The category theoretical view about equality is also effective and conforms
with the physical view.

Also the relations < and > fail to have computable counterparts since only the absolute value
|z —y| can appear in the definition and one loses the information about the well-ordered nature
of reals. For p-adic numbers there is no well-ordering so that nothing is lost. A restriction to
non-equal pairs however makes order relation computable. For p-adic numbers the same is
true.

6. Computable number is obviously definable but there are also definanable numbers, which
are not computable. Examples are Gédel numbers in a given coding scheme for statements,
which are true but not provable. More generally, the Gédel numbers coding for undecidable
problems such as the halting problem are uncomputable natural numbers in a given coding
scheme. Chaitin’s constant, which gives the probability that random Turing computation
halts, is a non-computable but definable real number.

7. Computable numbers are arithmetic numbers, which are numbers definable in terms of first
order logic using Peano’s axioms. First order logic does not allow statements about statements
and one has an entire hierarchy of statements about... about statements. The hierarchy of
infinite primes defines an analogous hierarchy in the TGD framework and is formally similar
to a hierarchy of second quantizations [K105].

3.6 Analogs Of Quantum Matrix Groups From Finite Mea-
surement Resolution?
The notion of quantum group [?]eplaces ordinary matrices with matrices with non-commutative

elements. This notion is physically very interesting, and in TGD framework I have proposed that
it should relate to the inclusions of von Neumann algebras allowing to describe mathematically
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the notion of finite measurement resolution [?] These ideas have developed slowly through various
side tracks.

In the sequel I will consider the notion of quantum matrix inspired by the recent view about
quantum TGD relying on the notion of finite measurement resolution and show that under some
additional conditions it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution.

1. The basic idea is to replace complex matrix elements with operators, which are products of
non-negative hermitian operators and unitary operators analogous to the products of modulus
and phase as a representation for complex numbers. Modulus and phase would be non-
commuting and have commutation relation analogous to that between momentum and plane-
wave in accordance with the idea about quantization of complex numbers.

2. The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. Strong/weak permutation symmetry of de-
terminant requires its invariance apart from sign change under permutations of rows and/or
columns. Weak permutation symmetry means development of determinant with respect to a
fixed row or column and does not pose additional conditions. For weak permutation symme-
try the permutation of rows/columns would however have a natural interpretation as braiding
for the hermitian operators defined by the moduli of operator valued matrix elements and
here quantum group structure emerges.

3. The commutativity of all sub-determinants is essential for the replacement of eigenvalues with
eigenvalue spectra of hermitian operators and sub-determinants define mutually commuting
set of operators.

Quantum matrices define a more general structure than quantum group but provide a con-
crete representation for them in terms of finite measurement resolution, in particular when ¢ is a
root of unity. For ¢ = +1 (Bose-Einstein or Fermi-Dirac statistics) one obtains quantum matri-
ces for which the determinant is apart from possible change by a sign factor invariant under the
permutations of both rows and columns. One can also understand the recursive fractal structure
of inclusion sequences of hyper-finite factors resulting by replacing operators appearing as matrix
elements with quantum matrices and a concrete connection with quantum groups emerges.

In Zero Energy Ontology (ZEO) M-matrix serving as the basic building brick of unitary U-
matrix and identified as a hermitian square root of density matrix provides a possible application
for this vision. Especially fascinating is the possibility of hierarchies of measurement resolutions
represented as inclusion sequences realized as recursive construction of M-matrices. Quantization
would emerge already at the level of complex numbers appearing as M-matrix elements.

This approach might allow to unify various ideas behind TGD. For instance, Yangian alge-
bras emerging naturally in twistor approach are examples of quantum algebras. The hierarchy of
Planck constants should have close relationship with inclusions and fractal hierarchy of sub-algebras
of super-symplectic and other conformal algebras.

3.6.1 Well-definedness Of The Eigenvalue Problem As A Constraint To
Quantum Matrices

Intuition suggests that the presence of degrees of freedom below measurement resolution implies
that one must use density matrix description obtained by taking trace over the unobserved degrees
of freedom. One could argue that in state function reduction with finite measurement resolution
the outcome is not a pure state, or not even negentropically entangled state (possible in TGD
framework) but a state described by a density matrix. The challenge is to describe the situation
mathematically in an elegant manner.

1. There is present an infinite number of degrees of freedom below measurement resolution with
which measured degrees of freedom entangle so that their presence affects the situation. One
has a system with finite number degrees of freedom such as two-state system described by a
quantum spinor. In this case observables as hermitian operators described by 2 x 2 matrices
would be replaced by quantum matrices with elements, which in general do not commute.
An attractive generalization of complex numbers appearing as elements of matrices is obtained
by replacing them with products H;; = h;;ju;; of hermitian operators h;; with non-negative
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spectrum (modulus of complex number) and unitary operators u;; (phase of complex number)
suggests itself. The commutativity of h;; and w;; would look nice but is not necessary and
is in conflict with the idea that modulus and phase of an amplitudes do not commute in
quantum mechanics.

Very probably this generalization is trivial for mathematician. One could indeed interpret
the generalization in terms of a tensor product of finite-dimensional matrices with possibly
infinite-dimensional space of operators of Hilbert space. For the physicist the situation might
be different as the following proposal for what hermitian quantum matrices could be suggests.

The modulus of complex number is replaced with a hermitian operator having non-negative
eigenvalues. The representation as h = AAT+ A A is would guarantee this. The phase of com-
plex number would be replaced by a unitary operator U possibly allowing the representation
U = exp(iT), T hermitian. The commutativity condition

[hij, uij] =0 (3.6.1)

for a given matrix element is also suggestive but as already noticed, Uncertainty Principle
suggests that modulus and phase do not commute as operators. The commutator of modulus
and phase would naturally be equal to that between momentum operator and plane wave:

[hij wis] = ih X ugj (3.6.2)

Here i = h/27 can be chosen to be unity in standard quantum theory. In TGD it can be
generalized to a hermitian operator H.ss/h with an integer valued spectrum of eigenvalues
given by h.r¢/h = n so that ordinary and dark matter sectors would be unified to single
structure mathematically.

The notions of eigenvalues and eigenvectors for a hermitian operator should generalize. Now
hermitian operator H would be a matrix with formally the same structure as N x N hermitian
matrix in commutative number field - say complex numbers - possibly satisfying additional
conditions.

Hermitian matrix can be written as

Hij = hijuij for 1>J Hij = uijhij for 1<J , H” = hfL . (363)

Hermiticity conditions H;; = HJ; give

hig=hgi s wy = ul (3.6.4)
Here it has been assumed that one has quantum SU(2). For quantum U(2) one would have
Ui = UZT2 = hqu, with u, commuting with other operators. The form of the conditions
is same as for ordinary hermitian matrices and it is not necessary to assume commutativity
[hij,u;j] = 0. Generalization of Pauli spin matrices provides a simple illustration.

The well-definedness of eigenvalue problem gives a strong constraint on the notion of her-
mitian quantum matrix. Eigenvalues of hermitian operator are determined by the vanishing
of determinant det(H — AI). Its expression involves sub-determinants and one must decide
whether to demand that the definition of determinant is independent of which column or row
one chooses to develop the determinant.

For ordinary matrix the determinant is expressible as sum of symmetric functions:

det(H — \I) =Y A\"S,(H) . (3.6.5)

Elementary symmetric functions S,, - n-functions in following - have the property that they
are sums of contributions from to n-element paths along the matrix with the property that
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path contains no vertical or horizontal steps. One has a discrete analog of path integral
in which time increases in each step by unit. The analogy with fermionic path integral is
also obvious. In the non-commutative case non-commutativity poses problems since different
orderings of rows (or columns) along the same n-path give different results.

(a) For the first option one gives up the condition that determinant can be developed with
respect to any row or column and defines determinant by developing it with respect to say
first row or first column. If one developing with respect to the column (row) the permu-
tations of rows (columns) do not affect the value of determinant or sub-determinants but
permutations of columns (rows) do so unless one poses additional conditions stating that
the permutations do not affect given contribution to the determinant or sub-determinant.
It turns out that this option must be applied in the case of ordinary quantum group. For
quantum phase ¢ = £1 the determinant is invariant under permutations of both rows
and columns.

(b) Second manner to get rid of difficulty would be that n-path does not depend on the
ordering of the rows (columns) differ only by the usual sign factor. For 2 x 2 case this
would give

ad —bc=da—cb , (Option 2) (3.6.6)
These conditions state the invariance of the n-path under permutation group .S,, permut-
ing rows or columns.
(¢) For the third option the elements along n-paths commute: paths could be said to be
“classical”. The invariance of N-path in this sense guarantees the invariance of all n-
paths. In 2-D case this gives

[a,d] =0, [b,cJ=0 . (Option 3) (3.6.7)

5. One should have a well-defined eigenvalue problem. If the n-functions commute, one can
diagonalize the corresponding operators simultaneously and the eigenvalues problem reduces
to possibly infinite number of ordinary eigenvalue problems corresponding to restrictions to
given set of eigenvalues associated with N — 1 symmetric functions. This gives an additional
constraint on quantum matrices.

In 2-dimensional case one would have the condition

[ad — be,a+d] =0 . (3.6.8)

Depending on how strong S invariance one requires, one obtains 0, 1, 2 nontrivial conditions
for 2 x 2 quantum matrices and 1 condition from the commutativity of n-functions besides
hermiticity conditions.

For N x N-matrices one would have N! — 1 non-trivial conditions from the strong form of
permutation invariance guaranteeing the permutation symmetry of n-functions and N (N —
1)/2 conditions from the commutativity of n-functions.

6. The eigenvectors of the density matrix are obtained in the usual manner for each eigenvalue
contributing to quantum eigenvalue. Also the diagonalization can be carried out by a uni-
tary transformation for each eigenvalue separately. Hence the standard approach seems to
generalize almost trivially.

What makes the proposal non-trivial and possibly physically interesting is that the hermitian
operators are not assumed to be just tensor products of N x N hermitian matrices with
hermitian operators in Hilbert space.

The notion of unitary quantum matrix should also make sense. The naive guess is that
the exponentiation of a linear combination of ordinary hermitian matrices with coefficients, which
are hermitian matrices gives quantum unitary matrices. In the case of U(1) the replacement of
exponentiation parameter ¢ in exp(itX) with a hermitian operator gives standard expression for
the exponent and it is trivial to see that unitary conditions are satisfied also in this case. Also in
the case of SU(2) it is easy to verify that the guess is correct. One must also check that one indeed
obtains a group: it could also happen that only semi-group is obtained.
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In any case, one could speak of quantum matrix groups with coordinates replaced by her-
mitian matrices. These quantum matrix group need not be identical with quantum groups in the
standard sense of the word. Maybe this could provide one possible meaning for quantization in
the case of groups and perhaps also in the case of coset spaces G/H.

3.6.2 The Relationship To Quantum Groups And Quantum Lie Algebras

It is interesting to find out whether quantum matrices give rise to quantum groups under suitable
additional conditions. The child’s guess for these conditions is that the permutation of rows and
columns correspond to braiding for the hermitian moduli h;; defined by unitary operators Us;.

Quantum groups and quantum matrices

The conditions for hermiticity and unitary do not involve quantum parameter ¢, which suggests
that the naive generalization of the notion of unitary matrix gives unitary group obtained by
replacing complex number field with operator algebra gives group with coordinates defined by
hermitian operators rather than standard quantum group. This turns out to be the case and it
seems that quantum matrices provide a concrete representation for quantum group. The notion of
braiding as that for operators h;; can be said to emerge from the notion of quantum matrix.

1. Exponential of quantum hermitian matrix is excellent candidate for quantum unitary matrix.
One should check the exponentiation indeed gives rise to a quantum unitary matrix. For
q = =£1 this seems obvious but one should check this separately for other roots of unity.
Instead of considering the general case, we consider explicit ansatz for unitary U(2) quantum
matrix as U = [a, b; —b', af]. The conditions for unitary quantum group in the proposed sense
would state the orthonormality and unit norm property of rows/columns.

The explicit form of the conditions reads as

ab—ba =0, abt =bla |
aat +0bf =1, ata+bb=1 . (3.6.9)

The orthogonality conditions are unique and reduce to the vanishing of commutators.

Normalization conditions involve a choice of ordering. One possible manner to avoid the
problem is to assume that both orderings give same unit length for row or column (as done
above). If only the other option is assumed then only third or fourth equations is needed.
The invariance of determinant under permutation of rows would imply [a,a!] = [b,bT] = 0
and the ordering problem would disappear.

2. One can look what conditions the explicit representation U;; = h;ju;; or equivalently [hquq, Ayt —uZhb, ulha]
gives. The intuitive expectation is that U(2) matrix decomposes to a product of commutat-
ing SU(2) matrix and U(1) matrices. This implies that u, commutes with the other matrices
involved. One obtains the conditions

hahy = ho(uphaul) , hyha = (uphau))hy (3.6.10)

These conditions state that the permutation of h, and h; analogous to braiding operation is
a unitary operation.

For the purposes of comparison consider now the corresponding conditions for SU(2), ma-
trix.

1. The SU(2), matrix [a,b;b!,al] with real value of ¢ (see http://tinyurl.com/yb8tycag)
satisfies the conditions

ba = qab bta = qab', bbt =bfo |

afa+¢*tb=1, adl +b0f =1 . (3.6.11)
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This gives [af,a] = (1 — ¢?)bTb. The above conditions would correspond to ¢ = +1 but
with complex numbers replaced with operator algebra. g-commutativity obviously replaces
ordinary commutativity in the conditions and one can speak of g-orthonormality.

For complex values of ¢ - in particular roots of unity - the condition aa + ¢?b'b = 1 is in
general not self-consistent since hermitian conjugation transforms ¢ to its complex conjugate.
Hence this condition must be dropped for complex roots of unity.

2. Ounly for ¢ = %1 corresponding to Bose-Einstein and Fermi-Dirac statistics the conditions
are consistent with the invariance of n-functions (determinant) under permutations of both
rows and columns. Indeed, if 2 X 2 g-determinant is developed with respect to column, the
permutation of rows does not affect its value. This is trivially true also in N x N dimensional
case since the permutation of rows does not affect the n-paths at all.

If the symmetry under permutations is weakened, nothing prevents from posing quantum or-
thogonality conditions also now and the decomposition to a product of positive and hermitian
matrices give a concrete meaning to the notion of quantum group.

Do various n—functions commute with each other for SU(2),? The only commutator of this
kind is that for the trace and determinant and should vanish:

[b+b',aal +bb'] =0 . (3.6.12)

Since a'a and aat are linear combinations of b'b = bb, they vanish. Hence it seems that TGD
based view about quantum groups is consistent with the standard view.

3. One can look these conditions in TGD framework by restricting the consideration to the case
of SU(2) (uq = 1) and using the ansatz U = [hq, hyup; —ulthb,ha]. Orthogonality conditions
read as

hahy = qhy(uphatl) ,  hyha = q(uphaul )y .

If ¢ is root of unity, these conditions state that the permutation of h, and h; analogous to a
unitary braiding operation apart from a multiplication with quantum phase q. For ¢ = £1 the
sign-factor is that in standard statistics. Braiding picture could help guess the commutators of
hij in the case of N x N quantum matrices. The permutations of rows and columns would have
interpretation as braidings and one could say that braided commutators of matrix elements
vanish.

The conditions from the normalization give

24+ h2=1, h2+¢(ulhdu) =1 . (3.6.13)

For complex ¢ the latter condition does not make sense since h2 — 1 and uZh%ub are hermitian
matrices with real eigenvalues. Also for real values of ¢ # +1 one obtains contradicion since
the spectra of unitarily related hermitian operators would differ by scaling factor ¢. Hence
one must give up the condition involving ¢? unless one has ¢ = +1. Note that the term
proportional to g2 does not allow interpretation in terms of braiding.

4. Roots of unity are natural number theoretically as values of ¢ but number theoretical univer-
sality allows the generic value of ¢ would be a complex number existing simultaneously in all
p-adic number properly extended. This would suggest the spectrum of ¢ to come as

g(m,n) = el/mezp(%”) . (3.6.14)

The motivation comes from the fact that e? is ordinary p-adic number for all p-adic number
fields so e and also any root of e defines a finite-dimensional extension of p-adic numbers [K124]
ILI0]. The roots of unity would be associated to the discretization of the ordinary angles in
case of compact matrix groups. Roots of e would be associated with the discretization of
hyperbolic angles needed in the case of non-compact matrix groups such as SL(2,C).
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Also now unification of various values of ¢ to single single operator ), which is product of
commuting hermitian and unitary operators and commuting with the hermitian operator H
representing the spectrum of Planck constant would code the spectrum. Skeptic can of course
wonder, whether the modulus and phase of () can be assumed to commute. The relationship
between integers associated with H and @ is interesting.

Quantum Lie algebras and quantum matrices

What about quantum Lie algebras? There are many notions of quantum Lie algebra and quantum
group. General formulas for the commutation relations are well-known for Drinfeld-Jimbo type
quantum groups (see http://tinyurl.com/yb8tycag). The simplest guess is that one just poses
the defining conditions for quantum group, replaces complex numbers as coefficient module with
operator algebra, and poses the above described conditions making possible to speak about eigen-
values and eigen vectors. One might however hope that this representation allows to realize the
non-commutativity of matrix elements of quantum Lie algebra in a concrete manner.

1. For SU(2) the commutation relations for the elements X, X, h read as

h,Xi]=4+Xy , (X X_]=h. (3.6.15)

Here one can use the 2 x 2 matrix representations for the ladder operators X* and diagonal
angular momentum generator h.

2. For SU(2), one has

h

hXi]=+Xy , [X4, X | =120

(3.6.16)

3. Using the ansatz for the generators but allowing hermitian operator coefficients in non-
diagonal generators X, one obtains the condition

For SU(2), one would have

¢ —qh

3.6.17
q—qt ( )

X X ] =R =12 =
Clearly, the proposal might make possible to have concrete representations for the quantum
Lie algebras making the decomposition to measurable and directly non-measurable degrees of
freedom explicit.

The conclusion is that finite measurement resolution does not lead automatically to standard
quantum groups although the proposed realization is consistent with them. Also the quantum
phases ¢ = +1 n = 1,2 are realized and correspond to strong permutation symmetry and Bose-
Einstein and Fermi statistics.

3.6.3 About Possible Applications

The realization for the notion of finite measurement resolution is certainly the basic application
but one can imagine also other applications where hermitian and unitary matrices appear.

Density matrix description of degrees of freedom below measurement resolution

Density matrix p obtained by tracing over non-observable degrees of freedom is a fundamental
example about a hermitian matrix satisfying the additional condition T'r(p) = 1.

1. A state function reduction with a finite measurement resolution would lead to a non-pure state.
This state would be describable using N x N-dimensional quantum hermitian quantum density
matrix satisfying the condition Tr(p) = 1 (or more generally Tr,(p) = 1), and satisfying the
additional conditions allowing to reduce its diagonalization to that for a collection of ordinary
density matrices so that the eigenvalues of ordinary density matrix would be replaced by N
quantum eigenvalues defined by infinite-dimensional diagonalized density matrices.
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2. One would have N quantum eigenvalues - quantum probabilities - each decomposing to pos-
sibly infinite set of ordinary probabilities assignable to the degrees of freedom below measure-
ment resolution and defining density matrix for non-pure states resulting in state function
reduction.

Some questions

Some further questions pop up naturally.

1. One might hope that the quantum counterparts of hermitian operators are in some sense
universal, at least in TGD framework (by quantum criticality). Could the condition that
the commutator of hermitian generators is proportional to ¢/ times hermitian generator pose
additional constraints? In 2-D case this condition is satisfied for quantum SU(2) generators
and very probably the same is true also in the general case. The possible problems result from
the non-commutativity but (XY)" = YT X' identity takes care that there are no problems.

2. One can also raise physics related questions. What one can say about most general quantum
Hamiltonians and their energy spectra, say quantum hydrogen atom? What about quantum
angular momentum? If the proposed construction is only a concretization of abstract quantum
group construction, then nothing new is expected at the level of representations of quantum
groups.

3. Could the spectrum of h.ys define a quantum h as a hermitian positive definite operator?
Could this allow a description for the presence of dark matter, which is not directly observable?
Same question applies to the quantum parameter q.

4. M-matrices are basic building bricks of scattering amplitudes in ZEO. M-matrix is produce
of hermitian ”complex” square root H of density matrix satisfying H? = p and unitary S-
matrix S. It has been proposed that these matrices commute. The previous consideration
relying on basic quantum thinking suggests that they relate like translation generator in radial
direction and phase defined by angle and thus satisfy [H, S| = i(H.ss/h) x S. This would
give enormously powerful additional condition to S-matrix. One can also ask whether M-
matrices in presence of degrees of freedom below measurement resolution is quantum version
of M-matrix in the proposed sense.

5. Fractality is of of the key notions of TGD and characterizes also hyperfinite factors. I have
proposed some realizations of fractality such as infinite primes and finite-dimensional Hilbert
spaces taking the role of natural numbers and ordinary sum and product replaced with direct
sum and tensor product. One could also imagine a fractal hierarchy of quantum matrices
obtained by replacing the operators appearing as matrix elements of quantum matrix element
by quantum matrices. This hierarchy could relate to the sequence of inclusions of HFF's.

3.7 Jones Inclusions And Cognitive Consciousness

WCW spinors have a natural interpretation in terms of a quantum version of Boolean algebra.
Beliefs of various kinds are the basic element of cognition and obviously involve a representation
of the external world or part of it as states of the system defining the believer. Jones inclusions
mediating unitary mappings between the spaces of WCWs spinors of two systems are excellent
candidates for these maps, and it is interesting to find what one kind of model for beliefs this
picture leads to.

The resulting quantum model for beliefs provides a cognitive interpretation for quantum
groups and predicts a universal spectrum for the probabilities that a given belief is true. This
spectrum depends only on the integer n characterizing the quantum phase ¢ = exp(i27/n) charac-
terizing the Jones inclusion. For n # oo the logic is inherently fuzzy so that absolute knowledge is
impossible. ¢ = 1 gives ordinary quantum logic with gbits having precise truth values after state
function reduction.

3.7.1 Does One Have A Hierarchy Of U- And M-Matrices?

U-matrix describes scattering of zero energy states and since zero energy states can be illustrated
in terms of Feynman diagrams one can say that scattering of Feynman diagrams is in question.
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The initial and final states of the scattering are superpositions of Feynman diagrams characterizing
the corresponding M-matrices which contain also the positive square root of density matrix as a
factor.

The hypothesis that U-matrix is the tensor product of S-matrix part of M-matrix and its
Hermitian conjugate would make U-matrix an object deducible by physical measurements. One
cannot of course exclude that something totally new emerges. For instance, the description of
quantum jumps creating zero energy state from vacuum might require that U-matrix does not
reduce in this manner. One can assign to the U-matrix a square like structure with S-matrix and
its Hermitian conjugate assigned with the opposite sides of a square.

One can imagine of constructing higher level physical states as composites of zero energy
states by replacing the S-matrix with M-matrix in the square like structure. These states would
provide a physical representation of U-matrix. One could define U-matrix for these states in a
similar manner. This kind of hierarchy could be continued indefinitely and the hierarchy of higher
level U and M-matrices would be labeled by a hierarchy of n-cubes, n = 1,2,... TGD inspired
theory of consciousness suggests that this hierarchy can be interpreted as a hierarchy of abstractions
represented in terms of physical states. This hierarchy brings strongly in mind also the hierarchies
of n-algebras and n-groups and this forces to consider the possibility that something genuinely new
emerges at each step of the hierarchy. A connection with the hierarchies of infinite primes [K105]
and Jones inclusions are suggestive.

3.7.2 Feynman Diagrams As Higher Level Particles And Their Scatter-
ing As Dynamics Of Self Consciousness

The hierarchy of inclusions of hyper-finite factors of I1; as counterpart for many-sheeted space-time
lead inevitably to the idea that this hierarchy corresponds to a hierarchy of generalized Feynman
diagrams for which Feynman diagrams at a given level become particles at the next level. Accepting
this idea, one is led to ask what kind of quantum states these Feynman diagrams correspond, how
one could describe interactions of these higher level particles, what is the interpretation for these
higher level states, and whether they can be detected.

Jones inclusions as analogs of space-time surfaces

The idea about space-time as a 4-surface replicates itself at the level of operator algebra and state
space in the sense that Jones inclusion can be seen as a representation of the operator algebra N
as infinite-dimensional linear sub-space (surface) of the operator algebra M. This encourages to
think that generalized Feynman diagrams could correspond to image surfaces in I1; factor having
identification as kind of quantum space-time surfaces.

Suppose that the modular S-matrices are representable as the inner automorphisms A (M
assigned to the external lines of Feynman diagrams. This would mean that N C M}, moves inside
cal My, along a geodesic line determined by the inner automorphism. At the vertex the factors
calM, to fuse along N to form a Connes tensor product. Hence the copies of A/ move inside M,
like incoming 3-surfaces in H and fuse together at the vertex. Since all My are isomorphic to
a universal factor M, many-sheeted space-time would have a kind of quantum image inside 11
factor consisting of pieces which are d = M : N'/2-dimensional quantum spaces according to the
identification of the quantum space as subspace of quantum group to be discussed later. In the
case of partonic Clifford algebras the dimension would be indeed d < 2.

The hierarchy of Jones inclusions defines a hierarchy of S-matrices

It is possible to assign to a given Jones inclusion N' C M an entire hierarchy of Jones inclusions
My C My C Ms..., Mg =N, My = M. A possible interpretation for these inclusions would be
as a sequence of topological condensations.

This sequence also defines a hierarchy of Feynman diagrams inside Feynman diagrams. The
factor M containing the Feynman diagram having as its lines the unitary orbits of A/ under A,
becomes a parton in M1 and its unitary orbits under Ay, define lines of Feynman diagrams in Mj.
The concrete representation for M-matrix or projection of it to some subspace as entanglement
coefficients of partons at the ends of a braid assignable to the space-like 3-surface representing a
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vertex of a higher level Feynman diagram. In this manner quantum dynamics would be coded and
simulated by quantum states.

The outcome can be said to be a hierarchy of Feynman diagrams within Feynman diagrams,
a fractal structure for which many particle scattering events at a given level become particles at
the next level. The particles at the next level represent dynamics at the lower level: they have the
property of “being about” representing perhaps the most crucial element of conscious experience.
Since net conserved quantum numbers can vanish for a system in TGD Universe, this kind of
hierarchy indeed allows a realization as zero energy states. Crossing symmetry can be understood
in terms of this picture and has been applied to construct a model for M-matrix at high energy
limit [K34] .

One might perhaps say that quantum space-time corresponds to a double inclusion and that
further inclusions bring in N-parameter families of space-time surfaces.

Higher level Feynman diagrams

The lines of Feynman diagram in M, 11 are geodesic lines representing orbits of M,, and this kind
of lines meet at vertex and scatter. The evolution along lines is determined by Ay, ,,. These
lines contain within themselves M,, Feynman diagrams with similar structure and the hierarchy
continues down to the lowest level at which ordinary elementary particles are encountered.

For instance, the generalized Feynman diagrams at the second level are ribbon diagrams
obtained by thickening the ordinary diagrams in the new time direction. The interpretation as
ribbon diagrams crucial for topological quantum computation and suggested to be realizable in
terms of zero energy states in [K5] is natural. At each level a new time parameter is introduced so
that the dimension of the diagram can be arbitrarily high. The dynamics is not that of ordinary
surfaces but the dynamics induced by the Ay, .

Quantum states defined by higher level Feynman diagrams

The intuitive picture is that higher level quantum states corresponds to the self reflective aspect
of existence and must provide representations for the quantum dynamics of lower levels in their
own structure. This dynamics is characterized by M-matrix whose elements have representation
in terms of Feynman diagrams.

1. These states correspond to zero energy states in which initial states have “positive energies”
and final states have “negative energies”. The net conserved quantum numbers of initial
and final state partons compensate each other. Gravitational energies, and more generally
gravitational quantum numbers defined as absolute values of the net quantum numbers of
initial and final states do not vanish. One can say that thoughts have gravitational mass but
no inertial mass.

2. States in sub-spaces of positive and negative energy states are entangled with entanglement
coefficients given by M-matrix at the level below.

To make this more concrete, consider first the simplest non-trivial case. In this case the
particles can be characterized as ordinary Feynman diagrams, or more precisely as scattering
events so that the state is characterized by S = P;,,SP,,;, where S is S-matrix and P;, resp. P,y
is the projection to a subspace of initial resp. final states. An entangled state with the projection
of S-matrix giving the entanglement coeflicients is in question.

The larger the domains of projectors P;, and P,,:, the higher the representative capacity of
the state. The norm of the non-normalized state S is Tr(551) < 1 for IT; factors, and at the limit
S = S the norm equals to 1. Hence, by II; property, the state always entangles infinite number of
states, and can in principle code the entire S-matrix to entanglement coefficients.

The states in which positive and negative energy states are entangled by a projection of
S-matrix might define only a particular instance of states for which conserved quantum numbers
vanish. The model for the interaction of Feynman diagrams discussed below applies also to these
more general states.
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The interaction of M,, Feynman diagrams at the second level of hierarchy

What constraints can one pose to the higher level reactions? How Feynman diagrams interact?
Consider first the scattering at the second level of hierarchy (M), the first level Mg being assigned
to the interactions of the ordinary matter.

1. Conservation laws pose constraints on the scattering at level M;. The Feynman diagrams
can transform to new Feynman diagrams only in such a way that the net quantum numbers
are conserved separately for the initial positive energy states and final negative energy states
of the diagram. The simplest assumption is that positive energy matter and negative energy
matter know nothing about each other and effectively live in separate worlds. The scattering
matrix form Feynman diagram like states would thus be simply the tensor product S ® ST,
where S is the S-matrix characterizing the lowest level interactions and identifiable as unitary
factor of M-matrix for zero energy states. Reductionism would be realized in the sense that,
apart from the new elements brought in by A, defining single particle free dynamics, the
lowest level would determine in principle everything occurring at the higher level providing
representations about representations about... for what occurs at the basic level. The lowest
level would represent the physical world and higher levels the theory about it.

2. The description of hadronic reactions in terms of partons serves as a guide line when one
tries to understand higher level Feynman diagrams. The fusion of hadronic space-time sheets
corresponds to the vertices M. In the vertex the analog of parton plasma is formed by a
process known as parton fragmentation. This means that the partonic Feynman diagrams
belonging to disjoint copies of M find themselves inside the same copy of M. The standard
description would apply to the scattering of the initial resp. final state partons.

3. After the scattering of partons hadronization takes place. The analog of hadronization in
the recent case is the organization of the initial and final state partons to groups I; and F;
such that the net conserved quantum numbers are same for I; and F;. These conditions can
be satisfied if the interactions in the plasma phase occur only between particles belonging
to the clusters labeled by the index ¢. Otherwise only single particle states in M; would be
produced in the reactions in the generic case. The cluster decomposition of S-matrix to a
direct sum of terms corresponding to partitions of the initial state particles to clusters which
do not interact with each other obviously corresponds to the “hadronization”. Therefore no
new dynamics need to be introduced.

4. One cannot avoid the question whether the parton picture about hadrons indeed corresponds
to a higher level physics of this kind. This would require that hadronic space-time sheets
carry the net quantum numbers of hadrons. The net quantum numbers associated with the
initial state partons would be naturally identical with the net quantum numbers of hadron.
Partons and they negative energy conjugates would provide in this picture a representation of
hadron about hadron. This kind of interpretation of partons would make understandable why
they cannot be observed directly. A possible objection is that the net gravitational mass of
hadron would be three times the gravitational mass deduced from the inertial mass of hadron

if partons feed their gravitational fluxes to the space-time sheet carrying Earth’s gravitational
field.

5. This picture could also relate to the suggested duality between string and parton pictures
[K107] . In parton picture hadron is formed from partons represented by space-like 2-surfaces
X2 connected by join along boundaries bonds. In string picture partonic 2-surfaces are
replaced with string orbits. If one puts positive and negative energy particles at the ends of
string diagram one indeed obtains a higher level representation of hadron. If these pictures
are dual then also in parton picture positive and negative energies should compensate each
other. Interestingly, light-like 3-D causal determinants identified as orbits of partons could
be interpreted as orbits of light like string word sheets with “time” coordinate varying in
space-like direction.

Scattering of Feynman diagrams at the higher levels of hierarchy

This picture generalizes to the description of higher level Feynman diagrams.
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1. Assume that higher level vertices have recursive structure allowing to reduce the Feynman
diagrams to ordinary Feynman diagrams by a procedure consisting of finite steps.

2. The lines of diagrams are classified as incoming or outgoing lines according to whether the
time orientation of the line is positive or negative. The time orientation is associated with
the time parameter t,, characterizing the automorphism Aj\t;{\. The incoming and outgoing
net quantum numbers compensate each other. These quantum numbers are basically the
quantum numbers of the state at the lowest level of the hierarchy.

3. In the vertices the M, particles fuse and M,, particles form the analog of quark gluon
plasma. The initial and final state particles of M,, Feynman diagram scatter independently
and the S-matrix S, describing the process is tensor product S, ® S}. By the clustering
property of S-matrix, this scattering occurs only for groups formed by partons formed by
the incoming and outgoing particles M,, particles and each outgoing M, 11 line contains and
irreducible M,, diagram. By continuing the recursion one finally ends down with ordinary
Feynman diagrams.

3.7.3 Logic, Beliefs, And Spinor Fields In The World Of Classical Worlds

Beliefs can be characterized as Boolean value maps 5;(p) telling whether i believes in proposition
p or not. Additional structure is brought in by introducing the map \;(p) telling whether p is true
or not in the environment of 7. The task is to find quantum counterpart for this model.

The spectrum of probabilities for outcomes in state function reduction with finite
measurement resolution is universal

Consider quantum two-spinor as a model of a system with finite measurement resolution implying
that state function reduction do not anymore lead to a spin state with a precise value but that one
can only predict the probability distribution for the outcome of measurement. These probabilities
can be also interpreted as truth values of a belief in finite cognitive resolution.

It is actually possible to calculate the spectrum of the probabilities of truth values with
rather mild additional assumptions.

1. Since the Hermitian operators X; = (2'21 + 212')/2 and X = (2222 4 222%)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p; = X1/R? and ps = X»/R?, R?> = X; + Xs.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0) satisfying 21|0)

22|0) = 0, one obtains eigen states of X1 and X; as states |ny,ns) = 21 22 |0}, ny > 0,ng >
0. The eigenvalues of X; and X5 are given by a modified harmonic oscillator spectrum as

X1=1/24+n1g")r , Xo=(1/24 noq"")r .

The reality of eigenvalues (hermiticity) is guaranteed if one has n; = Nin and n; = Non
and implies that the spectrum of eigen states gets increasingly thinner for n — oo. This
must somehow reflect the fractal dimension. The fact that large values of oscillator quantum
numbers nq and ny correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n — co.

3. The probabilities p; and py for the truth values given by (p1,p2) = (1/2+N1n,1/2+Nan)/[1+
(N7 + N2)n| are rational and allow an interpretation as both real and p-adic numbers. This
also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits Ny > Ny and Ny > Nj non-fuzzy states result. As noticed,
n = oo must be treated separately and corresponds to an ordinary non-fuzzy gbit logic. At
n — oo limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N3 = 0 or Ny = 0 states are
non-fuzzy.

4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitslN; > Ny and No >
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N;. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density matrix
obtained by tracing over non-visible degrees of freedom.

WCW spinors as logic statements

In TGD framework the infinite-dimensional WCW (CH) spinor fields defined in CH, the “world
of classical worlds”, describe quantum states of the Universe [K126] . WCW spinor field can be
regarded as a state in infinite-dimensional Fock space and are labeled by a collection of various
two valued indices like spin and weak isospin. The interpretation is as a collection of truth values
of logic statements one for each fermionic oscillator operator in the state. For instance, spin up
and down would correspond to two possible truth values of a proposition characterized by other
quantum numbers of the mode.

The hierarchy of space-time sheet could define a physical correlate for the hierarchy of higher
order logics (statements about statements about...). The space-time sheet containing N fermions
topologically condensed at a larger space-time sheet behaves as a fermion or boson depending on
whether N is odd or even. This hierarchy has also a number theoretic counterpart: the construction
of infinite primes [K105] corresponds to a repeated second quantization of a super-symmetric
quantum field theory.

Quantal description of beliefs

The question is whether TGD inspired theory of consciousness allows a fundamental description
of beliefs.

1. Beliefs define a model about some subsystem of universe constructed by the believer. This
model can be understood as some kind of representation of real word in the state space
representing the beliefs.

2. One can wonder what is the difference between real and p-adic variants of WCW spinor fields
and whether they could represent reality and beliefs about reality. WCW spinors (as opposed
to spinor fields) are constructible in terms of fermionic oscillator operators and seem to be
universal in the sense that one cannot speak about p-adic and real WCW spinors as different
objects. Real/p-adic spinor fields however have real/p-adic space-time sheets as arguments.
This would suggest that there is no fundamental difference between the logic statements
represented by p-adic and real WCW spinors.

3. This vision is realized if the intersection of reality and various p-adicities corresponds to an

algebraically universal set of consisting of partonic 2-surfaces and string world sheets for which
defining parameters are WCW coordinates in an algebraic extension of rationals defining that
for p-adic number fields. Induced spinor fields would be localized at string world sheets and
their intersections with partonic 2-surfaces and would be number theoretically universal. If
second quantized induced spinor fields are correlates of Boolean cognition, which is behind the
entire mathematics, their number theoretical universality is indeed a highly natural condition.
Also fermionic anticommutation relations are number theoretically universal. By conformal
invariance the conformal moduli of string world sheets and partonic 2-surface would be the
natural WCW coordinates for the 2-surfaces in question and I proposed their p-adicization
already in p-adic mass calculations for two decades ago.
This picture would provide an elegant realization for the p-adicization. There would be ne
need to map real space-time surfaces directly to p-adic ones and vice versa and one would
avoid problems related to general coordinate invariance (GCI) completely. Strong form of
holography would assign to partonic surfaces the real and p-adic variants. Already p-adic
mass calculations support the presence of cognition in all length scales.

These observations suggest a more concrete view about how beliefs emerge physically.

The idea that p-adic WCW spinor fields could serve as representations of beliefs and real
WCW spinor fields as representations of reality looks very nice and conforms with the adelic vision
that space-time is adele - a book-like structure contains space-time sheets in various number fields
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as pages glued together along back for which the parameters characterizing space-time surface are
numbers in an algebraic extension of rationals. Real space-time surfaces would be correlates for
sensory experience and p-adic space-time sheets for cognition.

3.7.4 Jones Inclusions For Hyperfinite Factors Of Type /I, As A Model
For Symbolic And Cognitive Representations

Consider next a more detailed model for how cognitive representations and beliefs are realized at
quantum level. This model generalizes trivially to symbolic representations.

The Clifford algebra of gamma matrices associated with WCW spinor fields corresponds
to a von Neumann algebra known as hyper-finite factor of type II;. The mathematics of these
algebras is extremely beautiful and reproduces basic mathematical structures of modern physics
(conformal field theories, quantum groups, knot and braid groups,....) from the mere assumption
that the world of classical worlds possesses infinite-dimensional Kéhler geometry and allows spinor
structure.

The almost defining feature is that the infinite-dimensional unit matrix of the Clifford algebra
in question has by definition unit trace. Type II; factors allow also what are known as Jones
inclusions of Clifford algebras AN/ C M. What is special to I]; factors is that the induced unitary
mappings between spinor spaces are genuine inclusions rather than 1-1 maps.

The S-matrix associated with the real-to-p-adic quantum transition inducing belief from
reality would naturally define Jones inclusion of CH Clifford algebra A associated with the real
space-time sheet to the Clifford algebra M associated with the p-adic space-time sheet. The moduli
squared of S-matrix elements would define probabilities for pairs or real and belief states.

In Jones inclusion N' C M the factor N is included in factor M such that M can be
expressed as N-module over quantum space M /N which has fractal dimension given by Jones
index M : N' = 4cos?(r/n) < 4, n = 3,4, .... varying in the range [1,4]. The interpretation is
as the fractal dimension corresponding to a dimension of Clifford algebra acting in d = vV M : N-
dimensional spinor space: d varies in the range [1,2]. The interpretation in terms of a quantal
variant of logic is natural.

Probabilistic beliefs

For M : N'=4 (n = 00) the dimension of spinor space is d = 2 and one can speak about ordinary
2-component spinors with A/-valued coefficients representing generalizations of qubits. Hence the
inclusion of a given A-spinor as M-spinor can be regarded as a belief on the proposition and for
the decomposition to a spinor in N-module M /N involves for each index a choice M /A spinor
component selecting super-position of up and down spins. Hence one has a superposition of truth
values in general and one can speak only about probabilistic beliefs. It is not clear whether one
can choose the basis in such a way that M /N spinor corresponds always to truth value 1. Since
WCW spinor field is in question and even if this choice might be possible for a single 3-surface,
it need not be possible for deformations of it so that at quantum level one can only speak about
probabilistic beliefs.

Fractal probabilistic beliefs

For d < 2 the spinor space associated with M /A can be regarded as quantum plane having
complex quantum dimension d with two non-commuting complex coordinates z! and z? satisfying
2122 = q2%2' and 2122 = Gz2z!. These relations are consistent with hermiticity of the real and
imaginary parts of z! and 22 which define ordinary quantum planes. Hermiticity also implies that
one can identify the complex conjugates of z* as Hermitian conjugates.

The further commutation relations [z',22] = [22,21] = 0 and [z}, 21] = [2%,22] = r give a
closed algebra satisfying Jacobi identities. One could argue that r > 0 should be a function r(n)
of the quantum phase ¢ = exp(i27/n) vanishing at the limit n — oo to guarantee that the algebra
becomes commutative at this limit and truth values can be chosen to be non-fuzzy. r = sin(n/n)
would be the simplest choice. As will be found, the choice of r(n) does not however affect at all the
spectrum for the probabilities of the truth values. n = oo case corresponding to non-fuzzy quantum




146 Chapter 3. Evolution of Ideas about Hyper-finite Factors in TGD

logic is also possible and must be treated separately: it corresponds to Kac Moody algebra instead
of quantum groups.

The non-commutativity of complex spinor components means that z! and 22 are not inde-
pendent coordinates: this explains the reduction of the number of the effective number of truth
values to d < 2. The maximal reduction occurs to d = 1 for n = 3 so that there is effectively only
single truth value and one could perhaps speak about taboo or dogma or complete disappearance
of the notions of truth and false (this brings in mind reports about meditative states: in fact n =3
corresponds to a phase in which Planck constant becomes infinite so that the system is maximally
quantal).

As non-commuting operators the components of d-spinor are not simultaneously measurable
for d < 2. It is however possible to measure simultaneously the operators describing the probabil-
ities 2'2! and 2222 for truth values since these operators commute. An inherently fuzzy Boolean
logic would be in question with the additional feature that the spinorial counterparts of state-
ment and its negation cannot be regarded as independent observables although the corresponding
probabilities satisfy the defining conditions for commuting observables.

If one can speak of a measurement of probabilities for d < 2, it differs from the ordinary
quantum measurement in the sense that it cannot involve a state function reduction to a pure
qubit meaning irreducible quantal fuzziness. One could speak of fuzzy gbits or fgbits (or quantum
gbits) instead of gbits. This picture would provide the long sought interpretation for quantum
groups.

The previous picture applies to all representations M; C My, where M; and Ms denote
either real or p-adic Clifford algebras for some prime p. For instance, real-real Jones inclusion
could be interpreted as symbolic representations assignable to a unitary mapping of the states of
a subsystem M; of the external world to the state space My of another real subsystem. p; — po
unitary inclusions would in turn map cognitive representations to cognitive representations. There
is a strong temptation to assume that these Jones inclusions define unitary maps realizing universe
as a universal quantum computer mimicking itself at all levels utilizing cognitive and symbolic
representations. Subsystem-system inclusion would naturally define one example of Jones inclusion.

The spectrum of probabilities of truth values is universal

It is actually possible to calculate the spectrum of the probabilities of truth values with rather
mild additional assumptions.

1. Since the Hermitian operators X; = (z'21 + 212')/2 and Xo = (2222 4 222%)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p; = X1/R? and ps = X»/R?, R?> = X1 + X,.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0) satisfying z1|0)
22|0) = 0, one obtains eigen states of X; and X5 as states |ny, ns) = Pl |0), n1 > 0, ng

0. The eigenvalues of X; and X, are given by a modified harmonic oscillator spectrum as

Y]

X1 =01/24+nq¢")r , Xo=(1/24na¢™)r .

The reality of eigenvalues (hermiticity) is guaranteed if one has ny = Nin and ny = Nan
and implies that the spectrum of eigen states gets increasingly thinner for n — oo. This
must somehow reflect the fractal dimension. The fact that large values of oscillator quantum
numbers nq and ny correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n — co.

3. The probabilities p; and py for the truth values given by (p1,p2) = (1/2+N1n,1/24+Nan)/[1+
(N1 + Na)n] are rational and allow an interpretation as both real and p-adic numbers. This
also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits N7 > Ny and Ns > N; non-fuzzy states result. As noticed,
n = oo must be treated separately and corresponds to an ordinary non-fuzzy gbit logic. At
n — oo limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N3 = 0 or Ny = 0 states are
non-fuzzy.

4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
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with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitsN; > Ny and Ny >
N;. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density matrix
obtained by tracing over non-visible degrees of freedom.

How to define variants of belief quantum mechanically?

Probabilities of true and false for Jones inclusion characterize the plausibility of the belief and
one can ask whether this description is enough to characterize states such as knowledge, misbelief,
doubt, delusion, and ignorance. The truth value of 3;(p) is determined by the measurement of
probability assignable to Jones inclusion on the p-adic side. The truth value of \;(p) is determined
by a similar measurement on the real side. 5 and )\ appear completely symmetrically and one can
consider all kinds of triplets M; C My C Mgz assuming that there exist unitary S-matrix like
maps mediating a sequence M; C My C Ms of Jones inclusions. Interestingly, the hierarchies
of Jones inclusions are a key concept in the theory of hyper-finite factors of type II; and pair of
inclusions plays a fundamental role.

Let us restrict the consideration to the situation when M; corresponds to a real subsystem
of the external world, M its real representation by a real subsystem, and M3 to p-adic cognitive
representation of M3. Assume that both real and p-adic sides involve a preferred state basis for
qubits representing truth and false.

Assume first that both M; € My and My C M3 correspond to d = 2 case for which
ordinary quantum measurement or truth value is possible giving outcome true or false. Assume
further that the truth values have been measured in both My and Ms.

1. Knowledge corresponds to the proposition 53;(p) A A;(p).

2. Misbelief to the proposition 5;(p)A # A;(p).
Knowledge and misbelief would involve both the measurement of real and p-adic probabilities

3. Assume next that one has d < 2 form My C M3. Doubt can be regarded neither belief or
disbelief: B;(p)A # Bi(# p): belief is inherently fuzzy although proposition can be non-fuzzy.

Assume next that truth values in My C M inclusion corresponds to d < 2 so that the basic
propositions are inherently fuzzy.

4. Delusion is a belief which cannot be justified: 5;(p) A Ai(p)A # A(5 p)). This case is possible
if d = 2 holds true for My C M3. Note that also misbelief that cannot be shown wrong is
possible.

In this case truth values cannot be quantum measured for M; C My but can be measured
for My C Mj3. Hence the states are products of pure M3 states with fuzzy Ms states.

5. Ignorance corresponds to the proposition B;(p)A # Bi(# p) A Ai(p)A # A(# p)). Both real
representational states and belief states are inherently fuzzy.

Quite generally, only for di = dy = 2 ideal knowledge and ideal misbelief are possible. Fuzzy
beliefs and logics approach to ordinary one at the limit n — oo, which according to the proposal
of [K100] corresponds to the ordinary value of Planck constant. For other cases these notions are
only approximate and quantal approach allows to characterize the goodness of the approximation.
A new kind of inherent quantum uncertainty of knowledge is in question and one could speak
about a Uncertainty Principle for cognition and symbolic representations. Also the unification of
symbolic and various kinds of cognitive representations deserves to be mentioned.

3.7.5 Intentional Comparison Of Beliefs By Topological Quantum Com-
putation?

Intentional comparison would mean that for a given initial state also the final state of the quantum
jump is fixed. This requires the ability to engineer S-matrix so that it leads from a given state
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to single state only. Any S-matrix representing permutation of the initial states fulfills these
conditions. This condition is perhaps unnecessarily strong.

Quantum computation is basically the engineering of S-matrix so that it represents a super-
position of parallel computations. In TGD framework topological quantum computation based on
the braiding of magnetic flux tubes would be represented as an evolution characterized by braid [K5]
. The dynamical evolution would be associated with light-like boundaries of braids. This evolution
has dual interpretations either as a limit of time evolution of quantum state (program running) or
a quantum state satisfying conformal invariance constraints (program code).

The dual interpretation would mean that conformally invariant states are equivalent with en-
gineered time evolutions and topological computation realized as braiding connecting the quantum
states to be compared (beliefs represented as many-fermion states at the boundaries of magnetic
flux tubes) could give rise to conscious computational comparison of beliefs. The complexity of
braiding would give a measure for how much the states to be compared differ.

Note that quantum computation is defined by a unitary map which could also be interpreted
as symbolic representation of states of system M; as states of system Ms mediated by the braid of
join along boundaries bonds connecting the two space-time sheets in question and having light-like
boundaries. These considerations suggest that the idea about S-matrix of the Universe should be
generalized so that the dynamics of the Universe is dynamics of mimicry described by an infinite
collection of fermionic S-matrices representable in terms of Jones inclusions.

3.7.6 The Stability Of Fuzzy Qbits And Quantum Computation

The stability of fqbits against state function reduction might have deep implications for quantum
computation since quantum spinors would be stable against state function reduction induced by
the perturbations inducing de-coherence in the normal situation. If this is really true, and if the
only dangerous perturbations are those inducing the phase transition to gbits, the implications for
quantum computation could be dramatic. Of course, the rigidity of gbits could be just another
way to say that topological quantum computations are stable against thermal perturbations not
destroying anyons [K5] .

The stability of fgbits could also be another manner to state the stability of rational, or
more generally algebraic, bound state entanglement against state function reduction, which is one
of the basic hypothesis of TGD inspired theory of consciousness [K68| . For sequences of Jones
inclusions or equivalently, for multiple Connes tensor products, one would obtain tensor products
of quantum spinors making possible arbitrary complex configurations of fgbits. Anyonic braids
in topological quantum computation would have interpretation as representations for this kind of
tensor products.

3.7.7 Fuzzy Quantum Logic And Possible Anomalies In The Experimen-
tal Data For The EPR-Bohm Experiment

The experimental data for EPR-Bohm experiment [J7] excluding hidden variable interpretations
of quantum theory. What is less known that the experimental data indicates about possibility of
an anomaly challenging quantum mechanics [J2] . The obvious question is whether this anomaly
might provide a test for the notion of fuzzy quantum logic inspired by the TGD based quantum
measurement theory with finite measurement resolution.

The anomaly

The experimental situation involves emission of two photons from spin zero system so that photons
have opposite spins. What is measured are polarizations of the two photons with respect to
polarization axes which differ from standard choice of this axis by rotations around the axis of
photon momentum characterized by angles o and 3. The probabilities for observing polarizations
(4,7), where i, j is taken Z5 valued variable for a convenience of notation are P;;(a, 3), are predicted
to be Pyg = P11 = cos?(a— f3)/2 and Py; = Pyp = sin’(a — 3)/2.

Consider now the discrepancies.
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1. One has four identities P;; + P; ;41 = Pi; + Piy1,; = 1/2 having interpretation in terms of
probability conservation. Experimental data of [J7] are not consistent with this prediction [J3]
and this is identified as the anomaly.

2. The QM prediction E(«,8) = Y, (P;i — Piit1) = cos(2(ow — ) is not satisfied neither: the
maxima for the magnitude of E are scaled down by a factor >~ .9. This deviation is not
discussed in [J3] .

Both these findings raise the possibility that QM might not be consistent with the data. It turns out
that fuzzy quantum logic predicted by TGD and implying that the predictions for the probabilities
and correlation must be replaced by ensemble averages, can explain anomaly b) but not anomaly
a). A “mundane” explanation for anomaly a) is proposed.

Predictions of fuzzy quantum logic for the probabilities and correlations

1. The description of fuzzy quantum logic in terms statistical ensemble

The fuzzy quantum logic implies that the predictions P; ; for the probabilities should be
replaced with ensemble averages over the ensembles defined by fuzzy quantum logic. In practice
this means that following replacements should be carried out:

Pi,j — PQPL'J' + (1 — P)2Pi+17j+1
+ PA—=P)[Pijr1+ Pipryl - (3.7.1)

Here P is one of the state dependent universal probabilities/fuzzy truth values for some value of
n characterizing the measurement situation. The concrete predictions would be following

Poo=P1 — A 5 +B >
_ (AiB)COSQ(Oéfﬁ) B 7
2 2
Pyi=Piy — Asm2<g*5>+30052<§* )
- (AfB)W+§,
A = P*+(1-P?, B=2P(1-P) . (3.7.2)

The prediction is that the graphs of probabilities as a function as function of the angle o — 3 are
scaled by a factor 1 — 4P(1 — P) and shifted upwards by P(1 — P). The value of P, and one
might hope even the value of n labeling Jones inclusion and the integer m labeling the quantum
state might be deducible from the experimental data as the upward shift. The basic prediction is
that the maxima of curves measuring probabilities P4, j) have minimum at B/2 = P(1 — P) and
maximum is scaled down to (A — B)/2=1/2—-2P(1 — P).

If the P is same for all pairs 4, j, the correlation E =) .(P;; — P; ;4+1) transforms as

E(a,f) — [1—4P(1 - P)|E(a,B) . (3.7.3)

Only the normalization of E(a, 8) as a function of & — 8 reducing the magnitude of FE occurs. In
particular the maximum/minimum of E are scaled down from E = +1 to F = £(1 — 4P(1 — P)).

From the figure 1b) of [I3] the scaling down indeed occurs for magnitudes of E with same
amount for minimum and maximum. Writing P = 1 — € one has A — B ~ 1 — 4¢ and B ~ 2¢ so
that the maximum is in the first approximation predicted to be at 1 — 4e. The graph would give
1 — P ~ e~ .025. Thus the model explains the reduction of the magnitude for the maximum and
minimum of E which was not however considered to be an anomaly in [J2] [J3] .

A further prediction is that the identities P(i,i) + P(i + 1,4) = 1/2 should still hold true
since one has P;; + P, ;41 = (A— B)/2+ B = 1. This is implied also by probability conservation.
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The four curves corresponding to these identities do not however co-incide as the figure 6 of [J3]
demonstrates. This is regarded as the basic anomaly in [J2] [J3] . From the same figure it is also
clear that below o — f < 10 degrees P, = P__ AP, = —AP_, holds true in a reasonable
approximation. After that one has also non-vanishing A P;; satisfying AP, = —AP__. This kind
of splittings guarantee the identity Zij P;; = 1. These splittings are not visible in F.

Since probability conservation requires P;; + P11 = 1, a mundane explanation for the
discrepancy could be that the failure of the conditions P; ; 4+ Pj;11 = 1 means that the measurement
efficiency is too low for P, _ and yields too low values of Py_+P__ and P;_+ P, . The constraint
> ; Pij =1 would then yield too high value for P_, . Similar reduction of measurement efficiency
for P, could explain the splitting for o — 5 > 10 degrees.

Clearly asymmetry with respect to exchange of photons or of detectors is in question.

1. The asymmetry of two photon state with respect to the exchange of photons could be con-
sidered as a source of asymmetry. This would mean that the photons are not maximally
entangled. This could be seen as an alternative “mundane” explanation.

2. The assumption that the parameter P is different for the detectors does not change the
situation as is easy to check.

3. One manner to achieve splittings which resemble observed splittings is to assume that the value
of the probability parameter P depends on the polarization pair: P = P(i,j) so that one has
(P(—,+),P(+,-)) = (P+A,P—A)and (P(—,—),P(+,+)) = (P+A1,P—Ay). A=~.025
and A; ~ A/2 could produce the observed splittings qualitatively. One would however always
have P(i,i) + P(i,i + 1) > 1/2. Only if the procedure extracting the correlations uses the
constraint Zl ; Pij = 1 effectively inducing a constant shift of P;; downwards an asymmetry
of observed kind can result. A further objection is that there are no special reason for the
values of P(i,7) to satisfy the constraints.

2. Is it possible to say anything about the value of n in the case of EPR-Bohm experiment?

To explain the reduction of the maximum magnitudes of the correlation E from 1 to ~ .9
in the experiment discussed above one should have p; ~ .9. It is interesting to look whether this
allows to deduce any information about the valued of n. At the limit of large values of N;n one
would have (N1 — N3)/(Ny1 + N2) ~ .4 so that one cannot say anything about n in this case.
(N1, N2) = (3,1) satisfies the condition exactly. For n = 3, the smallest possible value of n, this
would give p; ~ .88 and for n = 4 p; = .41. With high enough precision it might be possible to
select between n = 3 and n = 4 options if small values of IV; are accepted.

3.7.8 Category Theoretic Formulation For Quantum Measurement The-
ory With Finite Measurement Resolution?

I have been trying to understand whether category theory might provide some deeper understand-
ing about quantum TGD, not just as a powerful organizer of fuzzy thoughts but also as a tool
providing genuine physical insights. Marni Dee Sheppeard (or Kea in her blog Arcadian Functor at
http://tinyurl.com/yb31lsbjq) is also interested in categories but in much more technical sense.
Her dream is to find a category theoretical formulation of M-theory as something, which is not the
11-D something making me rather unhappy as a physicist with second foot still deep in the muds
of low energy phenomenology.

Locales, frames, Sierpinski topologies and Sierpinski space

The ideas below popped up when Kea mentioned in M-theory lesson 51 the notions of locale and
frame [AD] . In Wikipedia I learned that complete Heyting algebras, which are fundamental to
category theory, are objects of three categories with differing arrows. CHey, Loc and its opposite
category Frm (arrows reversed). Complete Heyting algebras are partially ordered sets which are
complete lattices. Besides the basic logical operations there is also algebra multiplication (I have
considered the possible role of categories and Heyting algebras in TGD in [K28] ). From Wikipedia
I also learned that locales and the dual notion of frames form the foundation of pointless topology
[A12] . These topologies are important in topos theory which does not assume axiom of choice.
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The so called particular point topology [AT0] assumes a selection of single point but I have the
physicist’s feeling that it is otherwise rather near to pointless topology. Sierpinski topology [AT4]
is this kind of topology. Sierpinski topology is defined in a simple manner: the set is open only
if it contains a given preferred point p. The dual of this topology defined in the obvious sense
exists also. Sierpinski space consisting of just two points 0 and 1 is the universal building block of
these topologies in the sense that a map of an arbitrary space to Sierpinski space provides it with
Sierpinski topology as the induced topology. In category theoretical terms Sierpinski space is the
initial object in the category of frames and terminal object in the dual category of locales. This
category theoretic reductionism looks highly attractive.

Particular point topologies, their generalization, and number theoretical braids

Pointless, or rather particular point topologies might be very interesting from physicist’s point of
view. After all, every classical physical measurement has a finite space-time resolution. In TGD
framework discretization by number theoretic braids replaces partonic 2-surface with a discrete
set consisting of algebraic points in some extension of rationals: this brings in mind something
which might be called a topology with a set of particular algebraic points. Could this preferred
set belongs to any open set in the particular point topology appropriate in this situation?

Perhaps the physical variant for the axiom of choice could be restricted so that only sets
of algebraic points in some extension of rationals can be chosen freely and the choices is defined
by the intersection of p-adic and real partonic 2-surfaces and in the framework of TGD inspired
theory of consciousness would thus involve the interaction of cognition with the material world.
The extension would depend on the position of the physical system in the algebraic evolutionary
hierarchy defining also a cognitive hierarchy. Certainly this would fit very nicely to the formulation
of quantum T'GD unifying real and p-adic physics by gluing real and p-adic number fields to single
super-structure via common algebraic points.

Analogs of particular point topologies at the level of state space: finite measurement
resolution

There is also a finite measurement resolution in Hilbert space sense not taken into account in the
standard quantum measurement theory based on factors of type I. In TGD framework one indeed
introduces quantum measurement theory with a finite measurement resolution so that complex
rays become included hyper-finite factors of type IT; (HFFSs).

1. Could topology with particular algebraic points have a generalization allowing a category
theoretic formulation of the quantum measurement theory without states identified as complex
rays?

2. How to achieve this? In the transition of ordinary Boolean logic to quantum logic in the old
fashioned sense (von Neuman again!) the set of subsets is replaced with the set of subspaces
of Hilbert space. Perhaps this transition has a counterpart as a transition from Sierpinski
topology to a structure in which sub-spaces of Hilbert space are quantum sub-spaces with
complex rays replaced with the orbits of subalgebra defining the measurement resolution.
Sierpinski space {0,1} would in this generalization be replaced with the quantum counterpart
of the space of 2-spinors. Perhaps one should also introduce g-category theory with Heyting
algebra being replaced with g-quantum logic.

Fuzzy quantum logic as counterpart for Sierpinksi space

The program formulated above might indeed make sense. The lucky association induced by Kea’s
blog was to the ideas about fuzzy quantum logic realized in terms of quantum 2-spinor that I
had developed a couple of years ago. Fuzzy quantum logic would reflect the finite measurement
resolution. I just list the pieces of the argument.

Spinors and gbits: Spinors define a quantal variant of Boolean statements, gbits. One
can however go further and define the notion of quantum gbit, qgbit. I indeed did this for couple
of years ago (the last section of this chapter).

Q-spinors and qgbits: For g-spinors the two components a and b are not commuting
numbers but non-Hermitian operators: ab = gba, q a root of unity. This means that one cannot
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measure both a and b simultaneously, only either of them. aa® and bbT however commute so
that probabilities for bits 1 and 0 can be measured simultaneously. State function reduction is
not possible to a state in which a or b gives zero. The interpretation is that one has g-logic
is inherently fuzzy: there are no absolute truths or falsehoods. One can actually predict the
spectrum of eigenvalues of probabilities for say 1. Obviously quantum spinors would be state space
counterparts of Sierpinski space and for ¢ # 1 the choice of preferred spinor component is very
natural. Perhaps this fuzzy quantum logic replaces the logic defined by the Heyting algebra.

Q-locale: Could one think of generalizing the notion of locale to quantum locale by using
the idea that sets are replaced by sub-spaces of Hilbert space in the conventional quantum logic.
Q-openness would be defined by identifying quantum spinors as the initial object, g-Sierpinski
space. a (resp. b for the dual category) would define g-open set in this space. Q-open sets for
other quantum spaces would be defined as inverse images of a (resp. b) for morphisms to this
space. Only for q=1 one could have the g-counterpart of rather uninteresting topology in which
all sets are open and every map is continuous.

Q-locale and HFF's: The g-Sierpinski character of g-spinors would conform with the very
special role of Clifford algebra in the theory of HFFs, in particular, the special role of Jones
inclusions to which one can assign spinor representations of SU(2). The Clifford algebra and
spinors of the world of classical worlds identifiable as Fock space of quark and lepton spinors is
the fundamental example in which 2-spinors and corresponding Clifford algebra serves as basic
building brick although tensor powers of any matrix algebra provides a representation of HFF.

Q-measurement theory: Finite measurement resolution (g-quantum measurement the-
ory) means that complex rays are replaced by sub-algebra rays. This would force the Jones inclu-
sions associated with SU(2) spinor representation and would be characterized by quantum phase q
and bring in the g-topology and g-spinors. Fuzzyness of qqbits of course correlates with the finite
measurement resolution.

Q-n-logos: For other g-representations of SU(2) and for representations of compact groups
(Appendix) one would obtain something which might have something to do with quantum n-logos,
quantum generalization of n-valued logic. All of these would be however less fundamental and
induced by g-morphisms to the fundamental representation in terms of spinors of the world of
classical worlds. What would be however very nice that if these g-morphisms are constructible
explicitly it would become possible to build up g-representations of various groups using the fun-
damental physical realization - and as I have conjectured [K94] - McKay correspondence and huge
variety of its generalizations would emerge in this manner.

The analogs of Sierpinski spaces: The discrete subgroups of SU(2), and quite generally,
the groups Z,, associated with Jones inclusions and leaving the choice of quantization axes invariant,
bring in mind the n-point analogs of Sierpinski space with unit element defining the particular point.
Note however that n > 3 holds true always so that one does not obtain Sierpinski space itself. If
all these n preferred points belong to any open set it would not be possible to decompose this
preferred set to two subsets belonging to disjoint open sets. Recall that the generalized embedding
space related to the quantization of Planck constant is obtained by gluing together coverings
M* x CPy — M* x CP,/G, x Gy along their common points of base spaces. The topology in
question would mean that if some point in the covering belongs to an open set, all of them do so.
The interpretation would be that the points of fiber form a single inseparable quantal unit.

Number theoretical braids identified as as subsets of the intersection of real and p-adic
variants of algebraic partonic 2-surface define a second candidate for the generalized Sierpinski
space with a set of preferred points.



Chapter 4

Trying to fuse the basic
mathematical ideas of quantum
TGD to a single coherent whole

4.1 Introduction

I have had a very interesting discussions with Baba Ilya Iyo Azza about von Neumann alge-
bras [A64]. T have a background of physicist and have suffered a lot of frustration in trying to
understand hyperfinite factors of type II; (HFFs, https://cutt.ly/0X8uP32) by trying to read
mathematicians’ articles.

I cannot understand without a physical interpretation and associations to my own big vi-
sion TGD. Again I stared at the basic definitions, ideas and concepts trying to build a physical
interpretation. This is not my first attempt to understand the possible role of HFFs in TGD:
I have written already earlier of the possible role of von Neumann algebras in the TGD frame-
work [K125, [K48]. In the sequel I try to summarize what I have possibly understood with my
meager technical background.

In the first section I will redescribe the basic notions and ideas related to von Neumann alge-
bras as I see them now, in particular HFF's, which seem to be especially relevant for TGD because
of their "hyperfiniteness” property implying that they are effectively finite-D matrix algebras.

There are also more general factors of type I, in particular those related to the notion
of free probability (hhttps://cutt.ly/SX2ftyx)), which is a notion related to a theory of non-
commutative random variables. The free group generated by a finite number of generators is basic
notion and the group algebras associated with free groups are factors of type I1;. The isomorphism
problem asks whether these algebras are isomorphic for different numbers of generators. These
algebras are not hyperfinite and from the physics point of view this is not a good news.

4.1.1 Basic notions of HFFs from TGD perspective

In this section I will describe my recent, still rather primitive physicist’s understanding of HFF's.
Factor M and its commutant M’ are central notions in the theory of von Neumann algebras. An
important question, not discussed earlier, concerns the physical counterparts of M and M’. T will
not discuss technical details: T have made at least a noble attempt to do this earlier [K125] [K48§].

1. In the TGD framework, one can distinguish between quantum degrees of freedom and classical
ones, and classical physics can be said to be an exact part of quantum physics.

2. The formulation of physics as Kédhler geometry of the "world of classical worlds” (WCW)
is briefly summarized in the Appendix. The formulation involves hierarchies A, of 3 kinds
of algebras; supersymplectic algebras SSA,, acting on 6Mi X C'P, and assumed to induce
isometries of WCW, affine algebras Af f,, associated with isometries and holonomies of H =
M* x CP, acting on light-like partonic orbits, and isometries I,, of the light-cone boundary
SMH.
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At the H-side, quantum degrees of freedom are assignable to A,,, which would correspond to
M.

In zero energy ontology (ZEO) [K130] states are quantum superpositions of preferred ex-
tremals. Preferred extremals depend on zero modes, which are symplectic invariants and do
not appear in the line element of WCW. Zero modes serve as classical variables, which com-
mute with super symplectic transformations and could correspond to M’ for SSA,, at H-side.
Similar identification of analogs of zero modes should be possible for Af f,, and I,,.

3. In the number theoretic sector at the MB8-side, braided group algebras would correspond to
quantum degrees of freedom, that is M. M’ would correspond to some number theoretic
invariants of polynomials P determining the space-time surface in H by M® — H duality
[L100, [L101]. The set of roots of P and ramified primes dividing the discriminant of P are
such invariants.

4.1.2 Bird’s eye view of HFFs in TGD

A rough bird’s eye view of HFFs is discussed with an emphasis on their physical interpretation.
There are two visions of TGD: the number theoretic view [L50, [L49] and the geometric view
[K57, K36, K126, [K95] and M® — H duality relates these views [L122, [L100} [L101].

1. At the M® side, the p-adic representations of braided group algebras of Galois groups asso-
ciated with hierarchies of extensions of rationals define natural candidates for the inclusion
hierarchies of HFF's.

Braid groups represent basically permutations of tensor factors and the same applies to the
braided Galois groups with S, restricted to the Galois group.

A good guess is that braid strands correspond to the roots of a polynomial labelling mass
shells H? in M* c M3.

2. The 3-D mass shells define a 4-surface in M?® by holography based on associativity, which
makes possible holography.

The condition that the normal space N of the 4-surface X% in M? is associative and contains
a 2-D commutative sub-space X2, guarantees both holography and M® — H duality mapping
this 4-surface X* C M?® to a space-time surface Y* C H.

The 2-D commutative space X2 C N can be regarded as a normal space of the 6-D counterpart
of twistor space T'(M*). T(M*) is mapped by M® — H duality to a point of the twistor space
T(CP,) = SU(3)/U(1) x U(1) of CP,. This map is assumed to define the twistor space
T(Y*) C T(M*) x T(CP,) as a preferred extremal [L126], [L127].

3. The physical picture strongly suggests that also string world sheets and partonic 2-surfaces in
Y4 C H are needed. They are are assumed to correspond to singularities for the map to H.
A natural conjecture is that the 2-D subspace X2 C N is mapped to a 2-D subspace Y2 C T
of the tangent space T of X% by a multiplication with a preferred octonionic imaginary unit
inT.
How could this preferred octonionic unit be determined?

(a) Complexified octonionic units in the tangent space of M$ decomposes under SU(3) C Ga,
having interpretation as color group, to representations 1; ® 1o @ 3 ® 3. 1; and 1,
correspond to the real unit Iy and imaginary unit I; and 3 and 3 correspond to color
triplets analogous to quarks and antiquarks.

(b) Complexified quaternionic sub-space defining N corresponds to color singlets Iy, I7, and
quarks I, I3 with (Y = —1/3,I3 = 1/2) and Y = 2/3,I3 = 0). The complement
T corresponds to quark Iy (Y = —1/3,I3 = 1/2) and 3 antiquarks (I5,ls,I7). The
octonionic multiplication of the units of quaternionic subspace by quark I gives T as the
orthogonal complement of the quaternionic sub-space V.

(c) This multiplication would assign to X2 C N 2-D subspace of T and also its orthogonal
complement Y2 in T. If the distributions of X? and Y2 are integrable, they define the
slicing of X* by partonic 2-surfaces and string world sheets. The tangent spaces for
them would correspond to the local choice of Iy, I; and I, I5. X? and Y? at different
points would differ by a local SU(3) transformation. In fact, the 4-surface in M® would
correspond to a complex color gauge transformation [L100, [L101].
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This choice could correspond to what I have called Hamilton-Jacobi (H-J) structure [K10]
in X* defining a slicing of X* defined by an integrable distribution of pairs of orthonormal
2-surfaces analogous to the choice of massless wave vector and orthogonal polarization plane
depending on the point of X* or equivalently on the point of M* as its projection. H-
J structure would also define the analog of Kihler structure in M* strongly suggested by
twistor lift.

The original proposal was that the H-J structure is associated with M*, and one cannot
completely exclude the possibility that the projection of the proposed slicing to M* defines
H-J. The idea about single H-J structure is not physical. Dynamical H-J structure does not
conform with the idea that M?* is completely non-dynamical. However, if the H-J structure
is determined by the choice X2 C N and defines H-J structure in X*, this objection can be
circumvented.

At the H side there are 3 algebras.

1. The subalgebras SSA,, of super-symplectic algebra (SSA) are assumed to induce isometries
of WCW. Since SSA and also other algebras have non-negative conformal weights, it has a
hierarchy of subalgebras SSA,, with conformal weights coming as n-multiples of those for SSA.

2. There are also affine algebras Af f associated with H isometries acting on light-like orbits of
partonic 2-surfaces and having similar hierarchy of Af f,,. Both isometries and holonomies of
H are involved.

3. Light-cone boundary allows infinite dimensional isometry group I consisting of generalized
conformal transformation combined with a local scaling allowing similar hierarchy I,,.

One should understand how the number theoretic and geometric hierarchies relate to each
other and a good guess is that braided group algebras act on braids assignable to SSA, with n
interpreted as the number of braid strands and thus the degree n of P.

Also the interpretational problems related to quantum measurement theory and probability
interpretation are discussed from the TGD point of view, in which zero energy ontology (ZEO)
allows us to solve the basic problem of quantum measurement theory.

4.1.3 M?® — H duality and HFFS

M8 — H duality [L100, [LT01] suggests that the hierarchies of extensions of rationals at the number
theoretic side and hierarchies of HFF's at the geometric side are closely related.

The key idea is that the braided Galois groups at MB3-side interact on algebras A, €
{SSA,,Af fn,I,} at H level as number theoretic braid groups permuting the tensor factors
assignable to the braid strands, which correspond to the roots of the polynomial P.

The basic notions associated with a polynomial P with rational coefficients having degree
n are its n roots, ramified primes as factors of the discriminant defined by the difference of its
roots, and Galois group plus a set of Galois invariants such as symmetric polynomials of roots.
The Galois group is the same for a very large number of polynomials P. The question concerns
the counterparts of these notions at the level of H?

An educated guess is that the n roots of P label the strands of an n-braid in H assignable to
A, ramified primes correspond to physically preferred p-adic primes in the adelic structure formed
by various p-adic representations A,, , of the algebras A,, and the Galois group algebra associated
with the polynomial P with degree n.

This picture suggests a generalization of arithmetics to quantum arithmetics based on the
replacement of + and x with & and ® and replacement of numbers with representations of groups
or algebras [L130]. This implies a generalization of adele by replacing p-adic numbers with the
p-adic quantum counterparts of algebras A,,.

The mysterious McKay correspondence [AT9] has inspired several articles during years [L38]
195, [L94) [L130] but it is fair to say that I do not really understand it. Hence I could not avoid
the temptation to attack this mystery also in this article.
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4.1.4 Infinite primes

The notion of infinite primes [K105| [K71] is one of the ideas inspired by TGD, which has waited for
a long time for its application. Their construction is analogous to a quantization of supersymmetric
arithmetic quantum field theory.

1. The analog of Dirac sea X is defined by the product of finite primes and one "kicks” from sea
a subset of primes defining a square free integer ng to get the sum X/ng +np. One can also
add bosons to X/np resp. np multiplying it with integer np, resp. np,, which is divisible
only by primes dividing Z/ng resp. ng.

2. This construction generalizes and one can form polynomials of X to get infinite primes anal-
ogous to bound states. One can consider instead of P(X) a polynomial P(X,Y’), where ¥
is the product of all primes at the first level thus involving the product of all infinite primes
already constructed, and repeat the procedure. One can repeat the procedure indefinitely and
the formal interpretation is as a repeated quantization. The interpretation could be in terms
of many-sheeted space-time or abstraction process involving formation of logical statements
about statements about ...

3. The polynomials Q could also be interpreted as ordinary polynomials. If Q(X) = P(X), where

P(X) is the polynomial defining a 4-surface in M8, the space-time surface X% in H would
correspond to infinite prime. This would give a ”quantization” of P defining the space-time
surface.
The polynomial P defining 4-surface in H would fix various quantum algebras associated with
it. The polynomials P(X;, X, ...X,,) could be interpreted as n— l-parameter families defining
surfaces in the ”world of classical worlds” (WCW) [L122] (for the development of the notion
see [K57, (K36l [K126| [K95]).

4. X is analogous to adele and infinite primes could be perhaps seen as a generalization of the
notion of adele. One could assign p-adic variants of various HFF's to the primes defining the
adele and 4+ and x could be replaced with & and ®. The physical interpretation of ramified
primes of P is highly interesting.

In the last section, I try to guess how the fusion of these building blocks by using the ideas
introduced in the previous sections could give rise to what might be called quantum TGD. It must
be made clear that the twistor lift of TGD [L126| [L127] is not considered in this work.

4.2 Basic notions related to hyperfinite factors of type I;
from TGD point of view

In this section, the basic notions of hyperfinite factors (HFFs) as a physicists from the TGD point
of view will be discussed. I have considered HFF's earlier several times [K125| [K48] and will not
discuss here the technical details of various notions.

4.2.1 Basic concepts related to von Neumann algebras

John von Neumann proposed that the algebras, which now carry his name are central for quantum
theory [A64]. Von Neumann algebra decomposes to a direct integral of factors appearing and there
are 3 types of factors corresponding to types I, II, and III.

Inclusion/embedding as a basic aspect of physics

Inclusion (https://cutt.ly/NX8eWwa, https://cutt.ly/cX8eUuf, https://cutt.ly/4X8ePn6))
is a central notion in the theory of factors. Inclusion/embedding involving induction of various
geometric structures is a key element of classical and quantum TGD.

One starts from the algebra B(H) of bounded operators in Hilbert space. This algebra
has naturally hermitian conjugation * as an antiunitary operation and therefore one talks of C,
algebras. von Neumann algebra is a subalgebra of B(H). Already here an analog of inclusion is
involved (https://cutt.ly/3XkP02s). There are also inclusions between von Neumann algebras,
in particular HFF's.
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What could the inclusion of von Neumann algebra to B(H) as subalgebra mean physically?
In the TGD framework, one can identify several analogies.

1. Space-time is a 4-surface in H = M* x C'P;: analog of inclusion reducing degrees of freedom.

2. Space-time is not only an extremal of an action [K10] [L125] but a preferred extremal (PE),
which satisfies holography so that it is almost uniquely defined by a 3-surface. This guarantees
general coordinate invariance at the level of H without path integral. I talk about preferred
extremals (PEs) analogous to Bohr orbits. Space-time surface as PE is a 4-D minimal surface
with singularities [L125]: there is an analogy with a soap film spanned by frames. This implies
a small failure of determinism localizable at the analogs of frames so that holography is not
completely unique.

Holography means that very few extremals are physically possible. This Bohr orbit property
conforms with the Uncertainty Principle. Also HFFs correspond to small sub-spaces of B(H).
Quantum classical correspondence suggests that this analogy is not accidental.

The notion of commutant and its physical interpretation in the TGD framework

The notion of the commutant M’ of M, which also defines HFF, is also essential. What could be
the physical interpretation of M'? TGD suggests 3 important hierarchies of HFFs as algebras A,,.
A, could correspond to super-symplectic algebras SSA,, acting at IM* x C'Py; to an affine algebras
Af fn acting at the light-like partonic orbits; or to an isometry algebra I,, acting at 5Mi. All these
HFF candidates have commutants and would have interpretation in terms of quantum-classical
correspondence.

One can consider SSA as an example.

1. In TGD, one has indeed an excellent candidate for the commutant. Supersymplectic symmetry
algebra (SSA) of M} x CP, (M4 denotes the boundary of a future directed light-cone) is
proposed to act as isometries of the "world of classical worlds” (WCW) consisting of space-
time surfaces as PEs (very, very roughly).

Symplectic symmetries would be generated by Hamiltonians, which are products of Hamil-
tonians associated with 6M{ (metrically sphere S?) and CP,. Symplectic symmetries are
conjectured to act as isometries of WCW and gamma matrices of WCW extend symplectic
symmetries to super-symplectic ones.

Hamiltonians and their super-counterparts generate the super-symplectic algebra (SSA) and
quantum states are created by using them. SSA is a candidate for HFF. Call it M. What
about M?

2. The symplectic symmetries leave invariant the induced Kéhler forms of C'P, and contact form
of (SMj‘r (assignable to the analog of Kihler structure in M*?).

3. The wave functions in WCW depending of magnetic fluxes defined by these Kéhler forms over
2-surfaces are physically observables which commute SSA and with M. These fluxes are in a
central role in the classical view about TGD and define what might perhaps be regarded as
a dual description necessary to interpret quantum measurements.

Could M’ correspond or at least include the WCW wave functions (actually the scalar parts
multiplying WCW spinor fields with WCW spinor for a given 4-surface a fermionic Fock state)
depending on these fluxes only? I have previously talked of these degrees of freedom as zero
modes commuting with quantum degrees of freedom and of quantum classical correspondence.

4. There is M — M’ correspondence also for number theoretic degrees of freedom, which naturally
appear from the number theoretic M?® description mapped to H-description. Polynomials P
associated with a given Galois group are analogous to symplectic degrees of freedom with given
fluxes as symplectic invariants. Galois groups and Galois invariants are ”classical” invariants
at the M?® side and should have counterparts on the H side. For instance, the degree n of
polynomial P could correspond to the number of braid stran

More algebraic notions

There are further algebraic notions involved. The article of John Baez (https://cutt.ly/VX1QyqD)
describes these notions nicely.
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1. The condition M” = M is a defining algebraic condition for von Neumann algebras. What
does this mean? Or what could its failure mean? Could M" be larger than M? It would seem
that this condition is achieved by replacing M with M".

M" = M codes algebraically the notion of weak continuity, which is motivated by the idea that
functions of operators obtained by replacing classical observable by its quantum counterpart
are also observables. This requires the notion of continuity. Every sequence of operators must
approach an operator belonging to the von Neumann algebra and this can be required in a
weak sense, that is for matrix elements of the operators.

Does M"” = M mean that the classical descriptions and quantum descriptions are somehow
equivalent? At first, this looks nonsensical but when one notices that the scalar parts of WCW
spinor fields correspond to wave functions in the zero mode of WCW which do not appear in
the line element of WCW, this idea starts to look more sensible. In quantum measurements
the outcome is indeed expressed in terms of classical variables. Zero modes and quantum
fluctuating modes would provide dual descriptions of physics.

2. There is also the notion of hermitian conjugation defined by an antiunitary operator J: a! =
JAJ. This operator is absolutely essential in quantum theory and in the TGD framework it
is geometrized in terms of the Kahler form of WCW. The idea is that entire quantum theory,
rather than only gravitation or gravitation and gauge interactions should be geometrized.
Left multiplication by JaJ corresponds to right multiplication by a.

Connes tensor product and category theoretic notions

Connes tensor product (Connes fusion) [A20] appears in the construction of the hierarchy of inclu-
sions of HFFs. For instance, matrix multiplication has an interpretation as Connes tensor product
reduct tensor product of matrices to a matrix product. The number of degrees of freedom is re-
duced. The tensor product A®pr B depends on the coefficient ring R acting as right multiplication
in A and left multiplication in B. If the dimension of R increases, the dimension of A (B) as a
left /right R module is reduced. For instance, A as an A-module is 1-dimensional.

Also category theory related algebraic notions appear. I still do not have an intuitive
grasp about category theory. In any case, one would have a so-called 2-category (https://cutt.
1y/3XkP02s). M and N correspond to 0-morphisms (objects). One can multiply arguments of
functions in L?(M) and L?(N) by M or N.

Bimodule (https://cutt.ly/EX885WA) is a key notion. For instance the set of R, , of mxn
matrices is a bimodule, which is a left (right) module with respect to m x m (n X n) matrices.
One can replace matrices with algebras. The bimodule p;My; resp. vy Ny is analogous to m X m
resp. n X n matrices. They correspond to 1-morphisms, which behave like units. The bimodule
M NN resp. yNys is analogous to m x n resp. n X m matrices. These two bimodules correspond
to a generating l-morphisms mapping N to M resp. M to N. Bimodule map corresponds to
2-morphisms. Connes tensor product defines what category theorists call a tensor functory.

The notions of factor and trace

The notion of factor as a building block of more complex structures is central and analogous to the
notion of simple group or prime. Factor is a von Neumann algebra, which is simple in the sense
that it has a trivial center consisting of multiples of unit operators. The algebra is direct sum or
integral over different factors.

The notion of trace is fundamental and highly counter intuitive. For the factors of type I,
it is just the ordinary trace and the trace Tr(I) of the unit operator is equal to the dimension n of
the Hilbert space. This notion is natural when direct sum is the key notion. For the other factors,
the situation is different.

Factors can be classified into three types: I, I1I,andII]I.

1. For factors of type I associated with three bosons, the trace equals n in the n-D case and oo
in the infinite-D case.

2. A highly non-intuitive and non-trivial axiom relating to HFFs as hyperfinite factors of type
I1; is that the trace of the unit operator satisfies Tr(Id) = 1: for factors of type II (see the


https://cutt.ly/3XkPO2s
https://cutt.ly/3XkPO2s
https://cutt.ly/EX885WA

4.2. Basic notions related to hyperfinite factors of type II; from TGD point of view9

article of Popa at https://cutt.ly/KX8yOFs|). This definition is natural in the sense that
being a subsystem means being a tensor factor rather than subspace.

The intuitive idea is that the density matrix for an infinite-D system identified as a unit
operator gives as its trace total probability equal to one. These factors emerge naturally for
free fermions. ”Hyperfinite” expresses the fact that the approximation of a factor with its
finite-D cutoff is an excellent approximation.

HFFs are extremely flexible and can look like arbitrarily high-dimensional factor I,,. For
instance, one can extract any matrix algebra M7™(C) as a tensor factor so that one has
M = M™(C) ® MY" by the multiplicativity of dimensions in the tensor product. Should
one interpret this by saying that measurement can separate from a factor an n — D Hilbert
space and that M'/™ is something that remains inaccessible to the measurements considered?
If one introduces the notion of measurement resolution in this manner, the description of
measurement could be based on factors of tyoe I,.

3. The factors of type I, are tensor products of infinite-D factors of type I and HFFs and
could describe free bosons and fermions.

4. In quantum field theory (QFT), factors of type III appear and in this case the notion of
trace becomes useless. These factors are pathological and in QFT they lead to divergence
difficulties. The physical reason is the idea about point-like particles, which is too strong an
idealization.

In the TGD framework, the generalization of a point-like particle to 3-surface saves from these
difficulties and leads to factors of type I and HFFs. In TGD, finite measurement resolution
is realized in terms of a unique number theoretic discretization, which further simplifies the
situation in the TGD framework.

4.2.2 Standard construction for the hierarchy of HFF's
Consider now the standard construction leading to a hierarchy of HFFs and their inclusions.

1. One starts from an inclusion M C N of HFFs. I will later consider what these algebras could
be in the TGD framework.

2. One introduces the spaces L2(M) resp. L?(N) of square integrable functions in M resp. N.
From the physics point of view, bringing in ” L?” is something extremely non-trivial. Space is
replaced with wave functions in space: this corresponds to what is done in wave mechanics,
that is quantization! One quantizes in M, particles as points of M are replaced by wave
functions in M, one might say.

3. At the next step one introduces the projection operator e as a projection from L?(N) to
L?(M): this is like projecting wave functions in N to wave functions in M. I wish I could
really understand the physical meaning of this. The induction procedure for second quantized
spinor fields in H to the space-time surface by restriction is completely analogous to this
procedure.

After that one generates a HFF as an algebra generated by e and L?(N): call it (L?(N),e).
One has now 3 HFFs and their inclusions: My = M, M; = N, and (L?(N),e) = M.

An interesting question is whether this process could generalize to the level of induced spinor
fields?

4. Even this is not enough! One constructs L?(M,) = M3 including M,. One can continue this
indefinitely. Physically this means a repeated quantization.

One could ask whether one could build a hierarchy My, L?(My),..., L*(L%...(My))..): why is
this not done?

The hierarchy of projectors e; to M; defines what is called Temperley-Lieb algebra [A94]
involving quantum phase ¢ = exp(im/n) as a parameter. This algebra resembles that of So,
but differs from it in that one has projectors instead of group elements. For the braid group
e? = 1is replaced with a sum of terms proportional to e; and unit matrix: mixture of projector
and permutation is in question.
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5. There is a fascinating connection in TGD and theory of consciousness. The construction of
what I call infinite primes [K105] [K71] is structurally like a repeated second quantization of
a supersymmetric arithmetic quantum field theory involving fermions and bosons labelled by
the primes of a given level I conjectured that it corresponds physically to quantum theory in
the many-sheeted space-time.

Also an interpretation in terms of a hierarchy of statements about statements about ....
bringing in mind hierarchy of logics comes to mind. Cognition involves generation of reflective
levels and this could have the quantization in the proposed sense as a quantum physical
correlate.

4.2.3 Classification of inclusions of HFF's using extended ADE diagrams

Extended ADE Dynkin diagrams for ADE Lie groups, which correspond to finite subgroups of
SU(2) by McKay correspondence [AT9,[AT7],[A59], discussed from the TGD point of view in [L.130],
characterize inclusions of HFF's.

For a subset of ADE groups not containing F7 and Da,11, there are inclusions, which cor-
respond to Dynkin diagrams corresponding quantum groups. What is interesting that Fg (tetra-
hedron) and Eg (icosahedron/dodecahedron) appear in the TGD based model of bioharmony and
genetic code but not E; (cube and octahedron) [L116].

1. Why finite subgroups of SU(2) (or SU(2)4) should characterize the inclusions in the tunnel
hierarchies with the same value of the quantum dimension M, 41 : M,, of quantum group?

In the TGD interpretation M, reduces to a tensor product of M,, and quantum group,
when M, represents reduced measurement resolution and quantum group the added degrees
of freedom. Quantum groups would represent the reduced degrees of freedom. This has a
number theoretical counterpart in terms of finite measurement resolution obtained when an
extension of ... of rationals is reduced to a smaller extension. The braided relative Galois
group would represent the new degrees of freedom.

2. One can algebraically identify HFF as a ”tunnel” obtained by iterated standard construction

as an infinite tensor power of GL(2,¢) or GL(n,C). The analog of the McKay graph for the
irreps of a closed subgroup of GL(2,C) defines an invariant characterizing the fusion rules
involved with the reduction of the Connes tensor products. This invariant reduces to the
McKay graph for the tensor products of the canonical 2-D representation with the irreps of
a finite rather than only closed subgroups of SU(2). This must take place also for GL(n,C).
Why?
The reduction of degrees of freedom implied by the Connes tensor product seems to imply
a discretization at the level of SU(2) and replace closed subgroups of SU(2) with finite
subgroups. This conforms with the similarity of the representation theories of discrete and
closed groups. In the case of quantum group representations only a finite number of ordinary
finite-D group representations survive.

All this conforms with the TGD view about the equivalence of number-theoretic discretization
and inclusions as descriptions of finite measurement resolution.

In the TGD framework, SU(2) could correspond to a covering group of quaternionic auto-
morphisms and number theoretic discretization (cognitive representations) would naturally lead to
discrete and finite subgroups of SU(2).

4.3 TGD and hyperfinite factors of type //;: a bird’s eye of
view
In this section, a tentative identification of hyperfinite factors of type IT; (HFFS) in the TGD

framework [K125| [K4§] is discussed. Also some general related to the interpretation of HFFs and
their possible resolution in the TGD framework are considered.
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4.3.1 Identification of HFF's in the TGD framework
Inclusion hierarchies of extensions of rationals and of HFF's

I have enjoyed discussions with Baba Ilya Iyo Azza about von Neumann algebras. Hyperfinite
factors of type II; (HFF) (https://cutt.ly/1Xp6MDB) are the most interesting von Neumann
algebras from the TGD point of view. One of the conjectures motivated by TGD based physics,
is that the inclusion sequences of extensions of rationals defined by compositions of polynomials
define inclusion sequences of hyperfinite factors. It seems that this conjecture might hold true!

Already von Neumann demonstrated that group algebras of groups G satisfying certain
additional constraints give rise to von Neuman algebras. For finite groups they correspond to
factors of type I in finite-D Hilbert spaces.

The group G must have an infinite number of elements and satisfy some additional conditions
to give a HFF. First of all, all its conjugacy classes must have an infinite number of elements.
Secondly, G must be amenable. This condition is not anymore algebraic. Braid groups define
HFFs.

To see what is involved, let us start from the group algebra of a finite group G. It gives a
finite-D Hilbert space, factor of type I.

1. Consider next the braid groups B,,, which are coverings of S,,. One can check from Wikipedia

that the relations for the braid group B, are obtained as a covering group of S,, by giving
up the condition that the permutations o; of nearby elements e;, ;41 are idempotent. Could
the corresponding braid group algebra define HFF?
It is. The number of conjugacy classes giJigfl, gi == 0,41 is infinite. If one poses the
additional condition 62 = U x 1, U a root of unity, the number is finite. Amenability is too
technical a property for me but from Wikipedia one learns that all group algebras, also those
of the braid group, are hyperfinite factors of type 1I; (HFFs).

2. Any finite group is a subgroup G of some S,. Could one obtain the braid group of G and
corresponding group algebra as a sub-algebra of group algebra of B,,, which is HFF. This
looks plausible.

3. Could the inclusion for HFFs correspond to an inclusion for braid variants of corresponding
finite group algebras? Or should some additional conditions be satisfied? What the conditions
could be?

Here the number theoretic view of TGD could comes to the rescue.

1. In the TGD framework, I am primarily interested in Galois groups. The vision/conjecture is
that the inclusion hierarchies of extensions of rationals correspond to the inclusion hierarchies
for hyperfinite factors. The hierarchies of extensions of rationals defined by the hierarchies of
composite polynomials P, o ... o P have Galois groups, which define a hierarchy of relative
Galois groups such that the Galois group Gy is a normal subgroup of Gj1. One can say that
the Galois group G is a semidirect product of the relative Galois groups.

2. One can decompose any finite subgroup to a maximal number of normal subgroups, which are
simple and therefore do not have a further decomposition. They are primes in the category
of groups.

3. Could the prime HFFs correspond to the braid group algebras of simple finite groups acting
as Galois groups? Therefore prime groups would map to prime HFFs and the inclusion hier-
archies of Galois groups induced by composite polynomials would define inclusion hierarchies
of HFFs just as speculated.

One would have a deep connection between number theory and HFFs.

How could HFFs emerge in TGD?

What could HFFs correspond to in the TGD framework? Consider first the situation at the level
of MS8.

1. Braid group B(G) of group (say Galois group as subgroup of S,) and its group algebra
would correspond to B(G) and L?(B(G) ). Braided Galois group and its group algebra could
correspond to B(G) and L?(B(Q)).
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The inclusion of Galois group algebra of extension to its extension could naturally define
a Connes tensor product. The additional degrees of freedom brought in by extension of
extension would be below measurement resolution.

2. Composite polynomials P, o .... o P; are used instead of a product of polynomials naturally
characterizing free n-particle states. Composition would describe interaction physically: the
degree is the product of degrees of factors for a composite polynomial and sum for the product
of polynomials.

The multiplication rule for the dimensions holds also for the tensor product so that functional
composition could be also seen as a number theoretic correlate for the formation of interacting
many particle states.

3. Compositeness implies correlations and formation of bound states so that the number of
degrees of freedom is reduced. The interpretation as bound state entanglement is suggestive.
This hierarchical entanglement could be assigned with directed attention in the TGD inspired
theory of consciousness [L111].

An alternative interpretation is in terms of braids of braids of ... of braids with braid strands
at a given level characterized by the roots of P;. These interpretations could be actually
consistent with each other.

4. Composite polynomials define hierarchies of Galois groups such that the included Galois group
is a normal subgroup. This kind of hierarchy could define an increasing sequence of inclusions
of braided Galois groups.

Consider the situation at the H level.

1. At the level of H, elements of the algebras A € {SSA, Aff,I}a associated with super-
symplectic symmetries acting at 5Mjl_, affine isometries acting at light-like partonic orbites,
isometries of (5Mﬁ, are labelled by conformal weights coming as non-negative integers. Also
algebraic integers can be considered but for physical states conformal confinement requires
integer valued conformal weights.

2. One can construct a hierarchy of representations of A such that subalgebras A,, with conformal
weights h > 0 coming as multiples of n and the commutator [A,,, A] annihilate the physical
states. These representations are analogous to quantum groups and one can say that A,
defines a finite measurement resolution in A. A, k > 1 is included by A,, for and one has a

reversed sequence of inclusions.

One can construct inclusion hierarchies defined by the sequences 1 +n; +no +.... "n_; =17
corresponds to SSA. The factor spaces A,, /A, , are analogs of quantum group-like objects
associated with Jones inclusions and the interpretation is in terms of finite measurement
resolution defined by A, -
The factor spaces A/A,, define inclusion hierarchies with an increasing measurement resolu-
tion.

4.3.2 Could the notion of free probability be relevant in TGD?

In discussions with Baba Ilya Iyo Azza, I learned about the notion of free probability (https:
//cutt.ly/LCY51sy)) assignable to von Neumann algebras. This algebra is I1; factor. Originally,
the notion was discovered by Voiolescu [A93] in order to attack some operator algebra problems, in
particular free group factor isomorphism problem and Voiolescu demonstrated there is an infinity
of von Neumann free group factors, which can be isomorphic. One can ask whether the free
probability could have physical applications. In particular, whether the HFF's emerging naturally
in TGD are consistent with this notion.

I try first to describe the notion of free probability as I understand it, on basis of what I
learned in the discussions.

1. Free probability theory and classical probability theory differ because the latter is commu-
tative and the former is highly noncommutative, and the notion of independence differs for
them.

In the classical theory, the expectations of the variables X,V ... are commutative whereas in
free probability theory they become observables represented by operators, which in general are
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non-commutative. The expectations for independent variables satisfy E(XY) = E(X)E(Y)
and more generally E(X™Y"™) = E(X™)E(Y™). The expectations for powers are called
moments.

The free probability theory generalizes independent variables to free, in general non-commutative,
operators a, b, ... of von Neumann algebra M. The mean value F(X) is replaced with a vac-
uum expectation value 7(a) of a, as physicists would call it. The expectations define what
mathematicians call a normal state. Here 7, defining the vacuum expectation, denotes a linear
functional in M.

The random variable a can act on the argument of square integrable functions F'(m) defined
in non-commutative von Neumann algebra M defining a commutative algebra L?(M). The
action of a is non-commutative right or left multiplication of the argument of F'(m). One can
speak of non-commutative probability space.

Could group algebras and braid group algebra represent free algebras? Unfornatunately not.
It is known that HFF probability is not consistent with free algebra property.

2. In the classical theory of independent random variables, one has E(XY) = E(X)E(Y) and it
is possible to express all expectations of monomials of X7, X5, ... of polynomials of variables
X1, X2, .. in terms of moments E(X[).

For free probability theory an analogous situation prevails although the formulas are not
identical. Consider factor M of type [, which in the case ff free algebras cannot be hyper-
finite. A linear functional 7(a) corresponds to vacuum expectation value, using the language
of physicists. One has 7(1) = 1. This corresponds to the condition Tr(Id) = 1. One has
pointless space in the sense that the projector to a ray of Hilbert state defined by M has a
vanishing trace. This corresponds to a finite measurement resolution requiring that the trace
of the projector characterizing quantum measurement is a nonvanishing number.

7(ab) = 7(a)7(b) is true for the generators of the free algebra and states that there is no
correlation between a and b. This is however not true in general.

[Note that an analogous condition holds true for the correlators of free quantum field fields
at the level of momentum space: the n-point correlation functions reduce to products of
momentum space propagators.]

For instance, one would have

7(abab) = 7(a®)7(b)? + 7(a)?T(b%) — 27(a)>7(b)?

instead of E(XY XY) = E(X?)E(Y?) for classical independent variables. Also now however
only powers of a and b appear in the formula. This reduction of the expectations to the
momenta 7(a™) would hold quite generally.

3. A more precise definition is as follows (https://cutt.ly/LCY51sy). Unital subalgebras
Ay, ..., A, are said to be freely independent if the expectation of the product a;...a, is zero
whenever each a; has zero expectation, lies in an Ay, no adjacent a;’s come from the same
subalgebra Ay, and n is nonzero. Random variables are freely independent if they generate
freely independent unital subalgebras.

4. The lattice of non-crossing partitions (https://cutt.ly/jCY6jNe|) for a finite set ordered

cyclically, distinguishes free probability theory from lattice of all partition in the theory if
independent random variables. Two partitions ab and xy are non-crossing if their elements
do not correspond to order axby. The subsets of a non-crossing partition consist of elements,
which are adjacent in this ordering and form connected subsets with k; elements in which a
cyclic subgroup Zj, C Z,, acts. The expression of an element of S,, as a product of elements
of cyclic subgroups Z,, of S,, corresponds to this kind of partition.
Interestingly, in the construction of the non-planar parts of the twistor amplitudes similar
cyclic ordering plays an important role. The problem of the twistor constructed are non-
planar amplitudes which do not allow cyclic ordering. Could it be that the non-planar parts
of the amplitudes do not have counterparts in a deeper theory utilizing HFFs? If so, free
probability could code a very profound aspect of quantum theory.

Free random variables could correspond to the generators of von Neumann algebra of type
I1I;. My un-educated guess was that also HFF's realize free probability. I was wrong: thanks for
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Baba Ilya Iyo Azza for noticing this. It however seems that something highly reminiscent of free
probability emerges for the algebras involved with TGD.

1.

In the TGD framework, the generators typically generate an algebra of observables having
interpretation as algebra of symmetries, such as affine algebra or super symplectic algebra.

ab would correspond to the product of say affine algebra generators a and b labelled by quan-
tum numbers which are additive in the product. 7(a) would vanish as a vacuum expectation
value of a generator with non-vanishing quantum numbers so that for generators one should
have 7(ab) = 7(a)7(b) = 0.

ab is expressible in terms of commutator and anticommutator as the sum [a,b]/2 + {a,b}/2.
Both terms vanish if the quantum numbers of ab are non-vanishing. Only when the quantum
numbers of a and b are opposite, the vanishing need not take place. If ¢ and its Hermitian
conjugate a! with opposite quantum numbers belong to the set of generators of the free
algebra, one has 7(aa') > 0 and is different from 7(a)7(a’) = 0.

Therefore the hermitian conjugates of generators cannot belong to the generators of the
algebra creating the physical states. This algebra is highly reminiscent of free algebra since
all vacuum expectations for the products vanish.

For affine and conformal algebras this condition corresponds to the requirement that physical
states are created using only the generators with non-negative conformal weight n > 0 analo-
gous to the algebra of creation operators. Also the generators of this algebra, whose number
is finite, satisfy this condition. One could speak of half-algebra.

In TGD half-algebras appear for a different reason. The TGD Universe is fractal in several
senses of the word. Also the algebra A of observables is fractal in the sense that it contains an
infinite hierarchy of sub-algebras A,, for which the conformal weights are n-multiples of those
for A. The finite measurement resolution is realized by the conditions that A, and [A,, A]
annihilate physical states and that also the corresponding classical Noether charges vanish,
which gives strong conditions on space-time surfaces. These sub-algebras define hierarchies
of measurement resolutions related to inclusions of HFFs.

If the generators of super symplectic algebra and extensions of affine algebras indeed define
free algebras, the rules of free probability theory could bring in dramatic computational
simplifications if the scattering amplitudes correspond to expectations for the polynomials of
the free-algebra generators.

In ZEO, zero energy states are generated by this kind of half-algebra and its hermitian con-
jugate as superpositions of state pairs assigned to the opposite boundaries of causal diamond
(CD= cd x CPs, where cd is the intersection of future and past directed light-ones).

The members of the state pair are created by the half-algebra resp. its hermitian conjugate
and are assigned with opposite boundaries of CD (intersection of light-ones with opposite time
directions). The corresponding vacua are analogous to Dirac sea of negative energy fermions
and its hermitian conjugate consisting of positive energy fermions. The zero energy states are
analogous to pairs formed by Dirac’s bras and kets. This allows to code the scattering matrix
elements [L126] [L127] as zero energy states.

4.3.3 Some objections against HFF's

One cannot avoid philosophical considerations related to the notion of probability and to the
interpretations of quantum measurement theory (https://cutt.ly/YXxSLS1).

Standard measurement theory and HFF's

The standard interpretations of quantum measurement theory are known to lead to problems in
the case of HFFs.

1.

An important aspect related to the probabilistic interpretation is that physical states are
characterized by a density matrix so that quantum theory reduces to a purely statistical
theory. Therefore the phenomenon of interference central in the wave mechanics does not
have a direct description.
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Another problem is that for HFFs, pure states do not exist as so-called normal states, which
are such that it is possible to assign a density operator to them. This is easy to understand
intuitively since by the Tr(Id) = 1 property of the unit matrix, there is no minimal projection.
Selection of a ray would correspond to an infinite precision and delta function type density
operator. The axiom of choices in mathematics is quite a precise analogy.

One can of course argue that even if pure states as normal states are possible, in practice
the studied system is entangled with the environment and that this forces the description in
terms of a density matrix even when pure states are realized at the fundamental level.

2. In the purely statistical approach, the notion of quantum measurement must be formulated in
terms of what occurs for the density matrix in quantum measurement. The expectation value
of any observable A for the new density matrix generated in the measurement of observable
O with a discrete spectrum must be a weighted sum for the expectations for the eigenstates
of the observable with weights given by the state function reduction probabilities.

Problems are however encountered when the spectrum contains discrete parts. In the TGD
framework, the number theoretic discretization would make it possible to avoid these prob-
lems.

Should density matrix be replaced with a more quantal object?

These problems force us to ask whether there could be something deeply wrong with the notion
of density matrix? The TGD inspired view of HFFs [K125| [K48] suggests a generalization of the
state as a density matrix to a ”complex square root” of the density matrix. At the level of WCW
as vacuum functional, it would be proportional to exponent of a real valued Kéhler function of
WCW identified as Kéahler action for the space-time region as a preferred extremal and a phase
factor defined by the analog of of action exponential. Zero energy state would be proportional to
an exponent of Kahler function of WCW identified as Kéahler action for space-time surface as a
preferred extrema.

Problems with the interpretations of quantum theory

HFFs based probability concept has also problems with the interpretations of quantum theory,
which actually strongly suggest that something is badly wrong with the standard ontology.

1. In TGD, this requires a generalization of quantum measurement theory [L91] [K130] based
on zero energy ontology (ZEO) and Negentropy Maximization Principle (NMP) [K72] |L35],
which is consistent with the second law [L118]. What is essential is that physics is extended
to what I call adelic physics [L50L [L49] to describe also the correlates of cognition. This brings
in a measure for conscious information based on a p-adic generalization of Shannon entropy.

2. ZEO [K130] is forced by an almost exact holography in turn implied by general coordinate
invariance for space-time as 4-surface. States in ZEO are superpositions of classical time
evolutions and and is replaced by a new one in a state function reduction (SFR) [L91], [L128].
The determinism of the unitary time evolution is consistent with the non-determinism of SFR.
The basic problem of quantum measurement theory disappears since there are two times and
two causalities. Causality of field equations and geometric time of physicists can be assigned
to the classical time evolutions. The causality of free will and flow of experienced time can
be assigned to a sequence of SFRs. The findings of Minev et al |[L.77] provide support for
ZEO [L77].

Quantum measurement as a reduction of entanglement can in principle occur for any entangled
system pair if NMP favors it. There is no need to assume mysterious decoherence as a separate
postulate. By NMP, entanglement negentropy can also increase by the formation of entangled
states. Since entanglement negentropy is the sum of positive p-adic contribution and negative
contribution from real entanglement and is positive, the increase of negentropy is consistent
with the increase of real entanglement entropy.

However, since classical determinism is slightly broken [L125] (there is analogy with the non-
uniqueness of the minimal surfaces spanned by frames), the holography is not quite exact.
This has important implications for the understanding of the space-time correlates of cognition
and intentionality in the TGD framework.
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The notion of finite measurement resolution and probabilistic interpretation

One can also ask whether something could go wrong with the quantum measurement theory itself.
This notion of quantum measurement does not take into account the fact that the measurement
resolution is finite.

The notion of finite measurement resolution realized in terms of inclusion, replacing Hilbert
space ray with the included factor and reducing state space to quantum group like object, could
allow us to overcome the problems due to the absence of minimal projectors for HFFs implying
that the notion of Hilbert space ray does not make sense.

Quantum group like object would represent the degrees of freedom modulo finite measure-
ment resolution described by the included factor. The quantum group representations form a
finite subset of corresponding group representations and the state function reductions could occur
to quantum group representations and the standard quantum measurement theory for factors of
type I would generalize.

Connes tensor product and finite measurement resolution

In the TGD framework Connes tensor product could provide a description of finite measurement
resolution in terms of inclusion.

1. In the TGD framework, inclusion of HFF's are interpreted in terms of measurement resolution.
The included factor M C N would represent the degrees of freedom below measurement
resolution. N as M module would mean that M degrees of freedom are absorbed to the
coefficient ring and are not visible in the physical states. Complex numbers as a coefficient
ring of the Hilbert space are effectively replaced with M. In the number theoretic description
of the measurement resolution, the extension of extension is replaced with the extension. The
quantum group, N as M, quantum group with quantum dimension N : M would characterize
the observable degrees of freedom.

This fits with the hierarchy of SSA,,:s. SSA,+1 would take the role of M and SSA,, that of
N. This conforms with the physical intuition. Since n corresponds to conformal weight, the
large values of n would naturally correspond to degrees of freedom below UV cutoff.

Could also IR cutoff have a description in the super symplectic hierarchy of SSA,:s. It
should correspond to a minimal value for conformal weight. The finite size of CD defining a
momentum unit gives a natural IR cutoff. The proposal is that the total momentum assignable
to the either half-cone of CD defines by M® — H duality the size scale L as L = hess/M
[LI00, [LT0T].

2. For the hierarchies of extensions of rationals the upper levels of the extension hierarchy would

not be observed. The larger the value of n = h.s¢/ho, n a dimension of extension of rationals
associated with polynomial P defining the space-time region by M® — H duality, the longer
the quantum coherence scale.
In this case large values for the dimension of extension would correspond to IR cutoff. There-
fore UV and IR cutoffs would correspond to number theoretic and geometric cutoffs. This
conforms with the view that M® — H duality as an analog of Langlands duality is between
number theoretic and geometric descriptions.

3. Duality suggests that also UV cutoff should have a number theoretic description. In the
number theoretic situation, Galois confinement for these levels might imply that they are
indeed unobservable, just like color-confined quarks. In fact, the hypothesis n = hess/ho, n
a dimension of extension of rationals associated with polynomial P defining the space-time
region by M® — H duality, for the effective Planck constant leads to estimate for ordinary
Planck constant as h = nghg where ng corresponds to the order of permutation group S7.
Could the interpretation be that these degrees of freedom are Galois confined and unobservable
in the scales at which measurements are performed. Smaller values of h. sy would appear only
in length scales much below the electroweak scale and at the limit of C'Ps scale?

How finite measurement resolution could be realized using inclusions of HFFs?

The basic ideas are that finite measurement resolution corresponds to inclusions of HFFs on one
hand, and to number theoretic discretizations defined by extensions of rationals. In both cases one
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has inclusion hierarchies.

One can consider realizations at the level of WCW (geometry) and at the level of number
theory in terms of adelic structures assignable to the extensions of rationals. Space-time surfaces
can be discretized and this induces discretization of WCW. Even more, WCW should be in some
natural manner effectively discrete.

In [K57, [K36| [K95] the construction WCW Kéhler metric is considered and the mere exis-
tence of the K ”ahler metric is expected to require infinite-D isometry group and imply constant
curvature property. The Kéahler function K is defined in terms of action consisting of the Kéhler
action and volume part for a preferred extremal (PE). There are however zero modes present and
the metric depends on the zero modes. Twistor lift fixes the choices of H uniquely [L126] [L127].

How to define WCW functional integral and how to discretize it? I have proposed that
the Gaussian approximation to WCW integration is exact and allows to define a discretization
in terms of the maxima (maybe also other extrema) of Ké&hler function. = The proposal is that
the exponential of Kahler function should correspond to a number theoretic invariant, perhaps the
discriminant of the polynomial P defining PE by M3 — H duality.

Consider first the standard realization of the restriction P : N — M reducing the measure-
ment resolution.

1. The definition of a unitary S-matrix for HFFs is non-trivial. Usually one considers only
density matrices expressible in terms of projection operators P to subspaces of HFF.
I have earlier proposed the notion of a complex square root of the density matrix as a
generalization of the density matrix. In a direct sum representation of S over projections,
in which S-matrix is diagonal, and the projection operators would be multiplied by phase
factors. This definition looks sensible at the level of WCW but perhaps as a generalization
of the density matrix rather than the S-matrix.

The exponent of Ké&hler function could have a modulus multiplied by a phase factor. Also
an additional state dependent phase factor can be considered. The mathematical existence of
the WCW integral fixes the modulus essentially uniquely to an exponent of Kéhler function
K multiplied by the metric volume element. K could also have an imaginary part.

2. The projected S-matrix PSP is unitary if the projection operator P must commute with S.
S-matrix is realized at the level of HFFs so that the matrix representation does not make
sense in a strict sense since the notion of ray is not sensical.

3. Projection N — M respects unitarity only if P commutes with S and ST. The S-matrix
does not have matrix elements between M and N. This is a very tough condition.

How the finite measurement resolution could be realized in the TGD framework?

1. In WCW spin degrees of freedom plus algebras A,,. Number theoretic degrees of freedom are
discrete and correspond to various p-adic degrees of freedom. Continuous WCW is associated
with the real part of the adelic structure. Its number theoretic parts correspond to the
p-adic degrees of freedom, which are discrete.

2. Discretization could be a natural and necessary part of the definition of WCW. Could dis-
crete  WCW degrees of freedom be identified in terms of symplectic and number theoretic
invariants? They would represent for WCW spinor fields scalar degrees scalar degrees of free-

dom separable from spin degrees of freedom representable in terms of algebras A,.  These
two kinds of degrees of freedom correspond to M and M’ if the proposed general picture is
correct.

Measurement resolution would be realized in terms of braid group algebras and algebras A,,
defining the measurement resolution. What does this mean at the level of WCW?

1. Bosonic generators of SSA,, and possible other algebras A,, define tangent space basis for
WCW. The gauge conditions stating that A, and [A,, A] annihilate WCW spinor fields
define a finite measurement resolution selecting only a subset of tangent space-generators and
their super counterparts.

2. Consider first ideal measurement resolution in a function space. There is a complete basis of

scalar functions ®,, in a given space. The sum ®,,(x)®P,,(y) = d(x,y) would hold true for
an infinite measurement resolution.
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In a finite measurement resolution one uses only a finite subset of the scalar function basis,
and completeness relation becomes non-local and is smoothed out: d(z,y) — D(x,y), which
is non-vanishing for different point pairs x,y.

3. The condition of finite measurement resolution should define a partition of WCW to disjoint
sets. In real topology, the condition |z — y|? would define a natural measurement resolution
but would not define a partition.

In p-adic topology, the situation is different: the p-adic distance function d(x —y) has values
p~™ and the sets d(x — y) < d are either disjoint or identical. One would have the desired
partition. Therefore it seems that p-adicization is essential and the p-adic variants of WCW,
or rather regions of WCW, obtained by discretization could allow partitions corresponding to
various p-adic number fields forming the adele. Different p-adic representations of algebras
A,, would define measurement resolutions.

There is a connection with spin glasses where spin energy landscape consisting of free energy
minima allows ultrametric topology: p-adic topologies are indeed ultrametric. The TGD view
of spin glasses is discussed in [L120]. One expects the decomposition of WCW to different
p-adic topologies with ramified primes of polynomial P defining the p-adic sectors to which
a given space-time surface can belong.

4. The consistency condition is that the transition probabilities P(m — n) between the states
satisfying the gauge conditions representing finite measurement resolution, predicted by S-
matrix or its TGD counterpat, should be constant should be constant in the subsets of WCW
for which the completeness relation gives a non-vanishing D(z,y) for the point pairs (z,y).

5. Does WCW have hierarchies of partitions such that the constancy of P(m — n) holds true
within each partition?
Do these partitions correspond to hierarchies of inclusions of HFF's defining increasing res-
olution? M® — H duality does not allow all kinds of hierarchies. The hierarchies should be
induced by the hierarchies of extensions of rationals. As the measurement precision
increases, the partition involves an increasing number of sets and at the limit of ideal mea-
surement resolution, the partition consists of algebraic points of WCW and of space-time
surfaces.

6. P = () condition implying that space-time surfaces correspond to infinite prime, could
appear as a consistency condition for allowed hierarchies. Preferred extremals and preferred
polynomials would correspond to each other. Note that P = ) conditions fixes the scaling of
P.

In the TGD framework, one can challenge the idea, originally due to Wheeler, that transition
probabilities are given by a unitary S-matrix.

1. The TGD based proposal is that in spin degrees of freedom, that is for many-fermion states
for a given space-time surface, the counterpart of S-matrix could be be given by the analog
of Kéhler metric in the fermionic Hilbert space [L113]. This would mean a geometrization of
quantum theory, at least in fermionic degrees of freedom.

The transition probabilities would be given by P(m — n) = K, K™ and the properties of
Kahler metric K give analogs of unitary conditions and probability conservation plus some
prediction distinguishing the proposal from the standard view.

2. In the infinite-D situation, the existence of Hilbert space Ké&hler metric in the fermionic
sector is an extremely powerful condition and one expects that the Kahler metric is a unique
constant curvature metric allowing a maximal group of isometries. This, together with p-
adization, would help to satisfy the constancy conditions for P(m — n) inside the sets for
which D(z,y) is non-vanishing. In fact, one expects that since super-generators are pro-
portional to isometry generators contracted with WCW gamma matrices the metric in the
fermionic degrees of freedom is induced by Kéahler metric in the basis of isometry generators.

3. This condition could allow a generalization to include the states obtained by application of
the bosonic generations of A,, the to ground state. This would mean that in bosonic degrees
of freedom Kahler metric of WCW in the isometry basis defines the transition probabilities.
Tangent vectors of WCW correspond to the isometry generators. An arbitrary number of
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isometry generators is involved in the definition of the state. However, the K&hler metric of
WCW induces a Kéahler metric in the algebra generated by the isometry generators, which
is analogous to the algebra of tensors.

4.4 M® — H duality and HFF's

M?8 — H duality [L100}, [L101] gives strong constraints on the interpretation of HFFs at the number
theoretic M® side and the geometric H side of the duality. One must also understand the relation
between M® — H duality and M — M’ duality, identifiable as quantum-classical correspondence
(QCC).

Although McKay correspondence [A79) [A77, [A59] [A47, [A46] is not quite at the core of
M?® — H duality, it is difficult to avoid its discussion. I have considered McKay correspondence
also before [L38| [L94, [.95] [.130].

4.4.1 Number theoretical level: M?® picture
Braided Galois group algebras

For n-braids the permutation group has extension to a braid group B,, defining an infinite covering
of S,, for which permutation corresponds to a geometric operation exchanging the two strands of
a braid. There are also hierarchies of finite coverings.

Sy, is replaced with the Galois group which is a subgroup of S,, and the property of being a
subgroup of .5, allows to identify a braided Galois group as a braided Galois subgroup of braided
Spn. In the same way one can identify the braided Galois group algebra defining HFF as a sub-
algebra of HFF associated with braid group algebra defined by S,. One can ask whether the
property of being a number theoretic braid could be interpreted as a kind of symmetry breaking
to S, to the Galois group of P.

M8 — H duality [L100, [L101] suggests that the roots correspond to braid strands of geometric
braids in H. If so, the braided Galois group would be both topological and number theoretic:
topology, natural at the level of H, and number theory, natural at the level of M2, would meet by
M?® — H duality.

This picture looks nice but one can make critical questions.

1. Can the n roots really correspond to n braid strands at the level of H? The n roots correspond
to, in general complex, algebraic numbers associated with the extension of rationals. The real
projections correspond to mass shells with different mass values mapped to light-cone proper
time surfaces in H by M® — H duality. Therefore the action of the Galois group changes
mass squared values and does not commute with Lorentz transformations. This suggests a
violation of causality.

Should one restrict the Galois group to the isotropy group of a given root? This would mean
number theoretic symmetry breaking and could relate to massivation. This restriction would
however trivialize the braid.

2. Zero energy ontology (ZEO) could come to the rescue here. In fact, ZEO implies space-time

surfaces are the basic objects rather than 3-surfaces so that quantum states are superpositions
of space-time surfaces as preferred extremals (PEs). This is forced by the slight violation of
determinism of field equations implying also a slight violation of ideal holography.
Space-time surfaces are minimal surfaces [L125] analogous to soap films spanned by frames
and there can be a slight violation of the strict determinism localized to frames as already
2-D case suggests. This could be also seen as violation of classical causality. At the level of
consciousness theory it would be a classical correlate for the non-determinism of intentional
free will.
In particular, time-like braids for which the braiding is time-like and corresponds to a dynam-
ical dance pattern, make sense. For these braids one can in principle select the mass squared
value mapped to a value of light-cone proper time a to belong to the braid. The values of a
need not be the same.

Also Galois confinement, which is a key aspect of the number theoretic vision, is involved.
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1. Galois confinement states that physical states transform trivially under the Galois group of
extension. This condition for physical states follows as a consequence of periodic boundary
conditions for causal diamond (CD), which takes the role of box for a particle in a box.

A weaker condition would be that singlet property holds only for the isotropy group of a
given root of the polynomial P characterizing the space-time region and corresponding to
mass squared value and at the level of H to a value of the light-cone proper time a.

2. In M8, the momenta of particles are points at the mass shells of M* C M? identifiable as
hyperbolic spaces H> C M* defined with mass squared values defined as the roots of P. The
momenta correspond to algebraic integers (the momentum unit is defined by CD) for the
extension defined by P, and in general they are complex. The interpretation is as virtual
particles which form physical particles as composites. The physical states must have total
momenta, which are ordinary integers. This gives the simplest form of Galois confinement.

3. Commutativity with the Lorentz group would favor the isotropy group instead of the full
Galois group. One must be however very cautious since in zero energy ontology (ZEO)
physical states correspond to a superposition of space-time surfaces and time-like braids are
natural. There is a small violation of strict determinism at the level of preferred extremas.
The labelling of braid strands based on the images of roots as mass squared values at level of
H is quite natural and is not in conflict with causality.

The Galois group for a polynomial P, o ... o P, has a decomposition to normal subgroups
G A; acting as Galois groups for the i:th sub-extension.

1. The number of roots is a product of the numbers of roots for P;. Therefore the natural
identification is that number theoretic braid groups allow a natural interpretation in terms of
braids of braids ... of braids.

2. This hierarchy defines an inclusion hierarchy for the braided HFF's assignable to the polyno-
mials Py o...o P, k=1,...,n. It is not quite clear to me whether these inclusions reduce to
Jones inclusions and whether one can characterize the inclusions in the sequence by the same
invariants as in the case of Jones inclusions.

3. In this picture the Connes tensor product would correspond to formation of composite poly-
nomials P o Q. The reduction in the number of degrees of freedom from that for the ordinary
tensor product of braided Galois group algebras would be due to interactions described in
terms of polynomial decomposition. Various braids in the hierarchy could correspond to
braids at different sheets of the many-sheeted space-time.

4. Any normal subgroup Gal; of Galois group Gal defining a sequence of inclusions of normal
sub-groups Gal; can be trivially represented. By normal subgroup property, the elements
of Gal can be represented as semidirect products of elements of the factor groups G; =
Gal;/Gal;—1. Any representation of Gal can be decomposed to a direct sum of tensor products
of representations of Gj.

From this decomposition it is clear that any group G; in the decomposition can be trivially
represented so that one obtains a rich structure of representation in which some Gj:s are
trivially represented.

A possible interpretation is that in TGD, rational polynomials give discrete cognitive rep-
resentations as approximations for physics. Cognitive representations are in the intersection of
p-adicities and reality defined by the intersection of reals and extension of p-adics defined by the
algebraic extension of the polynomial P defining a given space-time surface. Continuum theory
would represent real numbers as a factor of the adele.

One can ask whether the various zeta functions consistent with the integer spectrum for the
conformal weights and possibly also with conformal confinement, appear at the continuum limit
and provide representations for the space-time surfaces at this limit? In this framework, it would
be natural for the roots of zeta to be algebraic numbers [K96]. Also in the case of ¢, the virtual
momenta of fermions would be algebraic integers for virtual fermions and integers for the physical
states. This makes sense if the notions of Galois group and Galois confinement are sensible for (.

As noticed, the notion of ¢ generalizes. The so-called global L-functions (https://cutt.
1y/3VNPYmp|) are formally similar to ¢ and the extended Riemann Hypothesis could be true for
them. The physical motivation for RH would be that it would allow fermion with any conformal
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weight to appear in a state which is conformal singlet. Algebraic integers for a finite extension of
rationals replace integers in the ordinary ¢ and one has an entire hierarchy of L-functions. Could
one think that the global L-functions could define preferred extremals at the continuum limit?

How could the degrees of prime polynomials associated with simple Galois groups and
ramified primes relate to the symmetry algebras acting in H?

The goal is to relate various parameters characterizing polynomials P for which braided Galois
group algebras define HFF's to the parameters labelling the symmetry algebras defining hierarchies
of HFFs at the level H. There are good reasons to believe that polynomial composition defines
inclusion of HFFs and that this inclusion induces the inclusions for the symmetry algebras A,, at
the level of H.

One can identify simple Galois groups as prime groups having no normal subgroups. The
polynomial P associated with a simple Galois group cannot have no non-trivial functional decom-
position P, o ... o P if one stays in the field of rationals (say). This leads to the notion of prime
polynomials. Note that this notion of primeness does not correspond to the irreducibility stating
that polynomials with coefficients in a given number field do not allow decomposition to lower
degree polynomials.

A polynomial P is also partially characterized by ramified primes and discriminant defines
a Galois invariant for the polynomial as also the symmetric polynomials formed from the roots.

How do these two notions of primeness relate to the p-adic prime decomposition of adelic
structures defined by the algebras A,,, which act at the level of H and decomposed adelically to a
tensor product of all A, ,:s?

Simple Galois groups correspond to prime polynomials. This notion looks fundamental
concerning the understanding of the situation at the level of H.

1. Polynomials can be factorized into composites of prime polynomials [A24] [A69] (https://
cutt.ly/HXAKDzT and https://cutt.ly/5XAKCe2). A polynomial, which does not have a
functional composition to lower degree polynomials, is called a prime polynomial. It is not
possible to assign to prime polynomials prime degrees except in special cases. Simple Galois
groups with no normal subgroups must correspond to prime polynomials.

2. For a non-prime polynomial, the number N of the factors P;, their degrees n; are fixed and
only their order can vary so that n; and n = [[n; is an invariant of a prime polynomial
and of simple Galois group [A24] [A69]. Note that this composition need not exist for monic
polynomials even if the Galois group is not simple so that polynomial primes in the monic
sense need not correspond to simple Galois groups.

3. The number of the roots of P; is given by its order n;, and since Galois group and its braided
variant permute the roots as subgroup of §,,,, it is natural to assume that the roots define an
n;-braid. The composite polynomial would define braid of braids of ... of braids. At the level
of H the braid strands would correspond to flux tubes and braiding would have a geometric
interpretation.

4. The integer n characterizing the algebra A, acting in H would naturally correspond to the
degree of n of P and the decomposition of P to polynomial primes would naturally correspond
to an inclusion hierarchy A,, A,, C Ap,n, C ... C A, with improving resolution allowing to
see braids and braids of braids.

The corresponding factor spaces realizing the notion of finite measurement resolution, would
be analogous to quantum groups obtained when some number of the highest levels in the
hierarchy of braids in the braid of braids of ... braids are neglected and the entire algebra
is replaced with a quantum group-like structure. This means cutting off some number of
the highest levels in the tree-like hierarchy. The trunk is described by a quantum group-like
object.

5. This hierarchy corresponds to the hierarchy of Galois groups as normal subgroups assignable to
braids in the decomposition and the hierarchy of corresponding braided Galois group algebras
defining inclusions of HFFs. Galois group algebras would act as braid groups inc corresponding
algebras A,,. Therefore number theoretic and geometric views would fuse together.
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6. Connes tensor product is a central notion in the theory of HFFs and it could be naturally
associated with the inclusions of brided Galois group algebras. The counterpart for the
quantum group as factor space N/M of the factors would correspond to the inclusion Gal;—1 C
Gal; as a normal subgroup. The inclusion defines group G; = Gal;/Gl;—1. Also its braided
variant is defined. The factor space of braided group algebras would be the counterpart of
the quantum group G;.

Note that these quantum group-like objects could be much more general than the quantum
groups defined by subgroups of SU(2) appearing in Jones inclusions.

What about the interpretation of the ramified primes, which are Galois invariants as also
the root spectrum (but not the roots themselves) and depends on the polynomial.

In accordance with the proposed physical interpretation of the ramified primes as preferred p-
adic primes labelling particles in p-adic thermodynamics, ramified primes p; would define preferred
p-adic primes for the p-adic variants of the algebras A,, in the adelic generalization of A,, as tensor
product of p-adic representations of A,, , of A,,. A,, ,, would be physically and also mathematically
special.

Both the degree n as the number of braids of P and the ramified primes of P would dictate
the physically especially relevant algebras A,, ,,. For instance, un-ramified primes could be such
that corresponding p-adic degrees of freedom are not excited.

4.4.2 Geometric level: H picture
The hierarchies of algebras SSA,,,Aff, and I,

The algebras A,, € {SSA,, Af fn, I} for n = p acting at the level of WCW seem to have special
properties since the values of the conformal weights for the factor algebras defined by the conditions
that A,, and [A,, A] annihilate physical states, allow the structure of finite field G(p) or even its
extension G(p, k) for conformal weights in extension of rationals. The representations would be
finite-D. Also the values n = p* seem special and the finite field representations of S SA, could be
extended to p-adic representations.

This raises the question, whether one could regard n as a p-adic number? The interpretation
of n as the number of braid strands assignable to roots of the polynomial P with degree n defining
the space-time surface, looks more approriate since it allows braid group algebra of P to act in
SS A, This identification does not favor this interpretation.

A more plausible interpretation is that the p-adic primes, identifiable as ramified primes of
P, characterize the p-adic representations of SSA,,. This also conforms with the interpretation of
preferred p-adic primes characterizing elementary particles as ramified primes.

The polynomials with prime degree could be however physically special. The algebras SSA,,
with p defining the degree of polynomial p allow finite field representations, which extend to p-adic
representations and one can ask whether the prime decomposition of n could allow some kind of
inclusion hierarchy of representations.

This would also give a possible content for the p-adic length scale hypothesis p ~ 2F, k
prime, or its generalization involving primes near powers of prime ¢ = 2,3,5,.... A more general
form of p-adic length scale hypothesis would be p ~ ¢™, n the degree of P.

Commutants for algebras A, and braid group algebras

For the super A € {SSA, Aff, I}, the inclusion An,; to SSA, should define a Connes tensor
product. One would obtain inclusion hierarchies labelled by divisibility hierarchies n; + ng + .....
For braid group algebras one obtains similar hierarchies realized in terms of composite polynomials.

What about the already mentioned ”classical” degrees of freedom associated with the fluxes
of the induced Kahler form? They should be included to M’ at the level of H. The hierarchies of
flux tubes within ... within flux tubes correspond to the hierarchies assignable to M’ at the level
of H.

The number theoretic degrees of freedom identifiable as invariants of Galois groups should
be included to M’ at the number theoretical level. The hierarchies of roots assignable to composite
polynomials P,o...0P; with roots assigned to the strands of time like braid strands could correspond
to these hierarchies at the level of M8,
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4.4.3 Wild speculations about McKay correspondence

McKay correspondence is loosely related to the HFFs in TGD framework [L38] [L95] .94 [L130]
and I cannot avoid the temptation to try to understand it in TGD framework.

1.

The origin of the McKay graphs for inclusions is intuitively understood. Representations of fi-
nite subgroups of SU(2) are assignable to 2-D factors. These representations could correspond
to closed subgroups of quaternionic SU(2) on the basis of the reduction to M3 (C)@Ms(C)®.....
A reduction of degrees of freedom happens for HFFs since they are subalgebras of B(H) and
this could reduce the closed subgroup to a finite subgroup.

Also the interpretation N as tensor product of M and quantum group SU(2) suggests the
same since quantum groups have a finite number of irreps, when ¢ equal is a root of unity.
The analog of McKay graph coding fusion rules for the quantum group tensor products would
reduce to McKay graphs.

. Why would the McKay graphs for finite subgroups of U(2) correspond to those for affine

or ordinary Lie algebras? Could these Lie-algebras emerge from the inclusions. This is a
mystery, at least to me.

. In the TGD framework one can ask why there should be Weyl group of extended ADE

Dynkin diagram assignable to SSA,,7 SSA,, defines a representation of SSA with SSA,, and
[SSA,,SSA] acting trivially. Could this representation correspond to an affine or ordinary
ADE algebra? Similar question makes sense for all algebras A, € {SSA,, Affn,In}. Apn
would define a cutoff of the SSA so that all generators with conformal weight larger than n
would be represented trivially.

Note that for n = p, the conformal weights of A,, would define a finite field and if algebraic
integers also its extension. This case could correspond to polynomials defining cyclic extension
of order p with roots coming as roots of unity.

The Weyl groups assignable to the ”factor algebra” of SSA,, defined by the gauge conditions
for A,, and [A,,, A] and proposed to reduce to ADE type affine or ordinary Lie algebra should
relate to Galois groups for polynomial P with degree n as number of braid strands.

(a) Could the braid strands correspond to the roots of ADE algebra so that roots in the
number theoretic sense would correspond to the roots in the group theoretic sense? This
would conform with Langlands correspondence [K59, [A40] [A39] discussed from the TGD
perspective in [K59] [L2l [L2§].

(b) Could the Weyl groups allow identification as subgroups of corresponding Galois groups?

Note that simple Galois groups correspond to so-called prime polynomials [A24) [A69] allowing

no decomposition to polynomials of lower degree so that the preferred values of n would
correspond to prime polynomials.

. Affine electroweak and color algebras an their M4 counterparts would be special since they

wuuld not emerge a dynamical symmetries of SSA,, but define algebras Af f,, and I,, related
to the light-like partonic orbits. They would also correspond to symmetries both at the level
of M8 and H.

This inspires the following questions, which of course look very naive from the point of view

of a professional mathematician. My only excuse is the strong conviction that the proposed picture
is on the right track. I might be wrong.

1.

The Jones inclusion of HFFs [A48| [A96] [A97] involves an extended or ordinary ADE Dynkin
diagram assignable also to finite subgroups of SU(2) by McKay correspondence [AT79].
Could the Weyl group of an extended ADE diagram really correspond to an affine algebra or
quantum group assignable to A, 7 If so, one would have dynamical symmetries and should
relate to the ”factor” space SSA/SSA, in which SSA,, defines a measurement resolution.

. HFF can be regarded algebraically as an infinite tensor power of Ms(C'). Does the repre-

sentation as a 2 X 2 matrix imply the emergence of representations of a closed subgroup of
SU(2) or its quantum counterpart. Could the reduction of degrees of freedom due to the
finite measurement resolution imply that the closed subgroup reduces to a finite subgroup?
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3. The algebraic decomposition of HFF to an infinite tensor power of M?(C) would suggest that
the including factor N with dimension 1 is equal to M% ® M4 where dg is the quantum
dimension characterizing eith M or N. Could these two objects correspond to an ADE type
affine algebra and quantum group with inverse quantum dimensions? Or could either of them
correspond to ADE type affine algebra or quantum group?

4. Could one think that the analog of McKay graph for the quantum group-like object assignable
to affine group by a finite measurement resolution reduces to the McKay graph for a finite
subgroup of SU(2) because only a finite number of representations survives?

5. Could the finite subgroups of SU(2) correspond to finite subgroups for the covering group of
quaternion automorphisms acting naturally in M8? Could these finite subgroups correspond
to finite subgroups of the rotation group SU(2) at H side?

Could only the n¢ (dimension of Cartan algebra) roots appearing in the Dynkin diagram be
represented as roots of a polynomial P in extension of rationals or its quantum variant? This option
fails since the Dynkin diagram does not allow a symmetry group identifiable as the Galois group.
The so called Steinberg symmetry groups (https://cutt.ly/GXMb8Si) act as automorphisms of
Dynkin diagrams of ADE type groups and seem quite too small and fail to be transitive as action
of the Galois group of an irreducible polynomial is.

M?® — H duality inspires the question whether a subgroup of Galois group could act as the
Weyl group of ADE type affine or ordinary Lie algebra at H side.

1. The Galois group acts as a braid group and permutes the roots of P represented as braid
strands. Weyl group permutes the roots of Lie algebra

The crazy question is whether the roots of P and roots of the ADE type Lie-algebra could
correspond to each other. Could the roots of P in N — 1-correspondence with the non-
vanishing roots of the representation of Lie algebra or of its affine counterpart containing an
additional root corresponding to the central extension?

If the roots appearing in the Dynkin diagram correspond to a subset of roots of polynomial
P, the Weyl group could correspond to a minimal subgroup of the Galois group generated by
reflections and generating all non-vanishing roots of the Lie algebra.

2. The action of the Weyl group should give all roots for the representation of G. Could the Weyl
group, which is generated by reflections, correspond to a minimal subgroup of Gal giving all
roots as roots of P when applied to the McKay graph?

The obvious objection is that the order of the Weyl group increases rapidly with the order
of the Cartan group so that also the Gal and also the order of corresponding polynomials
P would increase very rapidly. Gal is a subgroup of S,, having order n! for a polynomial of
degree n so that the degree of P need not be large and this is what matters.

If the m braid strands labelled by the m roots correspond to the roots of the affine algebra,
it would be natural to assign affine algebra generators to these roots with the braid strands.
The condition n = Nm implies that m divides n. For Gal = S,, with order n! this condition
is very mild. Gal = Z, fixes the Lie algebra to A,.

The root space of the dynamical symmetry group would have dimension m, which is a factor
of n. For Lie algebras A,, and Ds,, (with n > 4) appear besides Fg and Fg. For affine Lie
algebras A, or hatD,, (with n > 3) and Eg, E; and Fy appear. For large values of n, there
are two alternatives for even values of n.

3. One can also consider quantum arithmetics based on & and ® and replace P with its quantum
counterpart and solve it in the space of irreps of the finite subgroup G of U(2) defining a
quantum analog for an extension of rationals. The roots of the quantum variant of P would
be direct sums of irreps of G.

These quantum roots define nodes of a diagram. This diagram should include as nodes the
roots of the Dynkin diagram defined by positive roots, whose number is the dimension n¢ of
Cartan algebra.

Could the missing edges correspond to the edges of the Mac-Kay graph in the tensor product
with a 2-D representation of SU(2) restricted to a subgroup? The action of 2-D representation
would generate the (extended) Dynkin diagram ADE type.
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One can look this option in more detail.

1. Assume that adjoint representation Adj of an affine or ordinary ADE Lie group L emerges in

the tensor product M?(C)®...@ M?(C) allowing embedding of SU(2) as diagonal embedding,.
One can imbed the finite subgroup G C SU(2) as a diagonal group G x G X ... X G to
M?(O)® ... M?(0).
Also a given representation of G can be embedded as a direct sum of the copies of the
representation, each acting in one factor of M?(C) ® ... ® M?(C). The 2 — D canonical
representation of G C SU(2) has a natural action in the G x G x ... x G to M?(C)®...@ M?(C)
and would generate a McKay graph.

One can also embed G to L as G C SU(2) C L. Adj can be decomposed to irreps G.
Therefore the tensor product action of various irreps of G, in particular the canonical 2-D
representation, in Adj is well-defined. The tensor action of the 2-D canonical representation
of G gives a McKay graph such that the nodes have weights telling how many times a given
irrep appears in the decomposition of Adj to irreps of G. The weighted sum of the dimensions
of irreps of G is equal to the dimension of Adj.

2. This construction is possible for any Lie group and some consistency conditions should be
satisfied. That McKay graph is the same as the generalized Dynkin diagram would be such
a consistency condition and leave only simply laced Lie groups.

3. What can one say about the weights of the weighted McKay graph? Could the weights be
the number of the images of the positive root under the action of the Weyl group W of L.

The McKay graph would correspond only to the ne (dimension of the Cartan algebra) positive
roots appearing in the Dynkin diagram of Adj. How to continue the Dynkin dynkin to a root
diagram of Adj?

4. Could the n¢ roots in the Dynkin diagram correspond to the roots of a polynomial P in a
quantum extension of rationals with roots as irreps of G appearing in the McKay graph. The
multiple of a given root would correspond to its orbit under W. The action of W as reflections
in the quantum extension of rationals, spanned by the roots of Adj, as vectors with integer
components would generate all roots of Adj as quantum algebraic integers in the quantum
extension of rationals.

5. As proposed, one could interpret the Dynkin diagram as a subdiagram of the root diagram
of Adj and identify its nodes as roots of Gal for a suitable polynomial P. The Weyl group
could be the minimal transitive subgroup of Gal.

6. The Galois group of extension of ... of rationals is a semidirect of Galois groups which can
be chosen to be simple so that the polynomials considered are prime polynomials unless one
poses additional restrictions. What does this restriction mean for the ADE type Weyl group
of assignable to the exrtension

4.5 About the selection of the action defining the Kahler
function of the ”world of classical worlds” (WCW)

The proposal is that space-time surfaces correspond to preferred extremals of some action principle,
being analogous to Bohr orbits, so that they are almost deterministic. The action for the preferred
extremal would define the Kéhler function of WCW [K57, [K95].

How unique is the choice of the action defining WCW Kahler metric? The problem is that
twistor lift strongly suggests the identification of the preferred extremals as 4-D surfaces having
4-D generalization of complex structure and that a large number of general coordinate invariant
actions constructible in terms of the induced geometry have the same preferred extremals.

4.5.1 Could twistor lift fix the choice of the action uniquely?

The twistor lift of TGD [K98] [L122| [L126, [L127] generalizes the notion of induction to the level
of twistor fields and leads to a proposal that the action is obtained by dimensional reduction of
the action having as its preferred extremals the counterpart of twistor space of the space-time
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surface identified as 6-D surface in the product T(M*?) x T(CP;) twistor spaces of T(M*) and
T(CP) of M* and CP,. Only M* and CP, allow a twistor space with Kihler structure [A57] so
that TGD would be unique. Dimensional reduction is forced by the condition that the 6-surface
has S2-bundle structure characterizing twistor spaces and the base space would be the space-time
surface.

1. Dimensional reduction of 6-D Ké&hler action implies that at the space-time level the funda-
mental action can be identified as the sum of Kéahler action and volume term (cosmological
constant).  Other choices of the action do not look natural in this picture although they
would have the same preferred extremals.

2. Preferred extremals are proposed to correspond to minimal surfaces with singularities such
that they are also extremals of 4-D Kahler action outside the singularities. The physical
analogue are soap films spanned by frames and one can localize the violation of the strict
determinism and of strict holography to the frames.

3. The preferred extremal property is realized as the holomorphicity characterizing string world
sheets, which generalizes to the 4-D situation. This in turn implies that the preferred ex-
tremals are the same for any general coordinate invariant action defined on the induced gauge
fields and induced metric apart from possible extremals with vanishing C' P, Kahler action.
For instance, 4-D Kéhler action and Weyl action as the sum of the tensor squares of the
components of the Weyl tensor of C'P, representing quaternionic imaginary units constructed
from the Weyl tensor of C'P, as an analog of gauge field would have the same preferred
extremals and only the definition of Kéhler function and therefore Kéhler metric of WCW
would change. One can even consider the possibility that the volume term in the 4-D action
could be assigned to the tensor square of the induced metric representing a quaternionic or
octonionic real unit.

Action principle does not seem to be unique. On the other hand, the WCW Kéhler form
and metric should be unique since its existence requires maximal isometries.

Unique action is not the only way to achieve this. One cannot exclude the possibility that
the Kéhler gauge potential of WCW in the complex coordinates of WCW differs only by a complex
gradient of a holomorphic function for different actions so that they would give the same Kéahler
form for WCW. This gradient is induced by a symplectic transformation of WCW inducing a
U(1) gauge transformation. The Kéhler metric is the same if the symplectic transformation is an
isometry.

Symplectic transformations of WCW could give rise to inequivalent representations of the
theory in terms of action at space-time level. Maybe the length scale dependent coupling parame-
ters of an effective action could be interpreted in terms of a choice of WCW Kahler function, which
maximally simplifies the computations at a given scale.

1. The 6-D analogues of electroweak action and color action reducing to Kahler action in 4-D
case exist. The 6-D analog of Weyl action based on the tensor representation of quaternionic
imaginary units does not however exist. One could however consider the possibility that only
the base space of twistor space T'(M*) and T(C P») have quaternionic structure.

2. Kahler action has a huge vacuum degeneracy, which clearly distinguishes it from other actions.

The presence of the volume term removes this degeneracy. However, for minimal surfaces hav-
ing C'Ps projections, which are Lagrangian manifolds and therefore have a vanishing induced
Kahler form, would be preferred extremals according to the proposed definition. For these
4-surfaces, the existence of the generalized complex structure is dubious.
For the electroweak action, the terms corresponding to charged weak bosons eliminate these
extremals and one could argue that electroweak action or its sum with the analogue of color
action, also proportional Kéahler action, defines the more plausible choice. Interestingly, also
the neutral part of electroweak action is proportional to Kahler action.

Twistor lift strongly suggests that also M* has the analog of Kihler structure. M8 must be
complexified by adding a commuting imaginary unit 7. In the E® subspace, the Kihler structure
of E* is defined in the standard sense and it is proposed that this generalizes to M* allowing also
generalization of the quaternionic structure. M* Kihler structure violates Lorentz invariance but
could be realized at the level of moduli space of these structures.
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The minimal possibility is that the M* Kihler form vanishes: one can have a different
representation of the Kéahler gauge potential for it obtained as generalization of symplectic trans-
formations acting non-trivially in M*. The recent picture about the second quantization of spinors
of M* x C'P, assumes however non-trivial Kéhler structure in M*.

4.5.2 Two paradoxes
TGD view leads to two apparent paradoxes.

1. If the preferred extremals satisfy 4-D generalization of holomorphicity, a very large set of
actions gives rise to the same preferred extremals unless there are some additional conditions
restricting the number of preferred extremals for a given action.

2. WCW metric has an infinite number of zero modes, which appear as parameters of the metric
but do not contribute to the line element. The induced Kéhler form depends on these degrees
of freedom. The existence of the Kahler metric requires maximal isometries, which suggests
that the Kéhler metric is uniquely fixed apart from a conformal scaling factor Q2 depending
on zero modes. This cannot be true: galaxy and elementary particle cannot correspond to
the same Kahler metric.

Number theoretical vision and the hierarchy of inclusions of HFF's associated with supersym-
plectic algebra actings as isometries of WcW provide equivalent realizations of the measurement
resolution. This solves these paradoxes and predicts that WCW decomposes into sectors for which
Kéhler metrics of WCW differ in a natural way.

The hierarchy subalgebras of supersymplectic algebra implies the decomposition of
WCW into sectors with different actions

Supersymplectic algebra of 6M{ x C'P, is assumed to act as isometries of WCW [LI33]. There are
also other important algebras but these will not be discussed now.

1. The symplectic algebra A of 5Mi x C' Py has the structure of a conformal algebra in the sense

that the radial conformal weights with non-negative real part, which is half integer, label the
elements of the algebra have an interpretation as conformal weights.
The super symplectic algebra A has an infinite hierarchy of sub-algebras [L133] such that the
conformal weights of sub-algebras A, (ss) are integer multiples of the conformal weights of
the entire algebra. The superconformal gauge conditions are weakened. Only the subalgebra
Ay (ss) and the commutator [A,,(ss), A] annihilate the physical states. Also the corresponding
classical Noether charges vanish for allowed space-time surfaces.

This weakening makes sense also for ordinary superconformal algebras and associated Kac-
Moody algebras. This hierarchy can be interpreted as a hierarchy symmetry breakings, mean-
ing that sub-algebra A,,(ss) acts as genuine dynamical symmetries rather than mere gauge
symmetries. It is natural to assume that the super-symplectic algebra A does not affect the
coupling parameters of the action.

2. The generators of A correspond to the dynamical quantum degrees of freedom and leave the
induced Kéhler form invariant. They affect the induced space-time metric but this effect is
gravitational and very small for Einsteinian space-time surfaces with 4-D M* projection.
The number of dynamical degrees of freedom increases with n(SS). Therefore WCW decom-
poses into sectors labelled by n(S.S) with different numbers of dynamical degrees of freedom
so that their Kdhler metrics cannot be equivalent and cannot be related by a symplectic
isometry. They can correspond to different actions.

Number theoretic vision implies the decomposition of WCW into sectors with different
actions

The number theoretical vision leads to the same conclusion as the hierarchy of HFFs. The number
theoretic vision of TGD based on M8 — H duality [L133] predicts a hierarchy with levels labelled by
the degrees n(P) of rational polynomials P and corresponding extensions of rationals characterized
by Galois groups and by ramified primes defining p-adic length scales.
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These sequences allow us to imagine several discrete coupling constant evolutions realized
at the level H in terms of action whose coupling parameters depend on the number theoretic
parameters.

1. Coupling constant evolution with respect to n(P)
The first coupling constant evolution would be with respect to n(P).

1. The coupling constants characterizing action could depend on the degree n(P) of the poly-
nomial defining the space-time region by M® — H duality. The complexity of the space-time
surface would increase with n(P) and new degrees of freedom would emerge as the number
of the rational coefficients of P.

2. This coupling constant evolution could naturally correspond to that assignable to the in-
clusion hierarchy of hyperfinite factors of type II; (HFFSs). I have indeed proposed [L133]
that the degree n(P) equals to the number n(braid) of braids assignable to HFF for which
super symplectic algebra subalgebra A, g5y with radial conformal weights coming as n(S.5)-
multiples of those of entire algebra A. One would have n(P) = n(braid) = n(SS). The
number of dynamical degrees of freedom increases with n which just as it increases with n(P)
and n(S95).

3. The actions related to different values of n(P) = n(braid) = n(SS) cannot define the same
Kéhler metric since the number of allowed space-time surfaces depends on n(SS).

WCW could decompose to sub-WCWs corresponding to different actions, a kind of theory
space. These theories would not be equivalent. A possible interpretation would be as a
hierarchy of effective field theories.

4. Hierarchies of composite polynomials define sequences of polynomials with increasing values
of n(P) such that the order of a polynomial at a given level is divided by those at the lower
levels. The proposal is that the inclusion sequences of extensions are realized at quantum
level as inclusion hierarchies of hyperfinite factors of type II;.

A given inclusion hierarchy corresponds to a sequence n(SS); such that n(SS); divides
n(S8S);+1. Therefore the degree of the composite polynomials increases very rapidly. The
values of n(S5S); can be chosen to be primes and these primes correspond to the degrees
of so called prime polynomials [L129] so that the decompositions correspond to prime fac-
torizations of integers. The ”densest” sequence of this kind would come in powers of 2 as
n(SS); = 2¢. The corresponding p-adic length scales (assignable to maximal ramified primes
for given n(SS);) are expected to increase roughly exponentially, say as 2"2". 7 = 1/2 would
give a subset of scales 2"/2 allowed by the p-adic length scale hypothesis. These transitions
would be very rare.

A theory corresponding to a given composite polynomial would contain as sub-theories the
theories corresponding to lower polynomial composites. The evolution with respect to n(S.S)
would correspond to a sequence of phase transitions in which the action genuinely changes.
For instance, color confinement could be seen as an example of this phase transition.

5. A subset of p-adic primes allowed by the p-adic length scale hypothesis p ~ 2% defining the
proposed p-adic length scale hierarchy could relate to ng changing phase transition. TGD
suggests a hierarchy of hadron physics corresponding to a scale hierarchy defined by Mersenne
primes and their Gaussian counterparts [K73) [K74]). Each of them would be characterized
by a confinement phase transition in which ng and therefore also the action changes.

2. Coupling constant evolutions with respect to ramified primes for a given value of n(P)

For a given value of n(P), one could have coupling constant sub-evolutions with respect to
the set of ramified primes of P and dimensions n = hs¢/ho of algebraic extensions. The action
would only change by U(1) gauge transformation induced by a symplectic isometry of WCW.
Coupling parameters could change but the actions would be equivalent.

The choice of the action in an optimal manner in a given scale could be seen as a choice
of the most appropriate effective field theory in which radiative corrections would be taken into
account. One can interpret the possibility to use a single choice of coupling parameters in terms
of quantum criticality.
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The range of the p-adic length scales labelled by ramified primes and effective Planck con-
stants hefy/ho is finite for a given value of n(S5S).

The first coupling constant evolution of this kind corresponds to ramified primes defining
p-adic length scales for given n(SS).

1. Ramified primes are factors of the discriminant D(P) of P, which is expressible as a product of
non-vanishing root differents and reduces to a polynomial of the n coefficients of P. Ramified
primes define p-adic length scales assignable to the particles in the amplitudes scattering
amplitudes defined by zero energy states.

P would represent the space-time surface defining an interaction region in N —-particle scat-
tering. The N ramified primes dividing D(P) would characterize the p-adic length scales
assignable to these particles. If D(P) reduces to a single ramified prime, one has elementary
particle [L129], and the forward scattering amplitude corresponds to the propagator.

This would give rise to a multi-scale p-adic length scale evolution of the amplitudes analogous
to the ordinary continuous coupling constant evolution of n-point scattering amplitudes with
respect to momentum scales of the particles. This kind of evolutions extend also to evolutions
with respect to n(S95).

2. According to [L129], physical constraints require that n(P) and the maximum size of the
ramified prime of P correlate.
A given rational polynomial of degree n(P) can be always transformed to a polynomial with
integer coefficients. If the integer coefficients are smaller than n(P), there is an upper bound
for the ramified primes. This assumption also implies that finite fields become fundamental
number fields in number theoretical vision [L129].

3. p-Adic length scale hypothesis [L134] in its basic form states that there exist preferred primes
p ~ 2% near some powers of 2. A more general hypothesis states that also primes near some
powers of 3 possibly also other small primes are preferred physically. The challenge is to
understand the origin of these preferred scales.

For polynomials P with a given degree n(P) for which discriminant D(P) is prime, there exists
a maximal ramified prime. Numerical calculations suggest that the upper bound depends
exponentially on n(P).

Could these maximal ramified primes satisfy the p-adic length scale hypothesis or its general-
ization? The maximal prime defines a fixed point of coupling constant evolution in accordance
with the earlier proposal. For instance, could one think that one has p ~ 2F k = n($5)?
Each p-adic prime would correspond to a p-adic coupling constant sub-evolution representable
in terms of symplectic isometries.

Also the dimension n of the algebraic extension associated with P, which is identified in
terms of effective Planck constant hcfy/ho = n labelling different phases of the ordinary matter
behaving like dark matter, could give rise to coupling constant evolution for given n(SS). The
range of allowed values of n is finite. Note however that several polynomials of a given degree can
correspond to the same dimension of extension.

Number theoretic discretization of WCW and maxima of WCW Kahler function

Number theoretic approach involves a unique discretization of space-time surface and also of WCW.
The question is how the points of the discretized WCW correspond to the preferred extremals.

1. The exponents of Kahler function for the maxima of K&hler function, which correspond to

the universal preferred extremals, appear in the scattering amplitudes. The number theo-
retical approach involves a unique discretization of space-time surfaces defining the WCW
coordinates of the space-time surface regarded as a point of WCW.
In [L133] it is assumed that these WCW points appearing in the number theoretical dis-
cretization correspond to the maxima of the Kahler function. The maxima would depend on
the action and would differ for ghd maxima associated with different actions unless they are
not related by symplectic WCW isometry.

2. The symplectic transformations of WCW acting as isometries are assumed to be induced by
the symplectic transformations of 5M_‘f_ x C Py [K57,[K36]. As isometries they would naturally
permute the maxima with each other.
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4.6 About the TGD based notions of mass, of twistors and

hyperbolic counterpart of Fermi torus

The notion of mass in the TGD framework is discussed from the perspective of M® — H duality
[L100, LI01, L134] L127].

1.

In TGD, space-time regions are characterized by polynomials P with rational coefficients
IL100L, LI0T]. Galois confinement defines a universal mechanism for the formation of bound
states. Momenta for virtual fermions have components, which are algebraic integers in
an extension of rationals defined by a polynomial P characterizing a space-time region.
For the physical many fermion states, the total momentum as the sum of fermion momenta
has components, which are integers using the unit defined by the size of the causal diamond
(CD) |L91l L119, ML12§].

This defines a universal number theoretical mechanism for the formation of bound states as
Galois singlets. The condition is very strong but for rational coefficients it can be satisfied
since the sum of all roots is always a rational number as the coefficient of the first order
term.

Galois confinement implies that the sum of the mass squared values, which are in gen-
eral complex algebraic numbers in E, is also an integer. Since the mass squared values
correspond to conformal weights as also in string models, one has conformal confinement:
states are conformal singlets. This condition replaces the masslessness condition of gauge
theories [L134].

Also the TGD based notion of twistor space is considered at concrete geometric level.

1.

Twistor lift of TGD means that space-time surfaces X* is H = M* x C'P» are replaced with
6-surfaces in the twistor space with induced twistor structure of T(H) = T(M?*) x T(CP,)
identified as twistor space T'(X*). This proposal requires that T(H) has Kihler structure and
this selects M* x C'P; as a unique candidate [A57] so that TGD is unique.

One ends up to a more precise understanding of the fiber of the twistor space of CP; as a
space of "light-like” geodesics emanating from a given point.  Also a more precise view of
the induced twistor spaces for preferred extremals with varying dimensions of M* and CP,
projections emerges. Also the identification of the twistor space of the space-time surface as
the space of light-like geodesics itself is considered.

Twistor lift leads to a concrete proposal for the construction of scattering amplitudes. Scat-
tering can be seen as a mere re-organization of the physical many-fermion states as Galois
singlets to new Galois singlets. There are no primary gauge fields and both fermions and
bosons are bound states of fundamental fermions. 4-fermion vertices are not needed so that
there are no divergences.

There is however a technical problem: fermion and antifermion numbers are separately
conserved in the simplest picture, in which momenta in M* C M?® are mapped to geodesics of
M* C H.The led to a proposal for the modification of M8 — H duality [L.I00, L.I0T]. The mod-
ification would map the 4-momenta to geodesics of X4. Since X* allows both Minkowskian
and Euclidean regions, one can have geodesics, whose M* projection turns backwards in time.
The emission of a boson as a fermion-antifermion pair would correspond to a fermion turn-
ing backwards in time. A more precise formulation of the modification shows that it indeed
works

The third topic of this article is the hyperbolic generalization of the Fermi torus to hyper-

bolic 3-manifold H?/T". Here H? = SO(1,3)/SO(3) identifiable the mass shell M* C M?® or its
M8 — H dual in H = M* x CP,. T denotes an infinite subgroup of SO(1,3) acting completely
discontinuously in H3. For virtual fermions also complexified mass shells are required and the ques-
tion is whether the generalization of H3/T', defining besides hyperbolic 3-manifold also tessellation
of H? analogous to a cubic lattice of E3.
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4.6.1 Conformal confinement

The notion of mass distinguishes TGD from QFT. As in string models, mass squared corresponds
to a conformal weight in TGD. However, in the TGD framework tachyonic states are not a curse
but an essential part of the physical picture and conformal confinement, generalizing massless-
ness condition, states that the sum of conformal weights for physical states vanishes. This view
conforms with the fact that Euclidean space-time regions are unavoidable at the level of H. Pos-
itive resp. negative resp. vanishing conformal weights can be assigned with Minkowskian resp.
Euclidean space-time regions resp. light-like boundaries associated with them.

Mass squared as conformal weight, conformal confinement and its breaking

At the level of M® the momentum components for momenta as points of H> C M2 C M8 are
(in general complex) algebraic integers in an extension of rationals defined by the polynomial P
defining the space-time region. For physical states the momentum components for the sum of the
momenta are ordinary integers when the momentum unit is defined by the size scales of causal
diamond (CD). This scale corresponds to a p-adic length scale for p-adic prime, which is a ramified
prime of the extension of rationals defined by the polynomial P.

For virtual many-fermion states the mass squared is an algebraic integer but an ordinary
integer for the physical states [L134]. The question is whether the mass squared for the physical
states can be negative so that one would have tachyons. The p-adic mass calculations require the
presence of tachyonic mass squared values and the proposal is conformal confinement in the sense
that the sum of mass squared values for the particles present in state and identifiable as conformal
weights sum up to zero. Conformal confinement would generalize the masslessness condition of
gauge field theories.

The observed mass squared values would correspond to the Minkowskian non-tachyonic parts
of the mass squared values assignable to states, which in general are entangled states formed from
tachyonic and non-tachyonic states. p-Adic thermodynamics would describe the entanglement
in terms of the density matrix and observed mass squared would be thermal average. p-Adic
thermodynamics leads to a breaking of the generalized conformal invariance and explains why
different values of the Virasoro scaling generator Lg are involved. Since complex mass squared
values with a negative real part are allowed as roots of polynomials, the condition is highly
non-trivial.

Association of mass squared values to space-time regions

M8 — H duality [L100, LI01] would make it natural to assign tachyonic masses with CP, type
extremals and with the Euclidean regions of the space-time surface. Time-like masses would be
assigned with time-like space-time regions. In [L132] it was found that, contrary to the beliefs held
hitherto, it is possible to satisfy boundary conditions for the action action consisting of the Kahler
action, volume term and Chern-Simons term, at boundaries (genuine or between Minkowskian and
Euclidean space-time regions) if they are light-like surfaces satisfying also detgs = 0. Masslessness,
at least in the classical sense, would be naturally associated with light-like boundaries (genuine
or between Minkowskian and Euclidean regions).

Riemann zeta, quantum criticality, and conformal confinement

The assumption that the space-time surface corresponds to rational polynomials in TGD is not
necessary. One can also consider real analytic functions f [L127]. The condition that momenta
of physical states have integer valued momentum components implies integer valued conformal
weights poses extremely strong conditions on this kind of functions since the sum of the real parts
of the roots of f must be an integer as a conformal weight identified as the sum of in general
complex virtual mass squared values.

There are strong indications Riemann zeta (https://cutt.ly/iVTVikgs) has a deep role
in physics, in particular in the physics of critical systems. TGD Universe is quantum critical.
What quantum criticality would mean at the space-time level is discussed in [L.132]. This raises
the question whether Riemann zeta could have a deep role in TGD.

First some background relating to the number theoretic view of TGD.
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1. In TGD, space-time regions are characterized by polynomials P with rational coefficients
IL100, [L101]. Galois confinement defines a universal mechanism for the formation of bound
states. Momenta for virtual fermions have components, which are algebraic integers in an
extension of rationals defined by a polynomial P characterizing space-time region. For the
physical many fermion states, the total momentum as the sum of fermion momenta has
components, which are integers using the unit defined by the size of the causal diamond
(CD).

This defines a universal number theoretical mechanism for the formation of bound states.
The condition is very strong but for rational coefficients it can be satisfied since the sum of
all roots is always a rational number as the coefficient of the first order term.

2. Galois confinement implies that the sum of the mass squared values, which are in general
complex algebraic numbers in E, is also an integer. Since the mass squared values correspond
to conformal weights as also in string models, one can have conformal confinement: states
would be conformal singlets. This condition replaces the masslessness condition of gauge
theories [L134].

Riemann zeta [A42] (https://cutt.ly/oVNS1tD)is not a polynomial but has infinite number
of roots. How could one end up with Riemann zeta in TGD? One can also consider the replacement
of the rational polynomials with analytic functions with rational coefficients or even more general
functions [L127].

1. For real analytic functions roots come as pairs but building many-fermion states for which
the sum of roots would be a real integer, is very difficult and in general impossible.

2. Riemann zeta and the hierarchy of its generalizations to extensions of rationals (Dedekind
zeta functions, and L-functions in general) is however a complete exception! If the roots are
at the critical line as the generalization of Riemann Hypothesis (RH) assumes, the sum of
the root and its conjugate is equal to 1 and it is easy to construct many fermion states as 2N
fermion states, such that they have integer value conformal weight.

Since zeta has also trivial zeros for even negative integers interpretable in terms of tachyonic
states, also conformal confinement with vanishing net conformal weight for physical states
is possible. The trivial zeros would be associated with Euclidean space-time regions and
non-trivial ones to Minkowskian ones.

One can wonder whether one could see Riemann zeta as an analog of a polynomial such that
the roots as zeros are algebraic numbers. This is however not necessary. Could zeta and
its analogies allow it to build a very large number of Galois singlets and they would form
a hierarchy corresponding to extensions of rationals. Could they represent a kind of second
abstraction level after rational polynomials?

A possible interpretation is that in TGD, rational polynomials give discrete cognitive rep-
resentations as approximations for physics. Cognitive representations are in the intersection of
p-adicities and reality defined by the intersection of reals and extension of p-adics defined by the
algebraic extension of the polynomial P defining a given space-time surface. Continuum theory
would represent real numbers as a factor of the adele.

One can ask whether the various zeta functions consistent with the integer spectrum for the
conformal weights and possibly also with conformal confinement, appear at the continuum limit
and provide representations for the space-time surfaces at this limit? In this framework, it would
be natural for the roots of zeta to be algebraic numbers [K96]. Also in the case of ¢, the virtual
momenta of fermions would be algebraic integers for virtual fermions and integers for the physical
states. This makes sense if the notions of Galois group and Galois confinement are sensible for (.

As noticed, the notion of ¢ generalizes. The so-called global L-functions (https://cutt.ly/
3VNPYmp)) are formally similar to ¢ and the extended Riemann Hypothesis (RH) could be true for
them. The physical motivation for RH would be that it would allow a fermion with any conformal
weight to appear in a state which is conformal singlet. Algebraic integers for a finite extension of
rationals replace integers in the ordinary ¢ and one has an entire hierarchy of L-functions. Could
one think that the global L-functions could define preferred extremals at the continuum limit?
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4.6.2 About the notion of twistor space

For the twistor lift of TGD, twistor space T'(X*) of the space-time surface X* is identified an S2
bundle over X* obtained by the induction of the twistor bundle T(H) = T(M*) x T(C'P,). The
definition of the T'(X*) as 6-surface in T'(H) identifies the twistor spheres of T(M?) and T(C Py)
and identifies it as a twistor sphere of T(X*).

The notion of twistor space for different different types of preferred extremals

I have not previously considered the notion of the induced twistor space for the different types of
preferred extremals. Here some technical complications emerge.

1. Since the points of the twistor spaces T(M?) and T(CP,) are in 1-1 correspondence, one can
use either T(M?) or T(CP;) so that the projection to M* or CP, would serve as the
base space of T(X%). One could use either C'P, coordinates or M* coordinates as space-time
coordinates if the dimension of the projection is 4 to either of these spaces. In the generic
case, both dimensions are 4 but one must be very cautious with genericity arguments, which
turned out to fail at the level of M® [L100} [L101].

2. There are exceptional situations in which genericity fails at the level of H. String-like objects
of the form X2 x Y2 ¢ M* C CP, is one example of this. In this case, X® would not define
1-1 correspondence between T(M?*) or T(CPy).

Could one use partial projections to M? and S? in this case? Could T'(X*) be divided locally
into a Cartesian product of 3-D M* part projecting to M2 C M* and of 3-D CP, part
projected to Y2 C CPy?

3. One can also consider the possibility of defining the twistor space T(M? x S?). Its fiber
at a given point would consist of light-like geodesics of M2 x S2. The fiber consists of
direction vectors of light-like geodesics. S? projection would correspond to a geodesic circle
S1 c S?% going through a given point of S? and its points are parametrized by azimuthal
angle ®. Hyperbolic tangent tanh(n) with range [—1,1] would characterize the direction of
a time like geodesic in M?2. At the limit of  — +o0 the S? contribution to the S? tangent
vector to length squared of the tangent vector vanishes so that all angles in the range (0, 27)
correspond to the same point. Therefore the fiber space has a topology of S2.

There are also other special situations such as M! x S3, M3 x S! for which one must introduce
specific twistor space and which can be treated in the same way.

To deal with these special cases in which the dimensions of both M* and C'P; are not equal
to 4, one must allow also 6-surfaces X% which can have dimension of M* and C'P, projections
which are different from the canonical value 4. For C'P, type extremals the dimension of CP;
projection would be 6 and the dimension of M* projection would be 1. For cosmic strings the
dimensions of M* projection and C'P, projection would be 2.

The concrete definition of the twistor space of H as the space of light-like geodesics

During the writing of this article I realized that the twistor space of H defined geometrically as
a bundle, which has as H as base space and fiber as the space of light-like geodesic starting
from a given point of H, need not be equal to T(M?*) x T(CP,), where T(CP,) is identified as
SU(3)/U(1) x U(1) characterizing the choices of color quantization axes. Is this really the case?

1. The definition of T'(C'P,) as the space of light-like geodesics from a given point of CPs is

not possible. One could also define the fiber space of T'(CP.) geometrically as the space
of geodesics emating from origin at » = 0 in the Eguchi-Hanson coordinates [K19] and
connecting it to the homologically non-trivial geodesic sphere Sz r = oo. This relation is
symmetric.
In fact, all geodesics from r = 0 end up to S2. This is due to the compactness and symmetries
of CP,. In the same way, the geodesics from the North Pole of S? end up to the South
Pole. If only the endpoint of the geodesic of C' P, matters, one can always regard it as a
point SZ.
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The two homologically non-trivial geodesic spheres associated with distinct points of C' P
always intersect at a single point,  which means that their twistor fibers contain a common
geodesic line of this kind. Also the twistor spheres of T'(M*?) associated with distinct points
of M* with a light-like distance intersect at a common point identifiable as a light-like
geodesic connecting them.

2. Geometrically, a light-like geodesic of H is defined by a 3-D momentum vector in M* and
3-D color momentum along CP, geodesic. The scale of the 8-D tangent vector does not
matter and the 8-D light-likeness condition holds true. This leaves 4 parameters so that T'(H)
identified in this way is 12-dimensional.

The M* momenta corresponds to a mass shell H3. Only the momentum direction matters
so that also in the M* sector the fiber reduces to S2. If this argument is correct, the
space of light-like geodesics at point of H has the topology of S x S? and T(H) would
reduce to T(M*) x T(CP) as indeed looks natural.

The twistor space of the space-time surface

The twistor lift of TGD allows to identify the twistor space of the space-time surface X* as the
base space of the 52 bundle induced from the 12-D twistor space T'(8) = T(M*) x CP2) to
the 6-surface X% C T(H) by a local dimensional reduction to X* x S? occurring for the preferred
extremals of 6-D Kihler action existing only in case of H = M* x CP,.

Could the geometric definition of T'(X*) as the space of light-like geodesics make sense in
the Minkowskian regions of X*?

1. By their definition, stating that the length of the tangent vector of the geodesic is conserved,
the geodesic equations conserve the value of the velocity squared so that light-likeness can
be forced via the initial values. This allows the assignment of a twistor sphere to a given point
of a Minkowskian space-time region. Whether this assignment can be made global is not
at all trivial and the difficulties related to the definition of twistor space in general relativity
probably reflects this problem. If this is the case, then the direct geometric definition might
not make sense unless the very special properties of the PEs come to rescue.

2. The twistor lift of TGD is proposed to modify the definition of the twistor space so that one
can assign twistor structure to the space-time surface by inducing the twistor structure of H
just as one can assign spinor structure with the space-time surface by inducing the spinor
structure of H.

Could the generalized holomorphic structure, implying that PEs are extremals of both
volume and of 4-D Ké&hler action, make possible the existence of light-like geodesics and
even allow to assign to a given point of the space-time surface sphere parametrizing light-like
geodesics?

3. The light-like 3-surfaces X3 representing partonic orbits carry fermionic lines as light-like
geodesics and are therefore especially interesting. They are metrically 2-D and boundary
conditions for the field equations force the vanishing of the determinant det(g4) of the induced
metric at them so that the dimension of the tangent space is effectively reduced. Light-like
3-surfaces allow a generalization of isometries such that conformal symmetries accompanied
by scaling of the light-like radial coordinate depending on transversal complex coordinates is
isometry.

It seems that to a given point of the space-like intersection, only a single light-like geodesic
can be assigned so that the twistor space at a given point would consist of a single light-like
geodesic. This would be caused by the light-likeness of X3.

The geometric definition of the twistor space for CP;

In the case of the Euclidean regions, the notion of a light-like geodesic does not make sense.
The closed geodesics and the presence of pairs of points analogous to North pole-South pole pairs,
where diverging geodesics meet, would be required. This condition is very strong and the minimal
requirement is that the space has a positive curvature so that the geodesics do not diverge. Also
symmetries seem to be necessary. Clearly, something new is required.
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1. The addition of Kéahler coupling term equal to an odd multiple of the induced K&hler gauge
potential A to the spinor connection is an essential element in the definition of a generalized
spinor structure of C'Ps.

2. Should one replace the light-like geodesics with orbits of Kahler charged particles for which
C P, has been replaced with p — g A. For the counterparts of light-like geodesics p — gx A
would vanish and the analog of mass squared would vanish but one would have a line. For a
geodesic p would be constant.

Is it possible to have A = constant along a closed geodesic? In the case of sphere, the Kéahler
gauge potential in the spherical coordinates is (Ag = Ay = kcos(f) and is constant along the
geodesics going through South and North Poles. Something like this could happen in the case
of CP, but it seems that a special pair of homological non-trivial spheres S$? invariant under
U(2) € SU(3) is selected. One might perhaps speak of symmetry breaking.

To obtain entire S? of light-like geodesics in this sense, the geodesics must emanate from a
coordinate singularity, the origin of Eguchi-Hanson coordinates at r = 0, where the values of
the coordinates (6, ¢, 1)) correspond to the same point. The space for the light-like geodesics
must be 2-D rather than 3-D. This must be forced by the p — A = 0 condition. For the
homologically trivial geodesic sphere = co, ¥ coordinate is redundant so that the conserved
value of Ay must vanish for the light-like geodesics and the associated velocities cannot have
component in the direction of .

3. Note that this definition could apply also in Minkowskian regions of space-time surface.

The description of particle reactions without vertices

In standard field theory, particles are point-like and particle reactions are described using vertices
assignable to non-linear interaction terms in the action.

1. In the TGD framework, particles are replaced with 3-surfaces and elementary particles are
assigned to partonic 2-surface whose orbits correspond to light-like 3-surfaces identifiables as
the boundary regions between Minkowskian and Euclidean space-time regions and modelled
as wormhole contacts between two space-time sheets with a Minkowskian signature. Vertices
are replaced with topological vertices at which incoming partonic 2-surfaces, whose orbits are
light-like 3-surfaces, meet at partonic 2-surfaces.

2. In TGD, all particles are composites of fundamental fermions assignable to the wormhole
throats identified as partonic orbits. In particular, bosons consist of fermions and antifermions
assignable to the throats of wormholes. Since wormhole contact contains homologically trivial
2-surface of C'P,, there is a monopole flux throwing out of the throat and one must have at
least two wormhole contacts so that one obtains a closed monopole flux flowing between the
sheets and forming a closed flux tube.

3. The light-like orbits of the partonic 2-surfaces contain fermionic lines defined at the ends
of string world sheets connecting different partonic orbits. In QFT description, this would
require a 4-fermion vertex as a fundamental vertex involving dimensional coupling constant
and leading to a non-renormalizable QFT. Therefore there can be no vertices at the level of
fermion lines.

In the number theoretic vision based on Galois confinement [[126, [L127], the interactions
correspond at the level of M® to re-arrangements of virtual fermions, having virtual momentum
components in the extension of rationals defined by P, to new combinations required to be Galois
singlets and therefore having momentum components, which are ordinary integers. Note that P
fixes by holography the 4-surface in M?® in turn defining the space-time surface in H by M® — H
duality based on associativity.

There is however a problem. If the particle reactions are mere re-arrangements of funda-
mental fermions and antifermions, moving along light-like geodesic lines in fixed time direction,
the total numbers of fermions and antifermions are separately conserved. How can one overcome
this problem without introducing the disastrous 4-fermion vertex?

Consider FFB vertex describing boson emission by fermion as a concrete example.
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1. B is described as a pair of partonic surfaces containing at least one fermion-antifermion pair,
which must be created in the vertex. Incoming particles for the topolocal FFB 3-vertex
correspond to partonic orbits for incoming F' and outgoing F', each containing one fermion
line and possibly a pair of fermion and antifermion.

2. The idea is that boson emission as a pair creation could be described geometrically as a
turning of fermion backwards in time. This forces us to reconsider the definition of M8 — H
duality. The simplest view of M® — H duality is that momenta of M* C M?® are mapped to
the geodesic lines of M*. Tachyonic momenta in M* C M?® would be mapped to space-like
geodesics in H emanating from the center of CD which is a sub-CD of a larger CD in general.
It seems that this definition does not allow us to understand boson emission by fermion in
the way proposed in [L127].

3. This led to a proposal that the images of momenta could be geodesics of the space-time surface
X4, rather than H. Since X* allows also Euclidean regions and the interiors of the deformed
CP; type extremals are Euclidean, one ends up with the idea that the geodesics lines of X4
can have M* projections, which turn backwards in the time direction [L100} [L101] [.122].
This would allow us to interpret the emission of a boson as a fermion-antifermion pair as
the turning of a fermionic line backwards in time. Fermions lines would be identified as the
boundaries of string world sheets. Sub-manifold gravitation would play a key role in the
elimination of 4-fermion vertex and thus of QFT type divergences.

4. But is it possible to have a light-like geodesic arriving at the partonic 2-surface and contin-
uing as a light-like geodesic in the Euclidean wormhole contact and returning back? The
problem is that in Euclidean regions, ordinary light-like geodesics degenerate to points. The
generalization of the light-like geodesics satisfying p = g4 implying (p—qA)? = 0 is possible.
At the space-time level, these conditions could be true quite generally and give as a special
case light-like geodesics with p? = 0 in the Minkowskian regions.

4.6.3 About the analogies of Fermi torus and Fermi surface in H?

Fermi torus (cube with opposite faces identified) emerges as a coset space of E3/T3, which defines
a lattice in the group E®. Here T2 is a discrete translation group T° corresponding to periodic
boundary conditions in a lattice.

In a realistic situation, Fermi torus is replaced with a much more complex object having
Fermi surface as boundary with non-trivial topology. Could one find an elegant description of the
situation?

Hyperbolic manifolds as analogies for Fermi torus?

The hyperbolic manifold assignable to a tessellation of H? defines a natural relativistic generaliza-
tion of Fermi torus and Fermi surface as its boundary. To understand why this is the case, consider
first the notion of cognitive representation.

1. Momenta for the cognitive representations [L133] define a unique discretization of 4-surface in
M* and, by M8 — H duality, for the space-time surfaces in H and are realized at mass shells
H3 c M* c M?® defined as roots of polynomials P. Momentum components are assumed to
be algebraic integers in the extension of rationals defined by P and are in general complex.
If the Minkowskian norm instead of its continuation to a Hermitian norm is used, the mass
squared is in general complex. One could also use Hermitian inner product but Minkowskian
complex bilinear form is the only number-theoretically acceptable possibility. Tachyonicity
would mean in this case that the real part of mass squared, invariant under SO(1,3) and even
its complexification SO,(1, 3), is negative.

2. The active points of the cognitive representation contain fermion. Complexification of H?
occurs if one allows algebraic integers. Galois confinement [L133] [L130] states that physical
states correspond to points of H? with integer valued momentum components in the scale
defined by CD.

Cognitive representations are in general finite inside regions of 4-surface of M® but at H3
they explode and involve all algebraic numbers consistent with H® and belonging to the
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extension of rationals defined by P. If the components of momenta are algebraic integers,
Galois confinement allows only states with momenta with integer components favored by
periodic boundary conditions.

Could hyperbolic manifolds as coset spaces SO(1,3)/T", where I is an infinite discrete sub-
group SO(1,3), which acts completely discontinuously from left or right, replace the Fermi torus?
Discrete translations in E? would thus be replaced with an infinite discrete subgroup I'. For a
given P, the matrix coefficients for the elements of the matrix belonging to I' would belong to an
extension of rationals defined by P.

1. The division of SO(1,3) by a discrete subgroup I' gives rise to a hyperbolic manifold with
a finite volume. Hyperbolic space is an infinite covering of the hyperbolic manifold as a
fundamental region of tessellation. There is an infinite number of the counterparts of Fermi
torus [L116]. The invariance respect to I' would define the counterpart for the periodic
boundary conditions.

Note that one can start from SO(1,3)/T" and divide by SO(3) since I' and SO(3) act from
right and left and therefore commute so that hyperbolic manifold is SO(3) \ SO(1, 3)/T.

2. There is a deep connection between the topology and geometry of the Fermi manifold as a
hyperbolic manifold. Hyperbolic volume is a topological invariant, which would become a
basic concept of relativistic topological physics (https://cutt.ly/RVsdN13).

The hyperbolic volume of the knot complement serves as a knot invariant for knots in S3.
Could this have physical interpretation in the TGD framework, where knots and links,
assignable to flux tubes and strings at the level of H, are central. Could one regard the
effective hyperbolic manifold in H? as a representation of a knot complement in S3?

Could these fundamental regions be physically preferred 3-surfaces at H?® determining the
holography and M® — H duality in terms of associativity [L100, [LI01]. Boundary conditions
at the boundary of the unit cell of the tessellation should give rise to effective identifications
just as in the case of Fermi torus obtained from the cube in this way.

De Sitter manifolds as tachyonic analogies of Fermi torus do not exist

Can one define the analogy of Fermi torus for the real 4-momenta having negative, tachyonic mass
squared? Mass shells with negative mass squared correspond to De-Sitter space SO(1,3)/S0(1,2)
having a Minkowskian signature. It does not have analogies of the tessellations of H? defined by
discrete subgroups of SO(1,3).

The reason is that there are no closed de-Sitter manifolds of finite size since no infinite
group of isometries acts completely discontinuously on de Sitter space: therefore these is no group
replacing the T' in H3/T'. (https://cutt.ly/XVsdLwY).

Do complexified hyperbolic manifolds as analogies of Fermi torus exist?

The momenta for virtual fermions defined by the roots defining mass squared values can also be
complex. Tachyon property and complexity of mass squared values are not of course not the same
thing.

1. Complexification of H? would be involved and it is not clear what this could mean. For
instance, does the notion of complexified hyperbolic manifold with complex mass squared
make sense.

2. SO(1,3) and its infinite discrete groups I' act in the complexification. Do they also act
completely discontinuously? p? remains invariant if SO(1,3) acts in the same way on the real
and imaginary parts of the momentum leaves invariant both imaginary and complex mass
squared as well as the inner product between the real and imaginary parts of the momenta.
So that the orbit is 5-dimensional. Same is true for the infinite discrete subgroup I' so that
the construction of the coset space could make sense. If I remains the same, the additional 2
dimensions can make the volume of the coset space infinite. Indeed, the constancy of p; - po
eliminates one of the two infinitely large dimensions and leaves one.

Could one allow a complexification of SO(1,3), SO(3) and SO(1,3)./SO(3).? Complexified
SO(1,3) and corresponding subgroups I' satisfy OO = 1. T, would be much larger and
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contain the real I as a subgroup. Could this give rise to a complexified hyperbolic manifold
H? with a finite volume?

3. A good guess is that the real part of the complexified bilinear form p - p determines what
tachyonicity means. Since it is given by Re(p)? — Im(p)? and is invariant under SO.(1,3)
as also Re(p) - Im(p), one can define the notions of time-likeness, light-likeness, and space-
likeness using the sign of Re(p)? — I'm(p?) as a criterion. Note that Re(p)? and Im(p)? are

separately invariant under SO(1, 3).

The physicist’s naive guess is that the complexified analogies of infinite discrete and discon-
tinuous groups and complexified hyperbolic manifolds as analogies of Fermi torus exist for
Re(P?) — Im(p?) > 0 but not for Re(P?) — Im(p?) < 0 so that complexified dS manifolds do
not exist.

4. The bilinear form in H? would be complex valued and would not define a real valued
Riemannian metric. As a manifold, complexified hyperbolic manifold is the same as the
complex hyperbolic manifold with a hermitian metric (see https://cutt.ly/qVsdS7Y and
https://cutt.ly/kVsd3Q2) but has different symmetries. The symmetry group of the com-
plexified bilinear form of H? is SO.(1,3) and the symmetry group of the Hermitian metric is
U(1,3) containing SO(1, 3) as a real subgroup. The infinite discrete subgroups I' for U(1, 3)
contain those for SO(1,3). Since one has complex mass squared, one cannot replace the
bilinear form with hermitian one. The complex H? is not a constant curvature space with
curvature -1 whereas H3? could be such in a complexified sense.

4.7 The notion of generalized integer

This chapter was inspired by the article ”Space Element Reduction Duplication (SERD) model
produces photon-like information packets and light-like cosmological horizons” by Thomas L.
Wood, published in Metodologia IV B: Journal of International and Finnish Methodology, ex-
presses the basic assumptions of the SERD approach very coherently and in a systematic way so
that it easy to criticize them and compare with other views, in my case the TGD view.

My criticism, summarized below, is based on a different interpretations of the discreteness.
In TGD framework would be assignable to cognitive representations based on p-adic numbers fields
involving extensions of rationals rather than being a feature of space-time. The introduction of
continuous number fields (reals, complex numbers, quaternions, octonions) besides p-adic number
fields brings in real space-time as sensory representation and one ends up to a generalization of
the standard model proving a number theoretic interpretation for its symmetries.

The approach of Wood looks is essentially topological: for instance, the information prop-
agating in the hypergraph is assumed to be topological and characterize the graph. In TGD,
discrete structures analogs define cognitive representations of the continuous sensory world and
are basically number theoretic. The description of the sensory world involves both topology and
geometry.

4.7.1 The first reactions to the abstract

The abstract gives a very concise summary of the approach and I have added below my reactions
to it. The following commentary is my attempt to understand the basic ideas of SERD. I have also
used the third section of the article to clarify my views. I must admit that I didn’t quite get the
two basic principles in the beginning of the third section. I have slightly re-organized the abstract
and hope that I have not done any damage.

[TW] This document describes a correspondence between photons and propagating informa-
tion packets (PIPs) that are emergent out of the Space Element Reduction Duplication (SERD)
model introduced in a rudimentary form in [1, 2]. The SERD model is a discrete background
independent microscopic space-time description.

[MP] The assumption of discreteness at the fundamental space-time level raises several chal-
lenges. 4-D space-time with Minkowskian signature should somehow emerge. The mere hypergraph
might possess under additional assumptions a local dimension defined homologically /combinatorially
but would vary. Note that in standard homology theory an embedding to some space is required
and would give a metric. Now the distance and other geometric notions look problematic to me.


https://cutt.ly/qVsdS7Y
https://cutt.ly/kVsd3Q2
 https://www.journalofmethodology.com/en/publications/

4.7. The notion of generalized integer 189

One can also ask what kind of dynamics for hypergraphs could select the 4-D space-time? Should
one have a variational principle of some kind?

The notion of symmetries is central in physics. Lorentz invariance or even Poincare invari-
ance should emerge as approximate symmetries at least. Only discrete subgroups of these groups
can emerge in the hypergraph approach. Lorentz invariance poses very, perhaps too, powerful
constraints on the hypergraphs. The notion of discretized time is introduced. It should be Lorentz
invariant and here the light-cone proper time a serves as an analog. a=constant sections would be
analogs of hyperbolic 3-space H3.

[TW] By observation of physically comparable behaviour emerging from this system, through
analysis and computer simulation, we draw conclusions of what the form and dynamics of the true
underlying space-time may be.

By treating elements of the system as fundamental observers, mathematical and empirical
evidence is obtained of the existence of fully emergent light-like cosmological horizons, implying
the existence of causally separated ‘pocket universes’.

[MP] The emergence of the analogy with expanding cosmology presumably reflects the un-
derlying dynamics implying the increase of the size of the hypergraph. The emergence of light-like
causal horizons is natural if the dynamics involves maximal velocity of propagation for the signals.
This is probably due to the locality of the basic dynamics involving only local changes of the hy-
pergraph topology. Locality and classicality raise challenges if one wants to describe phenomena
like quantum entanglement.

[TW] The SERD model is a hypergraph of connected hyperedges called Point Particles (PP)
which represent the fundamental constituents of all matter and particles (and therefore observers)
separated by strings of consecutive and fundamental elements or edges called Space Elements (SE).

[MP] I had to clarify myself what a hypergraph is. Hypergraph is a generalization of graphs.
Also it contains the set of vertices/nodes. The notion of edge connecting a pair of vertices is however
generalized to a hyperedge (PP) as a pair of subsets of vertices. PPs correspond to hyperedges as
fundamental constituents of matter and formed by pairs of subsets of the set of nodes.

One could interpret this as a combinatorial counterpart for a length scale hierarchy of TGD
in which a set can be approximated as a point. One might also interpret subsets of vertices as
analogs of bound states of fundamental particles. In the TGD framework, many-sheeted space-time
and various other hierarchies serve as its analogs.

Space elements (SEs) would bring in basic aspects of 3-space. It is said that they are
infinitesimal or maximally small. SEs would be like edges (not hyperedges) of the hypergraph.
Consecutive SEs in turn form interaction edges (IEs) connecting PPs. IEs store and transmit
information relating to the structure space. What comes to mind is that functionally PPs are like
neutrons and neuron groups and IEs are like axons.

[TW] All elements are separated by nodes called Information Gaps (IGs), that store prop-
agating topological information of the hypergraph. Information gaps (IGs) are between PPs and
SEs, between SEs and between PPs themselves.

[MP] What distinguishes the SERD model from physical theories, is that information takes
the role of matter. Information is treated as some kind of substance. The basic objection is that
conscious information is always about something, whereas matter just is.

IGs have the role of interfaces somewhat analogous to black-hole horizon assumed to store
information in the holographic picture. One could see PPs as the nodes and IEs as the edges or
SEs as the edges and IGs as the nodes. IGs could have synaptic contacts as analogs.

[TW] In time step (T'S), SE can duplicate and reduce (disappear) while the PPs split and
merge through discrete time. These processes create space or destroy it and increase or reduce the
effective distance between PPs. Splitting generates an SE between the resulting PPs. These are
known as the actions of the elements and create a highly dynamic multi-way system.

[MP] Time step (TS) is a further basic notion and corresponds to an elementary event as
nearest neighbor interaction taking during the time chronon. The propagation rate for information
is CS/TS and is analogous to maximal signal velocity. The counterpart of the space-time metric
is thus brought in by the introduction of TS and CS.

SEs emerge or disappear so that the effective distances of the nearby points change: this
would the counterpart for the dynamics of space-time metric in General Relativity. I understood
that duplication and reduction effectively corresponds to the duplication or halving of the distance
assignable to SE.
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[TW] Elements have an ‘awareness’ of the information around them and communicate with
their nearest neighbours through time.

[MP] The treatment of elements as fundamental observers is an interesting idea but can be
criticized. Why not PPs? One could also argue that the SEs become conscious observers only
under some additional assumptions. For instance, one can imagine that they represent matter and
become fundamental conscious observers if fermions or fermion pairs can be assigned to them.

The abstract says nothing about quantum theory. To my view it is very difficult to imagine
how quantum theory could emerge from an approach based on classical probability and some kind
of quantum approach would be required to understand entanglement and state function reduction.

4.7.2 Fundamental discretization as a cognitive representation?

In the sequel TGD view of the discretization interpreted as cognitive representation is described.
The surprise was the discovery of what I call generalized integers and rationals as a union of various
p-adic number fields with different p-adic number fields glued together along numbers which belong
to both p-adic number fields. I do not know whether mathematicians have played with this thought.
This space has an ultrametric topology and could have application to the description of spin glass
type systems [L120]. In TGD it could have application in the mathematical description of processes
in which the p-adic prime associated with the particle changes.

Something is discrete but what it is?

Something is discrete at the fundamental level: is it space-time or only a discrete cognitive
representation, a discretization  of a continuous space-time? The essential assumption of
SERD is that it is space-time, which is fundamentally discrete and realized as hypergraph. The
basic problem is that it is not clear whether the notions of space-time dimensions, distance, angle,
and curvature can emerge in a purely combinatorial approach in which only distance between
nearby nodes is a metric notion. These notions also have a formal generalization to gauge theories.

The alternative approach would be based on the observation that cognition is discrete and
finite. Cognition provides representations of the physical world. Could one assume that the
physical world has continuous geometry and that only cognition is discrete?

Could the cognitive Universe consist of generalized integers?

Integers (and rationals) are the simplest discrete but infinite systems. Integers/rationals are
usually assumed to have real topology. One can however imagine an infinite number of p-adic
topologies, which are ultrametric and are defined by a p-adic norm having values coming as powers
of prime p. p-Adic primes typically have an infinite expansion in powers of p and large powers of
p have small p-adic norm in contrast to the real norm.

p-Adic integer /rational has expansion in powers of p and the inverse of the smallest power
in the expansion determines the norm so that the notion of size is completely different for p-adic
and real integers. Note that also the p-adic expansion of rationals involves an infinite number of
powers of p but is periodic. p-Adic transcendentals do not have this property. Note also that
p-adic integers modulo p define a finite field G(p).

p-Adic integers are only weakly ordered. Only if two p-adic integers/ rationals have
different p-adic norms, can one tell which is the larger one. One can however construct continuous
maps from p-adics to reals to approximately preserve the norm. p-Adic norm is ultrametric and
this property is essential in the thermodynamic models of spin glass energy landscape [L120].

One could, at least as the first guess, imagine that the Universe of cognition consists of
integers/rationals or a finite subset of them and that one also allows integers/rationals, which
are infinite as real integers but finite as p-adic integers for some prime p.

One can decompose generalized integers to subsets with different p-adic topologies.

1. Regions corresponding to two different p-adic topologies p; and ps have as an interface as
the set integers, which have an expansion in powers of nis = pips. Therefore the cognitive
world decomposes into p-adic regions having interfaces, which consist of power series of
Nio. k = p]fl... X pp¥. Ordinary integer n with a decomposition to primes belongs to the
interface of the p-adic worlds corresponding to the prime factors.
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How does this decomposition relate to adeles [L50} [L48], which can be regarded as a Cartesian
product of p-adic number fields defining and of reals [L50 [L48]? Adeles correspond to a
Cartesian product but now one has a union so that these concepts seems to be different. I do
not know whether mathematicians have encountered the notion of generalized integers and
rationals.

2. Each p-adic region decomposes into shells, kinds of analogs of mass shells, consisting of
p-adic integers with p-adic norm given by a power of p.

3. The distance between the points of the cognitive sub-landscape corresponding to p would be
defined by the p-adic norm. The points with the same p-adic norm would have a distance
defined as the p-adic norm of their difference. This distance is the same for several point
pairs so that p-adic topology is much rougher than the real topology. For instance the p-adic
norm of numbers 1,...,p — 1 is the same.

4. One could define a distance between points associated with p-adic topologies p; and py as
the shortest distance between them identified as the sum of the distances to the interface
between these regions.

In this framework, the analog of a hypergraph would be simply a subset of generalized
integers decomposing to p-adic integers labeled by some subset of primes.

1. The simplest dynamical operation, having now an interpretation as a cognitive operation,
would be addition or removal of a p-adic integer corresponding to some value of p-adic prime
or several of them. The addition would have an interpretation or worsening or improving
the cognitive representation for some prime p.

2. Arithmetic operations for the points inside a region corresponding to a given p are possible.
Arithmetic operations of finite integers are basic elements of at least human cognition and
their sum and product would correspond to ”particle reactions” in which two points fuse
together to form a sum or product. If infinite integers can be expressed as power series of
integers ny and ng, they can be regarded as p-adic integers for the factors of n; and ny and
both sum and product make sense for common prime factors. Note that the operations are
well-defined also for generalized rationals.

3. What happens in the arithmetic operations information theoretically? In the product
operation,  the outcome is in the interface region associated with n; and no and the
information about factors is not lost since a measurement revealing prime factors can be
done repeatedly.

The projection operator applied to a quantum superposition of integers would project to a
subspace of integers, which are divisible by a given prime p. This operation could be repeated
for different primes and eventually give the prime number decomposition for some integer n
in the superposition.

One strange fact about idiot savants described by Oliver Sacks (this is discussed from the
TGD point of view in [K97]) is that they can decompose integers into prime factors and
obviously see the emergence of the prime factors. Could this kind of cognitive measurement
be in question?

Sum does not in general belong to the interface region of either integer and information is
lost since many number pairs give rise to the same sum. Therefore sum and product are
information-theoretically very different operations.

Could there be a quantum physical realization for the arithmetic operations? Could they
relate to our conscious arithmetic thinking?

1. Consider first the sum operation. Quantum numbers, such as momenta, represented
as integers or even algebraic integers are conserved in the physical reaction vertices. The
conserved quantum numbers for the final state for a fusion reaction are sums of integers so
that these reactions have an arithmetic interpretation.

2. In the case of a product, the fusion reaction should give a product of integers n; and ns or
a representation of it? One should have conserved multiplicative quantum numbers in the
vertex.
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Phase factors as eigenvalues of unitary operators are such. They should form a multiplicative
group as representation of integers or even rationals. Integer scalings define such a group. One
can also consider eigenvalues n*?, ¢ some fixed phase angle. The operator would therefore be
a scaling represented unitarily by these phase factors.

Initial state would be a product of eigenstates of the scaling operator with eigenphases nid’ and
n? and the final state would be a single particle state with the eigenvalue n’fﬁn;‘z’ = (n1ng)®.
One can say that ny acts on ng by scaling or vice versa. Interestingly, at the fundamental level
scalings replace time translations in the TGD framework (and also in superstring theory), and
this is especially so for spin glass phase [L120].

Interestingly, sum appears at the level of Lie algebras and product at the level of Lie groups.

In quantum groups also the reverse operations, co-product and co-sum, having pair creation
as analog, are possible. For the co-sum the information increases for the product. These operations
would be time reversals of each other. In the zero energy ontology (ZEO) of TGD time reversal
occurs in ”big” (ordinary) state function reductions (BSFRs) [L91l, [L128] [K130]. What comes
to mind is that the idiot savants described by Sacks might perform a time reversal decomposing
product to prime factors. The cognitive measurement would correspond to BSFR.

Note that ZEO also predicts ”small” state function reductions (SSFRs), which do not change
the arrow of time and give rise to the flow of consciousness whereas BSFR corresponds to a universal
counterpart of death or of falling asleep. It is the TGD counterpart of repeated measurements in
the Zeno effect and of weak measurements of quantum optics.

This cognitive world would in TGD correspond physically to the most general spin glass
energy landscape having an ultrametric topology [L120].

The algebraic extensions of p-adic number fields are discrete

The proposed structure does not have any natural notion of dimension. We are however able to
cognize higher dimensional spaces using formulas.

1. p-Adic number fields indeed allow infinite hierarchies of algebraic extensions obtained by
adding to them roots of polynomials, which are algebraic numbers. These induce extensions
of p-adic number fields as finite fields G(p, k) having algebraic dimension, which is at most
the dimension of the corresponding extensions of rationals.

2. It is natural to assume that cognitive representations are always finite. This suggests that the
set of "populated” points of the cognitive space is discrete and even finite. Being ”populated”
could mean that a fermion, having an interpretation as a generator of Boolean algebra, is
labelled by the algebraic number defining the point. In a more general formulation bringing
in quaternions and octonions as number fields: algebraic complexified quaternions would
define the momentum components of fermions.

What has been said above, generalizes almost as such and one obtains a hierarchy of gener-
alized integers as algebraic extensions of generalized integers at the lowest level. This could
generalize the rational number based computationalism (Turing paradigm) to an entire hi-
erarchy of cognitive computationalisms. The hierarchy of algebraic extensions suggests the
same.

3. The algebraic complexity of generalized integers increases with the dimension of extension
and in the TGD framework it corresponds to an evolutionary hierarchy. The dimension of
extension defines what is identified in terms of an effective Planck constant.

But what about the real world?

A hierarchy of p-adicities and hierarchies of the algebraic extensions of p-adicities have been
obtained. The 4-D world of sensory perceptions with its fundamental symmetries is however
still missing. Could number theory come to rescue also here? This is indeed the case.

1. The fundamental continuous number fields consist of reals, complex numbers, quaternions and
octonions with dimensions 1,2.4, 8 [L100} [L101 L135]. Quaternions cannot as such correspond
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to 4-D space-time since the number theoretic purely algebraic norm defines the Euclidean
metric.

. This norm can be however algebraically continued to the complexification of quaternions ob-

tained by adding a commuting imaginary unit ¢ commuting with quaternionic and octonionic
imaginary units. This algebraic norm squared does not involve complex conjugation as the
Hilbert space norm and is in general complex but real for the subspaces corresponding to var-
ious metric signatures (a given component of quaternion are either real or imaginary). One
obtains therefore Minkowski space and even more: its variants with various metric signatures.

. One can imagine a generalization of the notion of generalized integer so that one would have

hierarchies of generalized complex numbers, quaternions and octonions and their complexifi-
cations for various extensions of rationals.

A possible problem relates to the p-adic variants of quaternions, octonions and complex
numbers. Consider the inverse 2! = (z—iy)/(2?+y?) of p-adic complex numbers z = z+iy.
The problem is that 22 4+ y? can vanish since there is no notion of sign of the number. For
pmod 4=1, /—11is an ordinary p-adic number, albeit with an infinite pinary expansion

so that for y = v/—1z, one has this problem.

Could the finiteness of cognition solve the problem? If only finite p-adic integers and
rationals can define momentum components of fermions (finite cognitive and measurement
resolution), the problem disappears.

Could one give up the field property for the p-adic variants of classical number fields? Already
the complexification by ¢ forces to give up the field property but has physical meaning since
it makes Minkowski signature possible.

This would give Minkowski space M* as a special case. This is however not enough. One

wants curved 4-D space-times. The basic structure is complexified octonions.

1.

One should obtain 4-D surfaces of M® generalizing empty Minkowski space M*. Octonions
fail to be associative and at the level of M2 the natural proposal is that there is number
theoretic dynamics based on associativity. The 4-D surfaces must be associative in some
sense. The geometric vision predicts holography and this holography should have a number
theoretic counterpart based on associativity.

. The first guess is that the tangent space of 4-surface is associative and thus quaternionic.

This gives only M* and is therefore trivial [L100, [LT0T, T.135].

The requirement that the normal space of the 4-surface Y* in M? is associative/quaternionic
however works. If one requires that the normal subspace contains also a commutative (com-
plex) subspace, one ends up to M® — H-duality (H = M* x CP, mapping the associative
4-D surfaces Y4 of M? to space-time surfaces X* in H determined by holography forced by
generalized coordinate invariance. The symmetries of H include Poincare symmetries and
standard model symmetries.

. At the level of M?®, associativity of the normal space allows also  6-D surfaces with 2-D

commutative normal space and they can be interpreted in terms of analogs of 6-D twistor
spaces of 4-D surfaces Y4. They can be mapped to to the twistor space of H by M® — H
duality and define 6-D twistor spaces of space-time surfaces X* of H. What is beautiful is
that the Kahler structure for the twistor space of H exists only for the choice H = M* x CP,,
which is also forced by the associative dynamics [A57]! TGD is unique!

. The dynamics would rely on holography but how to get the algebraic extensions? The roots of

a polynomial P with rational or even integer coefficients satisfying some additional conditions
would define the needed extension of rationals. The roots would in the general case define
complex mass shells H? as complex variants of hyperbolic 3-spaces H® in M2 C M? having
interpretation as a momentum space. M®— H duality serves as a generalization of momentum
position duality. The 3-D surfaces as subsets of these H>:s define the data of the associative
holography and are contained by the 4-surface Y4.

. Cognitive representation would be defined as a unique number theoretic discretization of

the 4-surface Y* of M¢ consisting of points, whose number theoretically preferred linear
Minkowski coordinates are algebraic integers in an extension defining the 4-surface in question.



Chapter 4. Trying to fuse the basic mathematical ideas of quantum TGD to a single
194 coherent whole

This discretization induces discretization of the space-time surface via M8 — H duality. The
cognitive representations are number-theoretically universal and belong to the intersections
of realities and p-adicities.

6. The mass shells H? are very special since in the preferred Minkowski coordinates a cogni-
tive explosion takes place. All algebraic rationals, in particular integers, are points of H?2.
Algebraic integers are physically favored and define components of four-momenta. Galois con-
finement [L121] states that the total momenta have components which are ordinary integers
when a suitable momentum unit is used.

4.8 Infinite primes as a basic mathematical building block

Infinite primes [K105, K58, [K71] are one of the key ideas of TGD. Their precise physical interpre-
tation and the role in the mathematical structure of TGD has however remained unclear.

3 new ideas are be discussed. Infinite primes could define a generalization of the notion of
adele; quantum arithmetics could replace + and x with @ and ® and ordinary primes with p-adic
representations of say HFF's; the polynomial @ defining an infinite prime could be identified with
the polynomial P defining the space-time surface: P = Q.

4.8.1 Construction of infinite primes
Consider first the construction of infinite primes [K105].

1. At the lowest level of hierachy, infinite primes (in real sense, p-adically they have unit norm)
can be defined by polynomials of the product X of all primes as an analog of Dirac vacuum.

The decomposition of the simplest infinite primes at the lowest level are of form a X + b, where
the terms have no common prime divisors. More concretely a = m1/np b = monp, where np
is square free integer analogous and the integer m; and ng have no common prime divisors
divisors. The divisors of ms are divisors of ny and m; has interpretation as n-boson state.
Power p* corresponds to k-boson state with momenta p. nr = [[p; has interpretation as
many-fermion state satisfying Fermi-Dirac statistics.

The decomposition of lowest level infinite primes to infinite and finite part has a physical
analogy as kicking of fermions from Dirac sea to form the finite part of infinite prime. These
states have interpretation as analogs of free states of supersymmetric arithmetic quantum
field theory (QFT) There is a temptation to interpret the sum X/np 4+ np as an analog of
quantum superposition. Fermion number is well-defined if one assigns the number of factors
of np to both np and X/np.

2. More general infinite primes correspond to polynomials Q(X) = > ¢, X" required to define
infinite integers which are not divisible by finite primes. Each summand ¢, X™ must be a
infinite integer. This requires that ¢, is given by ¢, = mp .,/ HZ np; of square free integers
nr,; having no common divisors.

The coefficients mp ,, representing bosonic states have no common primes with [[ng; and
there exists no prime dividing all coefficients mp ,,: there is no boson with momentum p
present in all states in the sum.

These states have a formal interpretation as bound states of arithmetic supersymmetric QFT.
The degree k of (Q determines the number of particles in the bound states.

The products of infinite primes at given level are infinite primes with respect to the primes
at the lower levels but infinite integers at their own level. Sums of infinite primes are not in
general infinite primes. For instance the sum and difference of X/ng + np and X/ng —np
are not infinite primes.

3. At the next step one can form the product of all finite primes and infinite primes constructed
in this manner and repeat the process as an analog to second quantization. This procedure
can be repeated indefinitely. This repeated quantization a hierarchy of infinite primes, which
could correspond to the hierarchy of space-time sheets.

At the n:th hierarchy level the polynomials are polynomials of n variables X;. A possible
interpretation would be that one has families of infinite primes at the first level labelled
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by n; parameters. If the polynomials P(x) at the first level define space-time surfaces, the
interpretation at the level of WCW could be that one has an n — 1-D surface in WCW
parametrized by n — 1 parameters with rational values and defining a kind of sub-WCW. The
WCW spinor fields would be restricted to this surface of WCW.

The Dirac vacuum X brings in mind adele, which is roughly a product of p-adic number
fields. The primes of infinite prime could be interpreted as labels for p-adic number fields. Even
more generally, they could serve as labels for p-adic representations of various algebras and one
could even consider replacing the arithmetic operations with & and ® to get the quantum variants
of various number fields and of adeles.

The quantum counterparts of nfinite primes at the lowest and also at the higher levels of
hierarchy could be seen as a generalization of adeles to quantum adeles.

4.8.2 Questions about infinite primes

One can ask several questions about infinite primes.

1. Could ® and ® replace + and — also for infinite primes. This would allow us to interpret the
primes p as labels for algebras realized p-adically. This would give rise to quantal counterparts
of infinite primes.

2. What could + — & for infinite primes mean physically? Could it make sense in adelic
context? Infinite part has finite p-adic norms. The interpretation as direct sum conforms
with the fermionic interpretation if the product of all finite primes is interpreted as Dirac
sea. In this case, the finite and infinite parts of infinite prime would have the same fermion
number.

3. Could adelization relate to the notion of infinite primes? Could one generalize quantum adeles
based on @ and ® so that they would have parts with various degrees of infinity?

4.8.3 P = () hypothesis

One cannot avoid the idea that that polynomial, call it Q(X), defining an infinite prime at the first
level of the hierarchy, is nothing but the polynomial P defining a 4-surface in M* and therefore also
a space-time surface. P = ) would be a condition analogous to the variational principle defining
preferred extremals (PEs) at the level of H.

There is however an objection.

1. P = @ gives very powerful constraints on ) since it must define an infinite integer. The
prime polynomials P are expected to be highly non-unique and an entire class of polynomials
of fixed degree characterized by the Galois group as an invariant is in question. The same
applies to polynomials @Q as is easy to see: the only condition is that powers of a; X* defining
infinite integers have no common prime factors.

2. Tt seems that a composite polynomial P, o...o P; satisfying P; = @Q; cannot define an infinite
prime or even infinite integer. Even infinite integer property requires very special conditions.

3. There is however no need to assume P; = @; conditions. It is enough to require that there

exists a composite P, o ... o P; of prime polynomials satisfying P, o ... o P} = ) defining an
infinite prime.
The physical interpretation would be that the interaction spoils the infinite prime property
of the composites and they become analogs of off-mass-shell particles. Exactly this occurs for
bound many-particle states of particles represented by P; represented composite polynomials
Pyo...P,. The roots of the composite polynomials are indeed affected for the composite. Note
that also products of @); are infinite primes and the interpretation is as a free many-particle
state formed by bound states @;.

There is also a second objection against P = () property.

1. The proposed physical interpretation is that the ramified primes associated with P = @
correspond to the p-adic primes characterizing particles. This would mean that the ramimied
primes appearing in the infinite primes at the first level of the hierarchy should be physically
special.
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2. The first naive guess is that for the simplest infinite primes Q(X) = (m1/ng)X +manp at the
first level, the finite part menp has an identification as the discriminant D of the polynomial
P(X) defining the space-time surface. This guess has no obvious generalization to higher
degree polynomials Q(X) and the following argument shows that it does not make sense.
Since @ is a rational polynomial of degree 1 there is only a single rational root and discriminant
defined by the differences of distinct roots is ill-defined that Q = P condition would not allow
the simplest infinite primes.

Therefore one must give either of these conjectures and since P = ) conjecture dictates the
algebraic structure of the quantum theory for a given space-time surface, it is much more
attractive.

The following argument gives P = ). One can assign to polynomial P invariants as sym-
metric functions of the roots. They are invariants under permutation group S,, of roots containing
Galois group and therefore also Galois invariants (for polynomials of second order correspond
to sum and product of roots appearing as coefficients of the polynomial in the representation
22 4+ bz + cx). The polynomial Q having as coefficients these invariants is the original polynomial.
This interpretation gives P = Q.

4.9 Summary of the proposed big picture

In the previous sections the plausible looking building blocks of the bigger picture of the TGD
were discussed. Here I try to summarize a guess for the big picture.

4.9.1 The relation between M® — H and M — M’ dualities

The first question is whether M® — H duality between number theoretical and geometric physics,
very probably relating to Langlands duality, corresponds to a duality between M and its commutant
M'. Physical intuition suggests that these dualities are independent. M’ would more naturally
correspond to classical description as dual to quantum description using M. One would assign
classical and quantum views to both number theoretic (M3) and geometric (H) descriptions.

1. At the geometric side M would be realized in terms of HFFs associated with SSA,,, Aff,
and [ acting in H. At the number theoretic side, braided Galois group algebras would define
the HFFs and have natural action in SSA,, A, and I .

2. The descriptions in terms of preferred extremals in H and of polynomials P defining 4-surfaces
in M?® would correspond to classical descriptions. P = @ condition would define preferred
polynomials and infinite primes.

3. At the geometric side, M’ would correspond to scalar factors of WCW wave functions sym-
plectic invariants identifiable as Kihler magnetic fluxes at both M?* and CP, sectors. They
are zero modes and therefore do not contribute to the WCW line element.

4. At the number theoretic side, the wave functions would depend on Galois invariants. Discrim-
inant D, set of roots to which braid strands can be assigned to define n-braid, and ramified
primes dividing it in the case of polynomials with rational/integer coefficients are Galois in-
variants analogous to Kahler fluxes. They code information about the spectrum of virtual
mass squared values as roots of P. The strands of braid as Galois invariant correspond to
(possibly) monopole flux tubes and one assign them quantized magnetic fluxes as integer
valued symplectic invariants.

4.9.2 Basic mathematical building blocks

The basic mathematical building blocks of quantum aspects of TGD involve at least the following
ones.

1. The generalization of arithmetics and even number theory by replacing sum and product
by direct sum and tensor product for various algebras and associated representations is a
mathematical notion expected to be important and a straightforward generalization of adeles
and infinite primes to their quantum counterparts is highly suggestive.
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2. Quantum version of adelic physics obtained by replacing ordinary arithmetic operations with
direct sum and tensor product relates closely to the fusion of real and various p-adic physics
at quantum level.

3. The hierarchy of infinite primes suggested by the many-sheeted space-time suggests a profound
generalization of the notion of adelic physics. Infinite primes are defined by polynomials of sev-
eral variables the basic equation in the general form would be Q(X3, ..., X;,) = P(X1, ..., Xp).

4.9.3 Basic algebraic structures at number theoretic side

Number theoretic side involves several key notions that must have counterparts at the geometric
side.

1. Number theoretic side involves Galois groups as counterparts of symplectic symmetries and
can be regarded as number theoretic variants of permutation symmetries and lead to the
notion of braided Galois group, whose group algebra defines HFF.

2. Galois groups can be decomposed to a hierarchy of normal subgroups, which are simple and
therefore primes in group theoretic sense. Simple Galois groups correspond to polynomial
primes with respect to functional composition, and one can assign to a given Galois group a
set of polynomials with fixed degrees although the polynomials and their order of polynomials
in composition are not unique.

3. There is a large class of polynomials giving rise to a given Galois group and they bring in
additional degrees of freedom. The variation of the polynomial coefficients corresponding to
the same Galois group is analogous to symplectic transformations leaving the induced Kéhler
form invariant.

The roots of polynomials define analogs for the strands of m-braid, discriminant D, and
ramified primes dividing the discriminant. They are central Galois invariants analogous to
Kahler magnetic fluxes at the geometry side.

4. Ramified primes characterize polynomials P but are not fixed by the Galois group, are anal-

ogous to the zero modes at the level of H. Magnetic fluxes are their counterparts at the level
of H. I have proposed the interpretation of ramified primes p as p-adic primes characterizing
elementary particles in the model of particle masses based on p-adic thermodynamics. These
primes are rather large: for instance, Mio7 = 2'27 — 1 would characterize electrons. It would
however seem that the prime k in SS Ay corresponds to the prime characterizing simple Galois
group.
Also affine algebras Af f,, assignable to the light-like partonic orbits and isometries of H are
present and also they appear in p-adic mass calculations based on p-adic thermodynamics.
Could the adelic hierarchy p-adic variants of algebras SSA, Aff and I have adelic factors
labelled by ramified primes p form also an adelic structure with respect to @ and ®7

4.9.4 Basic algebraic structures at the geometric side
The symmetry algebras at the level of H define the key quantal structures.

1. The symmetries at the geometric side involve hierarchies A,, of algebras A, € SSA,, A, I,
defining hierarchies of factor algebras. The condition that subalgebras A, and [A,, A] anni-
hilate physical states gives rise to hierarchies of algebras, which would correspond to those for
Galois groups for multiple extensions of rationals. The braided Galois groups for polynomials
of degree n n roots/braids would act naturally in A,, so that it would have number theoretic
braiding.

2. The decomposition of the Galois group to simple normal subgroups would correspond to a
functional composite of prime polynomials, which corresponds to the inclusion hierarchy of
HFF's associated with A,, with n identified as the degree of polynomial.

The polynomials Q(X) defining infinite prime have decomposition to polynomial primes but
the polynomial primes in the decomposition cannot define infinite primes.

Kéhler magnetic fluxes for CP, and M* Kihler forms are symplectic invariants and represent
zero modes. At the number theoretic side the discriminant and root spectrum (mass squared
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spectrum) are classical Galois invariants. States as Galois singlets are Galois invariants at
quantum level.

The key equation, not encountered before in the TGD framework, is P =  motivated by
the notion of infinite prime. It would assign to polynomial P unique algebraic structures defining
what might be called its quantization. Without this structure one should give up the notion of
infinite prime and lose the notion of preferred P as analog of preferred extremal.

4.10 Appendix: The reduction of quantum TGD to WCW
geometry and spinor structure

The first attempts to build quantum TGD were based on the standard method used to quantize
quantum field theories. The path integral over all possible space-time surfaces connecting initial
and final 3-surfaces for an action exponential using for instance Kéahler action, would have given
the scattering amplitudes.

4.10.1 The problems

The first problem is that the integrand is a phase factor exp(iS), where S could be the Kéahler
action. Phase factor has modulus 1 and the integral does not converge even formally. One would
need a real exponent to have any hopes of convergence. This problem can be circumvented in free
quantum field theory by algebraic tricks.

The second problem is that all conceivable actions are extremely nonlinear and new kinds of
divergences appear in each order of perturbation theory. This is essentially due to the locality of
the action principle involving interaction vertices with arbitrarily high numbers of particles. Also
ordinary QFTs meet the same problem and for renormalizable theories the addition of counterterms
with suitably infinite coefficients can cancel the divergences without the addition of an infinite
number of counter terms. It became clear that there are no hopes of getting rid of the divergences
in TGD by addition of counterterms. The situation is the same in general relativity although
heroic and ingenious attempts to calculate scattering amplitudes have been made.

Only N = 4 SUSY is a QFT that is hoped to be free of divergences without renormalization
but here the problem is caused by the non-planar Feynman diagrams, to which the twistor approach
does not apply.

4.10.2 3-D surfaces or 4-surfaces associated to them by holography re-
place point-like particles

The key idea of TGD is that point-like particles are replaced with 3-surfaces. This idea does not
favour path integral approach.

1. In TGD, point-like particles are replaced with 3-surfaces. Local interaction vertices are
smoothed out to non-local ones so that there should be no local divergences. Perhaps the path
integral, derived originally as a representation of Schrodinger equation, is not only unnecessary
but also a wrong way to compute anything in TGD. In superstring models, the replacement
of a point-like particle with string indeed allows elimination of the local divergences.

3-D surface should be the basic dynamical object. One should therefore have a functional
integral over 3-surfaces, which is analogous to the Gaussian integral and converges.

2. This problem led to the idea of the ”world of classical worlds” (WCW). 4-D General Coor-
dinate Invariance implies that to a given 3-surface X® one must be able to assign a 4-surface
X*4(X?) at which the 4-D general coordinate transformations act.

Either 3-surfaces X3 or almost unique 4-surfaces X*(X3) are the fundamental objects so that
holography holds true. At that time I did not talk about holography, which was introduced
by Susskind much later, around 1995. Therefore the introduction of the path integral is not
necessary.

Later it became clear that the exact determinism of the classical dynamics can be lost, at
least for Kéhler action having huge spin glass degeneracy. Later 4-D Kéehler action replaced
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in twistor lift of TGD by its sum with a volume term, and for this action the non-determinism
is analogous to that for soap films spanned by frames, that is finite, and has physical inter-
pretation.

4.10.3 WCW Kahler geometry as s geometrization of the entire quan-
tum physics

This argument led to the vision about quantum TGD as WCW geometry, which generalizes Ein-
stein’s vision of geometrization of gravitational interaction to geometrization of all classical inter-
actions and then to the geometrization of the entire quantum theory.

1. WCW is the space of all 3-surfaces or almost equivalently the space of 4-surfaces. Physical
states correspond to WCW spinor fields.

2. WCW must have Kéahler geometry since Kahler structure allows to geometrize the hermitian
conjugation which is fundamental for quantum theory. Imaginary unit is represented geomet-
rically by the Kéahler form and the real unit by the Kéhler metric. The tensor square Kéahler
form as an imaginary unit is equal to the negative of the real unit, that is the negative of the
metric.

3. The construction of loop space geometries by Dan Freed [A37] led to a unique geometry of
loop space. The mere existence of Riemann connection requires that the metric has maximal
isometries and is unique apart from scaling. When basic objects are 3-D this condition is
even more stringent. The Kéahler geometry of WCW and thus physics could be unique from
its mere mathematical existence!

Why H = M* x CP,? The existence of the twistor lift fixes H uniquely since only M* (E%)
and CP, allow a twistor space with Kéahler structure [A57]. The necessarily dimensionally
reduced Kahler action at the twistor space level adds to the 4-D Kéahler action a volume term
removing the non-determinism and explaining cosmological constant and its smallness in long
scales.

4. How is the Kéhler geometry of WCW determined? The definition of the Kéhler metric of
WCW must assign to a 3-surface X® a more or less unique space-time surface X*(X?) in
order to have a general coordinate invariance. One must also have a connection with classical
physics: classical physics must be an exact part of quantum physics and thus the definition
of WCW Kéhler geometry involves a classical action principle.

The Kéhler metric is defined by the Kahler function K. The idea is that K is the value of
Kahler action Sk or of a more general action for a more or less unique space-time surface
X?4(X?3) containing a given 3-surface X3.

5. It is convenient to speak of preferred extremal (PE) and there are several characterizations
of what PE is. M® — H duality gives the most concrete one. Twistor lift gives the second
one and the gauge conditions associated with the WCW Dirac equation provide the third
characterization.

4.10.4 Quantum physics as physics of free, classical spinor fields in
WCW

How to develop quantum physics in WCW? The idea is that free, classical WCW spinor fields
define all possible quantum states of the Universe and interactions reduce to topology. There
would be no quantization at the level of WCW and the only genuinely quantal element of quantum
theory would be state function reduction giving rise to conscious experience.

1. In order to have spinor fields in WCW, one must have the notion of spinor structure. Spinor
structure is almost uniquely fixed by the metric and involves in an essential manner gamma
matrices, which anticommute to metric.

2. The second quantization of H spinor fields assigns to the modes of H spinor fields fermionic
oscillator operators. Why not build the conplexified gamma matrices of WCW (their her-
mitian conjugates) as linear combinations of the creation (annihilation) operators?! Second
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quantization for the free H spinor field, is completely unique and straightforward and avoids
all problems of quantization in curved space-time.

One could interpret the second quantization of free fermions and fermionic statistics in terms
of WCW geometry, which is something completely new.

3. WCW spinors (for given 4-surface as point of WCW) would be fermionic Fock states created
using fermionic oscillator operators and depend on the space-time surface X*4(X?) as a 4-
surface almost uniquely determined by 3-surface X3.

The fermionic Fock state basis can be interpreted as a representation of Boolean logic so that
Boolean logic could be seen as a ”square root” of Kéhler geometry.

The WCW spinor field would correspond to a superposition of preferred extremals X* with
a WCW spinor assigned with each X*4.

4.10.5 Dirac equation for WCW spinor fields
Free Dirac equation is the key equation for classical spinor fields.

1. In string models it corresponds to the analogs of super-Virasoro and super-Kac-Moody condi-
tions stating conformal invariance and Kac-Moody invariance analogous but not quite equiv-
alent with gauge symmetry.

2. In TGD, these conditions as a counterpart of the WCW Dirac equation generalize. Super
symplectic algebra associated with 5Mi x C' Py (6Mfi denotes light-cone boundary) SSA, the
infinite-D algebras of conformal symmetries (Conf) and isometries (I) of MZ (unique to
the 4-D Minkowski space), and the affine algebras Af f associated with the light-like orbits
of partonic 2-surfaces would be the basic algebras.

3. To each of these algebras, one can assign a generalization of the gauge conditions of conformal
field theories. What is new is that one obtains a hierarchy of gauge conditions. The algebra
in question, call it A, and sub-algebra A,, n > 0, with conformal weights coming as n-
multiples of weights for A, and the commutator [A,,, A] annihilate the physical states. Also
the corresponding classical Noether charges vanish, which gives strong conditions on space-
time surfaces and decomposes WCW to sectors characterized by n.

4. In superstring models one has only n = 0. In the number theoretic vision, the hierarchy of
values of n would actually correspond to the hierarchy of extensions of rationals. If M® — H
duality holds true, n corresponds to the degree of polynomial P defining the space-time surface
and polynomials P would decompose WCW to sectors.

4.10.6 M?® — H duality at the level of WCW

WCW emerges in the geometric view of quantum TGD. M8 — H duality should lso work for
WCW. What is the number theoretic counterpart of WCW? What is the geometric counterpart of
the discretization characteristic to the number theoretic approach?

In the number theoretic vision in which WCW is discretized by replacing space-time surfaces
with their number theoretical discretizations determined by the points of X4 C M?® having the
octonionic coordinates of M?® in an extension of rationals and therefore making sense in all p-adic
number fields? How could an effective discretization of the real WCW at the geometric H level,
making computations easy in contrast to all expectations, take place?

1. The key observation is that any functional or path integral with integrand defined as exponent
of action, can be formally calculated as an analog of Gaussian integral over the extrema
of the action exponential exp(S). The configuration space of fields would be effectively
discretized. Unfortunately, this holds true only for the so called integrable quantum field
theories and there are very few of them and they have huge symmetries. But could this
happen for WCW integration thanks to the maximal symmetries of the WCW metric?

2. For the Kéahler function K, its maxima (or maybe extrema) would define a natural effective
discretization of the sector of WCW corresponding to a given polynomial P defining an
extension of rationals.
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The discretization of the WCW defined by polynomials P defining the space-time surfaces
should be equivalent with the number theoretical discretization induced by the number the-
oretical discretization of the corresponding space-time surfaces. Various p-adic physics and
corresponding discretizations should emerge naturally from the real physics in WCW.

3. The physical interpretation is clear. The TGD Universe is analogous to the spin glass
phase [L120]. The discretized WCW corresponds to the energy landscape of spin glass
having an ultrametric topology. Ultrametric topology of WCW means that discretized WCW
decomposes to p-adic sectors labelled by polynomials P. The ramified primes of P label
various p-adic topologies associated with P.



Chapter 5

TGD view about McKay
Correspondence, ADE Hierarchy,
Inclusions of Hyperfinite Factors,
M® — H Duality, SUSY, and
Twistors

5.1 Introduction

There are two mysterious looking correspondences involving ADE groups. McKay correspondence
between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin
diagrams of affine ADE groups is the first one. The correspondence between principal diagrams
characterizing inclusions of hyper-finite factors of type II; (HFFs) with Dynkin diagrams for a

subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

I have considered the interpretation of McKay correspondence in TGD framework already
earlier [K125, [K48] but the decision to look it again led to a discovery of a bundle of new ideas

allowing to answer several key questions of TGD.

1. Asking questions about M® — H duality at the level of 8-D momentum space [L40] led to
a realization that the notion of mass is relative as already the existence of alternative QFT
descriptions in terms of massless and massive fields suggests (electric-magnetic duality). De-
pending on choice M* C M3, one can describe particles as massless states in M* x CP,
picture (the choice is M} depending on state) and as massive states (the choice is fixed M7)
in M® picture. p-Adic thermal massivation of massless states in M} picture can be seen as
a universal dynamics independent mechanism implied by ZEO. Also a revised view about
zero energy ontology (ZEO) based quantum measurement theory as theory of consciousness

suggests itself.

2. Hyperfinite factors of type II; (HFFs) [K125| [K48] and number theoretic discretization in
terms of what I call cognitive representations [L73] provide two alternative approaches to
the notion of finite measurement resolution in TGD framework. One obtains rather concrete
view about how these descriptions relate to each other at the level of 8-D space of light-like

momenta. Also ADE hierarchy can be understood concretely.

3. The description of 8-D twistors at momentum space-level is also a challenge of TGD. 8-D
twistorializations in terms of octo-twistors (M7 description) and M* x CP, twistors (M}
description) emerge at embedding space level. Quantum twistors could serve as a twistor

description at the level of space-time surfaces.

202



5.1. Introduction 203

5.1.1 McKay correspondence in TGD framework
Consider first McKay correspondence in more detail.

1. McKay correspondence states that the McKay graphs characterizing the tensor product de-
composition rules for representations of discrete and finite sub-groups of SU(2) are Dynkin
diagrams for the affine ADE groups obtained by adding one node to the Dynkin diagram of
ADE group. Could this correspondence make sense for any finite group G rather than only
discrete subgroups of SU(2)? In TGD Galois group of extensions K of rationals can be any
finite group G. Could Galois group take the role of G7

2. Why the subgroups of SU(2) should be in so special role? In TGD framework quaternions
and octonions play a fundamental role at M® side of M® — H duality [L40]. Complexified M®
represents complexified octonions and space-time surfaces X* have quaternionic tangent or
normal spaces. SO(3) is the automorphism group of quaternions and for number theoretical
discretizations induced by extension K of rationals it reduces to its discrete subgroup SO(3)x
having SU(2) k as a covering. In certain special cases corresponding to McKay correspondence
this group is finite discrete group acting as symmetries of Platonic solids. Could this make
the Platonic groups so special? Could the semi-direct products Gal(K) < SU(2)k take the
role of discrete subgroups of SU(2)?

5.1.2 HFFs and TGD

The notion of measurement resolution is definable in terms of inclusions of HFF's and using number
theoretic discretization of X*. These definitions should be closely related.

1. The inclusions N C M of HFFs with index M : A < 4 are characterized by Dynkin diagrams

for a subset of ADE groups. The TGD inspired conjecture is that the inclusion hierarchies of
extensions of rationals and of corresponding Galois groups could correspond to the hierarchies
for the inclusions of HFF's. The natural realization would be in terms of HFFs with coefficient
field of Hilbert space in extension K of rationals involved.
Could the physical triviality of the action of unitary operators N’ define measurement res-
olution? If so, quantum groups assignable to the inclusion would act in quantum spaces
associated with the coset spaces M /N of operators with quantum dimension d = M : N.
The degrees of freedom below measurement resolution would correspond to gauge symmetries
assignable to N.

2. Adelic approach [L49] provides an alternative approach to the notion of finite measurement
resolution. The cognitive representation identified as a discretization of X* defined by the
set of points with points having H (or at least M® coordinates) in K would be common to
all number fields (reals and extensions of various p-adic number fields induced by K). This
approach should be equivalent with that based on inclusions. Therefore the Galois groups of
extensions should play a key role in the understanding of the inclusions.

How HFFs could emerge from TGD?

1. The huge symmetries of “world of classical words” (WCW) could explain why the ADE
diagrams appearing as McKay graphs and principal diagrams of inclusions correspond to
affine ADE algebras or quantum groups. WCW consists of space-time surfaces X4, which are
preferred extremals of the action principle of the theory defining classical TGD connecting the
3-surfaces at the opposite light-like boundaries of causal diamond C D = cd x C P», where cd is
the intersection of future and past directed light-cones of M* and contain part of §M{ x CPs.
The symplectic transformations of 6M_‘f_ x C P, are assumed to act as isometries of WCW. A

natural guess is that physical states correspond to the representations of the super-symplectic
algebra SSA.

2. The sub-algebras SSA, of SSA isomorphic to SSA form a fractal hierarchy with confor-
mal weights in sub-algebra being n-multiples of those in SSA. SSA,, and the commutator
[SSA,,SSA] would act as gauge transformations. Therefore the classical Noether charges for
these sub-algebras would vanish. Also the action of these two sub-algebras would annihilate
the quantum states. Could the inclusion hierarchies labelled by integers .. < n; < ng < ngs....
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with n;41 divisible by n; would correspond hierarchies of HFFs and to the hierarchies of ex-
tensions of rationals and corresponding Galois groups? Could n correspond to the dimension
of Galois group of K.

3. Finite measurement resolution defined in terms of cognitive representations suggests a re-
duction of the symplectic group SG to a discrete subgroup SGg, whose linear action is
characterized by matrix elements in the extension K of rationals defining the extension. The
representations of discrete subgroup are infinite-D and the infinite value of the trace of unit
operator is problematic concerning the definition of characters in terms of traces. One can
however replace normal trace with quantum trace equal to one for unit operator. This im-
plies HFF's and the hierarchies of inclusions of HFFs [K125| [K48]. Could inclusion hierarchies
for extensions of rationals correspond to inclusion hierarchies of HFFs and of isomorphic
sub-algebras of SSA?

Quantum spinors are central for HFFs. A possible alternative interpretation of quantum
spinors is in terms of quantum measurement theory with finite measurement resolution in which
precise eigenstates as measurement outcomes are replaced with universal probability distributions
defined by quantum group. This has also application in TGD inspired theory of consciousness
[K48]: the idea is that the truth value of Boolean statement is fuzzy. At the level of quantum
measurement theory this would mean that the outcome of quantum measurement is not anymore
precise eigenstate but that one obtains only probabilities for the appearance of different eigenstate.
One might say that probability of eigenstates becomes a fundamental observable and measures the
strength of belief.

5.1.3 New aspects of M® — H duality

M8 —H duality (H = M*x CP,) [L40] has become one of central elements of TGD. M® — H duality
implies two descriptons for the states.

1. M® — H duality assumes that space-time surfaces in M3 have associative tangent- or normal
space M* and that these spaces share a common sub-space M? C M?, which corresponds
to complex subspace of octonions (also integrable distribution of M?(z) can be considered).
This makes possible the mapping of space-time surfaces X4 ¢ M8 to X* C H = M* x CP,)
giving rise to M® — H duality.

2. M® — H duality makes sense also at the level of 8-D momentum space in one-one correspon-

dence with light-like octonions. In M?® = M* x E* picture light-like 8-momenta are projected
to a fixed quaternionic M7 C M8. The projections to M7 D M? momenta are in general mas-
sive. The group of symmetries is for E4 parts of momenta is Spin(SO(4)) = SU(2), x SU(2)r
and identified as the symmetries of low energy hadron physics.
M* D> M? can be also chosen so that the light-like 8-momentum is parallel to M7 C M®.
Now CP, codes for the E* parts of 8-momenta and the choice of M} and color group SU(3)
as a subgroup of automorphism group of octonions acts as symmetries. This correspond to
the usual description of quarks and other elementary particles. This leads to an improved
understanding of SO(4) — SU(3) duality. A weaker form of this duality S* — CP; duality:
the 3-spheres S3 with various radii parameterizing the E* parts of 8-momenta with various
lengths correspond to discrete set of 3-spheres S3 of C'P, having discrete subgroup of U(2)
isometries.

3. The key challenge is to understand why the MacKay graphs in McKay correspondence and
principal diagrams for the inclusions of HFF's correspond to ADE Lie groups or their affine
variants. It turns out that a possible concrete interpretation for the hierarchy of finite sub-
groups of SU(2) appears as discretizations of 3-sphere S® appearing naturally at M? side
of M® — H duality. Second interpretation is as covering of quaternionic Galois group. Also
the coordinate patches of C'P; can be regarded as piles of 3-spheres and finite measurement
resolution. The discrete groups of SU(2) define in a natural way a hierarchy of measurement
resolutions realized as the set of light-like M® momenta. Also a concrete interpretation for
Jones inclusions as inclusions for these discretizations emerges.

4. A radically new view is that descriptions in terms of massive and massless states are alterna-
tive options leads to the interpretation of p-adic thermodynamics as a completely universal
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massivation mechanism having nothing to do with dynamics. The problem is the paradoxical
looking fact that particles are massive in H picture although they should be massless by
definition. The massivation is unavoidable if zero energy states are superposition of massive
states with varying masses. The M} in this case most naturally corresponds to that associ-
ated with the dominating part of the state so that higher mass contributions can be described
by using p-adic thermodynamics and mass squared can be regarded as thermal mass squared
calculable by p-adic thermodynamics.

5. As a side product emerges a deeper understanding of ZEO based quantum measurement
theory and consciousness theory. 4-D space-time surfaces correspond to roots of octonionic
polynomials P (o) with real coefficients corresponding to the vanishing of the real or imaginary
part of P(0).

These polynomials however allow universal roots, which are not 4-D but analogs of 6-D
branes and having topology of S®. Their M* projections are time =constant snapshots
t =rp,rar < 7, 3-balls of M* light-cone (r,, is root of P(z)). At each point the ball there is
a sphere S® shrinking to a point about boundaries of the 3-ball.

What suggests itself is following “braney” picture. 4-D space-time surfaces intersect the 6-
spheres at 2-D surfaces identifiable as partonic 2-surfaces serving as generalized vertices at
which 4-D space-time surfaces representing particle orbits meet along their ends. Partonic
2-surfacew would define the space-time regions at which one can pose analogs of boundary
values fixing the space-time surface by preferred extremal property. This would realize strong
form of holography (SH): 3-D holography is implied already by ZEO.

This picture forces to consider a modification of the recent view about ZEO based theory of
consciousness. Should one replace causal diamond (CD) with light-cone, which can be however
either future or past directed. “Big” state function reductions (BSR) meaning the death
and re-incarnation of self with opposite arrow of time could be still present. An attractive
interpretation for the moments ¢t = 7, would be as moments assignable to “small” state
function reductions (SSR) identifiable as “weak” measurements giving rise to sensory input of
conscious entity in ZEO based theory of consciousness. One might say that conscious entity
becomes gradually conscious about its roots in increasing order. The famous question “What
it feels to be a bat” would reduce to “What it feels to be a polynomial?”! One must be
however very cautious here.

5.1.4 What twistors are in TGD framework?

The basic problem of the ordinary twistor approach is that the states must be massless in 4-D sense.
In TGD framework particles would be massless in 8-D sense. The meaning of 8-D twistorialization
at space-time level is relatively well understood but at the level of momentum space the situation
is not at all so clear.

1. In TGD particles are massless in 8-D sense. For M} description particles are massless in 4-D
sense and the description at momentum space level would be in terms of products of ordinary
M* twistors and C'P, twistors. For M7 description particles are massive in 4-D sense. How
to generalize the twistor description to 8-D case?

The incidence relation for twistors and the need to have index raising and lowering operation in
8-D situation suggest the replacement of the ordinary 1 twistors with either with octo-twistors
or non-commutative quantum twistors.

2. T have assumed that what I call geometric twistor space of M* is simply M* x S2. It however
turned out that one can consider standard twistor space C'P; with metric signature (3,-3)
as an alternative. This option reproduces the nice results of the earlier approach but the
philosophy is different: there is no fundamental length scale but the hierarchy of causal
diamonds (CDs) predicted by zero energy ontology (ZEO) gives rise to the breaking of the
exact scaling invariance of M® picture. This forces to modify M® — H correspondence so that
it involves map from M* to C'Ps followed by a projection to hyperbolic variant CPs j, of C'Ps.
Note that also the original form of M® — H duality continues to make sense and results from
the modification by projection from CPs j, to M* rather than CP .

M* in H would not be be replaced with conformally compactified M* (M2 f) but conformally
compactified ed (cdeony) for which a natural identification is as C'P, with second complex
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coordinate replaced with hypercomplex coordinate. The sizes of twistor spaces of cdcons
using C P, size as unit would reflect the hierarchy of size scales for CDs. The consideration on
the twistor space of M® in similar picture leads to the identification of corresponding twistor
space as H P3 - quaternionic variant of C'Ps: the counterpart of C Dg would be HP;.

3. Octotwistors can be expressed as pairs of quaternionic twistors. Octotwistor approach sug-
gests a generalization of twistor Grassmannian approach obtained by replacing the bi-spinors
with complexified quaternions and complex Grassmannians with their quaternionic counter-
parts. Although TGD is not a quantum field theory, this proposal makes sense for cognitive
representations identified as discrete sets of spacetime points with coordinates in the exten-
sion of rationals defining the adele [L49] implying effective reduction of particles to point-like
particles.

4. The outcome of octo-twistor approach together with M® — H duality leads to a nice pic-
ture view about twistorial description of massive states based on quaternionic generalization
of twistor Grassmannian approach. A radically new view is that descriptions in terms of
massive and massless states are alternative options, and correspond to two different alter-
native twistorial descriptions and leads to the interpretation of p-adic thermodynamics as
completely universal massivation mechanism having nothing to do with dynamics. As a side
product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which
are not 4-D but analogs of 6-D branes. By M® — H duality the finite sub-groups of SU(2)
of McKay correspondence appear quite concretely in the description of the measurement
resolution of 8-momentum.

What about super-twistors in TGD framework?

1. The parallel progress in the understanding SUSY in TGD framework [L92] in turn led to the
identification of the super-counterparts of M8, H and of twistor spaces modifying dramati-
cally the physical interpretation of SUSY. Super-spinors in twistor space would provide the
description of quantum states. Super-Grassmannians would be involved with the construc-
tion of scattering amplitudes. Quaternionic super Grassmannians would be involved with M®
description.

2. The great surprise from physics point of view is that in fermionic sector only quarks are
allowed by SO(1,7) triality and that anti-leptons are local 3-quark composites identifiable as
spartners of quarks. Gauge bosons, Higgs and graviton would be also spartners and assignable
to super-coordinates of embedding space expressible as super-polynomials of quark oscillator
operators. Super-symmetrization means also quantization of fermions allowing local many-
quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.

What about the interpretation of quantum twistors? They could make sense as 4-D space-
time description analogous to description at space-time level. Now one can consider generalization
of the twistor Grassmannian approach in terms of quantum Grassmannians.

5.2 McKay correspondence

Consider first McKay correspondence from TGD point of view.

5.2.1 McKay graphs

McKay graps are defined in the following manner. Consider group G which is discrete but not
necessarily finite. If the group is finite there is a finite number of irreducible representations x;.
Select preferred representation V' - usually V' is taken to be the fundamental representation of
G and form tensor products x; ® V. Suppose irrep x; appears n;; times in the tensor product
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X1 ® Xo. Assign to each representation x; dot and connect the dots of x; and x; by n;; arrows.
This gives rise to MacKay graph.

Consider now the situation for finite-D groups of SU(2). 2-D SU(2) spinor representation
as a fundamental representation is essential for obtaining the identification of McKay graphs as
Dynkin diagrams of simply laced affine algebras having only single line connecting the roots (the
angle between positive roots is 120 degrees) (see http://tinyurl.com/z48d92t).

1. For SU(2) representations one has the basic rule j; — 1/2 < j < j; + 1/2 for the tensor
product j; ® 1/2. This rule must be broken for finite subgroups of SU(2) since the number of
representations if finite so that branching point appears in McKay graph. In branching point
the decomposition of j; ® 1/2 decomposes to 3 lower-dimensional representations of the finite
subgroup takes place.

2. Simply lacedness means that given representation appears only once in chiy @ V', when V is
2-D representation as it can be for a subgroup of SU(2). Additional exceptional properties is
the absence of loops (ny; = 0) and connectedness of McKay graph.

3. One can consider binary icosahedral group (double covering of icosahedral group As with
order 60) as an example (for the McKay graph see http://tinyurl.com/y2h55jwp)). The
representations of As are 14,34,35,44,54, where integer tells the dimension. Note that
SO(3) does not allow 4-D representation. For binary icosahedral group one obtains also
the representations 24,2%5,45,64. The McKay graph of Eg contains one branching point in
which one has the tensor product of 6-D and 2-D representations 64 and 24 giving rise to
94 D 3c B4p.

McKay graphs can be defined for any finite group and they are not even unions of simply
laced diagrams unless one has subgroups of SU(2). Still one can wonder whether McKay corre-
spondence generalizes from subgroups of SU(2) to all finite groups. At first glance this does not
seem possible but there might be some clever manner to bring in all finite groups.

The proposal has been that this McKay correspondence has a deeper meaning. Could simply
laced affine ADE algebras, ADE type quantum algebras, and/or corresponding finite groups act
as symmetry algebras in TGD framework?

5.2.2 Number theoretic view about McKay correspondence

Could the physical picture provided by TGD help to answer the above posed questions?

1. Could one identify discrete subgroups of SU(2) with those of the covering group SU(2) of
SO(3) of quaternionic automorphisms defining the continuous analog of Galois group and
reducing to a discrete subgroup for a finite resolution characterized by extension K of rationals.
The tensor products of 2-D spinor representation of these discrete subgroups SU(2)x would
give rise to irreps appearing in the McKay graph.

2. In adelic physics [L49] extensions K of rationals define an evolutionary hierarchy with effective
Planck constant hejp/ho = n identified as the dimension of K. The action of discrete and
finite subgroups of various symmetry groups can be represented as Galois group action making
sense at the level of X* [[40] for what I have called cognitive representations. By M® — H
duality also the Galois group of quaternions and its discrete subgroups appear naturally.
This suggests a possible generalization of McKay correspondence so that it would apply to all
finite groups G. Any finite group G can appear as Galois group. The Galois group Gal(K)
characterizing the extension of rationals induces in turn extensions of p-adic number fields
appearing in the adele. Could the representation of G as Galois group of extension of rationals
allow to generalize McKay correspondence?

Could the following argument inspired by these observations make sense?

1. SU(2) is identified as spin covering of the quaternionic automorphism group. One can define
the subgroups in matrix representation of SU(2) based on complex numbers. One can replace
complex numbers with the extension of rationals and speak of group SU(2)k identified as a
discrete subgroup of SU(2) having in general infinite order.

The discrete finite subgroups G C SU(2) appearing in the standard McKay correspondence
correspond to extensions K of rationals for which one has G = SU(2)k. These special
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extensions can be identified by studying the matrix elements of the representation of G and
include the discrete groups Z, acting as rotation symmetries of the Platonic solids. For
instance, for icosahedral group Z5,Z3 and Z5 are involved and correspond to roots of unity.

2. The semi-direct product Gal < SU(2)k with group action

(gali, g1)(gals, g2) = (galy o gala, g1(galiga))

makes sense. The action of Gal<1SU(2)k in the representation is therefore well-defined. Since
all finite groups G can appear as Galois groups, it seems that one obtains extension of the
McKay correspondence to semi-direct products involving all finite groups G representable as
Galois groups.

3. A good guess is that the number of representations of SU(2)k involved is infinite if SU(2)x
has infinite order. For A, and D,, the branching occurs only at the ends of the McKay graph.
For Ei, k = 6,7,8 the branching occurs in middle of the graph (see http://tinyurl.com/
y2h55jwp). What happens for arbitrary G. Does the branching occur at all? One could
argue that if the discrete subgroup has infinite order, the representation can be completed
to a representation of SU(2) in terms of real numbers so that the McKay graphs must be
identical.

4. A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) < SU(2)k and free field representation of ADE type Kac-Moody algebra
identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements
defined by the traces of representation matrices (characters).

5. A possible interpretation of quantum spinors is in terms of quantum measurement theory
with finite measurement resolution in which precise eigenstates as measurement outcomes
are replaced with universal probability distributions defined by quantum group [K48]. TGD
inspired theory of consciousness is a possible application.

Also the notion of quantum twistor [LI7] can be considered. In TGD particles are massless
in 8-D sense and in general massive in 4-D sense but 4-D twistors are needed also now so that
a modification of twistor approach is needed. The incidence relation for twistors suggests the
replacement of the usual twistors with non-commutative quantum twistors.

5.3 ADE diagrams and principal graphs of inclusions of hy-
perfinite factors of type 1I;

Dynkin diagrams for ADE groups and corresponding affine groups characterize also the inclusions
of hyperfinite factors of type II; (HFFs) [K48].

5.3.1 Principal graphs and Dynkin diagrams for ADE groups

1. If the index 8 = M : N of the Jones inclusion satisfies 3 < 4, the affine Dynkin diagrams
of SU(n) (discrete symmetry groups of n-polygons) and E; (symmetry group of octahedron
and cube) and D(2n + 1) (symmetries of double 2n+1-polygons) are not allowed.

2. Vaughan Jones [A96] (see http://tinyurl.com/y8jzvogn) has speculated that these fi-
nite subgroups could correspond to quantum groups as kind of degenerations of Kac-Moody
groups. Modulo arithmetics defined by the integer n defining the quantum phase suggests
itself strongly. For § = 4 one can construct inclusions characterized by extended Dynkin
diagram and any finite sub-group of SU(2). In this case affine ADE hierarchy appear as
principal graphs characterizing the inclusions. For 8 < 4 the finite measurement resolution
could reduce affine algebra to quantum algebra.

3. The rule is that for odd values of n defining the quantum phase the Dynkin diagram does not
appear. If Dynkin diagrams correspond to quantum groups, one can ask whether they allow
only quantum group representations with quantum phase ¢ = exp(ir/n) equal to even root
of unity.
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5.3.2 Number theoretic view about inclusions of HFFs and preferred
role of SU(2)

Consider next the TGD inspired interpretation.

1. TGD suggests the interpretation in terms of representations of Gal(K(G)) <« G for finite
subgroups G of SU(2), where K(G) would be an extension associated with G. This would
generalize to subgroups of SU(2) with infinite order in the case of arbitrary Galois group.
Quantum groups have finite number of representations in 1-1-correspondence with terms of
finite-D representations of G. Could the representations of Gal(K(G)) <G correspond to the
representations of quantum group defined by G?

This would conform with the vision that there are two ways to realize finite measurement
resolution. The first one would be in terms of inclusions of hyper-finite factors. Second would
be in terms cognitive representations defining a number theoretic discretization of X* with
embedding space coordinates in the extension of rationals in which Galois group acts.

In fact, also the discrete subgroup of infinite-D group of symplectic transformations of AMﬁ‘; X
CP, would act in the cognitive representations and this suggests a far reaching implications
concerning the understanding of the cognitive representations, which pose a formidable looking
challenge of finding the set of points of X* in given extension of rationals [L87].

2. This brings in mind also the model for bio-harmony in which genetic code is defined in terms
of Hamiltonian cycles associated with icosahedral and tetrahedral geometries [L5] [L76]. One
can wonder why the Hamiltonian cycles for cubic/octahedral geometry do not appear. On the
other hand, according to Vaughan the Dynkin diagram for F; is missing from the hierarchy
of so principal graphs characterizing the inclusions of HFFs for 8 < 4 (a fact that I failed to
understand). Could the genetic code directly reflect the properties of the inclusion hierarchy?

How would the hierarchies of inclusions of HFFs and extensions of rationals relate to each
other?

1. T have proposed that the inclusion hierarchies of extensions K of rationals accompanied by
similar hierarchies of Galois groups Gal(K) could correspond to a fractal hierarchy of sub-
algebras of hyperfinite factor of type II;. Quantum group representations in ADE hierarchy
would somehow correspond to these inclusions. The analogs of coset spaces for two alge-
bras in the hierarchy define would quantum group representations with quantum dimension
characterizing the inclusion.

2. The quantum group in question would correspond to a quantum analog of finite-D group of
SU(2) which would be in completely unique role mathematically and physically. The infinite-
D group in question could be the symplectic group of 5M_‘f_ x C' P, assumed to act as isometries
of WCW. In the hierarchy of Galois groups the quantum group of finite group G C SU(2)
would correspond to Galois group of an extension K.

3. The trace of unit matrix defining the character associated with unit element is infinite for
these representations for factors of type I. Therefore it is natural to assume that hyper-finite
factor of type I3 for which the trace of unit matrix can be normalized to 1. Sub-factors would
have trace of projector with trace smaller than 1.

4. Do the ADE diagrams for groups Gal(K(G)) < G indeed correspond to quantum groups and
affine algebras? Why the finite groups should give rise to affine/Kac-Moody algebras? In
number theoretic vision a possible answer would be that depending on the value of the index
B of inclusion the symplectic algebra reduces in the number theoretic discretization by gauge
conditions specifying the inclusion either to Kac-Moody group (8 = 4) or to quantum group

(B <4).

What about subgroups of groups other than SU(2)? According to Vaughan there has been
work about inclusion hierarchies of SU(3) and other groups and it seems that the results generalize
and finite subgroups of say SU(3) appear. In this case the tensor products of finite sub-groups
McKay graphs do not however correspond to the principal graphs for inclusions. Could the number
theoretic vision come in rescue with the replacement of discrete subgroup with Galois group and
the identification of SU(2) as the covering for the Galois group of quaternions?
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5.3.3 How could ADE type quantum groups and affine algebras be con-
cretely realized?

The questions discussed are following. How to understand the correspondence between the McKay
graph for finite group G C SU(2) and ADE (affine) group Dynkin diagram for g < 4 (8 = 4)?
How the nodes of McKay grap representing the irreps of finite group can correspond to the positive
roots of a Dynkin diagram, which are essentially vectors defined by eigenvalues of Cartan algebra
generators for complexified Lie-algebra basis.

The first thing that comes in mind is the construction of representation of Kac-Moody alge-
bra using scalar fields labelled by Cartan algebra generators (see http://tinyurl.com/y91lkeelk):
these representations are discussed by Edward Frenkel [A3§]. The charged generators of Kac-
Moody algebra in the complement of Cartan algebra are obtained by exponentiating the contrac-
tions of the vector formed by these scalar fields with roots to get o - ® = a;®’. The charged field
is represented as a normal ordered product : exp(ic - @) :. If one can assign to each irrep of G a
scalar field in a natural manner one could achieve this.

Neglect first the presence of the group algebra of Gal(K (G)) < G. The standard rule for the
dimensions of the representations of finite groups reads as Y., d? = n(G). For double covering of
G one obtains this rule separately for integer spin representations and half-odd integers spin repre-
sentations. An interesting possibility is that this could be interpreted in terms of supersymmetry
at the level of group algebra in which representation of dimension d; appears d; times.

The group algebra of G and its covering provide a universal manner to realize these repre-
sentations in terms of a basis for complex valued functions in group (for extensions of rationals
also the values of the functions must belong to the extension).

1. Representation with dimension d; occurs dj times and corresponds to d; X dj representation
matrices D} = of representation yr, whose columns and rows provide representations for left-
and right-sided action of G. The tensor product rules for the representations x; can be
formulated as double tensor products. For basis states |J,n) in x; and |J,n) in x; one has

|I,m)®|J,n> =¢ m|Jn|K p> ?

K .
where c; ;ﬁ 7 are Glebch-Gordan coefficients.

2. For the tensor product of matrices D and D/, one must apply this rule to both indices.
The orthogonality properties of Glebsch-Gordan coefficients guarantee that the tensor product
contains only terms in which one has same representation at left- and right-hand side. The

orthogonality rule is

z :cl m|JncI 7‘|Js X 6K’L :

3. The number of states is n(G) whereas the number I(G) of irreps corresponds to the dimension
of Cartan algebra of Kac-Moody algebra or of quantum group is smaller. One should be able
to pick only one state from each representation D?.

The condition that the state X of group algebra is invariant under automorphism ¢gXg~*

implies that the allowed states as function in group algebra are traces Tr(DT)(g) of the
representation matrices. The traces of representation matrices indeed play fundamental role
as automorphism invariants. This suggests that the scalar fields ®; in Kac-Moody algebra
correspond to Hilbert space coefficients of Tr(DT)(g) as elements of group algebra labelled by
the representation. The exponentiation of « - ® would give the charged Kac-Moody algebra
generators as free field representation.

4. For infinite sub-groups G C SU(2) d(G) is infinite. The traces are finite also in this case if
the dimensions of the representations involved are finite. If one interprets the unit matrix as
a function having value 1 in entire group T'r(Id) diverges. Unit dimension for HFF's provide a
more natural notion of dimension d = n(G) of group algebra n(G) as d = n(G) = 1. Therefore
HFF's would emerge naturally.
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It is easy to take into account Gal(K(G)). One can represent the elements of semi-direct
product Gal(K(G))<G as functions in Gal(K(G)) x G and the proposed construction brings in also
the tensor products in the group algebra of Gal(K(G)). It is however essential that group algebra
elements have values in K. This brings in tensor products of representations Gal and G and the
number of representations is n(Gal) x n(G). The number of fields ®; as also the number of Cartan
algebra generators of ADE Lie algebra increases from I(G) to I(Gal) x I(G). The reduction of
the extension of coefficient field for the Kac-Moody algebra from complex numbers to K splits the
Hilbert space to sectors with smaller number of states.

5.4 M®% — H duality

The generalization of the standard twistor Grassmannian approach to TGD remains a challenge
for TGD and one can imagine several approaches. M2 — H duality is essential for these approaches
and will be discussed in the sequel.

The original form of M® — H duality assumed H = M* x C'P, but quite recently it turned
out that one could replace the twistor space of M? identified as M* x S? with C'Psj,, which is
hyperbolic variant of C P5. This option forces to replace H with H = C Py, x CP. M®— H duality
would consist of a map of M* point to corresponding twistor sphere in C'Ps j, and its projection to
CP, . This option will be discussed in the section about twistor lift of TGD.

5.4.1 M3 — H duality at the level of space-time surfaces

M8 — H duality [L40] relates two views about space-time surfaces X*: as algebraic surfaces in
complexified octonionic M?® and as minimal surfaces with singularities in H = M* x CP.

1. Octonion structure at the level of M® means a selection of a suitable decomposition M® =
M* x E* in turn determining H = M* x CP,. Choices of M* share a preferred 2-plane
M? C M* belonging to the tangent space of allowed space-time surfaces X* C M?® at various
points. One can parameterize the tangent space of X* C M?® with this property by a point
of CP,. Therefore X* can be mapped to a surface in H = M* x CPy: one M8-duality. One
can consider also the possibility that the choice of M? is local but that the distribution of
M?(x) is integrable and defines string world sheet in M*. In this case M?(z) is mapped to
same M? C H.

2. Since 8-momenta pg are light-like one can always find a choice of M} C M® such that ps
belongs to M} and is thus light-like. The momentum has in the general case a component
orthogonal to M? so that M} is unique by quaternionicity: quaternionic cross product for
tangent space quaternions gives the third imaginary quaternionic unit. For a fixed M*?, call
it M7, the M* projections of momenta are time-like. When momentum belongs to M? the
choices is non-unique and any M* C M? is allowed.

3. Space-time surfaces X4 C M?® have either quaternionic tangent- or normal spaces. Quantum
classical correspondence (QCC) requires that charges in Cartan algebra co-incide with their
classical counters parts determined as Noether charges by the action principle determining X*
as preferred extremal. Parallelity of 8-momentum currents with tangent space of X* would
conform with the naive view about QCC. It does not however hold true for the contributions
to four-momentum coming from string world sheet singularities (string world sheet boundaries
are identified as carriers of quantum numbers), where minimal surface property fails.

An important aspect of M®— H duality is the description of space-time surfaces X ¢ M$ as
roots for the “real” or “imaginary” part in quaternionic sense of complexified-octonionic polynomial
with real coefficients: these options correspond to complexified-quaternionic tangent - or normal
spaces. The real space-time surfaces would be naturally obtained as “real” parts with respect to ¢
of their complexified counterparts by projection from M to MZ%. One could drop the subscripts
7. but in the sequel they are kept.

Remark:0.,0.,C.,R. will be used in the sequel for complexifications of octonions, quater-
nions, etc.. number fields using commuting imaginary unit ¢ appearing naturally via the roots of
real polynomials.
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M?®— H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Space-time surface is identified as a 4-D root for a H.-valued “imaginary” or “real” part of
O, valued polynomial obtained as an O, continuation of a real polynomial P with rational
coefficients, which can be chosen to be integers. For P(z) = 2™ +.. ordinary roots are algebraic
integers. The 4-D space-time surface is projection of this surface from M$ to M8.

The tangent space of space-time surface and thus space-time surface itself contains a preferred
M?2 c M or more generally, an integrable distribution of tangent spaces M?2(z). The string
world sheet like entity defined by this distribution is 2-D surface X2 C X2 in R, sense.

X?2c can be fixed by posing to the non-vanishing Q.-valued part of octonionic polynomial
condition that the C. valued “real” or “imaginary” part in C, sense for this polynomial
vanishes. M? would be the simplest solution but also more general complex sub-manifolds
X2 C M} are possible. In general one would obtain book like structures as collections of
several string world sheets having real axis as back.

By assuming that R.-valued “real” or “imaginary” part of the polynomial at this 2-surface
vanishes. one obtains preferred M} or E} containing octonionic real and preferred imaginary
unit or distribution of the imaginary unit having interpretation as complexified string. To-
gether these kind 1-D surfaces in R, sense would define local quantization axis of energy and
spin. The outcome would be a realization of the hierarchy R_,C. — H. — O, realized as
surfaces.

Remark: Also M2 appears as a special solution for any polynomial P. MZ? seems to be
like a universal reference solution with which to compare other solutions. M2 would intersect
all other solutions along string world sheets X2. Also this would give rise to a book like
structures with 2-D string world sheet representing the back of given book. The physical
interpretation of these book like structures remains open in both cases.

I have proposed that string world sheets as singularities correspond to 2-D folds of space-
time surfaces at which the dimension of the quaternionic tangent space degenerates from
4 to 2 |[L84] [K10]. This interpretation is consistent with the identification as a book like
structure with 2-pages. Also 1-D real and imaginary manifols could be interpreted as folds or
equivalently books with 2 pages.

2. Associativity condition for tangent-/normal space is second essential condition and means
that tangent - or normal space is quaternionic. The conjecture is that the identification in
terms of roots of polynomials guarantees this and one can formulate this as rather convincing
argument [L41] [L42] [L43].

One cannot exclude rational functions and or even real analytic functions in the sense that
Taylor coefficients are octonionically real (propotional to octonionic real unit). Number theoret-
ical vision - adelic physics [L49], suggests that polynomial coefficients are rational or perhaps in
extensions of rationals. The real coefficients could in principle be replaced with complex numbers
a + b, where i commutes with the octonionic units and defines complexifiation of octonions. i
appears also in the roots defining complex extensions of rationals.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone 5M§ of M8
with tip at the origin of coordinates is an exception [L40]. At 6M$ the octonionic coordinate
o is light-like and one can write o = re, where 8-D time coordinate and radial coordinate are
related by ¢ = r and one has e = (1 + e,)/v/2 such that one as €% = e.
Polynomial P(0) can be written at 6 M as P(0) = P(r)e and its roots correspond to 6-spheres
S6 represented as surfaces tyy =t =1y, rar = /13 — 1% < rn, 7E < ry, where the value of
Minkowski time ¢t = r = ry is a root of P(r) and rj; denotes radial Minkowski coordinate.

The points with distance rj; from origin of t = 7y ball of M* has as fiber 3-sphere with
radius r = /7%, — r%. At the boundary of S® contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries 7y = rxy of balls belong to
the boundary of M* light-cone. In this case the intersection would be that of 4-D and 3-D
surface, and empty in the generic case (it is however quite not clear whether topological notion
of “genericity” applies to octonionic polynomials with very special symmetry properties).
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3. The 6-spheres t); = rny would be very special. At these 6-spheres the 4-D space-time surfaces
X% as usual roots of P(0) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of r,,.

The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their 2-D
ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary Feynman
diagrams. Obviously this would make the definition of the generalized vertices mathematically
elegant and simple.

Note that this does not require that space-time surfaces X% meet along 3-D surfaces at
S6. The interpretation of the times ¢, as moments of phase transition like phenomena is
suggestive. ZEO based theory of consciousness suggests interpretation as moments for state
function reductions analogous to weak measurements ad giving rise to the flow of experienced
time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as
initial data fixing the 4-D roots of polynomials. This would give precise content to strong
form of holography (SH), which is one of the central ideas of TGD and strengthens the 3-
D holography coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of
CD define unique preferred extremals. The reduction to 2-D holography would be due to
preferred extremal property realizing the huge symplectic symmetries and making M® — H
duality possible as also classical twistor lift.

I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X* N S%? This is not possible since time coordinate t;; constant at the roots
and varies at string world sheets.

Note that the compexification of M® (or equivalently octonionic E®) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(€1, €, .., €8), epsilon; = £1 signatures. Their physical interpretation - if any - remains open
at this moment.

5. The universal 6-D brane-like solutions S° have also lower-D counterparts. The condition de-
termining X2 states that the C.-valued “real” or “imaginary” for the non-vanishing Q.-valued
“real” or “imaginary” for P vanishes. This condition allows universal brane-like solution as
a restriction of O, to M? (that is CD,..) and corresponds to the complexified time=constant
hyperplanes defined by the roots ¢t = 7, of P defining “special moments in the life of self”
assignable to CD. The condition for reality in R, sense in turn gives roots of t = r,, a hyper-
surfaces in M2.

5.4.2 M3 — H duality at the level of momentum space
M?® — H duality occurs also at the level of momentum space and has different meaning now.

1. At M® level 8-momenta are quaternionic and light-like. The choices of M} D M? for which
8-momentum in M}, are parameterized by C P, parameterizing also the choices of tangent or
normal spaces of X% C M?® at space-time level. This maps M?® light-like momenta to light-like
M} momenta and to C'P, point characterizing the M* and depending on 8-momentum. One
can introduce C'P, wave functions expressible in terms of spinor harmonics and generators of
of a tensor product of Super-Virasoro algebras.

2. For a fixed choice M7} momenta in general time-like and the E* component of 8-momentum
has value equal to mass squared. E* momenta are points of 3-sphere so that SO(3) harmonics
with SO(4) symmetry could parametrize the states. The quantum numbers are My O M?
momenta with fixed mass and the two angular momenta with identical values for S harmon-
ics, which correspond to the quantum states of a spherical quantum mechanical rigid body,
and are given by the matrix elements DJ, . SU(2) group elements (SO(4) decomposes to
SU(2)r) x SU(2)gr acting from left and right).

This picture suggests what one might call SO(4) — SU(3) duality at the level of momentum
space. There would be two descriptions of states: as massless states with SU(3) symmetry
and massive states with SO(4) symmetry.
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3. What about the space formed by the choices of the space of the light-like 8-momenta? This
space is the space for the choices of preferred M? and parameterized by the 6-D (symmetric
space Go/SU(3), where SU(3) C G leaving complex plane M? invariant is subgroup of
quaternionic automorphic group G(2) leaving octonionic real unit defining the rest system
invariant. This space is moduli space for octonionic structures each of which defines family
of space-time surfaces. 8-D Lorent transformations produce even more general octonionic
structures. The space for the choices of color quantization axes is SU(3)/U(1) x U(1), the
twistor space of CPs.

Do M} and M# have analogs at the space-time level?

As found, the solutions of octonionic polynomials consisting of 4-D roots and special 6-D roots
coming as 6-sphere S° s at 7-D light-cone of M®. The roots at t = r light-cone boundary are given
by the roots r = ry of the polynomial P(t) and correspond to M* slices tyr =, < . At
point rp S fiber as radius r(S3) = \/r3, — 2, and contracts to a point at its boundaries.

Could M} and Mr have analogies at the space-time level?

1. The sphere S associated M3 could have counterpart at the level of space-time description.
The momenta in M7 would naturally be mapped to momenta in the section ¢ = r, in this
case the S3:s of different mass squared values would naturally correspond to S3:s assignable
to the points of the balls ¢ = r,, and code for mass squared value.

The counterpart of M} should correspond to light-cone boundary but what does C' Py corre-
spond? Could the pile of S? associated with ¢t = r, correspond also to C'P,. Could this be
the case if there is wormhole contact carrying monopole flux at the origin so that the analog
for the replacement of 3-sphere at rcp, = oo with homologically non-trivial 2-sphere would
be realized?

2. Does the 6-sphere as a root polynomial have counterpart in H? The image should be consistent
with M®— H duality and correspond to a fixed structure depending on the root 7, only. Since
53 associated with the E* momenta reduces to a point for M3, the natural guess is that S¢
reduces to t = r,,0 < rj); <7, surface in H.

S3 — CP, duality

53 — C'P, duality at the level of quantum numbers suggest strongly itself. What does this require?
One can approach the problem from two different perspectives.

1. The first approach would be that the representations of SU(3) and SO(4) groups somehow
correspond to each other: one could speak of SU(3) — SO(4) duality [K107, [K124]. The
original form of this duality was this. The color symmetries of quark physics at high energies
would be dual to the SO(4) = SU(2), x SU(2) g symmetries of the low energy hadron physics.
Since the physical objects are partons and hadrons formed from the one cannot expect the
duality to hold true at the level of details for the representations, and the comparison of the
representations makes this clear.

2. The second approach relies on the notion of cognitive representation meaning discretization
of CP, and S® and counting of points of cognitive representations providing discretization in
terms of M8 or H points belonging to the extension of rationals considered. In this case it is
more natural to talk about S® — CP, duality.

The basic observation is that the open region 0 < r < oo of CP, in Eguchi-Hanson coordi-
nates with r labeling 3-spheres S3(r) with finite radius can be regarded as pile of S3(r). In
discretization one would have discrete pile of these 3-spheres with finite number of points in
the extension of rationals. They points of given S3 could be related by isometries in special
cases.

How S3 — C'P, duality at the level of light-like M/® momenta could emerge?

1. Consider first the situation in which one chooses M* > M? sub-spaces so that momentum
projection to it is light-like. For cognitive representation the choices of M* > M? correspond
to ad discrete set of points of C'P, and thus points in the pile of S with discrete radii since all
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E* parts of momenta with fixed length squared to zero in this choice and each E* momentum
with fixed lengthand thus identifiable as discrete point of S would correspond to one choice.
All these choices would give rise to a pile of S3:s identifiable as set 0 < r < oo of CP,. The
number of C'P, points would be same as total number of points in the pile of discrete 53s.
This is what S — CP, duality would say.

Remark: The volumes of C'P, and S® with unit radius are 872 and 272 so that ration is
rational number.

2. Consider now the situation for M7 so that one has non-vanishing M* mass squared equal to
E* mass squared, having discretized values. The E* would momenta correspond to points
for a pile of discretized S® and thus to the points of C'P, by above argument. One would
have S3 — C'P, correspondence also now as one indeed expects since the two ways to see the
situation should be equivalent.

3. In the space of light-like M® momenta E® momenta could naturally organize into repre-
sentations of finite discrete subgroups of SU(2) appearing in McKay correspondence with
ADE groups: the groups are cyclic groups, dihedral groups, and the isometry groups as-
sociated with tetrahedron, octahedron (cube) and icosahedron (dodecahedron) (see http:
//tinyurl.com/yyyn9p95).

4. Could a concrete connection with the inclusion hierarchy of HFFs be based on increasing
momentum resolution realized in terms of these groups at sphere S3. Notice however that
for cyclic and dihedral groups the orbits are circles and pairs of circles for dihedral groups so
that the discretization looks too simple and is rotationally asymmetric. Discretization should
improve as n increases.

One can of course ask why C,, and D,, with single direction of rotation axes would appear?
Could it be that the directions of rotation axis correspond to the directions defined by the
vertices of the 5 Platonic solids. Or could the orbits of fixed axis under the 5 Platonic orbits
be allowed. Also this looks still too simple.

Could the discretization labelled by 7,4, be determined by the product of the groups up to
Nmaz and define a group with infinite order. One can consider also groups defined by subsets
{n1,ns...n3} and these a pair of sequences with larger sequence containing the smaller one
could perhaps define an inclusion. The groups C, and D, allow prime decomposition in
obvious manner and it seems enough to include to the product only the groups C), and D,,
where p is prime as generators so that one would have set {p1,...p,} of primes labelling these
groups besides the Platonic groups. The extension of rationals used poses a cutoff on the
number of groups involved and on the group elements representable since since too high roots
of unity resulting in the multiplication of C, and D, do not belong to the extension.

At the level of momentum space the hierarchy of finite discrete groups of SU(2) would define
the notion measurement resolution. The discrete orbits of SU(2) x U(1) at S* would be
analogous to tessellations of sphere 52 known as Platonic solids at sphere S? and appearing
in the ADE correspondence assignable to Jones inclusions as description of measurement
resolution. This would also explain also why Z5 coverings of the subgroups of SO(3) appear
in ADE sequence.

This picture is probably not enough for the needs of adelic physics [L49] allowing all extensions
of rationals. Besides roots of unity only the roots of small integers 2, 3,5 associated with the
geometry of Platonic solids would be included in these discretizations. One could interpret
these discretizations in terms of subgroups of discrete automorphism groups of quaternions.
Also the extensions of rationals are probably needed.

Could $% — C'P, duality make sense at space-time level? Consider the space-time analog for
the projection of M® momenta to fixed M.

1. Suppose that the 3-surfaces determining the space-time surfaces as algebraic surfaces in X4 C
M? are given at the surfaces t = 7,7y < ry and have a 3-D fiber which should be surface in
CP;. On can assign to each point of this ball S3(r,,) with radius going to zero at 7y = 7.
One has pile of S3(rps) which corresponds to the region 0 < r < oo of CP,. This set is
discretized. Suppose that the discretization is like momentum discretization. If so, the points
would correspond to points of C'P,. It is not however clear why the discretization should be
so symmetric as in momentum discretization.
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2. The initial values could be chosen by choosing discrete set of points in this pile of S3:s and
this would give rise to a discrete set of points of C'P, fixing tangent or normal plane of X*
at these points. One should show that the selection of a point of S® at each point indeed
determines quaternionic tangent or normal plane plane for a given polynomial P(0) in M?.

It would seem that this correspondence need not hold true.

5.4.3 M8 — H duality and the two ways to describe particles

The isometry groups for M* x CP, is P x SU(3) (P for Poincare group). The isometry group
for M® = M* x E* with a fixed choice of M* breaks down to P x SO(4). A further breaking by
selection M* C M? of preferred octonionic complex plane M? necessary in the algebraic approach
to space-time surfaces X* C M?® brings in preferred rest system and reduces the Poincare symmetry
further. At the space-time level the assumption that the tangent space of X* contains fixed M?
or at least integral distribution of M?(x) C M* is necessary for M® — H duality [L40].

The representations SO(4) and SU(3) could provide alternative description of physics so that
one would have what I have called SO(4) — SU(3) duality [K107]. This duality could manifest in
the description of strong interaction physics in terms of hadrons and quarks respectively (conserved
vector current hypothesis and partially conserved axial current hypothesis based on Spin(SO(4)) =
SU(2) x SU(2)g. The challenge is to understand in more detail this duality. This could allow also
to understand better how the two twistor descriptions might relate.

SO(4) — SU(3) duality implies two descriptions for the states and scattering amplitudes.

Option I: One uses projection of 8-momenta to a fixed M7 D M?2.

Option II: One assumes that M7 > M? is defines the frame in which quaternionic octonion
momentum is parallel to M3: this M} depends on particle state and describes this dependence in
terms of wave function in CPs.

Option I: fixed M} D> M?

For Option I the description would be in terms of a fivzed M$ C M® = M7} x E* and M? C M}
fixed for both options. For given quaternionic light-like A/ momentum one would have projection
to M7, which is in general massive. E* momentum would have same the length squared by
light-likeness.

De-localization M3 mass squared equal to p?(M7) = m? in E* can be described in terms
of SO(4) harmonics at sphere having p?(E*) = m?2. This would be the description applied to
hadrons and leptons and particles treated as massive particles. Particle mass would be due to the
fixed choice of M7. What dictates this choice is an interesting question. An interesting question is
how these descriptions relate to QFT Higgs mechanism as (in principle) alternative descriptions:
the choice of fixed M7 could be seen as analog for the generation of vacuum expectation of Higgs
selecting preferred direction in the space of Higgs fields.

Option II: varying M} D> M?

For Option II the description would use M7 D M?, which is not fized but chosen so that it contains
light-like M® momentum. This would give light-like momentum in M} identifiable as quaternionic
sub-space of complexified octonions.

1. One could assign to the state wave function function for the choices of M* and by quaternion-
icity of 8-momenta this would correspond to a state in super-conformal representation with
vanishing M} mass: C'P; point would code the information about E* component light-like
8-momentum. This description would apply to the partonic description of hadrons in terms
of massless quarks and gluons.

2. For this option one could use the product of ordinary M* twistors and C'P, twistors. One
challenge would be the generalization of the twistor description to the case of C P, twistors.
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p-Adic particle massivation and ZEO

The two pictures about description of light-like M® momenta do not seem to be quite consistent
with the recent view about TGD in which H-harmonics describe massivation of massless particles.
What looks like a problem is following.

1.

The resulting particles are massive in M*. But they should be massless in M* x CPy de-
scription. The non-vanishing mass would suggest the correct description in terms of Option
I for which the description in terms of E4 momenta with length equal to mass and thus iden-
tifiable as points of S3. Momentum space wave functions at 52 - essentially rigid body wave
functions given by representation matrices of SU(2) could characterize the states rather than
C' P, harmonic.

. The description based on C P, color partial waves however works and this would favor Option

II with vanishing M* mass. What goes wrong?

To understand what might be involved, consider p-adic mass calculations.

. The massivation of physical fermion states includes also the action of super-conformal gen-

erators changing the mass. The particles are originally massless and p-adic mass squared is
generated thermally and mapped to real mass squared by canonical identification map.

For C'P, spinor harmonics mass squared is of order C'P, mass squared and thus gigantic.
Therefore the mass squared is assumed to contain negative tachyonic ground state contribution
due to the negative half-odd integer valued conformal weight h,q. < 0 of vacuum. The origin
of this contribution has remained a mystery in p-adic thermodynamics but it makes possible
to construct massless states. hy,.. cancels the spinorial contributions and the contribution
from positive conformal weights of super-conformal generators so that the particle states are
massless before thermalization. This would conform with the idea of using varying M3 and
thus C' P, description.

. What does the choice of M* mean in terms of super-conformal representations? Could the

mysterious vacuum conformal weight h,.. provide a description for the effect of the needed
SU (3) rotation of M* from standard orientation on super-conformal representation. The effect
would be very simple and in certain sense reversal to the effect of Higgs vacuum expectation
value in that it would cancel mass rather than generate it.

An important prediction would be that heavy states should be absent from the spectrum in
the sense that mass squared would be p-adically of order O(p) or O(p?) (in real sense of order
O(1/p) or O(1/p?)). The trick would be that the generation of hg as a representation of SU(3)
rotation of M* makes always the dominating contribution to the mass of the state vanishing.

Remark: If the canonical identification I mapping the p-adic mass integers to their real
numbers is of the simplest form m = Y x,p" — I(m) = > x,p~", it can happen that
the image of rational m/n with p-adic norm not larger than 1 represented as p-adic integer
by expanding it in powers of p, can be near to the maximal value of p and the mass of the
state can be of order C'P, mass - about 10~* Planck masses. If the canonical identification is
defined as m/n — I/(m)/I(n) the image of the mass is small for small values of m and n.

. Unfortunately, it is easy to get convinced that this explanation of h,q. is not physically

attractive. Identical mass spectra at the level of M® and H looks like a natural implication
of M® — H-duality. SU(3) rotation of M* in M® cannot however preserve the general form
of M* x CP, mass squared spectrum for the M* projections of M® momenta at level of M.
Remark: For H = M* x CP;, the mass squared in given representation of Super-conformal
symmetries is given as a sum of C' P, mass squared for the spinor harmonic determining the
ground state and of a Virasoro contribution proportional to a non-negative integer. The
masses are required to independent of electroweak quantum numbers.

One can imagine two further identifications for the origin of h,qc-

. Take seriously the possibility of complex momenta allowed by the complexification of M? by

commuting imagine unit ¢ and also suggested by the generalization of the twistorialization.
The real and imaginary parts of light-like complex 8-momenta pg = ps re + s, rm are or-
thogonal to each other: pg re - ps,rm = 0 so that both real and imaginary parts of pg are
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2 2

light-like: pgyRe = pglm = 0. The M* mass squared can be written has m? = m%_ —m3?,,
with hyee o< —m?2, . The representations of Super-conformal algebra would be labelled by
hyae X m%m.

Could the needed wrong sign contribution to C'P, mass squared mass make sense? CP,
type extremals having light-like geodesic as M* projection are locally identical with C'P, but
because of light-like projection they can be regarded as C P, with a hole and thus non-compact.
Boundary conditions allow analogs of C'P, harmonics for which spinor d’Alembertian would

have complex eigenvalues.

Does quantum-classical correspondence allow complex momenta: can the classical four-momenta
assignable to 6-D Kahler action be complex? The value of Kéahler coupling strength allows
the action to have complex phase but parts with different phases are not allowed. Could
the imaginary part to 4-momentum could come from the C'P, type extremal with Euclidian
signature of metric?

2. Second - not necessarily independent - idea relies on the observation that in TGD one has
besides the usual conformal algebra acting on complex coordinate z also its analog acting on
the light-like radial coordinate r of light-cone boundary. At light-cone boundary one has both
super-symplectic symmetries of AMi x C' Py and extension of super-conformal symmetries of
sphere S2 to analogs of conformal symmetries depending on z and r and it seems that one
must chose between these two options. Also the extension of ordinary Kac-Moody algebra
acts at the light-like orbits of partonic 2-surfaces.

There are two scaling generators: the usual Ly = zd/dz and the second generator Lg; =
ird/dr. For Lg 1 at light-cone boundary powers of 2™ are replaced with (r/r¢)™* = exp(iku),
u = log(r/rg)). Could it be that mass squared operator is proportional to Ly + Lo having
eigenvalues h = n — k7 The absence of tachyons requires h > 0. Could k characterize
given Super-Virasoro representation? Could k > 0 serve as an analog of positive energy
condition allowing to analytically continue exp(iku) to upper u-plane? How to interpret this
continuation?

The 3-D generalization of super-symplectic symmetries at light-cone boundary and extended
Ka-Moody symmetries at partonic 2-surfaces should be possible in some sense. Could the
continuation to the upper u-plane correspond to the continuation of the extended conformal
symmetries from light-cone boundary to future light-one and from light-partonic 2-surfaces
to space-time interior?

Why p-adic massivation should occur at all? Here ZEO comes in rescue.

1. In ZEO one can have superposition of states with different 4-momenta, mass values and also
other charges: this does not break conservation laws. How to fix M* in this case? One
cannot do it separately for the states in superposition since they have different masses. The
most natural choices is as the M* associated with the dominating contribution to the zero
energy state. The outcome would be thermal massivation described excellently by p-adic
thermodynamics [K66]. Recently a considerable increase in the understanding of hadron and
weak boson masses took place [L98].

2. In ZEO quantum theory is square root of thermodynamics in a well-defined formal sense, and
one can indeed assign to p-adic partition function a complex square root as a genuine zero
energy state. Since mass varies, one must describe the presence of higher mass excitations
in zero energy state as particles in M* assigned with the dominating part of the state so
that the observed particle mass squared is essentially p-adic thermal expectation value over
thermal excitations. p-Adic thermodynamics would thus describe the fact that the choice of
M} cannot not ideal in ZEO and massivation would be possible only in ZEO.

3. Current quarks and constituent quarks are basic notions of hadron physics. Constituent
quarks with rather large masses appear in the low energy description of hadrons and current
quarks in high energy description of hadronic reactions. That both notions work looks rather
paradoxical. Could massive quarks correspond to My picture and current quarks to M}
picture but with p-adic thermodynamics forced by the superposition of mass eigenstates with
different masses.
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The massivation of ordinary massless fermion involves mixing of fermion chiralities. This
means that the SU(3) rotation determined by the dominating component in zero energy state
must induce this mixing. This should be understood.

5.4.4 M8 — H duality and consciousness

M?® — H duality is one of the key ideas of TGD and one can ask whether it has implications for
TGD inspired theory of consciousness and it indeed forces to challenge the recent ZEO based view
about consciousness [L52] .

Objections against ZEO based theory of consciousness
Consider first objections against ZEO based view about consciousness.

1. ZEO (zero energy ontology) based view about conscious entity can be regarded as a sequence
of “small” state function reductions (SSRs) identifiable as analogs of so called weak measure-
ments at the active boundary of causal diamond (CD) receding reduction by reduction farther
away from the passive boundary, which is unchanged as also the members of state pairs at it.
One can say that weak measurements commute with the observables, whose eigenstates the
states at passive boundary are. This asymmetry assigns arrow of time to the self having CD
as embedding space correlate. “Big” state function reductions (BSRs) would change the roles
of boundaries of CD and the arrow of time. The interpretation is as death and re-incarnation
of the conscious entity with opposite arrow of time.

The question is whether quantum classical correspondence (QCC) could allow to say some-
thing about the time intervals between subsequent values of temporal distance between weak
state function reductions.

2. The questionable aspect of this view is that t3; = constant sections look intuitively more
natural as seats of quantum states than light-cone boundaries forming part of CD boundaries.
The boundaries of CD are however favoured by the huge symplectic symmetries assignable to
the boundary of M* light-cone with points replaced with C'P, at level of H. These symmetries
are crucial or the existence of the geometry of WCW (“world of classical worlds”).

3. Second objection is that the size of CD increases steadily: this nice from the point of view of
cosmology but the idea that CD as correlate for a conscious entity increases from C'P; size to
cosmological scales looks rather weird. For instance, the average energy of the state assignable
to either boundary of CD would increase. Since zero energy state is a superposition of
states with different energies classical conservation law for energy does not prevent this [L93]:
essentially quantal effect due to the fact that the zero energy states are not exact eigenstates
of energy could be in question. In BSRs the energy would gradually increase. Admittedly
this looks strange and one must be keen for finding more conventional options.

4. Third objection is that re-incarnated self would not have any “childhood” since CD would
increase all the time.

One can ask whether M® — H duality and this braney picture has implications for ZEO
based theory of consciousness. Certain aspects of M® — H duality indeed challenge the recent view
about consciousness based on ZEO (zero energy ontology) and ZEO itself.

1. The moments t = r,, defining the 6-branes correspond classically to special moments for which
phase transition like phenomena occur. Could ¢ = 7, have a special role in consciousness
theory?

(a) For some SSRs the increase of the size of CD reveals new t = r, plane inside CD. One
can argue that these SSRS define very special events in the life of self. This would not
modify the original ZEO considerably but could give a classical signature for how many
ver special moments of consciousness have occurred: the number of the roots of P would
be a measure for the lifetime of self and there would be the largest root after which BSR
would occur.

(b) Second possibility is more radical. One could one think of replacing CD with single
truncated future- or past-directed light-cone containing the 6-D universal roots of P up
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to some 71, defining the upper boundary of the truncated cone? Could t = r,, define a
sequence of moments of consciousness? To me it looks more natural to assume that they
are associated with very special moments of consciousness.

2. For both options SSRs increase the number of roots r,, inside CD /truncated light-one gradu-
ally and thus its size? When all roots of P(0) would have been measured - meaning that the
largest value 7,4, of 7, is reached -, BSR would be unavoidable.

BSR could replace P(0) with Py(r; — 0): r; must be real and one should have r1 > rpqz-
The new CD/truncated light-cone would be in opposite direction and time evolution would
be reversed. Note that the new CD could have much smaller size size if it contains only the
smallest root rg. One important modification of ZEO becomes indeed possible. The size of
CD after BSR could be much smaller than before it. This would mean that the re-incarnated
self would have “childhood” rather than beginning its life at the age of previous self - kind of
fresh start wiping the slate clean.

One can consider also a less radical BSR preserving the arrow of time and replacing the
polynomial with a new one, say a polynomial having higher degree (certainly in statistical
sense so that algebraic complexity would increase).

Could one give up the notion of CD?

A possible alternative view could be that one the boundaries of CD are replaced by a pair of two
t = rn snapshots t = rg and t = ry. Or at least that these surfaces somehow serve as correlates
for mental images. The theory might allow reformulation also in this case, and I have actually
used this formulation in popular lectures since it is easier to understand by laymen.

1. Single truncated light-cone, whose size would increase in each SSR would be present now
since the spheres correspond to balls of radius r,, at times r,,. If 1o = 0, which is the case for
P(0) x o, the tip of the light-cone boundary is one root. One cannot avoid association with
big bang cosmology. For P(0) # ro the first conscious moment of the cosmology corresponds
to t = rg. One can wonder whether the emergence of consciousness in various scales could be
described in terms of the varying value of the smallest root rg of P(0).

If one allows BSR:s this picture differs from the earlier one in that CDs are replaced with
alternation of light-cones with opposite directions and their intersections would define CD.

2. For this option the preferred values of ¢ for SSRs would naturally correspond to the roots of
the polynomial defining X* C M®. Moments of consciousness as state function reductions
would be due to collisions of 4-D space-time surfaces X* with 6-D branes! They would replace
the sequence of scaled CD sizes. CD could be replaced with light-one and with the increasing
sequence (1o, ...r,,) of roots defining the ticks of clock and having positive and negative energy
states at the boundaries ry and r,,.

3. What could be the interpretation for BSRs representing death of a conscious entity in the
new variant of ZEO? Why the arrow of time would change? Could it be because there are
no further roots of P(0)? The number of roots of P(0) would give the number of small state
function reductions?

What would happen to P(o0) in BSR? The vision about algebraic evolution as increase of the
dimension for the extension of rationals would suggest that the degree of P(0) increases as
also the number of roots if all complex roots are allowed. Could the evolution continue in the
same direction or would it start to shift the part of boundary corresponding to the lowest root
in opposite direction of time. Now one would have more roots and more algebraic complexity
so that evolutionary step would occur.

In the time reversal one would have naturally t,,40 > 7y, for the new polynomial P(t—t,,q:)
having 7, as its smallest root. The light-cone in M® with tip at ¢t = ¢,,4, would be in
opposite direction now and also the slices ¢ — ¢4, = 7, would increase in opposite direction!
One would have two light-cones with opposite directions and the ¢ = r,, sections would replace
boundaries of CDs. The reborn conscious entity would start from the lowest root so that also
it would experience childhood.

This option could solve the argued problems of the previous scenario and give concrete
connection with the classical physics in accordance with QCC. On the other hand, a minimal
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modification of original scenario combined with M?® — H duality with moments t = r,, as special
moments in the life of conscious entity allows also to solve these problems if the active boundary
of CD is interpreted as boundary beyond which classical signals cannot contribute to perceptions.

What could be the minimal modification of ZEO based view about consciousness?

What would be the minimal modification of the earlier picture? Could one assume that CDs serve
as embedding space correlates for the perceptive field?

1. Zero energy states would be defined as before that is in terms of 3-surfaces at boundaries of
CD: this would allow a realization of huge symmetries of WCW and the active boundary A of
CD would define the boundary of the region from which self can receive classical information
about environment. The passive boundary P of CD would define the boundary of the region
providing classical information about the state of self. Also now BSR would mean death and
reincarnation with an opposite arrow of time. Now however CD would shrink in BSR before
starting to grow in opposite time direction. Conscious entity would have “childhood”.

2. If the geometry of CD were fixed, the size scale of the t = 7, balls of M* would first increase
and then start to decrease and contract to a point eventually at the tip of CD. One must
however remember that the size of ¢ = r,, planes increases all the time as also the size of
CD in the sequences of SSRs. Moments ¢t = r,, could represent special moments in the life
of conscious entity taking place in SSRs in which ¢ = r, hyperplane emerges inside CD with
increased size. The recent surprising findings challenging the Bohrian view about quantum
jumps [L77] can be understood in this picture [L77].

3. t = r, planes could also serve as correlates for memories. As CD increases at active boundary
new events as t = r, planes would take place and give rise to memories. The states at
t = r, planes are analogous to seats of boundary conditions in strong holography and the
states at these planes might change in state function reductions - this would conform with
the observations that our memories are not absolute.

To sum up, the original view about ZEO seems to be essentially correct. The introduction of
moments ¢t = r, as special moments in the life of self looks highly attractive as also the possibility
of wiping the slate clear by reduction of the size of CD in BSR.

5.5 Could standard view about twistors work at space-time
level after all?

While asking what super-twistors in TGD might be, I became critical about the recent view con-
cerning what I have called geometric twistor space of M* identified as M* x S? rather than CP;
with hyperbolic metric. The basic motivations for the identification come from M® picture in
which there is number theoretical breaking of Poincare and Lorentz symmetries. Second moti-
vation was that Mfonf - the conformally compactified M* - identified as group U(2) [B2] (see
http://tinyurl.com/y35k5wwo) assigned as base space to the standard twistor space C' P of M*,
and having metric signature (3,-3) is compact and is stated to have metric defined only modulo
conformal equivalence class.

As found in the previous section, TGD strongly suggests that M* in H = M* x C'P, should
be replaced with hyperbolic variant of C'Ps, and it seems to me that these spaces are not identical.
Amusingly, U(2) and C'P;, are fiber and base in the representation of SU(3) as fiber space so that
the their identification does not seem plausible.

On can however ask whether the selection of a representative metric from the conformal
equivalence class could be seen as breaking of the scaling invariance implied also by ZEO intro-
ducing the hierarchy of CDs in M3. Could it be enough to have M* only at the level of M® and
conformally compactified M* at the level of H? Should one have H = cdeon £ x CPy? What cdeon s
would be: is it hyperbolic variant of C'Py?
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5.5.1 Getting critical

The only way to make progress is to become very critical now and then. These moments of almost
despair usually give rise to a progress. At this time I got very critical about the TGD inspired
identification of twistor spaces of M* and C P, and their properties.

Getting critical about geometric twistor space of M*

Let us first discuss the recent picture and how to modify it so that it is consistent with the hierarchy
of CDs. The key idea is that the twistor space and its base space represents CD so that one obtains
scale hierarchy of twistor spaces as a realization of broken scale invariance giving rise to the p-adic
length scale hierarchy.

1. 1 have identified the twistor space of M* simply as T(M*) = M* x S2. The interpretation
would be at the level of octonions as a product of M* and choices of M? as preferred complex
sub-space of octonions with 52 parameterizing the directions of spin quantization axes. Real
octonion axis would correspond to time coordinate. One could talk about the space of of
light-like directions. Light-like vector indeed defines M?2. This view could be defended by the
breaking of both translation and Lorentz invariance in the octonionic approach due to the
choice of M? and by the fact that it seems to work.

Remark: M® = M* x E* is complexified to M$ by adding a commuting imaginary unit i
appearing in the extensions of rationals and ordinary M?® represents its particular sub-space.
Also in twistor approach one uses often complexified M*.

2. The objection is that it is ordinary twistor space identifiable as C'P; with (3,-3) signature of
metric is what works in the construction of twistorial amplitudes. C P; has metric as compact
space and coset space. Could this choice of twistor space make sense after all as geometric
twistor space?

Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X* € M* x CP,. Now Poincare symmetry has been transformed to a
symmetry acting at the level of M8 in the moduli space of octonion structures defined by the
choice of the direction of octonionic real axis reducing Poincare group to T x SO(3) consisting
of time translations and rotations. Fixing of M? reducrs the group to 7' x SO(2) and twistor
space can be seen as the space for selections of quantization axis of energy and spin.

3. But what about the space H? The first guess is H = M, x CP,. According to [B2] (see

con

http://tinyurl.com/y35k5wwo) one has M2 .y = U(2) such that U(1) factor is time- like

O

and SU(2) factor is space-like. One could understand M2 s = U(2) as resulting by addition

and identification of metrically 2-D light-cone boundaries at ¢ = +oo. This is topologically
like compactifying E3 to S? and gluing the ends of cylinder S3 x D! together to the S x S!.

The conformally compactified Minkowski space M? 7 should be analogous to base space of

CP; regarded as bundle with fiber S2. The problém is that one cannot imagine an analog
of fiber bundle structure in C'Ps having U(2) as base. The identification H = M2 X CP
does not make sense.

4. In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog of
M fon s call it cdcons. The only candidate is cdeon s = C'P> with one hypercomplex coordinate.
To understand why one can start from the following picture. The light-like boundaries of CD
are metrically equivalent to spheres. The light-like boundaries at ¢ = oo are identified as
in the case of Mf(mf. In the case of CP, one has 3 homologically trivial spheres defining
coordinate patches. This suggests that cdcoy, ¢ is simply C'P, with second complex coordinate
made hypercomplex. M* and E* differ only by the signature and so would do cdeons and
CPh;.

The twistor spheres of C'Ps associated with points of M* intersect at point if the points differ
by light-like vector so that one has and singular bundle structure. This structure should have
analog for the compactification of CD. CP; has also bundle structure CP; — CP,. The S?
fibers and base are homologically non-trivial and complex analogs of mutually orthogonal line
and plane and intersect at single point. This defines the desired singular bundle structure via

the assignment of S? to each point of CPy.
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The M* points must belong to the interior of cd and this poses constraints on the distance of
M* points from the tips of cd. One expects similar hierarchy of cds at the level of momentum
space.

. In this picture Mf np = U (2) could be interpreted as a base space for the space of CDs

O
with fixed direction of time axis identified as direction of octonionic real axis associated with

various points of M* and therefore of Mfon ¢ For Euclidian signature one would have base
and fiber of the automorphism sub-group SU(3) regarded as U(2) bundle over C'P,: now one
would have C' P, bundle over U(2). This is perhaps not an accident, and one can ask whether
these spaces could be interpreted as representing local trivialization of SU(3) as U(2) x C'Ps.
This would give to metric cross terms between U(2) and CPs.

. The proposed identification can be tested by looking whether it generalizes. What the twistor

space for entire M® would be? cd = CD, is replaced with CDg and the discussion of the
preceding chapter demonstrated that the only possible identification of the twistor space is
now is as the 12-D hyperbolic variant of HP; whereas C'Dg conr would correspond to 8-D
hyperbolic variant of H P, analogous to hyperbolic variant of CP;.

The outcome of these considerations is surprising.

. One would have T'(H) = CP3 x F and H = CP, g x CP, where CP, g has hyperbolic metric

with metric signature (1, —3) having M* as tangent space so that the earlier picture can be
understood as an approximation. This would reduce the construction of preferred extremals of
6-D Kahler action in T'(H) to a construction of polynomial holomorphic surfaces and also the
minimal surfaces with singularities at string world sheets should result as bundle projection.
Since M® — H duality must respect algebraic dynamics the maximal degree of the polynomials
involved must be same as the degree of the octonionic polynomial in M8.

. The hyperbolic variant Kéhler form and also spinor connection of hyperbolic C' P, brings in

new physics beyond standard model. This Kéhler form would serve as the analog of Kéahler
form assigned to M* earlier, and suggested to explain the observed CP breaking effects and
matter antimatter asymmetry for which there are two explanations [L92].

Some comments about the Minkowskian signature of the hyperbolic counterparts of CPs

and C'P, are in order.

1.

Why the metric of C'Ps could not be Euclidian just as the metric of F'7 The basic objection
is that propagation of fields is not possible in Euclidian signature and one completely loses
the earlier picture provided by M* x C'P,. The algebraic dynamics in M® picture can hardly
replace it.

. The map assigning to the point M* a point of C' P involves Minkowskian sigma matrices but

it seems that the Minkowskian metric of C'P5 is not explicitly involved in the construction
of scattering amplitudes. Note however that the antisymmetric bi-spinor metric for the spin
1/2 representation of Lorentz group and its conjugate bring in the signature. U(2,2) as
representation of conformal symmetries suggests (2, 2) signature for 8-D complex twistor space
with 2+2 complex coordinates representing twistors.

The signature of C'P3 metric is not explicitly visible in the construction of twistor amplitudes
but analytic continuations are carried out routinely. One has also complexified M* and M8
and one could argue that the problems disappear. In the geometric situation the signatures
of the subspaces differ dramatically. As already found, analytic continuation could allow
to define the variants of twistor spaces elegantly by replacing a complex coordinate with a
hyperbolic one.

Remark: For E* C'Ps is Euclidian and if one has E4 p=U (2), one could think of replacing
the Cartesian product of twistor spaces with SU(3) group having Mfonf = U(2) as fiber and
CP, as base. The metric of SU(3) appearing as subgroup of quaternionic automorphisms
leaving M* C M?® invariant would decompose to a sum of Mfon ¢ metric and C P, metric plus
cross terms representing correlations between the metrics of M2 7 and C'P,. This is probably
mere accident.
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M?® — H duality and twistor space counterparts of space-time surfaces

It seems that by identifying C'Ps j, as the twistor space of M*, one could develop M® — H duality
to a surprisingly detailed level from the conditions that the dimensional reduction guaranteed by
the identification of the twistor spheres takes place and the extensions of rationals associated with
the polynomials defining the space-time surfaces at M®- and twistor space sides are the same.
The reason is that minimal surface conditions reduce to holomorphy meaning algebraic conditions
involving first partial derivatives in analogy with algebraic conditions at M2 side but involving no
derivatives.

1. The simplest identification of twistor spheres is by z; = 29 for the complex coordinates of the
spheres. One can consider replacing z; by its Mobius transform but by a coordinate change
the condition reduces to z; = 2».

2. At M3 side one has either RE(P) = 0 or IM(P) = 0 for octonionic polynomial obtained as
continuation of a real polynomial P with rational coefficients giving 4 conditions (RE/IM
denotes real/imaginary part in quaternionic sense). The condition guarantees that tan-
gent /normal space is associative.

Since quaternion can be decomposed to a sum of two complex numbers: g = z1+Jz9 RE(P) =
0 correspond to the conditions Re(RE(P)) = 0 and Im(RE(P)) = 0. IM(P) = 0 in turn
reduces to the conditions Re(IM(P)) =0 and Im(IM(P)) = 0.

3. The extensions of rationals defined by these polynomial conditions must be the same as
at the octonionic side. Also algebraic points must be mapped to algebraic points so that
cognitive representations are mapped to cognitive representations. The counterparts of both
RE(P) = 0 and IM(P) = 0 should be satisfied for the polynomials at twistor side defining
the same extension of rationals.

4. M® — H duality must map the complex coordinates z;; = Re(RE) and 212 = Im(RE)
(201 = Re(IM) and 299 = Im(IM)) at M? side to complex coordinates u;; and u; with
u;1(0) =0 and u;2(0) = 0 for ¢ =1 or ¢ = 2, at twistor side.

Roots must be mapped to roots in the same extension of rationals, and no new roots are
allowed at the twistor side. Hence the map must be linear: u;1 = a;2;1+b;2;2 and u;o = ¢; 251+
d;zio so that the map for given value of i is characterized by SL(2,Q) matrix (a;, b;; ¢;, d;).

5. These conditions do not yet specify the choices of the coordinates (u;1,u;2) at twistor side.
At C'P, side the complex coordinates would naturally correspond to Eguchi-Hanson complex
coordinates (wy,ws) determined apart from color SU(3) rotation as a counterpart of SU(3)
as sub-group of automorphisms of octonions.

If the base space of the twistor space C'Ps j, of M 4 is identified as CP, p, the hyper-complex
counterpart of C' P, the analogs of complex coordinates would be (w3, wy) with ws hypercom-
plex and w4 complex. A priori one could select the pair (u;1,us2) as any pair (wye), wi)),
k(i) # 1(i). These choices should give different kinds of extremals: such as C'P; type ex-
tremals, string like objects, massless extremals, and their deformations.

String world sheet singularitees and world-line singularities as their light-like boundaries at
the light-like orbits of partonic 2-surfaces are conjectured to characterize preferred extremals as
surfaces of H at which there is a transfer of canonical momentum currents between Kéhler and
volume degrees of freedom so that the extremal is not simultaneously an extremal of both Kéahler
action and volume term as elsewhere. What could be the counteparts of these surfaces in M8?

1. The interpretation of the pre-images of these singularities in M?® should be number theoretic
and related to the identification of quaternionic imaginary units. One must specify two
non-parallel octonionic imaginary units e! and e? to determine the third one as their cross
product e3 = el x e2. If e! and e? are parallel at a point of octonionic surface, the cross

product vanishes and the dimension of the quaternionic tangent/normal space reduces from

D=4toD=2.

2. Could string world sheets/partonic 2-surfaces be images of 2-D surfaces in M?® at which this
takes place? The parallelity of the tangent/normal vectors defining imaginary units e;, i = 1,2
states that the component of e; orthogonal to e; vanishes. This indeed gives 2 conditions in
the space of quaternionic units. Effectively the 4-D space-time surface would degenerate into
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2-D at string world sheets and partonic 2-surfacesa as their duals. Note that this condition
makes sense in both Euclidian and Minkowskian regions.

3. Partonic orbits in turn would correspond surfaces at which the dimension reduces to D=3
by light-likeness - this condition involves signature in an essential manner - and string world
sheets would have 1-D boundaries at partonic orbits.

Getting critical about implicit assumptions related to the twistor space of C'P;,

One can also criticize the earlier picture about implicit assumptions related the twistor spaces of
CPs.

1. The possibly singular decomposition of F to a product of S% and C P, would has a description
similar to that for C'P;. One could assign to each point of C' P, base homologically non-trivial
sphere intersecting it orthogonally.

2. T have assumed that the twistor space T(CP,) = F = SU(3)/U(1) x U(1) allows Kaluza-
Klein type metric meaning that the metric decomposes to a sum of the metrics assignable to
the base CP, and fiber S? plus cross terms representing interaction between these degrees of
freedom. It is easy to check that this assumption holds true for Hopf fibration S® — S2 having
circle U(1) as fiber (see http://tinyurl.com/qgbvktsx). If Kaluza-Klein picture holds true,
the metric of F' would decompose to a sum of C'P, metric and S? metric plus cross terms
representing correlations between the metrics of CP, and S2.

3. One should demonstrate that F' = SU(3)/U(1) x U(1) has metric with the expected Kaluza-

Klein property. One can represent SU(3) matrices as products XY Z of 3 matrices. X
represents a point of base space C'P, as matrix, Y represents the point of the fiber S? =
U(2)/U(1) x U(1) of F in similar manner as U(2) matrix, and the Z represents U(1) x U(1)
element as diagonal matrix [B2](see http://tinyurl.com/y6c3pp2g).
By dropping U(1) x U(1) matrix one obtains a coordinatization of F'. To get the line element
of F' in these coordinates one could put the coordinate differentials of U(1) x U(1) to zero
in an expression of SU(3) line element. This should leave sum of the metrics of C'P, and S
with constant scales plus cross terms. One might guess that the left- and righ-invariance of
the SU(3) metric under SU(3) implies KK property.

Also CPs should have the KK structure if one wants to realize the breaking of scaling
invariance as a selection of the scale of the conformally compactified M*. In absence of KK
structure the space-time surface would depend parametrically on the point of the twistor sphere

S2.

5.5.2 The nice results of the earlier approach to M* twistorialization
The basic nice results of the earlier picture should survive in the new picture.

1. Central for the entire approach is twistor lift of TGD replacing space-time surfaces with 6-D
surfaces in 12-D T(M*) x T(CP) having space-time surfaces as base and twistor sphere 92
as fiber. Dimensional reduction identifying twistor spheres of T(M*) an T(C'P,) and makes
these degrees of freedom non-dynamical.

2. Dimensionally reduced action 6-D Kahler action is sum of 4-D Kahler action and a volume
term coming from S? contribution to the induced Kéhler form. On interpretation is as a
generalization of Maxwell action for point like charge by making particle a 3-surface.

The interpretation of volume term is in terms of cosmological constant. I have proposed
that a hierarchy of length scale dependent cosmological constants emerges. The hierarchy of
cosmological constants would define the running length scale in coupling constant evolution
and would correspond to a hierarchy of preferred p-aic length scales with preferred p-adic
primes identified as ramified primes of extension of rationals.

3. The twistor spheres associated M* x S? and F were assumed to have same radii and most
naturally same Euclidian signature: this looks very nice since there would be only single
fundamental length equal to C'P, radius determining the radius of its twistor sphere. The
vision to be discussed would be different. There would be no fundamental scale and length
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scales would emerge through the length scale hierarchy assignable to CDs in M® and mapped
to length scales for twistor spaces.

The identification of twistor spheres with same radius would give only single value of cosmo-
logical constant and the problem of understanding the huge discrepancy between empirical
value and its naive estimate would remain. I have argued that the Kéhler forms and metrics of
the two twistor spheres can be rotated with respect to each other so that the induced metric
and Kahler form are rotated with respect to each other, and the magnetic energy density
assignable to the sum of the induced Kéahler forms is not maximal.

The definition of Kéhler forms involving preferred coordinate frame would gives rise to sym-
metry breaking. The essential element is interference of real Kahler forms. If the signatures of
twistor spheres were opposite, the Kahler forms differ by imaginary unit and the interference
would not be possible.

Interference could give rise to a hierarchy of values of cosmological constant emerging as coef-
ficient of the Kihler magnetic action assignable to S?(X*) and predict length scale dependent
value of cosmological constant and resolve the basic problem related to the extremely small
value of cosmological constant.

4. One could criticize the allowance of relative rotation as adhoc: note that the resulting cosmo-
logical constant becomes a function depending on S? point. For instance, does the rotation
really produce preferred extremals as minimal surfaces extremizing also Kahler action except
at string world sheets? Each point of S? would correspond to space-time surface X* with
different value of cosmological constant appearing as a parameter. Moreover, non-trivial rel-
ative rotation spoils the covariant constancy and J?(S?) = —g(S?) property for the S? part
of Kahler form, and that this does not conform with the very idea of twistor space.

5. One nice implication would be that space-time surfaces would be minimal surfaces apart
from 2-D string world sheet singularities at which there is a transfer of canonical momen-
tum currents between Kéahler and volume degrees of freedom. One can also consider the
possibility that the minimal surfaces correspond to surfaces give as roots of 3 polynomials of
hypercomplex coordinate of M? and remaining complex coordinates.

Minimal surface property would be direct translation of masslessness and conform with the
twistor view. Singular surfaces would represent analogs of Abelian currents. The universal
dynamics for minimal surfaces would be a counterpart for the quantum criticality. At M3
level the preferred complex plane M? of complexified octonions would represent the singular
string world sheets and would be forced by number theory.

Masslessness would be realized as generalized holomorphy (allowing hyper-complexity in M?
plane) as proposed in the original twistor approach but replacing holomorphic fields in twistor
space with 6-D twistor spaces realized as holomorphic 6-surfaces.

5.5.3 ZEO and twistorialization as ways to introduce scales in M*® physics

M? physics as such has no scales. One motivation for ZEO is that it brings in the scales as sizes
of causal diamonds (CDs).

ZEO generates scales in M® physics
Scales are certainly present in physics and must be present also in TGD Universe.

1. In TGD Universe C'P; scale plays the role of fundamental length scale, there is also the
length scale defined by cosmological constant and the geometric mean of these two length
scales defining a scale of order 10~* meters emerging in the earlier picture and suggesting a

biological interpretation.

The fact that conformal inversion m*¥ — R?m* /a2, a®> = m*my, is a conformal transformation

mapping hyperboloids with a > R and a < R to each other, suggests that one can relate C' Py
scale and cosmological scale defined by A by inversion so that cell length scale would define
one possible radius of cdcon -

2. In fact, if one has R(cdeons) = x x R(CP,) one obtains by repeated inversions a hierarchy
R(k) = 2R and for x = /P one obtains p-adic length scale hierarchy coming as powers of /p,
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which can be also negative. This suggests a connection with p-adic length scale hypothesis
and connections between long length scale and short length scale physics: they could be
related by inversion. One could perhaps see Universe as a kind of Leibnizian monadic system
in which monads reflect each other with respect to hyperbolic surfaces a = constant. This
would conform with the holography.

3. Without additional assumptions there is a complete scaling invariance at the level of M8,
The scales could come from the choice of 8-D causal diamond CDg as intersection of 8-D
future and past directed light-cones inducing choice of cd in M*. CD serves as a correlate
for the perceptive field of a conscious entity in TGD inspired theory of consciousness and is
crucial element of zero energy ontology (ZEO) allowing to solve the basic problem of quantum
measurement theory.

Twistorial description of CDs

Could the map of the surfaces of 4-surfaces of M8 to cdeon ¢ x CP, by a modification of M 8 _H
correspondence allow to describe these scales? If so, compactification via twistorialization and
M?® — H correspondence would be the manner to describe these scales as something emergent
rather than fundamental.

1. The simplest option is that the scale of cdcony corresponds to that of C'Dg and C'Dy. One
should also understand what C P, scale corresponds. The simplest option is that C'P, scale
defines just length unit since it is difficult to imagine how this scale could appear at M3
level. cdeony scale squared would be multiple or C'P; scale squared, say prime multiple of it,
and assignable to ramified primes of extension of rationals. Inversions would produce further
scales. Inversion would allow kind of hologram like representation of physics in long length
scales in arbitrary short length scales and vice versa.

2. The compactness of cdcopn s corresponds to periodic time assignable to over-critical cosmologies
starting with big bang and ending with big crunch. Also CD brings in mind over-critical
cosmology, and one can argue that the dynamics at the level of cdcons reflects the dynamics
of ZEO at the level of M?8.

Modification of H and M® — H correspondence

O
reflect projectivity. One can however endow projective space C'P3 with a metric with isometry

group SU(2,2) and the fixing of the metric is like gauge choice by choosing representative in
the projective equivalence class. Thus C'Ps with signature (3,-3) might perhaps define geometric
twistor space with base cdcon s rather than M, 4 nf VEry much like the twistor space T(CPy) = F =

It is often said that the metric of M2 7 is defined only modulo conformal scaling factor. This would

co
SU(3)/U(1) x U(1) at the level. Second projection would be to M* and map twistor sphere to a
point of M*. The latter bundle structure would be singular since for points of M* with light-like
separation the twistor spheres have a common point: this is an essential feature in the construction
of twistor amplitudes.
New picture requires a modification of the view about H and about M®— H correspondence.

1. H would be replaced with cdcons X CP, and the corresponding twistor space with CP; x F'.

M?® — H duality involves the decomposition M? ¢ M* c M® = M* x CP,, where M* is
quaternionic sub-space containing preferred place M2. The tangent or normal space of X*
would be characterized by a point of C' P, and would be mapped to a point of C'P; and the
point of C'P, - or rather point plus the space S? or light-like vectors characterizing the choices
of M? - would mapped to the twistor sphere S? of C'P; by the standard formulas.
5% (cdeonf) would correspond to the choices of the direction of preferred octonionic imaginary
unit fixing M? as quantization axis of spin and S?(CP,) would correspond to the choice
of isospin quantization axis: the quantization axis for color hyperspin would be fixed by
the choice of quaternionic M* C M®. Hence one would have a nice information theoretic
interpretation.

2. The M* point mapped to twistor sphere S?(CP3) would be projected to a point of cdeon
and define M8 — H correspondence at the level of M*. This would define compactification



Chapter 5. TGD view about McKay Correspondence, ADE Hierarchy, Inclusions of
228 Hyperfinite Factors, M® — H Duality, SUSY, and Twistors

and associate two scales with it. Only the ratio R(cdcony)/R(CP2) matters by the scaling
invariance at M® level and one can just fixe the scale assignable to T(C'P,) and call it CP,
length scale.

One should have a concrete construction for the hyperbolic variants of C'P,.

1. One can represent Minkowski space and its variants with varying signatures as sub-spaces of
complexified quaternions, and it would seem that the structure of sub-space must be lifted to
the level of the twistor space. One could imagine variants of projective spaces CP,, n = 2,3
as and HP,, n = 2,3. They would be obtained by multiplying imaginary quaternionic
unit I with the imaginary unit ¢ commuting with quaternionic units. If the quaternions
A involved with the projectivization (¢1,...,¢n) = A(q1, ..., ¢n) are ordinary quaternions, the
multiplication respects the signature of the subspace. By non-commutativity of quaternions
one can talk about left- and right projective spaces.

2. One would have extremely close correspondence between M* and CP, degrees of freedom
reflecting the M® — H correspondence. The projection CP; — CP, for E* would be replaced
with the projection for the hyperbolic analogs of these spaces in the case of M*. The twistor
space of M* identified as hyperbolic variant of C'P; would give hyperbolic variant of C Py as
conformally compactified ed. The flag manifold F' = SU(3)/U(1) x U(1) as twistor space of
C P, would also give C'P, as base space.

The general solution of field equations at the level of T'(H) would correspond to holomorphy
in general sense for the 6-surfaces defined by 3 vanishing conditions for holomorphic functions - 6
real conditions. Effectively this would mean the knowledge of the exact solutions of field equations
also at the level of H: TGD would be an integrable theory. Scattering amplitudes would in turn
constructible from these solutions using ordinary partial differential equations [L.92].

1. The first condition would identify the complex coordinates of S?(cdcons) and S?(CP): here
one cannot exclude relative rotation represented as a holomorphic transformation but for
R(cdcony) > R(CPs) the effect of the rotation is small.

2. Besides this there would be vanishing conditions for 2 holomorphic polynomials. The coor-
dinate pairs corresponding to M? C M* would correspond to hypercomplex behavior with
hyper complex coordinate u = £t — z. ¢ and z could be assigned with U(1) fibers of Hopf
fibrations SU(2) — S? .

3. The octonionic polynomial P(o0) of degree n = heys/ho with rational coefficients fixes the
extension of rationals and since the algebraic extension should be same at both sides, the
polynomials in twistor space should have same degree. This would give enormous boos con-
cerning the understanding of the proposed cancellation of fermionic Wick contractions in
SUSY scattering amplitudes forced by number theoretic vision [L.92].

Possible problems related to the signatures

The different signatures for the metrics of the twistor spheres of cdcon s and C' P, can pose technical
problems.

1. Twistor lift would replace X* with 6-D twistor space X° represented as a 6-surface in 7'(M*) x
T(CP;). XS is defined by dimensional reduction in which the twistor spheres S?(cdcon ) and
S%(C'P,) are identified and define the twistor sphere S?(X*) of X% serving as a fiber whereas
space-time surface X? serves as a base. The simplest identification is as (6, ¢) (MY =
(0,0)s2(cpy): the same can be done for the complex coordinates Z52(M2E, ) = Zg2(CPy)))- An
open question is whether a Mobius transformation could relate the complex coordinates. The
metrics of the spheres are of opposite sign and differ only by the scaling factors R?(cdeonf)
and R2(CP2)

2. For cdeons option the signatures of the 2 twistor spheres would be opposite (time-like for
cdeong). For R(cdeonf)/R(CPy) = 1. J? = —g is the only consistent option unless the
signature of space is not totally positive or negative and implies that the Kéahler forms of
the two twistor spheres differ by i. The magnetic contribution from $?(X*) would give rise
to an infinite value of cosmological constant proportional to 1/,/g2, which would diverge
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R(cdcony)/R(CPy) = 1. There is however no need to assume this condition as in the original
approach.

5.5.4 Hierarchy of length scale dependent cosmological constants in
twistorial description

At the level of M?® the hierarchy of CDs defines a hierarchy of length scales and must correspond
to a hierarchy of length scale dependent cosmological constants. Even fundamental scales would
emerge.

1. If one has R(cdeonys)/R(CP2) >> 1 as the idea about macroscopic cdcony would suggest, the
contribution of S%(cdeonf) to the cosmological constant dominates and the relative rotation
of metrics and Kéhler form cannot affect the outcome considerably. Therefore different mech-
anism producing the hierarchy of cosmological constants is needed and the freedom to choose
rather freely the ratio R(cdcons)/R(CP2) would provide the mechanism. What looked like a
weakness would become a strength.

2. S%(cdeon ¢ would have time-like metric and could have large scale. Is this really acceptable?
Dimensional reduction essential for the twistor induction however makes 52(cdconf) non-
dynamical so that time-likeness would not be visible even for large radii of S? (cdeon f) expected
if the size of cdcony can be even macroscopic. The corresponding contribution to the action
as cosmological constant has the sign of magnetic action and also K&hler magnetic energy is
positive. If the scales are identical so that twistor spheres have same radius, the contributions
to the induced metric cancel each other and the twistor space becomes metrically 4-D.

3. At the limit R(cdcons) — RCPs) cosmological constant coming from magnetic energy density
diverges for J? = —G option since it is proportional to 1/,/g2. Hence the scaling factors must
be different. The interpretation is that cosmological constant has arbitrarily large values near
C P; length scale. Note however that time dependence is replaced with scale dependence and
space-time sheets with different scales have only wormhole contacts.

It would seem that this approach could produce the nice results of the earlier approach.
The view about how the hierarchy of cosmological constants emerges would change but the idea
about reducing coupling constant evolution to that for cosmological constant would survive. The
interpretation would be in terms of the breaking of scale invariance manifesting as the scales of CDs
defining the scales for the twistor spaces involved. New insights about p-adic coupling constant
evolution emerge and one finds a new “must” for ZEO. H = M* x CP, picture would emerge
as an approximation when cdcony is replaced with its tangent space M 4. The consideration of
the quaternionic generalization of twistor space suggests natural identification of the conformally
compactified twistor space as being obtained from CP, by making second complex coordinate
hyperbolic. This need not conform with the identification as U(2).

5.6 How to generalize twistor Grassmannian approach in
TGD framework?

One should be able to generalize twistor Grassmannian approach in TGD framework. The basic
modification is replacement of 4-D light-like momenta with their 8-D counterparts. The octonionic
interpretation encourages the idea that twistor approach could generalize to 8-D context. Higher-
dimensional generalizations of twistors have been proposed but the basic problem is that the index
raising and lifting operations for twistors do not generalize (see http://tinyurl.com/y241kwce).

1. For octonionic twistors as pairs of quaternionic twistors index raising would not be lost working
for My option and light-like M® momenta can be regarded sums of M# and E* parts as also
twistors. Quaternionic twistor components do not commute and this is essential for incidence
relation requiring also the possibility to raise or lower the indices of twistors. Ordinary
complex twistor Grassmannians would be replaced with their quaternionic countparts. The
twistor space as a generalization of C'P3 would be 3-D quaternionic projective space T(M?8) =
H P; with Minkowskian signature (6,6) of metric and having real dimension 12 as one might
expect.
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Another option realizing non-commutativity could be based on the notion of quantum twistor
to be also discussed.

2. Second approach would rely on the identification of M* x C P, twistor space as a Cartesian
product of twistor spaces of M* and CP,. For this symmetries are not broken, M7 C M8
depends on the state and is chosen so that the projection of M?® momentum is light-like so
that ordinary twistors and C'P, twistors should be enough. M® — H relates varying M; based
and M4 based descriptions.

3. The identification of the twistor space of M* as T(M*) = M* x S? can be motivated by
octonionic considerations but might be criticized as non-standard one. The fact that quater-
nionic twistor space H P looks natural for M® forces to ask whether T(M*) = C'P3 endowed
with metric having signature (3,3) could work in the case of M*. In the sequel also a vision
based on the identification T(M*) = C'P; endowed with metric having signature (3,3) will be
discussed.

5.6.1 Twistor lift of TGD at classical level

In TGD framework twistor structure is generalized [K114, [K98, [K14| [L75]. The inspiration for
TGD approach to twistorialization has come from the work of Nima Arkani-Hamed and colleagues
[B21], B15], B16l [B18|, B45] [B22] [B5]. The new element is the formulation of twistor lift also at the
level of classical dynamics rather than for the scattering amplitudes only [K114l [K14l [K98| [L75].

1. The 4-D light-like momenta in ordinary twistor approach are replaced by 8-D light-like mo-
menta so that massive particles in 4-D sense become possible. Twistor lift of TGD takes
places also at the space-time level and is geometric counterpart for the Penrose’s replace-
ment of massless fields with twistors. Roughly, space-time surfaces are replaced with their
6-D twistor spaces represented as 6-surfaces. Space-time surfaces as preferred extremals are
minimal surfaces with 2-D string world sheets as singularities. This is the geometric manner
to express masslessness. X?* is simultaneously also extremal of 4-D Kihler action outside
singularities: this realizes preferred extremal property.

2. One can say that twistor structure of X* is induced from the twistor structure of H =
M* x CP,, whose twistor space T(H) is the Cartesian product of geometric twistor space
T(M*) = M* x CP, and T(CPy) = SU(3)/U(1) x U(1). The twistor space of M* assigned
to momenta is usually taken as a variant of C'P3 with metric having Minkowski signature and
both CP; fibrations appear in the more precise definition of T'(M*). Double fibration [B43]
(see http://tinyurl.com/yb4bt741) means that one has fibration from M* x CP; - the
trivial C'P; bundle defining the geometric twistor space to the twistors space identified as
complex projective space defining conformal compactification of M*. Double fibration is
essential in the twistorialization of TGD [K50].

3. The basic objects in the twistor lift of classical TGD are 6-D surfaces in T'(H) having the
structure of twistor space in the sense that they are C'P; bundles having X* as base space.
Dimensional reduction to C'P; bundle effectively eliminates the dynamics in CP; degrees
of freedom and its only remnant is the value of cosmological constant appearing as coeffi-
cient of volume term of the dimensionally reduced action containing also 4-D Ké&hler action.
Cosmological term depends on p-adic length scales and has a discrete spectrum [L75] [L73].

C'P; has also an interpretation as a projective space constructed from 2-D complex spinors.
Could the replacement of these 2-spinors with their quantum counterparts defining in turn quan-
tum CP; realize finite quantum measurement resolution in M* degrees of freedom? Projective
invariance for the complex 2-spinors would mean that one indeed has effectively C'P;.

5.6.2 Octonionic twistors or quantum twistors as twistor description of
massive particles

For M3 option the particles are massive and the one encounters the problem whether and how to
generalize the ordinary twistor description.
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5.6.3 Basic facts about twistors and bi-spinors

It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as p®* = A*X\* with A defined as complex conjugate of A
and having opposite chirality (see http://tinyurl.com/y6bnznyn).

1. When X is scaled by a complex number A suffers an opposite scaling. The bi-spinors allow
the definition of various inner products

) = eaXu’,
|:5‘7/1:| = A7,
pg = (Ap {Xﬂ} s (Gaar = paflar) - (5.6.1)

2. Spinor indices are lowered and raised using antisymmetric tensors ¢ and €ap If the particle
has spin one can assign it a positive or negative helicity h = +1. Positive helicity can be
represented by introducing artitrary negative (positive) helicity bispinor p, (q) not parallel
to Aq (tta’) so that one can write for the polarization vector

Ao/
€aa’ = Hata , Ppositive helicity ,
{ps A)
Aafla
€an = ai'uf , negative helicity . (5.6.2)
@
In the case of momentum twistors the p part is determined by different criterion to be discussed

later.

3. What makes 4-D twistors unique is the existence of the index raising and lifting operations
using € tensors. In higher dimensions they do not exist and this causes difficulties. For octo-
nionic twistors with quaternionic components possibly only in D = 8 the situation changes.

To get a very rough idea about twistor Grassmannian approach idea, consider tree am-
plitudes of A/ = 4 SUSY as example and it is convenient to drop the group theory factor
Tr(TyTy---T,). The starting point is the observation that tree amplitude for which more than
n — 2 gluons have the same helicity vanish. MHV amplitudes have exactly n — 2 gluons of same
helicity- taken by a convention to be negative- have extremely simple form in terms of the spinors
and reads as

(Azs Ay
A, = 5.6.3
" [Ti: N, Aiga) (5.6:3)
When the sign of the helicities is changed (..) is replaced with [..].
An essential point in what follows is that the amplitudes are expressible in terms of the
antisymmetric bi-linears (\;, A;) making sense also for octotwistors and identifiable as quaternions
rather than octonions.

M?® — H duality and two alternative twistorializations of TGD

M?® — H duality suggests two alternative twistorializations of TGD.

1. The first approach would be in terms of M8 twistors suggested by quaternionic light-lineness of
8-momenta. M?® twistors would be Cartesian products of M* and E* twistors. One can imag-
ine a straightforward generalization of twistor scattering amplitudes in terms of generalized
Grassmannian approach replacing complex Grassmannian with quaternionic Grassmannian,
which is a mathematically well-defined notion.

2. Second approach would rely on M* x CP, twistors, which are products of M* twistors and
CP, twistors: this description works nicely at classical space-time level but at the level of
momentum space the problem is how to describe massivation of M* momenta using twistors.
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Why the components of twistors must be non-commutative?

How to modify the 4-D twistor description of light-like 4-momenta so that it applies to massive
4-momenta?

1. Twistor consists of a pair (pg, A*) of bi-spinors in conjugate representations of SU(2). One
can start from the 4-D incidence relations for twistors

Ha = paa)\a .

Here paq denotes the representation of four-momentum p*oy,. The antisymmetric permutation
symbols € and its dotted version define antisymmetric “inner product” in twistor space. By
taking the inner product of p with itself, one obtains the commutation relation o — oy =
0, which is consistent with right-hand side for massless particles with pyp* = 0.

2. In TGD framework particles are massless only in 8-D sense so that the right hand side in the
contraction is in general non-vanishing. In massive case one can replace four-momentum with
unit vector. This requires

(11, po) = papie — popin #0
The components of 2-spinor become non-commutative.
This raises two questions.

1. Could the replacement of complex twistors by quaternionic twistors make them non-commutative
and allow massive states?

2. Could non-commutative quantum twistors solve the problem caused by the light-likeness of
momenta allowing 4-D twistor description?

Octotwistors or quantum twistors?

One should be able to generalize twistor amplitudes and twistor Grassmannian approach to TGD
framework, where particles are massless in 8-D sense and massive in 4-D sense. Could twistors be
replaced by octonionic or quantum twistors.

1. One can express mass squared as a product of commutators of components of the twistors A
and A, which is essentially the conjugate of \:

p-p = (AN PJ] : (5.6.4)

This operator should be non-vanishing for non-vanishing mass squared. Both terms in the
product vanish unless commutativity fails so that mass vanishes. The commutators should
have the quantum state as its eigenstate.

2. Also 4-momentum components should have well-defined values. Four-momentum has expres-
sion p®* = A%\® in massless case. This expression should generalized to massive case as such.
Eigenvalue condition and reality of the momentum components requires that the components

i
aa

p*® are commuting Hermitian operators.

In twistor Grassmannian approach complex but light-like momenta are possible as analogs of
virtual momenta. Also in TGD framework the complexity of Kahler coupling strength allows
to consider complex momenta. For twistor lift they however differ from real momenta only
by a phase factor associated with the 1/a associated with 6-D Kéhler action.

Remark: I have considered also the possibility that states are eigenstates only for the longi-
tudinal M? projection of 4-momentum with quark model of hadrons serving as a motivation.

(a) Could this equation be obtained in massive case by regarding A* and 2\ as commuting
octo-spinors and their complex conjugates? Octotwistors would naturally emerge in the
description at embedding space level. I have already earlier considered the notion of
octotwistor [K106] [L40]).
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(b) Or could it be obtained for quantum bi-spinors having same states as eigenstates. Could
quantum twistors as generalization of the ordinary twistors correspond to the reduction
of the description from the level of M® or H to at space-time level so that one would have
4-D twistors and massive particles with 4-momentum identifiable as Noether charge for
the action principle determining preferred extremals? I have considered also the notion
of quantum spinor earlier [K48| [K76] K68 K2, [K123].

3. In the case of quantum twistors the generalization of the product of the quantities (A\;, Aj+1)
appearing in the formula should give rise to c-number in the case of quantum spinors. Can
one require that the quantities (A;, Aiy1) or even (\;, A;) are c-numbers simultaneously? This
would also require that (A, \) is non-vanishing c-number in massive case: also incidence rela-
tion suggest this condition. Could one think A as an operator such that (A, \) has eigenvalue
spectrum corresponding to the quantities (\;, A\;+1) appearing in the scattering amplitude?

5.6.4 The description for M7 option using octo-twistors?

For option I with massive M7 projection of 8-momentum one could imagine twistorial description
by using M?® twistors as products of M7 and E* twistors, and a rather straightforward generaliza-
tion of standard twistor Grassmann approach can be considered.

Could twistor Grassmannians be replaced with their quaternionic variants?

The first guess would simply replace Gr(k,n) with Gr(2k,2n) 4-D twistors 8-D twistors. From
twistor amplitudes with quaternionic M®-momenta one could construct physical amplitudes by
going from 8-momentum basis to the 4-momentum- basis with wave functions in irreps of SO(3).
Life is however not so simple.

1. The notion of ordinary twistor involves in an essential manner Pauli matrices o; satisfying the
well-known anti-commutation relations. They should be generalized. In fact, og and v/—10;
can be regarded as a matrix representation for quaternionic units. They should have analogs
in 8-D case.

Octonionic units ie; indeed provide this analog of sigma matrices. Octonionic units for
the complexification of octonions allow to define incidence relation and representation of 8-
momenta in terms of octo-spinors. They do not however allow matrix representation whereas
time-like octonions allow interpretation as quaternion in suitable bases and thus matrix rep-
resentation. Index raising operation is essential for twistors and makes dimension D = 4 very
special. For naive generalizations of twistors to higher dimensions this operation is lost (see
http://tinyurl.com/y241lkuce).

2. Could one avoid multiplication of more than two octo-twistors in Grassmann amplitudes
leading to difficulties with associativity. An important observation is that in the expressions
for the twistorial scattering amplitudes only products (A;, A;) or [5\1, S\l-ﬂ] but not both occur.
These products are associative even if the spinors are replaced by quaternionic spinors.

These operations are antisymmetric in the arguments, which suggests cross product for quater-
nions giving rise to imaginary quaternion so that the product of objects would give rise to a
product of imaginary quaternions. This might be a problem since a large number of terms in
the product would approach to zero for random imaginary quaternions.

An ad hoc guess would be that scattering probability is proportional to the product of am-
plitude as product (\;, \;) and its “hermitian conjugate” with the conjugates [5\1-, 5\i+1] in the
reverse order (this does not affect the outcome) so that the result would be real. Scattering
amplitude would be more like quaternion valued operator. Could one have a formulation of

quantum theory or at least TGD view about quantum theory allowing this?

3. If ordinary massless 4-momenta correspond to quaternionic sigma matrices, twistors can be
regarded as pairs of 2-spinors in matrix representation. Octonionic 8-momenta should cor-
respond to pairs of 4-spinors. As already noticed, octonions do not however allow matrix
representation! Octonions for a fixed decomposition M® = M* x E* can be however decom-
posed to linear combination of two quaternions just like complex numbers to a combination of
real numbers. These quaternions would have matrix representation and quaternionic analogs
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of twistor pair (u, A). One could perhaps formulate the generalization of twistor Grassmann
amplitudes using these pairs. This would suggest replacement of complex bi-spinors with
complexified quaternions in the ordinary formalism. This might allow to solve problems with
associativity if only (A;, A;) or [A;, Ai+1] appear in the amplitudes.

4. The argument in the momentum conserving delta function & ()\25\2) should be real so that the
conjugation with respect to ¢ would not change the argument and non-commutativity would
not be problem. In twistor Grassmann amplitudes the argument C' - Z of delta momentum
conserving function is linear in the components of complex twistor Z. If complex twistor
is replaced with quaternionic twistor, the Grassmannian coordinates C' in delta functions
0(C - Z) must be replaced with quaternionic one.

The replacement of complex Grassmannians Gre(k,n) with quaternionic Grassmannians
Gry(k,n) is therefore highly suggestive. Quaternionic Grassmannians (see http://tinyurl.com/
y23jsffn) are quotients of symplectic Lie groups Gr(k,n) = U, (H)/(Ur(H)xUy,—,(H)) and thus
well-defined. In the description using Gl (k,n) matrices the matrix elements would be quaternions
and k£ x k minors would be quaternionic determinants.

Remark: Higher-D projective spaces of octonions do not exist so that in this sense dimen-
sion D = 8 for embedding space would be maximal.

Twistor space of M?® as quaternionic projective space HP;?

The simplest Grassmannian corresponds to twistor space and one can look what one obtains in
this case. One can also try to understand how to cope with the problems caused by Minkowskian
signature.

1. In previous section it was found that the modification of H to H = cdcons X C P> with cdeons =
CP,, identifiable as C'P, with Minkowskian signature of metric is strongly suggestive.

2. For E® quaternionic twistor space as analog of C'P; would be its quaternionic variant H Ps

with expected dimension D = 16 —4 = 12. Twistor sphere would be replaced with its quater-
nionic counterpart SU(2) /U (1) g having dimension 4 as expected. CDs con s as conformally
compactified C'Dg must be 8-D. The space H P, has dimension 8 and is analog of C'P, appear-
ing as analog of base space of C'P; identified as conformally compactified 4-D causal diamond
cdeong. The quaternionic analogy of M2 = U(2) identified as conformally compactified M*
would be U(2)x having dimension D = 10 rather than 8.
HP; and HP, might work for E® but it seems that the 4-D analog of twistor sphere should
have signature (2,-2) whereas base space should have signature (1,-7). Some kind of hyperbolic
analogs of these spaces obtained by replacing quaternions with their hypercomplex variant
seem to be needed. The same receipe in the twistorialization of M* would give cdeonf as
analog of C'P, with second complex coordinate made hyperbolic. I have already considered
the construction of hyperbolic analogs of CP, and CPs3 as projective spaces. These results
apply to HP, and H Ps.

3. What about octonions? Could one define octonionic projective plane O P, and its hyperbolic
variants corresponding to various sub-spaces of M3? Euclidian OP, known as Cayley plane
exists as discovered by Ruth Moufang in 1933. Octonionic higher-D projective spaces and
Grassmannians do not however exist so that one cannot assign O P53 as twistor spaces.

Can one obtain scattering amplitudes as quaternionic analogs of residue integrals?

Can one obtain complex valued scattering amplitudes (¢ commuting with octonionic units) in this
framework?

1. The residue integral over quaternionic C-coordinates should make sense, and pick up the poles
as vanishing points of minors. The outcome of repeated residue integrations should give a
sum over poles with complex residues.

2. Residue calculus requires analyticity. The problem is that quaternion analyticity based on a
generalization of Cauchy-Riemann equations allows only linear functions. One could define
quaternion (and octonion) analyticity in restricted sense using powers series with real coeffi-
cients (or in extension involving ¢ commuting with octonion units). The quaternion/octonion
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analytic functions with real coefficients are closed with respect to sum and product. I have
used this definition in the proposed construction of algebraic dynamics for in X* c M® [L40].

3. Could one define the residue integral purely algebraically? Could complexity of the coefficients
(¢) force complex outcome: if pole ¢g is not quaternionically real the function would not allow
decompose to f(q)/(q — qo) with f allowing similar Taylor series at pole. If so, then the
formulas of Grassmannian formalism could generalize more or less as such at M8 level and
one could map the predictions to predictions of M* x C'P, approach by analog of Fourier
transform transforming these quantum state basis to each other.

This option looks rather interesting and involves the key number theoretic aspects of TGD
in a crucial manner.

5.6.5 Do super-twistors make sense at the level of M/8?

By M® — H duality [L40] there are two levels involved: M® and H. These levels are encountered
both at the space-time level and momentum space level. Do super-octonions and super-twistors
make sense at M® level?

1. At the level of M® the high uniqueness and linearity of octonion coordinates makes the
notion of super-octonion natural. By SO(8) triality octonionic coordinates (bosonic octet
80), octonionic spinors (fermionic octet 81), and their conjugates (anti-fermionic octet 8_1)
would for triplet related by triality. A possible problem is caused by the presence of separately
conserved B and L. Together with fermion number conservation this would require N' = 4 or
even N' = 4 SUSY, which is indeed the simplest and most beautiful SUSY.

2. At the level of the 8-D momentum space octonionic twistors would be pairs of two quaternionic
spinors as a generalization of ordinary twistors. Super octo-twistors would be obtained as
generalization of these.

The progress in the understanding of the TGD version of SUSY [L92] led to a dramatic
progress in the understanding of super-twistors.

1. In non-twistorial description using space-time surfaces and Dirac spinors in H, embedding
space coordinates are replaced with super-coordinates and spinors with super-spinors. Theta
parameters are replaced with quark creation and annihilation operators. Super-coordinate is
a super-polynomial consisting of monomials with vanishing total quark number and appearing
in pairs of monomial and its conjugate to guarantee hermiticity.

Dirac spinor is a polynomial consisting of powers of quark creation operators multiplied by
monomials similar to those appearing in the super-coordinate. Anti-leptons are identified
as spartners ofquarks identified as local 3-quark states. The multi-spinors appearing in the
expansions describe as such local many-quark-antiquark states so that super-symmetrization
means also second quantization. Fermionic and bosonic states assignable to H-geometry
interact since super-Dirac action contains induced metric and couplings to induced gauge
potentials.

2. The same recipe works at the level of twistor space. One introduces twistor super-coordinates

analogous to super-coordinates of H and M®. The super YM field of /' = 4 SUSY is replaced
with super-Dirac spinor in twistor space. The spin degrees of freedom associated with twistor
spheres S? would bring in 2 additional spin-like degrees of freedom.
The most plausible option is that the new spin degrees are frozen just like the geometric S?
degrees of freedom. The freezing of bosonic degrees of freedom is implied by the construction
of twistor space of X% by dimensional reduction as a 6-D surface in the product of twistor
spaces of M* and CP,. Chirality conditions would allow only single spin state for both
spheres.

3. Number theoretical vision implies that the number of Wick contractions of quarks and anti-
quarks cannot be larger than the degree of the octonionic polynomial, which in turn should be
same as that of the polynomials of twistor space giving rise to the twistor space of space-time
surface as 6-surface. The resulting conditions correspond to conserved currents identifiable as
Noether currents assignable to symmetries.
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Also Grassmannian is replaced with super-Grassmannian and super-coordinates as matrix
elements of super matrices are introduced.

1. The integrand of the Grassmannian integral defining the amplitude can be expanded in Taylor
series with respect to theta parameters associated with the super coordinates C' as rows of
super G(k,n) matrix.

2. The delta function §(C, Z) factorizing into a product of delta functions is also expanded in
Taylor series to get derivatives of delta function in which only coordinates appear. By partial
integration the derivatives acting on delta function are transformed to derivatives acting
on integrand already expanded in Taylor series in theta parameters. The integration over
the theta parameters using the standard rules gives the amplitudes associated with different
powers of theta parameters associated with Z and from this expression one can pick up the
scattering amplitudes for various helicities of external particles.

The super-Grassmannian formalism is extremely beautiful but one must remember that one
is dealing with quantum field theory. It is not at all clear whether this kind of formalism generalizes
to TGD framework, where particle are 3-surfaces [L40]. The notion of cognitive representation ef-
fectively reducing 3-surfaces to a set of point-like particles strongly suggests that the generalization
exists.

The progress in understanding of M?® — H duality throws also light to the problem whether
SUSY is realized in TGD and what SUSY breaking does mean. It seems now clear that sparticles
are predicted and SUSY remains in the simplest scenario exact but that p-adic thermodynamics
causes thermal massivation: unlike Higgs mechanism, this massivation mechanism is universal and
has nothing to do with dynamics. This is due to the fact that zero energy states are superpositions
of states with different masses. The selection of p-adic prime characterizing the sparticle causes
the mass splitting between members of super-multiplets although the mass formula is same for all
of them.

The increased undestanding of what twistorialization leads to an improved understanding
of what twistor space in TGD could be. It turns out that the hyperbolic variant C'P;} of the
standard twistor space C'P3 is a more natural identification than the earlier M* x S? also in TGD
framework but with a scale corresponding to the scale of CD at the level of M8 so that one obtains
a scale hierarchy of twistor spaces. Twistor space has besides the projection to M* also a bundle
projection to the hyperbolic variant C' Py j, of CP; so that a remarkable analogy between M? and
CP, emerges. One can formulate super-twistor approach to TGD using the same formalism as will
be discussed in this article for the formulation at the level of H. This requires introducing besides
6-D Kahler action and its super-variant also spinors and their super-variants in super-twistor space.
The two formulations are equivalent apart from the hierarchy of scales for the twistor space. Also
M3 allows analog of twistor space as quaternionic Grassmannian H P3 with signature (6,6). What
about super- variant of twistor lift of TGD? consider first the situation before the twistorialization.

1. The parallel progress in the understanding SUSY in TGD framework [L92] leads to the iden-
tification of the super-counterparts of M®, H and of twistor spaces modifying dramatically
the physical interpretation of SUSY. Super-spinors in twistor space would provide the de-
scription of quantum states. Super-Grassmannians would be involved with the construction
of scattering amplitudes. Quaternionic super Grassmannians would be involved with M8
description.

2. In fermionic sector only quarks are allowed by SO(1,7) triality and that anti-leptons are local
3-quark composites identifiable as spartners of quarks. Gauge bosons, Higgs and graviton
would be also spartners and assignable to super-coordinates of embedding space expressible
as super-polynomials of quark oscillator operators. Super-symmetrization means also quanti-
zation of fermions allowing local many-quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking
as Wheeler might put it.
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Super-counterpart of twistor lift using the proposed formalism

The construction of super-coordinates and super-spinors [L92] suggests a straightforward formula-
tion of the super variant of twistor lift . One should only replace the super-embedding space and
super-spinors with super-twistor space and corresponding super-spinors and formulate the theory
using 6-D super-Kéhler action and super-Dirac equation and the same general prescription for
constructing S-matrix. Dimensional reduction should give essentially the 4-D theory apart from
the variation of the radius of the twistor space predicting variation of cosmological constant. The
size scale of CD would correspond to the size scale of the twistor space for M* and for CP, the
size scale would serve as unit and would not vary.

The first step is the construction of ordinary variant of Kéhler action and modified Dirac
action for 6-D surfaces in 12-D twistor space.

1. Replace the spinors of H with the spinors of 12-D twistor space and assume only quark

chirality. By the bundle property of the twistor space one can express the spinors as tensor
products of spinors of the twistor spaces T(M*) and T(CP). One can express the spinors of
T(M*) tensor products of spinors of M* - and S? spinors locally and spinors of T(CP,) as
tensor products of C'P, - and S? spinors locally. Chirality conditions should reduce the number
of 2 spin components for both T(M*) and T(CP;) to one so that there are no additional spin
degrees of freedom.
The dimensional reduction can be generalized by identifying the two S2 fibers for the preferred
extremals so that one obtains induced twistor structure. In spinorial sector the dimensional
reduction must identify spinorial degrees of freedom of the two S2s by the proposed chirality
conditions also make them non-dynamical. The S? spinors covariantly constant in S? degrees
of freedom.

2. Define the spinor structure of 12-D twistor space, define induced spinor structure at 6-D
surfaces defining the twistor space of space-time surface. Define the twistor counterpart of
the analog of modified Dirac action using same general formulas as in case of H.

Construct next the super-variant of this structure.

1. Introduce second quark oscillator operators labelled by the points of cognitive representation
in 12-D twistor space effectively replacing 6-D surface with its discretization and having
quantized quark field ¢ as its continuum counterpart. Replace the coordinates of the 12-D
twistor space with super coordinates h, expressed in terms of quark and anti-quark oscillator
operators labelled by points of cognitive representation, and having interpretation as quantized
quark field ¢ restricted to the points of representation.

2. Express 6-D Kéhler action and Dirac action density in terms of super-coordinates hs. The
local monomials of ¢ appear in hs; and therefore also in the expansion of super-variants of
modified gamma matrices defined by 6-D &hler action as contractions of canonical momentum
currents of the action density Ly with the gamma matrices of 12-D twistor space. In super-
Kéhler action also the local composites of ¢ giving rise to currents formed from the local
composites of 3-quarks and antiquarks and having interpretation as leptons and anti-leptons
occur - leptons would be therefore spartners of squarks.

3. Perform super-expansion also for the induced spinor field ¢, in terms of monomials of q. ¢s(q)
obeys super-Dirac equation non-linear in ¢. But also ¢ should satisfy super-Dirac action as
an analog of quantized quark field and non-linearity indeed forces also ¢ to have has super-
expansion. Thus both quark field ¢ and super-quark field ¢ both satisfy super-Dirac equation.
The only possibility is ¢; = ¢ stating fixed point property under ¢ — ¢ having interpretation
in terms of quantum criticality fixing the values of the coefficients of various terms in g5 and
in the super-coordinate h, having interpretation as coupling constants. One has quantum
criticality and discrete coupling constant evolution with respect to extension of rationals
characterizing adelic physics.

4. Super-Dirac action vanishes for its solutions and the exponent of super-action reduces to
exponent of super-Kéhler action, whose matrix elements between positive and negative energy
parts of zero energy states give S-matrix elements.

Super-Dirac action has however an important function: the derivatives of quark currents
appearing in the super-Kéhler action can be transformed to a linear strictly local action of
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super spinor connection (0, — Aq s effectively). Without this lattice discretization would be
needed and cognitive representation would not be enough.

To sum up, the super variants of modified gamma matrices of the 6-surface would satisfy the
condition D, sI'¢ = 0 expressing preferred extremal property and guaranteeing super-hermicity of
D;. gs would obey super-Dirac equation Dyqs = 0. The self-referential identification ¢ = ¢, would
express quantum criticality of TGD.

5.7 Could one describe massive particles using 4-D quantum
twistors?

The quaternionic generalization of twistors looks almost must. But before this I considered also
the possibility that ordinary twistors could be generalized to quantum twistors to describe particle
massivation. Quantum twistors could provide space-time level description, which requires 4-D
twistors, which cannot be ordinary M?* twistors. Also the classical 4-momenta, which by QCC
would be equal to M® momenta, are in general massive so that the ordinary twistor approach
cannot work. One cannot of course exclude the possibility that octo-twistors are enough or that
M$ description is equivalent with space-time description using quantum twistors.

5.7.1 How to define quantum Grassmannian?

The approach to twistor amplitude relies on twistor Grassmann approach [B17, [B13], [B10] [B20]
B21l B5] (see http://tinyurl.com/yx1llwcsn). This approach should be replaced by replacing
Grassmannian GR(K, N) = Gl(n,C)/Gl(n — m,C) x Gl(m,C) with quantum Grassmannian.

naive approach to the definition of quantum Grassmannian

Quantum Grassmannian is a notion studied in mathematics and the approach of [A68] (see http:
//tinyurl.com/y5q6kv6b) looks reasonably comprehensible even for physicist. I have already
earlier tried to understand quantum algebras and their possible role in TGD [K16]. It is however
better to start as ignorant physicist and proceed by trial and error and find whether mathematicians
have ended up with something similar.

1. Twistor Grassmannian scattering amplitudes involving k negative helicity gluons involve prod-
uct of £ X k minors of an k x n matrix C taken in cyclic order. C defines k x n coordinates
for Grassmannian Gr(k,n) of which part is redundant by the analogs of gauge symmetries
Gl(n—m,C) x Gl(m, C). Here n is the number of external gluons and k& the number of nega-
tive helicity gluons. The k x k determinants taken in cyclic order appear in the integrand over
Grassmannian. Also the quantum variants of these determinants and integral over quantum
Grassmannian should be well-defined and residue calculus gives hopes for achieving this.

2. One should define quantum Grassmannian as algebra according to my physicist’s understand-
ing algebra can be defined by starting from a free algebra generated by a set of elements -
now the matrix elements of quantum matrix. One poses on these elements relations to get
the algebra considered. What could these conditions be in the recent case.

3. A natural condition is that the definition allows induction in the sense that its restriction to
quantum sub-matrices is consistent with the general definition of k& X n quantum matrices.
In particular, one can identify the columns and rows of quantum matrices as instances of
quantum vectors.

4. How to generalize from 2 x 2 case to k x n case? The commutation relations for neighboring
elements of rows and columns are fixed by induction. In 4 x 4 corresponding to M* twistors
one would obtain for (ay,...,a4). a;a;41 = qa;+1a; cyclically (k =1 follows k = 4).

What about commutations of a; and a;1x, k > 1. Is there need to say anything about these
commutators? In twistor Grassmann approach only connected k X k minors in cyclic order
appear. Without additional relations the algebra might be too large. One could argue that
the simplest option is that one has a;a;1r = qa;+ra; for k odd a;a,4 = q’1a¢+kai for k even.
This is required from the consistency with cyclicity. These conditions would allow to define
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also sub-determinants, which do not correspond to connected k x k squares by moving the
elements to a a connected patch by permutations of rows and columns.

5. What about elements along diagonal? The induction from 2 x 2 would require the commu-
tativity of elements along right-left diagonals. Only commutativity of the elements along
left-right diagonal be modified. Or is the commutativity lost only along directions parallel
to left-right diagonal? The problem is that the left-right and right-left directions are trans-
formed to each other in odd permutations. This would suggest that only even permutations
are allowed in the definition of determinant

6. Could one proceed inductively and require that one obtains the algebra for 2 x 2 matrices
for all 2 x 2 minors? Does this apply to all 2 x 2 minors or only to connected 2 X 2 minors
with cyclic ordering of rows and columns so that top and bottom row are nearest neighbors
as also right and left column. Also in the definition of 3 x 3 determinant only the connected
developed along the top row or left column only 2 x 2 determinants involving nearest neighbor
matrix elements appear. This generalizes to k x k case.

It is time to check how wrong the naive intuition has been. Consider 2 X 2 matrices as
simple example. In this case this gives only 1 condition (ad — bc = —da + ¢b) corresponding to the
permutation of rows or columns. Stronger condition suggested by higher-D case would be ad = da
and be = ¢b. The definition of 2 x 2 in [A68| however gives for quantum 2-matrices (a, b; ¢, d) the
conditions

ac = qca bd = qda 5
ab = gba ,cd = qgdc (5.7.1)
bc=cb , ad —da = (¢ — q )b

The commutativity along left-right diagonal is however lost for ¢ # 1 so that quantum determinant
depends on what row or column is used to expand it. The modification of the commutation relations
along rows and columns is what one might expect and wants in order to achieve non-commutativity
of twistor components making possible massivation in M* sense.

The limit ¢ — 1 corresponds to non-trivial algebra in general and would correspond to g = 4
for inclusions of HFF's expected to give representations of Kac-Moody algebras. At this limit only
massless particles in 4-D sense are allowed. This suggests that the reduction of Kac-Moody algebras
to quantum groups corresponds to symmetry breaking associated with massivation in 4-D sense.

Mathematical definition of quantum Grassmannian

It would seem that the proposed approach is reasonable. The article [A95)] (see http://tinyurl.
com/yycflgrd) proposing a definition of quantum determinant explains also the basic interpreta-
tion of what the non-commutativity of elements of quantum matrices does mean.

1. The first observation is that the commutation of the elements of quantum matrix corresponds
to braiding rather than permutation and this operation is represented by R-matrix. The
formula for the action of braiding is

REGtEG = 3P REG (5.7.2)

Here R-matrix is a solution of Yang-Baxter equaion and characterizes completely the commu-
tation relations between the elements of quantum matrix. The action of braiding is obtained
by applying the inverse of R-matrix from left to the equation. By iterating the braidings of
nearest neighbors one can deduce what happens in the braiding exchanging quantum matrix
elements which are not nearest neighbors. What is nice that the R-matrix would fix the
quantum algebra, in particular quantum Grassmannian completely.

2. In the article the notion of quantum determinant is discussed and usually the definition of
quantum determinant involves also the introduction of metric g?° allowing the raising of the
indices of the permutation symbol. One obtains formulas relating metric and R-matrix and
restricting the choice of the metric. Note however that if ordinary permutation symbol is used
there is no need to introduce the metric.
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The definition quantum Grassmannian proposed does not involve hermitian conjugates of
the matrices involved. One can define the elements of Grassmannian and Grassmannian residue
integrals without reference to complex conjugation: could one do without hermitian conjugates?
On the other hand, Grassmannians have complex structure and Kéhler structure: could this require
hermitian conjugates and commutation relations for these?

5.7.2 Two views about quantum determinant

If one wants to define quantum matrices in Gr(k,n) so that quantal twistor-Grassmann amplitudes
make sense, the first challenge is to generalize the notion of k x k determinant.
One can consider two approaches concerning the definition of quantum determinant.

1. The first guess is that determinant should not depend on the ordering of rows or columns
apart from the standard sign factor. This option fails unless one modifies the definition of
permutation symbol.

2. The alternative view is that permutation symbol is ordinary and there is dependence on
the row or column with respect to which one develops. This dependence would however
disappear in the scattering amplitudes. If the poles and corresponding residues associated
with the k& x k-minors of the twistor amplitude remain invariant under the permutation, this
is not a problem. In other words, the scattering amplitudes are invariant under braid group.
This is what twistor Grassmann approach implies and also TGD predict.

For the first option quantum determinant would be braiding invariant. The standard defini-
tion of quantum determinant is discussed in detail in [A95] (see http://tinyurl.com/yycflgrd).

1. The commutation of the elements of quantum matrix corresponds to braiding rather than
permutation and as found, this operation is represented by R-matrix.

2. Quantum determinant would change only by sign under the braidings of neighboring rows and
columns. The braiding for the elements of quantum matrix would compensate the braiding
for quantum permutation symbol. Permutation symbol is assumed to be g-antisymmetric
under braiding of any adjacent indices. This requires that permutation iy <> 451 regarded as
braiding gives a contraction of quantum permutation symbol €;,, 1, with R}’ plus scaling

Thlik+41
by some normalization factor A besides the change of sign.
€ay...apapi1...an — *)\eal...ij...anRﬁcakJﬂ . (573)

The value of A can be calculated.

3. The calculation however leads to the result that quantum determinant D satisfies D? = 1! If
the result generalizes for sub-determinants defined by k x k-minors (, which need not be the
case) would have determinants satisfying D? = 1, and the idea about vanishing of & x k-minor
essential for getting non-trivial twistor scattering amplitude as residue would not make sense.

It seems that the braiding invariant definition of quantum determinant, which of course
involves technical assumptions) is too restrictive. Does this mean that the usual definition requiring
development with respect to preferred row is the physically acceptable option? This makes sense
if only the integral but not integrand is invariant under braidings. Braiding symmetry would be
analogous to gauge invariance.

5.7.3 How to understand the Grassmannian integrals defining the scat-
tering amplitudes?

The beauty of the twistor Grassmannian approach is that the residue integrals over quantum
Gr(k,n) would reduce to sum over poles (or possibly integrals over higher-D poles). Could residue
calculus provide a manner to integrate q-number valued functions of g-numbers? What would be
the minimal assumptions allowing to obtain scattering amplitudes as c-numbers?

Consider first what the integrand to be replaced with its quantum version looks like.
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1. Twistor scattering amplitudes involve also momentum conserving delta function expressible
as 6(AqA?). This sum and - as it seems - also the summands should be c-numbers - in other
words one has eigenstates of the operators defining the summands.

2. By introducing Grassmannian space Gr(k,n) with coordinates C, ; (see http://tinyurl.
com/yx11lwcsn), one can linearize §(A\,A%) to a product of delta functions §(C - Z) = 6(C- \) x
§(C+ - )\) (I have not written the delta function is Grassmann parameters related to super
coordinates). Z is the n-vector formed by the twistors associated with incoming particles.

The 4 x k components of Cy, 1, Z k¥ should be c-numbers at least when they vanish. One should
define quantum twistors and quantum Grassmannian and pose the constraints on the poles.

How to achieve the goal? Before proceeding it is good to recall the notion of non-commutative
geometry (see http://tinyurl.com/yxrcr8xv). Ordinary Riemann geometry can be obtained
from exterior algebra bundle, call it E. The Hilbert space of square integrable sections in E carries
a representation of the space of continuous functions C(M) by multiplication operators. Besides
this there is unbounded differential operator D, which so called signature operator and defined in
terms of exterior derivative and its dual: D = d+d*. This spectral triple of algebra, Hilbert space,
and operator D allows to deduce the Riemann geometry.

The dream is that one could assign to non-commutative algebras non-commutative spaces
using this spectral triple. The standard g-p quantization is example of this: one obtains now
Lagrange manifolds as ordinary commutative manifolds.

Consider now the situation in the case of quantum Grassmannian.

1. In the recent case the points defining the poles of the function - it might be that the even-
tual poles are not a set of discrete points but a higher-dimensional object - would form the
commutative part of non-commutative quantum space. In this space the product of quantum
minors would become ordinary number as also the argument C' - Z of the delta function. This
commutative sub-space would correspond to a space in which maximum number of minors
vanish and residues reduce to c-numbers.

Thus poles of the integrand of twistor amplitude would correspond to eigenstates for some
k x k minors of Grassmannian with a vanishing eigenvalue. The residue at the pole at given
step in the recursion pole by pole need not be c-number but the further residue integrals
should eventually lead to a c-number or c-number valued integrand.

2. The most general option would be that the conditions hold true only in the sense that some
k X k minors for k > 2 are c-numbers and have a vanishing eigenvalue but that smaller minors
need not have this property. Also C, xZ* should be c-numbers and vanish. Residue calculus
would give rise to lower-D integrals in step-wise manner.

The simplest and most general option is that one can speak only about eigenvalues of k x k
minors. At pole it is enough to have one minor for which eigenvalue vanishes whereas other
minors could remain quantal. In the final reduction the product of all non-vanishing k x k
minors appearing in cyclic order in the integrand should have a well-defined c-number as
eigenvalue. Does this allow the appearance of only cyclic minors.

A stronger condition would be that all non-vanishing minors reduce to their eigenvalues.
Could it be that only the n cyclic minors can commute simultaneously and serve as analogs
of g-coordinates in phase space? The complex dimension of Go(n, k) is d = (n — k)k. If the
space spaced by minors corresponds to Lagrangian manifold with real dimension not larger
than d, one has k < d = (n — k)k. This gives k < n/2(1 4+ /1 —2/n) For k = 2 this gives
k <mn/2. For n — oo one has k < n/2+ 1. For k > n/2 one can change the roles of positive
and negative helicities. It has been found that in certain sense the Grassmannian contributing
to the twistor amplitude is positive.

The notion of positivity found to characterize the part of Grassmannian contributing to the
residue integral and also the minors and the argument of delta function [B19](see http:
//tinyurl.com/yd9tf2yal) would suggest that it is also real sub-space in some sense and this
finding supports this picture.

The delta function constraint forcing C' - Z to zero must also make sense. C - Z defines k x 6
matrix and also now one must consider eigenvalues of C'- Z. Positivity suggest reality also
now. Z adds 4 x n degrees of freedom and the number 6 x k of additional conditions is smaller
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than 4 x n. 6k < 4 x n combined with k£ < n/2 gives k < n/2 so that the conditions seems to
be consistent.

3. The c-number property for the cyclic minors could define the analog of Lagrangian manifold
for the phase space or Kéhler manifold. One can of course ask, whether Kéahler structure
of Gr(k,n) could generalize to quantum context and give the integration region as a sub-
manifold of Lagrangian manifold of Gr(k,n) and whether the twistor amplitudes could reduce
to integral over sub-manifold of Lagrangian manifold of ordinary Gr(k,n).

To sum up, I have hitherto thought that TGD allows to get rid of the idea of quantization of
coordinates. Now I have encountered this idea from totally unexpected perspective in an attempt
to understand how 8-D masslessness and its twistor description could relate to 4-D one. Grass-
mannians are however very simple and symmetric objects and have natural coordinates as k x n
matrices interpretable as quantum matrices. The notion of quantum group could find very concrete
application as a solution to the basic problem of the standard twistor approach. Therefore one
can consider the possibility that they have quantum counterparts and at least the residue integrals
reducing to c-numbers make sense for quantum Grassmannians in algebraic sense.



Chapter 6

Does TGD Predict Spectrum of
Planck Constants?

6.1 Introduction

The quantization of Planck constant has been the basic them of TGD since 2005 and the perspective
in the earlier version of this chapter reflected the situation for about year and one half after the
basic idea stimulated by the finding of Nottale [EI3] that planetary orbits could be seen as Bohr
orbits with enormous value of Planck constant given by fig,. = GM;Ms/vg, vo ~ 271! for the inner
planets. The general form of Ay, is dictated by Equivalence Principle. This inspired the ideas that
quantization is due to a condensation of ordinary matter around dark matter concentrated near
Bohr orbits and that dark matter is in macroscopic quantum phase in astrophysical scales.

The second crucial empirical input were the anomalies associated with living matter. Men-
tion only the effects of ELF radiation at EEG frequencies on vertebrate brain and anomalous
behavior of the ionic currents through cell membrane. If the value of Planck constant is large,
the energy of EEG photons is above thermal energy and one can understand the effects on both
physiology and behavior. If ionic currents through cell membrane have large Planck constant the
scale of quantum coherence is large and one can understand the observed low dissipation in terms
of quantum coherence. This approach led to the formula hefs = n x h. Rather recently (2014) it
became clear that for microscopic systems the identification h.fs = hq, makes sense and predicts
universal energy spectrum for cyclotron energies of dark photons identifiable as energy spectrum
of bio-photons in TGD inspired quantum biology.

6.1.1 Evolution Of Mathematical Ideas

The original formulation for the hierarchy of Planck constants was in terms of h.sy/h = n-fold
singular coverings of the embedding space H = M* x CP,. Later it turned out that there is no need
to postulate these covering spaces although they are a nice auxiliary tool allowing to understand
why the phase of matter with different values of n behave like dark matter relative to each other:
they are simply at different pages of the book-like structure formed by the covering spaces.

Few years ago it became clear that the hierarchy of Planck constants could be only effective
but have the same practical implications. The basic observation was that the effective hierarchy
need not be postulated separately but follows as a prediction from the vacuum degeneracy of
Kahler action. In this formulation Planck constant at fundamental level has its standard value
and its effective values come as its integer multiples so that one should write herr = n x h rather
than A = nhg as I have done. For most practical purposes the states in question would behave as
if Planck constant were an integer multiple of the ordinary one. This reduces the understanding of
the effective hierarchy of Planck constants to quantum variant of multi-furcations for the dynamics
of preferred extremals of K&hler action. The number of branches of multi-furcation defines the
integer n in A.ff = nh.

One of the latest steps in the progress was the realization that the hierarchy of Planck con-
stants can be understood in terms of quantum criticality of TGD Universe postulated from the
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beginning as a way to obtain a unique theory. In accordance with what is known about 2-D critical
systems, quantum criticality should correspond to a generalization of conformal invariance. TGD
indeed predicts several analogs of super-conformal algebras: so called super-symplectic algebra
acting in M7 x C' P, should act as isometries of WCW and its generators are labeled by conformal
weights. Light-cone boundary 6M} has an extension of conformal symmetries as conformal sym-
metries and an algebra isomorphic to the ordinary conformal algebra acts as its isometries. The
light-like orbits of partonic 2-surfaces allow similar algebra of conformal symmetries and string
world sheets and partonic 2-surfaces allow conformal symmetries.

The proposal is that super-symplectic algebra (at least it) defines a hierarchy of broken super-
conformal gauge symmetries in the sense that the sub-algebra for which the conformal weights are
n-ples of those for the entire algebra acts as gauge conformal symmetries. n = h.ss/h giving a
connection to the hierarchy of Planck constants would hold true. These sub-algebras are isomorphic
to the full algebra and thus form a fractal hierarchy. One has infinite number of hierarchies of
broken conformal symmetries defined by the sequences n(i+1) = m; xn(). In the phase transition
increasing n conformal gauge symmetry is reduced and some gauge degrees of freedom transform
to physical ones and criticality is reduced so that the transition takes place spontaneously. TGD
Universe is like a ball at the top of hill at the top of hill at....

This view has far reaching implication for the understanding of living matter and leads to
deep connections between different key ideas of TGD. The hierarchy has also a purely number
theoretical interpretation in terms of hierarchy of algebraic extensions of rationals appearing nat-
urally in the adelic formulation of quantum TGD. n = h.ss/h would naturally correspond to an
integer, which is product of so called ramified primes (rational primes for which the decomposition
to primes of extension contains higher powers of these primes).

In this framework it becomes obvious that - instead of coverings of embedding space pos-
tulated in the original formulation - one has space-time surfaces representable as singular n-fold
coverings. The non-determinism of K&hler action - key element of criticality - would be the basic
reason for the appearance of singular coverings: two 3-surfaces at the opposite boundaries of CD
are connected by n-sheeted space-time surfaces for which the sheets co-incide at the boundaries.
Criticality must be accompanied by 4-D variant of conformal gauge invariance already described
so that these space-time surfaces are replaced by conformal gauge equivalence classes.

These coverings are highly analogous to the covering space associated with the analytic
function w(z) = z'/™. If one uses w as a variable, the ordinary conformal symmetries generated
by functions of z indeed correspond to the algebra generated by w™ and the sheets of covering
correspond to conformal gauge equivalence classes not transformed to each other by conformal
transformations.

6.1.2 The Evolution Of Physical Ideas

The evolution of physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than
the evolution of mathematical ideas and quite a number of applications have been developed during
last five years.

1. The basic idea was that ordinary matter condenses around dark matter which is a phase of
matter characterized by non-standard value of Planck constant.

2. The realization that non-standard values of Planck constant give rise to charge and spin
fractionization and anyonization led to the precise identification of the prerequisites of anyonic
phase [K85] . If the partonic 2-surface, which can have even astrophysical size, surrounds the
tip of CD, the matter at the surface is anyonic and particles are confined at this surface. Dark
matter could be confined inside this kind of light-like 3-surfaces around which ordinary matter
condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to
a connected structure by flux tubes mediating gravitational interaction - are given by Bohr
rules, the findings of Nottale [E13] can be understood. Dark matter would resemble to a high
degree matter in black holes replaced in TGD framework by light-like partonic 2-surfaces with
minimum size of order Schwarstchild radius rg of order scaled up Planck length: rg ~ VRG.
Black hole entropy being inversely proportional to & is predicted to be of order unity so that
dramatic modification of the picture about black holes is implied.
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3.

Darkness is a relative concept and due to the fact that particles at different pages of book
cannot appear in the same vertex of the generalized Feynman diagram. The phase transitions
in which partonic 2-surface X? during its travel along X; leaks to different page of book
are however possible and change Planck constant so that particle exchanges of this kind
allow particles at different pages to interact. The interactions are strongly constrained by
charge fractionization and are essentially phase transitions involving many particles. Classical
interactions are also possible. This allows to conclude that we are actually observing dark
matter via classical fields all the time and perhaps have even photographed it [K116] , [I18] .

. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic

currents through cell membrane (low dissipation, quantal character, no change when the
membrane is replaced with artificial one) has a natural explanation in terms of dark supra
currents. This leads to a vision about how dark matter and phase transitions changing
the value of Planck constant could relate to the basic functions of cell, functioning of DNA
and amino-acids, and to the mysteries of bio-catalysis. This leads also a model for EEG
interpreted as a communication and control tool of magnetic body containing dark matter
and using biological body as motor instrument and sensory receptor. One especially shocking
outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as
nuclear strings [L1 [K116] , [L1] .

6.1.3 Basic Physical Picture As It Is Now

The basic phenomenological rules are simple and remained roughly the same during years.

1.

The phases with non-standard values of effective Planck constant are identified as dark matter.
The motivation comes from the natural assumption that only the particles with the same value
of effective Planck can appear in the same vertex. One can illustrate the situation in terms of
the book metaphor. Embedding spaces with different values of Planck constant form a book
like structure and matter can be transferred between different pages only through the back of
the book where the pages are glued together. One important implication is that light exotic
charged particles lighter than weak bosons are possible if they have non-standard value of
Planck constant. The standard argument excluding them is based on decay widths of weak
bosons and has led to a neglect of large number of particle physics anomalies [K117].

. Large effective or real value of Planck constant scales up Compton length - or at least de

Broglie wave length - and its geometric correlate at space-time level identified as size scale of
the space-time sheet assignable to the particle. This could correspond to the Kahler magnetic
flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets
and short flux tubes at ends with length of order C'P; size.

This rule has far reaching implications in quantum biology and neuroscience since macro-
scopic quantum phases become possible as the basic criterion stating that macroscopic quan-
tum phase becomes possible if the density of particles is so high that particles as Compton
length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One
implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG
frequency range on vertebrate brain: £ = hf implies that the energies for the ordinary value
of Planck constant are much below the thermal threshold but large value of Planck constant
changes the situation. Also the phase transitions modifying the value of Planck constant and
changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also
reconnections of the flux tubes.

The hierarchy of Planck constants suggests also a new interpretation for FQHE (fractional
quantum Hall effect) [K85] in terms of anyonic phases with non-standard value of effective
Planck constant realized in terms of the effective multi-sheeted covering of embedding space:
multi-sheeted space-time is to be distinguished from many-sheeted space-time.

In astrophysics and cosmology the implications are even more dramatic. It was [E13] who
first introduced the notion of gravitational Planck constant as hg, = GMm/vg, vy < 1 has
interpretation as velocity light parameter in units ¢ = 1. This would be true for GMm/vy > 1.
The interpretation of A4, in TGD framework is as an effective Planck constant associated with
space-time sheets mediating gravitational interaction between masses M and m. The huge
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value of fig, means that the integer fig, /Ao interpreted as the number of sheets of covering is
gigantic and that Universe possesses gravitational quantum coherence in super-astronomical
scales for masses which are large. This changes the view about gravitons and suggests that
gravitational radiation is emitted as dark gravitons which decay to pulses of ordinary gravitons
replacing continuous flow of gravitational radiation.

3. Why Nature would like to have large effective value of Planck constant? A possible answer
relies on the observation that in perturbation theory the expansion takes in powers of gauge
couplings strengths a = g?/4wh. If the effective value of h replaces its real value as one
might expect to happen for multi-sheeted particles behaving like single particle, « is scaled
down and perturbative expansion converges for the new particles. One could say that Mother
Nature loves theoreticians and comes in rescue in their attempts to calculate. In quantum
gravitation the problem is especially acute since the dimensionless parameter GMm/k has
gigantic value. Replacing i with fg, = GMm/v the coupling strength becomes vy < 1.

4. The interpretation of the hierarchy of Planck constants as labels for quantum critical systems is
especially powerful in TGD inspired quantum biology and consciousness theory. The increase
of Planck constant by integer factor occurs spontaneously and means an increase of complexity
and sensory and cognitive resolution - in other words evolution. Living matter is however
fighting to stay at the existing level of criticality. The reason is that the changes involves
state function reduction at the opposite boundary of CD and means death of self followed by
re-incarnation.

Negentropy Maximization Principle [K72] saves the system from this fate if it is able to
generate negentropic entanglement by some other means. Metabolic energy suggested already
earlier to be a carrier of negentropic entanglement makes this possible. Also other metabolites
can carry negentropy. Therefore living systems are eating each other to satisfy the demands
of NMP! Why this non-sensical looking Karma’s cycle? The sub-systems of self defining
sub-selves (mental images) are dying and re-incarnating and generating negentropy: self is
a gardener and sub-selves are the fruit trees and the longer self lives, the more fruits are
produced. Hence this process, which Buddhist would call attachment to ego is the ways to
generate what I have called “Akashic records”. Everything has its purpose.

In this chapter I try to summarize the evolution of the ideas related to Planck constant. I
have worked hardly to achieve internal consistency but the old theory layers are there and might
cause confusion.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf| [L4].

6.2 Experimental Input

In this section basic experimental inputs suggesting a hierarchy of Planck constants and the iden-
tification of dark matter as phases with non-standard value of Planck constant are discussed.

6.2.1 Hints For The Existence Of Large h Phases

Quantum classical correspondence suggests the identification of space-time sheets identifiable as
quantum coherence regions. Since they can have arbitrarily large sizes, phases with arbitrarily
large quantum coherence lengths and arbitrarily long de-coherence times seem to be possible in
TGD Universe. In standard physics context this seems highly implausible. If Planck constant
can have arbitrarily large values, the situation changes since Compton lengths and other quantum
scales are proportional to 4. Dark matter is excellent candidate for large i phases.

The expression for iy, in the model explaining the Bohr orbits for planets is of form A, =
GM;M; /v [K100]. This suggests that the interaction is associated with some kind of interface
between the systems, perhaps join along boundaries bonds/flux tubes connecting the space-time
sheets associated with systems possessing gravitational masses M; and M. Also a large space-
time sheet carrying the mutual classical gravitational field could be in question. This argument
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generalizes to the case i/hy = Q1Q2a/vg in case of generic phase transition to a strongly interacting
phase with « describing gauge coupling strength.
There exist indeed some experimental indications for the existence of phases with a large 5.

1. With inspiration coming from the finding of Nottale [E13] I have proposed an explanation of
dark matter as a macroscopic quantum phase with a large value of /& [K100]. Any interaction,
if sufficiently strong, can lead to this kind of phase. The increase of i would make the fine
structure constant « in question small and guarantee the convergence of perturbation series.

2. Living matter could represent a basic example of large & phase [K43, [K12]. Even ordinary
condensed matter could be “partially dark” in many-sheeted space-time [K45]. In fact, the
realization of hierarchy of Planck constants leads to a considerably weaker notion of darkness
stating that only the interaction vertices involving particles with different values of Planck
constant are impossible and that the notion of darkness is relative notion. For instance,
classical interactions and photon exchanges involving a phase transition changing the value
of & of photon are possible in this framework.

3. There is claim about a detection in RHIC (Relativistic Heavy Ton Collider in Brookhaven)
of states behaving in some respects like mini black holes [C17]. These states could have
explanation as color flux tubes at Hagedorn temperature forming a highly tangled state and
identifiable as stringy black holes of strong gravitation. The strings would carry a quantum
coherent color glass condensate, and would be characterized by a large value of A naturally
resulting in confinement phase with a large value of a, [K101] . The progress in hadronic
mass calculations led to a concrete model of color glass condensate of single hadron as many-
particle state of super-symplectic gluons [K79l [K73] - something completely new from the
point of QCD - responsible for non-perturbative aspects of hadron physics. In RHIC events
these color glass condensate would fuse to single large condensate. This condensate would be
present also in ordinary black-holes and the blackness of black-hole would be darkness.

4. T have also discussed a model for cold fusion based on the assumption that nucleons can
be in large i phase. In this case the relevant strong interaction strength is @QQ2cey, for
two nucleon clusters inside nucleus which can increase h so large that the Compton length
of protons becomes of order atomic size and nuclear protons form a macroscopic quantum
phase [K45| [K43].

6.2.2 Quantum Coherent Dark Matter And h

The argument based on gigantic value of hg, explaining darkness of dark mater is attractive but
one should be very cautious.

Consider first ordinary QEde = v adnh appears in vertices so that perturbation expansion
in powers of V& basically. This would suggest that large h leads to large effects. All predictions
are however in powers of alpha and large & means small higher order corrections. What happens
can be understood on basis of dimensional analysis. For instance, cross sections are proportional
to (h/m)?, where m is the relevant mass and the remaining factor depends on o = e?/(47h) only.
In the more general case tree amplitudes with n vertices are proportional to e and thus to A™/2
and loop corrections give only powers of « which get smaller when A increases. This must relate
to the powers of 1/h from the integration measure associated with the momentum loop integrals
affected by the change of a.

Consider now the effects of the scaling of A. The scaling of Compton lengths and other
quantum kinematical parameters is the most obvious effect. An obvious effect is due to the change
of I in the commutation relations and in the change of unit of various quantum numbers. In
particular, the right hand side of oscillator operator commutation and anti-commutation relations
is scaled. A further effect is due to the scaling of the eigenvalues of the K&hler-Dirac operator
AL Dy,.

The exponent exp(K) of Kéhler function K defining perturbation series in WCW degrees
of freedom is proportional to 1/g% and does not depend on A at all if there is only single Planck
constant. The propagator is proportional to g%(. This can be achieved also in QED by absorbing e
from vertices to 2 in photon propagator. Hence it would seem that the dependence on af (and h)
must come from vertices which indeed involve Jones inclusions of the Il; factors of the incoming
and outgoing lines.
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This however suggests that the dependence of the scattering amplitudes on % is purely
kinematical so that all higher radiative corrections would be absent. This seems to leave only
one option: the scale factors of covariant CD and C' P, metrics can vary and might have discrete
spectrum of values.

1. The invariance of Kahler action with respect to overall scaling of metric however allows to
keep C P, metric fixed and consider only a spectrum for the scale factors of M* metric.

2. The first guess motivated by Schrodinger equation is that the scaling factor of covariant CD
metric corresponds the ratio 2 = (h/hg)2. This would mean that the value of Kihler action
depends on 2. The scaling of M* coordinate by 7 the metric reduces to the standard form
but if causal diamonds with quantized temporal distance between their tips are the basic
building blocks of WCW geometry as zero energy ontology requires, this scaling of /& scales
the size of CD by 7 so that genuine effect results since M* scalings are not symmetries of
Kahler action.

3. In this picture r would code for radiative corrections to Kéhler function and thus space-time
physics. Even in the case that the radiative corrections to WCW functional integral vanish,
as suggested by quantum criticality, they would be actually taken into account.

This kind of dynamics is not consistent with the original view about embedding space and
forces to generalize the notion of embedding spaces since it is clear that particles with different
Planck constants cannot appear in the same vertex of Feynman diagram. Somehow different
values of Planck constant must be analogous to different pages of book having almost copies of
embedding space as pages. A possible resolution of the problem cames from the realization that
the fundamental structure might be the inclusion hierarchy of number theoretical Clifford algebras
from which entire TGD could emerge including generalization of the embedding space concept.

6.2.3 The Phase Transition Changing The Value Of Planck Constant As
A Transition To Non-Perturbative Phase

A phase transition increasing % as a transition guaranteeing the convergence of per-
turbation theory

The general vision is that a phase transition increasing A occurs when perturbation theory ceases
to converge. Very roughly, this would occur when the parameter x = Q1 (Q2a becomes larger than
one. The net quantum numbers for “spontaneously magnetized” regions provide new natural units
for quantum numbers. The assumption that standard quantization rules prevail poses very strong
restrictions on allowed physical states and selects a subspace of the original configuration space.
One can of course, consider the possibility of giving up these rules at least partially in which case
a spectrum of fractionally charged anyon like states would result with confinement guaranteed by
the fractionization of charges.

The necessity of large i phases has been actually highly suggestive since the first days of
quantum mechanics. The classical looking behavior of macroscopic quantum systems remains still
a poorly understood problem and large i phases provide a natural solution of the problem.

In TGD framework quantum coherence regions correspond to space-time sheets. Since
their sizes are arbitrarily large the conclusion is that macroscopic and macro-temporal quantum
coherence are possible in all scales. Standard quantum theory definitely fails to predict this and
the conclusion is that large h phases for which quantum length and time scales are proportional
to i and long are needed.

Somewhat paradoxically, large & phases explain the effective classical behavior in long length
and time scales. Quantum perturbation theory is an expansion in terms of gauge coupling strengths
inversely proportional to i and thus at the limit of large & classical approximation becomes exact.
Also the Coulomb contribution to the binding energies of atoms vanishes at this limit. The fact
that we experience world as a classical only tells that large A phase is essential for our sensory
perception. Of course, this is not the whole story and the full explanation requires a detailed
anatomy of quantum jump.
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The criterion for the occurrence of the phase transition increasing the value of 7

In the case of planetary orbits the large value of hy, = 2GM /vy makes possible to apply Bohr
quantization to planetary orbits. This leads to a more general idea that the phase transition
increasing A occurs when the system consisting of interacting units with charges (); becomes non-
perturbative in the sense that the perturbation series in the coupling strength a@;Q;, where « is
the appropriate coupling strength and ();(); represents the maximum value for products of gauge
charges, ceases to converge. Thus Mother Nature would resolve the problems of theoretician. A
primitive formulation for this criterion is the condition aQ;Q; > 1.

The first working hypothesis was the existence of dark matter hierarchies with & = A\*hg,
k=0,1,... A = n/vg or A = 1/nvg, vo ~ 27!, This rule turned out to be quite too specific.
The mathematically plausible formulation predicts that in principle any rational value for r =
R(M*)/h(CP,) is possible but there are certain number theoretically preferred values of r such as
those coming powers of 2.

6.3 A Generalization of the Notion of Embedding Space as
a Realization of the Hierarchy of Planck Constants

In the following the basic ideas concerning the realization of the hierarchy of Planck constants
are summarized and after that a summary about generalization of the embedding space is given.
In [K85] the important delicacies associated with the Kéahler structure of generalized embedding
space are discussed. The background for the recent vision is quite different from that for half decade
ago. Zero energy ontology and the notion of causal diamond, number theoretic compactification
leading to the precise identification of number theoretic braids, the realization of number theoretic
universality, and the understanding of the quantum dynamics at the level of Kahler-Dirac action
fix to a high degree the vision about generalized embedding space.

6.3.1 Basic Ideas

The first key idea in the geometric realization of the hierarchy of Planck constants emerges from
the study of Schrédinger equation and states that Planck constant appears a scaling factor of M*
metric. Second key idea is the connection with Jones inclusions inspiring an explicit formula for
Planck constants. For a long time this idea remained heuristic must-be-true feeling but the recent
view about quantum TGD provide a justification for it.

Scaling of Planck constant and scalings of CD and C'P, metrics

The key property of Schrodinger equation is that kinetic energy term depends on A whereas the
potential energy term has no dependence on it. This makes the scaling of & a non-trivial transfor-
mation. If the contravariant metric scales as r = fi/fig the effect of scaling of Planck constant is
realized at the level of embedding space geometry provided it is such that it is possible to compare
the regions of generalized embedding space having different value of Planck constant.

In the case of Dirac equation same conclusion applies and corresponds to the minimal sub-
stitution p — eA — 1AV — eA. Consider next the situation in TGD framework.

1. The minimal substitution p — eA — iAV — eA does not make sense in the case of C'P, Dirac
operator since, by the non-triviality of spinor connection, one cannot choose the value of i
freely. In fact, spinor connection of C'P; is defined in such a way that spinor connection
corresponds to the quantity ieQA, where denotes A gauge potential, and there is no natural
manner to separate fie from it.

2. The contravariant CD metric scales like A2. In the case of Dirac operator in M* x C'P, one
can assign separate Planck constants to Poincare and color algebras and the scalings of CD
and CP, metrics induce scalings of corresponding values of h?. As far as Kihler action is
considered, C'P, metric could be always thought of being scaled to its standard form.

3. Dirac equation gives the eigenvalues of wave vector squared k? = k'k; rather than four-
momentum squared p?> = p'p; in CD degrees of freedom and its analog in C'P; degrees of
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freedom. The values of k% are proportional to 1/7? so that p?> does not depend on it for
p* = hk': analogous conclusion applies in C P, degrees of freedom. This gives rise to the
invariance of mass squared and the desired scaling of wave vector when % changes.

This consideration generalizes to the case of the induced gamma matrices and induced
metric in X*, Kihler-Dirac operator, and Kahler action which carry dynamical information about
the ratio r = Reyy/ho.

Kéhler function codes for a perturbative expansion in powers of i(CD)/h(CP,)

Suppose that one accepts that the spectrum of CD resp. C'P, Planck constants is accompanied
by a hierarchy of overall scalings of covariant CD (causal diamond) metric by (A(M*)/hg)? and
C P, metric by (h(CPy)/hg)? followed by overall scaling by 72 = (ho/h(CP))? so that C'P, metric
suffers no scaling and difficulties with isometric gluing procedure of sectors are avoided.

The first implication of this picture is that the Ké&hler-Dirac operator determined by the
induced metric and spinor structure depends on r in a highly nonlinear manner but there is no
dependence on the overall scaling of the H metric. This in turn implies that the fermionic oscillator
algebra used to define WCW spinor structure and metric depends on the value of r. Same is true
also for Kéhler action and configuration space Kéhler function. Hence Kéahler function is analogous
to an effective action expressible as infinite series in powers of r.

This interpretation allows to overcome the paradox caused by the hypothesis that loop
corrections to the functional integral over WCW defined by the exponent of Ké&hler function serving
as vacuum functional vanish so that tree approximation is exact. This would imply that all higher
order corrections usually interpreted in terms of perturbative series in powers of 1/h vanish. The
paradox would result from the fact that scattering amplitudes would not receive higher order
corrections and classical approximation would be exact.

The dependence of both states created by Super Kac-Moody algebra and the Kéahler func-
tion and corresponding propagator identifiable as contravariant WCW metric would mean that
the expressions for scattering amplitudes indeed allow an expression in powers of r. What is so
remarkable is that the TGD approach would be non-perturbative from the beginning and “semi-
classical” approximation, which might be actually exact, automatically would give a full expansion
in powers of r. This is in a sharp contrast to the usual quantization approach.

Jones inclusions and hierarchy of Planck constants

From the beginning it was clear that Jones inclusions of hyper-finite factors of type 11; are somehow
related to the hierarchy of Planck constants. The basic motivation for this belief has been that
WCW Clifford algebra provides a canonical example of hyper-finite factor of type II; and that
Jones inclusion of these Clifford algebras is excellent candidate for a first principle description of
finite measurement resolution.

Consider the inclusion N' C M of hyper-finite factors of type IT; [K125]. A deep result
is that one can express M as N : M-dimensional module over N with fractal dimension N :
M = B,,. /b, represents the dimension of a space of spinor space renormalized from the value
2 corresponding to n = oo down to v/b, = 2cos(w/n) varying thus in the range [1,2]. B, in
turn would represent the dimension of the corresponding Clifford algebra. The interpretation is
that finite measurement resolution introduces correlations between components of quantum spinor
implying effective reduction of the dimension of quantum spinors providing a description of the
factor space N/ M.

This would suggest that somehow the hierarchy of Planck constants must represent finite
measurement resolution and since phase factors coming as roots of unity are naturally associated
with Jones inclusions the natural guess was that angular resolution and coupling constant evolution
associated with it is in question. This picture would suggest that the realization of the hierarchy
of Planck constant in terms of a book like structure of generalized embedding space provides also
a geometric realization for a hierarchy of Jones inclusions.

The notion of number theoretic braid and realization that the modified Dirac operator has
only finite number of generalized eigenmodes -thanks to the vacuum degeneracy of Kéhler action-
finally led to the understanding how the notion of finite measurement resolution is coded to the
Kahler action and the realized in practice by second quantization of induced spinor fields and
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how these spinor fields endowed with g-anti-commutation relations give rise to a representations of
finite-quantum dimensional factor spaces N'/M associated with the hierarchy of Jones inclusions
having generalized embedding space as space-time correlate. This means enormous simplification
since infinite-dimensional spinor fields in infinite-dimensional world of classical worlds are replaced
with finite-quantum-dimensional spinor fields in discrete points sets provided by number theoretic
braids.

The study of a concrete model for Jones inclusions in terms of finite subgroups G of SU(2)
defining sub-algebras of infinite-dimensional Clifford algebra as fixed point sub-algebras leads to
what looks like a correct track concerning the understanding of quantization of Planck constants.

The ADE diagrams of A,, and Dy, characterize cyclic and dihedral groups whereas those of
Fg and Eg characterize tetrahedral and icosahedral groups. This approach leads to the hypothesis
that the scaling factor of Planck constant assignable to Poincare (color) algebra corresponds to
the order of the maximal cyclic subgroup of Gy, C SU(2) (G, C SL(2,C)) acting as symmetry of
space-time sheet in CP, (CD) degrees of freedom. It predicts arbitrarily large CD and C' P, Planck
constants in the case of A, and Dy, under rather general assumptions.

There are two ways for how G, and Gy can act as symmetries corresponding to G; coverings
and factors spaces. These coverings and factor spaces are singular and associated with spaces
Cb\M 2 and CP,\S?, where S? is homologically trivial geodesic sphere of C'P,. The physical
interpretation is that M? and S? fix preferred quantization axes for energy and angular moment
and color quantum numbers so that also a connection with quantum measurement theory emerges.

6.3.2 The Vision

A brief summary of the basic vision behind the generalization of the embedding space concept
needed to realize the hierarchy of Planck constants is in order before going to the detailed repre-
sentation.

1. The hierarchy of Planck constants cannot be realized without generalizing the notions of
embedding space and space-time because particles with different values of Planck constant
cannot appear in the same interaction vertex. Some kind of book like structure for the
generalized embedding space forced also by p-adicization but in different sense is suggestive.
Both M* and C'P, factors would have the book like structure so that a Cartesian product of
books would be in question.

2. The study of Schrédinger equation suggests that Planck constant corresponds to a scaling
factor of CD metric whose value labels different pages of the book. The scaling of M*
coordinate so that original metric results in CD factor is possible so that the interpretation
for scaled up value of & is as scaling of the size of causal diamond CD.

3. The light-like 3-surfaces having their 2-D and light-boundaries of CD are in a key role in the
realization of zero energy states, and the infinite-D spaces of light-like 3-surfaces inside scaled
variants of CD define the fundamental building brick of WCW (world of classical worlds).
Since the scaling of CD does not simply scale space-time surfaces the effect of scaling on
classical and quantum dynamics is non-trivial and a coupling constant evolution results and
the coding of radiative corrections to the geometry of space-time sheets becomes possible. The
basic geometry of CD suggests that the allowed sizes of CD come in the basic sector i = hg as
powers of two. This predicts p-adic length scale hypothesis and lead to number theoretically
universal discretized p-adic coupling constant evolution. Since the scaling is accompanied
by a formation of singular coverings and factor spaces, different scales are distinguished at
the level of topology. p-Adic length scale hierarchy affords similar characterization of length
scales in terms of effective topology.

4. The idea that TGD Universe is quantum critical in some sense is one of the key postulates
of quantum TGD. The basic ensuing prediction is that Ké&hler coupling strength is analogous
to critical temperature. Quantum criticality in principle fixes the p-adic evolution of various
coupling constants also the value of gravitational constant. The exact realization of quantum
criticality would be in terms of critical sub-manifolds of M* and C'P, common to all sectors
of the generalized embedding space. Quantum criticality of TGD Universe means that the
two kinds of number theoretic braids assignable to M* and C'P, projections of the partonic 2-
surface belong by the very definition of number theoretic braids to these critical sub-manifolds.
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At the boundaries of CD associated with positive and negative energy parts of zero energy
state in a given time scale partonic two-surfaces belong to a fixed page of the Big Book
whereas light-like 3-surface decomposes to regions corresponding to different values of Planck
constant much like matter decomposes to several phases at criticality.

The connection with Jones inclusions was originally a purely heuristic guess, and it took half

decade to really understand why and how they are involved. The notion of measurement resolution
is the key concept.

1.

The key observation is that Jones inclusions are characterized by a finite subgroup G C SU(2)
and the this group also characterizes the singular covering or factor spaces associated with
CD or C'P; so that the pages of generalized embedding space could indeed serve as correlates
for Jones inclusions.

. The dynamics of Kahler action realizes finite measurement resolution in terms of finite number

of modes of the induced spinor field automatically implying cutoffs to the representations of
various super-conformal algebras typical for the representations of quantum groups associated
with Jones inclusions. The interpretation of the Clifford algebra spanned by the fermionic
oscillator operators is as a realization for the concept of the factor space N'/M of hyper-finite
factors of type II; identified as the infinite-dimensional Clifford algebra A of the configura-
tion space and included algebra M determining the finite measurement resolution for angle
measurement in the sense that the action of this algebra on zero energy state has no de-
tectable physical effects. M takes the role of complex numbers in quantum theory and makes
physics non-commutative. The resulting quantum Clifford algebra has anti-commutation re-
lations dictated by the fractionization of fermion number so that unit becomes r = h/hy.
SU(2) Lie algebra transforms to its quantum variant corresponding to the quantum phase
q = exp(i27 /7).

G invariance for the elements of the included algebra can be interpreted in terms of finite
measurement resolution in the sense that action by G invariant Clifford algebra element has
no detectable effects. Quantum groups realize this view about measurement resolution for
angle measurement. The G-invariance of the physical states created by fermionic oscillator
operators which by definition are not G invariant guarantees that quantum states as a whole
have non-fractional quantum numbers so that the leakage between different pages is possible
in principle. This hypothesis is consistent with the TGD inspired model of quantum Hall
effect [K85].

Concerning the formula for Planck constant in terms of the integers n, and n; characterizing
orders of the maximal cyclic subgroups of groups G, and G, defining coverings and factor
spaces associated with CD and C'P; the basic constraint is that the overall scaling of H metric
has no effect on physics. What matters is the ratio of Planck constants r = h(M?)/h(CPs)
appearing as a scaling factor of M* metric. This leaves two options if one requires that the
Planck constant defines a homomorphism. The model for dark gravitons suggests a unique
choice between these two options but one must keep still mind open for the alternative.

. Jones inclusions appear as two variants corresponding to N : M < 4 and N : M = 4. The

tentative interpretation is in terms of singular G-factor spaces and G-coverings of M* and
C'P, in some sense. The alternative interpretation assigning the inclusions to the two different
geodesic spheres of C'P, would mean asymmetry between M* and C'P, degrees of freedom
and is therefore not convincing.

The natural question is why the hierarchy of Planck constants is needed. Is it really necessary?
Number theoretic Universality suggests that this is the case. One must be able to define the
notion of angle -or at least the notion of phase and of trigonometric functions- also in the
p-adic context. All that one can achieve naturally is the notion of phase defined as a root of
unity and introduced by allowing algebraic extension of p-adic number field by introducing the
phase. In the framework of TGD inspired theory of consciousness this inspires a vision about
cognitive evolution as the gradual emergence of increasingly complex algebraic extensions of
p-adic numbers and involving also the emergence of improved angle resolution expressible
in terms of phases exp(i27/n) up to some maximum value of n. The coverings and factor
spaces would realize these phases purely geometrically and quantum phases ¢ assignable to
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Jones inclusions would realize them algebraically. Besides p-adic coupling constant evolution
based on the hierarchy of p-adic length scales there would be coupling constant evolution with
respect to i and associated with angular resolution.

6.3.3 Hierarchy Of Planck Constants And The Generalization Of The
Notion Of Embedding Space

In the following the recent view about structure of embedding space forced by the quantization
of Planck constant is summarized. The question is whether it might be possible in some sense
to replace H or its Cartesian factors by their necessarily singular multiple coverings and factor
spaces. One can consider two options: either M* or the causal diamond CD. The latter one is the
more plausible option from the point of view of WCW geometry.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter
as a hierarchy of phases of matter with non-standard value of Planck constants was much faster
than the evolution of mathematical ideas and quite a number of applications have been developed
during last five years.

1. The starting point was the proposal of Nottale [E13] that the orbits of the 4 inner planets
correspond to Bohr orbits with Planck constant A, = GMm/vy and outer planets with
Planck constant %y, = 5GMm /vy, vo/c ~ 271, The basic proposal [K100] was that ordinary
matter condenses around dark matter which is a phase of matter characterized by a non-
standard value of Planck constant whose value is gigantic for the space-time sheets mediating
gravitational interaction. The interpretation of these space-time sheets could be as magnetic
flux quanta or as massless extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Comp-
ton length meaning that the density of matter at these space-time sheets must be very slowly
varying. The string tension of string like objects implies effective negative pressure character-
izing dark energy so that the interpretation in terms of dark energy might make sense [K101].
TGD predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-
critical mass density and the “pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different
worlds in the sense local interactions of particles with different values of 7 are not possible.
This inspires the idea about the book like structure of the embedding space obtained by gluing
almost copies of H together along common “back” and partially labeled by different values
of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X? during its travel along X leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually
observing dark matter via classical fields all the time and perhaps have even photographed
it [K116].

5. The realization that non-standard values of Planck constant give rise to charge and spin
fractionization and anyonization led to the precise identification of the prerequisites of anyonic
phase [K85]. If the partonic 2-surface, which can have even astrophysical size, surrounds the
tip of CD, the matter at the surface is anyonic and particles are confined at this surface.
Dark matter could be confined inside this kind of light-like 3-surfaces around which ordinary
matter condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces -
glued to a connected structure by flux tubes mediating gravitational interaction - are given
by Bohr rules, the findings of Nottale [E13] can be understood. Dark matter would resemble
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to a high degree matter in black holes replaced in TGD framework by light-like partonic
2-surfaces with a minimum size of order Schwartschild radius rg of order scaled up Planck
length {p; = \/herG = GM. Black hole entropy is inversely proportional to 7 and predicted
to be of order unity so that dramatic modification of the picture about black holes is implied.

Perhaps the most fascinating applications are in biology. The anomalous behavior ionic
currents through cell membrane (low dissipation, quantal character, no change when the
membrane is replaced with artificial one) has a natural explanation in terms of dark supra
currents. This leads to a vision about how dark matter and phase transitions changing
the value of Planck constant could relate to the basic functions of cell, functioning of DNA
and amino-acids, and to the mysteries of bio-catalysis. This leads also a model for EEG
interpreted as a communication and control tool of magnetic body containing dark matter
and using biological body as motor instrument and sensory receptor. One especially amazing
outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as
nuclear strings [L11, [K116], [LIJ.

The most general option for the generalized embedding space

Simple physical arguments pose constraints on the choice of the most general form of the embedding
space.

1.

The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M*, CD, CP,, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies
a selection of the sub-space Hy = M? x §2 ¢ M* x CP,, where S? is geodesic sphere of
CP,. M*=M A\ M? and cpPy, = CP,\S? have fundamental group Z since the codimension
of the excluded sub-manifold is equal to two and homotopically the situation is like that for a
punctured plane. The exclusion of these sub-manifolds defined by the choice of quantization
axes could naturally give rise to the desired situation.

CP, allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is
homologically non-trivial. For homologically non-trivial geodesic sphere Hy = M? x S? repre-
sents a straight cosmic string which is non-vacuum extremal of Kéhler action (not necessarily
preferred extremal). One can argue that the many-valuedness of 7 is un-acceptable for non-
vacuum extremals so that only homologically trivial geodesic sphere S? would be acceptable.
One could go even further. If the extremals in M2 x CP, can be preferred non-vacuum ex-
tremals, the singular coverings of M* are not possible. Therefore only the singular coverings
and factor spaces of C'P, over the homologically trivial geodesic sphere S? would be possible.
This however looks a non-physical outcome.

(a) The situation changes if the extremals of type M? x Y2, Y2 a holomorphic surface of CPs,
fail to be hyperquaternionic. The tangent space M? represents hypercomplex sub-space
and the product of the Kéhler-Dirac gamma matrices associated with the tangent spaces
of Y2 should belong to M? algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M* so that metric is continuous at M? x C'P, but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have
only piece of lower or upper boundary in common.

For the more general option one would have four different options corresponding to the Carte-
sian products of singular coverings and factor spaces. These options can be denoted by C' —C,
C—F,F—-C,and F — F, where C (F) signifies for covering (factor space) and first (sec-
ond) letter signifies for CD (CPy) and correspond to the spaces (CDXG,) x (CPyxGy),
(CDXGq) x CPy/Gy, CD/Gy x (CPyXGy), and CD/Gy x CPy /Gy,

The groups G; could correspond to cyclic groups Z,,. One can also consider an extension by
replacing M? and S? with its orbit under more general group G (say tetrahedral, octahedral,
or icosahedral group). Ome expects that the discrete subgroups of SU(2) emerge naturally
in this framework if one allows the action of these groups on the singular sub-manifolds M?
or S2. This would replace the singular manifold with a set of its rotated copies in the case
that the subgroups have genuinely 3-dimensional action (the subgroups which corresponds
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to exceptional groups in the ADE correspondence). For instance, in the case of M? the
quantization axes for angular momentum would be replaced by the set of quantization axes
going through the vertices of tetrahedron, octahedron, or icosahedron. This would bring
non-commutative homotopy groups into the picture in a natural manner.

About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase
transition as motion of partonic 2-surface from one sector of the embedding space to another one.

1. How the gluing of copies of embedding space at M? x CP, takes place? It would seem that
the covariant metric of CD factor proportional to 22 must be discontinuous at the singular
manifold since only in this manner the idea about different scaling factor of CD metric can
make sense. On the other hand, one can always scale the M* coordinates so that the metric
is continuous but the sizes of C'Ds with different Planck constants differ by the ratio of the
Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instan-
taneous change of the size of partonic 2-surface in M* degrees of freedom. This is not the
case. Light-likeness in M? x S? makes sense only for surfaces X' x D? C M? x 52, where
X1 is light-like geodesic. The requirement that the partonic 2-surface X2 moving from one
sector of H to another one is light-like at M?2 x S2 irrespective of the value of Planck constant
requires that X2 has single point of M2 as M? projection. Hence no sudden change of the
size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant
can occur purely classically or whether it is analogous to quantum tunnelling. Classical
non-vacuum extremals of Chern-Simons action have two-dimensional C'P, projection to ho-
mologically non-trivial geodesic sphere S?. The deformation of the entire S? to homologically
trivial geodesic sphere S?; is not possible so that only combinations of partonic 2-surfaces with
vanishing total homology charge (Kahler magnetic charge) can in principle move from sector
to another one, and this process involves fusion of these 2-surfaces such that C'P; projection
becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S? of
C P, can be deformed to that of S%; using 2-dimensional homotopy flattening the piece of S?
to curve. If this homotopy cannot be chosen to be light-like, the phase transitions changing
Planck constant take place only via quantum tunnelling. Obviously the notions of light-like
homotopies (cobordisms) are very relevant for the understanding of phase transitions changing
Planck constant.

How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers n, and n; defining the
covering and factors spaces, is far from trivial and I have considered several options. The basic
physical inputs are the condition that scaling of Planck constant must correspond to the scaling
of the metric of CD (that is Compton lengths) on one hand and the scaling of the gauge coupling
strength g2/47h on the other hand.

1. One can assign to Planck constant to both CD and CP, by assuming that it appears in
the commutation relations of corresponding symmetry algebras. Algebraist would argue that
Planck constants A(C'D) and A(C'P,) must define a homomorphism respecting multiplication
and division (when possible) by G;. This requires 7(X) = A(X)hy = n for covering and
r(X) = 1/n for factor space or vice versa.

2. If one assumes that h?(X), X = M*, C P, corresponds to the scaling of the covariant metric
tensor g;; and performs an over-all scaling of H-metric allowed by the Weyl invariance of
Kihler action by dividing metric with A%(CP,), one obtains the scaling of M* covariant
metric by r? = h?/h3 = h?(M*)/h?(CP,) whereas CP; metric is not scaled at all.

3. The condition that % scales as n, is guaranteed if one has i(CD) = ny,hy. This does not fix
the dependence of /i(C'P2) on ny, and one could have A(C Py) = nyhg or A(CPy) = fig/ny. The
intuitive picture is that n,- fold covering gives in good approximation rise to n,n; sheets and
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multiplies YM action action by n,n, which is equivalent with the i = n,nphq if one effectively
compresses the covering to CD x CP,. One would have h(CPy) = ho/ny and h = nenphg.
Note that the descriptions using ordinary Planck constant and coverings and scaled Planck
constant but contracting the covering would be alternative descriptions.

This gives the following formulas r = h/hg = r(M*)/r(CP,) in various cases.

c-C¢C F-C C—-F F-F

Na np 1
r Nally ny Ng NaNp

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products ny = 2* 1, Fs, where
F, = 22" 4+ 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(im/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0,1, 2, 3,4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of ng
of fundamental p-adic length scale. np = 2!! corresponds in TGD framework to a fundamental
constant expressible as a combination of Kahler coupling strength, C' P, radius and Planck length
appearing in the expression for the tension of cosmic strings, and the powers of 2! was proposed
to define favored as values of n, in living matter [K44].

The hypothesis that Mersenne primes M = 2¥ — 1, k € {89,107,127}, and Gaussian
Mersennes Mgy = (1 +14)k — 1, k € {113,151,157,163,167,239,241..} (the number theoreti-
cal miracle is that all the four scaled up electron Compton lengths L.(k) = v/5L(k) with k €
{151,157,163,167} are in the biologically highly interesting range 10 nm-2.5 pym) define scaled up
copies of electro-weak and QCD type physics with ordinary value of & and that these physics are
induced by dark variants of corresponding lower level physics leads to a prediction for the preferred
values of r = 2%, k; = k; — k;, and the resulting picture finds support from the ensuing models for
biological evolution and for EEG [K44]. This hypothesis - to be referred to as Mersenne hypothesis
- replaces the rather ad hoc proposal r = h/hg = 2'* for the preferred values of Planck constant.

How Planck constants are visible in Kéahler action?

R(M*) and K(CP,) appear in the commutation and anti-commutation relations of various super-
conformal algebras. Only the ratio of M* and CP, Planck constants appears in Kihler action
and is due to the fact that the M* and CP, metrics of the embedding space sector with given
values of Planck constants are proportional to the corresponding Planck. This implies that Kéhler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the
ideal case correspond to the spectrum of A coding for the scaled up values of Compton lengths
and other quantal lengths and times. If so, large A phases could be crucial for understanding of
quantum critical superconductors, in particular high 7. superconductors.

6.4 Updated View About The Hierarchy Of Planck Con-
stants

During last years the work with TGD proper has transformed from the discovery of brave visions
to the work of clock smith. The challenge is to fill in the details, to define various notions more
precisely, and to eliminate the numerous inconsistencies.

Few years has passed from the latest formulation for the hierarchy of Planck constant. The
original hypothesis was that the hierarchy is real. In this formulation the embedding space was
replaced with its covering space assumed to decompose to a Cartesian product of singular finite-
sheeted coverings of M* and CP,.
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Few years ago came the realization that it could be only effective but have same practical
implications. The basic observation was that the effective hierarchy need not be postulated sepa-
rately but follows as a prediction from the vacuum degeneracy of Kahler action. In this formulation
Planck constant at fundamental level has its standard value and its effective values come as its
integer multiples so that one should write A.fs = nh rather than A = nhy as I have done. For
most practical purposes the states in question would behave as if Planck constant were an integer
multiple of the ordinary one. It was no more necessary to assume that the covering reduces to a
Cartesian product of singular coverings of M* and C' P, but for some reason I kept this assumption.

It seems that the time is ripe for checking whether some polishing of this formulation might
be needed. In particular, the work with TGD inspired quantum biology suggests a close connection
between the hierarchy of Planck constants and negentropic entanglement. Also the connection with
anyons and charge fractionalization (see http://tinyurl.com/y89xp4bu) has remained somewhat
fuzzy [K85]. In particular, it seems that the formulation based on multi-furcations of space-time
surfaces to N branches is not general enough: the N branches are very much analogous to single
particle states and second quantization allowing all 0 < n < N-particle states for given N rather
than only N-particle states looks very natural: as a matter fact, this interpretation was the original
one and led to the very speculative and fuzzy notion of N-atom, which I later more or less gave
up. Quantum multi-furcation could be the root concept implying the effective hierarchy of Planck
constants, anyons and fractional charges, and related notions- even the notions of N-nuclei, N-
atoms, and N-molecules.

6.4.1 Basic Physical Ideas

The basic phenomenological rules are simple and there is no need to modify them.

1. The phases with non-standard values of effective Planck constant are identified as dark matter.
The motivation comes from the natural assumption that only the particles with the same value
of effective Planck can appear in the same vertex. One can illustrate the situation in terms of
the book metaphor. Embedding spaces with different values of Planck constant form a book
like structure and matter can be transferred between different pages only through the back of
the book where the pages are glued together. One important implication is that light exotic
charged particles lighter than weak bosons are possible if they have non-standard value of
Planck constant. The standard argument excluding them is based on decay widths of weak
bosons and has led to a neglect of large number of particle physics anomalies [K117].

2. Large effective or real value of Planck constant scales up Compton length - or at least de
Broglie wave length - and its geometric correlate at space-time level identified as size scale of
the space-time sheet assignable to the particle. This could correspond to the Kéahler magnetic
flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets
and short flux tubes at ends with length of order C'P; size.

This rule has far reaching implications in quantum biology and neuroscience since macro-
scopic quantum phases become possible as the basic criterion stating that macroscopic quan-
tum phase becomes possible if the density of particles is so high that particles as Compton
length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One
implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG
frequency range on vertebrate brain: F = hf implies that the energies for the ordinary value
of Planck constant are much below the thermal threshold but large value of Planck constant
changes the situation. Also the phase transitions modifying the value of Planck constant and
changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also
reconnections of the flux tubes.

The hierarchy of Planck constants suggests also a

new interpretation for FQHE (see http://tinyurl.com/y89xp4bu) (fractional quantum Hall
effect) [K85] in terms of anyonic phases with non-standard value of effective Planck constant
realized in terms of the effective multi-sheeted covering of embedding space: multi-sheeted
space-time is to be distinguished from many-sheeted space-time.

3. In astrophysics and cosmology the implications are even more dramatic if one believes that
also hg, corresponds to effective Planck constant interpreted as number of sheets of multi-
furcation. It was Nottale (see http://tinyurl.com/ya6f3s41) [E13] who first introduced
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the notion of gravitational Planck constant as Ay, = GMm/vg, vo < 1 has interpretation
as velocity light parameter in units ¢ = 1. This would be true for GMm/vg > 1. The
interpretation of Ay in TGD framework is as an effective Planck constant associated with
space-time sheets mediating gravitational interaction between masses M and m. The huge
value of fig, means that the integer fig, /Ao interpreted as the number of sheets of covering is
gigantic and that Universe possesses gravitational quantum coherence in super-astronomical
scales for masses which are large. This would suggest that gravitational radiation is emitted
as dark gravitons which decay to pulses of ordinary gravitons replacing continuous flow of
gravitational radiation.

It must be however emphasized that the interpretation of g, could be different, and it will
be found that one can develop an argument demonstrating how hg,. with a correct order
of magnitude emerges from the effective space-time metric defined by the anti-commutators
appearing in the Kéhler-Dirac equation.

4. Why Nature would like to have large effective value of Planck constant? A possible answer
relies on the observation that in perturbation theory the expansion takes in powers of gauge
couplings strengths a = ¢?/4rwh. If the effective value of A replaces its real value as one
might expect to happen for multi-sheeted particles behaving like single particle, « is scaled
down and perturbative expansion converges for the new particles. One could say that Mother
Nature loves theoreticians and comes in rescue in their attempts to calculate. In quantum
gravitation the problem is especially acute since the dimensionless parameter GMm/h has
gigantic value. Replacing i with hg, = GMm/vy the coupling strength becomes vy < 1.

6.4.2 Space-Time Correlates For The Hierarchy Of Planck Constants

The hierarchy of Planck constants was introduced to TGD originally as an additional postulate
and formulated as the existence of a hierarchy of embedding spaces defined as Cartesian products
of singular coverings of M* and CP, with numbers of sheets given by integers n, and n; and
h=nhg. n =n.np.

With the advent of zero energy ontology, it became clear that the notion of singular covering
space of the embedding space could be only a convenient auxiliary notion. Singular means that
the sheets fuse together at the boundary of multi-sheeted region. The effective covering space
emerges naturally from the vacuum degeneracy of Kéhler action meaning that all deformations
of canonically imbedded M* in M* x CP, have vanishing action up to fourth order in small
perturbation. This is clear from the fact that the induced Kéahler form is quadratic in the gradients
of C' P, coordinates and Kahler action is essentially Maxwell action for the induced Kéahler form.
The vacuum degeneracy implies that the correspondence between canonical momentum currents
0Lk /0(0,h*) defining the Kéhler-Dirac gamma matrices [K126] and gradients d,h* is not one-to-
one. Same canonical momentum current corresponds to several values of gradients of embedding
space coordinates. At the partonic 2-surfaces at the light-like boundaries of CD carrying the
elementary particle quantum numbers this implies that the two normal derivatives of h* are many-
valued functions of canonical momentum currents in normal directions.

Multi-furcation is in question and multi-furcations are indeed generic in highly non-linear
systems and Kéhler action is an extreme example about non-linear system (see Fig. http:
//tgdtheory.fi/appfigures/planckhierarchy. jpg or Fig. 77 in the appendix of this book).
What multi-furcation means in quantum theory? The branches of multi-furcation are obviously
analogous to single particle states. In quantum theory second quantization means that one con-
structs not only single particle states but also the many particle states formed from them. At
space-time level single particle states would correspond to N branches b; of multi-furcation car-
rying fermion number. Two-particle states would correspond to 2-fold covering consisting of 2
branches b; and b; of multi-furcation. N —particle state would correspond to N-sheeted covering
with all branches present and carrying elementary particle quantum numbers. The branches co-
incide at the partonic 2-surface but since their normal space data are different they correspond
to different tensor product factors of state space. Also now the factorization N = n,n; occurs
but now n, and n, would relate to branching in the direction of space-like 3-surface and light-like
3-surface rather than M* and C'P, as in the original hypothesis.

In light of this the working hypothesis adopted during last years has been too limited: for
some reason I ended up to propose that only N-sheeted covering corresponding to a situation in
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which all N branches are present is possible. Before that I quite correctly considered more general
option based on intuition that one has many-particle states in the multi-sheeted space. The erratic
form of the working hypothesis has not been used in applications.

Multi-furcations relate closely to the quantum criticality of Kahler action. Feigenbaum
bifurcations (see http://tinyurl.com/2swb2p) represent a toy example of a system which via
successive bifurcations approaches chaos. Now more general multi-furcations in which each branch
of given multi-furcation can multi-furcate further, are possible unless on poses any additional
conditions. This allows to identify additional aspect of the geometric arrow of time. Either the
positive or negative energy part of the zero energy state is “prepared” meaning that single n-sub-
furcations of N-furcation is selected. The most general state of this kind involves superposition of
various n-sub-furcations.

6.4.3 The Relationship To The Original View About The Hierarchy Of
Planck Constants

Originally the hierarchy of Planck constant was assumed to correspond to a book like structure
having as pages the n-fold coverings of the embedding space for various values of n serving therefore
as a page number. The pages are glued together along a 4-D “back” at which the branches of n-
furcations are degenerate. This leads to a very elegant picture about how the particles belonging
to the different pages of the book interact. All vertices are local and involve only particles with the
same value of Planck constant: this is enough for darkness in the sense of particle physics. The
interactions between particles belonging to different pages involve exchange of a particle travelling
from page to another through the back of the book and thus experiencing a phase transition
changing the value of Planck constant.

Is this picture consistent with the picture based on n-furcations? This seems to be the
case. The conservation of energy in n-furcation in which several sheets are realized simultaneously
is consistent with the conservation of classical conserved quantities only if the space-time sheet
before n-furcation involves n identical copies of the original space-time sheet or if the Planck
constant is hegy = nh. This kind of degenerate many-sheetedness is encountered also in the case of
branes. The first option means an n-fold covering of embedding space and h.y is indeed effective
Planck constant. Second option means a genuine quantization of Planck constant due to the fact
the value of Kahler coupling strength a g = g% /4mhesy is scaled down by 1/n factor. The scaling
of Planck constant consistent with classical field equations since they involve ay as an overall
multiplicative factor only.

6.4.4 Basic Phenomenological Rules Of Thumb In The New Framework

It is important to check whether or not the refreshed view about dark matter is consistent with
existent rules of thumb.

1. The interpretation of quantized multi-furcations as WCW anyons explains also why the ef-
fective hierarchy of Planck constants defines a hierarchy of phases which are dark relative
to each other. This is trivially true since the phases with different number of branches in
multi-furcation correspond to disjoint regions of WCW so that the particles with different
effective value of Planck constant cannot appear in the same vertex.

2. The phase transitions changing the value of Planck constant are just the multi-furcations and
can be induced by changing the values of the external parameters controlling the properties
of preferred extremals. Situation is very much the same as in any non-linear system.

3. In the case of massless particles the scaling of wavelength in the effective scaling of & can be
understood if dark n-photons consist of n photons with energy E/n and wavelength nA.

4. For massive particle it has been assumed that masses for particles and they dark counterparts
are same and Compton wavelength is scaled up. In the new picture this need not be true.
Rather, it would seem that wave length are same as for ordinary electron.

On the other hand, p-adic thermodynamics predicts that massive elementary particles are
massless most of the time. ZEO predicts that even virtual wormhole throats are massless.
Could this mean that the picture applying on massless particle should apply to them at least
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at relativistic limit at which mass is negligible. This might be the case for bosons but for
fermions also fermion number should be fractionalized and this is not possible in the recent
picture. If one assumes that the n-electron has same mass as electron, the mass for dark
single electron state would be scaled down by 1/n. This does not look sensible unless the
p-adic length defined by prime is scaled down by this fact in good approximation.

This suggests that for fermions the basic scaling rule does not hold true for Compton length
Ae = A/m. Could it however hold for de-Broglie lengths A = 7/p defined in terms of 3-
momentum? The basic overlap rule for the formation of macroscopic quantum states is
indeed formulated for de Broglie wave length. One could argue that an 1/N-fold reduction of
density that takes place in the de-localization of the single particle states to the N branches
of the cover, implies that the volume per particle increases by a factor N and single particle
wave function is de-localized in a larger region of 3-space. If the particles reside at effectively
one-dimensional 3-surfaces - say magnetic flux tubes - this would increase their de Broglie
wave length in the direction of the flux tube and also the length of the flux tube. This seems
to be enough for various applications.

One important notion in TGD inspired quantum biology is dark cyclotron state.

The scaling i — kh in the formula E,, = (n+ 1/2)heB/m implies that cyclotron energies are
scaled up for dark cyclotron states. What this means microscopically has not been obvious
but the recent picture gives a rather clearcut answer. One would have k-particle state formed
from cyclotron states in N-fold branched cover of space-time surface. Each branch would
carry magnetic field B and ion or electron. This would give a total cyclotron energy equal to
kE,. These cyclotron states would be excited by k-photons with total energy E = khf and
for large enough value of k the energies involved would be above thermal threshold. In the
case of Ca™™ one has f = 15 Hz in the field B.,q = .2 Gauss. This means that the value
of h is at least the ratio of thermal energy at room temperature to £ = hf. The thermal
frequency is of order 102 Hz so that one would have k ~ 10''. The number branches would
be therefore rather high.

It seems that this kinds of states which I have called cyclotron Bose-Einstein condensates could
make sense also for fermions. The dark photons involved would be Bose-Einstein condensates
of k photons and wall of them would be simultaneously absorbed. The biological meaning of
this would be that a simultaneous excitation of large number of atoms or molecules can take
place if they are localized at the branches of N-furcation. This would make possible coherent
macroscopic changes. Note that also Cooper pairs of electrons could be n = 2-particle states
associated with N-furcation.

There are experimental findings suggesting that photosynthesis involves de-localized excita-

tions of electrons and it is interesting so see whether this could be understood in this framework.

1.

The TGD based model relies on the assumption that cyclotron states are involved and that
dark photons with the energy of visible photons but with much longer wavelength are involved.
Single electron excitations (or single particle excitations of Cooper pairs) would generate
negentropic entanglement (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or Fig.
?? in the appendix of this book) automatically.

If cyclotron excitations are the primary ones, it would seem that they could be induced
by dark n-photons exciting all n electrons simultaneously. n-photon should have energy of
a visible photon. The number of cyclotron excited electrons should be rather large if the
total excitation energy is to be above thermal threshold. In this case one could not speak
about cyclotron excitation however. This would require that solar photons are transformed
to n-photons in N-furcation in biosphere.

Second - more realistic looking - possibility is that the incoming photons have energy of visible
photon and are therefore n = 1 dark photons de-localized to the branches of the N-furcation.
They would induce de-localized single electron excitation in WCW rather than 3-space.

6.4.5 Charge Fractionalization And Anyons

It is easy to see how the effective value of Planck constant as an integer multiple of its standard
value emerges for multi-sheeted states in second quantization. At the level of Kéhler action one can
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assume that in the first approximation the value of Kédhler action for each branch is same so that
the total Kéhler action is multiplied by n. This corresponds effectively to the scaling ax — ax/n
induced by the scaling iy — nhy.

Also effective charge fractionalization and anyons emerge naturally in this framework.

1. In the ordinary charge fractionalization (see http://tinyurl.com/26tmhoe)) the wave func-
tion decomposes into sharply localized pieces around different points of 3-space carrying frac-
tional charges summing up to integer charge. Now the same happens at at the level of WCW
(“world of classical worlds” ) rather than 3-space meaning that wave functions in E? are re-
placed with wave functions in the space-time of 3-surfaces (4-surfaces by holography implied
by General Coordinate Invariance) replacing point-like particles. Single particle wave function
in WCW is a sum of IV sharply localized contributions: localization takes place around one
particular branch of the multi-sheeted space time surface. Each branch carries a fractional
charge ¢/N for teh analogs of plane waves.

Therefore all quantum numbers are additive and fractionalization is only effective and observ-
able in a localization of wave function to single branch occurring with probability p = 1/N
from which one can deduce that charge is ¢/N.

2. The is consistent with the proposed interpretation of dark photons/gravitons since they
could carry large spin and this kind of situation could decay to bunches of ordinary pho-
tons/gravitons. It is also consistent with electromagnetic charge fractionization and fraction-
ization of spin.

3. The original - and it seems wrong - argument suggested what might be interpreted as a genuine
fractionization for orbital angular momentum and also of color quantum numbers, which are
analogous to orbital angular momentum in TGD framework. The observation was that a
rotation through 27 at space-time level moving the point along space-time surface leads to a
new branch of multi-furcation and N 4 1: th branch corresponds to the original one. This
suggests that angular momentum fractionization should take place for M* angle coordinate
¢ because for it 27 rotation could lead to a different sheet of the effective covering.

The orbital angular momentum eigenstates would correspond to waves exp(i¢gm/N), m =
0,2,..., N—1 and the maximum orbital angular momentum would c